1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_sb.h" 15 #include "xfs_mount.h" 16 #include "xfs_defer.h" 17 #include "xfs_inode.h" 18 #include "xfs_dir2.h" 19 #include "xfs_attr.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_trans.h" 22 #include "xfs_buf_item.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_bmap.h" 26 #include "xfs_bmap_util.h" 27 #include "xfs_errortag.h" 28 #include "xfs_error.h" 29 #include "xfs_quota.h" 30 #include "xfs_filestream.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_symlink.h" 34 #include "xfs_trans_priv.h" 35 #include "xfs_log.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_reflink.h" 38 39 kmem_zone_t *xfs_inode_zone; 40 41 /* 42 * Used in xfs_itruncate_extents(). This is the maximum number of extents 43 * freed from a file in a single transaction. 44 */ 45 #define XFS_ITRUNC_MAX_EXTENTS 2 46 47 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); 48 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 49 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 50 51 /* 52 * helper function to extract extent size hint from inode 53 */ 54 xfs_extlen_t 55 xfs_get_extsz_hint( 56 struct xfs_inode *ip) 57 { 58 /* 59 * No point in aligning allocations if we need to COW to actually 60 * write to them. 61 */ 62 if (xfs_is_always_cow_inode(ip)) 63 return 0; 64 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 65 return ip->i_d.di_extsize; 66 if (XFS_IS_REALTIME_INODE(ip)) 67 return ip->i_mount->m_sb.sb_rextsize; 68 return 0; 69 } 70 71 /* 72 * Helper function to extract CoW extent size hint from inode. 73 * Between the extent size hint and the CoW extent size hint, we 74 * return the greater of the two. If the value is zero (automatic), 75 * use the default size. 76 */ 77 xfs_extlen_t 78 xfs_get_cowextsz_hint( 79 struct xfs_inode *ip) 80 { 81 xfs_extlen_t a, b; 82 83 a = 0; 84 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 85 a = ip->i_d.di_cowextsize; 86 b = xfs_get_extsz_hint(ip); 87 88 a = max(a, b); 89 if (a == 0) 90 return XFS_DEFAULT_COWEXTSZ_HINT; 91 return a; 92 } 93 94 /* 95 * These two are wrapper routines around the xfs_ilock() routine used to 96 * centralize some grungy code. They are used in places that wish to lock the 97 * inode solely for reading the extents. The reason these places can't just 98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 99 * bringing in of the extents from disk for a file in b-tree format. If the 100 * inode is in b-tree format, then we need to lock the inode exclusively until 101 * the extents are read in. Locking it exclusively all the time would limit 102 * our parallelism unnecessarily, though. What we do instead is check to see 103 * if the extents have been read in yet, and only lock the inode exclusively 104 * if they have not. 105 * 106 * The functions return a value which should be given to the corresponding 107 * xfs_iunlock() call. 108 */ 109 uint 110 xfs_ilock_data_map_shared( 111 struct xfs_inode *ip) 112 { 113 uint lock_mode = XFS_ILOCK_SHARED; 114 115 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 116 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 117 lock_mode = XFS_ILOCK_EXCL; 118 xfs_ilock(ip, lock_mode); 119 return lock_mode; 120 } 121 122 uint 123 xfs_ilock_attr_map_shared( 124 struct xfs_inode *ip) 125 { 126 uint lock_mode = XFS_ILOCK_SHARED; 127 128 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 130 lock_mode = XFS_ILOCK_EXCL; 131 xfs_ilock(ip, lock_mode); 132 return lock_mode; 133 } 134 135 /* 136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows 138 * various combinations of the locks to be obtained. 139 * 140 * The 3 locks should always be ordered so that the IO lock is obtained first, 141 * the mmap lock second and the ilock last in order to prevent deadlock. 142 * 143 * Basic locking order: 144 * 145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock 146 * 147 * mmap_sem locking order: 148 * 149 * i_rwsem -> page lock -> mmap_sem 150 * mmap_sem -> i_mmap_lock -> page_lock 151 * 152 * The difference in mmap_sem locking order mean that we cannot hold the 153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 154 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem 155 * in get_user_pages() to map the user pages into the kernel address space for 156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because 157 * page faults already hold the mmap_sem. 158 * 159 * Hence to serialise fully against both syscall and mmap based IO, we need to 160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both 161 * taken in places where we need to invalidate the page cache in a race 162 * free manner (e.g. truncate, hole punch and other extent manipulation 163 * functions). 164 */ 165 void 166 xfs_ilock( 167 xfs_inode_t *ip, 168 uint lock_flags) 169 { 170 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 171 172 /* 173 * You can't set both SHARED and EXCL for the same lock, 174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 176 */ 177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 184 185 if (lock_flags & XFS_IOLOCK_EXCL) { 186 down_write_nested(&VFS_I(ip)->i_rwsem, 187 XFS_IOLOCK_DEP(lock_flags)); 188 } else if (lock_flags & XFS_IOLOCK_SHARED) { 189 down_read_nested(&VFS_I(ip)->i_rwsem, 190 XFS_IOLOCK_DEP(lock_flags)); 191 } 192 193 if (lock_flags & XFS_MMAPLOCK_EXCL) 194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 195 else if (lock_flags & XFS_MMAPLOCK_SHARED) 196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 197 198 if (lock_flags & XFS_ILOCK_EXCL) 199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 200 else if (lock_flags & XFS_ILOCK_SHARED) 201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 202 } 203 204 /* 205 * This is just like xfs_ilock(), except that the caller 206 * is guaranteed not to sleep. It returns 1 if it gets 207 * the requested locks and 0 otherwise. If the IO lock is 208 * obtained but the inode lock cannot be, then the IO lock 209 * is dropped before returning. 210 * 211 * ip -- the inode being locked 212 * lock_flags -- this parameter indicates the inode's locks to be 213 * to be locked. See the comment for xfs_ilock() for a list 214 * of valid values. 215 */ 216 int 217 xfs_ilock_nowait( 218 xfs_inode_t *ip, 219 uint lock_flags) 220 { 221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 222 223 /* 224 * You can't set both SHARED and EXCL for the same lock, 225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 227 */ 228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 235 236 if (lock_flags & XFS_IOLOCK_EXCL) { 237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 238 goto out; 239 } else if (lock_flags & XFS_IOLOCK_SHARED) { 240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 241 goto out; 242 } 243 244 if (lock_flags & XFS_MMAPLOCK_EXCL) { 245 if (!mrtryupdate(&ip->i_mmaplock)) 246 goto out_undo_iolock; 247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 248 if (!mrtryaccess(&ip->i_mmaplock)) 249 goto out_undo_iolock; 250 } 251 252 if (lock_flags & XFS_ILOCK_EXCL) { 253 if (!mrtryupdate(&ip->i_lock)) 254 goto out_undo_mmaplock; 255 } else if (lock_flags & XFS_ILOCK_SHARED) { 256 if (!mrtryaccess(&ip->i_lock)) 257 goto out_undo_mmaplock; 258 } 259 return 1; 260 261 out_undo_mmaplock: 262 if (lock_flags & XFS_MMAPLOCK_EXCL) 263 mrunlock_excl(&ip->i_mmaplock); 264 else if (lock_flags & XFS_MMAPLOCK_SHARED) 265 mrunlock_shared(&ip->i_mmaplock); 266 out_undo_iolock: 267 if (lock_flags & XFS_IOLOCK_EXCL) 268 up_write(&VFS_I(ip)->i_rwsem); 269 else if (lock_flags & XFS_IOLOCK_SHARED) 270 up_read(&VFS_I(ip)->i_rwsem); 271 out: 272 return 0; 273 } 274 275 /* 276 * xfs_iunlock() is used to drop the inode locks acquired with 277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 279 * that we know which locks to drop. 280 * 281 * ip -- the inode being unlocked 282 * lock_flags -- this parameter indicates the inode's locks to be 283 * to be unlocked. See the comment for xfs_ilock() for a list 284 * of valid values for this parameter. 285 * 286 */ 287 void 288 xfs_iunlock( 289 xfs_inode_t *ip, 290 uint lock_flags) 291 { 292 /* 293 * You can't set both SHARED and EXCL for the same lock, 294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 296 */ 297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 304 ASSERT(lock_flags != 0); 305 306 if (lock_flags & XFS_IOLOCK_EXCL) 307 up_write(&VFS_I(ip)->i_rwsem); 308 else if (lock_flags & XFS_IOLOCK_SHARED) 309 up_read(&VFS_I(ip)->i_rwsem); 310 311 if (lock_flags & XFS_MMAPLOCK_EXCL) 312 mrunlock_excl(&ip->i_mmaplock); 313 else if (lock_flags & XFS_MMAPLOCK_SHARED) 314 mrunlock_shared(&ip->i_mmaplock); 315 316 if (lock_flags & XFS_ILOCK_EXCL) 317 mrunlock_excl(&ip->i_lock); 318 else if (lock_flags & XFS_ILOCK_SHARED) 319 mrunlock_shared(&ip->i_lock); 320 321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 322 } 323 324 /* 325 * give up write locks. the i/o lock cannot be held nested 326 * if it is being demoted. 327 */ 328 void 329 xfs_ilock_demote( 330 xfs_inode_t *ip, 331 uint lock_flags) 332 { 333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 334 ASSERT((lock_flags & 335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 336 337 if (lock_flags & XFS_ILOCK_EXCL) 338 mrdemote(&ip->i_lock); 339 if (lock_flags & XFS_MMAPLOCK_EXCL) 340 mrdemote(&ip->i_mmaplock); 341 if (lock_flags & XFS_IOLOCK_EXCL) 342 downgrade_write(&VFS_I(ip)->i_rwsem); 343 344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 345 } 346 347 #if defined(DEBUG) || defined(XFS_WARN) 348 int 349 xfs_isilocked( 350 xfs_inode_t *ip, 351 uint lock_flags) 352 { 353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 354 if (!(lock_flags & XFS_ILOCK_SHARED)) 355 return !!ip->i_lock.mr_writer; 356 return rwsem_is_locked(&ip->i_lock.mr_lock); 357 } 358 359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 360 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 361 return !!ip->i_mmaplock.mr_writer; 362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 363 } 364 365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 366 if (!(lock_flags & XFS_IOLOCK_SHARED)) 367 return !debug_locks || 368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); 369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem); 370 } 371 372 ASSERT(0); 373 return 0; 374 } 375 #endif 376 377 /* 378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 381 * errors and warnings. 382 */ 383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 384 static bool 385 xfs_lockdep_subclass_ok( 386 int subclass) 387 { 388 return subclass < MAX_LOCKDEP_SUBCLASSES; 389 } 390 #else 391 #define xfs_lockdep_subclass_ok(subclass) (true) 392 #endif 393 394 /* 395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 396 * value. This can be called for any type of inode lock combination, including 397 * parent locking. Care must be taken to ensure we don't overrun the subclass 398 * storage fields in the class mask we build. 399 */ 400 static inline int 401 xfs_lock_inumorder(int lock_mode, int subclass) 402 { 403 int class = 0; 404 405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 406 XFS_ILOCK_RTSUM))); 407 ASSERT(xfs_lockdep_subclass_ok(subclass)); 408 409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 411 class += subclass << XFS_IOLOCK_SHIFT; 412 } 413 414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 416 class += subclass << XFS_MMAPLOCK_SHIFT; 417 } 418 419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 421 class += subclass << XFS_ILOCK_SHIFT; 422 } 423 424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 425 } 426 427 /* 428 * The following routine will lock n inodes in exclusive mode. We assume the 429 * caller calls us with the inodes in i_ino order. 430 * 431 * We need to detect deadlock where an inode that we lock is in the AIL and we 432 * start waiting for another inode that is locked by a thread in a long running 433 * transaction (such as truncate). This can result in deadlock since the long 434 * running trans might need to wait for the inode we just locked in order to 435 * push the tail and free space in the log. 436 * 437 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 439 * lock more than one at a time, lockdep will report false positives saying we 440 * have violated locking orders. 441 */ 442 static void 443 xfs_lock_inodes( 444 struct xfs_inode **ips, 445 int inodes, 446 uint lock_mode) 447 { 448 int attempts = 0, i, j, try_lock; 449 struct xfs_log_item *lp; 450 451 /* 452 * Currently supports between 2 and 5 inodes with exclusive locking. We 453 * support an arbitrary depth of locking here, but absolute limits on 454 * inodes depend on the the type of locking and the limits placed by 455 * lockdep annotations in xfs_lock_inumorder. These are all checked by 456 * the asserts. 457 */ 458 ASSERT(ips && inodes >= 2 && inodes <= 5); 459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 460 XFS_ILOCK_EXCL)); 461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 462 XFS_ILOCK_SHARED))); 463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 467 468 if (lock_mode & XFS_IOLOCK_EXCL) { 469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 470 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 472 473 try_lock = 0; 474 i = 0; 475 again: 476 for (; i < inodes; i++) { 477 ASSERT(ips[i]); 478 479 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 480 continue; 481 482 /* 483 * If try_lock is not set yet, make sure all locked inodes are 484 * not in the AIL. If any are, set try_lock to be used later. 485 */ 486 if (!try_lock) { 487 for (j = (i - 1); j >= 0 && !try_lock; j--) { 488 lp = &ips[j]->i_itemp->ili_item; 489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 490 try_lock++; 491 } 492 } 493 494 /* 495 * If any of the previous locks we have locked is in the AIL, 496 * we must TRY to get the second and subsequent locks. If 497 * we can't get any, we must release all we have 498 * and try again. 499 */ 500 if (!try_lock) { 501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 502 continue; 503 } 504 505 /* try_lock means we have an inode locked that is in the AIL. */ 506 ASSERT(i != 0); 507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 508 continue; 509 510 /* 511 * Unlock all previous guys and try again. xfs_iunlock will try 512 * to push the tail if the inode is in the AIL. 513 */ 514 attempts++; 515 for (j = i - 1; j >= 0; j--) { 516 /* 517 * Check to see if we've already unlocked this one. Not 518 * the first one going back, and the inode ptr is the 519 * same. 520 */ 521 if (j != (i - 1) && ips[j] == ips[j + 1]) 522 continue; 523 524 xfs_iunlock(ips[j], lock_mode); 525 } 526 527 if ((attempts % 5) == 0) { 528 delay(1); /* Don't just spin the CPU */ 529 } 530 i = 0; 531 try_lock = 0; 532 goto again; 533 } 534 } 535 536 /* 537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 538 * the mmaplock or the ilock, but not more than one type at a time. If we lock 539 * more than one at a time, lockdep will report false positives saying we have 540 * violated locking orders. The iolock must be double-locked separately since 541 * we use i_rwsem for that. We now support taking one lock EXCL and the other 542 * SHARED. 543 */ 544 void 545 xfs_lock_two_inodes( 546 struct xfs_inode *ip0, 547 uint ip0_mode, 548 struct xfs_inode *ip1, 549 uint ip1_mode) 550 { 551 struct xfs_inode *temp; 552 uint mode_temp; 553 int attempts = 0; 554 struct xfs_log_item *lp; 555 556 ASSERT(hweight32(ip0_mode) == 1); 557 ASSERT(hweight32(ip1_mode) == 1); 558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 568 569 ASSERT(ip0->i_ino != ip1->i_ino); 570 571 if (ip0->i_ino > ip1->i_ino) { 572 temp = ip0; 573 ip0 = ip1; 574 ip1 = temp; 575 mode_temp = ip0_mode; 576 ip0_mode = ip1_mode; 577 ip1_mode = mode_temp; 578 } 579 580 again: 581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 582 583 /* 584 * If the first lock we have locked is in the AIL, we must TRY to get 585 * the second lock. If we can't get it, we must release the first one 586 * and try again. 587 */ 588 lp = &ip0->i_itemp->ili_item; 589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 591 xfs_iunlock(ip0, ip0_mode); 592 if ((++attempts % 5) == 0) 593 delay(1); /* Don't just spin the CPU */ 594 goto again; 595 } 596 } else { 597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 598 } 599 } 600 601 void 602 __xfs_iflock( 603 struct xfs_inode *ip) 604 { 605 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 606 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 607 608 do { 609 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 610 if (xfs_isiflocked(ip)) 611 io_schedule(); 612 } while (!xfs_iflock_nowait(ip)); 613 614 finish_wait(wq, &wait.wq_entry); 615 } 616 617 STATIC uint 618 _xfs_dic2xflags( 619 uint16_t di_flags, 620 uint64_t di_flags2, 621 bool has_attr) 622 { 623 uint flags = 0; 624 625 if (di_flags & XFS_DIFLAG_ANY) { 626 if (di_flags & XFS_DIFLAG_REALTIME) 627 flags |= FS_XFLAG_REALTIME; 628 if (di_flags & XFS_DIFLAG_PREALLOC) 629 flags |= FS_XFLAG_PREALLOC; 630 if (di_flags & XFS_DIFLAG_IMMUTABLE) 631 flags |= FS_XFLAG_IMMUTABLE; 632 if (di_flags & XFS_DIFLAG_APPEND) 633 flags |= FS_XFLAG_APPEND; 634 if (di_flags & XFS_DIFLAG_SYNC) 635 flags |= FS_XFLAG_SYNC; 636 if (di_flags & XFS_DIFLAG_NOATIME) 637 flags |= FS_XFLAG_NOATIME; 638 if (di_flags & XFS_DIFLAG_NODUMP) 639 flags |= FS_XFLAG_NODUMP; 640 if (di_flags & XFS_DIFLAG_RTINHERIT) 641 flags |= FS_XFLAG_RTINHERIT; 642 if (di_flags & XFS_DIFLAG_PROJINHERIT) 643 flags |= FS_XFLAG_PROJINHERIT; 644 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 645 flags |= FS_XFLAG_NOSYMLINKS; 646 if (di_flags & XFS_DIFLAG_EXTSIZE) 647 flags |= FS_XFLAG_EXTSIZE; 648 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 649 flags |= FS_XFLAG_EXTSZINHERIT; 650 if (di_flags & XFS_DIFLAG_NODEFRAG) 651 flags |= FS_XFLAG_NODEFRAG; 652 if (di_flags & XFS_DIFLAG_FILESTREAM) 653 flags |= FS_XFLAG_FILESTREAM; 654 } 655 656 if (di_flags2 & XFS_DIFLAG2_ANY) { 657 if (di_flags2 & XFS_DIFLAG2_DAX) 658 flags |= FS_XFLAG_DAX; 659 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 660 flags |= FS_XFLAG_COWEXTSIZE; 661 } 662 663 if (has_attr) 664 flags |= FS_XFLAG_HASATTR; 665 666 return flags; 667 } 668 669 uint 670 xfs_ip2xflags( 671 struct xfs_inode *ip) 672 { 673 struct xfs_icdinode *dic = &ip->i_d; 674 675 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 676 } 677 678 /* 679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 680 * is allowed, otherwise it has to be an exact match. If a CI match is found, 681 * ci_name->name will point to a the actual name (caller must free) or 682 * will be set to NULL if an exact match is found. 683 */ 684 int 685 xfs_lookup( 686 xfs_inode_t *dp, 687 struct xfs_name *name, 688 xfs_inode_t **ipp, 689 struct xfs_name *ci_name) 690 { 691 xfs_ino_t inum; 692 int error; 693 694 trace_xfs_lookup(dp, name); 695 696 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 697 return -EIO; 698 699 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 700 if (error) 701 goto out_unlock; 702 703 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 704 if (error) 705 goto out_free_name; 706 707 return 0; 708 709 out_free_name: 710 if (ci_name) 711 kmem_free(ci_name->name); 712 out_unlock: 713 *ipp = NULL; 714 return error; 715 } 716 717 /* 718 * Allocate an inode on disk and return a copy of its in-core version. 719 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 720 * appropriately within the inode. The uid and gid for the inode are 721 * set according to the contents of the given cred structure. 722 * 723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 724 * has a free inode available, call xfs_iget() to obtain the in-core 725 * version of the allocated inode. Finally, fill in the inode and 726 * log its initial contents. In this case, ialloc_context would be 727 * set to NULL. 728 * 729 * If xfs_dialloc() does not have an available inode, it will replenish 730 * its supply by doing an allocation. Since we can only do one 731 * allocation within a transaction without deadlocks, we must commit 732 * the current transaction before returning the inode itself. 733 * In this case, therefore, we will set ialloc_context and return. 734 * The caller should then commit the current transaction, start a new 735 * transaction, and call xfs_ialloc() again to actually get the inode. 736 * 737 * To ensure that some other process does not grab the inode that 738 * was allocated during the first call to xfs_ialloc(), this routine 739 * also returns the [locked] bp pointing to the head of the freelist 740 * as ialloc_context. The caller should hold this buffer across 741 * the commit and pass it back into this routine on the second call. 742 * 743 * If we are allocating quota inodes, we do not have a parent inode 744 * to attach to or associate with (i.e. pip == NULL) because they 745 * are not linked into the directory structure - they are attached 746 * directly to the superblock - and so have no parent. 747 */ 748 static int 749 xfs_ialloc( 750 xfs_trans_t *tp, 751 xfs_inode_t *pip, 752 umode_t mode, 753 xfs_nlink_t nlink, 754 dev_t rdev, 755 prid_t prid, 756 xfs_buf_t **ialloc_context, 757 xfs_inode_t **ipp) 758 { 759 struct xfs_mount *mp = tp->t_mountp; 760 xfs_ino_t ino; 761 xfs_inode_t *ip; 762 uint flags; 763 int error; 764 struct timespec64 tv; 765 struct inode *inode; 766 767 /* 768 * Call the space management code to pick 769 * the on-disk inode to be allocated. 770 */ 771 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, 772 ialloc_context, &ino); 773 if (error) 774 return error; 775 if (*ialloc_context || ino == NULLFSINO) { 776 *ipp = NULL; 777 return 0; 778 } 779 ASSERT(*ialloc_context == NULL); 780 781 /* 782 * Protect against obviously corrupt allocation btree records. Later 783 * xfs_iget checks will catch re-allocation of other active in-memory 784 * and on-disk inodes. If we don't catch reallocating the parent inode 785 * here we will deadlock in xfs_iget() so we have to do these checks 786 * first. 787 */ 788 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 789 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 790 return -EFSCORRUPTED; 791 } 792 793 /* 794 * Get the in-core inode with the lock held exclusively. 795 * This is because we're setting fields here we need 796 * to prevent others from looking at until we're done. 797 */ 798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 799 XFS_ILOCK_EXCL, &ip); 800 if (error) 801 return error; 802 ASSERT(ip != NULL); 803 inode = VFS_I(ip); 804 805 /* 806 * We always convert v1 inodes to v2 now - we only support filesystems 807 * with >= v2 inode capability, so there is no reason for ever leaving 808 * an inode in v1 format. 809 */ 810 if (ip->i_d.di_version == 1) 811 ip->i_d.di_version = 2; 812 813 inode->i_mode = mode; 814 set_nlink(inode, nlink); 815 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 816 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 817 inode->i_rdev = rdev; 818 ip->i_d.di_projid = prid; 819 820 if (pip && XFS_INHERIT_GID(pip)) { 821 ip->i_d.di_gid = pip->i_d.di_gid; 822 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) 823 inode->i_mode |= S_ISGID; 824 } 825 826 /* 827 * If the group ID of the new file does not match the effective group 828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 829 * (and only if the irix_sgid_inherit compatibility variable is set). 830 */ 831 if ((irix_sgid_inherit) && 832 (inode->i_mode & S_ISGID) && 833 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) 834 inode->i_mode &= ~S_ISGID; 835 836 ip->i_d.di_size = 0; 837 ip->i_d.di_nextents = 0; 838 ASSERT(ip->i_d.di_nblocks == 0); 839 840 tv = current_time(inode); 841 inode->i_mtime = tv; 842 inode->i_atime = tv; 843 inode->i_ctime = tv; 844 845 ip->i_d.di_extsize = 0; 846 ip->i_d.di_dmevmask = 0; 847 ip->i_d.di_dmstate = 0; 848 ip->i_d.di_flags = 0; 849 850 if (ip->i_d.di_version == 3) { 851 inode_set_iversion(inode, 1); 852 ip->i_d.di_flags2 = 0; 853 ip->i_d.di_cowextsize = 0; 854 ip->i_d.di_crtime = tv; 855 } 856 857 858 flags = XFS_ILOG_CORE; 859 switch (mode & S_IFMT) { 860 case S_IFIFO: 861 case S_IFCHR: 862 case S_IFBLK: 863 case S_IFSOCK: 864 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 865 ip->i_df.if_flags = 0; 866 flags |= XFS_ILOG_DEV; 867 break; 868 case S_IFREG: 869 case S_IFDIR: 870 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 871 uint di_flags = 0; 872 873 if (S_ISDIR(mode)) { 874 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 875 di_flags |= XFS_DIFLAG_RTINHERIT; 876 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 877 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 878 ip->i_d.di_extsize = pip->i_d.di_extsize; 879 } 880 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 881 di_flags |= XFS_DIFLAG_PROJINHERIT; 882 } else if (S_ISREG(mode)) { 883 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 884 di_flags |= XFS_DIFLAG_REALTIME; 885 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 886 di_flags |= XFS_DIFLAG_EXTSIZE; 887 ip->i_d.di_extsize = pip->i_d.di_extsize; 888 } 889 } 890 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 891 xfs_inherit_noatime) 892 di_flags |= XFS_DIFLAG_NOATIME; 893 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 894 xfs_inherit_nodump) 895 di_flags |= XFS_DIFLAG_NODUMP; 896 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 897 xfs_inherit_sync) 898 di_flags |= XFS_DIFLAG_SYNC; 899 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 900 xfs_inherit_nosymlinks) 901 di_flags |= XFS_DIFLAG_NOSYMLINKS; 902 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 903 xfs_inherit_nodefrag) 904 di_flags |= XFS_DIFLAG_NODEFRAG; 905 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 906 di_flags |= XFS_DIFLAG_FILESTREAM; 907 908 ip->i_d.di_flags |= di_flags; 909 } 910 if (pip && 911 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) && 912 pip->i_d.di_version == 3 && 913 ip->i_d.di_version == 3) { 914 uint64_t di_flags2 = 0; 915 916 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { 917 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 918 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; 919 } 920 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 921 di_flags2 |= XFS_DIFLAG2_DAX; 922 923 ip->i_d.di_flags2 |= di_flags2; 924 } 925 /* FALLTHROUGH */ 926 case S_IFLNK: 927 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 928 ip->i_df.if_flags = XFS_IFEXTENTS; 929 ip->i_df.if_bytes = 0; 930 ip->i_df.if_u1.if_root = NULL; 931 break; 932 default: 933 ASSERT(0); 934 } 935 /* 936 * Attribute fork settings for new inode. 937 */ 938 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 939 ip->i_d.di_anextents = 0; 940 941 /* 942 * Log the new values stuffed into the inode. 943 */ 944 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 945 xfs_trans_log_inode(tp, ip, flags); 946 947 /* now that we have an i_mode we can setup the inode structure */ 948 xfs_setup_inode(ip); 949 950 *ipp = ip; 951 return 0; 952 } 953 954 /* 955 * Allocates a new inode from disk and return a pointer to the 956 * incore copy. This routine will internally commit the current 957 * transaction and allocate a new one if the Space Manager needed 958 * to do an allocation to replenish the inode free-list. 959 * 960 * This routine is designed to be called from xfs_create and 961 * xfs_create_dir. 962 * 963 */ 964 int 965 xfs_dir_ialloc( 966 xfs_trans_t **tpp, /* input: current transaction; 967 output: may be a new transaction. */ 968 xfs_inode_t *dp, /* directory within whose allocate 969 the inode. */ 970 umode_t mode, 971 xfs_nlink_t nlink, 972 dev_t rdev, 973 prid_t prid, /* project id */ 974 xfs_inode_t **ipp) /* pointer to inode; it will be 975 locked. */ 976 { 977 xfs_trans_t *tp; 978 xfs_inode_t *ip; 979 xfs_buf_t *ialloc_context = NULL; 980 int code; 981 void *dqinfo; 982 uint tflags; 983 984 tp = *tpp; 985 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 986 987 /* 988 * xfs_ialloc will return a pointer to an incore inode if 989 * the Space Manager has an available inode on the free 990 * list. Otherwise, it will do an allocation and replenish 991 * the freelist. Since we can only do one allocation per 992 * transaction without deadlocks, we will need to commit the 993 * current transaction and start a new one. We will then 994 * need to call xfs_ialloc again to get the inode. 995 * 996 * If xfs_ialloc did an allocation to replenish the freelist, 997 * it returns the bp containing the head of the freelist as 998 * ialloc_context. We will hold a lock on it across the 999 * transaction commit so that no other process can steal 1000 * the inode(s) that we've just allocated. 1001 */ 1002 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, 1003 &ip); 1004 1005 /* 1006 * Return an error if we were unable to allocate a new inode. 1007 * This should only happen if we run out of space on disk or 1008 * encounter a disk error. 1009 */ 1010 if (code) { 1011 *ipp = NULL; 1012 return code; 1013 } 1014 if (!ialloc_context && !ip) { 1015 *ipp = NULL; 1016 return -ENOSPC; 1017 } 1018 1019 /* 1020 * If the AGI buffer is non-NULL, then we were unable to get an 1021 * inode in one operation. We need to commit the current 1022 * transaction and call xfs_ialloc() again. It is guaranteed 1023 * to succeed the second time. 1024 */ 1025 if (ialloc_context) { 1026 /* 1027 * Normally, xfs_trans_commit releases all the locks. 1028 * We call bhold to hang on to the ialloc_context across 1029 * the commit. Holding this buffer prevents any other 1030 * processes from doing any allocations in this 1031 * allocation group. 1032 */ 1033 xfs_trans_bhold(tp, ialloc_context); 1034 1035 /* 1036 * We want the quota changes to be associated with the next 1037 * transaction, NOT this one. So, detach the dqinfo from this 1038 * and attach it to the next transaction. 1039 */ 1040 dqinfo = NULL; 1041 tflags = 0; 1042 if (tp->t_dqinfo) { 1043 dqinfo = (void *)tp->t_dqinfo; 1044 tp->t_dqinfo = NULL; 1045 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1046 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1047 } 1048 1049 code = xfs_trans_roll(&tp); 1050 1051 /* 1052 * Re-attach the quota info that we detached from prev trx. 1053 */ 1054 if (dqinfo) { 1055 tp->t_dqinfo = dqinfo; 1056 tp->t_flags |= tflags; 1057 } 1058 1059 if (code) { 1060 xfs_buf_relse(ialloc_context); 1061 *tpp = tp; 1062 *ipp = NULL; 1063 return code; 1064 } 1065 xfs_trans_bjoin(tp, ialloc_context); 1066 1067 /* 1068 * Call ialloc again. Since we've locked out all 1069 * other allocations in this allocation group, 1070 * this call should always succeed. 1071 */ 1072 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1073 &ialloc_context, &ip); 1074 1075 /* 1076 * If we get an error at this point, return to the caller 1077 * so that the current transaction can be aborted. 1078 */ 1079 if (code) { 1080 *tpp = tp; 1081 *ipp = NULL; 1082 return code; 1083 } 1084 ASSERT(!ialloc_context && ip); 1085 1086 } 1087 1088 *ipp = ip; 1089 *tpp = tp; 1090 1091 return 0; 1092 } 1093 1094 /* 1095 * Decrement the link count on an inode & log the change. If this causes the 1096 * link count to go to zero, move the inode to AGI unlinked list so that it can 1097 * be freed when the last active reference goes away via xfs_inactive(). 1098 */ 1099 static int /* error */ 1100 xfs_droplink( 1101 xfs_trans_t *tp, 1102 xfs_inode_t *ip) 1103 { 1104 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1105 1106 drop_nlink(VFS_I(ip)); 1107 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1108 1109 if (VFS_I(ip)->i_nlink) 1110 return 0; 1111 1112 return xfs_iunlink(tp, ip); 1113 } 1114 1115 /* 1116 * Increment the link count on an inode & log the change. 1117 */ 1118 static void 1119 xfs_bumplink( 1120 xfs_trans_t *tp, 1121 xfs_inode_t *ip) 1122 { 1123 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1124 1125 ASSERT(ip->i_d.di_version > 1); 1126 inc_nlink(VFS_I(ip)); 1127 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1128 } 1129 1130 int 1131 xfs_create( 1132 xfs_inode_t *dp, 1133 struct xfs_name *name, 1134 umode_t mode, 1135 dev_t rdev, 1136 xfs_inode_t **ipp) 1137 { 1138 int is_dir = S_ISDIR(mode); 1139 struct xfs_mount *mp = dp->i_mount; 1140 struct xfs_inode *ip = NULL; 1141 struct xfs_trans *tp = NULL; 1142 int error; 1143 bool unlock_dp_on_error = false; 1144 prid_t prid; 1145 struct xfs_dquot *udqp = NULL; 1146 struct xfs_dquot *gdqp = NULL; 1147 struct xfs_dquot *pdqp = NULL; 1148 struct xfs_trans_res *tres; 1149 uint resblks; 1150 1151 trace_xfs_create(dp, name); 1152 1153 if (XFS_FORCED_SHUTDOWN(mp)) 1154 return -EIO; 1155 1156 prid = xfs_get_initial_prid(dp); 1157 1158 /* 1159 * Make sure that we have allocated dquot(s) on disk. 1160 */ 1161 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1162 xfs_kgid_to_gid(current_fsgid()), prid, 1163 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1164 &udqp, &gdqp, &pdqp); 1165 if (error) 1166 return error; 1167 1168 if (is_dir) { 1169 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1170 tres = &M_RES(mp)->tr_mkdir; 1171 } else { 1172 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1173 tres = &M_RES(mp)->tr_create; 1174 } 1175 1176 /* 1177 * Initially assume that the file does not exist and 1178 * reserve the resources for that case. If that is not 1179 * the case we'll drop the one we have and get a more 1180 * appropriate transaction later. 1181 */ 1182 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1183 if (error == -ENOSPC) { 1184 /* flush outstanding delalloc blocks and retry */ 1185 xfs_flush_inodes(mp); 1186 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1187 } 1188 if (error) 1189 goto out_release_inode; 1190 1191 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1192 unlock_dp_on_error = true; 1193 1194 /* 1195 * Reserve disk quota and the inode. 1196 */ 1197 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1198 pdqp, resblks, 1, 0); 1199 if (error) 1200 goto out_trans_cancel; 1201 1202 /* 1203 * A newly created regular or special file just has one directory 1204 * entry pointing to them, but a directory also the "." entry 1205 * pointing to itself. 1206 */ 1207 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip); 1208 if (error) 1209 goto out_trans_cancel; 1210 1211 /* 1212 * Now we join the directory inode to the transaction. We do not do it 1213 * earlier because xfs_dir_ialloc might commit the previous transaction 1214 * (and release all the locks). An error from here on will result in 1215 * the transaction cancel unlocking dp so don't do it explicitly in the 1216 * error path. 1217 */ 1218 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1219 unlock_dp_on_error = false; 1220 1221 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1222 resblks ? 1223 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1224 if (error) { 1225 ASSERT(error != -ENOSPC); 1226 goto out_trans_cancel; 1227 } 1228 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1229 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1230 1231 if (is_dir) { 1232 error = xfs_dir_init(tp, ip, dp); 1233 if (error) 1234 goto out_trans_cancel; 1235 1236 xfs_bumplink(tp, dp); 1237 } 1238 1239 /* 1240 * If this is a synchronous mount, make sure that the 1241 * create transaction goes to disk before returning to 1242 * the user. 1243 */ 1244 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1245 xfs_trans_set_sync(tp); 1246 1247 /* 1248 * Attach the dquot(s) to the inodes and modify them incore. 1249 * These ids of the inode couldn't have changed since the new 1250 * inode has been locked ever since it was created. 1251 */ 1252 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1253 1254 error = xfs_trans_commit(tp); 1255 if (error) 1256 goto out_release_inode; 1257 1258 xfs_qm_dqrele(udqp); 1259 xfs_qm_dqrele(gdqp); 1260 xfs_qm_dqrele(pdqp); 1261 1262 *ipp = ip; 1263 return 0; 1264 1265 out_trans_cancel: 1266 xfs_trans_cancel(tp); 1267 out_release_inode: 1268 /* 1269 * Wait until after the current transaction is aborted to finish the 1270 * setup of the inode and release the inode. This prevents recursive 1271 * transactions and deadlocks from xfs_inactive. 1272 */ 1273 if (ip) { 1274 xfs_finish_inode_setup(ip); 1275 xfs_irele(ip); 1276 } 1277 1278 xfs_qm_dqrele(udqp); 1279 xfs_qm_dqrele(gdqp); 1280 xfs_qm_dqrele(pdqp); 1281 1282 if (unlock_dp_on_error) 1283 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1284 return error; 1285 } 1286 1287 int 1288 xfs_create_tmpfile( 1289 struct xfs_inode *dp, 1290 umode_t mode, 1291 struct xfs_inode **ipp) 1292 { 1293 struct xfs_mount *mp = dp->i_mount; 1294 struct xfs_inode *ip = NULL; 1295 struct xfs_trans *tp = NULL; 1296 int error; 1297 prid_t prid; 1298 struct xfs_dquot *udqp = NULL; 1299 struct xfs_dquot *gdqp = NULL; 1300 struct xfs_dquot *pdqp = NULL; 1301 struct xfs_trans_res *tres; 1302 uint resblks; 1303 1304 if (XFS_FORCED_SHUTDOWN(mp)) 1305 return -EIO; 1306 1307 prid = xfs_get_initial_prid(dp); 1308 1309 /* 1310 * Make sure that we have allocated dquot(s) on disk. 1311 */ 1312 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1313 xfs_kgid_to_gid(current_fsgid()), prid, 1314 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1315 &udqp, &gdqp, &pdqp); 1316 if (error) 1317 return error; 1318 1319 resblks = XFS_IALLOC_SPACE_RES(mp); 1320 tres = &M_RES(mp)->tr_create_tmpfile; 1321 1322 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1323 if (error) 1324 goto out_release_inode; 1325 1326 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1327 pdqp, resblks, 1, 0); 1328 if (error) 1329 goto out_trans_cancel; 1330 1331 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip); 1332 if (error) 1333 goto out_trans_cancel; 1334 1335 if (mp->m_flags & XFS_MOUNT_WSYNC) 1336 xfs_trans_set_sync(tp); 1337 1338 /* 1339 * Attach the dquot(s) to the inodes and modify them incore. 1340 * These ids of the inode couldn't have changed since the new 1341 * inode has been locked ever since it was created. 1342 */ 1343 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1344 1345 error = xfs_iunlink(tp, ip); 1346 if (error) 1347 goto out_trans_cancel; 1348 1349 error = xfs_trans_commit(tp); 1350 if (error) 1351 goto out_release_inode; 1352 1353 xfs_qm_dqrele(udqp); 1354 xfs_qm_dqrele(gdqp); 1355 xfs_qm_dqrele(pdqp); 1356 1357 *ipp = ip; 1358 return 0; 1359 1360 out_trans_cancel: 1361 xfs_trans_cancel(tp); 1362 out_release_inode: 1363 /* 1364 * Wait until after the current transaction is aborted to finish the 1365 * setup of the inode and release the inode. This prevents recursive 1366 * transactions and deadlocks from xfs_inactive. 1367 */ 1368 if (ip) { 1369 xfs_finish_inode_setup(ip); 1370 xfs_irele(ip); 1371 } 1372 1373 xfs_qm_dqrele(udqp); 1374 xfs_qm_dqrele(gdqp); 1375 xfs_qm_dqrele(pdqp); 1376 1377 return error; 1378 } 1379 1380 int 1381 xfs_link( 1382 xfs_inode_t *tdp, 1383 xfs_inode_t *sip, 1384 struct xfs_name *target_name) 1385 { 1386 xfs_mount_t *mp = tdp->i_mount; 1387 xfs_trans_t *tp; 1388 int error; 1389 int resblks; 1390 1391 trace_xfs_link(tdp, target_name); 1392 1393 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1394 1395 if (XFS_FORCED_SHUTDOWN(mp)) 1396 return -EIO; 1397 1398 error = xfs_qm_dqattach(sip); 1399 if (error) 1400 goto std_return; 1401 1402 error = xfs_qm_dqattach(tdp); 1403 if (error) 1404 goto std_return; 1405 1406 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1407 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1408 if (error == -ENOSPC) { 1409 resblks = 0; 1410 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1411 } 1412 if (error) 1413 goto std_return; 1414 1415 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); 1416 1417 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1418 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1419 1420 /* 1421 * If we are using project inheritance, we only allow hard link 1422 * creation in our tree when the project IDs are the same; else 1423 * the tree quota mechanism could be circumvented. 1424 */ 1425 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1426 tdp->i_d.di_projid != sip->i_d.di_projid)) { 1427 error = -EXDEV; 1428 goto error_return; 1429 } 1430 1431 if (!resblks) { 1432 error = xfs_dir_canenter(tp, tdp, target_name); 1433 if (error) 1434 goto error_return; 1435 } 1436 1437 /* 1438 * Handle initial link state of O_TMPFILE inode 1439 */ 1440 if (VFS_I(sip)->i_nlink == 0) { 1441 error = xfs_iunlink_remove(tp, sip); 1442 if (error) 1443 goto error_return; 1444 } 1445 1446 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1447 resblks); 1448 if (error) 1449 goto error_return; 1450 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1451 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1452 1453 xfs_bumplink(tp, sip); 1454 1455 /* 1456 * If this is a synchronous mount, make sure that the 1457 * link transaction goes to disk before returning to 1458 * the user. 1459 */ 1460 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1461 xfs_trans_set_sync(tp); 1462 1463 return xfs_trans_commit(tp); 1464 1465 error_return: 1466 xfs_trans_cancel(tp); 1467 std_return: 1468 return error; 1469 } 1470 1471 /* Clear the reflink flag and the cowblocks tag if possible. */ 1472 static void 1473 xfs_itruncate_clear_reflink_flags( 1474 struct xfs_inode *ip) 1475 { 1476 struct xfs_ifork *dfork; 1477 struct xfs_ifork *cfork; 1478 1479 if (!xfs_is_reflink_inode(ip)) 1480 return; 1481 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1482 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1483 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1484 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1485 if (cfork->if_bytes == 0) 1486 xfs_inode_clear_cowblocks_tag(ip); 1487 } 1488 1489 /* 1490 * Free up the underlying blocks past new_size. The new size must be smaller 1491 * than the current size. This routine can be used both for the attribute and 1492 * data fork, and does not modify the inode size, which is left to the caller. 1493 * 1494 * The transaction passed to this routine must have made a permanent log 1495 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1496 * given transaction and start new ones, so make sure everything involved in 1497 * the transaction is tidy before calling here. Some transaction will be 1498 * returned to the caller to be committed. The incoming transaction must 1499 * already include the inode, and both inode locks must be held exclusively. 1500 * The inode must also be "held" within the transaction. On return the inode 1501 * will be "held" within the returned transaction. This routine does NOT 1502 * require any disk space to be reserved for it within the transaction. 1503 * 1504 * If we get an error, we must return with the inode locked and linked into the 1505 * current transaction. This keeps things simple for the higher level code, 1506 * because it always knows that the inode is locked and held in the transaction 1507 * that returns to it whether errors occur or not. We don't mark the inode 1508 * dirty on error so that transactions can be easily aborted if possible. 1509 */ 1510 int 1511 xfs_itruncate_extents_flags( 1512 struct xfs_trans **tpp, 1513 struct xfs_inode *ip, 1514 int whichfork, 1515 xfs_fsize_t new_size, 1516 int flags) 1517 { 1518 struct xfs_mount *mp = ip->i_mount; 1519 struct xfs_trans *tp = *tpp; 1520 xfs_fileoff_t first_unmap_block; 1521 xfs_fileoff_t last_block; 1522 xfs_filblks_t unmap_len; 1523 int error = 0; 1524 int done = 0; 1525 1526 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1527 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1528 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1529 ASSERT(new_size <= XFS_ISIZE(ip)); 1530 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1531 ASSERT(ip->i_itemp != NULL); 1532 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1533 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1534 1535 trace_xfs_itruncate_extents_start(ip, new_size); 1536 1537 flags |= xfs_bmapi_aflag(whichfork); 1538 1539 /* 1540 * Since it is possible for space to become allocated beyond 1541 * the end of the file (in a crash where the space is allocated 1542 * but the inode size is not yet updated), simply remove any 1543 * blocks which show up between the new EOF and the maximum 1544 * possible file size. If the first block to be removed is 1545 * beyond the maximum file size (ie it is the same as last_block), 1546 * then there is nothing to do. 1547 */ 1548 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1549 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1550 if (first_unmap_block == last_block) 1551 return 0; 1552 1553 ASSERT(first_unmap_block < last_block); 1554 unmap_len = last_block - first_unmap_block + 1; 1555 while (!done) { 1556 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1557 error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags, 1558 XFS_ITRUNC_MAX_EXTENTS, &done); 1559 if (error) 1560 goto out; 1561 1562 /* 1563 * Duplicate the transaction that has the permanent 1564 * reservation and commit the old transaction. 1565 */ 1566 error = xfs_defer_finish(&tp); 1567 if (error) 1568 goto out; 1569 1570 error = xfs_trans_roll_inode(&tp, ip); 1571 if (error) 1572 goto out; 1573 } 1574 1575 if (whichfork == XFS_DATA_FORK) { 1576 /* Remove all pending CoW reservations. */ 1577 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1578 first_unmap_block, last_block, true); 1579 if (error) 1580 goto out; 1581 1582 xfs_itruncate_clear_reflink_flags(ip); 1583 } 1584 1585 /* 1586 * Always re-log the inode so that our permanent transaction can keep 1587 * on rolling it forward in the log. 1588 */ 1589 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1590 1591 trace_xfs_itruncate_extents_end(ip, new_size); 1592 1593 out: 1594 *tpp = tp; 1595 return error; 1596 } 1597 1598 int 1599 xfs_release( 1600 xfs_inode_t *ip) 1601 { 1602 xfs_mount_t *mp = ip->i_mount; 1603 int error; 1604 1605 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1606 return 0; 1607 1608 /* If this is a read-only mount, don't do this (would generate I/O) */ 1609 if (mp->m_flags & XFS_MOUNT_RDONLY) 1610 return 0; 1611 1612 if (!XFS_FORCED_SHUTDOWN(mp)) { 1613 int truncated; 1614 1615 /* 1616 * If we previously truncated this file and removed old data 1617 * in the process, we want to initiate "early" writeout on 1618 * the last close. This is an attempt to combat the notorious 1619 * NULL files problem which is particularly noticeable from a 1620 * truncate down, buffered (re-)write (delalloc), followed by 1621 * a crash. What we are effectively doing here is 1622 * significantly reducing the time window where we'd otherwise 1623 * be exposed to that problem. 1624 */ 1625 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1626 if (truncated) { 1627 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1628 if (ip->i_delayed_blks > 0) { 1629 error = filemap_flush(VFS_I(ip)->i_mapping); 1630 if (error) 1631 return error; 1632 } 1633 } 1634 } 1635 1636 if (VFS_I(ip)->i_nlink == 0) 1637 return 0; 1638 1639 if (xfs_can_free_eofblocks(ip, false)) { 1640 1641 /* 1642 * Check if the inode is being opened, written and closed 1643 * frequently and we have delayed allocation blocks outstanding 1644 * (e.g. streaming writes from the NFS server), truncating the 1645 * blocks past EOF will cause fragmentation to occur. 1646 * 1647 * In this case don't do the truncation, but we have to be 1648 * careful how we detect this case. Blocks beyond EOF show up as 1649 * i_delayed_blks even when the inode is clean, so we need to 1650 * truncate them away first before checking for a dirty release. 1651 * Hence on the first dirty close we will still remove the 1652 * speculative allocation, but after that we will leave it in 1653 * place. 1654 */ 1655 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1656 return 0; 1657 /* 1658 * If we can't get the iolock just skip truncating the blocks 1659 * past EOF because we could deadlock with the mmap_sem 1660 * otherwise. We'll get another chance to drop them once the 1661 * last reference to the inode is dropped, so we'll never leak 1662 * blocks permanently. 1663 */ 1664 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1665 error = xfs_free_eofblocks(ip); 1666 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1667 if (error) 1668 return error; 1669 } 1670 1671 /* delalloc blocks after truncation means it really is dirty */ 1672 if (ip->i_delayed_blks) 1673 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1674 } 1675 return 0; 1676 } 1677 1678 /* 1679 * xfs_inactive_truncate 1680 * 1681 * Called to perform a truncate when an inode becomes unlinked. 1682 */ 1683 STATIC int 1684 xfs_inactive_truncate( 1685 struct xfs_inode *ip) 1686 { 1687 struct xfs_mount *mp = ip->i_mount; 1688 struct xfs_trans *tp; 1689 int error; 1690 1691 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1692 if (error) { 1693 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1694 return error; 1695 } 1696 xfs_ilock(ip, XFS_ILOCK_EXCL); 1697 xfs_trans_ijoin(tp, ip, 0); 1698 1699 /* 1700 * Log the inode size first to prevent stale data exposure in the event 1701 * of a system crash before the truncate completes. See the related 1702 * comment in xfs_vn_setattr_size() for details. 1703 */ 1704 ip->i_d.di_size = 0; 1705 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1706 1707 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1708 if (error) 1709 goto error_trans_cancel; 1710 1711 ASSERT(ip->i_d.di_nextents == 0); 1712 1713 error = xfs_trans_commit(tp); 1714 if (error) 1715 goto error_unlock; 1716 1717 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1718 return 0; 1719 1720 error_trans_cancel: 1721 xfs_trans_cancel(tp); 1722 error_unlock: 1723 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1724 return error; 1725 } 1726 1727 /* 1728 * xfs_inactive_ifree() 1729 * 1730 * Perform the inode free when an inode is unlinked. 1731 */ 1732 STATIC int 1733 xfs_inactive_ifree( 1734 struct xfs_inode *ip) 1735 { 1736 struct xfs_mount *mp = ip->i_mount; 1737 struct xfs_trans *tp; 1738 int error; 1739 1740 /* 1741 * We try to use a per-AG reservation for any block needed by the finobt 1742 * tree, but as the finobt feature predates the per-AG reservation 1743 * support a degraded file system might not have enough space for the 1744 * reservation at mount time. In that case try to dip into the reserved 1745 * pool and pray. 1746 * 1747 * Send a warning if the reservation does happen to fail, as the inode 1748 * now remains allocated and sits on the unlinked list until the fs is 1749 * repaired. 1750 */ 1751 if (unlikely(mp->m_finobt_nores)) { 1752 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1753 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1754 &tp); 1755 } else { 1756 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1757 } 1758 if (error) { 1759 if (error == -ENOSPC) { 1760 xfs_warn_ratelimited(mp, 1761 "Failed to remove inode(s) from unlinked list. " 1762 "Please free space, unmount and run xfs_repair."); 1763 } else { 1764 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1765 } 1766 return error; 1767 } 1768 1769 xfs_ilock(ip, XFS_ILOCK_EXCL); 1770 xfs_trans_ijoin(tp, ip, 0); 1771 1772 error = xfs_ifree(tp, ip); 1773 if (error) { 1774 /* 1775 * If we fail to free the inode, shut down. The cancel 1776 * might do that, we need to make sure. Otherwise the 1777 * inode might be lost for a long time or forever. 1778 */ 1779 if (!XFS_FORCED_SHUTDOWN(mp)) { 1780 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1781 __func__, error); 1782 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1783 } 1784 xfs_trans_cancel(tp); 1785 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1786 return error; 1787 } 1788 1789 /* 1790 * Credit the quota account(s). The inode is gone. 1791 */ 1792 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1793 1794 /* 1795 * Just ignore errors at this point. There is nothing we can do except 1796 * to try to keep going. Make sure it's not a silent error. 1797 */ 1798 error = xfs_trans_commit(tp); 1799 if (error) 1800 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1801 __func__, error); 1802 1803 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1804 return 0; 1805 } 1806 1807 /* 1808 * xfs_inactive 1809 * 1810 * This is called when the vnode reference count for the vnode 1811 * goes to zero. If the file has been unlinked, then it must 1812 * now be truncated. Also, we clear all of the read-ahead state 1813 * kept for the inode here since the file is now closed. 1814 */ 1815 void 1816 xfs_inactive( 1817 xfs_inode_t *ip) 1818 { 1819 struct xfs_mount *mp; 1820 int error; 1821 int truncate = 0; 1822 1823 /* 1824 * If the inode is already free, then there can be nothing 1825 * to clean up here. 1826 */ 1827 if (VFS_I(ip)->i_mode == 0) { 1828 ASSERT(ip->i_df.if_broot_bytes == 0); 1829 return; 1830 } 1831 1832 mp = ip->i_mount; 1833 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1834 1835 /* If this is a read-only mount, don't do this (would generate I/O) */ 1836 if (mp->m_flags & XFS_MOUNT_RDONLY) 1837 return; 1838 1839 /* Try to clean out the cow blocks if there are any. */ 1840 if (xfs_inode_has_cow_data(ip)) 1841 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1842 1843 if (VFS_I(ip)->i_nlink != 0) { 1844 /* 1845 * force is true because we are evicting an inode from the 1846 * cache. Post-eof blocks must be freed, lest we end up with 1847 * broken free space accounting. 1848 * 1849 * Note: don't bother with iolock here since lockdep complains 1850 * about acquiring it in reclaim context. We have the only 1851 * reference to the inode at this point anyways. 1852 */ 1853 if (xfs_can_free_eofblocks(ip, true)) 1854 xfs_free_eofblocks(ip); 1855 1856 return; 1857 } 1858 1859 if (S_ISREG(VFS_I(ip)->i_mode) && 1860 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1861 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1862 truncate = 1; 1863 1864 error = xfs_qm_dqattach(ip); 1865 if (error) 1866 return; 1867 1868 if (S_ISLNK(VFS_I(ip)->i_mode)) 1869 error = xfs_inactive_symlink(ip); 1870 else if (truncate) 1871 error = xfs_inactive_truncate(ip); 1872 if (error) 1873 return; 1874 1875 /* 1876 * If there are attributes associated with the file then blow them away 1877 * now. The code calls a routine that recursively deconstructs the 1878 * attribute fork. If also blows away the in-core attribute fork. 1879 */ 1880 if (XFS_IFORK_Q(ip)) { 1881 error = xfs_attr_inactive(ip); 1882 if (error) 1883 return; 1884 } 1885 1886 ASSERT(!ip->i_afp); 1887 ASSERT(ip->i_d.di_anextents == 0); 1888 ASSERT(ip->i_d.di_forkoff == 0); 1889 1890 /* 1891 * Free the inode. 1892 */ 1893 error = xfs_inactive_ifree(ip); 1894 if (error) 1895 return; 1896 1897 /* 1898 * Release the dquots held by inode, if any. 1899 */ 1900 xfs_qm_dqdetach(ip); 1901 } 1902 1903 /* 1904 * In-Core Unlinked List Lookups 1905 * ============================= 1906 * 1907 * Every inode is supposed to be reachable from some other piece of metadata 1908 * with the exception of the root directory. Inodes with a connection to a 1909 * file descriptor but not linked from anywhere in the on-disk directory tree 1910 * are collectively known as unlinked inodes, though the filesystem itself 1911 * maintains links to these inodes so that on-disk metadata are consistent. 1912 * 1913 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1914 * header contains a number of buckets that point to an inode, and each inode 1915 * record has a pointer to the next inode in the hash chain. This 1916 * singly-linked list causes scaling problems in the iunlink remove function 1917 * because we must walk that list to find the inode that points to the inode 1918 * being removed from the unlinked hash bucket list. 1919 * 1920 * What if we modelled the unlinked list as a collection of records capturing 1921 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd 1922 * have a fast way to look up unlinked list predecessors, which avoids the 1923 * slow list walk. That's exactly what we do here (in-core) with a per-AG 1924 * rhashtable. 1925 * 1926 * Because this is a backref cache, we ignore operational failures since the 1927 * iunlink code can fall back to the slow bucket walk. The only errors that 1928 * should bubble out are for obviously incorrect situations. 1929 * 1930 * All users of the backref cache MUST hold the AGI buffer lock to serialize 1931 * access or have otherwise provided for concurrency control. 1932 */ 1933 1934 /* Capture a "X.next_unlinked = Y" relationship. */ 1935 struct xfs_iunlink { 1936 struct rhash_head iu_rhash_head; 1937 xfs_agino_t iu_agino; /* X */ 1938 xfs_agino_t iu_next_unlinked; /* Y */ 1939 }; 1940 1941 /* Unlinked list predecessor lookup hashtable construction */ 1942 static int 1943 xfs_iunlink_obj_cmpfn( 1944 struct rhashtable_compare_arg *arg, 1945 const void *obj) 1946 { 1947 const xfs_agino_t *key = arg->key; 1948 const struct xfs_iunlink *iu = obj; 1949 1950 if (iu->iu_next_unlinked != *key) 1951 return 1; 1952 return 0; 1953 } 1954 1955 static const struct rhashtable_params xfs_iunlink_hash_params = { 1956 .min_size = XFS_AGI_UNLINKED_BUCKETS, 1957 .key_len = sizeof(xfs_agino_t), 1958 .key_offset = offsetof(struct xfs_iunlink, 1959 iu_next_unlinked), 1960 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), 1961 .automatic_shrinking = true, 1962 .obj_cmpfn = xfs_iunlink_obj_cmpfn, 1963 }; 1964 1965 /* 1966 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such 1967 * relation is found. 1968 */ 1969 static xfs_agino_t 1970 xfs_iunlink_lookup_backref( 1971 struct xfs_perag *pag, 1972 xfs_agino_t agino) 1973 { 1974 struct xfs_iunlink *iu; 1975 1976 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1977 xfs_iunlink_hash_params); 1978 return iu ? iu->iu_agino : NULLAGINO; 1979 } 1980 1981 /* 1982 * Take ownership of an iunlink cache entry and insert it into the hash table. 1983 * If successful, the entry will be owned by the cache; if not, it is freed. 1984 * Either way, the caller does not own @iu after this call. 1985 */ 1986 static int 1987 xfs_iunlink_insert_backref( 1988 struct xfs_perag *pag, 1989 struct xfs_iunlink *iu) 1990 { 1991 int error; 1992 1993 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, 1994 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1995 /* 1996 * Fail loudly if there already was an entry because that's a sign of 1997 * corruption of in-memory data. Also fail loudly if we see an error 1998 * code we didn't anticipate from the rhashtable code. Currently we 1999 * only anticipate ENOMEM. 2000 */ 2001 if (error) { 2002 WARN(error != -ENOMEM, "iunlink cache insert error %d", error); 2003 kmem_free(iu); 2004 } 2005 /* 2006 * Absorb any runtime errors that aren't a result of corruption because 2007 * this is a cache and we can always fall back to bucket list scanning. 2008 */ 2009 if (error != 0 && error != -EEXIST) 2010 error = 0; 2011 return error; 2012 } 2013 2014 /* Remember that @prev_agino.next_unlinked = @this_agino. */ 2015 static int 2016 xfs_iunlink_add_backref( 2017 struct xfs_perag *pag, 2018 xfs_agino_t prev_agino, 2019 xfs_agino_t this_agino) 2020 { 2021 struct xfs_iunlink *iu; 2022 2023 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) 2024 return 0; 2025 2026 iu = kmem_zalloc(sizeof(*iu), KM_NOFS); 2027 iu->iu_agino = prev_agino; 2028 iu->iu_next_unlinked = this_agino; 2029 2030 return xfs_iunlink_insert_backref(pag, iu); 2031 } 2032 2033 /* 2034 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. 2035 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there 2036 * wasn't any such entry then we don't bother. 2037 */ 2038 static int 2039 xfs_iunlink_change_backref( 2040 struct xfs_perag *pag, 2041 xfs_agino_t agino, 2042 xfs_agino_t next_unlinked) 2043 { 2044 struct xfs_iunlink *iu; 2045 int error; 2046 2047 /* Look up the old entry; if there wasn't one then exit. */ 2048 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 2049 xfs_iunlink_hash_params); 2050 if (!iu) 2051 return 0; 2052 2053 /* 2054 * Remove the entry. This shouldn't ever return an error, but if we 2055 * couldn't remove the old entry we don't want to add it again to the 2056 * hash table, and if the entry disappeared on us then someone's 2057 * violated the locking rules and we need to fail loudly. Either way 2058 * we cannot remove the inode because internal state is or would have 2059 * been corrupt. 2060 */ 2061 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, 2062 &iu->iu_rhash_head, xfs_iunlink_hash_params); 2063 if (error) 2064 return error; 2065 2066 /* If there is no new next entry just free our item and return. */ 2067 if (next_unlinked == NULLAGINO) { 2068 kmem_free(iu); 2069 return 0; 2070 } 2071 2072 /* Update the entry and re-add it to the hash table. */ 2073 iu->iu_next_unlinked = next_unlinked; 2074 return xfs_iunlink_insert_backref(pag, iu); 2075 } 2076 2077 /* Set up the in-core predecessor structures. */ 2078 int 2079 xfs_iunlink_init( 2080 struct xfs_perag *pag) 2081 { 2082 return rhashtable_init(&pag->pagi_unlinked_hash, 2083 &xfs_iunlink_hash_params); 2084 } 2085 2086 /* Free the in-core predecessor structures. */ 2087 static void 2088 xfs_iunlink_free_item( 2089 void *ptr, 2090 void *arg) 2091 { 2092 struct xfs_iunlink *iu = ptr; 2093 bool *freed_anything = arg; 2094 2095 *freed_anything = true; 2096 kmem_free(iu); 2097 } 2098 2099 void 2100 xfs_iunlink_destroy( 2101 struct xfs_perag *pag) 2102 { 2103 bool freed_anything = false; 2104 2105 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, 2106 xfs_iunlink_free_item, &freed_anything); 2107 2108 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount)); 2109 } 2110 2111 /* 2112 * Point the AGI unlinked bucket at an inode and log the results. The caller 2113 * is responsible for validating the old value. 2114 */ 2115 STATIC int 2116 xfs_iunlink_update_bucket( 2117 struct xfs_trans *tp, 2118 xfs_agnumber_t agno, 2119 struct xfs_buf *agibp, 2120 unsigned int bucket_index, 2121 xfs_agino_t new_agino) 2122 { 2123 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 2124 xfs_agino_t old_value; 2125 int offset; 2126 2127 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino)); 2128 2129 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2130 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index, 2131 old_value, new_agino); 2132 2133 /* 2134 * We should never find the head of the list already set to the value 2135 * passed in because either we're adding or removing ourselves from the 2136 * head of the list. 2137 */ 2138 if (old_value == new_agino) { 2139 xfs_buf_corruption_error(agibp); 2140 return -EFSCORRUPTED; 2141 } 2142 2143 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 2144 offset = offsetof(struct xfs_agi, agi_unlinked) + 2145 (sizeof(xfs_agino_t) * bucket_index); 2146 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 2147 return 0; 2148 } 2149 2150 /* Set an on-disk inode's next_unlinked pointer. */ 2151 STATIC void 2152 xfs_iunlink_update_dinode( 2153 struct xfs_trans *tp, 2154 xfs_agnumber_t agno, 2155 xfs_agino_t agino, 2156 struct xfs_buf *ibp, 2157 struct xfs_dinode *dip, 2158 struct xfs_imap *imap, 2159 xfs_agino_t next_agino) 2160 { 2161 struct xfs_mount *mp = tp->t_mountp; 2162 int offset; 2163 2164 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2165 2166 trace_xfs_iunlink_update_dinode(mp, agno, agino, 2167 be32_to_cpu(dip->di_next_unlinked), next_agino); 2168 2169 dip->di_next_unlinked = cpu_to_be32(next_agino); 2170 offset = imap->im_boffset + 2171 offsetof(struct xfs_dinode, di_next_unlinked); 2172 2173 /* need to recalc the inode CRC if appropriate */ 2174 xfs_dinode_calc_crc(mp, dip); 2175 xfs_trans_inode_buf(tp, ibp); 2176 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); 2177 xfs_inobp_check(mp, ibp); 2178 } 2179 2180 /* Set an in-core inode's unlinked pointer and return the old value. */ 2181 STATIC int 2182 xfs_iunlink_update_inode( 2183 struct xfs_trans *tp, 2184 struct xfs_inode *ip, 2185 xfs_agnumber_t agno, 2186 xfs_agino_t next_agino, 2187 xfs_agino_t *old_next_agino) 2188 { 2189 struct xfs_mount *mp = tp->t_mountp; 2190 struct xfs_dinode *dip; 2191 struct xfs_buf *ibp; 2192 xfs_agino_t old_value; 2193 int error; 2194 2195 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2196 2197 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0); 2198 if (error) 2199 return error; 2200 2201 /* Make sure the old pointer isn't garbage. */ 2202 old_value = be32_to_cpu(dip->di_next_unlinked); 2203 if (!xfs_verify_agino_or_null(mp, agno, old_value)) { 2204 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 2205 sizeof(*dip), __this_address); 2206 error = -EFSCORRUPTED; 2207 goto out; 2208 } 2209 2210 /* 2211 * Since we're updating a linked list, we should never find that the 2212 * current pointer is the same as the new value, unless we're 2213 * terminating the list. 2214 */ 2215 *old_next_agino = old_value; 2216 if (old_value == next_agino) { 2217 if (next_agino != NULLAGINO) { 2218 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, 2219 dip, sizeof(*dip), __this_address); 2220 error = -EFSCORRUPTED; 2221 } 2222 goto out; 2223 } 2224 2225 /* Ok, update the new pointer. */ 2226 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino), 2227 ibp, dip, &ip->i_imap, next_agino); 2228 return 0; 2229 out: 2230 xfs_trans_brelse(tp, ibp); 2231 return error; 2232 } 2233 2234 /* 2235 * This is called when the inode's link count has gone to 0 or we are creating 2236 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2237 * 2238 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2239 * list when the inode is freed. 2240 */ 2241 STATIC int 2242 xfs_iunlink( 2243 struct xfs_trans *tp, 2244 struct xfs_inode *ip) 2245 { 2246 struct xfs_mount *mp = tp->t_mountp; 2247 struct xfs_agi *agi; 2248 struct xfs_buf *agibp; 2249 xfs_agino_t next_agino; 2250 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2251 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2252 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2253 int error; 2254 2255 ASSERT(VFS_I(ip)->i_nlink == 0); 2256 ASSERT(VFS_I(ip)->i_mode != 0); 2257 trace_xfs_iunlink(ip); 2258 2259 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2260 error = xfs_read_agi(mp, tp, agno, &agibp); 2261 if (error) 2262 return error; 2263 agi = XFS_BUF_TO_AGI(agibp); 2264 2265 /* 2266 * Get the index into the agi hash table for the list this inode will 2267 * go on. Make sure the pointer isn't garbage and that this inode 2268 * isn't already on the list. 2269 */ 2270 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2271 if (next_agino == agino || 2272 !xfs_verify_agino_or_null(mp, agno, next_agino)) { 2273 xfs_buf_corruption_error(agibp); 2274 return -EFSCORRUPTED; 2275 } 2276 2277 if (next_agino != NULLAGINO) { 2278 struct xfs_perag *pag; 2279 xfs_agino_t old_agino; 2280 2281 /* 2282 * There is already another inode in the bucket, so point this 2283 * inode to the current head of the list. 2284 */ 2285 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino, 2286 &old_agino); 2287 if (error) 2288 return error; 2289 ASSERT(old_agino == NULLAGINO); 2290 2291 /* 2292 * agino has been unlinked, add a backref from the next inode 2293 * back to agino. 2294 */ 2295 pag = xfs_perag_get(mp, agno); 2296 error = xfs_iunlink_add_backref(pag, agino, next_agino); 2297 xfs_perag_put(pag); 2298 if (error) 2299 return error; 2300 } 2301 2302 /* Point the head of the list to point to this inode. */ 2303 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino); 2304 } 2305 2306 /* Return the imap, dinode pointer, and buffer for an inode. */ 2307 STATIC int 2308 xfs_iunlink_map_ino( 2309 struct xfs_trans *tp, 2310 xfs_agnumber_t agno, 2311 xfs_agino_t agino, 2312 struct xfs_imap *imap, 2313 struct xfs_dinode **dipp, 2314 struct xfs_buf **bpp) 2315 { 2316 struct xfs_mount *mp = tp->t_mountp; 2317 int error; 2318 2319 imap->im_blkno = 0; 2320 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); 2321 if (error) { 2322 xfs_warn(mp, "%s: xfs_imap returned error %d.", 2323 __func__, error); 2324 return error; 2325 } 2326 2327 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0); 2328 if (error) { 2329 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2330 __func__, error); 2331 return error; 2332 } 2333 2334 return 0; 2335 } 2336 2337 /* 2338 * Walk the unlinked chain from @head_agino until we find the inode that 2339 * points to @target_agino. Return the inode number, map, dinode pointer, 2340 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. 2341 * 2342 * @tp, @pag, @head_agino, and @target_agino are input parameters. 2343 * @agino, @imap, @dipp, and @bpp are all output parameters. 2344 * 2345 * Do not call this function if @target_agino is the head of the list. 2346 */ 2347 STATIC int 2348 xfs_iunlink_map_prev( 2349 struct xfs_trans *tp, 2350 xfs_agnumber_t agno, 2351 xfs_agino_t head_agino, 2352 xfs_agino_t target_agino, 2353 xfs_agino_t *agino, 2354 struct xfs_imap *imap, 2355 struct xfs_dinode **dipp, 2356 struct xfs_buf **bpp, 2357 struct xfs_perag *pag) 2358 { 2359 struct xfs_mount *mp = tp->t_mountp; 2360 xfs_agino_t next_agino; 2361 int error; 2362 2363 ASSERT(head_agino != target_agino); 2364 *bpp = NULL; 2365 2366 /* See if our backref cache can find it faster. */ 2367 *agino = xfs_iunlink_lookup_backref(pag, target_agino); 2368 if (*agino != NULLAGINO) { 2369 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp); 2370 if (error) 2371 return error; 2372 2373 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) 2374 return 0; 2375 2376 /* 2377 * If we get here the cache contents were corrupt, so drop the 2378 * buffer and fall back to walking the bucket list. 2379 */ 2380 xfs_trans_brelse(tp, *bpp); 2381 *bpp = NULL; 2382 WARN_ON_ONCE(1); 2383 } 2384 2385 trace_xfs_iunlink_map_prev_fallback(mp, agno); 2386 2387 /* Otherwise, walk the entire bucket until we find it. */ 2388 next_agino = head_agino; 2389 while (next_agino != target_agino) { 2390 xfs_agino_t unlinked_agino; 2391 2392 if (*bpp) 2393 xfs_trans_brelse(tp, *bpp); 2394 2395 *agino = next_agino; 2396 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp, 2397 bpp); 2398 if (error) 2399 return error; 2400 2401 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); 2402 /* 2403 * Make sure this pointer is valid and isn't an obvious 2404 * infinite loop. 2405 */ 2406 if (!xfs_verify_agino(mp, agno, unlinked_agino) || 2407 next_agino == unlinked_agino) { 2408 XFS_CORRUPTION_ERROR(__func__, 2409 XFS_ERRLEVEL_LOW, mp, 2410 *dipp, sizeof(**dipp)); 2411 error = -EFSCORRUPTED; 2412 return error; 2413 } 2414 next_agino = unlinked_agino; 2415 } 2416 2417 return 0; 2418 } 2419 2420 /* 2421 * Pull the on-disk inode from the AGI unlinked list. 2422 */ 2423 STATIC int 2424 xfs_iunlink_remove( 2425 struct xfs_trans *tp, 2426 struct xfs_inode *ip) 2427 { 2428 struct xfs_mount *mp = tp->t_mountp; 2429 struct xfs_agi *agi; 2430 struct xfs_buf *agibp; 2431 struct xfs_buf *last_ibp; 2432 struct xfs_dinode *last_dip = NULL; 2433 struct xfs_perag *pag = NULL; 2434 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2435 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2436 xfs_agino_t next_agino; 2437 xfs_agino_t head_agino; 2438 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2439 int error; 2440 2441 trace_xfs_iunlink_remove(ip); 2442 2443 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2444 error = xfs_read_agi(mp, tp, agno, &agibp); 2445 if (error) 2446 return error; 2447 agi = XFS_BUF_TO_AGI(agibp); 2448 2449 /* 2450 * Get the index into the agi hash table for the list this inode will 2451 * go on. Make sure the head pointer isn't garbage. 2452 */ 2453 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2454 if (!xfs_verify_agino(mp, agno, head_agino)) { 2455 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2456 agi, sizeof(*agi)); 2457 return -EFSCORRUPTED; 2458 } 2459 2460 /* 2461 * Set our inode's next_unlinked pointer to NULL and then return 2462 * the old pointer value so that we can update whatever was previous 2463 * to us in the list to point to whatever was next in the list. 2464 */ 2465 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino); 2466 if (error) 2467 return error; 2468 2469 /* 2470 * If there was a backref pointing from the next inode back to this 2471 * one, remove it because we've removed this inode from the list. 2472 * 2473 * Later, if this inode was in the middle of the list we'll update 2474 * this inode's backref to point from the next inode. 2475 */ 2476 if (next_agino != NULLAGINO) { 2477 pag = xfs_perag_get(mp, agno); 2478 error = xfs_iunlink_change_backref(pag, next_agino, 2479 NULLAGINO); 2480 if (error) 2481 goto out; 2482 } 2483 2484 if (head_agino == agino) { 2485 /* Point the head of the list to the next unlinked inode. */ 2486 error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, 2487 next_agino); 2488 if (error) 2489 goto out; 2490 } else { 2491 struct xfs_imap imap; 2492 xfs_agino_t prev_agino; 2493 2494 if (!pag) 2495 pag = xfs_perag_get(mp, agno); 2496 2497 /* We need to search the list for the inode being freed. */ 2498 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino, 2499 &prev_agino, &imap, &last_dip, &last_ibp, 2500 pag); 2501 if (error) 2502 goto out; 2503 2504 /* Point the previous inode on the list to the next inode. */ 2505 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp, 2506 last_dip, &imap, next_agino); 2507 2508 /* 2509 * Now we deal with the backref for this inode. If this inode 2510 * pointed at a real inode, change the backref that pointed to 2511 * us to point to our old next. If this inode was the end of 2512 * the list, delete the backref that pointed to us. Note that 2513 * change_backref takes care of deleting the backref if 2514 * next_agino is NULLAGINO. 2515 */ 2516 error = xfs_iunlink_change_backref(pag, agino, next_agino); 2517 if (error) 2518 goto out; 2519 } 2520 2521 out: 2522 if (pag) 2523 xfs_perag_put(pag); 2524 return error; 2525 } 2526 2527 /* 2528 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2529 * inodes that are in memory - they all must be marked stale and attached to 2530 * the cluster buffer. 2531 */ 2532 STATIC int 2533 xfs_ifree_cluster( 2534 xfs_inode_t *free_ip, 2535 xfs_trans_t *tp, 2536 struct xfs_icluster *xic) 2537 { 2538 xfs_mount_t *mp = free_ip->i_mount; 2539 int nbufs; 2540 int i, j; 2541 int ioffset; 2542 xfs_daddr_t blkno; 2543 xfs_buf_t *bp; 2544 xfs_inode_t *ip; 2545 xfs_inode_log_item_t *iip; 2546 struct xfs_log_item *lip; 2547 struct xfs_perag *pag; 2548 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2549 xfs_ino_t inum; 2550 2551 inum = xic->first_ino; 2552 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2553 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2554 2555 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2556 /* 2557 * The allocation bitmap tells us which inodes of the chunk were 2558 * physically allocated. Skip the cluster if an inode falls into 2559 * a sparse region. 2560 */ 2561 ioffset = inum - xic->first_ino; 2562 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2563 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2564 continue; 2565 } 2566 2567 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2568 XFS_INO_TO_AGBNO(mp, inum)); 2569 2570 /* 2571 * We obtain and lock the backing buffer first in the process 2572 * here, as we have to ensure that any dirty inode that we 2573 * can't get the flush lock on is attached to the buffer. 2574 * If we scan the in-memory inodes first, then buffer IO can 2575 * complete before we get a lock on it, and hence we may fail 2576 * to mark all the active inodes on the buffer stale. 2577 */ 2578 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2579 mp->m_bsize * igeo->blocks_per_cluster, 2580 XBF_UNMAPPED); 2581 2582 if (!bp) 2583 return -ENOMEM; 2584 2585 /* 2586 * This buffer may not have been correctly initialised as we 2587 * didn't read it from disk. That's not important because we are 2588 * only using to mark the buffer as stale in the log, and to 2589 * attach stale cached inodes on it. That means it will never be 2590 * dispatched for IO. If it is, we want to know about it, and we 2591 * want it to fail. We can acheive this by adding a write 2592 * verifier to the buffer. 2593 */ 2594 bp->b_ops = &xfs_inode_buf_ops; 2595 2596 /* 2597 * Walk the inodes already attached to the buffer and mark them 2598 * stale. These will all have the flush locks held, so an 2599 * in-memory inode walk can't lock them. By marking them all 2600 * stale first, we will not attempt to lock them in the loop 2601 * below as the XFS_ISTALE flag will be set. 2602 */ 2603 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { 2604 if (lip->li_type == XFS_LI_INODE) { 2605 iip = (xfs_inode_log_item_t *)lip; 2606 ASSERT(iip->ili_logged == 1); 2607 lip->li_cb = xfs_istale_done; 2608 xfs_trans_ail_copy_lsn(mp->m_ail, 2609 &iip->ili_flush_lsn, 2610 &iip->ili_item.li_lsn); 2611 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2612 } 2613 } 2614 2615 2616 /* 2617 * For each inode in memory attempt to add it to the inode 2618 * buffer and set it up for being staled on buffer IO 2619 * completion. This is safe as we've locked out tail pushing 2620 * and flushing by locking the buffer. 2621 * 2622 * We have already marked every inode that was part of a 2623 * transaction stale above, which means there is no point in 2624 * even trying to lock them. 2625 */ 2626 for (i = 0; i < igeo->inodes_per_cluster; i++) { 2627 retry: 2628 rcu_read_lock(); 2629 ip = radix_tree_lookup(&pag->pag_ici_root, 2630 XFS_INO_TO_AGINO(mp, (inum + i))); 2631 2632 /* Inode not in memory, nothing to do */ 2633 if (!ip) { 2634 rcu_read_unlock(); 2635 continue; 2636 } 2637 2638 /* 2639 * because this is an RCU protected lookup, we could 2640 * find a recently freed or even reallocated inode 2641 * during the lookup. We need to check under the 2642 * i_flags_lock for a valid inode here. Skip it if it 2643 * is not valid, the wrong inode or stale. 2644 */ 2645 spin_lock(&ip->i_flags_lock); 2646 if (ip->i_ino != inum + i || 2647 __xfs_iflags_test(ip, XFS_ISTALE)) { 2648 spin_unlock(&ip->i_flags_lock); 2649 rcu_read_unlock(); 2650 continue; 2651 } 2652 spin_unlock(&ip->i_flags_lock); 2653 2654 /* 2655 * Don't try to lock/unlock the current inode, but we 2656 * _cannot_ skip the other inodes that we did not find 2657 * in the list attached to the buffer and are not 2658 * already marked stale. If we can't lock it, back off 2659 * and retry. 2660 */ 2661 if (ip != free_ip) { 2662 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2663 rcu_read_unlock(); 2664 delay(1); 2665 goto retry; 2666 } 2667 2668 /* 2669 * Check the inode number again in case we're 2670 * racing with freeing in xfs_reclaim_inode(). 2671 * See the comments in that function for more 2672 * information as to why the initial check is 2673 * not sufficient. 2674 */ 2675 if (ip->i_ino != inum + i) { 2676 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2677 rcu_read_unlock(); 2678 continue; 2679 } 2680 } 2681 rcu_read_unlock(); 2682 2683 xfs_iflock(ip); 2684 xfs_iflags_set(ip, XFS_ISTALE); 2685 2686 /* 2687 * we don't need to attach clean inodes or those only 2688 * with unlogged changes (which we throw away, anyway). 2689 */ 2690 iip = ip->i_itemp; 2691 if (!iip || xfs_inode_clean(ip)) { 2692 ASSERT(ip != free_ip); 2693 xfs_ifunlock(ip); 2694 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2695 continue; 2696 } 2697 2698 iip->ili_last_fields = iip->ili_fields; 2699 iip->ili_fields = 0; 2700 iip->ili_fsync_fields = 0; 2701 iip->ili_logged = 1; 2702 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2703 &iip->ili_item.li_lsn); 2704 2705 xfs_buf_attach_iodone(bp, xfs_istale_done, 2706 &iip->ili_item); 2707 2708 if (ip != free_ip) 2709 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2710 } 2711 2712 xfs_trans_stale_inode_buf(tp, bp); 2713 xfs_trans_binval(tp, bp); 2714 } 2715 2716 xfs_perag_put(pag); 2717 return 0; 2718 } 2719 2720 /* 2721 * Free any local-format buffers sitting around before we reset to 2722 * extents format. 2723 */ 2724 static inline void 2725 xfs_ifree_local_data( 2726 struct xfs_inode *ip, 2727 int whichfork) 2728 { 2729 struct xfs_ifork *ifp; 2730 2731 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL) 2732 return; 2733 2734 ifp = XFS_IFORK_PTR(ip, whichfork); 2735 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork); 2736 } 2737 2738 /* 2739 * This is called to return an inode to the inode free list. 2740 * The inode should already be truncated to 0 length and have 2741 * no pages associated with it. This routine also assumes that 2742 * the inode is already a part of the transaction. 2743 * 2744 * The on-disk copy of the inode will have been added to the list 2745 * of unlinked inodes in the AGI. We need to remove the inode from 2746 * that list atomically with respect to freeing it here. 2747 */ 2748 int 2749 xfs_ifree( 2750 struct xfs_trans *tp, 2751 struct xfs_inode *ip) 2752 { 2753 int error; 2754 struct xfs_icluster xic = { 0 }; 2755 2756 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2757 ASSERT(VFS_I(ip)->i_nlink == 0); 2758 ASSERT(ip->i_d.di_nextents == 0); 2759 ASSERT(ip->i_d.di_anextents == 0); 2760 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2761 ASSERT(ip->i_d.di_nblocks == 0); 2762 2763 /* 2764 * Pull the on-disk inode from the AGI unlinked list. 2765 */ 2766 error = xfs_iunlink_remove(tp, ip); 2767 if (error) 2768 return error; 2769 2770 error = xfs_difree(tp, ip->i_ino, &xic); 2771 if (error) 2772 return error; 2773 2774 xfs_ifree_local_data(ip, XFS_DATA_FORK); 2775 xfs_ifree_local_data(ip, XFS_ATTR_FORK); 2776 2777 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2778 ip->i_d.di_flags = 0; 2779 ip->i_d.di_flags2 = 0; 2780 ip->i_d.di_dmevmask = 0; 2781 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2782 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2783 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2784 2785 /* Don't attempt to replay owner changes for a deleted inode */ 2786 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER); 2787 2788 /* 2789 * Bump the generation count so no one will be confused 2790 * by reincarnations of this inode. 2791 */ 2792 VFS_I(ip)->i_generation++; 2793 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2794 2795 if (xic.deleted) 2796 error = xfs_ifree_cluster(ip, tp, &xic); 2797 2798 return error; 2799 } 2800 2801 /* 2802 * This is called to unpin an inode. The caller must have the inode locked 2803 * in at least shared mode so that the buffer cannot be subsequently pinned 2804 * once someone is waiting for it to be unpinned. 2805 */ 2806 static void 2807 xfs_iunpin( 2808 struct xfs_inode *ip) 2809 { 2810 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2811 2812 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2813 2814 /* Give the log a push to start the unpinning I/O */ 2815 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); 2816 2817 } 2818 2819 static void 2820 __xfs_iunpin_wait( 2821 struct xfs_inode *ip) 2822 { 2823 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2824 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2825 2826 xfs_iunpin(ip); 2827 2828 do { 2829 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2830 if (xfs_ipincount(ip)) 2831 io_schedule(); 2832 } while (xfs_ipincount(ip)); 2833 finish_wait(wq, &wait.wq_entry); 2834 } 2835 2836 void 2837 xfs_iunpin_wait( 2838 struct xfs_inode *ip) 2839 { 2840 if (xfs_ipincount(ip)) 2841 __xfs_iunpin_wait(ip); 2842 } 2843 2844 /* 2845 * Removing an inode from the namespace involves removing the directory entry 2846 * and dropping the link count on the inode. Removing the directory entry can 2847 * result in locking an AGF (directory blocks were freed) and removing a link 2848 * count can result in placing the inode on an unlinked list which results in 2849 * locking an AGI. 2850 * 2851 * The big problem here is that we have an ordering constraint on AGF and AGI 2852 * locking - inode allocation locks the AGI, then can allocate a new extent for 2853 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2854 * removes the inode from the unlinked list, requiring that we lock the AGI 2855 * first, and then freeing the inode can result in an inode chunk being freed 2856 * and hence freeing disk space requiring that we lock an AGF. 2857 * 2858 * Hence the ordering that is imposed by other parts of the code is AGI before 2859 * AGF. This means we cannot remove the directory entry before we drop the inode 2860 * reference count and put it on the unlinked list as this results in a lock 2861 * order of AGF then AGI, and this can deadlock against inode allocation and 2862 * freeing. Therefore we must drop the link counts before we remove the 2863 * directory entry. 2864 * 2865 * This is still safe from a transactional point of view - it is not until we 2866 * get to xfs_defer_finish() that we have the possibility of multiple 2867 * transactions in this operation. Hence as long as we remove the directory 2868 * entry and drop the link count in the first transaction of the remove 2869 * operation, there are no transactional constraints on the ordering here. 2870 */ 2871 int 2872 xfs_remove( 2873 xfs_inode_t *dp, 2874 struct xfs_name *name, 2875 xfs_inode_t *ip) 2876 { 2877 xfs_mount_t *mp = dp->i_mount; 2878 xfs_trans_t *tp = NULL; 2879 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2880 int error = 0; 2881 uint resblks; 2882 2883 trace_xfs_remove(dp, name); 2884 2885 if (XFS_FORCED_SHUTDOWN(mp)) 2886 return -EIO; 2887 2888 error = xfs_qm_dqattach(dp); 2889 if (error) 2890 goto std_return; 2891 2892 error = xfs_qm_dqattach(ip); 2893 if (error) 2894 goto std_return; 2895 2896 /* 2897 * We try to get the real space reservation first, 2898 * allowing for directory btree deletion(s) implying 2899 * possible bmap insert(s). If we can't get the space 2900 * reservation then we use 0 instead, and avoid the bmap 2901 * btree insert(s) in the directory code by, if the bmap 2902 * insert tries to happen, instead trimming the LAST 2903 * block from the directory. 2904 */ 2905 resblks = XFS_REMOVE_SPACE_RES(mp); 2906 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2907 if (error == -ENOSPC) { 2908 resblks = 0; 2909 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2910 &tp); 2911 } 2912 if (error) { 2913 ASSERT(error != -ENOSPC); 2914 goto std_return; 2915 } 2916 2917 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 2918 2919 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2920 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2921 2922 /* 2923 * If we're removing a directory perform some additional validation. 2924 */ 2925 if (is_dir) { 2926 ASSERT(VFS_I(ip)->i_nlink >= 2); 2927 if (VFS_I(ip)->i_nlink != 2) { 2928 error = -ENOTEMPTY; 2929 goto out_trans_cancel; 2930 } 2931 if (!xfs_dir_isempty(ip)) { 2932 error = -ENOTEMPTY; 2933 goto out_trans_cancel; 2934 } 2935 2936 /* Drop the link from ip's "..". */ 2937 error = xfs_droplink(tp, dp); 2938 if (error) 2939 goto out_trans_cancel; 2940 2941 /* Drop the "." link from ip to self. */ 2942 error = xfs_droplink(tp, ip); 2943 if (error) 2944 goto out_trans_cancel; 2945 } else { 2946 /* 2947 * When removing a non-directory we need to log the parent 2948 * inode here. For a directory this is done implicitly 2949 * by the xfs_droplink call for the ".." entry. 2950 */ 2951 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2952 } 2953 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2954 2955 /* Drop the link from dp to ip. */ 2956 error = xfs_droplink(tp, ip); 2957 if (error) 2958 goto out_trans_cancel; 2959 2960 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2961 if (error) { 2962 ASSERT(error != -ENOENT); 2963 goto out_trans_cancel; 2964 } 2965 2966 /* 2967 * If this is a synchronous mount, make sure that the 2968 * remove transaction goes to disk before returning to 2969 * the user. 2970 */ 2971 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2972 xfs_trans_set_sync(tp); 2973 2974 error = xfs_trans_commit(tp); 2975 if (error) 2976 goto std_return; 2977 2978 if (is_dir && xfs_inode_is_filestream(ip)) 2979 xfs_filestream_deassociate(ip); 2980 2981 return 0; 2982 2983 out_trans_cancel: 2984 xfs_trans_cancel(tp); 2985 std_return: 2986 return error; 2987 } 2988 2989 /* 2990 * Enter all inodes for a rename transaction into a sorted array. 2991 */ 2992 #define __XFS_SORT_INODES 5 2993 STATIC void 2994 xfs_sort_for_rename( 2995 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2996 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2997 struct xfs_inode *ip1, /* in: inode of old entry */ 2998 struct xfs_inode *ip2, /* in: inode of new entry */ 2999 struct xfs_inode *wip, /* in: whiteout inode */ 3000 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 3001 int *num_inodes) /* in/out: inodes in array */ 3002 { 3003 int i, j; 3004 3005 ASSERT(*num_inodes == __XFS_SORT_INODES); 3006 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 3007 3008 /* 3009 * i_tab contains a list of pointers to inodes. We initialize 3010 * the table here & we'll sort it. We will then use it to 3011 * order the acquisition of the inode locks. 3012 * 3013 * Note that the table may contain duplicates. e.g., dp1 == dp2. 3014 */ 3015 i = 0; 3016 i_tab[i++] = dp1; 3017 i_tab[i++] = dp2; 3018 i_tab[i++] = ip1; 3019 if (ip2) 3020 i_tab[i++] = ip2; 3021 if (wip) 3022 i_tab[i++] = wip; 3023 *num_inodes = i; 3024 3025 /* 3026 * Sort the elements via bubble sort. (Remember, there are at 3027 * most 5 elements to sort, so this is adequate.) 3028 */ 3029 for (i = 0; i < *num_inodes; i++) { 3030 for (j = 1; j < *num_inodes; j++) { 3031 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 3032 struct xfs_inode *temp = i_tab[j]; 3033 i_tab[j] = i_tab[j-1]; 3034 i_tab[j-1] = temp; 3035 } 3036 } 3037 } 3038 } 3039 3040 static int 3041 xfs_finish_rename( 3042 struct xfs_trans *tp) 3043 { 3044 /* 3045 * If this is a synchronous mount, make sure that the rename transaction 3046 * goes to disk before returning to the user. 3047 */ 3048 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 3049 xfs_trans_set_sync(tp); 3050 3051 return xfs_trans_commit(tp); 3052 } 3053 3054 /* 3055 * xfs_cross_rename() 3056 * 3057 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 3058 */ 3059 STATIC int 3060 xfs_cross_rename( 3061 struct xfs_trans *tp, 3062 struct xfs_inode *dp1, 3063 struct xfs_name *name1, 3064 struct xfs_inode *ip1, 3065 struct xfs_inode *dp2, 3066 struct xfs_name *name2, 3067 struct xfs_inode *ip2, 3068 int spaceres) 3069 { 3070 int error = 0; 3071 int ip1_flags = 0; 3072 int ip2_flags = 0; 3073 int dp2_flags = 0; 3074 3075 /* Swap inode number for dirent in first parent */ 3076 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 3077 if (error) 3078 goto out_trans_abort; 3079 3080 /* Swap inode number for dirent in second parent */ 3081 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 3082 if (error) 3083 goto out_trans_abort; 3084 3085 /* 3086 * If we're renaming one or more directories across different parents, 3087 * update the respective ".." entries (and link counts) to match the new 3088 * parents. 3089 */ 3090 if (dp1 != dp2) { 3091 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3092 3093 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 3094 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 3095 dp1->i_ino, spaceres); 3096 if (error) 3097 goto out_trans_abort; 3098 3099 /* transfer ip2 ".." reference to dp1 */ 3100 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 3101 error = xfs_droplink(tp, dp2); 3102 if (error) 3103 goto out_trans_abort; 3104 xfs_bumplink(tp, dp1); 3105 } 3106 3107 /* 3108 * Although ip1 isn't changed here, userspace needs 3109 * to be warned about the change, so that applications 3110 * relying on it (like backup ones), will properly 3111 * notify the change 3112 */ 3113 ip1_flags |= XFS_ICHGTIME_CHG; 3114 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3115 } 3116 3117 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 3118 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 3119 dp2->i_ino, spaceres); 3120 if (error) 3121 goto out_trans_abort; 3122 3123 /* transfer ip1 ".." reference to dp2 */ 3124 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 3125 error = xfs_droplink(tp, dp1); 3126 if (error) 3127 goto out_trans_abort; 3128 xfs_bumplink(tp, dp2); 3129 } 3130 3131 /* 3132 * Although ip2 isn't changed here, userspace needs 3133 * to be warned about the change, so that applications 3134 * relying on it (like backup ones), will properly 3135 * notify the change 3136 */ 3137 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3138 ip2_flags |= XFS_ICHGTIME_CHG; 3139 } 3140 } 3141 3142 if (ip1_flags) { 3143 xfs_trans_ichgtime(tp, ip1, ip1_flags); 3144 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 3145 } 3146 if (ip2_flags) { 3147 xfs_trans_ichgtime(tp, ip2, ip2_flags); 3148 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 3149 } 3150 if (dp2_flags) { 3151 xfs_trans_ichgtime(tp, dp2, dp2_flags); 3152 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 3153 } 3154 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3155 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 3156 return xfs_finish_rename(tp); 3157 3158 out_trans_abort: 3159 xfs_trans_cancel(tp); 3160 return error; 3161 } 3162 3163 /* 3164 * xfs_rename_alloc_whiteout() 3165 * 3166 * Return a referenced, unlinked, unlocked inode that that can be used as a 3167 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 3168 * crash between allocating the inode and linking it into the rename transaction 3169 * recovery will free the inode and we won't leak it. 3170 */ 3171 static int 3172 xfs_rename_alloc_whiteout( 3173 struct xfs_inode *dp, 3174 struct xfs_inode **wip) 3175 { 3176 struct xfs_inode *tmpfile; 3177 int error; 3178 3179 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile); 3180 if (error) 3181 return error; 3182 3183 /* 3184 * Prepare the tmpfile inode as if it were created through the VFS. 3185 * Complete the inode setup and flag it as linkable. nlink is already 3186 * zero, so we can skip the drop_nlink. 3187 */ 3188 xfs_setup_iops(tmpfile); 3189 xfs_finish_inode_setup(tmpfile); 3190 VFS_I(tmpfile)->i_state |= I_LINKABLE; 3191 3192 *wip = tmpfile; 3193 return 0; 3194 } 3195 3196 /* 3197 * xfs_rename 3198 */ 3199 int 3200 xfs_rename( 3201 struct xfs_inode *src_dp, 3202 struct xfs_name *src_name, 3203 struct xfs_inode *src_ip, 3204 struct xfs_inode *target_dp, 3205 struct xfs_name *target_name, 3206 struct xfs_inode *target_ip, 3207 unsigned int flags) 3208 { 3209 struct xfs_mount *mp = src_dp->i_mount; 3210 struct xfs_trans *tp; 3211 struct xfs_inode *wip = NULL; /* whiteout inode */ 3212 struct xfs_inode *inodes[__XFS_SORT_INODES]; 3213 struct xfs_buf *agibp; 3214 int num_inodes = __XFS_SORT_INODES; 3215 bool new_parent = (src_dp != target_dp); 3216 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 3217 int spaceres; 3218 int error; 3219 3220 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 3221 3222 if ((flags & RENAME_EXCHANGE) && !target_ip) 3223 return -EINVAL; 3224 3225 /* 3226 * If we are doing a whiteout operation, allocate the whiteout inode 3227 * we will be placing at the target and ensure the type is set 3228 * appropriately. 3229 */ 3230 if (flags & RENAME_WHITEOUT) { 3231 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 3232 error = xfs_rename_alloc_whiteout(target_dp, &wip); 3233 if (error) 3234 return error; 3235 3236 /* setup target dirent info as whiteout */ 3237 src_name->type = XFS_DIR3_FT_CHRDEV; 3238 } 3239 3240 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3241 inodes, &num_inodes); 3242 3243 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 3244 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3245 if (error == -ENOSPC) { 3246 spaceres = 0; 3247 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3248 &tp); 3249 } 3250 if (error) 3251 goto out_release_wip; 3252 3253 /* 3254 * Attach the dquots to the inodes 3255 */ 3256 error = xfs_qm_vop_rename_dqattach(inodes); 3257 if (error) 3258 goto out_trans_cancel; 3259 3260 /* 3261 * Lock all the participating inodes. Depending upon whether 3262 * the target_name exists in the target directory, and 3263 * whether the target directory is the same as the source 3264 * directory, we can lock from 2 to 4 inodes. 3265 */ 3266 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3267 3268 /* 3269 * Join all the inodes to the transaction. From this point on, 3270 * we can rely on either trans_commit or trans_cancel to unlock 3271 * them. 3272 */ 3273 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 3274 if (new_parent) 3275 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 3276 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3277 if (target_ip) 3278 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3279 if (wip) 3280 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3281 3282 /* 3283 * If we are using project inheritance, we only allow renames 3284 * into our tree when the project IDs are the same; else the 3285 * tree quota mechanism would be circumvented. 3286 */ 3287 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 3288 target_dp->i_d.di_projid != src_ip->i_d.di_projid)) { 3289 error = -EXDEV; 3290 goto out_trans_cancel; 3291 } 3292 3293 /* RENAME_EXCHANGE is unique from here on. */ 3294 if (flags & RENAME_EXCHANGE) 3295 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3296 target_dp, target_name, target_ip, 3297 spaceres); 3298 3299 /* 3300 * Check for expected errors before we dirty the transaction 3301 * so we can return an error without a transaction abort. 3302 */ 3303 if (target_ip == NULL) { 3304 /* 3305 * If there's no space reservation, check the entry will 3306 * fit before actually inserting it. 3307 */ 3308 if (!spaceres) { 3309 error = xfs_dir_canenter(tp, target_dp, target_name); 3310 if (error) 3311 goto out_trans_cancel; 3312 } 3313 } else { 3314 /* 3315 * If target exists and it's a directory, check that whether 3316 * it can be destroyed. 3317 */ 3318 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 3319 (!xfs_dir_isempty(target_ip) || 3320 (VFS_I(target_ip)->i_nlink > 2))) { 3321 error = -EEXIST; 3322 goto out_trans_cancel; 3323 } 3324 } 3325 3326 /* 3327 * Directory entry creation below may acquire the AGF. Remove 3328 * the whiteout from the unlinked list first to preserve correct 3329 * AGI/AGF locking order. This dirties the transaction so failures 3330 * after this point will abort and log recovery will clean up the 3331 * mess. 3332 * 3333 * For whiteouts, we need to bump the link count on the whiteout 3334 * inode. After this point, we have a real link, clear the tmpfile 3335 * state flag from the inode so it doesn't accidentally get misused 3336 * in future. 3337 */ 3338 if (wip) { 3339 ASSERT(VFS_I(wip)->i_nlink == 0); 3340 error = xfs_iunlink_remove(tp, wip); 3341 if (error) 3342 goto out_trans_cancel; 3343 3344 xfs_bumplink(tp, wip); 3345 VFS_I(wip)->i_state &= ~I_LINKABLE; 3346 } 3347 3348 /* 3349 * Set up the target. 3350 */ 3351 if (target_ip == NULL) { 3352 /* 3353 * If target does not exist and the rename crosses 3354 * directories, adjust the target directory link count 3355 * to account for the ".." reference from the new entry. 3356 */ 3357 error = xfs_dir_createname(tp, target_dp, target_name, 3358 src_ip->i_ino, spaceres); 3359 if (error) 3360 goto out_trans_cancel; 3361 3362 xfs_trans_ichgtime(tp, target_dp, 3363 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3364 3365 if (new_parent && src_is_directory) { 3366 xfs_bumplink(tp, target_dp); 3367 } 3368 } else { /* target_ip != NULL */ 3369 /* 3370 * Link the source inode under the target name. 3371 * If the source inode is a directory and we are moving 3372 * it across directories, its ".." entry will be 3373 * inconsistent until we replace that down below. 3374 * 3375 * In case there is already an entry with the same 3376 * name at the destination directory, remove it first. 3377 */ 3378 3379 /* 3380 * Check whether the replace operation will need to allocate 3381 * blocks. This happens when the shortform directory lacks 3382 * space and we have to convert it to a block format directory. 3383 * When more blocks are necessary, we must lock the AGI first 3384 * to preserve locking order (AGI -> AGF). 3385 */ 3386 if (xfs_dir2_sf_replace_needblock(target_dp, src_ip->i_ino)) { 3387 error = xfs_read_agi(mp, tp, 3388 XFS_INO_TO_AGNO(mp, target_ip->i_ino), 3389 &agibp); 3390 if (error) 3391 goto out_trans_cancel; 3392 } 3393 3394 error = xfs_dir_replace(tp, target_dp, target_name, 3395 src_ip->i_ino, spaceres); 3396 if (error) 3397 goto out_trans_cancel; 3398 3399 xfs_trans_ichgtime(tp, target_dp, 3400 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3401 3402 /* 3403 * Decrement the link count on the target since the target 3404 * dir no longer points to it. 3405 */ 3406 error = xfs_droplink(tp, target_ip); 3407 if (error) 3408 goto out_trans_cancel; 3409 3410 if (src_is_directory) { 3411 /* 3412 * Drop the link from the old "." entry. 3413 */ 3414 error = xfs_droplink(tp, target_ip); 3415 if (error) 3416 goto out_trans_cancel; 3417 } 3418 } /* target_ip != NULL */ 3419 3420 /* 3421 * Remove the source. 3422 */ 3423 if (new_parent && src_is_directory) { 3424 /* 3425 * Rewrite the ".." entry to point to the new 3426 * directory. 3427 */ 3428 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3429 target_dp->i_ino, spaceres); 3430 ASSERT(error != -EEXIST); 3431 if (error) 3432 goto out_trans_cancel; 3433 } 3434 3435 /* 3436 * We always want to hit the ctime on the source inode. 3437 * 3438 * This isn't strictly required by the standards since the source 3439 * inode isn't really being changed, but old unix file systems did 3440 * it and some incremental backup programs won't work without it. 3441 */ 3442 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3443 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3444 3445 /* 3446 * Adjust the link count on src_dp. This is necessary when 3447 * renaming a directory, either within one parent when 3448 * the target existed, or across two parent directories. 3449 */ 3450 if (src_is_directory && (new_parent || target_ip != NULL)) { 3451 3452 /* 3453 * Decrement link count on src_directory since the 3454 * entry that's moved no longer points to it. 3455 */ 3456 error = xfs_droplink(tp, src_dp); 3457 if (error) 3458 goto out_trans_cancel; 3459 } 3460 3461 /* 3462 * For whiteouts, we only need to update the source dirent with the 3463 * inode number of the whiteout inode rather than removing it 3464 * altogether. 3465 */ 3466 if (wip) { 3467 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3468 spaceres); 3469 } else 3470 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3471 spaceres); 3472 if (error) 3473 goto out_trans_cancel; 3474 3475 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3476 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3477 if (new_parent) 3478 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3479 3480 error = xfs_finish_rename(tp); 3481 if (wip) 3482 xfs_irele(wip); 3483 return error; 3484 3485 out_trans_cancel: 3486 xfs_trans_cancel(tp); 3487 out_release_wip: 3488 if (wip) 3489 xfs_irele(wip); 3490 return error; 3491 } 3492 3493 STATIC int 3494 xfs_iflush_cluster( 3495 struct xfs_inode *ip, 3496 struct xfs_buf *bp) 3497 { 3498 struct xfs_mount *mp = ip->i_mount; 3499 struct xfs_perag *pag; 3500 unsigned long first_index, mask; 3501 int cilist_size; 3502 struct xfs_inode **cilist; 3503 struct xfs_inode *cip; 3504 struct xfs_ino_geometry *igeo = M_IGEO(mp); 3505 int nr_found; 3506 int clcount = 0; 3507 int i; 3508 3509 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3510 3511 cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *); 3512 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); 3513 if (!cilist) 3514 goto out_put; 3515 3516 mask = ~(igeo->inodes_per_cluster - 1); 3517 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3518 rcu_read_lock(); 3519 /* really need a gang lookup range call here */ 3520 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, 3521 first_index, igeo->inodes_per_cluster); 3522 if (nr_found == 0) 3523 goto out_free; 3524 3525 for (i = 0; i < nr_found; i++) { 3526 cip = cilist[i]; 3527 if (cip == ip) 3528 continue; 3529 3530 /* 3531 * because this is an RCU protected lookup, we could find a 3532 * recently freed or even reallocated inode during the lookup. 3533 * We need to check under the i_flags_lock for a valid inode 3534 * here. Skip it if it is not valid or the wrong inode. 3535 */ 3536 spin_lock(&cip->i_flags_lock); 3537 if (!cip->i_ino || 3538 __xfs_iflags_test(cip, XFS_ISTALE)) { 3539 spin_unlock(&cip->i_flags_lock); 3540 continue; 3541 } 3542 3543 /* 3544 * Once we fall off the end of the cluster, no point checking 3545 * any more inodes in the list because they will also all be 3546 * outside the cluster. 3547 */ 3548 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { 3549 spin_unlock(&cip->i_flags_lock); 3550 break; 3551 } 3552 spin_unlock(&cip->i_flags_lock); 3553 3554 /* 3555 * Do an un-protected check to see if the inode is dirty and 3556 * is a candidate for flushing. These checks will be repeated 3557 * later after the appropriate locks are acquired. 3558 */ 3559 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) 3560 continue; 3561 3562 /* 3563 * Try to get locks. If any are unavailable or it is pinned, 3564 * then this inode cannot be flushed and is skipped. 3565 */ 3566 3567 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) 3568 continue; 3569 if (!xfs_iflock_nowait(cip)) { 3570 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3571 continue; 3572 } 3573 if (xfs_ipincount(cip)) { 3574 xfs_ifunlock(cip); 3575 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3576 continue; 3577 } 3578 3579 3580 /* 3581 * Check the inode number again, just to be certain we are not 3582 * racing with freeing in xfs_reclaim_inode(). See the comments 3583 * in that function for more information as to why the initial 3584 * check is not sufficient. 3585 */ 3586 if (!cip->i_ino) { 3587 xfs_ifunlock(cip); 3588 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3589 continue; 3590 } 3591 3592 /* 3593 * arriving here means that this inode can be flushed. First 3594 * re-check that it's dirty before flushing. 3595 */ 3596 if (!xfs_inode_clean(cip)) { 3597 int error; 3598 error = xfs_iflush_int(cip, bp); 3599 if (error) { 3600 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3601 goto cluster_corrupt_out; 3602 } 3603 clcount++; 3604 } else { 3605 xfs_ifunlock(cip); 3606 } 3607 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3608 } 3609 3610 if (clcount) { 3611 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3612 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3613 } 3614 3615 out_free: 3616 rcu_read_unlock(); 3617 kmem_free(cilist); 3618 out_put: 3619 xfs_perag_put(pag); 3620 return 0; 3621 3622 3623 cluster_corrupt_out: 3624 /* 3625 * Corruption detected in the clustering loop. Invalidate the 3626 * inode buffer and shut down the filesystem. 3627 */ 3628 rcu_read_unlock(); 3629 3630 /* 3631 * We'll always have an inode attached to the buffer for completion 3632 * process by the time we are called from xfs_iflush(). Hence we have 3633 * always need to do IO completion processing to abort the inodes 3634 * attached to the buffer. handle them just like the shutdown case in 3635 * xfs_buf_submit(). 3636 */ 3637 ASSERT(bp->b_iodone); 3638 bp->b_flags |= XBF_ASYNC; 3639 bp->b_flags &= ~XBF_DONE; 3640 xfs_buf_stale(bp); 3641 xfs_buf_ioerror(bp, -EIO); 3642 xfs_buf_ioend(bp); 3643 3644 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3645 3646 /* abort the corrupt inode, as it was not attached to the buffer */ 3647 xfs_iflush_abort(cip, false); 3648 kmem_free(cilist); 3649 xfs_perag_put(pag); 3650 return -EFSCORRUPTED; 3651 } 3652 3653 /* 3654 * Flush dirty inode metadata into the backing buffer. 3655 * 3656 * The caller must have the inode lock and the inode flush lock held. The 3657 * inode lock will still be held upon return to the caller, and the inode 3658 * flush lock will be released after the inode has reached the disk. 3659 * 3660 * The caller must write out the buffer returned in *bpp and release it. 3661 */ 3662 int 3663 xfs_iflush( 3664 struct xfs_inode *ip, 3665 struct xfs_buf **bpp) 3666 { 3667 struct xfs_mount *mp = ip->i_mount; 3668 struct xfs_buf *bp = NULL; 3669 struct xfs_dinode *dip; 3670 int error; 3671 3672 XFS_STATS_INC(mp, xs_iflush_count); 3673 3674 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3675 ASSERT(xfs_isiflocked(ip)); 3676 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3677 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3678 3679 *bpp = NULL; 3680 3681 xfs_iunpin_wait(ip); 3682 3683 /* 3684 * For stale inodes we cannot rely on the backing buffer remaining 3685 * stale in cache for the remaining life of the stale inode and so 3686 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3687 * inodes below. We have to check this after ensuring the inode is 3688 * unpinned so that it is safe to reclaim the stale inode after the 3689 * flush call. 3690 */ 3691 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3692 xfs_ifunlock(ip); 3693 return 0; 3694 } 3695 3696 /* 3697 * This may have been unpinned because the filesystem is shutting 3698 * down forcibly. If that's the case we must not write this inode 3699 * to disk, because the log record didn't make it to disk. 3700 * 3701 * We also have to remove the log item from the AIL in this case, 3702 * as we wait for an empty AIL as part of the unmount process. 3703 */ 3704 if (XFS_FORCED_SHUTDOWN(mp)) { 3705 error = -EIO; 3706 goto abort_out; 3707 } 3708 3709 /* 3710 * Get the buffer containing the on-disk inode. We are doing a try-lock 3711 * operation here, so we may get an EAGAIN error. In that case, we 3712 * simply want to return with the inode still dirty. 3713 * 3714 * If we get any other error, we effectively have a corruption situation 3715 * and we cannot flush the inode, so we treat it the same as failing 3716 * xfs_iflush_int(). 3717 */ 3718 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3719 0); 3720 if (error == -EAGAIN) { 3721 xfs_ifunlock(ip); 3722 return error; 3723 } 3724 if (error) 3725 goto corrupt_out; 3726 3727 /* 3728 * First flush out the inode that xfs_iflush was called with. 3729 */ 3730 error = xfs_iflush_int(ip, bp); 3731 if (error) 3732 goto corrupt_out; 3733 3734 /* 3735 * If the buffer is pinned then push on the log now so we won't 3736 * get stuck waiting in the write for too long. 3737 */ 3738 if (xfs_buf_ispinned(bp)) 3739 xfs_log_force(mp, 0); 3740 3741 /* 3742 * inode clustering: try to gather other inodes into this write 3743 * 3744 * Note: Any error during clustering will result in the filesystem 3745 * being shut down and completion callbacks run on the cluster buffer. 3746 * As we have already flushed and attached this inode to the buffer, 3747 * it has already been aborted and released by xfs_iflush_cluster() and 3748 * so we have no further error handling to do here. 3749 */ 3750 error = xfs_iflush_cluster(ip, bp); 3751 if (error) 3752 return error; 3753 3754 *bpp = bp; 3755 return 0; 3756 3757 corrupt_out: 3758 if (bp) 3759 xfs_buf_relse(bp); 3760 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3761 abort_out: 3762 /* abort the corrupt inode, as it was not attached to the buffer */ 3763 xfs_iflush_abort(ip, false); 3764 return error; 3765 } 3766 3767 /* 3768 * If there are inline format data / attr forks attached to this inode, 3769 * make sure they're not corrupt. 3770 */ 3771 bool 3772 xfs_inode_verify_forks( 3773 struct xfs_inode *ip) 3774 { 3775 struct xfs_ifork *ifp; 3776 xfs_failaddr_t fa; 3777 3778 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops); 3779 if (fa) { 3780 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 3781 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork", 3782 ifp->if_u1.if_data, ifp->if_bytes, fa); 3783 return false; 3784 } 3785 3786 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops); 3787 if (fa) { 3788 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); 3789 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork", 3790 ifp ? ifp->if_u1.if_data : NULL, 3791 ifp ? ifp->if_bytes : 0, fa); 3792 return false; 3793 } 3794 return true; 3795 } 3796 3797 STATIC int 3798 xfs_iflush_int( 3799 struct xfs_inode *ip, 3800 struct xfs_buf *bp) 3801 { 3802 struct xfs_inode_log_item *iip = ip->i_itemp; 3803 struct xfs_dinode *dip; 3804 struct xfs_mount *mp = ip->i_mount; 3805 3806 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3807 ASSERT(xfs_isiflocked(ip)); 3808 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3809 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3810 ASSERT(iip != NULL && iip->ili_fields != 0); 3811 ASSERT(ip->i_d.di_version > 1); 3812 3813 /* set *dip = inode's place in the buffer */ 3814 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3815 3816 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3817 mp, XFS_ERRTAG_IFLUSH_1)) { 3818 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3819 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3820 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3821 goto corrupt_out; 3822 } 3823 if (S_ISREG(VFS_I(ip)->i_mode)) { 3824 if (XFS_TEST_ERROR( 3825 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3826 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3827 mp, XFS_ERRTAG_IFLUSH_3)) { 3828 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3829 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3830 __func__, ip->i_ino, ip); 3831 goto corrupt_out; 3832 } 3833 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3834 if (XFS_TEST_ERROR( 3835 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3836 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3837 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3838 mp, XFS_ERRTAG_IFLUSH_4)) { 3839 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3840 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3841 __func__, ip->i_ino, ip); 3842 goto corrupt_out; 3843 } 3844 } 3845 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3846 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3847 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3848 "%s: detected corrupt incore inode %Lu, " 3849 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, 3850 __func__, ip->i_ino, 3851 ip->i_d.di_nextents + ip->i_d.di_anextents, 3852 ip->i_d.di_nblocks, ip); 3853 goto corrupt_out; 3854 } 3855 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3856 mp, XFS_ERRTAG_IFLUSH_6)) { 3857 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3858 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3859 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3860 goto corrupt_out; 3861 } 3862 3863 /* 3864 * Inode item log recovery for v2 inodes are dependent on the 3865 * di_flushiter count for correct sequencing. We bump the flush 3866 * iteration count so we can detect flushes which postdate a log record 3867 * during recovery. This is redundant as we now log every change and 3868 * hence this can't happen but we need to still do it to ensure 3869 * backwards compatibility with old kernels that predate logging all 3870 * inode changes. 3871 */ 3872 if (ip->i_d.di_version < 3) 3873 ip->i_d.di_flushiter++; 3874 3875 /* Check the inline fork data before we write out. */ 3876 if (!xfs_inode_verify_forks(ip)) 3877 goto corrupt_out; 3878 3879 /* 3880 * Copy the dirty parts of the inode into the on-disk inode. We always 3881 * copy out the core of the inode, because if the inode is dirty at all 3882 * the core must be. 3883 */ 3884 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3885 3886 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3887 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3888 ip->i_d.di_flushiter = 0; 3889 3890 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3891 if (XFS_IFORK_Q(ip)) 3892 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3893 xfs_inobp_check(mp, bp); 3894 3895 /* 3896 * We've recorded everything logged in the inode, so we'd like to clear 3897 * the ili_fields bits so we don't log and flush things unnecessarily. 3898 * However, we can't stop logging all this information until the data 3899 * we've copied into the disk buffer is written to disk. If we did we 3900 * might overwrite the copy of the inode in the log with all the data 3901 * after re-logging only part of it, and in the face of a crash we 3902 * wouldn't have all the data we need to recover. 3903 * 3904 * What we do is move the bits to the ili_last_fields field. When 3905 * logging the inode, these bits are moved back to the ili_fields field. 3906 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3907 * know that the information those bits represent is permanently on 3908 * disk. As long as the flush completes before the inode is logged 3909 * again, then both ili_fields and ili_last_fields will be cleared. 3910 * 3911 * We can play with the ili_fields bits here, because the inode lock 3912 * must be held exclusively in order to set bits there and the flush 3913 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3914 * done routine can tell whether or not to look in the AIL. Also, store 3915 * the current LSN of the inode so that we can tell whether the item has 3916 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3917 * need the AIL lock, because it is a 64 bit value that cannot be read 3918 * atomically. 3919 */ 3920 iip->ili_last_fields = iip->ili_fields; 3921 iip->ili_fields = 0; 3922 iip->ili_fsync_fields = 0; 3923 iip->ili_logged = 1; 3924 3925 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3926 &iip->ili_item.li_lsn); 3927 3928 /* 3929 * Attach the function xfs_iflush_done to the inode's 3930 * buffer. This will remove the inode from the AIL 3931 * and unlock the inode's flush lock when the inode is 3932 * completely written to disk. 3933 */ 3934 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3935 3936 /* generate the checksum. */ 3937 xfs_dinode_calc_crc(mp, dip); 3938 3939 ASSERT(!list_empty(&bp->b_li_list)); 3940 ASSERT(bp->b_iodone != NULL); 3941 return 0; 3942 3943 corrupt_out: 3944 return -EFSCORRUPTED; 3945 } 3946 3947 /* Release an inode. */ 3948 void 3949 xfs_irele( 3950 struct xfs_inode *ip) 3951 { 3952 trace_xfs_irele(ip, _RET_IP_); 3953 iput(VFS_I(ip)); 3954 } 3955