1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_dir2.h" 18 #include "xfs_attr.h" 19 #include "xfs_trans_space.h" 20 #include "xfs_trans.h" 21 #include "xfs_buf_item.h" 22 #include "xfs_inode_item.h" 23 #include "xfs_iunlink_item.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_bmap.h" 26 #include "xfs_bmap_util.h" 27 #include "xfs_errortag.h" 28 #include "xfs_error.h" 29 #include "xfs_quota.h" 30 #include "xfs_filestream.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_symlink.h" 34 #include "xfs_trans_priv.h" 35 #include "xfs_log.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_reflink.h" 38 #include "xfs_ag.h" 39 #include "xfs_log_priv.h" 40 #include "xfs_health.h" 41 42 struct kmem_cache *xfs_inode_cache; 43 44 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 45 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag, 46 struct xfs_inode *); 47 48 /* 49 * helper function to extract extent size hint from inode 50 */ 51 xfs_extlen_t 52 xfs_get_extsz_hint( 53 struct xfs_inode *ip) 54 { 55 /* 56 * No point in aligning allocations if we need to COW to actually 57 * write to them. 58 */ 59 if (xfs_is_always_cow_inode(ip)) 60 return 0; 61 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize) 62 return ip->i_extsize; 63 if (XFS_IS_REALTIME_INODE(ip)) 64 return ip->i_mount->m_sb.sb_rextsize; 65 return 0; 66 } 67 68 /* 69 * Helper function to extract CoW extent size hint from inode. 70 * Between the extent size hint and the CoW extent size hint, we 71 * return the greater of the two. If the value is zero (automatic), 72 * use the default size. 73 */ 74 xfs_extlen_t 75 xfs_get_cowextsz_hint( 76 struct xfs_inode *ip) 77 { 78 xfs_extlen_t a, b; 79 80 a = 0; 81 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 82 a = ip->i_cowextsize; 83 b = xfs_get_extsz_hint(ip); 84 85 a = max(a, b); 86 if (a == 0) 87 return XFS_DEFAULT_COWEXTSZ_HINT; 88 return a; 89 } 90 91 /* 92 * These two are wrapper routines around the xfs_ilock() routine used to 93 * centralize some grungy code. They are used in places that wish to lock the 94 * inode solely for reading the extents. The reason these places can't just 95 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 96 * bringing in of the extents from disk for a file in b-tree format. If the 97 * inode is in b-tree format, then we need to lock the inode exclusively until 98 * the extents are read in. Locking it exclusively all the time would limit 99 * our parallelism unnecessarily, though. What we do instead is check to see 100 * if the extents have been read in yet, and only lock the inode exclusively 101 * if they have not. 102 * 103 * The functions return a value which should be given to the corresponding 104 * xfs_iunlock() call. 105 */ 106 uint 107 xfs_ilock_data_map_shared( 108 struct xfs_inode *ip) 109 { 110 uint lock_mode = XFS_ILOCK_SHARED; 111 112 if (xfs_need_iread_extents(&ip->i_df)) 113 lock_mode = XFS_ILOCK_EXCL; 114 xfs_ilock(ip, lock_mode); 115 return lock_mode; 116 } 117 118 uint 119 xfs_ilock_attr_map_shared( 120 struct xfs_inode *ip) 121 { 122 uint lock_mode = XFS_ILOCK_SHARED; 123 124 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) 125 lock_mode = XFS_ILOCK_EXCL; 126 xfs_ilock(ip, lock_mode); 127 return lock_mode; 128 } 129 130 /* 131 * You can't set both SHARED and EXCL for the same lock, 132 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED, 133 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values 134 * to set in lock_flags. 135 */ 136 static inline void 137 xfs_lock_flags_assert( 138 uint lock_flags) 139 { 140 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 141 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 142 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 143 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 144 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 145 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 146 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 147 ASSERT(lock_flags != 0); 148 } 149 150 /* 151 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 152 * multi-reader locks: invalidate_lock and the i_lock. This routine allows 153 * various combinations of the locks to be obtained. 154 * 155 * The 3 locks should always be ordered so that the IO lock is obtained first, 156 * the mmap lock second and the ilock last in order to prevent deadlock. 157 * 158 * Basic locking order: 159 * 160 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock 161 * 162 * mmap_lock locking order: 163 * 164 * i_rwsem -> page lock -> mmap_lock 165 * mmap_lock -> invalidate_lock -> page_lock 166 * 167 * The difference in mmap_lock locking order mean that we cannot hold the 168 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths 169 * can fault in pages during copy in/out (for buffered IO) or require the 170 * mmap_lock in get_user_pages() to map the user pages into the kernel address 171 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page 172 * fault because page faults already hold the mmap_lock. 173 * 174 * Hence to serialise fully against both syscall and mmap based IO, we need to 175 * take both the i_rwsem and the invalidate_lock. These locks should *only* be 176 * both taken in places where we need to invalidate the page cache in a race 177 * free manner (e.g. truncate, hole punch and other extent manipulation 178 * functions). 179 */ 180 void 181 xfs_ilock( 182 xfs_inode_t *ip, 183 uint lock_flags) 184 { 185 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 186 187 xfs_lock_flags_assert(lock_flags); 188 189 if (lock_flags & XFS_IOLOCK_EXCL) { 190 down_write_nested(&VFS_I(ip)->i_rwsem, 191 XFS_IOLOCK_DEP(lock_flags)); 192 } else if (lock_flags & XFS_IOLOCK_SHARED) { 193 down_read_nested(&VFS_I(ip)->i_rwsem, 194 XFS_IOLOCK_DEP(lock_flags)); 195 } 196 197 if (lock_flags & XFS_MMAPLOCK_EXCL) { 198 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 199 XFS_MMAPLOCK_DEP(lock_flags)); 200 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 201 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 202 XFS_MMAPLOCK_DEP(lock_flags)); 203 } 204 205 if (lock_flags & XFS_ILOCK_EXCL) 206 down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 207 else if (lock_flags & XFS_ILOCK_SHARED) 208 down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 209 } 210 211 /* 212 * This is just like xfs_ilock(), except that the caller 213 * is guaranteed not to sleep. It returns 1 if it gets 214 * the requested locks and 0 otherwise. If the IO lock is 215 * obtained but the inode lock cannot be, then the IO lock 216 * is dropped before returning. 217 * 218 * ip -- the inode being locked 219 * lock_flags -- this parameter indicates the inode's locks to be 220 * to be locked. See the comment for xfs_ilock() for a list 221 * of valid values. 222 */ 223 int 224 xfs_ilock_nowait( 225 xfs_inode_t *ip, 226 uint lock_flags) 227 { 228 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 229 230 xfs_lock_flags_assert(lock_flags); 231 232 if (lock_flags & XFS_IOLOCK_EXCL) { 233 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 234 goto out; 235 } else if (lock_flags & XFS_IOLOCK_SHARED) { 236 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 237 goto out; 238 } 239 240 if (lock_flags & XFS_MMAPLOCK_EXCL) { 241 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 242 goto out_undo_iolock; 243 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 244 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 245 goto out_undo_iolock; 246 } 247 248 if (lock_flags & XFS_ILOCK_EXCL) { 249 if (!down_write_trylock(&ip->i_lock)) 250 goto out_undo_mmaplock; 251 } else if (lock_flags & XFS_ILOCK_SHARED) { 252 if (!down_read_trylock(&ip->i_lock)) 253 goto out_undo_mmaplock; 254 } 255 return 1; 256 257 out_undo_mmaplock: 258 if (lock_flags & XFS_MMAPLOCK_EXCL) 259 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 260 else if (lock_flags & XFS_MMAPLOCK_SHARED) 261 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 262 out_undo_iolock: 263 if (lock_flags & XFS_IOLOCK_EXCL) 264 up_write(&VFS_I(ip)->i_rwsem); 265 else if (lock_flags & XFS_IOLOCK_SHARED) 266 up_read(&VFS_I(ip)->i_rwsem); 267 out: 268 return 0; 269 } 270 271 /* 272 * xfs_iunlock() is used to drop the inode locks acquired with 273 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 274 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 275 * that we know which locks to drop. 276 * 277 * ip -- the inode being unlocked 278 * lock_flags -- this parameter indicates the inode's locks to be 279 * to be unlocked. See the comment for xfs_ilock() for a list 280 * of valid values for this parameter. 281 * 282 */ 283 void 284 xfs_iunlock( 285 xfs_inode_t *ip, 286 uint lock_flags) 287 { 288 xfs_lock_flags_assert(lock_flags); 289 290 if (lock_flags & XFS_IOLOCK_EXCL) 291 up_write(&VFS_I(ip)->i_rwsem); 292 else if (lock_flags & XFS_IOLOCK_SHARED) 293 up_read(&VFS_I(ip)->i_rwsem); 294 295 if (lock_flags & XFS_MMAPLOCK_EXCL) 296 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 297 else if (lock_flags & XFS_MMAPLOCK_SHARED) 298 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 299 300 if (lock_flags & XFS_ILOCK_EXCL) 301 up_write(&ip->i_lock); 302 else if (lock_flags & XFS_ILOCK_SHARED) 303 up_read(&ip->i_lock); 304 305 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 306 } 307 308 /* 309 * give up write locks. the i/o lock cannot be held nested 310 * if it is being demoted. 311 */ 312 void 313 xfs_ilock_demote( 314 xfs_inode_t *ip, 315 uint lock_flags) 316 { 317 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 318 ASSERT((lock_flags & 319 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 320 321 if (lock_flags & XFS_ILOCK_EXCL) 322 downgrade_write(&ip->i_lock); 323 if (lock_flags & XFS_MMAPLOCK_EXCL) 324 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); 325 if (lock_flags & XFS_IOLOCK_EXCL) 326 downgrade_write(&VFS_I(ip)->i_rwsem); 327 328 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 329 } 330 331 void 332 xfs_assert_ilocked( 333 struct xfs_inode *ip, 334 uint lock_flags) 335 { 336 /* 337 * Sometimes we assert the ILOCK is held exclusively, but we're in 338 * a workqueue, so lockdep doesn't know we're the owner. 339 */ 340 if (lock_flags & XFS_ILOCK_SHARED) 341 rwsem_assert_held(&ip->i_lock); 342 else if (lock_flags & XFS_ILOCK_EXCL) 343 rwsem_assert_held_write_nolockdep(&ip->i_lock); 344 345 if (lock_flags & XFS_MMAPLOCK_SHARED) 346 rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock); 347 else if (lock_flags & XFS_MMAPLOCK_EXCL) 348 rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock); 349 350 if (lock_flags & XFS_IOLOCK_SHARED) 351 rwsem_assert_held(&VFS_I(ip)->i_rwsem); 352 else if (lock_flags & XFS_IOLOCK_EXCL) 353 rwsem_assert_held_write(&VFS_I(ip)->i_rwsem); 354 } 355 356 /* 357 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 358 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 359 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 360 * errors and warnings. 361 */ 362 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 363 static bool 364 xfs_lockdep_subclass_ok( 365 int subclass) 366 { 367 return subclass < MAX_LOCKDEP_SUBCLASSES; 368 } 369 #else 370 #define xfs_lockdep_subclass_ok(subclass) (true) 371 #endif 372 373 /* 374 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 375 * value. This can be called for any type of inode lock combination, including 376 * parent locking. Care must be taken to ensure we don't overrun the subclass 377 * storage fields in the class mask we build. 378 */ 379 static inline uint 380 xfs_lock_inumorder( 381 uint lock_mode, 382 uint subclass) 383 { 384 uint class = 0; 385 386 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 387 XFS_ILOCK_RTSUM))); 388 ASSERT(xfs_lockdep_subclass_ok(subclass)); 389 390 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 391 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 392 class += subclass << XFS_IOLOCK_SHIFT; 393 } 394 395 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 396 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 397 class += subclass << XFS_MMAPLOCK_SHIFT; 398 } 399 400 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 401 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 402 class += subclass << XFS_ILOCK_SHIFT; 403 } 404 405 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 406 } 407 408 /* 409 * The following routine will lock n inodes in exclusive mode. We assume the 410 * caller calls us with the inodes in i_ino order. 411 * 412 * We need to detect deadlock where an inode that we lock is in the AIL and we 413 * start waiting for another inode that is locked by a thread in a long running 414 * transaction (such as truncate). This can result in deadlock since the long 415 * running trans might need to wait for the inode we just locked in order to 416 * push the tail and free space in the log. 417 * 418 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 419 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 420 * lock more than one at a time, lockdep will report false positives saying we 421 * have violated locking orders. 422 */ 423 static void 424 xfs_lock_inodes( 425 struct xfs_inode **ips, 426 int inodes, 427 uint lock_mode) 428 { 429 int attempts = 0; 430 uint i; 431 int j; 432 bool try_lock; 433 struct xfs_log_item *lp; 434 435 /* 436 * Currently supports between 2 and 5 inodes with exclusive locking. We 437 * support an arbitrary depth of locking here, but absolute limits on 438 * inodes depend on the type of locking and the limits placed by 439 * lockdep annotations in xfs_lock_inumorder. These are all checked by 440 * the asserts. 441 */ 442 ASSERT(ips && inodes >= 2 && inodes <= 5); 443 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 444 XFS_ILOCK_EXCL)); 445 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 446 XFS_ILOCK_SHARED))); 447 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 448 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 449 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 450 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 451 452 if (lock_mode & XFS_IOLOCK_EXCL) { 453 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 454 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 455 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 456 457 again: 458 try_lock = false; 459 i = 0; 460 for (; i < inodes; i++) { 461 ASSERT(ips[i]); 462 463 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 464 continue; 465 466 /* 467 * If try_lock is not set yet, make sure all locked inodes are 468 * not in the AIL. If any are, set try_lock to be used later. 469 */ 470 if (!try_lock) { 471 for (j = (i - 1); j >= 0 && !try_lock; j--) { 472 lp = &ips[j]->i_itemp->ili_item; 473 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 474 try_lock = true; 475 } 476 } 477 478 /* 479 * If any of the previous locks we have locked is in the AIL, 480 * we must TRY to get the second and subsequent locks. If 481 * we can't get any, we must release all we have 482 * and try again. 483 */ 484 if (!try_lock) { 485 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 486 continue; 487 } 488 489 /* try_lock means we have an inode locked that is in the AIL. */ 490 ASSERT(i != 0); 491 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 492 continue; 493 494 /* 495 * Unlock all previous guys and try again. xfs_iunlock will try 496 * to push the tail if the inode is in the AIL. 497 */ 498 attempts++; 499 for (j = i - 1; j >= 0; j--) { 500 /* 501 * Check to see if we've already unlocked this one. Not 502 * the first one going back, and the inode ptr is the 503 * same. 504 */ 505 if (j != (i - 1) && ips[j] == ips[j + 1]) 506 continue; 507 508 xfs_iunlock(ips[j], lock_mode); 509 } 510 511 if ((attempts % 5) == 0) { 512 delay(1); /* Don't just spin the CPU */ 513 } 514 goto again; 515 } 516 } 517 518 /* 519 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and 520 * mmaplock must be double-locked separately since we use i_rwsem and 521 * invalidate_lock for that. We now support taking one lock EXCL and the 522 * other SHARED. 523 */ 524 void 525 xfs_lock_two_inodes( 526 struct xfs_inode *ip0, 527 uint ip0_mode, 528 struct xfs_inode *ip1, 529 uint ip1_mode) 530 { 531 int attempts = 0; 532 struct xfs_log_item *lp; 533 534 ASSERT(hweight32(ip0_mode) == 1); 535 ASSERT(hweight32(ip1_mode) == 1); 536 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 537 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 538 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 539 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 540 ASSERT(ip0->i_ino != ip1->i_ino); 541 542 if (ip0->i_ino > ip1->i_ino) { 543 swap(ip0, ip1); 544 swap(ip0_mode, ip1_mode); 545 } 546 547 again: 548 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 549 550 /* 551 * If the first lock we have locked is in the AIL, we must TRY to get 552 * the second lock. If we can't get it, we must release the first one 553 * and try again. 554 */ 555 lp = &ip0->i_itemp->ili_item; 556 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 557 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 558 xfs_iunlock(ip0, ip0_mode); 559 if ((++attempts % 5) == 0) 560 delay(1); /* Don't just spin the CPU */ 561 goto again; 562 } 563 } else { 564 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 565 } 566 } 567 568 uint 569 xfs_ip2xflags( 570 struct xfs_inode *ip) 571 { 572 uint flags = 0; 573 574 if (ip->i_diflags & XFS_DIFLAG_ANY) { 575 if (ip->i_diflags & XFS_DIFLAG_REALTIME) 576 flags |= FS_XFLAG_REALTIME; 577 if (ip->i_diflags & XFS_DIFLAG_PREALLOC) 578 flags |= FS_XFLAG_PREALLOC; 579 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 580 flags |= FS_XFLAG_IMMUTABLE; 581 if (ip->i_diflags & XFS_DIFLAG_APPEND) 582 flags |= FS_XFLAG_APPEND; 583 if (ip->i_diflags & XFS_DIFLAG_SYNC) 584 flags |= FS_XFLAG_SYNC; 585 if (ip->i_diflags & XFS_DIFLAG_NOATIME) 586 flags |= FS_XFLAG_NOATIME; 587 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 588 flags |= FS_XFLAG_NODUMP; 589 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT) 590 flags |= FS_XFLAG_RTINHERIT; 591 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT) 592 flags |= FS_XFLAG_PROJINHERIT; 593 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS) 594 flags |= FS_XFLAG_NOSYMLINKS; 595 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE) 596 flags |= FS_XFLAG_EXTSIZE; 597 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) 598 flags |= FS_XFLAG_EXTSZINHERIT; 599 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG) 600 flags |= FS_XFLAG_NODEFRAG; 601 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM) 602 flags |= FS_XFLAG_FILESTREAM; 603 } 604 605 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) { 606 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 607 flags |= FS_XFLAG_DAX; 608 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 609 flags |= FS_XFLAG_COWEXTSIZE; 610 } 611 612 if (xfs_inode_has_attr_fork(ip)) 613 flags |= FS_XFLAG_HASATTR; 614 return flags; 615 } 616 617 /* 618 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 619 * is allowed, otherwise it has to be an exact match. If a CI match is found, 620 * ci_name->name will point to a the actual name (caller must free) or 621 * will be set to NULL if an exact match is found. 622 */ 623 int 624 xfs_lookup( 625 struct xfs_inode *dp, 626 const struct xfs_name *name, 627 struct xfs_inode **ipp, 628 struct xfs_name *ci_name) 629 { 630 xfs_ino_t inum; 631 int error; 632 633 trace_xfs_lookup(dp, name); 634 635 if (xfs_is_shutdown(dp->i_mount)) 636 return -EIO; 637 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 638 return -EIO; 639 640 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 641 if (error) 642 goto out_unlock; 643 644 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 645 if (error) 646 goto out_free_name; 647 648 return 0; 649 650 out_free_name: 651 if (ci_name) 652 kfree(ci_name->name); 653 out_unlock: 654 *ipp = NULL; 655 return error; 656 } 657 658 /* Propagate di_flags from a parent inode to a child inode. */ 659 static void 660 xfs_inode_inherit_flags( 661 struct xfs_inode *ip, 662 const struct xfs_inode *pip) 663 { 664 unsigned int di_flags = 0; 665 xfs_failaddr_t failaddr; 666 umode_t mode = VFS_I(ip)->i_mode; 667 668 if (S_ISDIR(mode)) { 669 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT) 670 di_flags |= XFS_DIFLAG_RTINHERIT; 671 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 672 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 673 ip->i_extsize = pip->i_extsize; 674 } 675 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT) 676 di_flags |= XFS_DIFLAG_PROJINHERIT; 677 } else if (S_ISREG(mode)) { 678 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) && 679 xfs_has_realtime(ip->i_mount)) 680 di_flags |= XFS_DIFLAG_REALTIME; 681 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 682 di_flags |= XFS_DIFLAG_EXTSIZE; 683 ip->i_extsize = pip->i_extsize; 684 } 685 } 686 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) && 687 xfs_inherit_noatime) 688 di_flags |= XFS_DIFLAG_NOATIME; 689 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) && 690 xfs_inherit_nodump) 691 di_flags |= XFS_DIFLAG_NODUMP; 692 if ((pip->i_diflags & XFS_DIFLAG_SYNC) && 693 xfs_inherit_sync) 694 di_flags |= XFS_DIFLAG_SYNC; 695 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) && 696 xfs_inherit_nosymlinks) 697 di_flags |= XFS_DIFLAG_NOSYMLINKS; 698 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) && 699 xfs_inherit_nodefrag) 700 di_flags |= XFS_DIFLAG_NODEFRAG; 701 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM) 702 di_flags |= XFS_DIFLAG_FILESTREAM; 703 704 ip->i_diflags |= di_flags; 705 706 /* 707 * Inode verifiers on older kernels only check that the extent size 708 * hint is an integer multiple of the rt extent size on realtime files. 709 * They did not check the hint alignment on a directory with both 710 * rtinherit and extszinherit flags set. If the misaligned hint is 711 * propagated from a directory into a new realtime file, new file 712 * allocations will fail due to math errors in the rt allocator and/or 713 * trip the verifiers. Validate the hint settings in the new file so 714 * that we don't let broken hints propagate. 715 */ 716 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize, 717 VFS_I(ip)->i_mode, ip->i_diflags); 718 if (failaddr) { 719 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | 720 XFS_DIFLAG_EXTSZINHERIT); 721 ip->i_extsize = 0; 722 } 723 } 724 725 /* Propagate di_flags2 from a parent inode to a child inode. */ 726 static void 727 xfs_inode_inherit_flags2( 728 struct xfs_inode *ip, 729 const struct xfs_inode *pip) 730 { 731 xfs_failaddr_t failaddr; 732 733 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) { 734 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 735 ip->i_cowextsize = pip->i_cowextsize; 736 } 737 if (pip->i_diflags2 & XFS_DIFLAG2_DAX) 738 ip->i_diflags2 |= XFS_DIFLAG2_DAX; 739 740 /* Don't let invalid cowextsize hints propagate. */ 741 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize, 742 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2); 743 if (failaddr) { 744 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE; 745 ip->i_cowextsize = 0; 746 } 747 } 748 749 /* 750 * Initialise a newly allocated inode and return the in-core inode to the 751 * caller locked exclusively. 752 */ 753 int 754 xfs_init_new_inode( 755 struct mnt_idmap *idmap, 756 struct xfs_trans *tp, 757 struct xfs_inode *pip, 758 xfs_ino_t ino, 759 umode_t mode, 760 xfs_nlink_t nlink, 761 dev_t rdev, 762 prid_t prid, 763 bool init_xattrs, 764 struct xfs_inode **ipp) 765 { 766 struct inode *dir = pip ? VFS_I(pip) : NULL; 767 struct xfs_mount *mp = tp->t_mountp; 768 struct xfs_inode *ip; 769 unsigned int flags; 770 int error; 771 struct timespec64 tv; 772 struct inode *inode; 773 774 /* 775 * Protect against obviously corrupt allocation btree records. Later 776 * xfs_iget checks will catch re-allocation of other active in-memory 777 * and on-disk inodes. If we don't catch reallocating the parent inode 778 * here we will deadlock in xfs_iget() so we have to do these checks 779 * first. 780 */ 781 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 782 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 783 xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino), 784 XFS_SICK_AG_INOBT); 785 return -EFSCORRUPTED; 786 } 787 788 /* 789 * Get the in-core inode with the lock held exclusively to prevent 790 * others from looking at until we're done. 791 */ 792 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 793 if (error) 794 return error; 795 796 ASSERT(ip != NULL); 797 inode = VFS_I(ip); 798 set_nlink(inode, nlink); 799 inode->i_rdev = rdev; 800 ip->i_projid = prid; 801 802 if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) { 803 inode_fsuid_set(inode, idmap); 804 inode->i_gid = dir->i_gid; 805 inode->i_mode = mode; 806 } else { 807 inode_init_owner(idmap, inode, dir, mode); 808 } 809 810 /* 811 * If the group ID of the new file does not match the effective group 812 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 813 * (and only if the irix_sgid_inherit compatibility variable is set). 814 */ 815 if (irix_sgid_inherit && (inode->i_mode & S_ISGID) && 816 !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode))) 817 inode->i_mode &= ~S_ISGID; 818 819 ip->i_disk_size = 0; 820 ip->i_df.if_nextents = 0; 821 ASSERT(ip->i_nblocks == 0); 822 823 tv = inode_set_ctime_current(inode); 824 inode_set_mtime_to_ts(inode, tv); 825 inode_set_atime_to_ts(inode, tv); 826 827 ip->i_extsize = 0; 828 ip->i_diflags = 0; 829 830 if (xfs_has_v3inodes(mp)) { 831 inode_set_iversion(inode, 1); 832 ip->i_cowextsize = 0; 833 ip->i_crtime = tv; 834 } 835 836 flags = XFS_ILOG_CORE; 837 switch (mode & S_IFMT) { 838 case S_IFIFO: 839 case S_IFCHR: 840 case S_IFBLK: 841 case S_IFSOCK: 842 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 843 flags |= XFS_ILOG_DEV; 844 break; 845 case S_IFREG: 846 case S_IFDIR: 847 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY)) 848 xfs_inode_inherit_flags(ip, pip); 849 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY)) 850 xfs_inode_inherit_flags2(ip, pip); 851 fallthrough; 852 case S_IFLNK: 853 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 854 ip->i_df.if_bytes = 0; 855 ip->i_df.if_data = NULL; 856 break; 857 default: 858 ASSERT(0); 859 } 860 861 /* 862 * If we need to create attributes immediately after allocating the 863 * inode, initialise an empty attribute fork right now. We use the 864 * default fork offset for attributes here as we don't know exactly what 865 * size or how many attributes we might be adding. We can do this 866 * safely here because we know the data fork is completely empty and 867 * this saves us from needing to run a separate transaction to set the 868 * fork offset in the immediate future. 869 */ 870 if (init_xattrs && xfs_has_attr(mp)) { 871 ip->i_forkoff = xfs_default_attroffset(ip) >> 3; 872 xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0); 873 } 874 875 /* 876 * Log the new values stuffed into the inode. 877 */ 878 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 879 xfs_trans_log_inode(tp, ip, flags); 880 881 /* now that we have an i_mode we can setup the inode structure */ 882 xfs_setup_inode(ip); 883 884 *ipp = ip; 885 return 0; 886 } 887 888 /* 889 * Decrement the link count on an inode & log the change. If this causes the 890 * link count to go to zero, move the inode to AGI unlinked list so that it can 891 * be freed when the last active reference goes away via xfs_inactive(). 892 */ 893 static int /* error */ 894 xfs_droplink( 895 xfs_trans_t *tp, 896 xfs_inode_t *ip) 897 { 898 if (VFS_I(ip)->i_nlink == 0) { 899 xfs_alert(ip->i_mount, 900 "%s: Attempt to drop inode (%llu) with nlink zero.", 901 __func__, ip->i_ino); 902 return -EFSCORRUPTED; 903 } 904 905 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 906 907 drop_nlink(VFS_I(ip)); 908 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 909 910 if (VFS_I(ip)->i_nlink) 911 return 0; 912 913 return xfs_iunlink(tp, ip); 914 } 915 916 /* 917 * Increment the link count on an inode & log the change. 918 */ 919 static void 920 xfs_bumplink( 921 xfs_trans_t *tp, 922 xfs_inode_t *ip) 923 { 924 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 925 926 inc_nlink(VFS_I(ip)); 927 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 928 } 929 930 #ifdef CONFIG_XFS_LIVE_HOOKS 931 /* 932 * Use a static key here to reduce the overhead of directory live update hooks. 933 * If the compiler supports jump labels, the static branch will be replaced by 934 * a nop sled when there are no hook users. Online fsck is currently the only 935 * caller, so this is a reasonable tradeoff. 936 * 937 * Note: Patching the kernel code requires taking the cpu hotplug lock. Other 938 * parts of the kernel allocate memory with that lock held, which means that 939 * XFS callers cannot hold any locks that might be used by memory reclaim or 940 * writeback when calling the static_branch_{inc,dec} functions. 941 */ 942 DEFINE_STATIC_XFS_HOOK_SWITCH(xfs_dir_hooks_switch); 943 944 void 945 xfs_dir_hook_disable(void) 946 { 947 xfs_hooks_switch_off(&xfs_dir_hooks_switch); 948 } 949 950 void 951 xfs_dir_hook_enable(void) 952 { 953 xfs_hooks_switch_on(&xfs_dir_hooks_switch); 954 } 955 956 /* Call hooks for a directory update relating to a child dirent update. */ 957 inline void 958 xfs_dir_update_hook( 959 struct xfs_inode *dp, 960 struct xfs_inode *ip, 961 int delta, 962 const struct xfs_name *name) 963 { 964 if (xfs_hooks_switched_on(&xfs_dir_hooks_switch)) { 965 struct xfs_dir_update_params p = { 966 .dp = dp, 967 .ip = ip, 968 .delta = delta, 969 .name = name, 970 }; 971 struct xfs_mount *mp = ip->i_mount; 972 973 xfs_hooks_call(&mp->m_dir_update_hooks, 0, &p); 974 } 975 } 976 977 /* Call the specified function during a directory update. */ 978 int 979 xfs_dir_hook_add( 980 struct xfs_mount *mp, 981 struct xfs_dir_hook *hook) 982 { 983 return xfs_hooks_add(&mp->m_dir_update_hooks, &hook->dirent_hook); 984 } 985 986 /* Stop calling the specified function during a directory update. */ 987 void 988 xfs_dir_hook_del( 989 struct xfs_mount *mp, 990 struct xfs_dir_hook *hook) 991 { 992 xfs_hooks_del(&mp->m_dir_update_hooks, &hook->dirent_hook); 993 } 994 995 /* Configure directory update hook functions. */ 996 void 997 xfs_dir_hook_setup( 998 struct xfs_dir_hook *hook, 999 notifier_fn_t mod_fn) 1000 { 1001 xfs_hook_setup(&hook->dirent_hook, mod_fn); 1002 } 1003 #endif /* CONFIG_XFS_LIVE_HOOKS */ 1004 1005 int 1006 xfs_create( 1007 struct mnt_idmap *idmap, 1008 xfs_inode_t *dp, 1009 struct xfs_name *name, 1010 umode_t mode, 1011 dev_t rdev, 1012 bool init_xattrs, 1013 xfs_inode_t **ipp) 1014 { 1015 int is_dir = S_ISDIR(mode); 1016 struct xfs_mount *mp = dp->i_mount; 1017 struct xfs_inode *ip = NULL; 1018 struct xfs_trans *tp = NULL; 1019 int error; 1020 bool unlock_dp_on_error = false; 1021 prid_t prid; 1022 struct xfs_dquot *udqp = NULL; 1023 struct xfs_dquot *gdqp = NULL; 1024 struct xfs_dquot *pdqp = NULL; 1025 struct xfs_trans_res *tres; 1026 uint resblks; 1027 xfs_ino_t ino; 1028 1029 trace_xfs_create(dp, name); 1030 1031 if (xfs_is_shutdown(mp)) 1032 return -EIO; 1033 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 1034 return -EIO; 1035 1036 prid = xfs_get_initial_prid(dp); 1037 1038 /* 1039 * Make sure that we have allocated dquot(s) on disk. 1040 */ 1041 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns), 1042 mapped_fsgid(idmap, &init_user_ns), prid, 1043 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1044 &udqp, &gdqp, &pdqp); 1045 if (error) 1046 return error; 1047 1048 if (is_dir) { 1049 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1050 tres = &M_RES(mp)->tr_mkdir; 1051 } else { 1052 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1053 tres = &M_RES(mp)->tr_create; 1054 } 1055 1056 /* 1057 * Initially assume that the file does not exist and 1058 * reserve the resources for that case. If that is not 1059 * the case we'll drop the one we have and get a more 1060 * appropriate transaction later. 1061 */ 1062 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1063 &tp); 1064 if (error == -ENOSPC) { 1065 /* flush outstanding delalloc blocks and retry */ 1066 xfs_flush_inodes(mp); 1067 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, 1068 resblks, &tp); 1069 } 1070 if (error) 1071 goto out_release_dquots; 1072 1073 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1074 unlock_dp_on_error = true; 1075 1076 /* 1077 * A newly created regular or special file just has one directory 1078 * entry pointing to them, but a directory also the "." entry 1079 * pointing to itself. 1080 */ 1081 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1082 if (!error) 1083 error = xfs_init_new_inode(idmap, tp, dp, ino, mode, 1084 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip); 1085 if (error) 1086 goto out_trans_cancel; 1087 1088 /* 1089 * Now we join the directory inode to the transaction. We do not do it 1090 * earlier because xfs_dialloc might commit the previous transaction 1091 * (and release all the locks). An error from here on will result in 1092 * the transaction cancel unlocking dp so don't do it explicitly in the 1093 * error path. 1094 */ 1095 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1096 unlock_dp_on_error = false; 1097 1098 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1099 resblks - XFS_IALLOC_SPACE_RES(mp)); 1100 if (error) { 1101 ASSERT(error != -ENOSPC); 1102 goto out_trans_cancel; 1103 } 1104 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1105 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1106 1107 if (is_dir) { 1108 error = xfs_dir_init(tp, ip, dp); 1109 if (error) 1110 goto out_trans_cancel; 1111 1112 xfs_bumplink(tp, dp); 1113 } 1114 1115 /* 1116 * Create ip with a reference from dp, and add '.' and '..' references 1117 * if it's a directory. 1118 */ 1119 xfs_dir_update_hook(dp, ip, 1, name); 1120 1121 /* 1122 * If this is a synchronous mount, make sure that the 1123 * create transaction goes to disk before returning to 1124 * the user. 1125 */ 1126 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1127 xfs_trans_set_sync(tp); 1128 1129 /* 1130 * Attach the dquot(s) to the inodes and modify them incore. 1131 * These ids of the inode couldn't have changed since the new 1132 * inode has been locked ever since it was created. 1133 */ 1134 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1135 1136 error = xfs_trans_commit(tp); 1137 if (error) 1138 goto out_release_inode; 1139 1140 xfs_qm_dqrele(udqp); 1141 xfs_qm_dqrele(gdqp); 1142 xfs_qm_dqrele(pdqp); 1143 1144 *ipp = ip; 1145 return 0; 1146 1147 out_trans_cancel: 1148 xfs_trans_cancel(tp); 1149 out_release_inode: 1150 /* 1151 * Wait until after the current transaction is aborted to finish the 1152 * setup of the inode and release the inode. This prevents recursive 1153 * transactions and deadlocks from xfs_inactive. 1154 */ 1155 if (ip) { 1156 xfs_finish_inode_setup(ip); 1157 xfs_irele(ip); 1158 } 1159 out_release_dquots: 1160 xfs_qm_dqrele(udqp); 1161 xfs_qm_dqrele(gdqp); 1162 xfs_qm_dqrele(pdqp); 1163 1164 if (unlock_dp_on_error) 1165 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1166 return error; 1167 } 1168 1169 int 1170 xfs_create_tmpfile( 1171 struct mnt_idmap *idmap, 1172 struct xfs_inode *dp, 1173 umode_t mode, 1174 struct xfs_inode **ipp) 1175 { 1176 struct xfs_mount *mp = dp->i_mount; 1177 struct xfs_inode *ip = NULL; 1178 struct xfs_trans *tp = NULL; 1179 int error; 1180 prid_t prid; 1181 struct xfs_dquot *udqp = NULL; 1182 struct xfs_dquot *gdqp = NULL; 1183 struct xfs_dquot *pdqp = NULL; 1184 struct xfs_trans_res *tres; 1185 uint resblks; 1186 xfs_ino_t ino; 1187 1188 if (xfs_is_shutdown(mp)) 1189 return -EIO; 1190 1191 prid = xfs_get_initial_prid(dp); 1192 1193 /* 1194 * Make sure that we have allocated dquot(s) on disk. 1195 */ 1196 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns), 1197 mapped_fsgid(idmap, &init_user_ns), prid, 1198 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1199 &udqp, &gdqp, &pdqp); 1200 if (error) 1201 return error; 1202 1203 resblks = XFS_IALLOC_SPACE_RES(mp); 1204 tres = &M_RES(mp)->tr_create_tmpfile; 1205 1206 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1207 &tp); 1208 if (error) 1209 goto out_release_dquots; 1210 1211 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1212 if (!error) 1213 error = xfs_init_new_inode(idmap, tp, dp, ino, mode, 1214 0, 0, prid, false, &ip); 1215 if (error) 1216 goto out_trans_cancel; 1217 1218 if (xfs_has_wsync(mp)) 1219 xfs_trans_set_sync(tp); 1220 1221 /* 1222 * Attach the dquot(s) to the inodes and modify them incore. 1223 * These ids of the inode couldn't have changed since the new 1224 * inode has been locked ever since it was created. 1225 */ 1226 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1227 1228 error = xfs_iunlink(tp, ip); 1229 if (error) 1230 goto out_trans_cancel; 1231 1232 error = xfs_trans_commit(tp); 1233 if (error) 1234 goto out_release_inode; 1235 1236 xfs_qm_dqrele(udqp); 1237 xfs_qm_dqrele(gdqp); 1238 xfs_qm_dqrele(pdqp); 1239 1240 *ipp = ip; 1241 return 0; 1242 1243 out_trans_cancel: 1244 xfs_trans_cancel(tp); 1245 out_release_inode: 1246 /* 1247 * Wait until after the current transaction is aborted to finish the 1248 * setup of the inode and release the inode. This prevents recursive 1249 * transactions and deadlocks from xfs_inactive. 1250 */ 1251 if (ip) { 1252 xfs_finish_inode_setup(ip); 1253 xfs_irele(ip); 1254 } 1255 out_release_dquots: 1256 xfs_qm_dqrele(udqp); 1257 xfs_qm_dqrele(gdqp); 1258 xfs_qm_dqrele(pdqp); 1259 1260 return error; 1261 } 1262 1263 int 1264 xfs_link( 1265 xfs_inode_t *tdp, 1266 xfs_inode_t *sip, 1267 struct xfs_name *target_name) 1268 { 1269 xfs_mount_t *mp = tdp->i_mount; 1270 xfs_trans_t *tp; 1271 int error, nospace_error = 0; 1272 int resblks; 1273 1274 trace_xfs_link(tdp, target_name); 1275 1276 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1277 1278 if (xfs_is_shutdown(mp)) 1279 return -EIO; 1280 if (xfs_ifork_zapped(tdp, XFS_DATA_FORK)) 1281 return -EIO; 1282 1283 error = xfs_qm_dqattach(sip); 1284 if (error) 1285 goto std_return; 1286 1287 error = xfs_qm_dqattach(tdp); 1288 if (error) 1289 goto std_return; 1290 1291 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1292 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks, 1293 &tp, &nospace_error); 1294 if (error) 1295 goto std_return; 1296 1297 /* 1298 * If we are using project inheritance, we only allow hard link 1299 * creation in our tree when the project IDs are the same; else 1300 * the tree quota mechanism could be circumvented. 1301 */ 1302 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 1303 tdp->i_projid != sip->i_projid)) { 1304 /* 1305 * Project quota setup skips special files which can 1306 * leave inodes in a PROJINHERIT directory without a 1307 * project ID set. We need to allow links to be made 1308 * to these "project-less" inodes because userspace 1309 * expects them to succeed after project ID setup, 1310 * but everything else should be rejected. 1311 */ 1312 if (!special_file(VFS_I(sip)->i_mode) || 1313 sip->i_projid != 0) { 1314 error = -EXDEV; 1315 goto error_return; 1316 } 1317 } 1318 1319 if (!resblks) { 1320 error = xfs_dir_canenter(tp, tdp, target_name); 1321 if (error) 1322 goto error_return; 1323 } 1324 1325 /* 1326 * Handle initial link state of O_TMPFILE inode 1327 */ 1328 if (VFS_I(sip)->i_nlink == 0) { 1329 struct xfs_perag *pag; 1330 1331 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino)); 1332 error = xfs_iunlink_remove(tp, pag, sip); 1333 xfs_perag_put(pag); 1334 if (error) 1335 goto error_return; 1336 } 1337 1338 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1339 resblks); 1340 if (error) 1341 goto error_return; 1342 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1343 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1344 1345 xfs_bumplink(tp, sip); 1346 xfs_dir_update_hook(tdp, sip, 1, target_name); 1347 1348 /* 1349 * If this is a synchronous mount, make sure that the 1350 * link transaction goes to disk before returning to 1351 * the user. 1352 */ 1353 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1354 xfs_trans_set_sync(tp); 1355 1356 return xfs_trans_commit(tp); 1357 1358 error_return: 1359 xfs_trans_cancel(tp); 1360 std_return: 1361 if (error == -ENOSPC && nospace_error) 1362 error = nospace_error; 1363 return error; 1364 } 1365 1366 /* Clear the reflink flag and the cowblocks tag if possible. */ 1367 static void 1368 xfs_itruncate_clear_reflink_flags( 1369 struct xfs_inode *ip) 1370 { 1371 struct xfs_ifork *dfork; 1372 struct xfs_ifork *cfork; 1373 1374 if (!xfs_is_reflink_inode(ip)) 1375 return; 1376 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK); 1377 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK); 1378 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1379 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1380 if (cfork->if_bytes == 0) 1381 xfs_inode_clear_cowblocks_tag(ip); 1382 } 1383 1384 /* 1385 * Free up the underlying blocks past new_size. The new size must be smaller 1386 * than the current size. This routine can be used both for the attribute and 1387 * data fork, and does not modify the inode size, which is left to the caller. 1388 * 1389 * The transaction passed to this routine must have made a permanent log 1390 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1391 * given transaction and start new ones, so make sure everything involved in 1392 * the transaction is tidy before calling here. Some transaction will be 1393 * returned to the caller to be committed. The incoming transaction must 1394 * already include the inode, and both inode locks must be held exclusively. 1395 * The inode must also be "held" within the transaction. On return the inode 1396 * will be "held" within the returned transaction. This routine does NOT 1397 * require any disk space to be reserved for it within the transaction. 1398 * 1399 * If we get an error, we must return with the inode locked and linked into the 1400 * current transaction. This keeps things simple for the higher level code, 1401 * because it always knows that the inode is locked and held in the transaction 1402 * that returns to it whether errors occur or not. We don't mark the inode 1403 * dirty on error so that transactions can be easily aborted if possible. 1404 */ 1405 int 1406 xfs_itruncate_extents_flags( 1407 struct xfs_trans **tpp, 1408 struct xfs_inode *ip, 1409 int whichfork, 1410 xfs_fsize_t new_size, 1411 int flags) 1412 { 1413 struct xfs_mount *mp = ip->i_mount; 1414 struct xfs_trans *tp = *tpp; 1415 xfs_fileoff_t first_unmap_block; 1416 int error = 0; 1417 1418 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 1419 if (atomic_read(&VFS_I(ip)->i_count)) 1420 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL); 1421 ASSERT(new_size <= XFS_ISIZE(ip)); 1422 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1423 ASSERT(ip->i_itemp != NULL); 1424 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1425 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1426 1427 trace_xfs_itruncate_extents_start(ip, new_size); 1428 1429 flags |= xfs_bmapi_aflag(whichfork); 1430 1431 /* 1432 * Since it is possible for space to become allocated beyond 1433 * the end of the file (in a crash where the space is allocated 1434 * but the inode size is not yet updated), simply remove any 1435 * blocks which show up between the new EOF and the maximum 1436 * possible file size. 1437 * 1438 * We have to free all the blocks to the bmbt maximum offset, even if 1439 * the page cache can't scale that far. 1440 */ 1441 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1442 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1443 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1444 return 0; 1445 } 1446 1447 error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block, 1448 XFS_MAX_FILEOFF); 1449 if (error) 1450 goto out; 1451 1452 if (whichfork == XFS_DATA_FORK) { 1453 /* Remove all pending CoW reservations. */ 1454 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1455 first_unmap_block, XFS_MAX_FILEOFF, true); 1456 if (error) 1457 goto out; 1458 1459 xfs_itruncate_clear_reflink_flags(ip); 1460 } 1461 1462 /* 1463 * Always re-log the inode so that our permanent transaction can keep 1464 * on rolling it forward in the log. 1465 */ 1466 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1467 1468 trace_xfs_itruncate_extents_end(ip, new_size); 1469 1470 out: 1471 *tpp = tp; 1472 return error; 1473 } 1474 1475 int 1476 xfs_release( 1477 xfs_inode_t *ip) 1478 { 1479 xfs_mount_t *mp = ip->i_mount; 1480 int error = 0; 1481 1482 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1483 return 0; 1484 1485 /* If this is a read-only mount, don't do this (would generate I/O) */ 1486 if (xfs_is_readonly(mp)) 1487 return 0; 1488 1489 if (!xfs_is_shutdown(mp)) { 1490 int truncated; 1491 1492 /* 1493 * If we previously truncated this file and removed old data 1494 * in the process, we want to initiate "early" writeout on 1495 * the last close. This is an attempt to combat the notorious 1496 * NULL files problem which is particularly noticeable from a 1497 * truncate down, buffered (re-)write (delalloc), followed by 1498 * a crash. What we are effectively doing here is 1499 * significantly reducing the time window where we'd otherwise 1500 * be exposed to that problem. 1501 */ 1502 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1503 if (truncated) { 1504 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1505 if (ip->i_delayed_blks > 0) { 1506 error = filemap_flush(VFS_I(ip)->i_mapping); 1507 if (error) 1508 return error; 1509 } 1510 } 1511 } 1512 1513 if (VFS_I(ip)->i_nlink == 0) 1514 return 0; 1515 1516 /* 1517 * If we can't get the iolock just skip truncating the blocks past EOF 1518 * because we could deadlock with the mmap_lock otherwise. We'll get 1519 * another chance to drop them once the last reference to the inode is 1520 * dropped, so we'll never leak blocks permanently. 1521 */ 1522 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) 1523 return 0; 1524 1525 if (xfs_can_free_eofblocks(ip, false)) { 1526 /* 1527 * Check if the inode is being opened, written and closed 1528 * frequently and we have delayed allocation blocks outstanding 1529 * (e.g. streaming writes from the NFS server), truncating the 1530 * blocks past EOF will cause fragmentation to occur. 1531 * 1532 * In this case don't do the truncation, but we have to be 1533 * careful how we detect this case. Blocks beyond EOF show up as 1534 * i_delayed_blks even when the inode is clean, so we need to 1535 * truncate them away first before checking for a dirty release. 1536 * Hence on the first dirty close we will still remove the 1537 * speculative allocation, but after that we will leave it in 1538 * place. 1539 */ 1540 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1541 goto out_unlock; 1542 1543 error = xfs_free_eofblocks(ip); 1544 if (error) 1545 goto out_unlock; 1546 1547 /* delalloc blocks after truncation means it really is dirty */ 1548 if (ip->i_delayed_blks) 1549 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1550 } 1551 1552 out_unlock: 1553 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1554 return error; 1555 } 1556 1557 /* 1558 * xfs_inactive_truncate 1559 * 1560 * Called to perform a truncate when an inode becomes unlinked. 1561 */ 1562 STATIC int 1563 xfs_inactive_truncate( 1564 struct xfs_inode *ip) 1565 { 1566 struct xfs_mount *mp = ip->i_mount; 1567 struct xfs_trans *tp; 1568 int error; 1569 1570 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1571 if (error) { 1572 ASSERT(xfs_is_shutdown(mp)); 1573 return error; 1574 } 1575 xfs_ilock(ip, XFS_ILOCK_EXCL); 1576 xfs_trans_ijoin(tp, ip, 0); 1577 1578 /* 1579 * Log the inode size first to prevent stale data exposure in the event 1580 * of a system crash before the truncate completes. See the related 1581 * comment in xfs_vn_setattr_size() for details. 1582 */ 1583 ip->i_disk_size = 0; 1584 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1585 1586 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1587 if (error) 1588 goto error_trans_cancel; 1589 1590 ASSERT(ip->i_df.if_nextents == 0); 1591 1592 error = xfs_trans_commit(tp); 1593 if (error) 1594 goto error_unlock; 1595 1596 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1597 return 0; 1598 1599 error_trans_cancel: 1600 xfs_trans_cancel(tp); 1601 error_unlock: 1602 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1603 return error; 1604 } 1605 1606 /* 1607 * xfs_inactive_ifree() 1608 * 1609 * Perform the inode free when an inode is unlinked. 1610 */ 1611 STATIC int 1612 xfs_inactive_ifree( 1613 struct xfs_inode *ip) 1614 { 1615 struct xfs_mount *mp = ip->i_mount; 1616 struct xfs_trans *tp; 1617 int error; 1618 1619 /* 1620 * We try to use a per-AG reservation for any block needed by the finobt 1621 * tree, but as the finobt feature predates the per-AG reservation 1622 * support a degraded file system might not have enough space for the 1623 * reservation at mount time. In that case try to dip into the reserved 1624 * pool and pray. 1625 * 1626 * Send a warning if the reservation does happen to fail, as the inode 1627 * now remains allocated and sits on the unlinked list until the fs is 1628 * repaired. 1629 */ 1630 if (unlikely(mp->m_finobt_nores)) { 1631 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1632 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1633 &tp); 1634 } else { 1635 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1636 } 1637 if (error) { 1638 if (error == -ENOSPC) { 1639 xfs_warn_ratelimited(mp, 1640 "Failed to remove inode(s) from unlinked list. " 1641 "Please free space, unmount and run xfs_repair."); 1642 } else { 1643 ASSERT(xfs_is_shutdown(mp)); 1644 } 1645 return error; 1646 } 1647 1648 /* 1649 * We do not hold the inode locked across the entire rolling transaction 1650 * here. We only need to hold it for the first transaction that 1651 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1652 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1653 * here breaks the relationship between cluster buffer invalidation and 1654 * stale inode invalidation on cluster buffer item journal commit 1655 * completion, and can result in leaving dirty stale inodes hanging 1656 * around in memory. 1657 * 1658 * We have no need for serialising this inode operation against other 1659 * operations - we freed the inode and hence reallocation is required 1660 * and that will serialise on reallocating the space the deferops need 1661 * to free. Hence we can unlock the inode on the first commit of 1662 * the transaction rather than roll it right through the deferops. This 1663 * avoids relogging the XFS_ISTALE inode. 1664 * 1665 * We check that xfs_ifree() hasn't grown an internal transaction roll 1666 * by asserting that the inode is still locked when it returns. 1667 */ 1668 xfs_ilock(ip, XFS_ILOCK_EXCL); 1669 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1670 1671 error = xfs_ifree(tp, ip); 1672 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 1673 if (error) { 1674 /* 1675 * If we fail to free the inode, shut down. The cancel 1676 * might do that, we need to make sure. Otherwise the 1677 * inode might be lost for a long time or forever. 1678 */ 1679 if (!xfs_is_shutdown(mp)) { 1680 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1681 __func__, error); 1682 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1683 } 1684 xfs_trans_cancel(tp); 1685 return error; 1686 } 1687 1688 /* 1689 * Credit the quota account(s). The inode is gone. 1690 */ 1691 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1692 1693 return xfs_trans_commit(tp); 1694 } 1695 1696 /* 1697 * Returns true if we need to update the on-disk metadata before we can free 1698 * the memory used by this inode. Updates include freeing post-eof 1699 * preallocations; freeing COW staging extents; and marking the inode free in 1700 * the inobt if it is on the unlinked list. 1701 */ 1702 bool 1703 xfs_inode_needs_inactive( 1704 struct xfs_inode *ip) 1705 { 1706 struct xfs_mount *mp = ip->i_mount; 1707 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 1708 1709 /* 1710 * If the inode is already free, then there can be nothing 1711 * to clean up here. 1712 */ 1713 if (VFS_I(ip)->i_mode == 0) 1714 return false; 1715 1716 /* 1717 * If this is a read-only mount, don't do this (would generate I/O) 1718 * unless we're in log recovery and cleaning the iunlinked list. 1719 */ 1720 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1721 return false; 1722 1723 /* If the log isn't running, push inodes straight to reclaim. */ 1724 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) 1725 return false; 1726 1727 /* Metadata inodes require explicit resource cleanup. */ 1728 if (xfs_is_metadata_inode(ip)) 1729 return false; 1730 1731 /* Want to clean out the cow blocks if there are any. */ 1732 if (cow_ifp && cow_ifp->if_bytes > 0) 1733 return true; 1734 1735 /* Unlinked files must be freed. */ 1736 if (VFS_I(ip)->i_nlink == 0) 1737 return true; 1738 1739 /* 1740 * This file isn't being freed, so check if there are post-eof blocks 1741 * to free. @force is true because we are evicting an inode from the 1742 * cache. Post-eof blocks must be freed, lest we end up with broken 1743 * free space accounting. 1744 * 1745 * Note: don't bother with iolock here since lockdep complains about 1746 * acquiring it in reclaim context. We have the only reference to the 1747 * inode at this point anyways. 1748 */ 1749 return xfs_can_free_eofblocks(ip, true); 1750 } 1751 1752 /* 1753 * Save health status somewhere, if we're dumping an inode with uncorrected 1754 * errors and online repair isn't running. 1755 */ 1756 static inline void 1757 xfs_inactive_health( 1758 struct xfs_inode *ip) 1759 { 1760 struct xfs_mount *mp = ip->i_mount; 1761 struct xfs_perag *pag; 1762 unsigned int sick; 1763 unsigned int checked; 1764 1765 xfs_inode_measure_sickness(ip, &sick, &checked); 1766 if (!sick) 1767 return; 1768 1769 trace_xfs_inode_unfixed_corruption(ip, sick); 1770 1771 if (sick & XFS_SICK_INO_FORGET) 1772 return; 1773 1774 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1775 if (!pag) { 1776 /* There had better still be a perag structure! */ 1777 ASSERT(0); 1778 return; 1779 } 1780 1781 xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES); 1782 xfs_perag_put(pag); 1783 } 1784 1785 /* 1786 * xfs_inactive 1787 * 1788 * This is called when the vnode reference count for the vnode 1789 * goes to zero. If the file has been unlinked, then it must 1790 * now be truncated. Also, we clear all of the read-ahead state 1791 * kept for the inode here since the file is now closed. 1792 */ 1793 int 1794 xfs_inactive( 1795 xfs_inode_t *ip) 1796 { 1797 struct xfs_mount *mp; 1798 int error = 0; 1799 int truncate = 0; 1800 1801 /* 1802 * If the inode is already free, then there can be nothing 1803 * to clean up here. 1804 */ 1805 if (VFS_I(ip)->i_mode == 0) { 1806 ASSERT(ip->i_df.if_broot_bytes == 0); 1807 goto out; 1808 } 1809 1810 mp = ip->i_mount; 1811 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1812 1813 xfs_inactive_health(ip); 1814 1815 /* 1816 * If this is a read-only mount, don't do this (would generate I/O) 1817 * unless we're in log recovery and cleaning the iunlinked list. 1818 */ 1819 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1820 goto out; 1821 1822 /* Metadata inodes require explicit resource cleanup. */ 1823 if (xfs_is_metadata_inode(ip)) 1824 goto out; 1825 1826 /* Try to clean out the cow blocks if there are any. */ 1827 if (xfs_inode_has_cow_data(ip)) 1828 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1829 1830 if (VFS_I(ip)->i_nlink != 0) { 1831 /* 1832 * force is true because we are evicting an inode from the 1833 * cache. Post-eof blocks must be freed, lest we end up with 1834 * broken free space accounting. 1835 * 1836 * Note: don't bother with iolock here since lockdep complains 1837 * about acquiring it in reclaim context. We have the only 1838 * reference to the inode at this point anyways. 1839 */ 1840 if (xfs_can_free_eofblocks(ip, true)) 1841 error = xfs_free_eofblocks(ip); 1842 1843 goto out; 1844 } 1845 1846 if (S_ISREG(VFS_I(ip)->i_mode) && 1847 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || 1848 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1849 truncate = 1; 1850 1851 if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) { 1852 /* 1853 * If this inode is being inactivated during a quotacheck and 1854 * has not yet been scanned by quotacheck, we /must/ remove 1855 * the dquots from the inode before inactivation changes the 1856 * block and inode counts. Most probably this is a result of 1857 * reloading the incore iunlinked list to purge unrecovered 1858 * unlinked inodes. 1859 */ 1860 xfs_qm_dqdetach(ip); 1861 } else { 1862 error = xfs_qm_dqattach(ip); 1863 if (error) 1864 goto out; 1865 } 1866 1867 if (S_ISLNK(VFS_I(ip)->i_mode)) 1868 error = xfs_inactive_symlink(ip); 1869 else if (truncate) 1870 error = xfs_inactive_truncate(ip); 1871 if (error) 1872 goto out; 1873 1874 /* 1875 * If there are attributes associated with the file then blow them away 1876 * now. The code calls a routine that recursively deconstructs the 1877 * attribute fork. If also blows away the in-core attribute fork. 1878 */ 1879 if (xfs_inode_has_attr_fork(ip)) { 1880 error = xfs_attr_inactive(ip); 1881 if (error) 1882 goto out; 1883 } 1884 1885 ASSERT(ip->i_forkoff == 0); 1886 1887 /* 1888 * Free the inode. 1889 */ 1890 error = xfs_inactive_ifree(ip); 1891 1892 out: 1893 /* 1894 * We're done making metadata updates for this inode, so we can release 1895 * the attached dquots. 1896 */ 1897 xfs_qm_dqdetach(ip); 1898 return error; 1899 } 1900 1901 /* 1902 * In-Core Unlinked List Lookups 1903 * ============================= 1904 * 1905 * Every inode is supposed to be reachable from some other piece of metadata 1906 * with the exception of the root directory. Inodes with a connection to a 1907 * file descriptor but not linked from anywhere in the on-disk directory tree 1908 * are collectively known as unlinked inodes, though the filesystem itself 1909 * maintains links to these inodes so that on-disk metadata are consistent. 1910 * 1911 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1912 * header contains a number of buckets that point to an inode, and each inode 1913 * record has a pointer to the next inode in the hash chain. This 1914 * singly-linked list causes scaling problems in the iunlink remove function 1915 * because we must walk that list to find the inode that points to the inode 1916 * being removed from the unlinked hash bucket list. 1917 * 1918 * Hence we keep an in-memory double linked list to link each inode on an 1919 * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer 1920 * based lists would require having 64 list heads in the perag, one for each 1921 * list. This is expensive in terms of memory (think millions of AGs) and cache 1922 * misses on lookups. Instead, use the fact that inodes on the unlinked list 1923 * must be referenced at the VFS level to keep them on the list and hence we 1924 * have an existence guarantee for inodes on the unlinked list. 1925 * 1926 * Given we have an existence guarantee, we can use lockless inode cache lookups 1927 * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode 1928 * for the double linked unlinked list, and we don't need any extra locking to 1929 * keep the list safe as all manipulations are done under the AGI buffer lock. 1930 * Keeping the list up to date does not require memory allocation, just finding 1931 * the XFS inode and updating the next/prev unlinked list aginos. 1932 */ 1933 1934 /* 1935 * Find an inode on the unlinked list. This does not take references to the 1936 * inode as we have existence guarantees by holding the AGI buffer lock and that 1937 * only unlinked, referenced inodes can be on the unlinked inode list. If we 1938 * don't find the inode in cache, then let the caller handle the situation. 1939 */ 1940 static struct xfs_inode * 1941 xfs_iunlink_lookup( 1942 struct xfs_perag *pag, 1943 xfs_agino_t agino) 1944 { 1945 struct xfs_inode *ip; 1946 1947 rcu_read_lock(); 1948 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 1949 if (!ip) { 1950 /* Caller can handle inode not being in memory. */ 1951 rcu_read_unlock(); 1952 return NULL; 1953 } 1954 1955 /* 1956 * Inode in RCU freeing limbo should not happen. Warn about this and 1957 * let the caller handle the failure. 1958 */ 1959 if (WARN_ON_ONCE(!ip->i_ino)) { 1960 rcu_read_unlock(); 1961 return NULL; 1962 } 1963 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)); 1964 rcu_read_unlock(); 1965 return ip; 1966 } 1967 1968 /* 1969 * Update the prev pointer of the next agino. Returns -ENOLINK if the inode 1970 * is not in cache. 1971 */ 1972 static int 1973 xfs_iunlink_update_backref( 1974 struct xfs_perag *pag, 1975 xfs_agino_t prev_agino, 1976 xfs_agino_t next_agino) 1977 { 1978 struct xfs_inode *ip; 1979 1980 /* No update necessary if we are at the end of the list. */ 1981 if (next_agino == NULLAGINO) 1982 return 0; 1983 1984 ip = xfs_iunlink_lookup(pag, next_agino); 1985 if (!ip) 1986 return -ENOLINK; 1987 1988 ip->i_prev_unlinked = prev_agino; 1989 return 0; 1990 } 1991 1992 /* 1993 * Point the AGI unlinked bucket at an inode and log the results. The caller 1994 * is responsible for validating the old value. 1995 */ 1996 STATIC int 1997 xfs_iunlink_update_bucket( 1998 struct xfs_trans *tp, 1999 struct xfs_perag *pag, 2000 struct xfs_buf *agibp, 2001 unsigned int bucket_index, 2002 xfs_agino_t new_agino) 2003 { 2004 struct xfs_agi *agi = agibp->b_addr; 2005 xfs_agino_t old_value; 2006 int offset; 2007 2008 ASSERT(xfs_verify_agino_or_null(pag, new_agino)); 2009 2010 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2011 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index, 2012 old_value, new_agino); 2013 2014 /* 2015 * We should never find the head of the list already set to the value 2016 * passed in because either we're adding or removing ourselves from the 2017 * head of the list. 2018 */ 2019 if (old_value == new_agino) { 2020 xfs_buf_mark_corrupt(agibp); 2021 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 2022 return -EFSCORRUPTED; 2023 } 2024 2025 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 2026 offset = offsetof(struct xfs_agi, agi_unlinked) + 2027 (sizeof(xfs_agino_t) * bucket_index); 2028 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 2029 return 0; 2030 } 2031 2032 /* 2033 * Load the inode @next_agino into the cache and set its prev_unlinked pointer 2034 * to @prev_agino. Caller must hold the AGI to synchronize with other changes 2035 * to the unlinked list. 2036 */ 2037 STATIC int 2038 xfs_iunlink_reload_next( 2039 struct xfs_trans *tp, 2040 struct xfs_buf *agibp, 2041 xfs_agino_t prev_agino, 2042 xfs_agino_t next_agino) 2043 { 2044 struct xfs_perag *pag = agibp->b_pag; 2045 struct xfs_mount *mp = pag->pag_mount; 2046 struct xfs_inode *next_ip = NULL; 2047 xfs_ino_t ino; 2048 int error; 2049 2050 ASSERT(next_agino != NULLAGINO); 2051 2052 #ifdef DEBUG 2053 rcu_read_lock(); 2054 next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino); 2055 ASSERT(next_ip == NULL); 2056 rcu_read_unlock(); 2057 #endif 2058 2059 xfs_info_ratelimited(mp, 2060 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.", 2061 next_agino, pag->pag_agno); 2062 2063 /* 2064 * Use an untrusted lookup just to be cautious in case the AGI has been 2065 * corrupted and now points at a free inode. That shouldn't happen, 2066 * but we'd rather shut down now since we're already running in a weird 2067 * situation. 2068 */ 2069 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino); 2070 error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip); 2071 if (error) { 2072 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 2073 return error; 2074 } 2075 2076 /* If this is not an unlinked inode, something is very wrong. */ 2077 if (VFS_I(next_ip)->i_nlink != 0) { 2078 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 2079 error = -EFSCORRUPTED; 2080 goto rele; 2081 } 2082 2083 next_ip->i_prev_unlinked = prev_agino; 2084 trace_xfs_iunlink_reload_next(next_ip); 2085 rele: 2086 ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE)); 2087 if (xfs_is_quotacheck_running(mp) && next_ip) 2088 xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED); 2089 xfs_irele(next_ip); 2090 return error; 2091 } 2092 2093 static int 2094 xfs_iunlink_insert_inode( 2095 struct xfs_trans *tp, 2096 struct xfs_perag *pag, 2097 struct xfs_buf *agibp, 2098 struct xfs_inode *ip) 2099 { 2100 struct xfs_mount *mp = tp->t_mountp; 2101 struct xfs_agi *agi = agibp->b_addr; 2102 xfs_agino_t next_agino; 2103 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2104 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2105 int error; 2106 2107 /* 2108 * Get the index into the agi hash table for the list this inode will 2109 * go on. Make sure the pointer isn't garbage and that this inode 2110 * isn't already on the list. 2111 */ 2112 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2113 if (next_agino == agino || 2114 !xfs_verify_agino_or_null(pag, next_agino)) { 2115 xfs_buf_mark_corrupt(agibp); 2116 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 2117 return -EFSCORRUPTED; 2118 } 2119 2120 /* 2121 * Update the prev pointer in the next inode to point back to this 2122 * inode. 2123 */ 2124 error = xfs_iunlink_update_backref(pag, agino, next_agino); 2125 if (error == -ENOLINK) 2126 error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino); 2127 if (error) 2128 return error; 2129 2130 if (next_agino != NULLAGINO) { 2131 /* 2132 * There is already another inode in the bucket, so point this 2133 * inode to the current head of the list. 2134 */ 2135 error = xfs_iunlink_log_inode(tp, ip, pag, next_agino); 2136 if (error) 2137 return error; 2138 ip->i_next_unlinked = next_agino; 2139 } 2140 2141 /* Point the head of the list to point to this inode. */ 2142 ip->i_prev_unlinked = NULLAGINO; 2143 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino); 2144 } 2145 2146 /* 2147 * This is called when the inode's link count has gone to 0 or we are creating 2148 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2149 * 2150 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2151 * list when the inode is freed. 2152 */ 2153 STATIC int 2154 xfs_iunlink( 2155 struct xfs_trans *tp, 2156 struct xfs_inode *ip) 2157 { 2158 struct xfs_mount *mp = tp->t_mountp; 2159 struct xfs_perag *pag; 2160 struct xfs_buf *agibp; 2161 int error; 2162 2163 ASSERT(VFS_I(ip)->i_nlink == 0); 2164 ASSERT(VFS_I(ip)->i_mode != 0); 2165 trace_xfs_iunlink(ip); 2166 2167 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2168 2169 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2170 error = xfs_read_agi(pag, tp, &agibp); 2171 if (error) 2172 goto out; 2173 2174 error = xfs_iunlink_insert_inode(tp, pag, agibp, ip); 2175 out: 2176 xfs_perag_put(pag); 2177 return error; 2178 } 2179 2180 static int 2181 xfs_iunlink_remove_inode( 2182 struct xfs_trans *tp, 2183 struct xfs_perag *pag, 2184 struct xfs_buf *agibp, 2185 struct xfs_inode *ip) 2186 { 2187 struct xfs_mount *mp = tp->t_mountp; 2188 struct xfs_agi *agi = agibp->b_addr; 2189 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2190 xfs_agino_t head_agino; 2191 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2192 int error; 2193 2194 trace_xfs_iunlink_remove(ip); 2195 2196 /* 2197 * Get the index into the agi hash table for the list this inode will 2198 * go on. Make sure the head pointer isn't garbage. 2199 */ 2200 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2201 if (!xfs_verify_agino(pag, head_agino)) { 2202 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2203 agi, sizeof(*agi)); 2204 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 2205 return -EFSCORRUPTED; 2206 } 2207 2208 /* 2209 * Set our inode's next_unlinked pointer to NULL and then return 2210 * the old pointer value so that we can update whatever was previous 2211 * to us in the list to point to whatever was next in the list. 2212 */ 2213 error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO); 2214 if (error) 2215 return error; 2216 2217 /* 2218 * Update the prev pointer in the next inode to point back to previous 2219 * inode in the chain. 2220 */ 2221 error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked, 2222 ip->i_next_unlinked); 2223 if (error == -ENOLINK) 2224 error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked, 2225 ip->i_next_unlinked); 2226 if (error) 2227 return error; 2228 2229 if (head_agino != agino) { 2230 struct xfs_inode *prev_ip; 2231 2232 prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked); 2233 if (!prev_ip) { 2234 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 2235 return -EFSCORRUPTED; 2236 } 2237 2238 error = xfs_iunlink_log_inode(tp, prev_ip, pag, 2239 ip->i_next_unlinked); 2240 prev_ip->i_next_unlinked = ip->i_next_unlinked; 2241 } else { 2242 /* Point the head of the list to the next unlinked inode. */ 2243 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, 2244 ip->i_next_unlinked); 2245 } 2246 2247 ip->i_next_unlinked = NULLAGINO; 2248 ip->i_prev_unlinked = 0; 2249 return error; 2250 } 2251 2252 /* 2253 * Pull the on-disk inode from the AGI unlinked list. 2254 */ 2255 STATIC int 2256 xfs_iunlink_remove( 2257 struct xfs_trans *tp, 2258 struct xfs_perag *pag, 2259 struct xfs_inode *ip) 2260 { 2261 struct xfs_buf *agibp; 2262 int error; 2263 2264 trace_xfs_iunlink_remove(ip); 2265 2266 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2267 error = xfs_read_agi(pag, tp, &agibp); 2268 if (error) 2269 return error; 2270 2271 return xfs_iunlink_remove_inode(tp, pag, agibp, ip); 2272 } 2273 2274 /* 2275 * Look up the inode number specified and if it is not already marked XFS_ISTALE 2276 * mark it stale. We should only find clean inodes in this lookup that aren't 2277 * already stale. 2278 */ 2279 static void 2280 xfs_ifree_mark_inode_stale( 2281 struct xfs_perag *pag, 2282 struct xfs_inode *free_ip, 2283 xfs_ino_t inum) 2284 { 2285 struct xfs_mount *mp = pag->pag_mount; 2286 struct xfs_inode_log_item *iip; 2287 struct xfs_inode *ip; 2288 2289 retry: 2290 rcu_read_lock(); 2291 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2292 2293 /* Inode not in memory, nothing to do */ 2294 if (!ip) { 2295 rcu_read_unlock(); 2296 return; 2297 } 2298 2299 /* 2300 * because this is an RCU protected lookup, we could find a recently 2301 * freed or even reallocated inode during the lookup. We need to check 2302 * under the i_flags_lock for a valid inode here. Skip it if it is not 2303 * valid, the wrong inode or stale. 2304 */ 2305 spin_lock(&ip->i_flags_lock); 2306 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 2307 goto out_iflags_unlock; 2308 2309 /* 2310 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2311 * other inodes that we did not find in the list attached to the buffer 2312 * and are not already marked stale. If we can't lock it, back off and 2313 * retry. 2314 */ 2315 if (ip != free_ip) { 2316 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2317 spin_unlock(&ip->i_flags_lock); 2318 rcu_read_unlock(); 2319 delay(1); 2320 goto retry; 2321 } 2322 } 2323 ip->i_flags |= XFS_ISTALE; 2324 2325 /* 2326 * If the inode is flushing, it is already attached to the buffer. All 2327 * we needed to do here is mark the inode stale so buffer IO completion 2328 * will remove it from the AIL. 2329 */ 2330 iip = ip->i_itemp; 2331 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 2332 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 2333 ASSERT(iip->ili_last_fields); 2334 goto out_iunlock; 2335 } 2336 2337 /* 2338 * Inodes not attached to the buffer can be released immediately. 2339 * Everything else has to go through xfs_iflush_abort() on journal 2340 * commit as the flock synchronises removal of the inode from the 2341 * cluster buffer against inode reclaim. 2342 */ 2343 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 2344 goto out_iunlock; 2345 2346 __xfs_iflags_set(ip, XFS_IFLUSHING); 2347 spin_unlock(&ip->i_flags_lock); 2348 rcu_read_unlock(); 2349 2350 /* we have a dirty inode in memory that has not yet been flushed. */ 2351 spin_lock(&iip->ili_lock); 2352 iip->ili_last_fields = iip->ili_fields; 2353 iip->ili_fields = 0; 2354 iip->ili_fsync_fields = 0; 2355 spin_unlock(&iip->ili_lock); 2356 ASSERT(iip->ili_last_fields); 2357 2358 if (ip != free_ip) 2359 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2360 return; 2361 2362 out_iunlock: 2363 if (ip != free_ip) 2364 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2365 out_iflags_unlock: 2366 spin_unlock(&ip->i_flags_lock); 2367 rcu_read_unlock(); 2368 } 2369 2370 /* 2371 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2372 * inodes that are in memory - they all must be marked stale and attached to 2373 * the cluster buffer. 2374 */ 2375 static int 2376 xfs_ifree_cluster( 2377 struct xfs_trans *tp, 2378 struct xfs_perag *pag, 2379 struct xfs_inode *free_ip, 2380 struct xfs_icluster *xic) 2381 { 2382 struct xfs_mount *mp = free_ip->i_mount; 2383 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2384 struct xfs_buf *bp; 2385 xfs_daddr_t blkno; 2386 xfs_ino_t inum = xic->first_ino; 2387 int nbufs; 2388 int i, j; 2389 int ioffset; 2390 int error; 2391 2392 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2393 2394 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2395 /* 2396 * The allocation bitmap tells us which inodes of the chunk were 2397 * physically allocated. Skip the cluster if an inode falls into 2398 * a sparse region. 2399 */ 2400 ioffset = inum - xic->first_ino; 2401 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2402 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2403 continue; 2404 } 2405 2406 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2407 XFS_INO_TO_AGBNO(mp, inum)); 2408 2409 /* 2410 * We obtain and lock the backing buffer first in the process 2411 * here to ensure dirty inodes attached to the buffer remain in 2412 * the flushing state while we mark them stale. 2413 * 2414 * If we scan the in-memory inodes first, then buffer IO can 2415 * complete before we get a lock on it, and hence we may fail 2416 * to mark all the active inodes on the buffer stale. 2417 */ 2418 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2419 mp->m_bsize * igeo->blocks_per_cluster, 2420 XBF_UNMAPPED, &bp); 2421 if (error) 2422 return error; 2423 2424 /* 2425 * This buffer may not have been correctly initialised as we 2426 * didn't read it from disk. That's not important because we are 2427 * only using to mark the buffer as stale in the log, and to 2428 * attach stale cached inodes on it. That means it will never be 2429 * dispatched for IO. If it is, we want to know about it, and we 2430 * want it to fail. We can acheive this by adding a write 2431 * verifier to the buffer. 2432 */ 2433 bp->b_ops = &xfs_inode_buf_ops; 2434 2435 /* 2436 * Now we need to set all the cached clean inodes as XFS_ISTALE, 2437 * too. This requires lookups, and will skip inodes that we've 2438 * already marked XFS_ISTALE. 2439 */ 2440 for (i = 0; i < igeo->inodes_per_cluster; i++) 2441 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); 2442 2443 xfs_trans_stale_inode_buf(tp, bp); 2444 xfs_trans_binval(tp, bp); 2445 } 2446 return 0; 2447 } 2448 2449 /* 2450 * This is called to return an inode to the inode free list. The inode should 2451 * already be truncated to 0 length and have no pages associated with it. This 2452 * routine also assumes that the inode is already a part of the transaction. 2453 * 2454 * The on-disk copy of the inode will have been added to the list of unlinked 2455 * inodes in the AGI. We need to remove the inode from that list atomically with 2456 * respect to freeing it here. 2457 */ 2458 int 2459 xfs_ifree( 2460 struct xfs_trans *tp, 2461 struct xfs_inode *ip) 2462 { 2463 struct xfs_mount *mp = ip->i_mount; 2464 struct xfs_perag *pag; 2465 struct xfs_icluster xic = { 0 }; 2466 struct xfs_inode_log_item *iip = ip->i_itemp; 2467 int error; 2468 2469 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 2470 ASSERT(VFS_I(ip)->i_nlink == 0); 2471 ASSERT(ip->i_df.if_nextents == 0); 2472 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2473 ASSERT(ip->i_nblocks == 0); 2474 2475 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2476 2477 /* 2478 * Free the inode first so that we guarantee that the AGI lock is going 2479 * to be taken before we remove the inode from the unlinked list. This 2480 * makes the AGI lock -> unlinked list modification order the same as 2481 * used in O_TMPFILE creation. 2482 */ 2483 error = xfs_difree(tp, pag, ip->i_ino, &xic); 2484 if (error) 2485 goto out; 2486 2487 error = xfs_iunlink_remove(tp, pag, ip); 2488 if (error) 2489 goto out; 2490 2491 /* 2492 * Free any local-format data sitting around before we reset the 2493 * data fork to extents format. Note that the attr fork data has 2494 * already been freed by xfs_attr_inactive. 2495 */ 2496 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2497 kfree(ip->i_df.if_data); 2498 ip->i_df.if_data = NULL; 2499 ip->i_df.if_bytes = 0; 2500 } 2501 2502 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2503 ip->i_diflags = 0; 2504 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 2505 ip->i_forkoff = 0; /* mark the attr fork not in use */ 2506 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2507 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) 2508 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); 2509 2510 /* Don't attempt to replay owner changes for a deleted inode */ 2511 spin_lock(&iip->ili_lock); 2512 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 2513 spin_unlock(&iip->ili_lock); 2514 2515 /* 2516 * Bump the generation count so no one will be confused 2517 * by reincarnations of this inode. 2518 */ 2519 VFS_I(ip)->i_generation++; 2520 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2521 2522 if (xic.deleted) 2523 error = xfs_ifree_cluster(tp, pag, ip, &xic); 2524 out: 2525 xfs_perag_put(pag); 2526 return error; 2527 } 2528 2529 /* 2530 * This is called to unpin an inode. The caller must have the inode locked 2531 * in at least shared mode so that the buffer cannot be subsequently pinned 2532 * once someone is waiting for it to be unpinned. 2533 */ 2534 static void 2535 xfs_iunpin( 2536 struct xfs_inode *ip) 2537 { 2538 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); 2539 2540 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2541 2542 /* Give the log a push to start the unpinning I/O */ 2543 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); 2544 2545 } 2546 2547 static void 2548 __xfs_iunpin_wait( 2549 struct xfs_inode *ip) 2550 { 2551 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2552 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2553 2554 xfs_iunpin(ip); 2555 2556 do { 2557 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2558 if (xfs_ipincount(ip)) 2559 io_schedule(); 2560 } while (xfs_ipincount(ip)); 2561 finish_wait(wq, &wait.wq_entry); 2562 } 2563 2564 void 2565 xfs_iunpin_wait( 2566 struct xfs_inode *ip) 2567 { 2568 if (xfs_ipincount(ip)) 2569 __xfs_iunpin_wait(ip); 2570 } 2571 2572 /* 2573 * Removing an inode from the namespace involves removing the directory entry 2574 * and dropping the link count on the inode. Removing the directory entry can 2575 * result in locking an AGF (directory blocks were freed) and removing a link 2576 * count can result in placing the inode on an unlinked list which results in 2577 * locking an AGI. 2578 * 2579 * The big problem here is that we have an ordering constraint on AGF and AGI 2580 * locking - inode allocation locks the AGI, then can allocate a new extent for 2581 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2582 * removes the inode from the unlinked list, requiring that we lock the AGI 2583 * first, and then freeing the inode can result in an inode chunk being freed 2584 * and hence freeing disk space requiring that we lock an AGF. 2585 * 2586 * Hence the ordering that is imposed by other parts of the code is AGI before 2587 * AGF. This means we cannot remove the directory entry before we drop the inode 2588 * reference count and put it on the unlinked list as this results in a lock 2589 * order of AGF then AGI, and this can deadlock against inode allocation and 2590 * freeing. Therefore we must drop the link counts before we remove the 2591 * directory entry. 2592 * 2593 * This is still safe from a transactional point of view - it is not until we 2594 * get to xfs_defer_finish() that we have the possibility of multiple 2595 * transactions in this operation. Hence as long as we remove the directory 2596 * entry and drop the link count in the first transaction of the remove 2597 * operation, there are no transactional constraints on the ordering here. 2598 */ 2599 int 2600 xfs_remove( 2601 xfs_inode_t *dp, 2602 struct xfs_name *name, 2603 xfs_inode_t *ip) 2604 { 2605 xfs_mount_t *mp = dp->i_mount; 2606 xfs_trans_t *tp = NULL; 2607 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2608 int dontcare; 2609 int error = 0; 2610 uint resblks; 2611 2612 trace_xfs_remove(dp, name); 2613 2614 if (xfs_is_shutdown(mp)) 2615 return -EIO; 2616 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 2617 return -EIO; 2618 2619 error = xfs_qm_dqattach(dp); 2620 if (error) 2621 goto std_return; 2622 2623 error = xfs_qm_dqattach(ip); 2624 if (error) 2625 goto std_return; 2626 2627 /* 2628 * We try to get the real space reservation first, allowing for 2629 * directory btree deletion(s) implying possible bmap insert(s). If we 2630 * can't get the space reservation then we use 0 instead, and avoid the 2631 * bmap btree insert(s) in the directory code by, if the bmap insert 2632 * tries to happen, instead trimming the LAST block from the directory. 2633 * 2634 * Ignore EDQUOT and ENOSPC being returned via nospace_error because 2635 * the directory code can handle a reservationless update and we don't 2636 * want to prevent a user from trying to free space by deleting things. 2637 */ 2638 resblks = XFS_REMOVE_SPACE_RES(mp); 2639 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks, 2640 &tp, &dontcare); 2641 if (error) { 2642 ASSERT(error != -ENOSPC); 2643 goto std_return; 2644 } 2645 2646 /* 2647 * If we're removing a directory perform some additional validation. 2648 */ 2649 if (is_dir) { 2650 ASSERT(VFS_I(ip)->i_nlink >= 2); 2651 if (VFS_I(ip)->i_nlink != 2) { 2652 error = -ENOTEMPTY; 2653 goto out_trans_cancel; 2654 } 2655 if (!xfs_dir_isempty(ip)) { 2656 error = -ENOTEMPTY; 2657 goto out_trans_cancel; 2658 } 2659 2660 /* Drop the link from ip's "..". */ 2661 error = xfs_droplink(tp, dp); 2662 if (error) 2663 goto out_trans_cancel; 2664 2665 /* Drop the "." link from ip to self. */ 2666 error = xfs_droplink(tp, ip); 2667 if (error) 2668 goto out_trans_cancel; 2669 2670 /* 2671 * Point the unlinked child directory's ".." entry to the root 2672 * directory to eliminate back-references to inodes that may 2673 * get freed before the child directory is closed. If the fs 2674 * gets shrunk, this can lead to dirent inode validation errors. 2675 */ 2676 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) { 2677 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot, 2678 tp->t_mountp->m_sb.sb_rootino, 0); 2679 if (error) 2680 goto out_trans_cancel; 2681 } 2682 } else { 2683 /* 2684 * When removing a non-directory we need to log the parent 2685 * inode here. For a directory this is done implicitly 2686 * by the xfs_droplink call for the ".." entry. 2687 */ 2688 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2689 } 2690 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2691 2692 /* Drop the link from dp to ip. */ 2693 error = xfs_droplink(tp, ip); 2694 if (error) 2695 goto out_trans_cancel; 2696 2697 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2698 if (error) { 2699 ASSERT(error != -ENOENT); 2700 goto out_trans_cancel; 2701 } 2702 2703 /* 2704 * Drop the link from dp to ip, and if ip was a directory, remove the 2705 * '.' and '..' references since we freed the directory. 2706 */ 2707 xfs_dir_update_hook(dp, ip, -1, name); 2708 2709 /* 2710 * If this is a synchronous mount, make sure that the 2711 * remove transaction goes to disk before returning to 2712 * the user. 2713 */ 2714 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 2715 xfs_trans_set_sync(tp); 2716 2717 error = xfs_trans_commit(tp); 2718 if (error) 2719 goto std_return; 2720 2721 if (is_dir && xfs_inode_is_filestream(ip)) 2722 xfs_filestream_deassociate(ip); 2723 2724 return 0; 2725 2726 out_trans_cancel: 2727 xfs_trans_cancel(tp); 2728 std_return: 2729 return error; 2730 } 2731 2732 /* 2733 * Enter all inodes for a rename transaction into a sorted array. 2734 */ 2735 #define __XFS_SORT_INODES 5 2736 STATIC void 2737 xfs_sort_for_rename( 2738 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2739 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2740 struct xfs_inode *ip1, /* in: inode of old entry */ 2741 struct xfs_inode *ip2, /* in: inode of new entry */ 2742 struct xfs_inode *wip, /* in: whiteout inode */ 2743 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2744 int *num_inodes) /* in/out: inodes in array */ 2745 { 2746 int i, j; 2747 2748 ASSERT(*num_inodes == __XFS_SORT_INODES); 2749 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2750 2751 /* 2752 * i_tab contains a list of pointers to inodes. We initialize 2753 * the table here & we'll sort it. We will then use it to 2754 * order the acquisition of the inode locks. 2755 * 2756 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2757 */ 2758 i = 0; 2759 i_tab[i++] = dp1; 2760 i_tab[i++] = dp2; 2761 i_tab[i++] = ip1; 2762 if (ip2) 2763 i_tab[i++] = ip2; 2764 if (wip) 2765 i_tab[i++] = wip; 2766 *num_inodes = i; 2767 2768 /* 2769 * Sort the elements via bubble sort. (Remember, there are at 2770 * most 5 elements to sort, so this is adequate.) 2771 */ 2772 for (i = 0; i < *num_inodes; i++) { 2773 for (j = 1; j < *num_inodes; j++) { 2774 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2775 struct xfs_inode *temp = i_tab[j]; 2776 i_tab[j] = i_tab[j-1]; 2777 i_tab[j-1] = temp; 2778 } 2779 } 2780 } 2781 } 2782 2783 static int 2784 xfs_finish_rename( 2785 struct xfs_trans *tp) 2786 { 2787 /* 2788 * If this is a synchronous mount, make sure that the rename transaction 2789 * goes to disk before returning to the user. 2790 */ 2791 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) 2792 xfs_trans_set_sync(tp); 2793 2794 return xfs_trans_commit(tp); 2795 } 2796 2797 /* 2798 * xfs_cross_rename() 2799 * 2800 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall 2801 */ 2802 STATIC int 2803 xfs_cross_rename( 2804 struct xfs_trans *tp, 2805 struct xfs_inode *dp1, 2806 struct xfs_name *name1, 2807 struct xfs_inode *ip1, 2808 struct xfs_inode *dp2, 2809 struct xfs_name *name2, 2810 struct xfs_inode *ip2, 2811 int spaceres) 2812 { 2813 int error = 0; 2814 int ip1_flags = 0; 2815 int ip2_flags = 0; 2816 int dp2_flags = 0; 2817 2818 /* Swap inode number for dirent in first parent */ 2819 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 2820 if (error) 2821 goto out_trans_abort; 2822 2823 /* Swap inode number for dirent in second parent */ 2824 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 2825 if (error) 2826 goto out_trans_abort; 2827 2828 /* 2829 * If we're renaming one or more directories across different parents, 2830 * update the respective ".." entries (and link counts) to match the new 2831 * parents. 2832 */ 2833 if (dp1 != dp2) { 2834 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2835 2836 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2837 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2838 dp1->i_ino, spaceres); 2839 if (error) 2840 goto out_trans_abort; 2841 2842 /* transfer ip2 ".." reference to dp1 */ 2843 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2844 error = xfs_droplink(tp, dp2); 2845 if (error) 2846 goto out_trans_abort; 2847 xfs_bumplink(tp, dp1); 2848 } 2849 2850 /* 2851 * Although ip1 isn't changed here, userspace needs 2852 * to be warned about the change, so that applications 2853 * relying on it (like backup ones), will properly 2854 * notify the change 2855 */ 2856 ip1_flags |= XFS_ICHGTIME_CHG; 2857 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2858 } 2859 2860 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2861 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2862 dp2->i_ino, spaceres); 2863 if (error) 2864 goto out_trans_abort; 2865 2866 /* transfer ip1 ".." reference to dp2 */ 2867 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2868 error = xfs_droplink(tp, dp1); 2869 if (error) 2870 goto out_trans_abort; 2871 xfs_bumplink(tp, dp2); 2872 } 2873 2874 /* 2875 * Although ip2 isn't changed here, userspace needs 2876 * to be warned about the change, so that applications 2877 * relying on it (like backup ones), will properly 2878 * notify the change 2879 */ 2880 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2881 ip2_flags |= XFS_ICHGTIME_CHG; 2882 } 2883 } 2884 2885 if (ip1_flags) { 2886 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2887 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2888 } 2889 if (ip2_flags) { 2890 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2891 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2892 } 2893 if (dp2_flags) { 2894 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2895 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2896 } 2897 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2898 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2899 2900 /* 2901 * Inform our hook clients that we've finished an exchange operation as 2902 * follows: removed the source and target files from their directories; 2903 * added the target to the source directory; and added the source to 2904 * the target directory. All inodes are locked, so it's ok to model a 2905 * rename this way so long as we say we deleted entries before we add 2906 * new ones. 2907 */ 2908 xfs_dir_update_hook(dp1, ip1, -1, name1); 2909 xfs_dir_update_hook(dp2, ip2, -1, name2); 2910 xfs_dir_update_hook(dp1, ip2, 1, name1); 2911 xfs_dir_update_hook(dp2, ip1, 1, name2); 2912 2913 return xfs_finish_rename(tp); 2914 2915 out_trans_abort: 2916 xfs_trans_cancel(tp); 2917 return error; 2918 } 2919 2920 /* 2921 * xfs_rename_alloc_whiteout() 2922 * 2923 * Return a referenced, unlinked, unlocked inode that can be used as a 2924 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2925 * crash between allocating the inode and linking it into the rename transaction 2926 * recovery will free the inode and we won't leak it. 2927 */ 2928 static int 2929 xfs_rename_alloc_whiteout( 2930 struct mnt_idmap *idmap, 2931 struct xfs_name *src_name, 2932 struct xfs_inode *dp, 2933 struct xfs_inode **wip) 2934 { 2935 struct xfs_inode *tmpfile; 2936 struct qstr name; 2937 int error; 2938 2939 error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE, 2940 &tmpfile); 2941 if (error) 2942 return error; 2943 2944 name.name = src_name->name; 2945 name.len = src_name->len; 2946 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name); 2947 if (error) { 2948 xfs_finish_inode_setup(tmpfile); 2949 xfs_irele(tmpfile); 2950 return error; 2951 } 2952 2953 /* 2954 * Prepare the tmpfile inode as if it were created through the VFS. 2955 * Complete the inode setup and flag it as linkable. nlink is already 2956 * zero, so we can skip the drop_nlink. 2957 */ 2958 xfs_setup_iops(tmpfile); 2959 xfs_finish_inode_setup(tmpfile); 2960 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2961 2962 *wip = tmpfile; 2963 return 0; 2964 } 2965 2966 /* 2967 * xfs_rename 2968 */ 2969 int 2970 xfs_rename( 2971 struct mnt_idmap *idmap, 2972 struct xfs_inode *src_dp, 2973 struct xfs_name *src_name, 2974 struct xfs_inode *src_ip, 2975 struct xfs_inode *target_dp, 2976 struct xfs_name *target_name, 2977 struct xfs_inode *target_ip, 2978 unsigned int flags) 2979 { 2980 struct xfs_mount *mp = src_dp->i_mount; 2981 struct xfs_trans *tp; 2982 struct xfs_inode *wip = NULL; /* whiteout inode */ 2983 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2984 int i; 2985 int num_inodes = __XFS_SORT_INODES; 2986 bool new_parent = (src_dp != target_dp); 2987 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 2988 int spaceres; 2989 bool retried = false; 2990 int error, nospace_error = 0; 2991 2992 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2993 2994 if ((flags & RENAME_EXCHANGE) && !target_ip) 2995 return -EINVAL; 2996 2997 /* 2998 * If we are doing a whiteout operation, allocate the whiteout inode 2999 * we will be placing at the target and ensure the type is set 3000 * appropriately. 3001 */ 3002 if (flags & RENAME_WHITEOUT) { 3003 error = xfs_rename_alloc_whiteout(idmap, src_name, 3004 target_dp, &wip); 3005 if (error) 3006 return error; 3007 3008 /* setup target dirent info as whiteout */ 3009 src_name->type = XFS_DIR3_FT_CHRDEV; 3010 } 3011 3012 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3013 inodes, &num_inodes); 3014 3015 retry: 3016 nospace_error = 0; 3017 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 3018 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3019 if (error == -ENOSPC) { 3020 nospace_error = error; 3021 spaceres = 0; 3022 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3023 &tp); 3024 } 3025 if (error) 3026 goto out_release_wip; 3027 3028 /* 3029 * Attach the dquots to the inodes 3030 */ 3031 error = xfs_qm_vop_rename_dqattach(inodes); 3032 if (error) 3033 goto out_trans_cancel; 3034 3035 /* 3036 * Lock all the participating inodes. Depending upon whether 3037 * the target_name exists in the target directory, and 3038 * whether the target directory is the same as the source 3039 * directory, we can lock from 2 to 5 inodes. 3040 */ 3041 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3042 3043 /* 3044 * Join all the inodes to the transaction. From this point on, 3045 * we can rely on either trans_commit or trans_cancel to unlock 3046 * them. 3047 */ 3048 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 3049 if (new_parent) 3050 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 3051 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3052 if (target_ip) 3053 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3054 if (wip) 3055 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3056 3057 /* 3058 * If we are using project inheritance, we only allow renames 3059 * into our tree when the project IDs are the same; else the 3060 * tree quota mechanism would be circumvented. 3061 */ 3062 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 3063 target_dp->i_projid != src_ip->i_projid)) { 3064 error = -EXDEV; 3065 goto out_trans_cancel; 3066 } 3067 3068 /* RENAME_EXCHANGE is unique from here on. */ 3069 if (flags & RENAME_EXCHANGE) 3070 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3071 target_dp, target_name, target_ip, 3072 spaceres); 3073 3074 /* 3075 * Try to reserve quota to handle an expansion of the target directory. 3076 * We'll allow the rename to continue in reservationless mode if we hit 3077 * a space usage constraint. If we trigger reservationless mode, save 3078 * the errno if there isn't any free space in the target directory. 3079 */ 3080 if (spaceres != 0) { 3081 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres, 3082 0, false); 3083 if (error == -EDQUOT || error == -ENOSPC) { 3084 if (!retried) { 3085 xfs_trans_cancel(tp); 3086 xfs_blockgc_free_quota(target_dp, 0); 3087 retried = true; 3088 goto retry; 3089 } 3090 3091 nospace_error = error; 3092 spaceres = 0; 3093 error = 0; 3094 } 3095 if (error) 3096 goto out_trans_cancel; 3097 } 3098 3099 /* 3100 * Check for expected errors before we dirty the transaction 3101 * so we can return an error without a transaction abort. 3102 */ 3103 if (target_ip == NULL) { 3104 /* 3105 * If there's no space reservation, check the entry will 3106 * fit before actually inserting it. 3107 */ 3108 if (!spaceres) { 3109 error = xfs_dir_canenter(tp, target_dp, target_name); 3110 if (error) 3111 goto out_trans_cancel; 3112 } 3113 } else { 3114 /* 3115 * If target exists and it's a directory, check that whether 3116 * it can be destroyed. 3117 */ 3118 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 3119 (!xfs_dir_isempty(target_ip) || 3120 (VFS_I(target_ip)->i_nlink > 2))) { 3121 error = -EEXIST; 3122 goto out_trans_cancel; 3123 } 3124 } 3125 3126 /* 3127 * Lock the AGI buffers we need to handle bumping the nlink of the 3128 * whiteout inode off the unlinked list and to handle dropping the 3129 * nlink of the target inode. Per locking order rules, do this in 3130 * increasing AG order and before directory block allocation tries to 3131 * grab AGFs because we grab AGIs before AGFs. 3132 * 3133 * The (vfs) caller must ensure that if src is a directory then 3134 * target_ip is either null or an empty directory. 3135 */ 3136 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 3137 if (inodes[i] == wip || 3138 (inodes[i] == target_ip && 3139 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 3140 struct xfs_perag *pag; 3141 struct xfs_buf *bp; 3142 3143 pag = xfs_perag_get(mp, 3144 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino)); 3145 error = xfs_read_agi(pag, tp, &bp); 3146 xfs_perag_put(pag); 3147 if (error) 3148 goto out_trans_cancel; 3149 } 3150 } 3151 3152 /* 3153 * Directory entry creation below may acquire the AGF. Remove 3154 * the whiteout from the unlinked list first to preserve correct 3155 * AGI/AGF locking order. This dirties the transaction so failures 3156 * after this point will abort and log recovery will clean up the 3157 * mess. 3158 * 3159 * For whiteouts, we need to bump the link count on the whiteout 3160 * inode. After this point, we have a real link, clear the tmpfile 3161 * state flag from the inode so it doesn't accidentally get misused 3162 * in future. 3163 */ 3164 if (wip) { 3165 struct xfs_perag *pag; 3166 3167 ASSERT(VFS_I(wip)->i_nlink == 0); 3168 3169 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino)); 3170 error = xfs_iunlink_remove(tp, pag, wip); 3171 xfs_perag_put(pag); 3172 if (error) 3173 goto out_trans_cancel; 3174 3175 xfs_bumplink(tp, wip); 3176 VFS_I(wip)->i_state &= ~I_LINKABLE; 3177 } 3178 3179 /* 3180 * Set up the target. 3181 */ 3182 if (target_ip == NULL) { 3183 /* 3184 * If target does not exist and the rename crosses 3185 * directories, adjust the target directory link count 3186 * to account for the ".." reference from the new entry. 3187 */ 3188 error = xfs_dir_createname(tp, target_dp, target_name, 3189 src_ip->i_ino, spaceres); 3190 if (error) 3191 goto out_trans_cancel; 3192 3193 xfs_trans_ichgtime(tp, target_dp, 3194 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3195 3196 if (new_parent && src_is_directory) { 3197 xfs_bumplink(tp, target_dp); 3198 } 3199 } else { /* target_ip != NULL */ 3200 /* 3201 * Link the source inode under the target name. 3202 * If the source inode is a directory and we are moving 3203 * it across directories, its ".." entry will be 3204 * inconsistent until we replace that down below. 3205 * 3206 * In case there is already an entry with the same 3207 * name at the destination directory, remove it first. 3208 */ 3209 error = xfs_dir_replace(tp, target_dp, target_name, 3210 src_ip->i_ino, spaceres); 3211 if (error) 3212 goto out_trans_cancel; 3213 3214 xfs_trans_ichgtime(tp, target_dp, 3215 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3216 3217 /* 3218 * Decrement the link count on the target since the target 3219 * dir no longer points to it. 3220 */ 3221 error = xfs_droplink(tp, target_ip); 3222 if (error) 3223 goto out_trans_cancel; 3224 3225 if (src_is_directory) { 3226 /* 3227 * Drop the link from the old "." entry. 3228 */ 3229 error = xfs_droplink(tp, target_ip); 3230 if (error) 3231 goto out_trans_cancel; 3232 } 3233 } /* target_ip != NULL */ 3234 3235 /* 3236 * Remove the source. 3237 */ 3238 if (new_parent && src_is_directory) { 3239 /* 3240 * Rewrite the ".." entry to point to the new 3241 * directory. 3242 */ 3243 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3244 target_dp->i_ino, spaceres); 3245 ASSERT(error != -EEXIST); 3246 if (error) 3247 goto out_trans_cancel; 3248 } 3249 3250 /* 3251 * We always want to hit the ctime on the source inode. 3252 * 3253 * This isn't strictly required by the standards since the source 3254 * inode isn't really being changed, but old unix file systems did 3255 * it and some incremental backup programs won't work without it. 3256 */ 3257 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3258 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3259 3260 /* 3261 * Adjust the link count on src_dp. This is necessary when 3262 * renaming a directory, either within one parent when 3263 * the target existed, or across two parent directories. 3264 */ 3265 if (src_is_directory && (new_parent || target_ip != NULL)) { 3266 3267 /* 3268 * Decrement link count on src_directory since the 3269 * entry that's moved no longer points to it. 3270 */ 3271 error = xfs_droplink(tp, src_dp); 3272 if (error) 3273 goto out_trans_cancel; 3274 } 3275 3276 /* 3277 * For whiteouts, we only need to update the source dirent with the 3278 * inode number of the whiteout inode rather than removing it 3279 * altogether. 3280 */ 3281 if (wip) 3282 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3283 spaceres); 3284 else 3285 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3286 spaceres); 3287 3288 if (error) 3289 goto out_trans_cancel; 3290 3291 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3292 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3293 if (new_parent) 3294 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3295 3296 /* 3297 * Inform our hook clients that we've finished a rename operation as 3298 * follows: removed the source and target files from their directories; 3299 * that we've added the source to the target directory; and finally 3300 * that we've added the whiteout, if there was one. All inodes are 3301 * locked, so it's ok to model a rename this way so long as we say we 3302 * deleted entries before we add new ones. 3303 */ 3304 if (target_ip) 3305 xfs_dir_update_hook(target_dp, target_ip, -1, target_name); 3306 xfs_dir_update_hook(src_dp, src_ip, -1, src_name); 3307 xfs_dir_update_hook(target_dp, src_ip, 1, target_name); 3308 if (wip) 3309 xfs_dir_update_hook(src_dp, wip, 1, src_name); 3310 3311 error = xfs_finish_rename(tp); 3312 if (wip) 3313 xfs_irele(wip); 3314 return error; 3315 3316 out_trans_cancel: 3317 xfs_trans_cancel(tp); 3318 out_release_wip: 3319 if (wip) 3320 xfs_irele(wip); 3321 if (error == -ENOSPC && nospace_error) 3322 error = nospace_error; 3323 return error; 3324 } 3325 3326 static int 3327 xfs_iflush( 3328 struct xfs_inode *ip, 3329 struct xfs_buf *bp) 3330 { 3331 struct xfs_inode_log_item *iip = ip->i_itemp; 3332 struct xfs_dinode *dip; 3333 struct xfs_mount *mp = ip->i_mount; 3334 int error; 3335 3336 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); 3337 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 3338 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3339 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3340 ASSERT(iip->ili_item.li_buf == bp); 3341 3342 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3343 3344 /* 3345 * We don't flush the inode if any of the following checks fail, but we 3346 * do still update the log item and attach to the backing buffer as if 3347 * the flush happened. This is a formality to facilitate predictable 3348 * error handling as the caller will shutdown and fail the buffer. 3349 */ 3350 error = -EFSCORRUPTED; 3351 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3352 mp, XFS_ERRTAG_IFLUSH_1)) { 3353 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3354 "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT, 3355 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3356 goto flush_out; 3357 } 3358 if (S_ISREG(VFS_I(ip)->i_mode)) { 3359 if (XFS_TEST_ERROR( 3360 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3361 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3362 mp, XFS_ERRTAG_IFLUSH_3)) { 3363 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3364 "%s: Bad regular inode %llu, ptr "PTR_FMT, 3365 __func__, ip->i_ino, ip); 3366 goto flush_out; 3367 } 3368 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3369 if (XFS_TEST_ERROR( 3370 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3371 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3372 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3373 mp, XFS_ERRTAG_IFLUSH_4)) { 3374 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3375 "%s: Bad directory inode %llu, ptr "PTR_FMT, 3376 __func__, ip->i_ino, ip); 3377 goto flush_out; 3378 } 3379 } 3380 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) > 3381 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3382 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3383 "%s: detected corrupt incore inode %llu, " 3384 "total extents = %llu nblocks = %lld, ptr "PTR_FMT, 3385 __func__, ip->i_ino, 3386 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af), 3387 ip->i_nblocks, ip); 3388 goto flush_out; 3389 } 3390 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, 3391 mp, XFS_ERRTAG_IFLUSH_6)) { 3392 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3393 "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT, 3394 __func__, ip->i_ino, ip->i_forkoff, ip); 3395 goto flush_out; 3396 } 3397 3398 /* 3399 * Inode item log recovery for v2 inodes are dependent on the flushiter 3400 * count for correct sequencing. We bump the flush iteration count so 3401 * we can detect flushes which postdate a log record during recovery. 3402 * This is redundant as we now log every change and hence this can't 3403 * happen but we need to still do it to ensure backwards compatibility 3404 * with old kernels that predate logging all inode changes. 3405 */ 3406 if (!xfs_has_v3inodes(mp)) 3407 ip->i_flushiter++; 3408 3409 /* 3410 * If there are inline format data / attr forks attached to this inode, 3411 * make sure they are not corrupt. 3412 */ 3413 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3414 xfs_ifork_verify_local_data(ip)) 3415 goto flush_out; 3416 if (xfs_inode_has_attr_fork(ip) && 3417 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL && 3418 xfs_ifork_verify_local_attr(ip)) 3419 goto flush_out; 3420 3421 /* 3422 * Copy the dirty parts of the inode into the on-disk inode. We always 3423 * copy out the core of the inode, because if the inode is dirty at all 3424 * the core must be. 3425 */ 3426 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3427 3428 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3429 if (!xfs_has_v3inodes(mp)) { 3430 if (ip->i_flushiter == DI_MAX_FLUSH) 3431 ip->i_flushiter = 0; 3432 } 3433 3434 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3435 if (xfs_inode_has_attr_fork(ip)) 3436 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3437 3438 /* 3439 * We've recorded everything logged in the inode, so we'd like to clear 3440 * the ili_fields bits so we don't log and flush things unnecessarily. 3441 * However, we can't stop logging all this information until the data 3442 * we've copied into the disk buffer is written to disk. If we did we 3443 * might overwrite the copy of the inode in the log with all the data 3444 * after re-logging only part of it, and in the face of a crash we 3445 * wouldn't have all the data we need to recover. 3446 * 3447 * What we do is move the bits to the ili_last_fields field. When 3448 * logging the inode, these bits are moved back to the ili_fields field. 3449 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 3450 * we know that the information those bits represent is permanently on 3451 * disk. As long as the flush completes before the inode is logged 3452 * again, then both ili_fields and ili_last_fields will be cleared. 3453 */ 3454 error = 0; 3455 flush_out: 3456 spin_lock(&iip->ili_lock); 3457 iip->ili_last_fields = iip->ili_fields; 3458 iip->ili_fields = 0; 3459 iip->ili_fsync_fields = 0; 3460 spin_unlock(&iip->ili_lock); 3461 3462 /* 3463 * Store the current LSN of the inode so that we can tell whether the 3464 * item has moved in the AIL from xfs_buf_inode_iodone(). 3465 */ 3466 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3467 &iip->ili_item.li_lsn); 3468 3469 /* generate the checksum. */ 3470 xfs_dinode_calc_crc(mp, dip); 3471 if (error) 3472 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 3473 return error; 3474 } 3475 3476 /* 3477 * Non-blocking flush of dirty inode metadata into the backing buffer. 3478 * 3479 * The caller must have a reference to the inode and hold the cluster buffer 3480 * locked. The function will walk across all the inodes on the cluster buffer it 3481 * can find and lock without blocking, and flush them to the cluster buffer. 3482 * 3483 * On successful flushing of at least one inode, the caller must write out the 3484 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 3485 * the caller needs to release the buffer. On failure, the filesystem will be 3486 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 3487 * will be returned. 3488 */ 3489 int 3490 xfs_iflush_cluster( 3491 struct xfs_buf *bp) 3492 { 3493 struct xfs_mount *mp = bp->b_mount; 3494 struct xfs_log_item *lip, *n; 3495 struct xfs_inode *ip; 3496 struct xfs_inode_log_item *iip; 3497 int clcount = 0; 3498 int error = 0; 3499 3500 /* 3501 * We must use the safe variant here as on shutdown xfs_iflush_abort() 3502 * will remove itself from the list. 3503 */ 3504 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 3505 iip = (struct xfs_inode_log_item *)lip; 3506 ip = iip->ili_inode; 3507 3508 /* 3509 * Quick and dirty check to avoid locks if possible. 3510 */ 3511 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 3512 continue; 3513 if (xfs_ipincount(ip)) 3514 continue; 3515 3516 /* 3517 * The inode is still attached to the buffer, which means it is 3518 * dirty but reclaim might try to grab it. Check carefully for 3519 * that, and grab the ilock while still holding the i_flags_lock 3520 * to guarantee reclaim will not be able to reclaim this inode 3521 * once we drop the i_flags_lock. 3522 */ 3523 spin_lock(&ip->i_flags_lock); 3524 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 3525 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 3526 spin_unlock(&ip->i_flags_lock); 3527 continue; 3528 } 3529 3530 /* 3531 * ILOCK will pin the inode against reclaim and prevent 3532 * concurrent transactions modifying the inode while we are 3533 * flushing the inode. If we get the lock, set the flushing 3534 * state before we drop the i_flags_lock. 3535 */ 3536 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 3537 spin_unlock(&ip->i_flags_lock); 3538 continue; 3539 } 3540 __xfs_iflags_set(ip, XFS_IFLUSHING); 3541 spin_unlock(&ip->i_flags_lock); 3542 3543 /* 3544 * Abort flushing this inode if we are shut down because the 3545 * inode may not currently be in the AIL. This can occur when 3546 * log I/O failure unpins the inode without inserting into the 3547 * AIL, leaving a dirty/unpinned inode attached to the buffer 3548 * that otherwise looks like it should be flushed. 3549 */ 3550 if (xlog_is_shutdown(mp->m_log)) { 3551 xfs_iunpin_wait(ip); 3552 xfs_iflush_abort(ip); 3553 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3554 error = -EIO; 3555 continue; 3556 } 3557 3558 /* don't block waiting on a log force to unpin dirty inodes */ 3559 if (xfs_ipincount(ip)) { 3560 xfs_iflags_clear(ip, XFS_IFLUSHING); 3561 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3562 continue; 3563 } 3564 3565 if (!xfs_inode_clean(ip)) 3566 error = xfs_iflush(ip, bp); 3567 else 3568 xfs_iflags_clear(ip, XFS_IFLUSHING); 3569 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3570 if (error) 3571 break; 3572 clcount++; 3573 } 3574 3575 if (error) { 3576 /* 3577 * Shutdown first so we kill the log before we release this 3578 * buffer. If it is an INODE_ALLOC buffer and pins the tail 3579 * of the log, failing it before the _log_ is shut down can 3580 * result in the log tail being moved forward in the journal 3581 * on disk because log writes can still be taking place. Hence 3582 * unpinning the tail will allow the ICREATE intent to be 3583 * removed from the log an recovery will fail with uninitialised 3584 * inode cluster buffers. 3585 */ 3586 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3587 bp->b_flags |= XBF_ASYNC; 3588 xfs_buf_ioend_fail(bp); 3589 return error; 3590 } 3591 3592 if (!clcount) 3593 return -EAGAIN; 3594 3595 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3596 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3597 return 0; 3598 3599 } 3600 3601 /* Release an inode. */ 3602 void 3603 xfs_irele( 3604 struct xfs_inode *ip) 3605 { 3606 trace_xfs_irele(ip, _RET_IP_); 3607 iput(VFS_I(ip)); 3608 } 3609 3610 /* 3611 * Ensure all commited transactions touching the inode are written to the log. 3612 */ 3613 int 3614 xfs_log_force_inode( 3615 struct xfs_inode *ip) 3616 { 3617 xfs_csn_t seq = 0; 3618 3619 xfs_ilock(ip, XFS_ILOCK_SHARED); 3620 if (xfs_ipincount(ip)) 3621 seq = ip->i_itemp->ili_commit_seq; 3622 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3623 3624 if (!seq) 3625 return 0; 3626 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); 3627 } 3628 3629 /* 3630 * Grab the exclusive iolock for a data copy from src to dest, making sure to 3631 * abide vfs locking order (lowest pointer value goes first) and breaking the 3632 * layout leases before proceeding. The loop is needed because we cannot call 3633 * the blocking break_layout() with the iolocks held, and therefore have to 3634 * back out both locks. 3635 */ 3636 static int 3637 xfs_iolock_two_inodes_and_break_layout( 3638 struct inode *src, 3639 struct inode *dest) 3640 { 3641 int error; 3642 3643 if (src > dest) 3644 swap(src, dest); 3645 3646 retry: 3647 /* Wait to break both inodes' layouts before we start locking. */ 3648 error = break_layout(src, true); 3649 if (error) 3650 return error; 3651 if (src != dest) { 3652 error = break_layout(dest, true); 3653 if (error) 3654 return error; 3655 } 3656 3657 /* Lock one inode and make sure nobody got in and leased it. */ 3658 inode_lock(src); 3659 error = break_layout(src, false); 3660 if (error) { 3661 inode_unlock(src); 3662 if (error == -EWOULDBLOCK) 3663 goto retry; 3664 return error; 3665 } 3666 3667 if (src == dest) 3668 return 0; 3669 3670 /* Lock the other inode and make sure nobody got in and leased it. */ 3671 inode_lock_nested(dest, I_MUTEX_NONDIR2); 3672 error = break_layout(dest, false); 3673 if (error) { 3674 inode_unlock(src); 3675 inode_unlock(dest); 3676 if (error == -EWOULDBLOCK) 3677 goto retry; 3678 return error; 3679 } 3680 3681 return 0; 3682 } 3683 3684 static int 3685 xfs_mmaplock_two_inodes_and_break_dax_layout( 3686 struct xfs_inode *ip1, 3687 struct xfs_inode *ip2) 3688 { 3689 int error; 3690 bool retry; 3691 struct page *page; 3692 3693 if (ip1->i_ino > ip2->i_ino) 3694 swap(ip1, ip2); 3695 3696 again: 3697 retry = false; 3698 /* Lock the first inode */ 3699 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); 3700 error = xfs_break_dax_layouts(VFS_I(ip1), &retry); 3701 if (error || retry) { 3702 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3703 if (error == 0 && retry) 3704 goto again; 3705 return error; 3706 } 3707 3708 if (ip1 == ip2) 3709 return 0; 3710 3711 /* Nested lock the second inode */ 3712 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1)); 3713 /* 3714 * We cannot use xfs_break_dax_layouts() directly here because it may 3715 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable 3716 * for this nested lock case. 3717 */ 3718 page = dax_layout_busy_page(VFS_I(ip2)->i_mapping); 3719 if (page && page_ref_count(page) != 1) { 3720 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3721 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3722 goto again; 3723 } 3724 3725 return 0; 3726 } 3727 3728 /* 3729 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 3730 * mmap activity. 3731 */ 3732 int 3733 xfs_ilock2_io_mmap( 3734 struct xfs_inode *ip1, 3735 struct xfs_inode *ip2) 3736 { 3737 int ret; 3738 3739 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 3740 if (ret) 3741 return ret; 3742 3743 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 3744 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2); 3745 if (ret) { 3746 inode_unlock(VFS_I(ip2)); 3747 if (ip1 != ip2) 3748 inode_unlock(VFS_I(ip1)); 3749 return ret; 3750 } 3751 } else 3752 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, 3753 VFS_I(ip2)->i_mapping); 3754 3755 return 0; 3756 } 3757 3758 /* Unlock both inodes to allow IO and mmap activity. */ 3759 void 3760 xfs_iunlock2_io_mmap( 3761 struct xfs_inode *ip1, 3762 struct xfs_inode *ip2) 3763 { 3764 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 3765 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3766 if (ip1 != ip2) 3767 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3768 } else 3769 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, 3770 VFS_I(ip2)->i_mapping); 3771 3772 inode_unlock(VFS_I(ip2)); 3773 if (ip1 != ip2) 3774 inode_unlock(VFS_I(ip1)); 3775 } 3776 3777 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */ 3778 void 3779 xfs_iunlock2_remapping( 3780 struct xfs_inode *ip1, 3781 struct xfs_inode *ip2) 3782 { 3783 xfs_iflags_clear(ip1, XFS_IREMAPPING); 3784 3785 if (ip1 != ip2) 3786 xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED); 3787 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3788 3789 if (ip1 != ip2) 3790 inode_unlock_shared(VFS_I(ip1)); 3791 inode_unlock(VFS_I(ip2)); 3792 } 3793 3794 /* 3795 * Reload the incore inode list for this inode. Caller should ensure that 3796 * the link count cannot change, either by taking ILOCK_SHARED or otherwise 3797 * preventing other threads from executing. 3798 */ 3799 int 3800 xfs_inode_reload_unlinked_bucket( 3801 struct xfs_trans *tp, 3802 struct xfs_inode *ip) 3803 { 3804 struct xfs_mount *mp = tp->t_mountp; 3805 struct xfs_buf *agibp; 3806 struct xfs_agi *agi; 3807 struct xfs_perag *pag; 3808 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 3809 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 3810 xfs_agino_t prev_agino, next_agino; 3811 unsigned int bucket; 3812 bool foundit = false; 3813 int error; 3814 3815 /* Grab the first inode in the list */ 3816 pag = xfs_perag_get(mp, agno); 3817 error = xfs_ialloc_read_agi(pag, tp, &agibp); 3818 xfs_perag_put(pag); 3819 if (error) 3820 return error; 3821 3822 /* 3823 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the 3824 * incore unlinked list pointers for this inode. Check once more to 3825 * see if we raced with anyone else to reload the unlinked list. 3826 */ 3827 if (!xfs_inode_unlinked_incomplete(ip)) { 3828 foundit = true; 3829 goto out_agibp; 3830 } 3831 3832 bucket = agino % XFS_AGI_UNLINKED_BUCKETS; 3833 agi = agibp->b_addr; 3834 3835 trace_xfs_inode_reload_unlinked_bucket(ip); 3836 3837 xfs_info_ratelimited(mp, 3838 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.", 3839 agino, agno); 3840 3841 prev_agino = NULLAGINO; 3842 next_agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3843 while (next_agino != NULLAGINO) { 3844 struct xfs_inode *next_ip = NULL; 3845 3846 /* Found this caller's inode, set its backlink. */ 3847 if (next_agino == agino) { 3848 next_ip = ip; 3849 next_ip->i_prev_unlinked = prev_agino; 3850 foundit = true; 3851 goto next_inode; 3852 } 3853 3854 /* Try in-memory lookup first. */ 3855 next_ip = xfs_iunlink_lookup(pag, next_agino); 3856 if (next_ip) 3857 goto next_inode; 3858 3859 /* Inode not in memory, try reloading it. */ 3860 error = xfs_iunlink_reload_next(tp, agibp, prev_agino, 3861 next_agino); 3862 if (error) 3863 break; 3864 3865 /* Grab the reloaded inode. */ 3866 next_ip = xfs_iunlink_lookup(pag, next_agino); 3867 if (!next_ip) { 3868 /* No incore inode at all? We reloaded it... */ 3869 ASSERT(next_ip != NULL); 3870 error = -EFSCORRUPTED; 3871 break; 3872 } 3873 3874 next_inode: 3875 prev_agino = next_agino; 3876 next_agino = next_ip->i_next_unlinked; 3877 } 3878 3879 out_agibp: 3880 xfs_trans_brelse(tp, agibp); 3881 /* Should have found this inode somewhere in the iunlinked bucket. */ 3882 if (!error && !foundit) 3883 error = -EFSCORRUPTED; 3884 return error; 3885 } 3886 3887 /* Decide if this inode is missing its unlinked list and reload it. */ 3888 int 3889 xfs_inode_reload_unlinked( 3890 struct xfs_inode *ip) 3891 { 3892 struct xfs_trans *tp; 3893 int error; 3894 3895 error = xfs_trans_alloc_empty(ip->i_mount, &tp); 3896 if (error) 3897 return error; 3898 3899 xfs_ilock(ip, XFS_ILOCK_SHARED); 3900 if (xfs_inode_unlinked_incomplete(ip)) 3901 error = xfs_inode_reload_unlinked_bucket(tp, ip); 3902 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3903 xfs_trans_cancel(tp); 3904 3905 return error; 3906 } 3907 3908 /* Has this inode fork been zapped by repair? */ 3909 bool 3910 xfs_ifork_zapped( 3911 const struct xfs_inode *ip, 3912 int whichfork) 3913 { 3914 unsigned int datamask = 0; 3915 3916 switch (whichfork) { 3917 case XFS_DATA_FORK: 3918 switch (ip->i_vnode.i_mode & S_IFMT) { 3919 case S_IFDIR: 3920 datamask = XFS_SICK_INO_DIR_ZAPPED; 3921 break; 3922 case S_IFLNK: 3923 datamask = XFS_SICK_INO_SYMLINK_ZAPPED; 3924 break; 3925 } 3926 return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask); 3927 case XFS_ATTR_FORK: 3928 return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED; 3929 default: 3930 return false; 3931 } 3932 } 3933 3934 /* Compute the number of data and realtime blocks used by a file. */ 3935 void 3936 xfs_inode_count_blocks( 3937 struct xfs_trans *tp, 3938 struct xfs_inode *ip, 3939 xfs_filblks_t *dblocks, 3940 xfs_filblks_t *rblocks) 3941 { 3942 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 3943 3944 *rblocks = 0; 3945 if (XFS_IS_REALTIME_INODE(ip)) 3946 xfs_bmap_count_leaves(ifp, rblocks); 3947 *dblocks = ip->i_nblocks - *rblocks; 3948 } 3949