xref: /linux/fs/xfs/xfs_inode.c (revision 71dfa617ea9f18e4585fe78364217cd32b1fc382)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans_space.h"
20 #include "xfs_trans.h"
21 #include "xfs_buf_item.h"
22 #include "xfs_inode_item.h"
23 #include "xfs_iunlink_item.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_bmap.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_log.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
38 #include "xfs_ag.h"
39 #include "xfs_log_priv.h"
40 #include "xfs_health.h"
41 
42 struct kmem_cache *xfs_inode_cache;
43 
44 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
45 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
46 	struct xfs_inode *);
47 
48 /*
49  * helper function to extract extent size hint from inode
50  */
51 xfs_extlen_t
52 xfs_get_extsz_hint(
53 	struct xfs_inode	*ip)
54 {
55 	/*
56 	 * No point in aligning allocations if we need to COW to actually
57 	 * write to them.
58 	 */
59 	if (xfs_is_always_cow_inode(ip))
60 		return 0;
61 	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
62 		return ip->i_extsize;
63 	if (XFS_IS_REALTIME_INODE(ip))
64 		return ip->i_mount->m_sb.sb_rextsize;
65 	return 0;
66 }
67 
68 /*
69  * Helper function to extract CoW extent size hint from inode.
70  * Between the extent size hint and the CoW extent size hint, we
71  * return the greater of the two.  If the value is zero (automatic),
72  * use the default size.
73  */
74 xfs_extlen_t
75 xfs_get_cowextsz_hint(
76 	struct xfs_inode	*ip)
77 {
78 	xfs_extlen_t		a, b;
79 
80 	a = 0;
81 	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
82 		a = ip->i_cowextsize;
83 	b = xfs_get_extsz_hint(ip);
84 
85 	a = max(a, b);
86 	if (a == 0)
87 		return XFS_DEFAULT_COWEXTSZ_HINT;
88 	return a;
89 }
90 
91 /*
92  * These two are wrapper routines around the xfs_ilock() routine used to
93  * centralize some grungy code.  They are used in places that wish to lock the
94  * inode solely for reading the extents.  The reason these places can't just
95  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
96  * bringing in of the extents from disk for a file in b-tree format.  If the
97  * inode is in b-tree format, then we need to lock the inode exclusively until
98  * the extents are read in.  Locking it exclusively all the time would limit
99  * our parallelism unnecessarily, though.  What we do instead is check to see
100  * if the extents have been read in yet, and only lock the inode exclusively
101  * if they have not.
102  *
103  * The functions return a value which should be given to the corresponding
104  * xfs_iunlock() call.
105  */
106 uint
107 xfs_ilock_data_map_shared(
108 	struct xfs_inode	*ip)
109 {
110 	uint			lock_mode = XFS_ILOCK_SHARED;
111 
112 	if (xfs_need_iread_extents(&ip->i_df))
113 		lock_mode = XFS_ILOCK_EXCL;
114 	xfs_ilock(ip, lock_mode);
115 	return lock_mode;
116 }
117 
118 uint
119 xfs_ilock_attr_map_shared(
120 	struct xfs_inode	*ip)
121 {
122 	uint			lock_mode = XFS_ILOCK_SHARED;
123 
124 	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
125 		lock_mode = XFS_ILOCK_EXCL;
126 	xfs_ilock(ip, lock_mode);
127 	return lock_mode;
128 }
129 
130 /*
131  * You can't set both SHARED and EXCL for the same lock,
132  * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
133  * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
134  * to set in lock_flags.
135  */
136 static inline void
137 xfs_lock_flags_assert(
138 	uint		lock_flags)
139 {
140 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
141 		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
142 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
143 		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
144 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
145 		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
146 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
147 	ASSERT(lock_flags != 0);
148 }
149 
150 /*
151  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
152  * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
153  * various combinations of the locks to be obtained.
154  *
155  * The 3 locks should always be ordered so that the IO lock is obtained first,
156  * the mmap lock second and the ilock last in order to prevent deadlock.
157  *
158  * Basic locking order:
159  *
160  * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
161  *
162  * mmap_lock locking order:
163  *
164  * i_rwsem -> page lock -> mmap_lock
165  * mmap_lock -> invalidate_lock -> page_lock
166  *
167  * The difference in mmap_lock locking order mean that we cannot hold the
168  * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
169  * can fault in pages during copy in/out (for buffered IO) or require the
170  * mmap_lock in get_user_pages() to map the user pages into the kernel address
171  * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
172  * fault because page faults already hold the mmap_lock.
173  *
174  * Hence to serialise fully against both syscall and mmap based IO, we need to
175  * take both the i_rwsem and the invalidate_lock. These locks should *only* be
176  * both taken in places where we need to invalidate the page cache in a race
177  * free manner (e.g. truncate, hole punch and other extent manipulation
178  * functions).
179  */
180 void
181 xfs_ilock(
182 	xfs_inode_t		*ip,
183 	uint			lock_flags)
184 {
185 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
186 
187 	xfs_lock_flags_assert(lock_flags);
188 
189 	if (lock_flags & XFS_IOLOCK_EXCL) {
190 		down_write_nested(&VFS_I(ip)->i_rwsem,
191 				  XFS_IOLOCK_DEP(lock_flags));
192 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
193 		down_read_nested(&VFS_I(ip)->i_rwsem,
194 				 XFS_IOLOCK_DEP(lock_flags));
195 	}
196 
197 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
198 		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
199 				  XFS_MMAPLOCK_DEP(lock_flags));
200 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
201 		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
202 				 XFS_MMAPLOCK_DEP(lock_flags));
203 	}
204 
205 	if (lock_flags & XFS_ILOCK_EXCL)
206 		down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
207 	else if (lock_flags & XFS_ILOCK_SHARED)
208 		down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
209 }
210 
211 /*
212  * This is just like xfs_ilock(), except that the caller
213  * is guaranteed not to sleep.  It returns 1 if it gets
214  * the requested locks and 0 otherwise.  If the IO lock is
215  * obtained but the inode lock cannot be, then the IO lock
216  * is dropped before returning.
217  *
218  * ip -- the inode being locked
219  * lock_flags -- this parameter indicates the inode's locks to be
220  *       to be locked.  See the comment for xfs_ilock() for a list
221  *	 of valid values.
222  */
223 int
224 xfs_ilock_nowait(
225 	xfs_inode_t		*ip,
226 	uint			lock_flags)
227 {
228 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
229 
230 	xfs_lock_flags_assert(lock_flags);
231 
232 	if (lock_flags & XFS_IOLOCK_EXCL) {
233 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
234 			goto out;
235 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
236 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
237 			goto out;
238 	}
239 
240 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
241 		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
242 			goto out_undo_iolock;
243 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
244 		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
245 			goto out_undo_iolock;
246 	}
247 
248 	if (lock_flags & XFS_ILOCK_EXCL) {
249 		if (!down_write_trylock(&ip->i_lock))
250 			goto out_undo_mmaplock;
251 	} else if (lock_flags & XFS_ILOCK_SHARED) {
252 		if (!down_read_trylock(&ip->i_lock))
253 			goto out_undo_mmaplock;
254 	}
255 	return 1;
256 
257 out_undo_mmaplock:
258 	if (lock_flags & XFS_MMAPLOCK_EXCL)
259 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
260 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
261 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
262 out_undo_iolock:
263 	if (lock_flags & XFS_IOLOCK_EXCL)
264 		up_write(&VFS_I(ip)->i_rwsem);
265 	else if (lock_flags & XFS_IOLOCK_SHARED)
266 		up_read(&VFS_I(ip)->i_rwsem);
267 out:
268 	return 0;
269 }
270 
271 /*
272  * xfs_iunlock() is used to drop the inode locks acquired with
273  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
274  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
275  * that we know which locks to drop.
276  *
277  * ip -- the inode being unlocked
278  * lock_flags -- this parameter indicates the inode's locks to be
279  *       to be unlocked.  See the comment for xfs_ilock() for a list
280  *	 of valid values for this parameter.
281  *
282  */
283 void
284 xfs_iunlock(
285 	xfs_inode_t		*ip,
286 	uint			lock_flags)
287 {
288 	xfs_lock_flags_assert(lock_flags);
289 
290 	if (lock_flags & XFS_IOLOCK_EXCL)
291 		up_write(&VFS_I(ip)->i_rwsem);
292 	else if (lock_flags & XFS_IOLOCK_SHARED)
293 		up_read(&VFS_I(ip)->i_rwsem);
294 
295 	if (lock_flags & XFS_MMAPLOCK_EXCL)
296 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
297 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
298 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
299 
300 	if (lock_flags & XFS_ILOCK_EXCL)
301 		up_write(&ip->i_lock);
302 	else if (lock_flags & XFS_ILOCK_SHARED)
303 		up_read(&ip->i_lock);
304 
305 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
306 }
307 
308 /*
309  * give up write locks.  the i/o lock cannot be held nested
310  * if it is being demoted.
311  */
312 void
313 xfs_ilock_demote(
314 	xfs_inode_t		*ip,
315 	uint			lock_flags)
316 {
317 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
318 	ASSERT((lock_flags &
319 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
320 
321 	if (lock_flags & XFS_ILOCK_EXCL)
322 		downgrade_write(&ip->i_lock);
323 	if (lock_flags & XFS_MMAPLOCK_EXCL)
324 		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
325 	if (lock_flags & XFS_IOLOCK_EXCL)
326 		downgrade_write(&VFS_I(ip)->i_rwsem);
327 
328 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
329 }
330 
331 void
332 xfs_assert_ilocked(
333 	struct xfs_inode	*ip,
334 	uint			lock_flags)
335 {
336 	/*
337 	 * Sometimes we assert the ILOCK is held exclusively, but we're in
338 	 * a workqueue, so lockdep doesn't know we're the owner.
339 	 */
340 	if (lock_flags & XFS_ILOCK_SHARED)
341 		rwsem_assert_held(&ip->i_lock);
342 	else if (lock_flags & XFS_ILOCK_EXCL)
343 		rwsem_assert_held_write_nolockdep(&ip->i_lock);
344 
345 	if (lock_flags & XFS_MMAPLOCK_SHARED)
346 		rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
347 	else if (lock_flags & XFS_MMAPLOCK_EXCL)
348 		rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
349 
350 	if (lock_flags & XFS_IOLOCK_SHARED)
351 		rwsem_assert_held(&VFS_I(ip)->i_rwsem);
352 	else if (lock_flags & XFS_IOLOCK_EXCL)
353 		rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
354 }
355 
356 /*
357  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
358  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
359  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
360  * errors and warnings.
361  */
362 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
363 static bool
364 xfs_lockdep_subclass_ok(
365 	int subclass)
366 {
367 	return subclass < MAX_LOCKDEP_SUBCLASSES;
368 }
369 #else
370 #define xfs_lockdep_subclass_ok(subclass)	(true)
371 #endif
372 
373 /*
374  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
375  * value. This can be called for any type of inode lock combination, including
376  * parent locking. Care must be taken to ensure we don't overrun the subclass
377  * storage fields in the class mask we build.
378  */
379 static inline uint
380 xfs_lock_inumorder(
381 	uint	lock_mode,
382 	uint	subclass)
383 {
384 	uint	class = 0;
385 
386 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
387 			      XFS_ILOCK_RTSUM)));
388 	ASSERT(xfs_lockdep_subclass_ok(subclass));
389 
390 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
391 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
392 		class += subclass << XFS_IOLOCK_SHIFT;
393 	}
394 
395 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
396 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
397 		class += subclass << XFS_MMAPLOCK_SHIFT;
398 	}
399 
400 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
401 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
402 		class += subclass << XFS_ILOCK_SHIFT;
403 	}
404 
405 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
406 }
407 
408 /*
409  * The following routine will lock n inodes in exclusive mode.  We assume the
410  * caller calls us with the inodes in i_ino order.
411  *
412  * We need to detect deadlock where an inode that we lock is in the AIL and we
413  * start waiting for another inode that is locked by a thread in a long running
414  * transaction (such as truncate). This can result in deadlock since the long
415  * running trans might need to wait for the inode we just locked in order to
416  * push the tail and free space in the log.
417  *
418  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
419  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
420  * lock more than one at a time, lockdep will report false positives saying we
421  * have violated locking orders.
422  */
423 static void
424 xfs_lock_inodes(
425 	struct xfs_inode	**ips,
426 	int			inodes,
427 	uint			lock_mode)
428 {
429 	int			attempts = 0;
430 	uint			i;
431 	int			j;
432 	bool			try_lock;
433 	struct xfs_log_item	*lp;
434 
435 	/*
436 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
437 	 * support an arbitrary depth of locking here, but absolute limits on
438 	 * inodes depend on the type of locking and the limits placed by
439 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
440 	 * the asserts.
441 	 */
442 	ASSERT(ips && inodes >= 2 && inodes <= 5);
443 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
444 			    XFS_ILOCK_EXCL));
445 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
446 			      XFS_ILOCK_SHARED)));
447 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
448 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
449 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
450 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
451 
452 	if (lock_mode & XFS_IOLOCK_EXCL) {
453 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
454 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
455 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
456 
457 again:
458 	try_lock = false;
459 	i = 0;
460 	for (; i < inodes; i++) {
461 		ASSERT(ips[i]);
462 
463 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
464 			continue;
465 
466 		/*
467 		 * If try_lock is not set yet, make sure all locked inodes are
468 		 * not in the AIL.  If any are, set try_lock to be used later.
469 		 */
470 		if (!try_lock) {
471 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
472 				lp = &ips[j]->i_itemp->ili_item;
473 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
474 					try_lock = true;
475 			}
476 		}
477 
478 		/*
479 		 * If any of the previous locks we have locked is in the AIL,
480 		 * we must TRY to get the second and subsequent locks. If
481 		 * we can't get any, we must release all we have
482 		 * and try again.
483 		 */
484 		if (!try_lock) {
485 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
486 			continue;
487 		}
488 
489 		/* try_lock means we have an inode locked that is in the AIL. */
490 		ASSERT(i != 0);
491 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
492 			continue;
493 
494 		/*
495 		 * Unlock all previous guys and try again.  xfs_iunlock will try
496 		 * to push the tail if the inode is in the AIL.
497 		 */
498 		attempts++;
499 		for (j = i - 1; j >= 0; j--) {
500 			/*
501 			 * Check to see if we've already unlocked this one.  Not
502 			 * the first one going back, and the inode ptr is the
503 			 * same.
504 			 */
505 			if (j != (i - 1) && ips[j] == ips[j + 1])
506 				continue;
507 
508 			xfs_iunlock(ips[j], lock_mode);
509 		}
510 
511 		if ((attempts % 5) == 0) {
512 			delay(1); /* Don't just spin the CPU */
513 		}
514 		goto again;
515 	}
516 }
517 
518 /*
519  * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
520  * mmaplock must be double-locked separately since we use i_rwsem and
521  * invalidate_lock for that. We now support taking one lock EXCL and the
522  * other SHARED.
523  */
524 void
525 xfs_lock_two_inodes(
526 	struct xfs_inode	*ip0,
527 	uint			ip0_mode,
528 	struct xfs_inode	*ip1,
529 	uint			ip1_mode)
530 {
531 	int			attempts = 0;
532 	struct xfs_log_item	*lp;
533 
534 	ASSERT(hweight32(ip0_mode) == 1);
535 	ASSERT(hweight32(ip1_mode) == 1);
536 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
537 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
538 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
539 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
540 	ASSERT(ip0->i_ino != ip1->i_ino);
541 
542 	if (ip0->i_ino > ip1->i_ino) {
543 		swap(ip0, ip1);
544 		swap(ip0_mode, ip1_mode);
545 	}
546 
547  again:
548 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
549 
550 	/*
551 	 * If the first lock we have locked is in the AIL, we must TRY to get
552 	 * the second lock. If we can't get it, we must release the first one
553 	 * and try again.
554 	 */
555 	lp = &ip0->i_itemp->ili_item;
556 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
557 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
558 			xfs_iunlock(ip0, ip0_mode);
559 			if ((++attempts % 5) == 0)
560 				delay(1); /* Don't just spin the CPU */
561 			goto again;
562 		}
563 	} else {
564 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
565 	}
566 }
567 
568 uint
569 xfs_ip2xflags(
570 	struct xfs_inode	*ip)
571 {
572 	uint			flags = 0;
573 
574 	if (ip->i_diflags & XFS_DIFLAG_ANY) {
575 		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
576 			flags |= FS_XFLAG_REALTIME;
577 		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
578 			flags |= FS_XFLAG_PREALLOC;
579 		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
580 			flags |= FS_XFLAG_IMMUTABLE;
581 		if (ip->i_diflags & XFS_DIFLAG_APPEND)
582 			flags |= FS_XFLAG_APPEND;
583 		if (ip->i_diflags & XFS_DIFLAG_SYNC)
584 			flags |= FS_XFLAG_SYNC;
585 		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
586 			flags |= FS_XFLAG_NOATIME;
587 		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
588 			flags |= FS_XFLAG_NODUMP;
589 		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
590 			flags |= FS_XFLAG_RTINHERIT;
591 		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
592 			flags |= FS_XFLAG_PROJINHERIT;
593 		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
594 			flags |= FS_XFLAG_NOSYMLINKS;
595 		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
596 			flags |= FS_XFLAG_EXTSIZE;
597 		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
598 			flags |= FS_XFLAG_EXTSZINHERIT;
599 		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
600 			flags |= FS_XFLAG_NODEFRAG;
601 		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
602 			flags |= FS_XFLAG_FILESTREAM;
603 	}
604 
605 	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
606 		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
607 			flags |= FS_XFLAG_DAX;
608 		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
609 			flags |= FS_XFLAG_COWEXTSIZE;
610 	}
611 
612 	if (xfs_inode_has_attr_fork(ip))
613 		flags |= FS_XFLAG_HASATTR;
614 	return flags;
615 }
616 
617 /*
618  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
619  * is allowed, otherwise it has to be an exact match. If a CI match is found,
620  * ci_name->name will point to a the actual name (caller must free) or
621  * will be set to NULL if an exact match is found.
622  */
623 int
624 xfs_lookup(
625 	struct xfs_inode	*dp,
626 	const struct xfs_name	*name,
627 	struct xfs_inode	**ipp,
628 	struct xfs_name		*ci_name)
629 {
630 	xfs_ino_t		inum;
631 	int			error;
632 
633 	trace_xfs_lookup(dp, name);
634 
635 	if (xfs_is_shutdown(dp->i_mount))
636 		return -EIO;
637 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
638 		return -EIO;
639 
640 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
641 	if (error)
642 		goto out_unlock;
643 
644 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
645 	if (error)
646 		goto out_free_name;
647 
648 	return 0;
649 
650 out_free_name:
651 	if (ci_name)
652 		kfree(ci_name->name);
653 out_unlock:
654 	*ipp = NULL;
655 	return error;
656 }
657 
658 /* Propagate di_flags from a parent inode to a child inode. */
659 static void
660 xfs_inode_inherit_flags(
661 	struct xfs_inode	*ip,
662 	const struct xfs_inode	*pip)
663 {
664 	unsigned int		di_flags = 0;
665 	xfs_failaddr_t		failaddr;
666 	umode_t			mode = VFS_I(ip)->i_mode;
667 
668 	if (S_ISDIR(mode)) {
669 		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
670 			di_flags |= XFS_DIFLAG_RTINHERIT;
671 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
672 			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
673 			ip->i_extsize = pip->i_extsize;
674 		}
675 		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
676 			di_flags |= XFS_DIFLAG_PROJINHERIT;
677 	} else if (S_ISREG(mode)) {
678 		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
679 		    xfs_has_realtime(ip->i_mount))
680 			di_flags |= XFS_DIFLAG_REALTIME;
681 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
682 			di_flags |= XFS_DIFLAG_EXTSIZE;
683 			ip->i_extsize = pip->i_extsize;
684 		}
685 	}
686 	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
687 	    xfs_inherit_noatime)
688 		di_flags |= XFS_DIFLAG_NOATIME;
689 	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
690 	    xfs_inherit_nodump)
691 		di_flags |= XFS_DIFLAG_NODUMP;
692 	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
693 	    xfs_inherit_sync)
694 		di_flags |= XFS_DIFLAG_SYNC;
695 	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
696 	    xfs_inherit_nosymlinks)
697 		di_flags |= XFS_DIFLAG_NOSYMLINKS;
698 	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
699 	    xfs_inherit_nodefrag)
700 		di_flags |= XFS_DIFLAG_NODEFRAG;
701 	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
702 		di_flags |= XFS_DIFLAG_FILESTREAM;
703 
704 	ip->i_diflags |= di_flags;
705 
706 	/*
707 	 * Inode verifiers on older kernels only check that the extent size
708 	 * hint is an integer multiple of the rt extent size on realtime files.
709 	 * They did not check the hint alignment on a directory with both
710 	 * rtinherit and extszinherit flags set.  If the misaligned hint is
711 	 * propagated from a directory into a new realtime file, new file
712 	 * allocations will fail due to math errors in the rt allocator and/or
713 	 * trip the verifiers.  Validate the hint settings in the new file so
714 	 * that we don't let broken hints propagate.
715 	 */
716 	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
717 			VFS_I(ip)->i_mode, ip->i_diflags);
718 	if (failaddr) {
719 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
720 				   XFS_DIFLAG_EXTSZINHERIT);
721 		ip->i_extsize = 0;
722 	}
723 }
724 
725 /* Propagate di_flags2 from a parent inode to a child inode. */
726 static void
727 xfs_inode_inherit_flags2(
728 	struct xfs_inode	*ip,
729 	const struct xfs_inode	*pip)
730 {
731 	xfs_failaddr_t		failaddr;
732 
733 	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
734 		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
735 		ip->i_cowextsize = pip->i_cowextsize;
736 	}
737 	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
738 		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
739 
740 	/* Don't let invalid cowextsize hints propagate. */
741 	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
742 			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
743 	if (failaddr) {
744 		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
745 		ip->i_cowextsize = 0;
746 	}
747 }
748 
749 /*
750  * Initialise a newly allocated inode and return the in-core inode to the
751  * caller locked exclusively.
752  */
753 int
754 xfs_init_new_inode(
755 	struct mnt_idmap	*idmap,
756 	struct xfs_trans	*tp,
757 	struct xfs_inode	*pip,
758 	xfs_ino_t		ino,
759 	umode_t			mode,
760 	xfs_nlink_t		nlink,
761 	dev_t			rdev,
762 	prid_t			prid,
763 	bool			init_xattrs,
764 	struct xfs_inode	**ipp)
765 {
766 	struct inode		*dir = pip ? VFS_I(pip) : NULL;
767 	struct xfs_mount	*mp = tp->t_mountp;
768 	struct xfs_inode	*ip;
769 	unsigned int		flags;
770 	int			error;
771 	struct timespec64	tv;
772 	struct inode		*inode;
773 
774 	/*
775 	 * Protect against obviously corrupt allocation btree records. Later
776 	 * xfs_iget checks will catch re-allocation of other active in-memory
777 	 * and on-disk inodes. If we don't catch reallocating the parent inode
778 	 * here we will deadlock in xfs_iget() so we have to do these checks
779 	 * first.
780 	 */
781 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
782 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
783 		xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino),
784 				XFS_SICK_AG_INOBT);
785 		return -EFSCORRUPTED;
786 	}
787 
788 	/*
789 	 * Get the in-core inode with the lock held exclusively to prevent
790 	 * others from looking at until we're done.
791 	 */
792 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
793 	if (error)
794 		return error;
795 
796 	ASSERT(ip != NULL);
797 	inode = VFS_I(ip);
798 	set_nlink(inode, nlink);
799 	inode->i_rdev = rdev;
800 	ip->i_projid = prid;
801 
802 	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
803 		inode_fsuid_set(inode, idmap);
804 		inode->i_gid = dir->i_gid;
805 		inode->i_mode = mode;
806 	} else {
807 		inode_init_owner(idmap, inode, dir, mode);
808 	}
809 
810 	/*
811 	 * If the group ID of the new file does not match the effective group
812 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
813 	 * (and only if the irix_sgid_inherit compatibility variable is set).
814 	 */
815 	if (irix_sgid_inherit && (inode->i_mode & S_ISGID) &&
816 	    !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode)))
817 		inode->i_mode &= ~S_ISGID;
818 
819 	ip->i_disk_size = 0;
820 	ip->i_df.if_nextents = 0;
821 	ASSERT(ip->i_nblocks == 0);
822 
823 	tv = inode_set_ctime_current(inode);
824 	inode_set_mtime_to_ts(inode, tv);
825 	inode_set_atime_to_ts(inode, tv);
826 
827 	ip->i_extsize = 0;
828 	ip->i_diflags = 0;
829 
830 	if (xfs_has_v3inodes(mp)) {
831 		inode_set_iversion(inode, 1);
832 		ip->i_cowextsize = 0;
833 		ip->i_crtime = tv;
834 	}
835 
836 	flags = XFS_ILOG_CORE;
837 	switch (mode & S_IFMT) {
838 	case S_IFIFO:
839 	case S_IFCHR:
840 	case S_IFBLK:
841 	case S_IFSOCK:
842 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
843 		flags |= XFS_ILOG_DEV;
844 		break;
845 	case S_IFREG:
846 	case S_IFDIR:
847 		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
848 			xfs_inode_inherit_flags(ip, pip);
849 		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
850 			xfs_inode_inherit_flags2(ip, pip);
851 		fallthrough;
852 	case S_IFLNK:
853 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
854 		ip->i_df.if_bytes = 0;
855 		ip->i_df.if_data = NULL;
856 		break;
857 	default:
858 		ASSERT(0);
859 	}
860 
861 	/*
862 	 * If we need to create attributes immediately after allocating the
863 	 * inode, initialise an empty attribute fork right now. We use the
864 	 * default fork offset for attributes here as we don't know exactly what
865 	 * size or how many attributes we might be adding. We can do this
866 	 * safely here because we know the data fork is completely empty and
867 	 * this saves us from needing to run a separate transaction to set the
868 	 * fork offset in the immediate future.
869 	 */
870 	if (init_xattrs && xfs_has_attr(mp)) {
871 		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
872 		xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
873 	}
874 
875 	/*
876 	 * Log the new values stuffed into the inode.
877 	 */
878 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
879 	xfs_trans_log_inode(tp, ip, flags);
880 
881 	/* now that we have an i_mode we can setup the inode structure */
882 	xfs_setup_inode(ip);
883 
884 	*ipp = ip;
885 	return 0;
886 }
887 
888 /*
889  * Decrement the link count on an inode & log the change.  If this causes the
890  * link count to go to zero, move the inode to AGI unlinked list so that it can
891  * be freed when the last active reference goes away via xfs_inactive().
892  */
893 static int			/* error */
894 xfs_droplink(
895 	xfs_trans_t *tp,
896 	xfs_inode_t *ip)
897 {
898 	if (VFS_I(ip)->i_nlink == 0) {
899 		xfs_alert(ip->i_mount,
900 			  "%s: Attempt to drop inode (%llu) with nlink zero.",
901 			  __func__, ip->i_ino);
902 		return -EFSCORRUPTED;
903 	}
904 
905 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
906 
907 	drop_nlink(VFS_I(ip));
908 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
909 
910 	if (VFS_I(ip)->i_nlink)
911 		return 0;
912 
913 	return xfs_iunlink(tp, ip);
914 }
915 
916 /*
917  * Increment the link count on an inode & log the change.
918  */
919 static void
920 xfs_bumplink(
921 	xfs_trans_t *tp,
922 	xfs_inode_t *ip)
923 {
924 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
925 
926 	inc_nlink(VFS_I(ip));
927 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
928 }
929 
930 #ifdef CONFIG_XFS_LIVE_HOOKS
931 /*
932  * Use a static key here to reduce the overhead of directory live update hooks.
933  * If the compiler supports jump labels, the static branch will be replaced by
934  * a nop sled when there are no hook users.  Online fsck is currently the only
935  * caller, so this is a reasonable tradeoff.
936  *
937  * Note: Patching the kernel code requires taking the cpu hotplug lock.  Other
938  * parts of the kernel allocate memory with that lock held, which means that
939  * XFS callers cannot hold any locks that might be used by memory reclaim or
940  * writeback when calling the static_branch_{inc,dec} functions.
941  */
942 DEFINE_STATIC_XFS_HOOK_SWITCH(xfs_dir_hooks_switch);
943 
944 void
945 xfs_dir_hook_disable(void)
946 {
947 	xfs_hooks_switch_off(&xfs_dir_hooks_switch);
948 }
949 
950 void
951 xfs_dir_hook_enable(void)
952 {
953 	xfs_hooks_switch_on(&xfs_dir_hooks_switch);
954 }
955 
956 /* Call hooks for a directory update relating to a child dirent update. */
957 inline void
958 xfs_dir_update_hook(
959 	struct xfs_inode		*dp,
960 	struct xfs_inode		*ip,
961 	int				delta,
962 	const struct xfs_name		*name)
963 {
964 	if (xfs_hooks_switched_on(&xfs_dir_hooks_switch)) {
965 		struct xfs_dir_update_params	p = {
966 			.dp		= dp,
967 			.ip		= ip,
968 			.delta		= delta,
969 			.name		= name,
970 		};
971 		struct xfs_mount	*mp = ip->i_mount;
972 
973 		xfs_hooks_call(&mp->m_dir_update_hooks, 0, &p);
974 	}
975 }
976 
977 /* Call the specified function during a directory update. */
978 int
979 xfs_dir_hook_add(
980 	struct xfs_mount	*mp,
981 	struct xfs_dir_hook	*hook)
982 {
983 	return xfs_hooks_add(&mp->m_dir_update_hooks, &hook->dirent_hook);
984 }
985 
986 /* Stop calling the specified function during a directory update. */
987 void
988 xfs_dir_hook_del(
989 	struct xfs_mount	*mp,
990 	struct xfs_dir_hook	*hook)
991 {
992 	xfs_hooks_del(&mp->m_dir_update_hooks, &hook->dirent_hook);
993 }
994 
995 /* Configure directory update hook functions. */
996 void
997 xfs_dir_hook_setup(
998 	struct xfs_dir_hook	*hook,
999 	notifier_fn_t		mod_fn)
1000 {
1001 	xfs_hook_setup(&hook->dirent_hook, mod_fn);
1002 }
1003 #endif /* CONFIG_XFS_LIVE_HOOKS */
1004 
1005 int
1006 xfs_create(
1007 	struct mnt_idmap	*idmap,
1008 	xfs_inode_t		*dp,
1009 	struct xfs_name		*name,
1010 	umode_t			mode,
1011 	dev_t			rdev,
1012 	bool			init_xattrs,
1013 	xfs_inode_t		**ipp)
1014 {
1015 	int			is_dir = S_ISDIR(mode);
1016 	struct xfs_mount	*mp = dp->i_mount;
1017 	struct xfs_inode	*ip = NULL;
1018 	struct xfs_trans	*tp = NULL;
1019 	int			error;
1020 	bool                    unlock_dp_on_error = false;
1021 	prid_t			prid;
1022 	struct xfs_dquot	*udqp = NULL;
1023 	struct xfs_dquot	*gdqp = NULL;
1024 	struct xfs_dquot	*pdqp = NULL;
1025 	struct xfs_trans_res	*tres;
1026 	uint			resblks;
1027 	xfs_ino_t		ino;
1028 
1029 	trace_xfs_create(dp, name);
1030 
1031 	if (xfs_is_shutdown(mp))
1032 		return -EIO;
1033 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
1034 		return -EIO;
1035 
1036 	prid = xfs_get_initial_prid(dp);
1037 
1038 	/*
1039 	 * Make sure that we have allocated dquot(s) on disk.
1040 	 */
1041 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1042 			mapped_fsgid(idmap, &init_user_ns), prid,
1043 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1044 			&udqp, &gdqp, &pdqp);
1045 	if (error)
1046 		return error;
1047 
1048 	if (is_dir) {
1049 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1050 		tres = &M_RES(mp)->tr_mkdir;
1051 	} else {
1052 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1053 		tres = &M_RES(mp)->tr_create;
1054 	}
1055 
1056 	/*
1057 	 * Initially assume that the file does not exist and
1058 	 * reserve the resources for that case.  If that is not
1059 	 * the case we'll drop the one we have and get a more
1060 	 * appropriate transaction later.
1061 	 */
1062 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1063 			&tp);
1064 	if (error == -ENOSPC) {
1065 		/* flush outstanding delalloc blocks and retry */
1066 		xfs_flush_inodes(mp);
1067 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1068 				resblks, &tp);
1069 	}
1070 	if (error)
1071 		goto out_release_dquots;
1072 
1073 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1074 	unlock_dp_on_error = true;
1075 
1076 	/*
1077 	 * A newly created regular or special file just has one directory
1078 	 * entry pointing to them, but a directory also the "." entry
1079 	 * pointing to itself.
1080 	 */
1081 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1082 	if (!error)
1083 		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1084 				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1085 	if (error)
1086 		goto out_trans_cancel;
1087 
1088 	/*
1089 	 * Now we join the directory inode to the transaction.  We do not do it
1090 	 * earlier because xfs_dialloc might commit the previous transaction
1091 	 * (and release all the locks).  An error from here on will result in
1092 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1093 	 * error path.
1094 	 */
1095 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1096 	unlock_dp_on_error = false;
1097 
1098 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1099 					resblks - XFS_IALLOC_SPACE_RES(mp));
1100 	if (error) {
1101 		ASSERT(error != -ENOSPC);
1102 		goto out_trans_cancel;
1103 	}
1104 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1105 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1106 
1107 	if (is_dir) {
1108 		error = xfs_dir_init(tp, ip, dp);
1109 		if (error)
1110 			goto out_trans_cancel;
1111 
1112 		xfs_bumplink(tp, dp);
1113 	}
1114 
1115 	/*
1116 	 * Create ip with a reference from dp, and add '.' and '..' references
1117 	 * if it's a directory.
1118 	 */
1119 	xfs_dir_update_hook(dp, ip, 1, name);
1120 
1121 	/*
1122 	 * If this is a synchronous mount, make sure that the
1123 	 * create transaction goes to disk before returning to
1124 	 * the user.
1125 	 */
1126 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1127 		xfs_trans_set_sync(tp);
1128 
1129 	/*
1130 	 * Attach the dquot(s) to the inodes and modify them incore.
1131 	 * These ids of the inode couldn't have changed since the new
1132 	 * inode has been locked ever since it was created.
1133 	 */
1134 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1135 
1136 	error = xfs_trans_commit(tp);
1137 	if (error)
1138 		goto out_release_inode;
1139 
1140 	xfs_qm_dqrele(udqp);
1141 	xfs_qm_dqrele(gdqp);
1142 	xfs_qm_dqrele(pdqp);
1143 
1144 	*ipp = ip;
1145 	return 0;
1146 
1147  out_trans_cancel:
1148 	xfs_trans_cancel(tp);
1149  out_release_inode:
1150 	/*
1151 	 * Wait until after the current transaction is aborted to finish the
1152 	 * setup of the inode and release the inode.  This prevents recursive
1153 	 * transactions and deadlocks from xfs_inactive.
1154 	 */
1155 	if (ip) {
1156 		xfs_finish_inode_setup(ip);
1157 		xfs_irele(ip);
1158 	}
1159  out_release_dquots:
1160 	xfs_qm_dqrele(udqp);
1161 	xfs_qm_dqrele(gdqp);
1162 	xfs_qm_dqrele(pdqp);
1163 
1164 	if (unlock_dp_on_error)
1165 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1166 	return error;
1167 }
1168 
1169 int
1170 xfs_create_tmpfile(
1171 	struct mnt_idmap	*idmap,
1172 	struct xfs_inode	*dp,
1173 	umode_t			mode,
1174 	struct xfs_inode	**ipp)
1175 {
1176 	struct xfs_mount	*mp = dp->i_mount;
1177 	struct xfs_inode	*ip = NULL;
1178 	struct xfs_trans	*tp = NULL;
1179 	int			error;
1180 	prid_t                  prid;
1181 	struct xfs_dquot	*udqp = NULL;
1182 	struct xfs_dquot	*gdqp = NULL;
1183 	struct xfs_dquot	*pdqp = NULL;
1184 	struct xfs_trans_res	*tres;
1185 	uint			resblks;
1186 	xfs_ino_t		ino;
1187 
1188 	if (xfs_is_shutdown(mp))
1189 		return -EIO;
1190 
1191 	prid = xfs_get_initial_prid(dp);
1192 
1193 	/*
1194 	 * Make sure that we have allocated dquot(s) on disk.
1195 	 */
1196 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1197 			mapped_fsgid(idmap, &init_user_ns), prid,
1198 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1199 			&udqp, &gdqp, &pdqp);
1200 	if (error)
1201 		return error;
1202 
1203 	resblks = XFS_IALLOC_SPACE_RES(mp);
1204 	tres = &M_RES(mp)->tr_create_tmpfile;
1205 
1206 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1207 			&tp);
1208 	if (error)
1209 		goto out_release_dquots;
1210 
1211 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1212 	if (!error)
1213 		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1214 				0, 0, prid, false, &ip);
1215 	if (error)
1216 		goto out_trans_cancel;
1217 
1218 	if (xfs_has_wsync(mp))
1219 		xfs_trans_set_sync(tp);
1220 
1221 	/*
1222 	 * Attach the dquot(s) to the inodes and modify them incore.
1223 	 * These ids of the inode couldn't have changed since the new
1224 	 * inode has been locked ever since it was created.
1225 	 */
1226 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1227 
1228 	error = xfs_iunlink(tp, ip);
1229 	if (error)
1230 		goto out_trans_cancel;
1231 
1232 	error = xfs_trans_commit(tp);
1233 	if (error)
1234 		goto out_release_inode;
1235 
1236 	xfs_qm_dqrele(udqp);
1237 	xfs_qm_dqrele(gdqp);
1238 	xfs_qm_dqrele(pdqp);
1239 
1240 	*ipp = ip;
1241 	return 0;
1242 
1243  out_trans_cancel:
1244 	xfs_trans_cancel(tp);
1245  out_release_inode:
1246 	/*
1247 	 * Wait until after the current transaction is aborted to finish the
1248 	 * setup of the inode and release the inode.  This prevents recursive
1249 	 * transactions and deadlocks from xfs_inactive.
1250 	 */
1251 	if (ip) {
1252 		xfs_finish_inode_setup(ip);
1253 		xfs_irele(ip);
1254 	}
1255  out_release_dquots:
1256 	xfs_qm_dqrele(udqp);
1257 	xfs_qm_dqrele(gdqp);
1258 	xfs_qm_dqrele(pdqp);
1259 
1260 	return error;
1261 }
1262 
1263 int
1264 xfs_link(
1265 	xfs_inode_t		*tdp,
1266 	xfs_inode_t		*sip,
1267 	struct xfs_name		*target_name)
1268 {
1269 	xfs_mount_t		*mp = tdp->i_mount;
1270 	xfs_trans_t		*tp;
1271 	int			error, nospace_error = 0;
1272 	int			resblks;
1273 
1274 	trace_xfs_link(tdp, target_name);
1275 
1276 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1277 
1278 	if (xfs_is_shutdown(mp))
1279 		return -EIO;
1280 	if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
1281 		return -EIO;
1282 
1283 	error = xfs_qm_dqattach(sip);
1284 	if (error)
1285 		goto std_return;
1286 
1287 	error = xfs_qm_dqattach(tdp);
1288 	if (error)
1289 		goto std_return;
1290 
1291 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1292 	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1293 			&tp, &nospace_error);
1294 	if (error)
1295 		goto std_return;
1296 
1297 	/*
1298 	 * If we are using project inheritance, we only allow hard link
1299 	 * creation in our tree when the project IDs are the same; else
1300 	 * the tree quota mechanism could be circumvented.
1301 	 */
1302 	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1303 		     tdp->i_projid != sip->i_projid)) {
1304 		/*
1305 		 * Project quota setup skips special files which can
1306 		 * leave inodes in a PROJINHERIT directory without a
1307 		 * project ID set. We need to allow links to be made
1308 		 * to these "project-less" inodes because userspace
1309 		 * expects them to succeed after project ID setup,
1310 		 * but everything else should be rejected.
1311 		 */
1312 		if (!special_file(VFS_I(sip)->i_mode) ||
1313 		    sip->i_projid != 0) {
1314 			error = -EXDEV;
1315 			goto error_return;
1316 		}
1317 	}
1318 
1319 	if (!resblks) {
1320 		error = xfs_dir_canenter(tp, tdp, target_name);
1321 		if (error)
1322 			goto error_return;
1323 	}
1324 
1325 	/*
1326 	 * Handle initial link state of O_TMPFILE inode
1327 	 */
1328 	if (VFS_I(sip)->i_nlink == 0) {
1329 		struct xfs_perag	*pag;
1330 
1331 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1332 		error = xfs_iunlink_remove(tp, pag, sip);
1333 		xfs_perag_put(pag);
1334 		if (error)
1335 			goto error_return;
1336 	}
1337 
1338 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1339 				   resblks);
1340 	if (error)
1341 		goto error_return;
1342 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1343 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1344 
1345 	xfs_bumplink(tp, sip);
1346 	xfs_dir_update_hook(tdp, sip, 1, target_name);
1347 
1348 	/*
1349 	 * If this is a synchronous mount, make sure that the
1350 	 * link transaction goes to disk before returning to
1351 	 * the user.
1352 	 */
1353 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1354 		xfs_trans_set_sync(tp);
1355 
1356 	return xfs_trans_commit(tp);
1357 
1358  error_return:
1359 	xfs_trans_cancel(tp);
1360  std_return:
1361 	if (error == -ENOSPC && nospace_error)
1362 		error = nospace_error;
1363 	return error;
1364 }
1365 
1366 /* Clear the reflink flag and the cowblocks tag if possible. */
1367 static void
1368 xfs_itruncate_clear_reflink_flags(
1369 	struct xfs_inode	*ip)
1370 {
1371 	struct xfs_ifork	*dfork;
1372 	struct xfs_ifork	*cfork;
1373 
1374 	if (!xfs_is_reflink_inode(ip))
1375 		return;
1376 	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1377 	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1378 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1379 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1380 	if (cfork->if_bytes == 0)
1381 		xfs_inode_clear_cowblocks_tag(ip);
1382 }
1383 
1384 /*
1385  * Free up the underlying blocks past new_size.  The new size must be smaller
1386  * than the current size.  This routine can be used both for the attribute and
1387  * data fork, and does not modify the inode size, which is left to the caller.
1388  *
1389  * The transaction passed to this routine must have made a permanent log
1390  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1391  * given transaction and start new ones, so make sure everything involved in
1392  * the transaction is tidy before calling here.  Some transaction will be
1393  * returned to the caller to be committed.  The incoming transaction must
1394  * already include the inode, and both inode locks must be held exclusively.
1395  * The inode must also be "held" within the transaction.  On return the inode
1396  * will be "held" within the returned transaction.  This routine does NOT
1397  * require any disk space to be reserved for it within the transaction.
1398  *
1399  * If we get an error, we must return with the inode locked and linked into the
1400  * current transaction. This keeps things simple for the higher level code,
1401  * because it always knows that the inode is locked and held in the transaction
1402  * that returns to it whether errors occur or not.  We don't mark the inode
1403  * dirty on error so that transactions can be easily aborted if possible.
1404  */
1405 int
1406 xfs_itruncate_extents_flags(
1407 	struct xfs_trans	**tpp,
1408 	struct xfs_inode	*ip,
1409 	int			whichfork,
1410 	xfs_fsize_t		new_size,
1411 	int			flags)
1412 {
1413 	struct xfs_mount	*mp = ip->i_mount;
1414 	struct xfs_trans	*tp = *tpp;
1415 	xfs_fileoff_t		first_unmap_block;
1416 	int			error = 0;
1417 
1418 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1419 	if (atomic_read(&VFS_I(ip)->i_count))
1420 		xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
1421 	ASSERT(new_size <= XFS_ISIZE(ip));
1422 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1423 	ASSERT(ip->i_itemp != NULL);
1424 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1425 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1426 
1427 	trace_xfs_itruncate_extents_start(ip, new_size);
1428 
1429 	flags |= xfs_bmapi_aflag(whichfork);
1430 
1431 	/*
1432 	 * Since it is possible for space to become allocated beyond
1433 	 * the end of the file (in a crash where the space is allocated
1434 	 * but the inode size is not yet updated), simply remove any
1435 	 * blocks which show up between the new EOF and the maximum
1436 	 * possible file size.
1437 	 *
1438 	 * We have to free all the blocks to the bmbt maximum offset, even if
1439 	 * the page cache can't scale that far.
1440 	 */
1441 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1442 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1443 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1444 		return 0;
1445 	}
1446 
1447 	error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1448 			XFS_MAX_FILEOFF);
1449 	if (error)
1450 		goto out;
1451 
1452 	if (whichfork == XFS_DATA_FORK) {
1453 		/* Remove all pending CoW reservations. */
1454 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1455 				first_unmap_block, XFS_MAX_FILEOFF, true);
1456 		if (error)
1457 			goto out;
1458 
1459 		xfs_itruncate_clear_reflink_flags(ip);
1460 	}
1461 
1462 	/*
1463 	 * Always re-log the inode so that our permanent transaction can keep
1464 	 * on rolling it forward in the log.
1465 	 */
1466 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1467 
1468 	trace_xfs_itruncate_extents_end(ip, new_size);
1469 
1470 out:
1471 	*tpp = tp;
1472 	return error;
1473 }
1474 
1475 int
1476 xfs_release(
1477 	xfs_inode_t	*ip)
1478 {
1479 	xfs_mount_t	*mp = ip->i_mount;
1480 	int		error = 0;
1481 
1482 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1483 		return 0;
1484 
1485 	/* If this is a read-only mount, don't do this (would generate I/O) */
1486 	if (xfs_is_readonly(mp))
1487 		return 0;
1488 
1489 	if (!xfs_is_shutdown(mp)) {
1490 		int truncated;
1491 
1492 		/*
1493 		 * If we previously truncated this file and removed old data
1494 		 * in the process, we want to initiate "early" writeout on
1495 		 * the last close.  This is an attempt to combat the notorious
1496 		 * NULL files problem which is particularly noticeable from a
1497 		 * truncate down, buffered (re-)write (delalloc), followed by
1498 		 * a crash.  What we are effectively doing here is
1499 		 * significantly reducing the time window where we'd otherwise
1500 		 * be exposed to that problem.
1501 		 */
1502 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1503 		if (truncated) {
1504 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1505 			if (ip->i_delayed_blks > 0) {
1506 				error = filemap_flush(VFS_I(ip)->i_mapping);
1507 				if (error)
1508 					return error;
1509 			}
1510 		}
1511 	}
1512 
1513 	if (VFS_I(ip)->i_nlink == 0)
1514 		return 0;
1515 
1516 	/*
1517 	 * If we can't get the iolock just skip truncating the blocks past EOF
1518 	 * because we could deadlock with the mmap_lock otherwise. We'll get
1519 	 * another chance to drop them once the last reference to the inode is
1520 	 * dropped, so we'll never leak blocks permanently.
1521 	 */
1522 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1523 		return 0;
1524 
1525 	if (xfs_can_free_eofblocks(ip, false)) {
1526 		/*
1527 		 * Check if the inode is being opened, written and closed
1528 		 * frequently and we have delayed allocation blocks outstanding
1529 		 * (e.g. streaming writes from the NFS server), truncating the
1530 		 * blocks past EOF will cause fragmentation to occur.
1531 		 *
1532 		 * In this case don't do the truncation, but we have to be
1533 		 * careful how we detect this case. Blocks beyond EOF show up as
1534 		 * i_delayed_blks even when the inode is clean, so we need to
1535 		 * truncate them away first before checking for a dirty release.
1536 		 * Hence on the first dirty close we will still remove the
1537 		 * speculative allocation, but after that we will leave it in
1538 		 * place.
1539 		 */
1540 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1541 			goto out_unlock;
1542 
1543 		error = xfs_free_eofblocks(ip);
1544 		if (error)
1545 			goto out_unlock;
1546 
1547 		/* delalloc blocks after truncation means it really is dirty */
1548 		if (ip->i_delayed_blks)
1549 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1550 	}
1551 
1552 out_unlock:
1553 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1554 	return error;
1555 }
1556 
1557 /*
1558  * xfs_inactive_truncate
1559  *
1560  * Called to perform a truncate when an inode becomes unlinked.
1561  */
1562 STATIC int
1563 xfs_inactive_truncate(
1564 	struct xfs_inode *ip)
1565 {
1566 	struct xfs_mount	*mp = ip->i_mount;
1567 	struct xfs_trans	*tp;
1568 	int			error;
1569 
1570 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1571 	if (error) {
1572 		ASSERT(xfs_is_shutdown(mp));
1573 		return error;
1574 	}
1575 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1576 	xfs_trans_ijoin(tp, ip, 0);
1577 
1578 	/*
1579 	 * Log the inode size first to prevent stale data exposure in the event
1580 	 * of a system crash before the truncate completes. See the related
1581 	 * comment in xfs_vn_setattr_size() for details.
1582 	 */
1583 	ip->i_disk_size = 0;
1584 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1585 
1586 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1587 	if (error)
1588 		goto error_trans_cancel;
1589 
1590 	ASSERT(ip->i_df.if_nextents == 0);
1591 
1592 	error = xfs_trans_commit(tp);
1593 	if (error)
1594 		goto error_unlock;
1595 
1596 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1597 	return 0;
1598 
1599 error_trans_cancel:
1600 	xfs_trans_cancel(tp);
1601 error_unlock:
1602 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1603 	return error;
1604 }
1605 
1606 /*
1607  * xfs_inactive_ifree()
1608  *
1609  * Perform the inode free when an inode is unlinked.
1610  */
1611 STATIC int
1612 xfs_inactive_ifree(
1613 	struct xfs_inode *ip)
1614 {
1615 	struct xfs_mount	*mp = ip->i_mount;
1616 	struct xfs_trans	*tp;
1617 	int			error;
1618 
1619 	/*
1620 	 * We try to use a per-AG reservation for any block needed by the finobt
1621 	 * tree, but as the finobt feature predates the per-AG reservation
1622 	 * support a degraded file system might not have enough space for the
1623 	 * reservation at mount time.  In that case try to dip into the reserved
1624 	 * pool and pray.
1625 	 *
1626 	 * Send a warning if the reservation does happen to fail, as the inode
1627 	 * now remains allocated and sits on the unlinked list until the fs is
1628 	 * repaired.
1629 	 */
1630 	if (unlikely(mp->m_finobt_nores)) {
1631 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1632 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1633 				&tp);
1634 	} else {
1635 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1636 	}
1637 	if (error) {
1638 		if (error == -ENOSPC) {
1639 			xfs_warn_ratelimited(mp,
1640 			"Failed to remove inode(s) from unlinked list. "
1641 			"Please free space, unmount and run xfs_repair.");
1642 		} else {
1643 			ASSERT(xfs_is_shutdown(mp));
1644 		}
1645 		return error;
1646 	}
1647 
1648 	/*
1649 	 * We do not hold the inode locked across the entire rolling transaction
1650 	 * here. We only need to hold it for the first transaction that
1651 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1652 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1653 	 * here breaks the relationship between cluster buffer invalidation and
1654 	 * stale inode invalidation on cluster buffer item journal commit
1655 	 * completion, and can result in leaving dirty stale inodes hanging
1656 	 * around in memory.
1657 	 *
1658 	 * We have no need for serialising this inode operation against other
1659 	 * operations - we freed the inode and hence reallocation is required
1660 	 * and that will serialise on reallocating the space the deferops need
1661 	 * to free. Hence we can unlock the inode on the first commit of
1662 	 * the transaction rather than roll it right through the deferops. This
1663 	 * avoids relogging the XFS_ISTALE inode.
1664 	 *
1665 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1666 	 * by asserting that the inode is still locked when it returns.
1667 	 */
1668 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1669 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1670 
1671 	error = xfs_ifree(tp, ip);
1672 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1673 	if (error) {
1674 		/*
1675 		 * If we fail to free the inode, shut down.  The cancel
1676 		 * might do that, we need to make sure.  Otherwise the
1677 		 * inode might be lost for a long time or forever.
1678 		 */
1679 		if (!xfs_is_shutdown(mp)) {
1680 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1681 				__func__, error);
1682 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1683 		}
1684 		xfs_trans_cancel(tp);
1685 		return error;
1686 	}
1687 
1688 	/*
1689 	 * Credit the quota account(s). The inode is gone.
1690 	 */
1691 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1692 
1693 	return xfs_trans_commit(tp);
1694 }
1695 
1696 /*
1697  * Returns true if we need to update the on-disk metadata before we can free
1698  * the memory used by this inode.  Updates include freeing post-eof
1699  * preallocations; freeing COW staging extents; and marking the inode free in
1700  * the inobt if it is on the unlinked list.
1701  */
1702 bool
1703 xfs_inode_needs_inactive(
1704 	struct xfs_inode	*ip)
1705 {
1706 	struct xfs_mount	*mp = ip->i_mount;
1707 	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1708 
1709 	/*
1710 	 * If the inode is already free, then there can be nothing
1711 	 * to clean up here.
1712 	 */
1713 	if (VFS_I(ip)->i_mode == 0)
1714 		return false;
1715 
1716 	/*
1717 	 * If this is a read-only mount, don't do this (would generate I/O)
1718 	 * unless we're in log recovery and cleaning the iunlinked list.
1719 	 */
1720 	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1721 		return false;
1722 
1723 	/* If the log isn't running, push inodes straight to reclaim. */
1724 	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1725 		return false;
1726 
1727 	/* Metadata inodes require explicit resource cleanup. */
1728 	if (xfs_is_metadata_inode(ip))
1729 		return false;
1730 
1731 	/* Want to clean out the cow blocks if there are any. */
1732 	if (cow_ifp && cow_ifp->if_bytes > 0)
1733 		return true;
1734 
1735 	/* Unlinked files must be freed. */
1736 	if (VFS_I(ip)->i_nlink == 0)
1737 		return true;
1738 
1739 	/*
1740 	 * This file isn't being freed, so check if there are post-eof blocks
1741 	 * to free.  @force is true because we are evicting an inode from the
1742 	 * cache.  Post-eof blocks must be freed, lest we end up with broken
1743 	 * free space accounting.
1744 	 *
1745 	 * Note: don't bother with iolock here since lockdep complains about
1746 	 * acquiring it in reclaim context. We have the only reference to the
1747 	 * inode at this point anyways.
1748 	 */
1749 	return xfs_can_free_eofblocks(ip, true);
1750 }
1751 
1752 /*
1753  * Save health status somewhere, if we're dumping an inode with uncorrected
1754  * errors and online repair isn't running.
1755  */
1756 static inline void
1757 xfs_inactive_health(
1758 	struct xfs_inode	*ip)
1759 {
1760 	struct xfs_mount	*mp = ip->i_mount;
1761 	struct xfs_perag	*pag;
1762 	unsigned int		sick;
1763 	unsigned int		checked;
1764 
1765 	xfs_inode_measure_sickness(ip, &sick, &checked);
1766 	if (!sick)
1767 		return;
1768 
1769 	trace_xfs_inode_unfixed_corruption(ip, sick);
1770 
1771 	if (sick & XFS_SICK_INO_FORGET)
1772 		return;
1773 
1774 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1775 	if (!pag) {
1776 		/* There had better still be a perag structure! */
1777 		ASSERT(0);
1778 		return;
1779 	}
1780 
1781 	xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
1782 	xfs_perag_put(pag);
1783 }
1784 
1785 /*
1786  * xfs_inactive
1787  *
1788  * This is called when the vnode reference count for the vnode
1789  * goes to zero.  If the file has been unlinked, then it must
1790  * now be truncated.  Also, we clear all of the read-ahead state
1791  * kept for the inode here since the file is now closed.
1792  */
1793 int
1794 xfs_inactive(
1795 	xfs_inode_t	*ip)
1796 {
1797 	struct xfs_mount	*mp;
1798 	int			error = 0;
1799 	int			truncate = 0;
1800 
1801 	/*
1802 	 * If the inode is already free, then there can be nothing
1803 	 * to clean up here.
1804 	 */
1805 	if (VFS_I(ip)->i_mode == 0) {
1806 		ASSERT(ip->i_df.if_broot_bytes == 0);
1807 		goto out;
1808 	}
1809 
1810 	mp = ip->i_mount;
1811 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1812 
1813 	xfs_inactive_health(ip);
1814 
1815 	/*
1816 	 * If this is a read-only mount, don't do this (would generate I/O)
1817 	 * unless we're in log recovery and cleaning the iunlinked list.
1818 	 */
1819 	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1820 		goto out;
1821 
1822 	/* Metadata inodes require explicit resource cleanup. */
1823 	if (xfs_is_metadata_inode(ip))
1824 		goto out;
1825 
1826 	/* Try to clean out the cow blocks if there are any. */
1827 	if (xfs_inode_has_cow_data(ip))
1828 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1829 
1830 	if (VFS_I(ip)->i_nlink != 0) {
1831 		/*
1832 		 * force is true because we are evicting an inode from the
1833 		 * cache. Post-eof blocks must be freed, lest we end up with
1834 		 * broken free space accounting.
1835 		 *
1836 		 * Note: don't bother with iolock here since lockdep complains
1837 		 * about acquiring it in reclaim context. We have the only
1838 		 * reference to the inode at this point anyways.
1839 		 */
1840 		if (xfs_can_free_eofblocks(ip, true))
1841 			error = xfs_free_eofblocks(ip);
1842 
1843 		goto out;
1844 	}
1845 
1846 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1847 	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1848 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1849 		truncate = 1;
1850 
1851 	if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1852 		/*
1853 		 * If this inode is being inactivated during a quotacheck and
1854 		 * has not yet been scanned by quotacheck, we /must/ remove
1855 		 * the dquots from the inode before inactivation changes the
1856 		 * block and inode counts.  Most probably this is a result of
1857 		 * reloading the incore iunlinked list to purge unrecovered
1858 		 * unlinked inodes.
1859 		 */
1860 		xfs_qm_dqdetach(ip);
1861 	} else {
1862 		error = xfs_qm_dqattach(ip);
1863 		if (error)
1864 			goto out;
1865 	}
1866 
1867 	if (S_ISLNK(VFS_I(ip)->i_mode))
1868 		error = xfs_inactive_symlink(ip);
1869 	else if (truncate)
1870 		error = xfs_inactive_truncate(ip);
1871 	if (error)
1872 		goto out;
1873 
1874 	/*
1875 	 * If there are attributes associated with the file then blow them away
1876 	 * now.  The code calls a routine that recursively deconstructs the
1877 	 * attribute fork. If also blows away the in-core attribute fork.
1878 	 */
1879 	if (xfs_inode_has_attr_fork(ip)) {
1880 		error = xfs_attr_inactive(ip);
1881 		if (error)
1882 			goto out;
1883 	}
1884 
1885 	ASSERT(ip->i_forkoff == 0);
1886 
1887 	/*
1888 	 * Free the inode.
1889 	 */
1890 	error = xfs_inactive_ifree(ip);
1891 
1892 out:
1893 	/*
1894 	 * We're done making metadata updates for this inode, so we can release
1895 	 * the attached dquots.
1896 	 */
1897 	xfs_qm_dqdetach(ip);
1898 	return error;
1899 }
1900 
1901 /*
1902  * In-Core Unlinked List Lookups
1903  * =============================
1904  *
1905  * Every inode is supposed to be reachable from some other piece of metadata
1906  * with the exception of the root directory.  Inodes with a connection to a
1907  * file descriptor but not linked from anywhere in the on-disk directory tree
1908  * are collectively known as unlinked inodes, though the filesystem itself
1909  * maintains links to these inodes so that on-disk metadata are consistent.
1910  *
1911  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1912  * header contains a number of buckets that point to an inode, and each inode
1913  * record has a pointer to the next inode in the hash chain.  This
1914  * singly-linked list causes scaling problems in the iunlink remove function
1915  * because we must walk that list to find the inode that points to the inode
1916  * being removed from the unlinked hash bucket list.
1917  *
1918  * Hence we keep an in-memory double linked list to link each inode on an
1919  * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1920  * based lists would require having 64 list heads in the perag, one for each
1921  * list. This is expensive in terms of memory (think millions of AGs) and cache
1922  * misses on lookups. Instead, use the fact that inodes on the unlinked list
1923  * must be referenced at the VFS level to keep them on the list and hence we
1924  * have an existence guarantee for inodes on the unlinked list.
1925  *
1926  * Given we have an existence guarantee, we can use lockless inode cache lookups
1927  * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1928  * for the double linked unlinked list, and we don't need any extra locking to
1929  * keep the list safe as all manipulations are done under the AGI buffer lock.
1930  * Keeping the list up to date does not require memory allocation, just finding
1931  * the XFS inode and updating the next/prev unlinked list aginos.
1932  */
1933 
1934 /*
1935  * Find an inode on the unlinked list. This does not take references to the
1936  * inode as we have existence guarantees by holding the AGI buffer lock and that
1937  * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1938  * don't find the inode in cache, then let the caller handle the situation.
1939  */
1940 static struct xfs_inode *
1941 xfs_iunlink_lookup(
1942 	struct xfs_perag	*pag,
1943 	xfs_agino_t		agino)
1944 {
1945 	struct xfs_inode	*ip;
1946 
1947 	rcu_read_lock();
1948 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1949 	if (!ip) {
1950 		/* Caller can handle inode not being in memory. */
1951 		rcu_read_unlock();
1952 		return NULL;
1953 	}
1954 
1955 	/*
1956 	 * Inode in RCU freeing limbo should not happen.  Warn about this and
1957 	 * let the caller handle the failure.
1958 	 */
1959 	if (WARN_ON_ONCE(!ip->i_ino)) {
1960 		rcu_read_unlock();
1961 		return NULL;
1962 	}
1963 	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1964 	rcu_read_unlock();
1965 	return ip;
1966 }
1967 
1968 /*
1969  * Update the prev pointer of the next agino.  Returns -ENOLINK if the inode
1970  * is not in cache.
1971  */
1972 static int
1973 xfs_iunlink_update_backref(
1974 	struct xfs_perag	*pag,
1975 	xfs_agino_t		prev_agino,
1976 	xfs_agino_t		next_agino)
1977 {
1978 	struct xfs_inode	*ip;
1979 
1980 	/* No update necessary if we are at the end of the list. */
1981 	if (next_agino == NULLAGINO)
1982 		return 0;
1983 
1984 	ip = xfs_iunlink_lookup(pag, next_agino);
1985 	if (!ip)
1986 		return -ENOLINK;
1987 
1988 	ip->i_prev_unlinked = prev_agino;
1989 	return 0;
1990 }
1991 
1992 /*
1993  * Point the AGI unlinked bucket at an inode and log the results.  The caller
1994  * is responsible for validating the old value.
1995  */
1996 STATIC int
1997 xfs_iunlink_update_bucket(
1998 	struct xfs_trans	*tp,
1999 	struct xfs_perag	*pag,
2000 	struct xfs_buf		*agibp,
2001 	unsigned int		bucket_index,
2002 	xfs_agino_t		new_agino)
2003 {
2004 	struct xfs_agi		*agi = agibp->b_addr;
2005 	xfs_agino_t		old_value;
2006 	int			offset;
2007 
2008 	ASSERT(xfs_verify_agino_or_null(pag, new_agino));
2009 
2010 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2011 	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
2012 			old_value, new_agino);
2013 
2014 	/*
2015 	 * We should never find the head of the list already set to the value
2016 	 * passed in because either we're adding or removing ourselves from the
2017 	 * head of the list.
2018 	 */
2019 	if (old_value == new_agino) {
2020 		xfs_buf_mark_corrupt(agibp);
2021 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2022 		return -EFSCORRUPTED;
2023 	}
2024 
2025 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2026 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2027 			(sizeof(xfs_agino_t) * bucket_index);
2028 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2029 	return 0;
2030 }
2031 
2032 /*
2033  * Load the inode @next_agino into the cache and set its prev_unlinked pointer
2034  * to @prev_agino.  Caller must hold the AGI to synchronize with other changes
2035  * to the unlinked list.
2036  */
2037 STATIC int
2038 xfs_iunlink_reload_next(
2039 	struct xfs_trans	*tp,
2040 	struct xfs_buf		*agibp,
2041 	xfs_agino_t		prev_agino,
2042 	xfs_agino_t		next_agino)
2043 {
2044 	struct xfs_perag	*pag = agibp->b_pag;
2045 	struct xfs_mount	*mp = pag->pag_mount;
2046 	struct xfs_inode	*next_ip = NULL;
2047 	xfs_ino_t		ino;
2048 	int			error;
2049 
2050 	ASSERT(next_agino != NULLAGINO);
2051 
2052 #ifdef DEBUG
2053 	rcu_read_lock();
2054 	next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
2055 	ASSERT(next_ip == NULL);
2056 	rcu_read_unlock();
2057 #endif
2058 
2059 	xfs_info_ratelimited(mp,
2060  "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.",
2061 			next_agino, pag->pag_agno);
2062 
2063 	/*
2064 	 * Use an untrusted lookup just to be cautious in case the AGI has been
2065 	 * corrupted and now points at a free inode.  That shouldn't happen,
2066 	 * but we'd rather shut down now since we're already running in a weird
2067 	 * situation.
2068 	 */
2069 	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino);
2070 	error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip);
2071 	if (error) {
2072 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2073 		return error;
2074 	}
2075 
2076 	/* If this is not an unlinked inode, something is very wrong. */
2077 	if (VFS_I(next_ip)->i_nlink != 0) {
2078 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2079 		error = -EFSCORRUPTED;
2080 		goto rele;
2081 	}
2082 
2083 	next_ip->i_prev_unlinked = prev_agino;
2084 	trace_xfs_iunlink_reload_next(next_ip);
2085 rele:
2086 	ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
2087 	if (xfs_is_quotacheck_running(mp) && next_ip)
2088 		xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
2089 	xfs_irele(next_ip);
2090 	return error;
2091 }
2092 
2093 static int
2094 xfs_iunlink_insert_inode(
2095 	struct xfs_trans	*tp,
2096 	struct xfs_perag	*pag,
2097 	struct xfs_buf		*agibp,
2098 	struct xfs_inode	*ip)
2099 {
2100 	struct xfs_mount	*mp = tp->t_mountp;
2101 	struct xfs_agi		*agi = agibp->b_addr;
2102 	xfs_agino_t		next_agino;
2103 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2104 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2105 	int			error;
2106 
2107 	/*
2108 	 * Get the index into the agi hash table for the list this inode will
2109 	 * go on.  Make sure the pointer isn't garbage and that this inode
2110 	 * isn't already on the list.
2111 	 */
2112 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2113 	if (next_agino == agino ||
2114 	    !xfs_verify_agino_or_null(pag, next_agino)) {
2115 		xfs_buf_mark_corrupt(agibp);
2116 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2117 		return -EFSCORRUPTED;
2118 	}
2119 
2120 	/*
2121 	 * Update the prev pointer in the next inode to point back to this
2122 	 * inode.
2123 	 */
2124 	error = xfs_iunlink_update_backref(pag, agino, next_agino);
2125 	if (error == -ENOLINK)
2126 		error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino);
2127 	if (error)
2128 		return error;
2129 
2130 	if (next_agino != NULLAGINO) {
2131 		/*
2132 		 * There is already another inode in the bucket, so point this
2133 		 * inode to the current head of the list.
2134 		 */
2135 		error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
2136 		if (error)
2137 			return error;
2138 		ip->i_next_unlinked = next_agino;
2139 	}
2140 
2141 	/* Point the head of the list to point to this inode. */
2142 	ip->i_prev_unlinked = NULLAGINO;
2143 	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2144 }
2145 
2146 /*
2147  * This is called when the inode's link count has gone to 0 or we are creating
2148  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2149  *
2150  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2151  * list when the inode is freed.
2152  */
2153 STATIC int
2154 xfs_iunlink(
2155 	struct xfs_trans	*tp,
2156 	struct xfs_inode	*ip)
2157 {
2158 	struct xfs_mount	*mp = tp->t_mountp;
2159 	struct xfs_perag	*pag;
2160 	struct xfs_buf		*agibp;
2161 	int			error;
2162 
2163 	ASSERT(VFS_I(ip)->i_nlink == 0);
2164 	ASSERT(VFS_I(ip)->i_mode != 0);
2165 	trace_xfs_iunlink(ip);
2166 
2167 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2168 
2169 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2170 	error = xfs_read_agi(pag, tp, &agibp);
2171 	if (error)
2172 		goto out;
2173 
2174 	error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
2175 out:
2176 	xfs_perag_put(pag);
2177 	return error;
2178 }
2179 
2180 static int
2181 xfs_iunlink_remove_inode(
2182 	struct xfs_trans	*tp,
2183 	struct xfs_perag	*pag,
2184 	struct xfs_buf		*agibp,
2185 	struct xfs_inode	*ip)
2186 {
2187 	struct xfs_mount	*mp = tp->t_mountp;
2188 	struct xfs_agi		*agi = agibp->b_addr;
2189 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2190 	xfs_agino_t		head_agino;
2191 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2192 	int			error;
2193 
2194 	trace_xfs_iunlink_remove(ip);
2195 
2196 	/*
2197 	 * Get the index into the agi hash table for the list this inode will
2198 	 * go on.  Make sure the head pointer isn't garbage.
2199 	 */
2200 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2201 	if (!xfs_verify_agino(pag, head_agino)) {
2202 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2203 				agi, sizeof(*agi));
2204 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2205 		return -EFSCORRUPTED;
2206 	}
2207 
2208 	/*
2209 	 * Set our inode's next_unlinked pointer to NULL and then return
2210 	 * the old pointer value so that we can update whatever was previous
2211 	 * to us in the list to point to whatever was next in the list.
2212 	 */
2213 	error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2214 	if (error)
2215 		return error;
2216 
2217 	/*
2218 	 * Update the prev pointer in the next inode to point back to previous
2219 	 * inode in the chain.
2220 	 */
2221 	error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2222 			ip->i_next_unlinked);
2223 	if (error == -ENOLINK)
2224 		error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked,
2225 				ip->i_next_unlinked);
2226 	if (error)
2227 		return error;
2228 
2229 	if (head_agino != agino) {
2230 		struct xfs_inode	*prev_ip;
2231 
2232 		prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2233 		if (!prev_ip) {
2234 			xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
2235 			return -EFSCORRUPTED;
2236 		}
2237 
2238 		error = xfs_iunlink_log_inode(tp, prev_ip, pag,
2239 				ip->i_next_unlinked);
2240 		prev_ip->i_next_unlinked = ip->i_next_unlinked;
2241 	} else {
2242 		/* Point the head of the list to the next unlinked inode. */
2243 		error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2244 				ip->i_next_unlinked);
2245 	}
2246 
2247 	ip->i_next_unlinked = NULLAGINO;
2248 	ip->i_prev_unlinked = 0;
2249 	return error;
2250 }
2251 
2252 /*
2253  * Pull the on-disk inode from the AGI unlinked list.
2254  */
2255 STATIC int
2256 xfs_iunlink_remove(
2257 	struct xfs_trans	*tp,
2258 	struct xfs_perag	*pag,
2259 	struct xfs_inode	*ip)
2260 {
2261 	struct xfs_buf		*agibp;
2262 	int			error;
2263 
2264 	trace_xfs_iunlink_remove(ip);
2265 
2266 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2267 	error = xfs_read_agi(pag, tp, &agibp);
2268 	if (error)
2269 		return error;
2270 
2271 	return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
2272 }
2273 
2274 /*
2275  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2276  * mark it stale. We should only find clean inodes in this lookup that aren't
2277  * already stale.
2278  */
2279 static void
2280 xfs_ifree_mark_inode_stale(
2281 	struct xfs_perag	*pag,
2282 	struct xfs_inode	*free_ip,
2283 	xfs_ino_t		inum)
2284 {
2285 	struct xfs_mount	*mp = pag->pag_mount;
2286 	struct xfs_inode_log_item *iip;
2287 	struct xfs_inode	*ip;
2288 
2289 retry:
2290 	rcu_read_lock();
2291 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2292 
2293 	/* Inode not in memory, nothing to do */
2294 	if (!ip) {
2295 		rcu_read_unlock();
2296 		return;
2297 	}
2298 
2299 	/*
2300 	 * because this is an RCU protected lookup, we could find a recently
2301 	 * freed or even reallocated inode during the lookup. We need to check
2302 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2303 	 * valid, the wrong inode or stale.
2304 	 */
2305 	spin_lock(&ip->i_flags_lock);
2306 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2307 		goto out_iflags_unlock;
2308 
2309 	/*
2310 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2311 	 * other inodes that we did not find in the list attached to the buffer
2312 	 * and are not already marked stale. If we can't lock it, back off and
2313 	 * retry.
2314 	 */
2315 	if (ip != free_ip) {
2316 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2317 			spin_unlock(&ip->i_flags_lock);
2318 			rcu_read_unlock();
2319 			delay(1);
2320 			goto retry;
2321 		}
2322 	}
2323 	ip->i_flags |= XFS_ISTALE;
2324 
2325 	/*
2326 	 * If the inode is flushing, it is already attached to the buffer.  All
2327 	 * we needed to do here is mark the inode stale so buffer IO completion
2328 	 * will remove it from the AIL.
2329 	 */
2330 	iip = ip->i_itemp;
2331 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2332 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2333 		ASSERT(iip->ili_last_fields);
2334 		goto out_iunlock;
2335 	}
2336 
2337 	/*
2338 	 * Inodes not attached to the buffer can be released immediately.
2339 	 * Everything else has to go through xfs_iflush_abort() on journal
2340 	 * commit as the flock synchronises removal of the inode from the
2341 	 * cluster buffer against inode reclaim.
2342 	 */
2343 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2344 		goto out_iunlock;
2345 
2346 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2347 	spin_unlock(&ip->i_flags_lock);
2348 	rcu_read_unlock();
2349 
2350 	/* we have a dirty inode in memory that has not yet been flushed. */
2351 	spin_lock(&iip->ili_lock);
2352 	iip->ili_last_fields = iip->ili_fields;
2353 	iip->ili_fields = 0;
2354 	iip->ili_fsync_fields = 0;
2355 	spin_unlock(&iip->ili_lock);
2356 	ASSERT(iip->ili_last_fields);
2357 
2358 	if (ip != free_ip)
2359 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2360 	return;
2361 
2362 out_iunlock:
2363 	if (ip != free_ip)
2364 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2365 out_iflags_unlock:
2366 	spin_unlock(&ip->i_flags_lock);
2367 	rcu_read_unlock();
2368 }
2369 
2370 /*
2371  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2372  * inodes that are in memory - they all must be marked stale and attached to
2373  * the cluster buffer.
2374  */
2375 static int
2376 xfs_ifree_cluster(
2377 	struct xfs_trans	*tp,
2378 	struct xfs_perag	*pag,
2379 	struct xfs_inode	*free_ip,
2380 	struct xfs_icluster	*xic)
2381 {
2382 	struct xfs_mount	*mp = free_ip->i_mount;
2383 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2384 	struct xfs_buf		*bp;
2385 	xfs_daddr_t		blkno;
2386 	xfs_ino_t		inum = xic->first_ino;
2387 	int			nbufs;
2388 	int			i, j;
2389 	int			ioffset;
2390 	int			error;
2391 
2392 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2393 
2394 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2395 		/*
2396 		 * The allocation bitmap tells us which inodes of the chunk were
2397 		 * physically allocated. Skip the cluster if an inode falls into
2398 		 * a sparse region.
2399 		 */
2400 		ioffset = inum - xic->first_ino;
2401 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2402 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2403 			continue;
2404 		}
2405 
2406 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2407 					 XFS_INO_TO_AGBNO(mp, inum));
2408 
2409 		/*
2410 		 * We obtain and lock the backing buffer first in the process
2411 		 * here to ensure dirty inodes attached to the buffer remain in
2412 		 * the flushing state while we mark them stale.
2413 		 *
2414 		 * If we scan the in-memory inodes first, then buffer IO can
2415 		 * complete before we get a lock on it, and hence we may fail
2416 		 * to mark all the active inodes on the buffer stale.
2417 		 */
2418 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2419 				mp->m_bsize * igeo->blocks_per_cluster,
2420 				XBF_UNMAPPED, &bp);
2421 		if (error)
2422 			return error;
2423 
2424 		/*
2425 		 * This buffer may not have been correctly initialised as we
2426 		 * didn't read it from disk. That's not important because we are
2427 		 * only using to mark the buffer as stale in the log, and to
2428 		 * attach stale cached inodes on it. That means it will never be
2429 		 * dispatched for IO. If it is, we want to know about it, and we
2430 		 * want it to fail. We can acheive this by adding a write
2431 		 * verifier to the buffer.
2432 		 */
2433 		bp->b_ops = &xfs_inode_buf_ops;
2434 
2435 		/*
2436 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2437 		 * too. This requires lookups, and will skip inodes that we've
2438 		 * already marked XFS_ISTALE.
2439 		 */
2440 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2441 			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2442 
2443 		xfs_trans_stale_inode_buf(tp, bp);
2444 		xfs_trans_binval(tp, bp);
2445 	}
2446 	return 0;
2447 }
2448 
2449 /*
2450  * This is called to return an inode to the inode free list.  The inode should
2451  * already be truncated to 0 length and have no pages associated with it.  This
2452  * routine also assumes that the inode is already a part of the transaction.
2453  *
2454  * The on-disk copy of the inode will have been added to the list of unlinked
2455  * inodes in the AGI. We need to remove the inode from that list atomically with
2456  * respect to freeing it here.
2457  */
2458 int
2459 xfs_ifree(
2460 	struct xfs_trans	*tp,
2461 	struct xfs_inode	*ip)
2462 {
2463 	struct xfs_mount	*mp = ip->i_mount;
2464 	struct xfs_perag	*pag;
2465 	struct xfs_icluster	xic = { 0 };
2466 	struct xfs_inode_log_item *iip = ip->i_itemp;
2467 	int			error;
2468 
2469 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
2470 	ASSERT(VFS_I(ip)->i_nlink == 0);
2471 	ASSERT(ip->i_df.if_nextents == 0);
2472 	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2473 	ASSERT(ip->i_nblocks == 0);
2474 
2475 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2476 
2477 	/*
2478 	 * Free the inode first so that we guarantee that the AGI lock is going
2479 	 * to be taken before we remove the inode from the unlinked list. This
2480 	 * makes the AGI lock -> unlinked list modification order the same as
2481 	 * used in O_TMPFILE creation.
2482 	 */
2483 	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2484 	if (error)
2485 		goto out;
2486 
2487 	error = xfs_iunlink_remove(tp, pag, ip);
2488 	if (error)
2489 		goto out;
2490 
2491 	/*
2492 	 * Free any local-format data sitting around before we reset the
2493 	 * data fork to extents format.  Note that the attr fork data has
2494 	 * already been freed by xfs_attr_inactive.
2495 	 */
2496 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2497 		kfree(ip->i_df.if_data);
2498 		ip->i_df.if_data = NULL;
2499 		ip->i_df.if_bytes = 0;
2500 	}
2501 
2502 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2503 	ip->i_diflags = 0;
2504 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2505 	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2506 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2507 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2508 		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2509 
2510 	/* Don't attempt to replay owner changes for a deleted inode */
2511 	spin_lock(&iip->ili_lock);
2512 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2513 	spin_unlock(&iip->ili_lock);
2514 
2515 	/*
2516 	 * Bump the generation count so no one will be confused
2517 	 * by reincarnations of this inode.
2518 	 */
2519 	VFS_I(ip)->i_generation++;
2520 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2521 
2522 	if (xic.deleted)
2523 		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2524 out:
2525 	xfs_perag_put(pag);
2526 	return error;
2527 }
2528 
2529 /*
2530  * This is called to unpin an inode.  The caller must have the inode locked
2531  * in at least shared mode so that the buffer cannot be subsequently pinned
2532  * once someone is waiting for it to be unpinned.
2533  */
2534 static void
2535 xfs_iunpin(
2536 	struct xfs_inode	*ip)
2537 {
2538 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
2539 
2540 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2541 
2542 	/* Give the log a push to start the unpinning I/O */
2543 	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2544 
2545 }
2546 
2547 static void
2548 __xfs_iunpin_wait(
2549 	struct xfs_inode	*ip)
2550 {
2551 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2552 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2553 
2554 	xfs_iunpin(ip);
2555 
2556 	do {
2557 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2558 		if (xfs_ipincount(ip))
2559 			io_schedule();
2560 	} while (xfs_ipincount(ip));
2561 	finish_wait(wq, &wait.wq_entry);
2562 }
2563 
2564 void
2565 xfs_iunpin_wait(
2566 	struct xfs_inode	*ip)
2567 {
2568 	if (xfs_ipincount(ip))
2569 		__xfs_iunpin_wait(ip);
2570 }
2571 
2572 /*
2573  * Removing an inode from the namespace involves removing the directory entry
2574  * and dropping the link count on the inode. Removing the directory entry can
2575  * result in locking an AGF (directory blocks were freed) and removing a link
2576  * count can result in placing the inode on an unlinked list which results in
2577  * locking an AGI.
2578  *
2579  * The big problem here is that we have an ordering constraint on AGF and AGI
2580  * locking - inode allocation locks the AGI, then can allocate a new extent for
2581  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2582  * removes the inode from the unlinked list, requiring that we lock the AGI
2583  * first, and then freeing the inode can result in an inode chunk being freed
2584  * and hence freeing disk space requiring that we lock an AGF.
2585  *
2586  * Hence the ordering that is imposed by other parts of the code is AGI before
2587  * AGF. This means we cannot remove the directory entry before we drop the inode
2588  * reference count and put it on the unlinked list as this results in a lock
2589  * order of AGF then AGI, and this can deadlock against inode allocation and
2590  * freeing. Therefore we must drop the link counts before we remove the
2591  * directory entry.
2592  *
2593  * This is still safe from a transactional point of view - it is not until we
2594  * get to xfs_defer_finish() that we have the possibility of multiple
2595  * transactions in this operation. Hence as long as we remove the directory
2596  * entry and drop the link count in the first transaction of the remove
2597  * operation, there are no transactional constraints on the ordering here.
2598  */
2599 int
2600 xfs_remove(
2601 	xfs_inode_t             *dp,
2602 	struct xfs_name		*name,
2603 	xfs_inode_t		*ip)
2604 {
2605 	xfs_mount_t		*mp = dp->i_mount;
2606 	xfs_trans_t             *tp = NULL;
2607 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2608 	int			dontcare;
2609 	int                     error = 0;
2610 	uint			resblks;
2611 
2612 	trace_xfs_remove(dp, name);
2613 
2614 	if (xfs_is_shutdown(mp))
2615 		return -EIO;
2616 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
2617 		return -EIO;
2618 
2619 	error = xfs_qm_dqattach(dp);
2620 	if (error)
2621 		goto std_return;
2622 
2623 	error = xfs_qm_dqattach(ip);
2624 	if (error)
2625 		goto std_return;
2626 
2627 	/*
2628 	 * We try to get the real space reservation first, allowing for
2629 	 * directory btree deletion(s) implying possible bmap insert(s).  If we
2630 	 * can't get the space reservation then we use 0 instead, and avoid the
2631 	 * bmap btree insert(s) in the directory code by, if the bmap insert
2632 	 * tries to happen, instead trimming the LAST block from the directory.
2633 	 *
2634 	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2635 	 * the directory code can handle a reservationless update and we don't
2636 	 * want to prevent a user from trying to free space by deleting things.
2637 	 */
2638 	resblks = XFS_REMOVE_SPACE_RES(mp);
2639 	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2640 			&tp, &dontcare);
2641 	if (error) {
2642 		ASSERT(error != -ENOSPC);
2643 		goto std_return;
2644 	}
2645 
2646 	/*
2647 	 * If we're removing a directory perform some additional validation.
2648 	 */
2649 	if (is_dir) {
2650 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2651 		if (VFS_I(ip)->i_nlink != 2) {
2652 			error = -ENOTEMPTY;
2653 			goto out_trans_cancel;
2654 		}
2655 		if (!xfs_dir_isempty(ip)) {
2656 			error = -ENOTEMPTY;
2657 			goto out_trans_cancel;
2658 		}
2659 
2660 		/* Drop the link from ip's "..".  */
2661 		error = xfs_droplink(tp, dp);
2662 		if (error)
2663 			goto out_trans_cancel;
2664 
2665 		/* Drop the "." link from ip to self.  */
2666 		error = xfs_droplink(tp, ip);
2667 		if (error)
2668 			goto out_trans_cancel;
2669 
2670 		/*
2671 		 * Point the unlinked child directory's ".." entry to the root
2672 		 * directory to eliminate back-references to inodes that may
2673 		 * get freed before the child directory is closed.  If the fs
2674 		 * gets shrunk, this can lead to dirent inode validation errors.
2675 		 */
2676 		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2677 			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2678 					tp->t_mountp->m_sb.sb_rootino, 0);
2679 			if (error)
2680 				goto out_trans_cancel;
2681 		}
2682 	} else {
2683 		/*
2684 		 * When removing a non-directory we need to log the parent
2685 		 * inode here.  For a directory this is done implicitly
2686 		 * by the xfs_droplink call for the ".." entry.
2687 		 */
2688 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2689 	}
2690 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2691 
2692 	/* Drop the link from dp to ip. */
2693 	error = xfs_droplink(tp, ip);
2694 	if (error)
2695 		goto out_trans_cancel;
2696 
2697 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2698 	if (error) {
2699 		ASSERT(error != -ENOENT);
2700 		goto out_trans_cancel;
2701 	}
2702 
2703 	/*
2704 	 * Drop the link from dp to ip, and if ip was a directory, remove the
2705 	 * '.' and '..' references since we freed the directory.
2706 	 */
2707 	xfs_dir_update_hook(dp, ip, -1, name);
2708 
2709 	/*
2710 	 * If this is a synchronous mount, make sure that the
2711 	 * remove transaction goes to disk before returning to
2712 	 * the user.
2713 	 */
2714 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2715 		xfs_trans_set_sync(tp);
2716 
2717 	error = xfs_trans_commit(tp);
2718 	if (error)
2719 		goto std_return;
2720 
2721 	if (is_dir && xfs_inode_is_filestream(ip))
2722 		xfs_filestream_deassociate(ip);
2723 
2724 	return 0;
2725 
2726  out_trans_cancel:
2727 	xfs_trans_cancel(tp);
2728  std_return:
2729 	return error;
2730 }
2731 
2732 /*
2733  * Enter all inodes for a rename transaction into a sorted array.
2734  */
2735 #define __XFS_SORT_INODES	5
2736 STATIC void
2737 xfs_sort_for_rename(
2738 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2739 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2740 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2741 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2742 	struct xfs_inode	*wip,	/* in: whiteout inode */
2743 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2744 	int			*num_inodes)  /* in/out: inodes in array */
2745 {
2746 	int			i, j;
2747 
2748 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2749 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2750 
2751 	/*
2752 	 * i_tab contains a list of pointers to inodes.  We initialize
2753 	 * the table here & we'll sort it.  We will then use it to
2754 	 * order the acquisition of the inode locks.
2755 	 *
2756 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2757 	 */
2758 	i = 0;
2759 	i_tab[i++] = dp1;
2760 	i_tab[i++] = dp2;
2761 	i_tab[i++] = ip1;
2762 	if (ip2)
2763 		i_tab[i++] = ip2;
2764 	if (wip)
2765 		i_tab[i++] = wip;
2766 	*num_inodes = i;
2767 
2768 	/*
2769 	 * Sort the elements via bubble sort.  (Remember, there are at
2770 	 * most 5 elements to sort, so this is adequate.)
2771 	 */
2772 	for (i = 0; i < *num_inodes; i++) {
2773 		for (j = 1; j < *num_inodes; j++) {
2774 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2775 				struct xfs_inode *temp = i_tab[j];
2776 				i_tab[j] = i_tab[j-1];
2777 				i_tab[j-1] = temp;
2778 			}
2779 		}
2780 	}
2781 }
2782 
2783 static int
2784 xfs_finish_rename(
2785 	struct xfs_trans	*tp)
2786 {
2787 	/*
2788 	 * If this is a synchronous mount, make sure that the rename transaction
2789 	 * goes to disk before returning to the user.
2790 	 */
2791 	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2792 		xfs_trans_set_sync(tp);
2793 
2794 	return xfs_trans_commit(tp);
2795 }
2796 
2797 /*
2798  * xfs_cross_rename()
2799  *
2800  * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2801  */
2802 STATIC int
2803 xfs_cross_rename(
2804 	struct xfs_trans	*tp,
2805 	struct xfs_inode	*dp1,
2806 	struct xfs_name		*name1,
2807 	struct xfs_inode	*ip1,
2808 	struct xfs_inode	*dp2,
2809 	struct xfs_name		*name2,
2810 	struct xfs_inode	*ip2,
2811 	int			spaceres)
2812 {
2813 	int		error = 0;
2814 	int		ip1_flags = 0;
2815 	int		ip2_flags = 0;
2816 	int		dp2_flags = 0;
2817 
2818 	/* Swap inode number for dirent in first parent */
2819 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2820 	if (error)
2821 		goto out_trans_abort;
2822 
2823 	/* Swap inode number for dirent in second parent */
2824 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2825 	if (error)
2826 		goto out_trans_abort;
2827 
2828 	/*
2829 	 * If we're renaming one or more directories across different parents,
2830 	 * update the respective ".." entries (and link counts) to match the new
2831 	 * parents.
2832 	 */
2833 	if (dp1 != dp2) {
2834 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2835 
2836 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2837 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2838 						dp1->i_ino, spaceres);
2839 			if (error)
2840 				goto out_trans_abort;
2841 
2842 			/* transfer ip2 ".." reference to dp1 */
2843 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2844 				error = xfs_droplink(tp, dp2);
2845 				if (error)
2846 					goto out_trans_abort;
2847 				xfs_bumplink(tp, dp1);
2848 			}
2849 
2850 			/*
2851 			 * Although ip1 isn't changed here, userspace needs
2852 			 * to be warned about the change, so that applications
2853 			 * relying on it (like backup ones), will properly
2854 			 * notify the change
2855 			 */
2856 			ip1_flags |= XFS_ICHGTIME_CHG;
2857 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2858 		}
2859 
2860 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2861 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2862 						dp2->i_ino, spaceres);
2863 			if (error)
2864 				goto out_trans_abort;
2865 
2866 			/* transfer ip1 ".." reference to dp2 */
2867 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2868 				error = xfs_droplink(tp, dp1);
2869 				if (error)
2870 					goto out_trans_abort;
2871 				xfs_bumplink(tp, dp2);
2872 			}
2873 
2874 			/*
2875 			 * Although ip2 isn't changed here, userspace needs
2876 			 * to be warned about the change, so that applications
2877 			 * relying on it (like backup ones), will properly
2878 			 * notify the change
2879 			 */
2880 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2881 			ip2_flags |= XFS_ICHGTIME_CHG;
2882 		}
2883 	}
2884 
2885 	if (ip1_flags) {
2886 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2887 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2888 	}
2889 	if (ip2_flags) {
2890 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2891 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2892 	}
2893 	if (dp2_flags) {
2894 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2895 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2896 	}
2897 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2898 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2899 
2900 	/*
2901 	 * Inform our hook clients that we've finished an exchange operation as
2902 	 * follows: removed the source and target files from their directories;
2903 	 * added the target to the source directory; and added the source to
2904 	 * the target directory.  All inodes are locked, so it's ok to model a
2905 	 * rename this way so long as we say we deleted entries before we add
2906 	 * new ones.
2907 	 */
2908 	xfs_dir_update_hook(dp1, ip1, -1, name1);
2909 	xfs_dir_update_hook(dp2, ip2, -1, name2);
2910 	xfs_dir_update_hook(dp1, ip2, 1, name1);
2911 	xfs_dir_update_hook(dp2, ip1, 1, name2);
2912 
2913 	return xfs_finish_rename(tp);
2914 
2915 out_trans_abort:
2916 	xfs_trans_cancel(tp);
2917 	return error;
2918 }
2919 
2920 /*
2921  * xfs_rename_alloc_whiteout()
2922  *
2923  * Return a referenced, unlinked, unlocked inode that can be used as a
2924  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2925  * crash between allocating the inode and linking it into the rename transaction
2926  * recovery will free the inode and we won't leak it.
2927  */
2928 static int
2929 xfs_rename_alloc_whiteout(
2930 	struct mnt_idmap	*idmap,
2931 	struct xfs_name		*src_name,
2932 	struct xfs_inode	*dp,
2933 	struct xfs_inode	**wip)
2934 {
2935 	struct xfs_inode	*tmpfile;
2936 	struct qstr		name;
2937 	int			error;
2938 
2939 	error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE,
2940 				   &tmpfile);
2941 	if (error)
2942 		return error;
2943 
2944 	name.name = src_name->name;
2945 	name.len = src_name->len;
2946 	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2947 	if (error) {
2948 		xfs_finish_inode_setup(tmpfile);
2949 		xfs_irele(tmpfile);
2950 		return error;
2951 	}
2952 
2953 	/*
2954 	 * Prepare the tmpfile inode as if it were created through the VFS.
2955 	 * Complete the inode setup and flag it as linkable.  nlink is already
2956 	 * zero, so we can skip the drop_nlink.
2957 	 */
2958 	xfs_setup_iops(tmpfile);
2959 	xfs_finish_inode_setup(tmpfile);
2960 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2961 
2962 	*wip = tmpfile;
2963 	return 0;
2964 }
2965 
2966 /*
2967  * xfs_rename
2968  */
2969 int
2970 xfs_rename(
2971 	struct mnt_idmap	*idmap,
2972 	struct xfs_inode	*src_dp,
2973 	struct xfs_name		*src_name,
2974 	struct xfs_inode	*src_ip,
2975 	struct xfs_inode	*target_dp,
2976 	struct xfs_name		*target_name,
2977 	struct xfs_inode	*target_ip,
2978 	unsigned int		flags)
2979 {
2980 	struct xfs_mount	*mp = src_dp->i_mount;
2981 	struct xfs_trans	*tp;
2982 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2983 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2984 	int			i;
2985 	int			num_inodes = __XFS_SORT_INODES;
2986 	bool			new_parent = (src_dp != target_dp);
2987 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2988 	int			spaceres;
2989 	bool			retried = false;
2990 	int			error, nospace_error = 0;
2991 
2992 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2993 
2994 	if ((flags & RENAME_EXCHANGE) && !target_ip)
2995 		return -EINVAL;
2996 
2997 	/*
2998 	 * If we are doing a whiteout operation, allocate the whiteout inode
2999 	 * we will be placing at the target and ensure the type is set
3000 	 * appropriately.
3001 	 */
3002 	if (flags & RENAME_WHITEOUT) {
3003 		error = xfs_rename_alloc_whiteout(idmap, src_name,
3004 						  target_dp, &wip);
3005 		if (error)
3006 			return error;
3007 
3008 		/* setup target dirent info as whiteout */
3009 		src_name->type = XFS_DIR3_FT_CHRDEV;
3010 	}
3011 
3012 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3013 				inodes, &num_inodes);
3014 
3015 retry:
3016 	nospace_error = 0;
3017 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3018 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3019 	if (error == -ENOSPC) {
3020 		nospace_error = error;
3021 		spaceres = 0;
3022 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3023 				&tp);
3024 	}
3025 	if (error)
3026 		goto out_release_wip;
3027 
3028 	/*
3029 	 * Attach the dquots to the inodes
3030 	 */
3031 	error = xfs_qm_vop_rename_dqattach(inodes);
3032 	if (error)
3033 		goto out_trans_cancel;
3034 
3035 	/*
3036 	 * Lock all the participating inodes. Depending upon whether
3037 	 * the target_name exists in the target directory, and
3038 	 * whether the target directory is the same as the source
3039 	 * directory, we can lock from 2 to 5 inodes.
3040 	 */
3041 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3042 
3043 	/*
3044 	 * Join all the inodes to the transaction. From this point on,
3045 	 * we can rely on either trans_commit or trans_cancel to unlock
3046 	 * them.
3047 	 */
3048 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3049 	if (new_parent)
3050 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3051 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3052 	if (target_ip)
3053 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3054 	if (wip)
3055 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3056 
3057 	/*
3058 	 * If we are using project inheritance, we only allow renames
3059 	 * into our tree when the project IDs are the same; else the
3060 	 * tree quota mechanism would be circumvented.
3061 	 */
3062 	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3063 		     target_dp->i_projid != src_ip->i_projid)) {
3064 		error = -EXDEV;
3065 		goto out_trans_cancel;
3066 	}
3067 
3068 	/* RENAME_EXCHANGE is unique from here on. */
3069 	if (flags & RENAME_EXCHANGE)
3070 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3071 					target_dp, target_name, target_ip,
3072 					spaceres);
3073 
3074 	/*
3075 	 * Try to reserve quota to handle an expansion of the target directory.
3076 	 * We'll allow the rename to continue in reservationless mode if we hit
3077 	 * a space usage constraint.  If we trigger reservationless mode, save
3078 	 * the errno if there isn't any free space in the target directory.
3079 	 */
3080 	if (spaceres != 0) {
3081 		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
3082 				0, false);
3083 		if (error == -EDQUOT || error == -ENOSPC) {
3084 			if (!retried) {
3085 				xfs_trans_cancel(tp);
3086 				xfs_blockgc_free_quota(target_dp, 0);
3087 				retried = true;
3088 				goto retry;
3089 			}
3090 
3091 			nospace_error = error;
3092 			spaceres = 0;
3093 			error = 0;
3094 		}
3095 		if (error)
3096 			goto out_trans_cancel;
3097 	}
3098 
3099 	/*
3100 	 * Check for expected errors before we dirty the transaction
3101 	 * so we can return an error without a transaction abort.
3102 	 */
3103 	if (target_ip == NULL) {
3104 		/*
3105 		 * If there's no space reservation, check the entry will
3106 		 * fit before actually inserting it.
3107 		 */
3108 		if (!spaceres) {
3109 			error = xfs_dir_canenter(tp, target_dp, target_name);
3110 			if (error)
3111 				goto out_trans_cancel;
3112 		}
3113 	} else {
3114 		/*
3115 		 * If target exists and it's a directory, check that whether
3116 		 * it can be destroyed.
3117 		 */
3118 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3119 		    (!xfs_dir_isempty(target_ip) ||
3120 		     (VFS_I(target_ip)->i_nlink > 2))) {
3121 			error = -EEXIST;
3122 			goto out_trans_cancel;
3123 		}
3124 	}
3125 
3126 	/*
3127 	 * Lock the AGI buffers we need to handle bumping the nlink of the
3128 	 * whiteout inode off the unlinked list and to handle dropping the
3129 	 * nlink of the target inode.  Per locking order rules, do this in
3130 	 * increasing AG order and before directory block allocation tries to
3131 	 * grab AGFs because we grab AGIs before AGFs.
3132 	 *
3133 	 * The (vfs) caller must ensure that if src is a directory then
3134 	 * target_ip is either null or an empty directory.
3135 	 */
3136 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3137 		if (inodes[i] == wip ||
3138 		    (inodes[i] == target_ip &&
3139 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3140 			struct xfs_perag	*pag;
3141 			struct xfs_buf		*bp;
3142 
3143 			pag = xfs_perag_get(mp,
3144 					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
3145 			error = xfs_read_agi(pag, tp, &bp);
3146 			xfs_perag_put(pag);
3147 			if (error)
3148 				goto out_trans_cancel;
3149 		}
3150 	}
3151 
3152 	/*
3153 	 * Directory entry creation below may acquire the AGF. Remove
3154 	 * the whiteout from the unlinked list first to preserve correct
3155 	 * AGI/AGF locking order. This dirties the transaction so failures
3156 	 * after this point will abort and log recovery will clean up the
3157 	 * mess.
3158 	 *
3159 	 * For whiteouts, we need to bump the link count on the whiteout
3160 	 * inode. After this point, we have a real link, clear the tmpfile
3161 	 * state flag from the inode so it doesn't accidentally get misused
3162 	 * in future.
3163 	 */
3164 	if (wip) {
3165 		struct xfs_perag	*pag;
3166 
3167 		ASSERT(VFS_I(wip)->i_nlink == 0);
3168 
3169 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3170 		error = xfs_iunlink_remove(tp, pag, wip);
3171 		xfs_perag_put(pag);
3172 		if (error)
3173 			goto out_trans_cancel;
3174 
3175 		xfs_bumplink(tp, wip);
3176 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3177 	}
3178 
3179 	/*
3180 	 * Set up the target.
3181 	 */
3182 	if (target_ip == NULL) {
3183 		/*
3184 		 * If target does not exist and the rename crosses
3185 		 * directories, adjust the target directory link count
3186 		 * to account for the ".." reference from the new entry.
3187 		 */
3188 		error = xfs_dir_createname(tp, target_dp, target_name,
3189 					   src_ip->i_ino, spaceres);
3190 		if (error)
3191 			goto out_trans_cancel;
3192 
3193 		xfs_trans_ichgtime(tp, target_dp,
3194 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3195 
3196 		if (new_parent && src_is_directory) {
3197 			xfs_bumplink(tp, target_dp);
3198 		}
3199 	} else { /* target_ip != NULL */
3200 		/*
3201 		 * Link the source inode under the target name.
3202 		 * If the source inode is a directory and we are moving
3203 		 * it across directories, its ".." entry will be
3204 		 * inconsistent until we replace that down below.
3205 		 *
3206 		 * In case there is already an entry with the same
3207 		 * name at the destination directory, remove it first.
3208 		 */
3209 		error = xfs_dir_replace(tp, target_dp, target_name,
3210 					src_ip->i_ino, spaceres);
3211 		if (error)
3212 			goto out_trans_cancel;
3213 
3214 		xfs_trans_ichgtime(tp, target_dp,
3215 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3216 
3217 		/*
3218 		 * Decrement the link count on the target since the target
3219 		 * dir no longer points to it.
3220 		 */
3221 		error = xfs_droplink(tp, target_ip);
3222 		if (error)
3223 			goto out_trans_cancel;
3224 
3225 		if (src_is_directory) {
3226 			/*
3227 			 * Drop the link from the old "." entry.
3228 			 */
3229 			error = xfs_droplink(tp, target_ip);
3230 			if (error)
3231 				goto out_trans_cancel;
3232 		}
3233 	} /* target_ip != NULL */
3234 
3235 	/*
3236 	 * Remove the source.
3237 	 */
3238 	if (new_parent && src_is_directory) {
3239 		/*
3240 		 * Rewrite the ".." entry to point to the new
3241 		 * directory.
3242 		 */
3243 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3244 					target_dp->i_ino, spaceres);
3245 		ASSERT(error != -EEXIST);
3246 		if (error)
3247 			goto out_trans_cancel;
3248 	}
3249 
3250 	/*
3251 	 * We always want to hit the ctime on the source inode.
3252 	 *
3253 	 * This isn't strictly required by the standards since the source
3254 	 * inode isn't really being changed, but old unix file systems did
3255 	 * it and some incremental backup programs won't work without it.
3256 	 */
3257 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3258 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3259 
3260 	/*
3261 	 * Adjust the link count on src_dp.  This is necessary when
3262 	 * renaming a directory, either within one parent when
3263 	 * the target existed, or across two parent directories.
3264 	 */
3265 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3266 
3267 		/*
3268 		 * Decrement link count on src_directory since the
3269 		 * entry that's moved no longer points to it.
3270 		 */
3271 		error = xfs_droplink(tp, src_dp);
3272 		if (error)
3273 			goto out_trans_cancel;
3274 	}
3275 
3276 	/*
3277 	 * For whiteouts, we only need to update the source dirent with the
3278 	 * inode number of the whiteout inode rather than removing it
3279 	 * altogether.
3280 	 */
3281 	if (wip)
3282 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3283 					spaceres);
3284 	else
3285 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3286 					   spaceres);
3287 
3288 	if (error)
3289 		goto out_trans_cancel;
3290 
3291 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3292 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3293 	if (new_parent)
3294 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3295 
3296 	/*
3297 	 * Inform our hook clients that we've finished a rename operation as
3298 	 * follows: removed the source and target files from their directories;
3299 	 * that we've added the source to the target directory; and finally
3300 	 * that we've added the whiteout, if there was one.  All inodes are
3301 	 * locked, so it's ok to model a rename this way so long as we say we
3302 	 * deleted entries before we add new ones.
3303 	 */
3304 	if (target_ip)
3305 		xfs_dir_update_hook(target_dp, target_ip, -1, target_name);
3306 	xfs_dir_update_hook(src_dp, src_ip, -1, src_name);
3307 	xfs_dir_update_hook(target_dp, src_ip, 1, target_name);
3308 	if (wip)
3309 		xfs_dir_update_hook(src_dp, wip, 1, src_name);
3310 
3311 	error = xfs_finish_rename(tp);
3312 	if (wip)
3313 		xfs_irele(wip);
3314 	return error;
3315 
3316 out_trans_cancel:
3317 	xfs_trans_cancel(tp);
3318 out_release_wip:
3319 	if (wip)
3320 		xfs_irele(wip);
3321 	if (error == -ENOSPC && nospace_error)
3322 		error = nospace_error;
3323 	return error;
3324 }
3325 
3326 static int
3327 xfs_iflush(
3328 	struct xfs_inode	*ip,
3329 	struct xfs_buf		*bp)
3330 {
3331 	struct xfs_inode_log_item *iip = ip->i_itemp;
3332 	struct xfs_dinode	*dip;
3333 	struct xfs_mount	*mp = ip->i_mount;
3334 	int			error;
3335 
3336 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
3337 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3338 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3339 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3340 	ASSERT(iip->ili_item.li_buf == bp);
3341 
3342 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3343 
3344 	/*
3345 	 * We don't flush the inode if any of the following checks fail, but we
3346 	 * do still update the log item and attach to the backing buffer as if
3347 	 * the flush happened. This is a formality to facilitate predictable
3348 	 * error handling as the caller will shutdown and fail the buffer.
3349 	 */
3350 	error = -EFSCORRUPTED;
3351 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3352 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3353 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3354 			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
3355 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3356 		goto flush_out;
3357 	}
3358 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3359 		if (XFS_TEST_ERROR(
3360 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3361 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3362 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3363 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3364 				"%s: Bad regular inode %llu, ptr "PTR_FMT,
3365 				__func__, ip->i_ino, ip);
3366 			goto flush_out;
3367 		}
3368 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3369 		if (XFS_TEST_ERROR(
3370 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3371 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3372 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3373 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3374 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3375 				"%s: Bad directory inode %llu, ptr "PTR_FMT,
3376 				__func__, ip->i_ino, ip);
3377 			goto flush_out;
3378 		}
3379 	}
3380 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3381 				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3382 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3383 			"%s: detected corrupt incore inode %llu, "
3384 			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3385 			__func__, ip->i_ino,
3386 			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3387 			ip->i_nblocks, ip);
3388 		goto flush_out;
3389 	}
3390 	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3391 				mp, XFS_ERRTAG_IFLUSH_6)) {
3392 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3393 			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
3394 			__func__, ip->i_ino, ip->i_forkoff, ip);
3395 		goto flush_out;
3396 	}
3397 
3398 	/*
3399 	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3400 	 * count for correct sequencing.  We bump the flush iteration count so
3401 	 * we can detect flushes which postdate a log record during recovery.
3402 	 * This is redundant as we now log every change and hence this can't
3403 	 * happen but we need to still do it to ensure backwards compatibility
3404 	 * with old kernels that predate logging all inode changes.
3405 	 */
3406 	if (!xfs_has_v3inodes(mp))
3407 		ip->i_flushiter++;
3408 
3409 	/*
3410 	 * If there are inline format data / attr forks attached to this inode,
3411 	 * make sure they are not corrupt.
3412 	 */
3413 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3414 	    xfs_ifork_verify_local_data(ip))
3415 		goto flush_out;
3416 	if (xfs_inode_has_attr_fork(ip) &&
3417 	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3418 	    xfs_ifork_verify_local_attr(ip))
3419 		goto flush_out;
3420 
3421 	/*
3422 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3423 	 * copy out the core of the inode, because if the inode is dirty at all
3424 	 * the core must be.
3425 	 */
3426 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3427 
3428 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3429 	if (!xfs_has_v3inodes(mp)) {
3430 		if (ip->i_flushiter == DI_MAX_FLUSH)
3431 			ip->i_flushiter = 0;
3432 	}
3433 
3434 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3435 	if (xfs_inode_has_attr_fork(ip))
3436 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3437 
3438 	/*
3439 	 * We've recorded everything logged in the inode, so we'd like to clear
3440 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3441 	 * However, we can't stop logging all this information until the data
3442 	 * we've copied into the disk buffer is written to disk.  If we did we
3443 	 * might overwrite the copy of the inode in the log with all the data
3444 	 * after re-logging only part of it, and in the face of a crash we
3445 	 * wouldn't have all the data we need to recover.
3446 	 *
3447 	 * What we do is move the bits to the ili_last_fields field.  When
3448 	 * logging the inode, these bits are moved back to the ili_fields field.
3449 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3450 	 * we know that the information those bits represent is permanently on
3451 	 * disk.  As long as the flush completes before the inode is logged
3452 	 * again, then both ili_fields and ili_last_fields will be cleared.
3453 	 */
3454 	error = 0;
3455 flush_out:
3456 	spin_lock(&iip->ili_lock);
3457 	iip->ili_last_fields = iip->ili_fields;
3458 	iip->ili_fields = 0;
3459 	iip->ili_fsync_fields = 0;
3460 	spin_unlock(&iip->ili_lock);
3461 
3462 	/*
3463 	 * Store the current LSN of the inode so that we can tell whether the
3464 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3465 	 */
3466 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3467 				&iip->ili_item.li_lsn);
3468 
3469 	/* generate the checksum. */
3470 	xfs_dinode_calc_crc(mp, dip);
3471 	if (error)
3472 		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
3473 	return error;
3474 }
3475 
3476 /*
3477  * Non-blocking flush of dirty inode metadata into the backing buffer.
3478  *
3479  * The caller must have a reference to the inode and hold the cluster buffer
3480  * locked. The function will walk across all the inodes on the cluster buffer it
3481  * can find and lock without blocking, and flush them to the cluster buffer.
3482  *
3483  * On successful flushing of at least one inode, the caller must write out the
3484  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3485  * the caller needs to release the buffer. On failure, the filesystem will be
3486  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3487  * will be returned.
3488  */
3489 int
3490 xfs_iflush_cluster(
3491 	struct xfs_buf		*bp)
3492 {
3493 	struct xfs_mount	*mp = bp->b_mount;
3494 	struct xfs_log_item	*lip, *n;
3495 	struct xfs_inode	*ip;
3496 	struct xfs_inode_log_item *iip;
3497 	int			clcount = 0;
3498 	int			error = 0;
3499 
3500 	/*
3501 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3502 	 * will remove itself from the list.
3503 	 */
3504 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3505 		iip = (struct xfs_inode_log_item *)lip;
3506 		ip = iip->ili_inode;
3507 
3508 		/*
3509 		 * Quick and dirty check to avoid locks if possible.
3510 		 */
3511 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3512 			continue;
3513 		if (xfs_ipincount(ip))
3514 			continue;
3515 
3516 		/*
3517 		 * The inode is still attached to the buffer, which means it is
3518 		 * dirty but reclaim might try to grab it. Check carefully for
3519 		 * that, and grab the ilock while still holding the i_flags_lock
3520 		 * to guarantee reclaim will not be able to reclaim this inode
3521 		 * once we drop the i_flags_lock.
3522 		 */
3523 		spin_lock(&ip->i_flags_lock);
3524 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3525 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3526 			spin_unlock(&ip->i_flags_lock);
3527 			continue;
3528 		}
3529 
3530 		/*
3531 		 * ILOCK will pin the inode against reclaim and prevent
3532 		 * concurrent transactions modifying the inode while we are
3533 		 * flushing the inode. If we get the lock, set the flushing
3534 		 * state before we drop the i_flags_lock.
3535 		 */
3536 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3537 			spin_unlock(&ip->i_flags_lock);
3538 			continue;
3539 		}
3540 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3541 		spin_unlock(&ip->i_flags_lock);
3542 
3543 		/*
3544 		 * Abort flushing this inode if we are shut down because the
3545 		 * inode may not currently be in the AIL. This can occur when
3546 		 * log I/O failure unpins the inode without inserting into the
3547 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3548 		 * that otherwise looks like it should be flushed.
3549 		 */
3550 		if (xlog_is_shutdown(mp->m_log)) {
3551 			xfs_iunpin_wait(ip);
3552 			xfs_iflush_abort(ip);
3553 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3554 			error = -EIO;
3555 			continue;
3556 		}
3557 
3558 		/* don't block waiting on a log force to unpin dirty inodes */
3559 		if (xfs_ipincount(ip)) {
3560 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3561 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3562 			continue;
3563 		}
3564 
3565 		if (!xfs_inode_clean(ip))
3566 			error = xfs_iflush(ip, bp);
3567 		else
3568 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3569 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3570 		if (error)
3571 			break;
3572 		clcount++;
3573 	}
3574 
3575 	if (error) {
3576 		/*
3577 		 * Shutdown first so we kill the log before we release this
3578 		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3579 		 * of the log, failing it before the _log_ is shut down can
3580 		 * result in the log tail being moved forward in the journal
3581 		 * on disk because log writes can still be taking place. Hence
3582 		 * unpinning the tail will allow the ICREATE intent to be
3583 		 * removed from the log an recovery will fail with uninitialised
3584 		 * inode cluster buffers.
3585 		 */
3586 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3587 		bp->b_flags |= XBF_ASYNC;
3588 		xfs_buf_ioend_fail(bp);
3589 		return error;
3590 	}
3591 
3592 	if (!clcount)
3593 		return -EAGAIN;
3594 
3595 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3596 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3597 	return 0;
3598 
3599 }
3600 
3601 /* Release an inode. */
3602 void
3603 xfs_irele(
3604 	struct xfs_inode	*ip)
3605 {
3606 	trace_xfs_irele(ip, _RET_IP_);
3607 	iput(VFS_I(ip));
3608 }
3609 
3610 /*
3611  * Ensure all commited transactions touching the inode are written to the log.
3612  */
3613 int
3614 xfs_log_force_inode(
3615 	struct xfs_inode	*ip)
3616 {
3617 	xfs_csn_t		seq = 0;
3618 
3619 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3620 	if (xfs_ipincount(ip))
3621 		seq = ip->i_itemp->ili_commit_seq;
3622 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3623 
3624 	if (!seq)
3625 		return 0;
3626 	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3627 }
3628 
3629 /*
3630  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3631  * abide vfs locking order (lowest pointer value goes first) and breaking the
3632  * layout leases before proceeding.  The loop is needed because we cannot call
3633  * the blocking break_layout() with the iolocks held, and therefore have to
3634  * back out both locks.
3635  */
3636 static int
3637 xfs_iolock_two_inodes_and_break_layout(
3638 	struct inode		*src,
3639 	struct inode		*dest)
3640 {
3641 	int			error;
3642 
3643 	if (src > dest)
3644 		swap(src, dest);
3645 
3646 retry:
3647 	/* Wait to break both inodes' layouts before we start locking. */
3648 	error = break_layout(src, true);
3649 	if (error)
3650 		return error;
3651 	if (src != dest) {
3652 		error = break_layout(dest, true);
3653 		if (error)
3654 			return error;
3655 	}
3656 
3657 	/* Lock one inode and make sure nobody got in and leased it. */
3658 	inode_lock(src);
3659 	error = break_layout(src, false);
3660 	if (error) {
3661 		inode_unlock(src);
3662 		if (error == -EWOULDBLOCK)
3663 			goto retry;
3664 		return error;
3665 	}
3666 
3667 	if (src == dest)
3668 		return 0;
3669 
3670 	/* Lock the other inode and make sure nobody got in and leased it. */
3671 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3672 	error = break_layout(dest, false);
3673 	if (error) {
3674 		inode_unlock(src);
3675 		inode_unlock(dest);
3676 		if (error == -EWOULDBLOCK)
3677 			goto retry;
3678 		return error;
3679 	}
3680 
3681 	return 0;
3682 }
3683 
3684 static int
3685 xfs_mmaplock_two_inodes_and_break_dax_layout(
3686 	struct xfs_inode	*ip1,
3687 	struct xfs_inode	*ip2)
3688 {
3689 	int			error;
3690 	bool			retry;
3691 	struct page		*page;
3692 
3693 	if (ip1->i_ino > ip2->i_ino)
3694 		swap(ip1, ip2);
3695 
3696 again:
3697 	retry = false;
3698 	/* Lock the first inode */
3699 	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3700 	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3701 	if (error || retry) {
3702 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3703 		if (error == 0 && retry)
3704 			goto again;
3705 		return error;
3706 	}
3707 
3708 	if (ip1 == ip2)
3709 		return 0;
3710 
3711 	/* Nested lock the second inode */
3712 	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3713 	/*
3714 	 * We cannot use xfs_break_dax_layouts() directly here because it may
3715 	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3716 	 * for this nested lock case.
3717 	 */
3718 	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3719 	if (page && page_ref_count(page) != 1) {
3720 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3721 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3722 		goto again;
3723 	}
3724 
3725 	return 0;
3726 }
3727 
3728 /*
3729  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3730  * mmap activity.
3731  */
3732 int
3733 xfs_ilock2_io_mmap(
3734 	struct xfs_inode	*ip1,
3735 	struct xfs_inode	*ip2)
3736 {
3737 	int			ret;
3738 
3739 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3740 	if (ret)
3741 		return ret;
3742 
3743 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3744 		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3745 		if (ret) {
3746 			inode_unlock(VFS_I(ip2));
3747 			if (ip1 != ip2)
3748 				inode_unlock(VFS_I(ip1));
3749 			return ret;
3750 		}
3751 	} else
3752 		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3753 					    VFS_I(ip2)->i_mapping);
3754 
3755 	return 0;
3756 }
3757 
3758 /* Unlock both inodes to allow IO and mmap activity. */
3759 void
3760 xfs_iunlock2_io_mmap(
3761 	struct xfs_inode	*ip1,
3762 	struct xfs_inode	*ip2)
3763 {
3764 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3765 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3766 		if (ip1 != ip2)
3767 			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3768 	} else
3769 		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3770 					      VFS_I(ip2)->i_mapping);
3771 
3772 	inode_unlock(VFS_I(ip2));
3773 	if (ip1 != ip2)
3774 		inode_unlock(VFS_I(ip1));
3775 }
3776 
3777 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
3778 void
3779 xfs_iunlock2_remapping(
3780 	struct xfs_inode	*ip1,
3781 	struct xfs_inode	*ip2)
3782 {
3783 	xfs_iflags_clear(ip1, XFS_IREMAPPING);
3784 
3785 	if (ip1 != ip2)
3786 		xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
3787 	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3788 
3789 	if (ip1 != ip2)
3790 		inode_unlock_shared(VFS_I(ip1));
3791 	inode_unlock(VFS_I(ip2));
3792 }
3793 
3794 /*
3795  * Reload the incore inode list for this inode.  Caller should ensure that
3796  * the link count cannot change, either by taking ILOCK_SHARED or otherwise
3797  * preventing other threads from executing.
3798  */
3799 int
3800 xfs_inode_reload_unlinked_bucket(
3801 	struct xfs_trans	*tp,
3802 	struct xfs_inode	*ip)
3803 {
3804 	struct xfs_mount	*mp = tp->t_mountp;
3805 	struct xfs_buf		*agibp;
3806 	struct xfs_agi		*agi;
3807 	struct xfs_perag	*pag;
3808 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
3809 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
3810 	xfs_agino_t		prev_agino, next_agino;
3811 	unsigned int		bucket;
3812 	bool			foundit = false;
3813 	int			error;
3814 
3815 	/* Grab the first inode in the list */
3816 	pag = xfs_perag_get(mp, agno);
3817 	error = xfs_ialloc_read_agi(pag, tp, &agibp);
3818 	xfs_perag_put(pag);
3819 	if (error)
3820 		return error;
3821 
3822 	/*
3823 	 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
3824 	 * incore unlinked list pointers for this inode.  Check once more to
3825 	 * see if we raced with anyone else to reload the unlinked list.
3826 	 */
3827 	if (!xfs_inode_unlinked_incomplete(ip)) {
3828 		foundit = true;
3829 		goto out_agibp;
3830 	}
3831 
3832 	bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
3833 	agi = agibp->b_addr;
3834 
3835 	trace_xfs_inode_reload_unlinked_bucket(ip);
3836 
3837 	xfs_info_ratelimited(mp,
3838  "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.",
3839 			agino, agno);
3840 
3841 	prev_agino = NULLAGINO;
3842 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3843 	while (next_agino != NULLAGINO) {
3844 		struct xfs_inode	*next_ip = NULL;
3845 
3846 		/* Found this caller's inode, set its backlink. */
3847 		if (next_agino == agino) {
3848 			next_ip = ip;
3849 			next_ip->i_prev_unlinked = prev_agino;
3850 			foundit = true;
3851 			goto next_inode;
3852 		}
3853 
3854 		/* Try in-memory lookup first. */
3855 		next_ip = xfs_iunlink_lookup(pag, next_agino);
3856 		if (next_ip)
3857 			goto next_inode;
3858 
3859 		/* Inode not in memory, try reloading it. */
3860 		error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
3861 				next_agino);
3862 		if (error)
3863 			break;
3864 
3865 		/* Grab the reloaded inode. */
3866 		next_ip = xfs_iunlink_lookup(pag, next_agino);
3867 		if (!next_ip) {
3868 			/* No incore inode at all?  We reloaded it... */
3869 			ASSERT(next_ip != NULL);
3870 			error = -EFSCORRUPTED;
3871 			break;
3872 		}
3873 
3874 next_inode:
3875 		prev_agino = next_agino;
3876 		next_agino = next_ip->i_next_unlinked;
3877 	}
3878 
3879 out_agibp:
3880 	xfs_trans_brelse(tp, agibp);
3881 	/* Should have found this inode somewhere in the iunlinked bucket. */
3882 	if (!error && !foundit)
3883 		error = -EFSCORRUPTED;
3884 	return error;
3885 }
3886 
3887 /* Decide if this inode is missing its unlinked list and reload it. */
3888 int
3889 xfs_inode_reload_unlinked(
3890 	struct xfs_inode	*ip)
3891 {
3892 	struct xfs_trans	*tp;
3893 	int			error;
3894 
3895 	error = xfs_trans_alloc_empty(ip->i_mount, &tp);
3896 	if (error)
3897 		return error;
3898 
3899 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3900 	if (xfs_inode_unlinked_incomplete(ip))
3901 		error = xfs_inode_reload_unlinked_bucket(tp, ip);
3902 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3903 	xfs_trans_cancel(tp);
3904 
3905 	return error;
3906 }
3907 
3908 /* Has this inode fork been zapped by repair? */
3909 bool
3910 xfs_ifork_zapped(
3911 	const struct xfs_inode	*ip,
3912 	int			whichfork)
3913 {
3914 	unsigned int		datamask = 0;
3915 
3916 	switch (whichfork) {
3917 	case XFS_DATA_FORK:
3918 		switch (ip->i_vnode.i_mode & S_IFMT) {
3919 		case S_IFDIR:
3920 			datamask = XFS_SICK_INO_DIR_ZAPPED;
3921 			break;
3922 		case S_IFLNK:
3923 			datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
3924 			break;
3925 		}
3926 		return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
3927 	case XFS_ATTR_FORK:
3928 		return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
3929 	default:
3930 		return false;
3931 	}
3932 }
3933 
3934 /* Compute the number of data and realtime blocks used by a file. */
3935 void
3936 xfs_inode_count_blocks(
3937 	struct xfs_trans	*tp,
3938 	struct xfs_inode	*ip,
3939 	xfs_filblks_t		*dblocks,
3940 	xfs_filblks_t		*rblocks)
3941 {
3942 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
3943 
3944 	*rblocks = 0;
3945 	if (XFS_IS_REALTIME_INODE(ip))
3946 		xfs_bmap_count_leaves(ifp, rblocks);
3947 	*dblocks = ip->i_nblocks - *rblocks;
3948 }
3949