xref: /linux/fs/xfs/xfs_inode.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_bit.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iunlink_item.h"
25 #include "xfs_ialloc.h"
26 #include "xfs_bmap.h"
27 #include "xfs_bmap_util.h"
28 #include "xfs_errortag.h"
29 #include "xfs_error.h"
30 #include "xfs_quota.h"
31 #include "xfs_filestream.h"
32 #include "xfs_trace.h"
33 #include "xfs_icache.h"
34 #include "xfs_symlink.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_log.h"
37 #include "xfs_bmap_btree.h"
38 #include "xfs_reflink.h"
39 #include "xfs_ag.h"
40 #include "xfs_log_priv.h"
41 #include "xfs_health.h"
42 #include "xfs_pnfs.h"
43 #include "xfs_parent.h"
44 #include "xfs_xattr.h"
45 #include "xfs_inode_util.h"
46 #include "xfs_metafile.h"
47 
48 struct kmem_cache *xfs_inode_cache;
49 
50 /*
51  * These two are wrapper routines around the xfs_ilock() routine used to
52  * centralize some grungy code.  They are used in places that wish to lock the
53  * inode solely for reading the extents.  The reason these places can't just
54  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
55  * bringing in of the extents from disk for a file in b-tree format.  If the
56  * inode is in b-tree format, then we need to lock the inode exclusively until
57  * the extents are read in.  Locking it exclusively all the time would limit
58  * our parallelism unnecessarily, though.  What we do instead is check to see
59  * if the extents have been read in yet, and only lock the inode exclusively
60  * if they have not.
61  *
62  * The functions return a value which should be given to the corresponding
63  * xfs_iunlock() call.
64  */
65 uint
66 xfs_ilock_data_map_shared(
67 	struct xfs_inode	*ip)
68 {
69 	uint			lock_mode = XFS_ILOCK_SHARED;
70 
71 	if (xfs_need_iread_extents(&ip->i_df))
72 		lock_mode = XFS_ILOCK_EXCL;
73 	xfs_ilock(ip, lock_mode);
74 	return lock_mode;
75 }
76 
77 uint
78 xfs_ilock_attr_map_shared(
79 	struct xfs_inode	*ip)
80 {
81 	uint			lock_mode = XFS_ILOCK_SHARED;
82 
83 	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
84 		lock_mode = XFS_ILOCK_EXCL;
85 	xfs_ilock(ip, lock_mode);
86 	return lock_mode;
87 }
88 
89 /*
90  * You can't set both SHARED and EXCL for the same lock,
91  * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
92  * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
93  * to set in lock_flags.
94  */
95 static inline void
96 xfs_lock_flags_assert(
97 	uint		lock_flags)
98 {
99 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
100 		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
101 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
102 		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
103 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
104 		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
105 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
106 	ASSERT(lock_flags != 0);
107 }
108 
109 /*
110  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
111  * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
112  * various combinations of the locks to be obtained.
113  *
114  * The 3 locks should always be ordered so that the IO lock is obtained first,
115  * the mmap lock second and the ilock last in order to prevent deadlock.
116  *
117  * Basic locking order:
118  *
119  * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
120  *
121  * mmap_lock locking order:
122  *
123  * i_rwsem -> page lock -> mmap_lock
124  * mmap_lock -> invalidate_lock -> page_lock
125  *
126  * The difference in mmap_lock locking order mean that we cannot hold the
127  * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
128  * can fault in pages during copy in/out (for buffered IO) or require the
129  * mmap_lock in get_user_pages() to map the user pages into the kernel address
130  * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
131  * fault because page faults already hold the mmap_lock.
132  *
133  * Hence to serialise fully against both syscall and mmap based IO, we need to
134  * take both the i_rwsem and the invalidate_lock. These locks should *only* be
135  * both taken in places where we need to invalidate the page cache in a race
136  * free manner (e.g. truncate, hole punch and other extent manipulation
137  * functions).
138  */
139 void
140 xfs_ilock(
141 	xfs_inode_t		*ip,
142 	uint			lock_flags)
143 {
144 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
145 
146 	xfs_lock_flags_assert(lock_flags);
147 
148 	if (lock_flags & XFS_IOLOCK_EXCL) {
149 		down_write_nested(&VFS_I(ip)->i_rwsem,
150 				  XFS_IOLOCK_DEP(lock_flags));
151 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
152 		down_read_nested(&VFS_I(ip)->i_rwsem,
153 				 XFS_IOLOCK_DEP(lock_flags));
154 	}
155 
156 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
157 		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
158 				  XFS_MMAPLOCK_DEP(lock_flags));
159 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
160 		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
161 				 XFS_MMAPLOCK_DEP(lock_flags));
162 	}
163 
164 	if (lock_flags & XFS_ILOCK_EXCL)
165 		down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
166 	else if (lock_flags & XFS_ILOCK_SHARED)
167 		down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
168 }
169 
170 /*
171  * This is just like xfs_ilock(), except that the caller
172  * is guaranteed not to sleep.  It returns 1 if it gets
173  * the requested locks and 0 otherwise.  If the IO lock is
174  * obtained but the inode lock cannot be, then the IO lock
175  * is dropped before returning.
176  *
177  * ip -- the inode being locked
178  * lock_flags -- this parameter indicates the inode's locks to be
179  *       to be locked.  See the comment for xfs_ilock() for a list
180  *	 of valid values.
181  */
182 int
183 xfs_ilock_nowait(
184 	xfs_inode_t		*ip,
185 	uint			lock_flags)
186 {
187 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
188 
189 	xfs_lock_flags_assert(lock_flags);
190 
191 	if (lock_flags & XFS_IOLOCK_EXCL) {
192 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
193 			goto out;
194 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
195 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
196 			goto out;
197 	}
198 
199 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
200 		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
201 			goto out_undo_iolock;
202 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
203 		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
204 			goto out_undo_iolock;
205 	}
206 
207 	if (lock_flags & XFS_ILOCK_EXCL) {
208 		if (!down_write_trylock(&ip->i_lock))
209 			goto out_undo_mmaplock;
210 	} else if (lock_flags & XFS_ILOCK_SHARED) {
211 		if (!down_read_trylock(&ip->i_lock))
212 			goto out_undo_mmaplock;
213 	}
214 	return 1;
215 
216 out_undo_mmaplock:
217 	if (lock_flags & XFS_MMAPLOCK_EXCL)
218 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
219 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
220 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
221 out_undo_iolock:
222 	if (lock_flags & XFS_IOLOCK_EXCL)
223 		up_write(&VFS_I(ip)->i_rwsem);
224 	else if (lock_flags & XFS_IOLOCK_SHARED)
225 		up_read(&VFS_I(ip)->i_rwsem);
226 out:
227 	return 0;
228 }
229 
230 /*
231  * xfs_iunlock() is used to drop the inode locks acquired with
232  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
233  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
234  * that we know which locks to drop.
235  *
236  * ip -- the inode being unlocked
237  * lock_flags -- this parameter indicates the inode's locks to be
238  *       to be unlocked.  See the comment for xfs_ilock() for a list
239  *	 of valid values for this parameter.
240  *
241  */
242 void
243 xfs_iunlock(
244 	xfs_inode_t		*ip,
245 	uint			lock_flags)
246 {
247 	xfs_lock_flags_assert(lock_flags);
248 
249 	if (lock_flags & XFS_IOLOCK_EXCL)
250 		up_write(&VFS_I(ip)->i_rwsem);
251 	else if (lock_flags & XFS_IOLOCK_SHARED)
252 		up_read(&VFS_I(ip)->i_rwsem);
253 
254 	if (lock_flags & XFS_MMAPLOCK_EXCL)
255 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
256 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
257 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
258 
259 	if (lock_flags & XFS_ILOCK_EXCL)
260 		up_write(&ip->i_lock);
261 	else if (lock_flags & XFS_ILOCK_SHARED)
262 		up_read(&ip->i_lock);
263 
264 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
265 }
266 
267 /*
268  * give up write locks.  the i/o lock cannot be held nested
269  * if it is being demoted.
270  */
271 void
272 xfs_ilock_demote(
273 	xfs_inode_t		*ip,
274 	uint			lock_flags)
275 {
276 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
277 	ASSERT((lock_flags &
278 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
279 
280 	if (lock_flags & XFS_ILOCK_EXCL)
281 		downgrade_write(&ip->i_lock);
282 	if (lock_flags & XFS_MMAPLOCK_EXCL)
283 		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
284 	if (lock_flags & XFS_IOLOCK_EXCL)
285 		downgrade_write(&VFS_I(ip)->i_rwsem);
286 
287 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
288 }
289 
290 void
291 xfs_assert_ilocked(
292 	struct xfs_inode	*ip,
293 	uint			lock_flags)
294 {
295 	/*
296 	 * Sometimes we assert the ILOCK is held exclusively, but we're in
297 	 * a workqueue, so lockdep doesn't know we're the owner.
298 	 */
299 	if (lock_flags & XFS_ILOCK_SHARED)
300 		rwsem_assert_held(&ip->i_lock);
301 	else if (lock_flags & XFS_ILOCK_EXCL)
302 		rwsem_assert_held_write_nolockdep(&ip->i_lock);
303 
304 	if (lock_flags & XFS_MMAPLOCK_SHARED)
305 		rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
306 	else if (lock_flags & XFS_MMAPLOCK_EXCL)
307 		rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
308 
309 	if (lock_flags & XFS_IOLOCK_SHARED)
310 		rwsem_assert_held(&VFS_I(ip)->i_rwsem);
311 	else if (lock_flags & XFS_IOLOCK_EXCL)
312 		rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
313 }
314 
315 /*
316  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
317  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
318  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
319  * errors and warnings.
320  */
321 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
322 static bool
323 xfs_lockdep_subclass_ok(
324 	int subclass)
325 {
326 	return subclass < MAX_LOCKDEP_SUBCLASSES;
327 }
328 #else
329 #define xfs_lockdep_subclass_ok(subclass)	(true)
330 #endif
331 
332 /*
333  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
334  * value. This can be called for any type of inode lock combination, including
335  * parent locking. Care must be taken to ensure we don't overrun the subclass
336  * storage fields in the class mask we build.
337  */
338 static inline uint
339 xfs_lock_inumorder(
340 	uint	lock_mode,
341 	uint	subclass)
342 {
343 	uint	class = 0;
344 
345 	ASSERT(!(lock_mode & XFS_ILOCK_PARENT));
346 	ASSERT(xfs_lockdep_subclass_ok(subclass));
347 
348 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
349 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
350 		class += subclass << XFS_IOLOCK_SHIFT;
351 	}
352 
353 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
354 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
355 		class += subclass << XFS_MMAPLOCK_SHIFT;
356 	}
357 
358 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
359 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
360 		class += subclass << XFS_ILOCK_SHIFT;
361 	}
362 
363 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
364 }
365 
366 /*
367  * The following routine will lock n inodes in exclusive mode.  We assume the
368  * caller calls us with the inodes in i_ino order.
369  *
370  * We need to detect deadlock where an inode that we lock is in the AIL and we
371  * start waiting for another inode that is locked by a thread in a long running
372  * transaction (such as truncate). This can result in deadlock since the long
373  * running trans might need to wait for the inode we just locked in order to
374  * push the tail and free space in the log.
375  *
376  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
377  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
378  * lock more than one at a time, lockdep will report false positives saying we
379  * have violated locking orders.
380  */
381 void
382 xfs_lock_inodes(
383 	struct xfs_inode	**ips,
384 	int			inodes,
385 	uint			lock_mode)
386 {
387 	int			attempts = 0;
388 	uint			i;
389 	int			j;
390 	bool			try_lock;
391 	struct xfs_log_item	*lp;
392 
393 	/*
394 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
395 	 * support an arbitrary depth of locking here, but absolute limits on
396 	 * inodes depend on the type of locking and the limits placed by
397 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
398 	 * the asserts.
399 	 */
400 	ASSERT(ips && inodes >= 2 && inodes <= 5);
401 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
402 			    XFS_ILOCK_EXCL));
403 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
404 			      XFS_ILOCK_SHARED)));
405 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
406 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
407 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
408 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
409 
410 	if (lock_mode & XFS_IOLOCK_EXCL) {
411 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
412 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
413 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
414 
415 again:
416 	try_lock = false;
417 	i = 0;
418 	for (; i < inodes; i++) {
419 		ASSERT(ips[i]);
420 
421 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
422 			continue;
423 
424 		/*
425 		 * If try_lock is not set yet, make sure all locked inodes are
426 		 * not in the AIL.  If any are, set try_lock to be used later.
427 		 */
428 		if (!try_lock) {
429 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
430 				lp = &ips[j]->i_itemp->ili_item;
431 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
432 					try_lock = true;
433 			}
434 		}
435 
436 		/*
437 		 * If any of the previous locks we have locked is in the AIL,
438 		 * we must TRY to get the second and subsequent locks. If
439 		 * we can't get any, we must release all we have
440 		 * and try again.
441 		 */
442 		if (!try_lock) {
443 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
444 			continue;
445 		}
446 
447 		/* try_lock means we have an inode locked that is in the AIL. */
448 		ASSERT(i != 0);
449 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
450 			continue;
451 
452 		/*
453 		 * Unlock all previous guys and try again.  xfs_iunlock will try
454 		 * to push the tail if the inode is in the AIL.
455 		 */
456 		attempts++;
457 		for (j = i - 1; j >= 0; j--) {
458 			/*
459 			 * Check to see if we've already unlocked this one.  Not
460 			 * the first one going back, and the inode ptr is the
461 			 * same.
462 			 */
463 			if (j != (i - 1) && ips[j] == ips[j + 1])
464 				continue;
465 
466 			xfs_iunlock(ips[j], lock_mode);
467 		}
468 
469 		if ((attempts % 5) == 0) {
470 			delay(1); /* Don't just spin the CPU */
471 		}
472 		goto again;
473 	}
474 }
475 
476 /*
477  * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
478  * mmaplock must be double-locked separately since we use i_rwsem and
479  * invalidate_lock for that. We now support taking one lock EXCL and the
480  * other SHARED.
481  */
482 void
483 xfs_lock_two_inodes(
484 	struct xfs_inode	*ip0,
485 	uint			ip0_mode,
486 	struct xfs_inode	*ip1,
487 	uint			ip1_mode)
488 {
489 	int			attempts = 0;
490 	struct xfs_log_item	*lp;
491 
492 	ASSERT(hweight32(ip0_mode) == 1);
493 	ASSERT(hweight32(ip1_mode) == 1);
494 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
495 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
496 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
497 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
498 	ASSERT(ip0->i_ino != ip1->i_ino);
499 
500 	if (ip0->i_ino > ip1->i_ino) {
501 		swap(ip0, ip1);
502 		swap(ip0_mode, ip1_mode);
503 	}
504 
505  again:
506 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
507 
508 	/*
509 	 * If the first lock we have locked is in the AIL, we must TRY to get
510 	 * the second lock. If we can't get it, we must release the first one
511 	 * and try again.
512 	 */
513 	lp = &ip0->i_itemp->ili_item;
514 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
515 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
516 			xfs_iunlock(ip0, ip0_mode);
517 			if ((++attempts % 5) == 0)
518 				delay(1); /* Don't just spin the CPU */
519 			goto again;
520 		}
521 	} else {
522 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
523 	}
524 }
525 
526 /*
527  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
528  * is allowed, otherwise it has to be an exact match. If a CI match is found,
529  * ci_name->name will point to a the actual name (caller must free) or
530  * will be set to NULL if an exact match is found.
531  */
532 int
533 xfs_lookup(
534 	struct xfs_inode	*dp,
535 	const struct xfs_name	*name,
536 	struct xfs_inode	**ipp,
537 	struct xfs_name		*ci_name)
538 {
539 	xfs_ino_t		inum;
540 	int			error;
541 
542 	trace_xfs_lookup(dp, name);
543 
544 	if (xfs_is_shutdown(dp->i_mount))
545 		return -EIO;
546 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
547 		return -EIO;
548 
549 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
550 	if (error)
551 		goto out_unlock;
552 
553 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
554 	if (error)
555 		goto out_free_name;
556 
557 	/*
558 	 * Fail if a directory entry in the regular directory tree points to
559 	 * a metadata file.
560 	 */
561 	if (XFS_IS_CORRUPT(dp->i_mount, xfs_is_metadir_inode(*ipp))) {
562 		xfs_fs_mark_sick(dp->i_mount, XFS_SICK_FS_METADIR);
563 		error = -EFSCORRUPTED;
564 		goto out_irele;
565 	}
566 
567 	return 0;
568 
569 out_irele:
570 	xfs_irele(*ipp);
571 out_free_name:
572 	if (ci_name)
573 		kfree(ci_name->name);
574 out_unlock:
575 	*ipp = NULL;
576 	return error;
577 }
578 
579 /*
580  * Initialise a newly allocated inode and return the in-core inode to the
581  * caller locked exclusively.
582  *
583  * Caller is responsible for unlocking the inode manually upon return
584  */
585 int
586 xfs_icreate(
587 	struct xfs_trans	*tp,
588 	xfs_ino_t		ino,
589 	const struct xfs_icreate_args *args,
590 	struct xfs_inode	**ipp)
591 {
592 	struct xfs_mount	*mp = tp->t_mountp;
593 	struct xfs_inode	*ip = NULL;
594 	int			error;
595 
596 	/*
597 	 * Get the in-core inode with the lock held exclusively to prevent
598 	 * others from looking at until we're done.
599 	 */
600 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
601 	if (error)
602 		return error;
603 
604 	ASSERT(ip != NULL);
605 	xfs_trans_ijoin(tp, ip, 0);
606 	xfs_inode_init(tp, args, ip);
607 
608 	/* now that we have an i_mode we can setup the inode structure */
609 	xfs_setup_inode(ip);
610 
611 	*ipp = ip;
612 	return 0;
613 }
614 
615 /* Return dquots for the ids that will be assigned to a new file. */
616 int
617 xfs_icreate_dqalloc(
618 	const struct xfs_icreate_args	*args,
619 	struct xfs_dquot		**udqpp,
620 	struct xfs_dquot		**gdqpp,
621 	struct xfs_dquot		**pdqpp)
622 {
623 	struct inode			*dir = VFS_I(args->pip);
624 	kuid_t				uid = GLOBAL_ROOT_UID;
625 	kgid_t				gid = GLOBAL_ROOT_GID;
626 	prid_t				prid = 0;
627 	unsigned int			flags = XFS_QMOPT_QUOTALL;
628 
629 	if (args->idmap) {
630 		/*
631 		 * The uid/gid computation code must match what the VFS uses to
632 		 * assign i_[ug]id.  INHERIT adjusts the gid computation for
633 		 * setgid/grpid systems.
634 		 */
635 		uid = mapped_fsuid(args->idmap, i_user_ns(dir));
636 		gid = mapped_fsgid(args->idmap, i_user_ns(dir));
637 		prid = xfs_get_initial_prid(args->pip);
638 		flags |= XFS_QMOPT_INHERIT;
639 	}
640 
641 	*udqpp = *gdqpp = *pdqpp = NULL;
642 
643 	return xfs_qm_vop_dqalloc(args->pip, uid, gid, prid, flags, udqpp,
644 			gdqpp, pdqpp);
645 }
646 
647 int
648 xfs_create(
649 	const struct xfs_icreate_args *args,
650 	struct xfs_name		*name,
651 	struct xfs_inode	**ipp)
652 {
653 	struct xfs_inode	*dp = args->pip;
654 	struct xfs_dir_update	du = {
655 		.dp		= dp,
656 		.name		= name,
657 	};
658 	struct xfs_mount	*mp = dp->i_mount;
659 	struct xfs_trans	*tp = NULL;
660 	struct xfs_dquot	*udqp;
661 	struct xfs_dquot	*gdqp;
662 	struct xfs_dquot	*pdqp;
663 	struct xfs_trans_res	*tres;
664 	xfs_ino_t		ino;
665 	bool			unlock_dp_on_error = false;
666 	bool			is_dir = S_ISDIR(args->mode);
667 	uint			resblks;
668 	int			error;
669 
670 	trace_xfs_create(dp, name);
671 
672 	if (xfs_is_shutdown(mp))
673 		return -EIO;
674 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
675 		return -EIO;
676 
677 	/* Make sure that we have allocated dquot(s) on disk. */
678 	error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
679 	if (error)
680 		return error;
681 
682 	if (is_dir) {
683 		resblks = xfs_mkdir_space_res(mp, name->len);
684 		tres = &M_RES(mp)->tr_mkdir;
685 	} else {
686 		resblks = xfs_create_space_res(mp, name->len);
687 		tres = &M_RES(mp)->tr_create;
688 	}
689 
690 	error = xfs_parent_start(mp, &du.ppargs);
691 	if (error)
692 		goto out_release_dquots;
693 
694 	/*
695 	 * Initially assume that the file does not exist and
696 	 * reserve the resources for that case.  If that is not
697 	 * the case we'll drop the one we have and get a more
698 	 * appropriate transaction later.
699 	 */
700 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
701 			&tp);
702 	if (error == -ENOSPC) {
703 		/* flush outstanding delalloc blocks and retry */
704 		xfs_flush_inodes(mp);
705 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
706 				resblks, &tp);
707 	}
708 	if (error)
709 		goto out_parent;
710 
711 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
712 	unlock_dp_on_error = true;
713 
714 	/*
715 	 * A newly created regular or special file just has one directory
716 	 * entry pointing to them, but a directory also the "." entry
717 	 * pointing to itself.
718 	 */
719 	error = xfs_dialloc(&tp, args, &ino);
720 	if (!error)
721 		error = xfs_icreate(tp, ino, args, &du.ip);
722 	if (error)
723 		goto out_trans_cancel;
724 
725 	/*
726 	 * Now we join the directory inode to the transaction.  We do not do it
727 	 * earlier because xfs_dialloc might commit the previous transaction
728 	 * (and release all the locks).  An error from here on will result in
729 	 * the transaction cancel unlocking dp so don't do it explicitly in the
730 	 * error path.
731 	 */
732 	xfs_trans_ijoin(tp, dp, 0);
733 
734 	error = xfs_dir_create_child(tp, resblks, &du);
735 	if (error)
736 		goto out_trans_cancel;
737 
738 	/*
739 	 * If this is a synchronous mount, make sure that the
740 	 * create transaction goes to disk before returning to
741 	 * the user.
742 	 */
743 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
744 		xfs_trans_set_sync(tp);
745 
746 	/*
747 	 * Attach the dquot(s) to the inodes and modify them incore.
748 	 * These ids of the inode couldn't have changed since the new
749 	 * inode has been locked ever since it was created.
750 	 */
751 	xfs_qm_vop_create_dqattach(tp, du.ip, udqp, gdqp, pdqp);
752 
753 	error = xfs_trans_commit(tp);
754 	if (error)
755 		goto out_release_inode;
756 
757 	xfs_qm_dqrele(udqp);
758 	xfs_qm_dqrele(gdqp);
759 	xfs_qm_dqrele(pdqp);
760 
761 	*ipp = du.ip;
762 	xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
763 	xfs_iunlock(dp, XFS_ILOCK_EXCL);
764 	xfs_parent_finish(mp, du.ppargs);
765 	return 0;
766 
767  out_trans_cancel:
768 	xfs_trans_cancel(tp);
769  out_release_inode:
770 	/*
771 	 * Wait until after the current transaction is aborted to finish the
772 	 * setup of the inode and release the inode.  This prevents recursive
773 	 * transactions and deadlocks from xfs_inactive.
774 	 */
775 	if (du.ip) {
776 		xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
777 		xfs_finish_inode_setup(du.ip);
778 		xfs_irele(du.ip);
779 	}
780  out_parent:
781 	xfs_parent_finish(mp, du.ppargs);
782  out_release_dquots:
783 	xfs_qm_dqrele(udqp);
784 	xfs_qm_dqrele(gdqp);
785 	xfs_qm_dqrele(pdqp);
786 
787 	if (unlock_dp_on_error)
788 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
789 	return error;
790 }
791 
792 int
793 xfs_create_tmpfile(
794 	const struct xfs_icreate_args *args,
795 	struct xfs_inode	**ipp)
796 {
797 	struct xfs_inode	*dp = args->pip;
798 	struct xfs_mount	*mp = dp->i_mount;
799 	struct xfs_inode	*ip = NULL;
800 	struct xfs_trans	*tp = NULL;
801 	struct xfs_dquot	*udqp;
802 	struct xfs_dquot	*gdqp;
803 	struct xfs_dquot	*pdqp;
804 	struct xfs_trans_res	*tres;
805 	xfs_ino_t		ino;
806 	uint			resblks;
807 	int			error;
808 
809 	ASSERT(args->flags & XFS_ICREATE_TMPFILE);
810 
811 	if (xfs_is_shutdown(mp))
812 		return -EIO;
813 
814 	/* Make sure that we have allocated dquot(s) on disk. */
815 	error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
816 	if (error)
817 		return error;
818 
819 	resblks = XFS_IALLOC_SPACE_RES(mp);
820 	tres = &M_RES(mp)->tr_create_tmpfile;
821 
822 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
823 			&tp);
824 	if (error)
825 		goto out_release_dquots;
826 
827 	error = xfs_dialloc(&tp, args, &ino);
828 	if (!error)
829 		error = xfs_icreate(tp, ino, args, &ip);
830 	if (error)
831 		goto out_trans_cancel;
832 
833 	if (xfs_has_wsync(mp))
834 		xfs_trans_set_sync(tp);
835 
836 	/*
837 	 * Attach the dquot(s) to the inodes and modify them incore.
838 	 * These ids of the inode couldn't have changed since the new
839 	 * inode has been locked ever since it was created.
840 	 */
841 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
842 
843 	error = xfs_iunlink(tp, ip);
844 	if (error)
845 		goto out_trans_cancel;
846 
847 	error = xfs_trans_commit(tp);
848 	if (error)
849 		goto out_release_inode;
850 
851 	xfs_qm_dqrele(udqp);
852 	xfs_qm_dqrele(gdqp);
853 	xfs_qm_dqrele(pdqp);
854 
855 	*ipp = ip;
856 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
857 	return 0;
858 
859  out_trans_cancel:
860 	xfs_trans_cancel(tp);
861  out_release_inode:
862 	/*
863 	 * Wait until after the current transaction is aborted to finish the
864 	 * setup of the inode and release the inode.  This prevents recursive
865 	 * transactions and deadlocks from xfs_inactive.
866 	 */
867 	if (ip) {
868 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
869 		xfs_finish_inode_setup(ip);
870 		xfs_irele(ip);
871 	}
872  out_release_dquots:
873 	xfs_qm_dqrele(udqp);
874 	xfs_qm_dqrele(gdqp);
875 	xfs_qm_dqrele(pdqp);
876 
877 	return error;
878 }
879 
880 int
881 xfs_link(
882 	struct xfs_inode	*tdp,
883 	struct xfs_inode	*sip,
884 	struct xfs_name		*target_name)
885 {
886 	struct xfs_dir_update	du = {
887 		.dp		= tdp,
888 		.name		= target_name,
889 		.ip		= sip,
890 	};
891 	struct xfs_mount	*mp = tdp->i_mount;
892 	struct xfs_trans	*tp;
893 	int			error, nospace_error = 0;
894 	int			resblks;
895 
896 	trace_xfs_link(tdp, target_name);
897 
898 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
899 
900 	if (xfs_is_shutdown(mp))
901 		return -EIO;
902 	if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
903 		return -EIO;
904 
905 	error = xfs_qm_dqattach(sip);
906 	if (error)
907 		goto std_return;
908 
909 	error = xfs_qm_dqattach(tdp);
910 	if (error)
911 		goto std_return;
912 
913 	error = xfs_parent_start(mp, &du.ppargs);
914 	if (error)
915 		goto std_return;
916 
917 	resblks = xfs_link_space_res(mp, target_name->len);
918 	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
919 			&tp, &nospace_error);
920 	if (error)
921 		goto out_parent;
922 
923 	/*
924 	 * We don't allow reservationless or quotaless hardlinking when parent
925 	 * pointers are enabled because we can't back out if the xattrs must
926 	 * grow.
927 	 */
928 	if (du.ppargs && nospace_error) {
929 		error = nospace_error;
930 		goto error_return;
931 	}
932 
933 	/*
934 	 * If we are using project inheritance, we only allow hard link
935 	 * creation in our tree when the project IDs are the same; else
936 	 * the tree quota mechanism could be circumvented.
937 	 */
938 	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
939 		     tdp->i_projid != sip->i_projid)) {
940 		/*
941 		 * Project quota setup skips special files which can
942 		 * leave inodes in a PROJINHERIT directory without a
943 		 * project ID set. We need to allow links to be made
944 		 * to these "project-less" inodes because userspace
945 		 * expects them to succeed after project ID setup,
946 		 * but everything else should be rejected.
947 		 */
948 		if (!special_file(VFS_I(sip)->i_mode) ||
949 		    sip->i_projid != 0) {
950 			error = -EXDEV;
951 			goto error_return;
952 		}
953 	}
954 
955 	error = xfs_dir_add_child(tp, resblks, &du);
956 	if (error)
957 		goto error_return;
958 
959 	/*
960 	 * If this is a synchronous mount, make sure that the
961 	 * link transaction goes to disk before returning to
962 	 * the user.
963 	 */
964 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
965 		xfs_trans_set_sync(tp);
966 
967 	error = xfs_trans_commit(tp);
968 	xfs_iunlock(tdp, XFS_ILOCK_EXCL);
969 	xfs_iunlock(sip, XFS_ILOCK_EXCL);
970 	xfs_parent_finish(mp, du.ppargs);
971 	return error;
972 
973  error_return:
974 	xfs_trans_cancel(tp);
975 	xfs_iunlock(tdp, XFS_ILOCK_EXCL);
976 	xfs_iunlock(sip, XFS_ILOCK_EXCL);
977  out_parent:
978 	xfs_parent_finish(mp, du.ppargs);
979  std_return:
980 	if (error == -ENOSPC && nospace_error)
981 		error = nospace_error;
982 	return error;
983 }
984 
985 /* Clear the reflink flag and the cowblocks tag if possible. */
986 static void
987 xfs_itruncate_clear_reflink_flags(
988 	struct xfs_inode	*ip)
989 {
990 	struct xfs_ifork	*dfork;
991 	struct xfs_ifork	*cfork;
992 
993 	if (!xfs_is_reflink_inode(ip))
994 		return;
995 	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
996 	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
997 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
998 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
999 	if (cfork->if_bytes == 0)
1000 		xfs_inode_clear_cowblocks_tag(ip);
1001 }
1002 
1003 /*
1004  * Free up the underlying blocks past new_size.  The new size must be smaller
1005  * than the current size.  This routine can be used both for the attribute and
1006  * data fork, and does not modify the inode size, which is left to the caller.
1007  *
1008  * The transaction passed to this routine must have made a permanent log
1009  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1010  * given transaction and start new ones, so make sure everything involved in
1011  * the transaction is tidy before calling here.  Some transaction will be
1012  * returned to the caller to be committed.  The incoming transaction must
1013  * already include the inode, and both inode locks must be held exclusively.
1014  * The inode must also be "held" within the transaction.  On return the inode
1015  * will be "held" within the returned transaction.  This routine does NOT
1016  * require any disk space to be reserved for it within the transaction.
1017  *
1018  * If we get an error, we must return with the inode locked and linked into the
1019  * current transaction. This keeps things simple for the higher level code,
1020  * because it always knows that the inode is locked and held in the transaction
1021  * that returns to it whether errors occur or not.  We don't mark the inode
1022  * dirty on error so that transactions can be easily aborted if possible.
1023  */
1024 int
1025 xfs_itruncate_extents_flags(
1026 	struct xfs_trans	**tpp,
1027 	struct xfs_inode	*ip,
1028 	int			whichfork,
1029 	xfs_fsize_t		new_size,
1030 	int			flags)
1031 {
1032 	struct xfs_mount	*mp = ip->i_mount;
1033 	struct xfs_trans	*tp = *tpp;
1034 	xfs_fileoff_t		first_unmap_block;
1035 	int			error = 0;
1036 
1037 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1038 	if (atomic_read(&VFS_I(ip)->i_count))
1039 		xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
1040 	ASSERT(new_size <= XFS_ISIZE(ip));
1041 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1042 	ASSERT(ip->i_itemp != NULL);
1043 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1044 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1045 
1046 	trace_xfs_itruncate_extents_start(ip, new_size);
1047 
1048 	flags |= xfs_bmapi_aflag(whichfork);
1049 
1050 	/*
1051 	 * Since it is possible for space to become allocated beyond
1052 	 * the end of the file (in a crash where the space is allocated
1053 	 * but the inode size is not yet updated), simply remove any
1054 	 * blocks which show up between the new EOF and the maximum
1055 	 * possible file size.
1056 	 *
1057 	 * We have to free all the blocks to the bmbt maximum offset, even if
1058 	 * the page cache can't scale that far.
1059 	 */
1060 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1061 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1062 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1063 		return 0;
1064 	}
1065 
1066 	error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1067 			XFS_MAX_FILEOFF);
1068 	if (error)
1069 		goto out;
1070 
1071 	if (whichfork == XFS_DATA_FORK) {
1072 		/* Remove all pending CoW reservations. */
1073 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1074 				first_unmap_block, XFS_MAX_FILEOFF, true);
1075 		if (error)
1076 			goto out;
1077 
1078 		xfs_itruncate_clear_reflink_flags(ip);
1079 	}
1080 
1081 	/*
1082 	 * Always re-log the inode so that our permanent transaction can keep
1083 	 * on rolling it forward in the log.
1084 	 */
1085 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1086 
1087 	trace_xfs_itruncate_extents_end(ip, new_size);
1088 
1089 out:
1090 	*tpp = tp;
1091 	return error;
1092 }
1093 
1094 /*
1095  * Mark all the buffers attached to this directory stale.  In theory we should
1096  * never be freeing a directory with any blocks at all, but this covers the
1097  * case where we've recovered a directory swap with a "temporary" directory
1098  * created by online repair and now need to dump it.
1099  */
1100 STATIC void
1101 xfs_inactive_dir(
1102 	struct xfs_inode	*dp)
1103 {
1104 	struct xfs_iext_cursor	icur;
1105 	struct xfs_bmbt_irec	got;
1106 	struct xfs_mount	*mp = dp->i_mount;
1107 	struct xfs_da_geometry	*geo = mp->m_dir_geo;
1108 	struct xfs_ifork	*ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK);
1109 	xfs_fileoff_t		off;
1110 
1111 	/*
1112 	 * Invalidate each directory block.  All directory blocks are of
1113 	 * fsbcount length and alignment, so we only need to walk those same
1114 	 * offsets.  We hold the only reference to this inode, so we must wait
1115 	 * for the buffer locks.
1116 	 */
1117 	for_each_xfs_iext(ifp, &icur, &got) {
1118 		for (off = round_up(got.br_startoff, geo->fsbcount);
1119 		     off < got.br_startoff + got.br_blockcount;
1120 		     off += geo->fsbcount) {
1121 			struct xfs_buf	*bp = NULL;
1122 			xfs_fsblock_t	fsbno;
1123 			int		error;
1124 
1125 			fsbno = (off - got.br_startoff) + got.br_startblock;
1126 			error = xfs_buf_incore(mp->m_ddev_targp,
1127 					XFS_FSB_TO_DADDR(mp, fsbno),
1128 					XFS_FSB_TO_BB(mp, geo->fsbcount),
1129 					XBF_LIVESCAN, &bp);
1130 			if (error)
1131 				continue;
1132 
1133 			xfs_buf_stale(bp);
1134 			xfs_buf_relse(bp);
1135 		}
1136 	}
1137 }
1138 
1139 /*
1140  * xfs_inactive_truncate
1141  *
1142  * Called to perform a truncate when an inode becomes unlinked.
1143  */
1144 STATIC int
1145 xfs_inactive_truncate(
1146 	struct xfs_inode *ip)
1147 {
1148 	struct xfs_mount	*mp = ip->i_mount;
1149 	struct xfs_trans	*tp;
1150 	int			error;
1151 
1152 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1153 	if (error) {
1154 		ASSERT(xfs_is_shutdown(mp));
1155 		return error;
1156 	}
1157 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1158 	xfs_trans_ijoin(tp, ip, 0);
1159 
1160 	/*
1161 	 * Log the inode size first to prevent stale data exposure in the event
1162 	 * of a system crash before the truncate completes. See the related
1163 	 * comment in xfs_vn_setattr_size() for details.
1164 	 */
1165 	ip->i_disk_size = 0;
1166 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1167 
1168 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1169 	if (error)
1170 		goto error_trans_cancel;
1171 
1172 	ASSERT(ip->i_df.if_nextents == 0);
1173 
1174 	error = xfs_trans_commit(tp);
1175 	if (error)
1176 		goto error_unlock;
1177 
1178 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1179 	return 0;
1180 
1181 error_trans_cancel:
1182 	xfs_trans_cancel(tp);
1183 error_unlock:
1184 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1185 	return error;
1186 }
1187 
1188 /*
1189  * xfs_inactive_ifree()
1190  *
1191  * Perform the inode free when an inode is unlinked.
1192  */
1193 STATIC int
1194 xfs_inactive_ifree(
1195 	struct xfs_inode *ip)
1196 {
1197 	struct xfs_mount	*mp = ip->i_mount;
1198 	struct xfs_trans	*tp;
1199 	int			error;
1200 
1201 	/*
1202 	 * We try to use a per-AG reservation for any block needed by the finobt
1203 	 * tree, but as the finobt feature predates the per-AG reservation
1204 	 * support a degraded file system might not have enough space for the
1205 	 * reservation at mount time.  In that case try to dip into the reserved
1206 	 * pool and pray.
1207 	 *
1208 	 * Send a warning if the reservation does happen to fail, as the inode
1209 	 * now remains allocated and sits on the unlinked list until the fs is
1210 	 * repaired.
1211 	 */
1212 	if (unlikely(mp->m_finobt_nores)) {
1213 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1214 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1215 				&tp);
1216 	} else {
1217 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1218 	}
1219 	if (error) {
1220 		if (error == -ENOSPC) {
1221 			xfs_warn_ratelimited(mp,
1222 			"Failed to remove inode(s) from unlinked list. "
1223 			"Please free space, unmount and run xfs_repair.");
1224 		} else {
1225 			ASSERT(xfs_is_shutdown(mp));
1226 		}
1227 		return error;
1228 	}
1229 
1230 	/*
1231 	 * We do not hold the inode locked across the entire rolling transaction
1232 	 * here. We only need to hold it for the first transaction that
1233 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1234 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1235 	 * here breaks the relationship between cluster buffer invalidation and
1236 	 * stale inode invalidation on cluster buffer item journal commit
1237 	 * completion, and can result in leaving dirty stale inodes hanging
1238 	 * around in memory.
1239 	 *
1240 	 * We have no need for serialising this inode operation against other
1241 	 * operations - we freed the inode and hence reallocation is required
1242 	 * and that will serialise on reallocating the space the deferops need
1243 	 * to free. Hence we can unlock the inode on the first commit of
1244 	 * the transaction rather than roll it right through the deferops. This
1245 	 * avoids relogging the XFS_ISTALE inode.
1246 	 *
1247 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1248 	 * by asserting that the inode is still locked when it returns.
1249 	 */
1250 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1251 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1252 
1253 	error = xfs_ifree(tp, ip);
1254 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1255 	if (error) {
1256 		/*
1257 		 * If we fail to free the inode, shut down.  The cancel
1258 		 * might do that, we need to make sure.  Otherwise the
1259 		 * inode might be lost for a long time or forever.
1260 		 */
1261 		if (!xfs_is_shutdown(mp)) {
1262 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1263 				__func__, error);
1264 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1265 		}
1266 		xfs_trans_cancel(tp);
1267 		return error;
1268 	}
1269 
1270 	/*
1271 	 * Credit the quota account(s). The inode is gone.
1272 	 */
1273 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1274 
1275 	return xfs_trans_commit(tp);
1276 }
1277 
1278 /*
1279  * Returns true if we need to update the on-disk metadata before we can free
1280  * the memory used by this inode.  Updates include freeing post-eof
1281  * preallocations; freeing COW staging extents; and marking the inode free in
1282  * the inobt if it is on the unlinked list.
1283  */
1284 bool
1285 xfs_inode_needs_inactive(
1286 	struct xfs_inode	*ip)
1287 {
1288 	struct xfs_mount	*mp = ip->i_mount;
1289 	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1290 
1291 	/*
1292 	 * If the inode is already free, then there can be nothing
1293 	 * to clean up here.
1294 	 */
1295 	if (VFS_I(ip)->i_mode == 0)
1296 		return false;
1297 
1298 	/*
1299 	 * If this is a read-only mount, don't do this (would generate I/O)
1300 	 * unless we're in log recovery and cleaning the iunlinked list.
1301 	 */
1302 	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1303 		return false;
1304 
1305 	/* If the log isn't running, push inodes straight to reclaim. */
1306 	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1307 		return false;
1308 
1309 	/* Metadata inodes require explicit resource cleanup. */
1310 	if (xfs_is_internal_inode(ip))
1311 		return false;
1312 
1313 	/* Want to clean out the cow blocks if there are any. */
1314 	if (cow_ifp && cow_ifp->if_bytes > 0)
1315 		return true;
1316 
1317 	/* Unlinked files must be freed. */
1318 	if (VFS_I(ip)->i_nlink == 0)
1319 		return true;
1320 
1321 	/*
1322 	 * This file isn't being freed, so check if there are post-eof blocks
1323 	 * to free.
1324 	 *
1325 	 * Note: don't bother with iolock here since lockdep complains about
1326 	 * acquiring it in reclaim context. We have the only reference to the
1327 	 * inode at this point anyways.
1328 	 */
1329 	return xfs_can_free_eofblocks(ip);
1330 }
1331 
1332 /*
1333  * Save health status somewhere, if we're dumping an inode with uncorrected
1334  * errors and online repair isn't running.
1335  */
1336 static inline void
1337 xfs_inactive_health(
1338 	struct xfs_inode	*ip)
1339 {
1340 	struct xfs_mount	*mp = ip->i_mount;
1341 	struct xfs_perag	*pag;
1342 	unsigned int		sick;
1343 	unsigned int		checked;
1344 
1345 	xfs_inode_measure_sickness(ip, &sick, &checked);
1346 	if (!sick)
1347 		return;
1348 
1349 	trace_xfs_inode_unfixed_corruption(ip, sick);
1350 
1351 	if (sick & XFS_SICK_INO_FORGET)
1352 		return;
1353 
1354 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1355 	if (!pag) {
1356 		/* There had better still be a perag structure! */
1357 		ASSERT(0);
1358 		return;
1359 	}
1360 
1361 	xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
1362 	xfs_perag_put(pag);
1363 }
1364 
1365 /*
1366  * xfs_inactive
1367  *
1368  * This is called when the vnode reference count for the vnode
1369  * goes to zero.  If the file has been unlinked, then it must
1370  * now be truncated.  Also, we clear all of the read-ahead state
1371  * kept for the inode here since the file is now closed.
1372  */
1373 int
1374 xfs_inactive(
1375 	xfs_inode_t	*ip)
1376 {
1377 	struct xfs_mount	*mp;
1378 	int			error = 0;
1379 	int			truncate = 0;
1380 
1381 	/*
1382 	 * If the inode is already free, then there can be nothing
1383 	 * to clean up here.
1384 	 */
1385 	if (VFS_I(ip)->i_mode == 0) {
1386 		ASSERT(ip->i_df.if_broot_bytes == 0);
1387 		goto out;
1388 	}
1389 
1390 	mp = ip->i_mount;
1391 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1392 
1393 	xfs_inactive_health(ip);
1394 
1395 	/*
1396 	 * If this is a read-only mount, don't do this (would generate I/O)
1397 	 * unless we're in log recovery and cleaning the iunlinked list.
1398 	 */
1399 	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1400 		goto out;
1401 
1402 	/* Metadata inodes require explicit resource cleanup. */
1403 	if (xfs_is_internal_inode(ip))
1404 		goto out;
1405 
1406 	/* Try to clean out the cow blocks if there are any. */
1407 	if (xfs_inode_has_cow_data(ip))
1408 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1409 
1410 	if (VFS_I(ip)->i_nlink != 0) {
1411 		/*
1412 		 * Note: don't bother with iolock here since lockdep complains
1413 		 * about acquiring it in reclaim context. We have the only
1414 		 * reference to the inode at this point anyways.
1415 		 */
1416 		if (xfs_can_free_eofblocks(ip))
1417 			error = xfs_free_eofblocks(ip);
1418 
1419 		goto out;
1420 	}
1421 
1422 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1423 	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1424 	     xfs_inode_has_filedata(ip)))
1425 		truncate = 1;
1426 
1427 	if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1428 		/*
1429 		 * If this inode is being inactivated during a quotacheck and
1430 		 * has not yet been scanned by quotacheck, we /must/ remove
1431 		 * the dquots from the inode before inactivation changes the
1432 		 * block and inode counts.  Most probably this is a result of
1433 		 * reloading the incore iunlinked list to purge unrecovered
1434 		 * unlinked inodes.
1435 		 */
1436 		xfs_qm_dqdetach(ip);
1437 	} else {
1438 		error = xfs_qm_dqattach(ip);
1439 		if (error)
1440 			goto out;
1441 	}
1442 
1443 	if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) {
1444 		xfs_inactive_dir(ip);
1445 		truncate = 1;
1446 	}
1447 
1448 	if (S_ISLNK(VFS_I(ip)->i_mode))
1449 		error = xfs_inactive_symlink(ip);
1450 	else if (truncate)
1451 		error = xfs_inactive_truncate(ip);
1452 	if (error)
1453 		goto out;
1454 
1455 	/*
1456 	 * If there are attributes associated with the file then blow them away
1457 	 * now.  The code calls a routine that recursively deconstructs the
1458 	 * attribute fork. If also blows away the in-core attribute fork.
1459 	 */
1460 	if (xfs_inode_has_attr_fork(ip)) {
1461 		error = xfs_attr_inactive(ip);
1462 		if (error)
1463 			goto out;
1464 	}
1465 
1466 	ASSERT(ip->i_forkoff == 0);
1467 
1468 	/*
1469 	 * Free the inode.
1470 	 */
1471 	error = xfs_inactive_ifree(ip);
1472 
1473 out:
1474 	/*
1475 	 * We're done making metadata updates for this inode, so we can release
1476 	 * the attached dquots.
1477 	 */
1478 	xfs_qm_dqdetach(ip);
1479 	return error;
1480 }
1481 
1482 /*
1483  * Find an inode on the unlinked list. This does not take references to the
1484  * inode as we have existence guarantees by holding the AGI buffer lock and that
1485  * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1486  * don't find the inode in cache, then let the caller handle the situation.
1487  */
1488 struct xfs_inode *
1489 xfs_iunlink_lookup(
1490 	struct xfs_perag	*pag,
1491 	xfs_agino_t		agino)
1492 {
1493 	struct xfs_inode	*ip;
1494 
1495 	rcu_read_lock();
1496 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1497 	if (!ip) {
1498 		/* Caller can handle inode not being in memory. */
1499 		rcu_read_unlock();
1500 		return NULL;
1501 	}
1502 
1503 	/*
1504 	 * Inode in RCU freeing limbo should not happen.  Warn about this and
1505 	 * let the caller handle the failure.
1506 	 */
1507 	if (WARN_ON_ONCE(!ip->i_ino)) {
1508 		rcu_read_unlock();
1509 		return NULL;
1510 	}
1511 	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1512 	rcu_read_unlock();
1513 	return ip;
1514 }
1515 
1516 /*
1517  * Load the inode @next_agino into the cache and set its prev_unlinked pointer
1518  * to @prev_agino.  Caller must hold the AGI to synchronize with other changes
1519  * to the unlinked list.
1520  */
1521 int
1522 xfs_iunlink_reload_next(
1523 	struct xfs_trans	*tp,
1524 	struct xfs_buf		*agibp,
1525 	xfs_agino_t		prev_agino,
1526 	xfs_agino_t		next_agino)
1527 {
1528 	struct xfs_perag	*pag = agibp->b_pag;
1529 	struct xfs_mount	*mp = pag_mount(pag);
1530 	struct xfs_inode	*next_ip = NULL;
1531 	int			error;
1532 
1533 	ASSERT(next_agino != NULLAGINO);
1534 
1535 #ifdef DEBUG
1536 	rcu_read_lock();
1537 	next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
1538 	ASSERT(next_ip == NULL);
1539 	rcu_read_unlock();
1540 #endif
1541 
1542 	xfs_info_ratelimited(mp,
1543  "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.",
1544 			next_agino, pag_agno(pag));
1545 
1546 	/*
1547 	 * Use an untrusted lookup just to be cautious in case the AGI has been
1548 	 * corrupted and now points at a free inode.  That shouldn't happen,
1549 	 * but we'd rather shut down now since we're already running in a weird
1550 	 * situation.
1551 	 */
1552 	error = xfs_iget(mp, tp, xfs_agino_to_ino(pag, next_agino),
1553 			XFS_IGET_UNTRUSTED, 0, &next_ip);
1554 	if (error) {
1555 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1556 		return error;
1557 	}
1558 
1559 	/* If this is not an unlinked inode, something is very wrong. */
1560 	if (VFS_I(next_ip)->i_nlink != 0) {
1561 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1562 		error = -EFSCORRUPTED;
1563 		goto rele;
1564 	}
1565 
1566 	next_ip->i_prev_unlinked = prev_agino;
1567 	trace_xfs_iunlink_reload_next(next_ip);
1568 rele:
1569 	ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
1570 	if (xfs_is_quotacheck_running(mp) && next_ip)
1571 		xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
1572 	xfs_irele(next_ip);
1573 	return error;
1574 }
1575 
1576 /*
1577  * Look up the inode number specified and if it is not already marked XFS_ISTALE
1578  * mark it stale. We should only find clean inodes in this lookup that aren't
1579  * already stale.
1580  */
1581 static void
1582 xfs_ifree_mark_inode_stale(
1583 	struct xfs_perag	*pag,
1584 	struct xfs_inode	*free_ip,
1585 	xfs_ino_t		inum)
1586 {
1587 	struct xfs_mount	*mp = pag_mount(pag);
1588 	struct xfs_inode_log_item *iip;
1589 	struct xfs_inode	*ip;
1590 
1591 retry:
1592 	rcu_read_lock();
1593 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
1594 
1595 	/* Inode not in memory, nothing to do */
1596 	if (!ip) {
1597 		rcu_read_unlock();
1598 		return;
1599 	}
1600 
1601 	/*
1602 	 * because this is an RCU protected lookup, we could find a recently
1603 	 * freed or even reallocated inode during the lookup. We need to check
1604 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
1605 	 * valid, the wrong inode or stale.
1606 	 */
1607 	spin_lock(&ip->i_flags_lock);
1608 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
1609 		goto out_iflags_unlock;
1610 
1611 	/*
1612 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
1613 	 * other inodes that we did not find in the list attached to the buffer
1614 	 * and are not already marked stale. If we can't lock it, back off and
1615 	 * retry.
1616 	 */
1617 	if (ip != free_ip) {
1618 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1619 			spin_unlock(&ip->i_flags_lock);
1620 			rcu_read_unlock();
1621 			delay(1);
1622 			goto retry;
1623 		}
1624 	}
1625 	ip->i_flags |= XFS_ISTALE;
1626 
1627 	/*
1628 	 * If the inode is flushing, it is already attached to the buffer.  All
1629 	 * we needed to do here is mark the inode stale so buffer IO completion
1630 	 * will remove it from the AIL.
1631 	 */
1632 	iip = ip->i_itemp;
1633 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
1634 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
1635 		ASSERT(iip->ili_last_fields);
1636 		goto out_iunlock;
1637 	}
1638 
1639 	/*
1640 	 * Inodes not attached to the buffer can be released immediately.
1641 	 * Everything else has to go through xfs_iflush_abort() on journal
1642 	 * commit as the flock synchronises removal of the inode from the
1643 	 * cluster buffer against inode reclaim.
1644 	 */
1645 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
1646 		goto out_iunlock;
1647 
1648 	__xfs_iflags_set(ip, XFS_IFLUSHING);
1649 	spin_unlock(&ip->i_flags_lock);
1650 	rcu_read_unlock();
1651 
1652 	/* we have a dirty inode in memory that has not yet been flushed. */
1653 	spin_lock(&iip->ili_lock);
1654 	iip->ili_last_fields = iip->ili_fields;
1655 	iip->ili_fields = 0;
1656 	iip->ili_fsync_fields = 0;
1657 	spin_unlock(&iip->ili_lock);
1658 	ASSERT(iip->ili_last_fields);
1659 
1660 	if (ip != free_ip)
1661 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1662 	return;
1663 
1664 out_iunlock:
1665 	if (ip != free_ip)
1666 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1667 out_iflags_unlock:
1668 	spin_unlock(&ip->i_flags_lock);
1669 	rcu_read_unlock();
1670 }
1671 
1672 /*
1673  * A big issue when freeing the inode cluster is that we _cannot_ skip any
1674  * inodes that are in memory - they all must be marked stale and attached to
1675  * the cluster buffer.
1676  */
1677 static int
1678 xfs_ifree_cluster(
1679 	struct xfs_trans	*tp,
1680 	struct xfs_perag	*pag,
1681 	struct xfs_inode	*free_ip,
1682 	struct xfs_icluster	*xic)
1683 {
1684 	struct xfs_mount	*mp = free_ip->i_mount;
1685 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
1686 	struct xfs_buf		*bp;
1687 	xfs_daddr_t		blkno;
1688 	xfs_ino_t		inum = xic->first_ino;
1689 	int			nbufs;
1690 	int			i, j;
1691 	int			ioffset;
1692 	int			error;
1693 
1694 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
1695 
1696 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
1697 		/*
1698 		 * The allocation bitmap tells us which inodes of the chunk were
1699 		 * physically allocated. Skip the cluster if an inode falls into
1700 		 * a sparse region.
1701 		 */
1702 		ioffset = inum - xic->first_ino;
1703 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
1704 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
1705 			continue;
1706 		}
1707 
1708 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1709 					 XFS_INO_TO_AGBNO(mp, inum));
1710 
1711 		/*
1712 		 * We obtain and lock the backing buffer first in the process
1713 		 * here to ensure dirty inodes attached to the buffer remain in
1714 		 * the flushing state while we mark them stale.
1715 		 *
1716 		 * If we scan the in-memory inodes first, then buffer IO can
1717 		 * complete before we get a lock on it, and hence we may fail
1718 		 * to mark all the active inodes on the buffer stale.
1719 		 */
1720 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1721 				mp->m_bsize * igeo->blocks_per_cluster,
1722 				XBF_UNMAPPED, &bp);
1723 		if (error)
1724 			return error;
1725 
1726 		/*
1727 		 * This buffer may not have been correctly initialised as we
1728 		 * didn't read it from disk. That's not important because we are
1729 		 * only using to mark the buffer as stale in the log, and to
1730 		 * attach stale cached inodes on it.
1731 		 *
1732 		 * For the inode that triggered the cluster freeing, this
1733 		 * attachment may occur in xfs_inode_item_precommit() after we
1734 		 * have marked this buffer stale.  If this buffer was not in
1735 		 * memory before xfs_ifree_cluster() started, it will not be
1736 		 * marked XBF_DONE and this will cause problems later in
1737 		 * xfs_inode_item_precommit() when we trip over a (stale, !done)
1738 		 * buffer to attached to the transaction.
1739 		 *
1740 		 * Hence we have to mark the buffer as XFS_DONE here. This is
1741 		 * safe because we are also marking the buffer as XBF_STALE and
1742 		 * XFS_BLI_STALE. That means it will never be dispatched for
1743 		 * IO and it won't be unlocked until the cluster freeing has
1744 		 * been committed to the journal and the buffer unpinned. If it
1745 		 * is written, we want to know about it, and we want it to
1746 		 * fail. We can acheive this by adding a write verifier to the
1747 		 * buffer.
1748 		 */
1749 		bp->b_flags |= XBF_DONE;
1750 		bp->b_ops = &xfs_inode_buf_ops;
1751 
1752 		/*
1753 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
1754 		 * too. This requires lookups, and will skip inodes that we've
1755 		 * already marked XFS_ISTALE.
1756 		 */
1757 		for (i = 0; i < igeo->inodes_per_cluster; i++)
1758 			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
1759 
1760 		xfs_trans_stale_inode_buf(tp, bp);
1761 		xfs_trans_binval(tp, bp);
1762 	}
1763 	return 0;
1764 }
1765 
1766 /*
1767  * This is called to return an inode to the inode free list.  The inode should
1768  * already be truncated to 0 length and have no pages associated with it.  This
1769  * routine also assumes that the inode is already a part of the transaction.
1770  *
1771  * The on-disk copy of the inode will have been added to the list of unlinked
1772  * inodes in the AGI. We need to remove the inode from that list atomically with
1773  * respect to freeing it here.
1774  */
1775 int
1776 xfs_ifree(
1777 	struct xfs_trans	*tp,
1778 	struct xfs_inode	*ip)
1779 {
1780 	struct xfs_mount	*mp = ip->i_mount;
1781 	struct xfs_perag	*pag;
1782 	struct xfs_icluster	xic = { 0 };
1783 	struct xfs_inode_log_item *iip = ip->i_itemp;
1784 	int			error;
1785 
1786 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1787 	ASSERT(VFS_I(ip)->i_nlink == 0);
1788 	ASSERT(ip->i_df.if_nextents == 0);
1789 	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1790 	ASSERT(ip->i_nblocks == 0);
1791 
1792 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1793 
1794 	error = xfs_inode_uninit(tp, pag, ip, &xic);
1795 	if (error)
1796 		goto out;
1797 
1798 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
1799 		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
1800 
1801 	/* Don't attempt to replay owner changes for a deleted inode */
1802 	spin_lock(&iip->ili_lock);
1803 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
1804 	spin_unlock(&iip->ili_lock);
1805 
1806 	if (xic.deleted)
1807 		error = xfs_ifree_cluster(tp, pag, ip, &xic);
1808 out:
1809 	xfs_perag_put(pag);
1810 	return error;
1811 }
1812 
1813 /*
1814  * This is called to unpin an inode.  The caller must have the inode locked
1815  * in at least shared mode so that the buffer cannot be subsequently pinned
1816  * once someone is waiting for it to be unpinned.
1817  */
1818 static void
1819 xfs_iunpin(
1820 	struct xfs_inode	*ip)
1821 {
1822 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
1823 
1824 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
1825 
1826 	/* Give the log a push to start the unpinning I/O */
1827 	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
1828 
1829 }
1830 
1831 static void
1832 __xfs_iunpin_wait(
1833 	struct xfs_inode	*ip)
1834 {
1835 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
1836 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
1837 
1838 	xfs_iunpin(ip);
1839 
1840 	do {
1841 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1842 		if (xfs_ipincount(ip))
1843 			io_schedule();
1844 	} while (xfs_ipincount(ip));
1845 	finish_wait(wq, &wait.wq_entry);
1846 }
1847 
1848 void
1849 xfs_iunpin_wait(
1850 	struct xfs_inode	*ip)
1851 {
1852 	if (xfs_ipincount(ip))
1853 		__xfs_iunpin_wait(ip);
1854 }
1855 
1856 /*
1857  * Removing an inode from the namespace involves removing the directory entry
1858  * and dropping the link count on the inode. Removing the directory entry can
1859  * result in locking an AGF (directory blocks were freed) and removing a link
1860  * count can result in placing the inode on an unlinked list which results in
1861  * locking an AGI.
1862  *
1863  * The big problem here is that we have an ordering constraint on AGF and AGI
1864  * locking - inode allocation locks the AGI, then can allocate a new extent for
1865  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
1866  * removes the inode from the unlinked list, requiring that we lock the AGI
1867  * first, and then freeing the inode can result in an inode chunk being freed
1868  * and hence freeing disk space requiring that we lock an AGF.
1869  *
1870  * Hence the ordering that is imposed by other parts of the code is AGI before
1871  * AGF. This means we cannot remove the directory entry before we drop the inode
1872  * reference count and put it on the unlinked list as this results in a lock
1873  * order of AGF then AGI, and this can deadlock against inode allocation and
1874  * freeing. Therefore we must drop the link counts before we remove the
1875  * directory entry.
1876  *
1877  * This is still safe from a transactional point of view - it is not until we
1878  * get to xfs_defer_finish() that we have the possibility of multiple
1879  * transactions in this operation. Hence as long as we remove the directory
1880  * entry and drop the link count in the first transaction of the remove
1881  * operation, there are no transactional constraints on the ordering here.
1882  */
1883 int
1884 xfs_remove(
1885 	struct xfs_inode	*dp,
1886 	struct xfs_name		*name,
1887 	struct xfs_inode	*ip)
1888 {
1889 	struct xfs_dir_update	du = {
1890 		.dp		= dp,
1891 		.name		= name,
1892 		.ip		= ip,
1893 	};
1894 	struct xfs_mount	*mp = dp->i_mount;
1895 	struct xfs_trans	*tp = NULL;
1896 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
1897 	int			dontcare;
1898 	int                     error = 0;
1899 	uint			resblks;
1900 
1901 	trace_xfs_remove(dp, name);
1902 
1903 	if (xfs_is_shutdown(mp))
1904 		return -EIO;
1905 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
1906 		return -EIO;
1907 
1908 	error = xfs_qm_dqattach(dp);
1909 	if (error)
1910 		goto std_return;
1911 
1912 	error = xfs_qm_dqattach(ip);
1913 	if (error)
1914 		goto std_return;
1915 
1916 	error = xfs_parent_start(mp, &du.ppargs);
1917 	if (error)
1918 		goto std_return;
1919 
1920 	/*
1921 	 * We try to get the real space reservation first, allowing for
1922 	 * directory btree deletion(s) implying possible bmap insert(s).  If we
1923 	 * can't get the space reservation then we use 0 instead, and avoid the
1924 	 * bmap btree insert(s) in the directory code by, if the bmap insert
1925 	 * tries to happen, instead trimming the LAST block from the directory.
1926 	 *
1927 	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
1928 	 * the directory code can handle a reservationless update and we don't
1929 	 * want to prevent a user from trying to free space by deleting things.
1930 	 */
1931 	resblks = xfs_remove_space_res(mp, name->len);
1932 	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
1933 			&tp, &dontcare);
1934 	if (error) {
1935 		ASSERT(error != -ENOSPC);
1936 		goto out_parent;
1937 	}
1938 
1939 	error = xfs_dir_remove_child(tp, resblks, &du);
1940 	if (error)
1941 		goto out_trans_cancel;
1942 
1943 	/*
1944 	 * If this is a synchronous mount, make sure that the
1945 	 * remove transaction goes to disk before returning to
1946 	 * the user.
1947 	 */
1948 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1949 		xfs_trans_set_sync(tp);
1950 
1951 	error = xfs_trans_commit(tp);
1952 	if (error)
1953 		goto out_unlock;
1954 
1955 	if (is_dir && xfs_inode_is_filestream(ip))
1956 		xfs_filestream_deassociate(ip);
1957 
1958 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1959 	xfs_iunlock(dp, XFS_ILOCK_EXCL);
1960 	xfs_parent_finish(mp, du.ppargs);
1961 	return 0;
1962 
1963  out_trans_cancel:
1964 	xfs_trans_cancel(tp);
1965  out_unlock:
1966 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1967 	xfs_iunlock(dp, XFS_ILOCK_EXCL);
1968  out_parent:
1969 	xfs_parent_finish(mp, du.ppargs);
1970  std_return:
1971 	return error;
1972 }
1973 
1974 static inline void
1975 xfs_iunlock_rename(
1976 	struct xfs_inode	**i_tab,
1977 	int			num_inodes)
1978 {
1979 	int			i;
1980 
1981 	for (i = num_inodes - 1; i >= 0; i--) {
1982 		/* Skip duplicate inodes if src and target dps are the same */
1983 		if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1]))
1984 			continue;
1985 		xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL);
1986 	}
1987 }
1988 
1989 /*
1990  * Enter all inodes for a rename transaction into a sorted array.
1991  */
1992 #define __XFS_SORT_INODES	5
1993 STATIC void
1994 xfs_sort_for_rename(
1995 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
1996 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
1997 	struct xfs_inode	*ip1,	/* in: inode of old entry */
1998 	struct xfs_inode	*ip2,	/* in: inode of new entry */
1999 	struct xfs_inode	*wip,	/* in: whiteout inode */
2000 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2001 	int			*num_inodes)  /* in/out: inodes in array */
2002 {
2003 	int			i;
2004 
2005 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2006 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2007 
2008 	/*
2009 	 * i_tab contains a list of pointers to inodes.  We initialize
2010 	 * the table here & we'll sort it.  We will then use it to
2011 	 * order the acquisition of the inode locks.
2012 	 *
2013 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2014 	 */
2015 	i = 0;
2016 	i_tab[i++] = dp1;
2017 	i_tab[i++] = dp2;
2018 	i_tab[i++] = ip1;
2019 	if (ip2)
2020 		i_tab[i++] = ip2;
2021 	if (wip)
2022 		i_tab[i++] = wip;
2023 	*num_inodes = i;
2024 
2025 	xfs_sort_inodes(i_tab, *num_inodes);
2026 }
2027 
2028 void
2029 xfs_sort_inodes(
2030 	struct xfs_inode	**i_tab,
2031 	unsigned int		num_inodes)
2032 {
2033 	int			i, j;
2034 
2035 	ASSERT(num_inodes <= __XFS_SORT_INODES);
2036 
2037 	/*
2038 	 * Sort the elements via bubble sort.  (Remember, there are at
2039 	 * most 5 elements to sort, so this is adequate.)
2040 	 */
2041 	for (i = 0; i < num_inodes; i++) {
2042 		for (j = 1; j < num_inodes; j++) {
2043 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino)
2044 				swap(i_tab[j], i_tab[j - 1]);
2045 		}
2046 	}
2047 }
2048 
2049 /*
2050  * xfs_rename_alloc_whiteout()
2051  *
2052  * Return a referenced, unlinked, unlocked inode that can be used as a
2053  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2054  * crash between allocating the inode and linking it into the rename transaction
2055  * recovery will free the inode and we won't leak it.
2056  */
2057 static int
2058 xfs_rename_alloc_whiteout(
2059 	struct mnt_idmap	*idmap,
2060 	struct xfs_name		*src_name,
2061 	struct xfs_inode	*dp,
2062 	struct xfs_inode	**wip)
2063 {
2064 	struct xfs_icreate_args	args = {
2065 		.idmap		= idmap,
2066 		.pip		= dp,
2067 		.mode		= S_IFCHR | WHITEOUT_MODE,
2068 		.flags		= XFS_ICREATE_TMPFILE,
2069 	};
2070 	struct xfs_inode	*tmpfile;
2071 	struct qstr		name;
2072 	int			error;
2073 
2074 	error = xfs_create_tmpfile(&args, &tmpfile);
2075 	if (error)
2076 		return error;
2077 
2078 	name.name = src_name->name;
2079 	name.len = src_name->len;
2080 	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2081 	if (error) {
2082 		xfs_finish_inode_setup(tmpfile);
2083 		xfs_irele(tmpfile);
2084 		return error;
2085 	}
2086 
2087 	/*
2088 	 * Prepare the tmpfile inode as if it were created through the VFS.
2089 	 * Complete the inode setup and flag it as linkable.  nlink is already
2090 	 * zero, so we can skip the drop_nlink.
2091 	 */
2092 	xfs_setup_iops(tmpfile);
2093 	xfs_finish_inode_setup(tmpfile);
2094 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2095 
2096 	*wip = tmpfile;
2097 	return 0;
2098 }
2099 
2100 /*
2101  * xfs_rename
2102  */
2103 int
2104 xfs_rename(
2105 	struct mnt_idmap	*idmap,
2106 	struct xfs_inode	*src_dp,
2107 	struct xfs_name		*src_name,
2108 	struct xfs_inode	*src_ip,
2109 	struct xfs_inode	*target_dp,
2110 	struct xfs_name		*target_name,
2111 	struct xfs_inode	*target_ip,
2112 	unsigned int		flags)
2113 {
2114 	struct xfs_dir_update	du_src = {
2115 		.dp		= src_dp,
2116 		.name		= src_name,
2117 		.ip		= src_ip,
2118 	};
2119 	struct xfs_dir_update	du_tgt = {
2120 		.dp		= target_dp,
2121 		.name		= target_name,
2122 		.ip		= target_ip,
2123 	};
2124 	struct xfs_dir_update	du_wip = { };
2125 	struct xfs_mount	*mp = src_dp->i_mount;
2126 	struct xfs_trans	*tp;
2127 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2128 	int			i;
2129 	int			num_inodes = __XFS_SORT_INODES;
2130 	bool			new_parent = (src_dp != target_dp);
2131 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2132 	int			spaceres;
2133 	bool			retried = false;
2134 	int			error, nospace_error = 0;
2135 
2136 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2137 
2138 	if ((flags & RENAME_EXCHANGE) && !target_ip)
2139 		return -EINVAL;
2140 
2141 	/*
2142 	 * If we are doing a whiteout operation, allocate the whiteout inode
2143 	 * we will be placing at the target and ensure the type is set
2144 	 * appropriately.
2145 	 */
2146 	if (flags & RENAME_WHITEOUT) {
2147 		error = xfs_rename_alloc_whiteout(idmap, src_name, target_dp,
2148 				&du_wip.ip);
2149 		if (error)
2150 			return error;
2151 
2152 		/* setup target dirent info as whiteout */
2153 		src_name->type = XFS_DIR3_FT_CHRDEV;
2154 	}
2155 
2156 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, du_wip.ip,
2157 			inodes, &num_inodes);
2158 
2159 	error = xfs_parent_start(mp, &du_src.ppargs);
2160 	if (error)
2161 		goto out_release_wip;
2162 
2163 	if (du_wip.ip) {
2164 		error = xfs_parent_start(mp, &du_wip.ppargs);
2165 		if (error)
2166 			goto out_src_ppargs;
2167 	}
2168 
2169 	if (target_ip) {
2170 		error = xfs_parent_start(mp, &du_tgt.ppargs);
2171 		if (error)
2172 			goto out_wip_ppargs;
2173 	}
2174 
2175 retry:
2176 	nospace_error = 0;
2177 	spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL,
2178 			target_name->len, du_wip.ip != NULL);
2179 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2180 	if (error == -ENOSPC) {
2181 		nospace_error = error;
2182 		spaceres = 0;
2183 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2184 				&tp);
2185 	}
2186 	if (error)
2187 		goto out_tgt_ppargs;
2188 
2189 	/*
2190 	 * We don't allow reservationless renaming when parent pointers are
2191 	 * enabled because we can't back out if the xattrs must grow.
2192 	 */
2193 	if (du_src.ppargs && nospace_error) {
2194 		error = nospace_error;
2195 		xfs_trans_cancel(tp);
2196 		goto out_tgt_ppargs;
2197 	}
2198 
2199 	/*
2200 	 * Attach the dquots to the inodes
2201 	 */
2202 	error = xfs_qm_vop_rename_dqattach(inodes);
2203 	if (error) {
2204 		xfs_trans_cancel(tp);
2205 		goto out_tgt_ppargs;
2206 	}
2207 
2208 	/*
2209 	 * Lock all the participating inodes. Depending upon whether
2210 	 * the target_name exists in the target directory, and
2211 	 * whether the target directory is the same as the source
2212 	 * directory, we can lock from 2 to 5 inodes.
2213 	 */
2214 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2215 
2216 	/*
2217 	 * Join all the inodes to the transaction.
2218 	 */
2219 	xfs_trans_ijoin(tp, src_dp, 0);
2220 	if (new_parent)
2221 		xfs_trans_ijoin(tp, target_dp, 0);
2222 	xfs_trans_ijoin(tp, src_ip, 0);
2223 	if (target_ip)
2224 		xfs_trans_ijoin(tp, target_ip, 0);
2225 	if (du_wip.ip)
2226 		xfs_trans_ijoin(tp, du_wip.ip, 0);
2227 
2228 	/*
2229 	 * If we are using project inheritance, we only allow renames
2230 	 * into our tree when the project IDs are the same; else the
2231 	 * tree quota mechanism would be circumvented.
2232 	 */
2233 	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2234 		     target_dp->i_projid != src_ip->i_projid)) {
2235 		error = -EXDEV;
2236 		goto out_trans_cancel;
2237 	}
2238 
2239 	/* RENAME_EXCHANGE is unique from here on. */
2240 	if (flags & RENAME_EXCHANGE) {
2241 		error = xfs_dir_exchange_children(tp, &du_src, &du_tgt,
2242 				spaceres);
2243 		if (error)
2244 			goto out_trans_cancel;
2245 		goto out_commit;
2246 	}
2247 
2248 	/*
2249 	 * Try to reserve quota to handle an expansion of the target directory.
2250 	 * We'll allow the rename to continue in reservationless mode if we hit
2251 	 * a space usage constraint.  If we trigger reservationless mode, save
2252 	 * the errno if there isn't any free space in the target directory.
2253 	 */
2254 	if (spaceres != 0) {
2255 		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2256 				0, false);
2257 		if (error == -EDQUOT || error == -ENOSPC) {
2258 			if (!retried) {
2259 				xfs_trans_cancel(tp);
2260 				xfs_iunlock_rename(inodes, num_inodes);
2261 				xfs_blockgc_free_quota(target_dp, 0);
2262 				retried = true;
2263 				goto retry;
2264 			}
2265 
2266 			nospace_error = error;
2267 			spaceres = 0;
2268 			error = 0;
2269 		}
2270 		if (error)
2271 			goto out_trans_cancel;
2272 	}
2273 
2274 	/*
2275 	 * We don't allow quotaless renaming when parent pointers are enabled
2276 	 * because we can't back out if the xattrs must grow.
2277 	 */
2278 	if (du_src.ppargs && nospace_error) {
2279 		error = nospace_error;
2280 		goto out_trans_cancel;
2281 	}
2282 
2283 	/*
2284 	 * Lock the AGI buffers we need to handle bumping the nlink of the
2285 	 * whiteout inode off the unlinked list and to handle dropping the
2286 	 * nlink of the target inode.  Per locking order rules, do this in
2287 	 * increasing AG order and before directory block allocation tries to
2288 	 * grab AGFs because we grab AGIs before AGFs.
2289 	 *
2290 	 * The (vfs) caller must ensure that if src is a directory then
2291 	 * target_ip is either null or an empty directory.
2292 	 */
2293 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
2294 		if (inodes[i] == du_wip.ip ||
2295 		    (inodes[i] == target_ip &&
2296 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
2297 			struct xfs_perag	*pag;
2298 			struct xfs_buf		*bp;
2299 
2300 			pag = xfs_perag_get(mp,
2301 					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
2302 			error = xfs_read_agi(pag, tp, 0, &bp);
2303 			xfs_perag_put(pag);
2304 			if (error)
2305 				goto out_trans_cancel;
2306 		}
2307 	}
2308 
2309 	error = xfs_dir_rename_children(tp, &du_src, &du_tgt, spaceres,
2310 			&du_wip);
2311 	if (error)
2312 		goto out_trans_cancel;
2313 
2314 	if (du_wip.ip) {
2315 		/*
2316 		 * Now we have a real link, clear the "I'm a tmpfile" state
2317 		 * flag from the inode so it doesn't accidentally get misused in
2318 		 * future.
2319 		 */
2320 		VFS_I(du_wip.ip)->i_state &= ~I_LINKABLE;
2321 	}
2322 
2323 out_commit:
2324 	/*
2325 	 * If this is a synchronous mount, make sure that the rename
2326 	 * transaction goes to disk before returning to the user.
2327 	 */
2328 	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2329 		xfs_trans_set_sync(tp);
2330 
2331 	error = xfs_trans_commit(tp);
2332 	nospace_error = 0;
2333 	goto out_unlock;
2334 
2335 out_trans_cancel:
2336 	xfs_trans_cancel(tp);
2337 out_unlock:
2338 	xfs_iunlock_rename(inodes, num_inodes);
2339 out_tgt_ppargs:
2340 	xfs_parent_finish(mp, du_tgt.ppargs);
2341 out_wip_ppargs:
2342 	xfs_parent_finish(mp, du_wip.ppargs);
2343 out_src_ppargs:
2344 	xfs_parent_finish(mp, du_src.ppargs);
2345 out_release_wip:
2346 	if (du_wip.ip)
2347 		xfs_irele(du_wip.ip);
2348 	if (error == -ENOSPC && nospace_error)
2349 		error = nospace_error;
2350 	return error;
2351 }
2352 
2353 static int
2354 xfs_iflush(
2355 	struct xfs_inode	*ip,
2356 	struct xfs_buf		*bp)
2357 {
2358 	struct xfs_inode_log_item *iip = ip->i_itemp;
2359 	struct xfs_dinode	*dip;
2360 	struct xfs_mount	*mp = ip->i_mount;
2361 	int			error;
2362 
2363 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
2364 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
2365 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
2366 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2367 	ASSERT(iip->ili_item.li_buf == bp);
2368 
2369 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
2370 
2371 	/*
2372 	 * We don't flush the inode if any of the following checks fail, but we
2373 	 * do still update the log item and attach to the backing buffer as if
2374 	 * the flush happened. This is a formality to facilitate predictable
2375 	 * error handling as the caller will shutdown and fail the buffer.
2376 	 */
2377 	error = -EFSCORRUPTED;
2378 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2379 			       mp, XFS_ERRTAG_IFLUSH_1)) {
2380 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2381 			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
2382 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2383 		goto flush_out;
2384 	}
2385 	if (S_ISREG(VFS_I(ip)->i_mode)) {
2386 		if (XFS_TEST_ERROR(
2387 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2388 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
2389 		    mp, XFS_ERRTAG_IFLUSH_3)) {
2390 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2391 				"%s: Bad regular inode %llu, ptr "PTR_FMT,
2392 				__func__, ip->i_ino, ip);
2393 			goto flush_out;
2394 		}
2395 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
2396 		if (XFS_TEST_ERROR(
2397 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2398 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
2399 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
2400 		    mp, XFS_ERRTAG_IFLUSH_4)) {
2401 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2402 				"%s: Bad directory inode %llu, ptr "PTR_FMT,
2403 				__func__, ip->i_ino, ip);
2404 			goto flush_out;
2405 		}
2406 	}
2407 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
2408 				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
2409 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2410 			"%s: detected corrupt incore inode %llu, "
2411 			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
2412 			__func__, ip->i_ino,
2413 			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
2414 			ip->i_nblocks, ip);
2415 		goto flush_out;
2416 	}
2417 	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
2418 				mp, XFS_ERRTAG_IFLUSH_6)) {
2419 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2420 			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
2421 			__func__, ip->i_ino, ip->i_forkoff, ip);
2422 		goto flush_out;
2423 	}
2424 
2425 	/*
2426 	 * Inode item log recovery for v2 inodes are dependent on the flushiter
2427 	 * count for correct sequencing.  We bump the flush iteration count so
2428 	 * we can detect flushes which postdate a log record during recovery.
2429 	 * This is redundant as we now log every change and hence this can't
2430 	 * happen but we need to still do it to ensure backwards compatibility
2431 	 * with old kernels that predate logging all inode changes.
2432 	 */
2433 	if (!xfs_has_v3inodes(mp))
2434 		ip->i_flushiter++;
2435 
2436 	/*
2437 	 * If there are inline format data / attr forks attached to this inode,
2438 	 * make sure they are not corrupt.
2439 	 */
2440 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
2441 	    xfs_ifork_verify_local_data(ip))
2442 		goto flush_out;
2443 	if (xfs_inode_has_attr_fork(ip) &&
2444 	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
2445 	    xfs_ifork_verify_local_attr(ip))
2446 		goto flush_out;
2447 
2448 	/*
2449 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
2450 	 * copy out the core of the inode, because if the inode is dirty at all
2451 	 * the core must be.
2452 	 */
2453 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
2454 
2455 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2456 	if (!xfs_has_v3inodes(mp)) {
2457 		if (ip->i_flushiter == DI_MAX_FLUSH)
2458 			ip->i_flushiter = 0;
2459 	}
2460 
2461 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
2462 	if (xfs_inode_has_attr_fork(ip))
2463 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
2464 
2465 	/*
2466 	 * We've recorded everything logged in the inode, so we'd like to clear
2467 	 * the ili_fields bits so we don't log and flush things unnecessarily.
2468 	 * However, we can't stop logging all this information until the data
2469 	 * we've copied into the disk buffer is written to disk.  If we did we
2470 	 * might overwrite the copy of the inode in the log with all the data
2471 	 * after re-logging only part of it, and in the face of a crash we
2472 	 * wouldn't have all the data we need to recover.
2473 	 *
2474 	 * What we do is move the bits to the ili_last_fields field.  When
2475 	 * logging the inode, these bits are moved back to the ili_fields field.
2476 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
2477 	 * we know that the information those bits represent is permanently on
2478 	 * disk.  As long as the flush completes before the inode is logged
2479 	 * again, then both ili_fields and ili_last_fields will be cleared.
2480 	 */
2481 	error = 0;
2482 flush_out:
2483 	spin_lock(&iip->ili_lock);
2484 	iip->ili_last_fields = iip->ili_fields;
2485 	iip->ili_fields = 0;
2486 	iip->ili_fsync_fields = 0;
2487 	set_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags);
2488 	spin_unlock(&iip->ili_lock);
2489 
2490 	/*
2491 	 * Store the current LSN of the inode so that we can tell whether the
2492 	 * item has moved in the AIL from xfs_buf_inode_iodone().
2493 	 */
2494 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2495 				&iip->ili_item.li_lsn);
2496 
2497 	/* generate the checksum. */
2498 	xfs_dinode_calc_crc(mp, dip);
2499 	if (error)
2500 		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
2501 	return error;
2502 }
2503 
2504 /*
2505  * Non-blocking flush of dirty inode metadata into the backing buffer.
2506  *
2507  * The caller must have a reference to the inode and hold the cluster buffer
2508  * locked. The function will walk across all the inodes on the cluster buffer it
2509  * can find and lock without blocking, and flush them to the cluster buffer.
2510  *
2511  * On successful flushing of at least one inode, the caller must write out the
2512  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
2513  * the caller needs to release the buffer. On failure, the filesystem will be
2514  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
2515  * will be returned.
2516  */
2517 int
2518 xfs_iflush_cluster(
2519 	struct xfs_buf		*bp)
2520 {
2521 	struct xfs_mount	*mp = bp->b_mount;
2522 	struct xfs_log_item	*lip, *n;
2523 	struct xfs_inode	*ip;
2524 	struct xfs_inode_log_item *iip;
2525 	int			clcount = 0;
2526 	int			error = 0;
2527 
2528 	/*
2529 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
2530 	 * will remove itself from the list.
2531 	 */
2532 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
2533 		iip = (struct xfs_inode_log_item *)lip;
2534 		ip = iip->ili_inode;
2535 
2536 		/*
2537 		 * Quick and dirty check to avoid locks if possible.
2538 		 */
2539 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
2540 			continue;
2541 		if (xfs_ipincount(ip))
2542 			continue;
2543 
2544 		/*
2545 		 * The inode is still attached to the buffer, which means it is
2546 		 * dirty but reclaim might try to grab it. Check carefully for
2547 		 * that, and grab the ilock while still holding the i_flags_lock
2548 		 * to guarantee reclaim will not be able to reclaim this inode
2549 		 * once we drop the i_flags_lock.
2550 		 */
2551 		spin_lock(&ip->i_flags_lock);
2552 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
2553 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
2554 			spin_unlock(&ip->i_flags_lock);
2555 			continue;
2556 		}
2557 
2558 		/*
2559 		 * ILOCK will pin the inode against reclaim and prevent
2560 		 * concurrent transactions modifying the inode while we are
2561 		 * flushing the inode. If we get the lock, set the flushing
2562 		 * state before we drop the i_flags_lock.
2563 		 */
2564 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
2565 			spin_unlock(&ip->i_flags_lock);
2566 			continue;
2567 		}
2568 		__xfs_iflags_set(ip, XFS_IFLUSHING);
2569 		spin_unlock(&ip->i_flags_lock);
2570 
2571 		/*
2572 		 * Abort flushing this inode if we are shut down because the
2573 		 * inode may not currently be in the AIL. This can occur when
2574 		 * log I/O failure unpins the inode without inserting into the
2575 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
2576 		 * that otherwise looks like it should be flushed.
2577 		 */
2578 		if (xlog_is_shutdown(mp->m_log)) {
2579 			xfs_iunpin_wait(ip);
2580 			xfs_iflush_abort(ip);
2581 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
2582 			error = -EIO;
2583 			continue;
2584 		}
2585 
2586 		/* don't block waiting on a log force to unpin dirty inodes */
2587 		if (xfs_ipincount(ip)) {
2588 			xfs_iflags_clear(ip, XFS_IFLUSHING);
2589 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
2590 			continue;
2591 		}
2592 
2593 		if (!xfs_inode_clean(ip))
2594 			error = xfs_iflush(ip, bp);
2595 		else
2596 			xfs_iflags_clear(ip, XFS_IFLUSHING);
2597 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
2598 		if (error)
2599 			break;
2600 		clcount++;
2601 	}
2602 
2603 	if (error) {
2604 		/*
2605 		 * Shutdown first so we kill the log before we release this
2606 		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
2607 		 * of the log, failing it before the _log_ is shut down can
2608 		 * result in the log tail being moved forward in the journal
2609 		 * on disk because log writes can still be taking place. Hence
2610 		 * unpinning the tail will allow the ICREATE intent to be
2611 		 * removed from the log an recovery will fail with uninitialised
2612 		 * inode cluster buffers.
2613 		 */
2614 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2615 		bp->b_flags |= XBF_ASYNC;
2616 		xfs_buf_ioend_fail(bp);
2617 		return error;
2618 	}
2619 
2620 	if (!clcount)
2621 		return -EAGAIN;
2622 
2623 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
2624 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
2625 	return 0;
2626 
2627 }
2628 
2629 /* Release an inode. */
2630 void
2631 xfs_irele(
2632 	struct xfs_inode	*ip)
2633 {
2634 	trace_xfs_irele(ip, _RET_IP_);
2635 	iput(VFS_I(ip));
2636 }
2637 
2638 /*
2639  * Ensure all commited transactions touching the inode are written to the log.
2640  */
2641 int
2642 xfs_log_force_inode(
2643 	struct xfs_inode	*ip)
2644 {
2645 	xfs_csn_t		seq = 0;
2646 
2647 	xfs_ilock(ip, XFS_ILOCK_SHARED);
2648 	if (xfs_ipincount(ip))
2649 		seq = ip->i_itemp->ili_commit_seq;
2650 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
2651 
2652 	if (!seq)
2653 		return 0;
2654 	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
2655 }
2656 
2657 /*
2658  * Grab the exclusive iolock for a data copy from src to dest, making sure to
2659  * abide vfs locking order (lowest pointer value goes first) and breaking the
2660  * layout leases before proceeding.  The loop is needed because we cannot call
2661  * the blocking break_layout() with the iolocks held, and therefore have to
2662  * back out both locks.
2663  */
2664 static int
2665 xfs_iolock_two_inodes_and_break_layout(
2666 	struct inode		*src,
2667 	struct inode		*dest)
2668 {
2669 	int			error;
2670 
2671 	if (src > dest)
2672 		swap(src, dest);
2673 
2674 retry:
2675 	/* Wait to break both inodes' layouts before we start locking. */
2676 	error = break_layout(src, true);
2677 	if (error)
2678 		return error;
2679 	if (src != dest) {
2680 		error = break_layout(dest, true);
2681 		if (error)
2682 			return error;
2683 	}
2684 
2685 	/* Lock one inode and make sure nobody got in and leased it. */
2686 	inode_lock(src);
2687 	error = break_layout(src, false);
2688 	if (error) {
2689 		inode_unlock(src);
2690 		if (error == -EWOULDBLOCK)
2691 			goto retry;
2692 		return error;
2693 	}
2694 
2695 	if (src == dest)
2696 		return 0;
2697 
2698 	/* Lock the other inode and make sure nobody got in and leased it. */
2699 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
2700 	error = break_layout(dest, false);
2701 	if (error) {
2702 		inode_unlock(src);
2703 		inode_unlock(dest);
2704 		if (error == -EWOULDBLOCK)
2705 			goto retry;
2706 		return error;
2707 	}
2708 
2709 	return 0;
2710 }
2711 
2712 static int
2713 xfs_mmaplock_two_inodes_and_break_dax_layout(
2714 	struct xfs_inode	*ip1,
2715 	struct xfs_inode	*ip2)
2716 {
2717 	int			error;
2718 	bool			retry;
2719 	struct page		*page;
2720 
2721 	if (ip1->i_ino > ip2->i_ino)
2722 		swap(ip1, ip2);
2723 
2724 again:
2725 	retry = false;
2726 	/* Lock the first inode */
2727 	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
2728 	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
2729 	if (error || retry) {
2730 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2731 		if (error == 0 && retry)
2732 			goto again;
2733 		return error;
2734 	}
2735 
2736 	if (ip1 == ip2)
2737 		return 0;
2738 
2739 	/* Nested lock the second inode */
2740 	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
2741 	/*
2742 	 * We cannot use xfs_break_dax_layouts() directly here because it may
2743 	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
2744 	 * for this nested lock case.
2745 	 */
2746 	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
2747 	if (page && page_ref_count(page) != 1) {
2748 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2749 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2750 		goto again;
2751 	}
2752 
2753 	return 0;
2754 }
2755 
2756 /*
2757  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
2758  * mmap activity.
2759  */
2760 int
2761 xfs_ilock2_io_mmap(
2762 	struct xfs_inode	*ip1,
2763 	struct xfs_inode	*ip2)
2764 {
2765 	int			ret;
2766 
2767 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
2768 	if (ret)
2769 		return ret;
2770 
2771 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2772 		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
2773 		if (ret) {
2774 			inode_unlock(VFS_I(ip2));
2775 			if (ip1 != ip2)
2776 				inode_unlock(VFS_I(ip1));
2777 			return ret;
2778 		}
2779 	} else
2780 		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
2781 					    VFS_I(ip2)->i_mapping);
2782 
2783 	return 0;
2784 }
2785 
2786 /* Unlock both inodes to allow IO and mmap activity. */
2787 void
2788 xfs_iunlock2_io_mmap(
2789 	struct xfs_inode	*ip1,
2790 	struct xfs_inode	*ip2)
2791 {
2792 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2793 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2794 		if (ip1 != ip2)
2795 			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2796 	} else
2797 		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
2798 					      VFS_I(ip2)->i_mapping);
2799 
2800 	inode_unlock(VFS_I(ip2));
2801 	if (ip1 != ip2)
2802 		inode_unlock(VFS_I(ip1));
2803 }
2804 
2805 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
2806 void
2807 xfs_iunlock2_remapping(
2808 	struct xfs_inode	*ip1,
2809 	struct xfs_inode	*ip2)
2810 {
2811 	xfs_iflags_clear(ip1, XFS_IREMAPPING);
2812 
2813 	if (ip1 != ip2)
2814 		xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
2815 	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2816 
2817 	if (ip1 != ip2)
2818 		inode_unlock_shared(VFS_I(ip1));
2819 	inode_unlock(VFS_I(ip2));
2820 }
2821 
2822 /*
2823  * Reload the incore inode list for this inode.  Caller should ensure that
2824  * the link count cannot change, either by taking ILOCK_SHARED or otherwise
2825  * preventing other threads from executing.
2826  */
2827 int
2828 xfs_inode_reload_unlinked_bucket(
2829 	struct xfs_trans	*tp,
2830 	struct xfs_inode	*ip)
2831 {
2832 	struct xfs_mount	*mp = tp->t_mountp;
2833 	struct xfs_buf		*agibp;
2834 	struct xfs_agi		*agi;
2835 	struct xfs_perag	*pag;
2836 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2837 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2838 	xfs_agino_t		prev_agino, next_agino;
2839 	unsigned int		bucket;
2840 	bool			foundit = false;
2841 	int			error;
2842 
2843 	/* Grab the first inode in the list */
2844 	pag = xfs_perag_get(mp, agno);
2845 	error = xfs_ialloc_read_agi(pag, tp, 0, &agibp);
2846 	xfs_perag_put(pag);
2847 	if (error)
2848 		return error;
2849 
2850 	/*
2851 	 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
2852 	 * incore unlinked list pointers for this inode.  Check once more to
2853 	 * see if we raced with anyone else to reload the unlinked list.
2854 	 */
2855 	if (!xfs_inode_unlinked_incomplete(ip)) {
2856 		foundit = true;
2857 		goto out_agibp;
2858 	}
2859 
2860 	bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
2861 	agi = agibp->b_addr;
2862 
2863 	trace_xfs_inode_reload_unlinked_bucket(ip);
2864 
2865 	xfs_info_ratelimited(mp,
2866  "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.",
2867 			agino, agno);
2868 
2869 	prev_agino = NULLAGINO;
2870 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2871 	while (next_agino != NULLAGINO) {
2872 		struct xfs_inode	*next_ip = NULL;
2873 
2874 		/* Found this caller's inode, set its backlink. */
2875 		if (next_agino == agino) {
2876 			next_ip = ip;
2877 			next_ip->i_prev_unlinked = prev_agino;
2878 			foundit = true;
2879 			goto next_inode;
2880 		}
2881 
2882 		/* Try in-memory lookup first. */
2883 		next_ip = xfs_iunlink_lookup(pag, next_agino);
2884 		if (next_ip)
2885 			goto next_inode;
2886 
2887 		/* Inode not in memory, try reloading it. */
2888 		error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
2889 				next_agino);
2890 		if (error)
2891 			break;
2892 
2893 		/* Grab the reloaded inode. */
2894 		next_ip = xfs_iunlink_lookup(pag, next_agino);
2895 		if (!next_ip) {
2896 			/* No incore inode at all?  We reloaded it... */
2897 			ASSERT(next_ip != NULL);
2898 			error = -EFSCORRUPTED;
2899 			break;
2900 		}
2901 
2902 next_inode:
2903 		prev_agino = next_agino;
2904 		next_agino = next_ip->i_next_unlinked;
2905 	}
2906 
2907 out_agibp:
2908 	xfs_trans_brelse(tp, agibp);
2909 	/* Should have found this inode somewhere in the iunlinked bucket. */
2910 	if (!error && !foundit)
2911 		error = -EFSCORRUPTED;
2912 	return error;
2913 }
2914 
2915 /* Decide if this inode is missing its unlinked list and reload it. */
2916 int
2917 xfs_inode_reload_unlinked(
2918 	struct xfs_inode	*ip)
2919 {
2920 	struct xfs_trans	*tp;
2921 	int			error;
2922 
2923 	error = xfs_trans_alloc_empty(ip->i_mount, &tp);
2924 	if (error)
2925 		return error;
2926 
2927 	xfs_ilock(ip, XFS_ILOCK_SHARED);
2928 	if (xfs_inode_unlinked_incomplete(ip))
2929 		error = xfs_inode_reload_unlinked_bucket(tp, ip);
2930 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
2931 	xfs_trans_cancel(tp);
2932 
2933 	return error;
2934 }
2935 
2936 /* Has this inode fork been zapped by repair? */
2937 bool
2938 xfs_ifork_zapped(
2939 	const struct xfs_inode	*ip,
2940 	int			whichfork)
2941 {
2942 	unsigned int		datamask = 0;
2943 
2944 	switch (whichfork) {
2945 	case XFS_DATA_FORK:
2946 		switch (ip->i_vnode.i_mode & S_IFMT) {
2947 		case S_IFDIR:
2948 			datamask = XFS_SICK_INO_DIR_ZAPPED;
2949 			break;
2950 		case S_IFLNK:
2951 			datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
2952 			break;
2953 		}
2954 		return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
2955 	case XFS_ATTR_FORK:
2956 		return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
2957 	default:
2958 		return false;
2959 	}
2960 }
2961 
2962 /* Compute the number of data and realtime blocks used by a file. */
2963 void
2964 xfs_inode_count_blocks(
2965 	struct xfs_trans	*tp,
2966 	struct xfs_inode	*ip,
2967 	xfs_filblks_t		*dblocks,
2968 	xfs_filblks_t		*rblocks)
2969 {
2970 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
2971 
2972 	*rblocks = 0;
2973 	if (XFS_IS_REALTIME_INODE(ip))
2974 		xfs_bmap_count_leaves(ifp, rblocks);
2975 	*dblocks = ip->i_nblocks - *rblocks;
2976 }
2977 
2978 static void
2979 xfs_wait_dax_page(
2980 	struct inode		*inode)
2981 {
2982 	struct xfs_inode        *ip = XFS_I(inode);
2983 
2984 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
2985 	schedule();
2986 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
2987 }
2988 
2989 int
2990 xfs_break_dax_layouts(
2991 	struct inode		*inode,
2992 	bool			*retry)
2993 {
2994 	struct page		*page;
2995 
2996 	xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL);
2997 
2998 	page = dax_layout_busy_page(inode->i_mapping);
2999 	if (!page)
3000 		return 0;
3001 
3002 	*retry = true;
3003 	return ___wait_var_event(&page->_refcount,
3004 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
3005 			0, 0, xfs_wait_dax_page(inode));
3006 }
3007 
3008 int
3009 xfs_break_layouts(
3010 	struct inode		*inode,
3011 	uint			*iolock,
3012 	enum layout_break_reason reason)
3013 {
3014 	bool			retry;
3015 	int			error;
3016 
3017 	xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL);
3018 
3019 	do {
3020 		retry = false;
3021 		switch (reason) {
3022 		case BREAK_UNMAP:
3023 			error = xfs_break_dax_layouts(inode, &retry);
3024 			if (error || retry)
3025 				break;
3026 			fallthrough;
3027 		case BREAK_WRITE:
3028 			error = xfs_break_leased_layouts(inode, iolock, &retry);
3029 			break;
3030 		default:
3031 			WARN_ON_ONCE(1);
3032 			error = -EINVAL;
3033 		}
3034 	} while (error == 0 && retry);
3035 
3036 	return error;
3037 }
3038 
3039 /* Returns the size of fundamental allocation unit for a file, in bytes. */
3040 unsigned int
3041 xfs_inode_alloc_unitsize(
3042 	struct xfs_inode	*ip)
3043 {
3044 	unsigned int		blocks = 1;
3045 
3046 	if (XFS_IS_REALTIME_INODE(ip))
3047 		blocks = ip->i_mount->m_sb.sb_rextsize;
3048 
3049 	return XFS_FSB_TO_B(ip->i_mount, blocks);
3050 }
3051 
3052 /* Should we always be using copy on write for file writes? */
3053 bool
3054 xfs_is_always_cow_inode(
3055 	const struct xfs_inode	*ip)
3056 {
3057 	return ip->i_mount->m_always_cow && xfs_has_reflink(ip->i_mount);
3058 }
3059