1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_imap.h" 25 #include "xfs_trans.h" 26 #include "xfs_trans_priv.h" 27 #include "xfs_sb.h" 28 #include "xfs_ag.h" 29 #include "xfs_dir2.h" 30 #include "xfs_dmapi.h" 31 #include "xfs_mount.h" 32 #include "xfs_bmap_btree.h" 33 #include "xfs_alloc_btree.h" 34 #include "xfs_ialloc_btree.h" 35 #include "xfs_dir2_sf.h" 36 #include "xfs_attr_sf.h" 37 #include "xfs_dinode.h" 38 #include "xfs_inode.h" 39 #include "xfs_buf_item.h" 40 #include "xfs_inode_item.h" 41 #include "xfs_btree.h" 42 #include "xfs_alloc.h" 43 #include "xfs_ialloc.h" 44 #include "xfs_bmap.h" 45 #include "xfs_rw.h" 46 #include "xfs_error.h" 47 #include "xfs_utils.h" 48 #include "xfs_dir2_trace.h" 49 #include "xfs_quota.h" 50 #include "xfs_mac.h" 51 #include "xfs_acl.h" 52 53 54 kmem_zone_t *xfs_ifork_zone; 55 kmem_zone_t *xfs_inode_zone; 56 kmem_zone_t *xfs_chashlist_zone; 57 58 /* 59 * Used in xfs_itruncate(). This is the maximum number of extents 60 * freed from a file in a single transaction. 61 */ 62 #define XFS_ITRUNC_MAX_EXTENTS 2 63 64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 65 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 66 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 67 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 68 69 70 #ifdef DEBUG 71 /* 72 * Make sure that the extents in the given memory buffer 73 * are valid. 74 */ 75 STATIC void 76 xfs_validate_extents( 77 xfs_ifork_t *ifp, 78 int nrecs, 79 int disk, 80 xfs_exntfmt_t fmt) 81 { 82 xfs_bmbt_rec_t *ep; 83 xfs_bmbt_irec_t irec; 84 xfs_bmbt_rec_t rec; 85 int i; 86 87 for (i = 0; i < nrecs; i++) { 88 ep = xfs_iext_get_ext(ifp, i); 89 rec.l0 = get_unaligned((__uint64_t*)&ep->l0); 90 rec.l1 = get_unaligned((__uint64_t*)&ep->l1); 91 if (disk) 92 xfs_bmbt_disk_get_all(&rec, &irec); 93 else 94 xfs_bmbt_get_all(&rec, &irec); 95 if (fmt == XFS_EXTFMT_NOSTATE) 96 ASSERT(irec.br_state == XFS_EXT_NORM); 97 } 98 } 99 #else /* DEBUG */ 100 #define xfs_validate_extents(ifp, nrecs, disk, fmt) 101 #endif /* DEBUG */ 102 103 /* 104 * Check that none of the inode's in the buffer have a next 105 * unlinked field of 0. 106 */ 107 #if defined(DEBUG) 108 void 109 xfs_inobp_check( 110 xfs_mount_t *mp, 111 xfs_buf_t *bp) 112 { 113 int i; 114 int j; 115 xfs_dinode_t *dip; 116 117 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 118 119 for (i = 0; i < j; i++) { 120 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 121 i * mp->m_sb.sb_inodesize); 122 if (!dip->di_next_unlinked) { 123 xfs_fs_cmn_err(CE_ALERT, mp, 124 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", 125 bp); 126 ASSERT(dip->di_next_unlinked); 127 } 128 } 129 } 130 #endif 131 132 /* 133 * This routine is called to map an inode number within a file 134 * system to the buffer containing the on-disk version of the 135 * inode. It returns a pointer to the buffer containing the 136 * on-disk inode in the bpp parameter, and in the dip parameter 137 * it returns a pointer to the on-disk inode within that buffer. 138 * 139 * If a non-zero error is returned, then the contents of bpp and 140 * dipp are undefined. 141 * 142 * Use xfs_imap() to determine the size and location of the 143 * buffer to read from disk. 144 */ 145 STATIC int 146 xfs_inotobp( 147 xfs_mount_t *mp, 148 xfs_trans_t *tp, 149 xfs_ino_t ino, 150 xfs_dinode_t **dipp, 151 xfs_buf_t **bpp, 152 int *offset) 153 { 154 int di_ok; 155 xfs_imap_t imap; 156 xfs_buf_t *bp; 157 int error; 158 xfs_dinode_t *dip; 159 160 /* 161 * Call the space management code to find the location of the 162 * inode on disk. 163 */ 164 imap.im_blkno = 0; 165 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP); 166 if (error != 0) { 167 cmn_err(CE_WARN, 168 "xfs_inotobp: xfs_imap() returned an " 169 "error %d on %s. Returning error.", error, mp->m_fsname); 170 return error; 171 } 172 173 /* 174 * If the inode number maps to a block outside the bounds of the 175 * file system then return NULL rather than calling read_buf 176 * and panicing when we get an error from the driver. 177 */ 178 if ((imap.im_blkno + imap.im_len) > 179 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 180 cmn_err(CE_WARN, 181 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds " 182 "of the file system %s. Returning EINVAL.", 183 (unsigned long long)imap.im_blkno, 184 imap.im_len, mp->m_fsname); 185 return XFS_ERROR(EINVAL); 186 } 187 188 /* 189 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will 190 * default to just a read_buf() call. 191 */ 192 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, 193 (int)imap.im_len, XFS_BUF_LOCK, &bp); 194 195 if (error) { 196 cmn_err(CE_WARN, 197 "xfs_inotobp: xfs_trans_read_buf() returned an " 198 "error %d on %s. Returning error.", error, mp->m_fsname); 199 return error; 200 } 201 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0); 202 di_ok = 203 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && 204 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); 205 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, 206 XFS_RANDOM_ITOBP_INOTOBP))) { 207 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip); 208 xfs_trans_brelse(tp, bp); 209 cmn_err(CE_WARN, 210 "xfs_inotobp: XFS_TEST_ERROR() returned an " 211 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname); 212 return XFS_ERROR(EFSCORRUPTED); 213 } 214 215 xfs_inobp_check(mp, bp); 216 217 /* 218 * Set *dipp to point to the on-disk inode in the buffer. 219 */ 220 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 221 *bpp = bp; 222 *offset = imap.im_boffset; 223 return 0; 224 } 225 226 227 /* 228 * This routine is called to map an inode to the buffer containing 229 * the on-disk version of the inode. It returns a pointer to the 230 * buffer containing the on-disk inode in the bpp parameter, and in 231 * the dip parameter it returns a pointer to the on-disk inode within 232 * that buffer. 233 * 234 * If a non-zero error is returned, then the contents of bpp and 235 * dipp are undefined. 236 * 237 * If the inode is new and has not yet been initialized, use xfs_imap() 238 * to determine the size and location of the buffer to read from disk. 239 * If the inode has already been mapped to its buffer and read in once, 240 * then use the mapping information stored in the inode rather than 241 * calling xfs_imap(). This allows us to avoid the overhead of looking 242 * at the inode btree for small block file systems (see xfs_dilocate()). 243 * We can tell whether the inode has been mapped in before by comparing 244 * its disk block address to 0. Only uninitialized inodes will have 245 * 0 for the disk block address. 246 */ 247 int 248 xfs_itobp( 249 xfs_mount_t *mp, 250 xfs_trans_t *tp, 251 xfs_inode_t *ip, 252 xfs_dinode_t **dipp, 253 xfs_buf_t **bpp, 254 xfs_daddr_t bno, 255 uint imap_flags) 256 { 257 xfs_imap_t imap; 258 xfs_buf_t *bp; 259 int error; 260 int i; 261 int ni; 262 263 if (ip->i_blkno == (xfs_daddr_t)0) { 264 /* 265 * Call the space management code to find the location of the 266 * inode on disk. 267 */ 268 imap.im_blkno = bno; 269 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap, 270 XFS_IMAP_LOOKUP | imap_flags))) 271 return error; 272 273 /* 274 * If the inode number maps to a block outside the bounds 275 * of the file system then return NULL rather than calling 276 * read_buf and panicing when we get an error from the 277 * driver. 278 */ 279 if ((imap.im_blkno + imap.im_len) > 280 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 281 #ifdef DEBUG 282 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " 283 "(imap.im_blkno (0x%llx) " 284 "+ imap.im_len (0x%llx)) > " 285 " XFS_FSB_TO_BB(mp, " 286 "mp->m_sb.sb_dblocks) (0x%llx)", 287 (unsigned long long) imap.im_blkno, 288 (unsigned long long) imap.im_len, 289 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 290 #endif /* DEBUG */ 291 return XFS_ERROR(EINVAL); 292 } 293 294 /* 295 * Fill in the fields in the inode that will be used to 296 * map the inode to its buffer from now on. 297 */ 298 ip->i_blkno = imap.im_blkno; 299 ip->i_len = imap.im_len; 300 ip->i_boffset = imap.im_boffset; 301 } else { 302 /* 303 * We've already mapped the inode once, so just use the 304 * mapping that we saved the first time. 305 */ 306 imap.im_blkno = ip->i_blkno; 307 imap.im_len = ip->i_len; 308 imap.im_boffset = ip->i_boffset; 309 } 310 ASSERT(bno == 0 || bno == imap.im_blkno); 311 312 /* 313 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will 314 * default to just a read_buf() call. 315 */ 316 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, 317 (int)imap.im_len, XFS_BUF_LOCK, &bp); 318 if (error) { 319 #ifdef DEBUG 320 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " 321 "xfs_trans_read_buf() returned error %d, " 322 "imap.im_blkno 0x%llx, imap.im_len 0x%llx", 323 error, (unsigned long long) imap.im_blkno, 324 (unsigned long long) imap.im_len); 325 #endif /* DEBUG */ 326 return error; 327 } 328 329 /* 330 * Validate the magic number and version of every inode in the buffer 331 * (if DEBUG kernel) or the first inode in the buffer, otherwise. 332 * No validation is done here in userspace (xfs_repair). 333 */ 334 #if !defined(__KERNEL__) 335 ni = 0; 336 #elif defined(DEBUG) 337 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog; 338 #else /* usual case */ 339 ni = 1; 340 #endif 341 342 for (i = 0; i < ni; i++) { 343 int di_ok; 344 xfs_dinode_t *dip; 345 346 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 347 (i << mp->m_sb.sb_inodelog)); 348 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && 349 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); 350 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, 351 XFS_ERRTAG_ITOBP_INOTOBP, 352 XFS_RANDOM_ITOBP_INOTOBP))) { 353 if (imap_flags & XFS_IMAP_BULKSTAT) { 354 xfs_trans_brelse(tp, bp); 355 return XFS_ERROR(EINVAL); 356 } 357 #ifdef DEBUG 358 cmn_err(CE_ALERT, 359 "Device %s - bad inode magic/vsn " 360 "daddr %lld #%d (magic=%x)", 361 XFS_BUFTARG_NAME(mp->m_ddev_targp), 362 (unsigned long long)imap.im_blkno, i, 363 INT_GET(dip->di_core.di_magic, ARCH_CONVERT)); 364 #endif 365 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH, 366 mp, dip); 367 xfs_trans_brelse(tp, bp); 368 return XFS_ERROR(EFSCORRUPTED); 369 } 370 } 371 372 xfs_inobp_check(mp, bp); 373 374 /* 375 * Mark the buffer as an inode buffer now that it looks good 376 */ 377 XFS_BUF_SET_VTYPE(bp, B_FS_INO); 378 379 /* 380 * Set *dipp to point to the on-disk inode in the buffer. 381 */ 382 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 383 *bpp = bp; 384 return 0; 385 } 386 387 /* 388 * Move inode type and inode format specific information from the 389 * on-disk inode to the in-core inode. For fifos, devs, and sockets 390 * this means set if_rdev to the proper value. For files, directories, 391 * and symlinks this means to bring in the in-line data or extent 392 * pointers. For a file in B-tree format, only the root is immediately 393 * brought in-core. The rest will be in-lined in if_extents when it 394 * is first referenced (see xfs_iread_extents()). 395 */ 396 STATIC int 397 xfs_iformat( 398 xfs_inode_t *ip, 399 xfs_dinode_t *dip) 400 { 401 xfs_attr_shortform_t *atp; 402 int size; 403 int error; 404 xfs_fsize_t di_size; 405 ip->i_df.if_ext_max = 406 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 407 error = 0; 408 409 if (unlikely( 410 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) + 411 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) > 412 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) { 413 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 414 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", 415 (unsigned long long)ip->i_ino, 416 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) 417 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)), 418 (unsigned long long) 419 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT)); 420 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, 421 ip->i_mount, dip); 422 return XFS_ERROR(EFSCORRUPTED); 423 } 424 425 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) { 426 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 427 "corrupt dinode %Lu, forkoff = 0x%x.", 428 (unsigned long long)ip->i_ino, 429 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT))); 430 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, 431 ip->i_mount, dip); 432 return XFS_ERROR(EFSCORRUPTED); 433 } 434 435 switch (ip->i_d.di_mode & S_IFMT) { 436 case S_IFIFO: 437 case S_IFCHR: 438 case S_IFBLK: 439 case S_IFSOCK: 440 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) { 441 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, 442 ip->i_mount, dip); 443 return XFS_ERROR(EFSCORRUPTED); 444 } 445 ip->i_d.di_size = 0; 446 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT); 447 break; 448 449 case S_IFREG: 450 case S_IFLNK: 451 case S_IFDIR: 452 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) { 453 case XFS_DINODE_FMT_LOCAL: 454 /* 455 * no local regular files yet 456 */ 457 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) { 458 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 459 "corrupt inode %Lu " 460 "(local format for regular file).", 461 (unsigned long long) ip->i_ino); 462 XFS_CORRUPTION_ERROR("xfs_iformat(4)", 463 XFS_ERRLEVEL_LOW, 464 ip->i_mount, dip); 465 return XFS_ERROR(EFSCORRUPTED); 466 } 467 468 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT); 469 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { 470 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 471 "corrupt inode %Lu " 472 "(bad size %Ld for local inode).", 473 (unsigned long long) ip->i_ino, 474 (long long) di_size); 475 XFS_CORRUPTION_ERROR("xfs_iformat(5)", 476 XFS_ERRLEVEL_LOW, 477 ip->i_mount, dip); 478 return XFS_ERROR(EFSCORRUPTED); 479 } 480 481 size = (int)di_size; 482 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 483 break; 484 case XFS_DINODE_FMT_EXTENTS: 485 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 486 break; 487 case XFS_DINODE_FMT_BTREE: 488 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 489 break; 490 default: 491 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, 492 ip->i_mount); 493 return XFS_ERROR(EFSCORRUPTED); 494 } 495 break; 496 497 default: 498 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); 499 return XFS_ERROR(EFSCORRUPTED); 500 } 501 if (error) { 502 return error; 503 } 504 if (!XFS_DFORK_Q(dip)) 505 return 0; 506 ASSERT(ip->i_afp == NULL); 507 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); 508 ip->i_afp->if_ext_max = 509 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 510 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) { 511 case XFS_DINODE_FMT_LOCAL: 512 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 513 size = be16_to_cpu(atp->hdr.totsize); 514 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 515 break; 516 case XFS_DINODE_FMT_EXTENTS: 517 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 518 break; 519 case XFS_DINODE_FMT_BTREE: 520 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 521 break; 522 default: 523 error = XFS_ERROR(EFSCORRUPTED); 524 break; 525 } 526 if (error) { 527 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 528 ip->i_afp = NULL; 529 xfs_idestroy_fork(ip, XFS_DATA_FORK); 530 } 531 return error; 532 } 533 534 /* 535 * The file is in-lined in the on-disk inode. 536 * If it fits into if_inline_data, then copy 537 * it there, otherwise allocate a buffer for it 538 * and copy the data there. Either way, set 539 * if_data to point at the data. 540 * If we allocate a buffer for the data, make 541 * sure that its size is a multiple of 4 and 542 * record the real size in i_real_bytes. 543 */ 544 STATIC int 545 xfs_iformat_local( 546 xfs_inode_t *ip, 547 xfs_dinode_t *dip, 548 int whichfork, 549 int size) 550 { 551 xfs_ifork_t *ifp; 552 int real_size; 553 554 /* 555 * If the size is unreasonable, then something 556 * is wrong and we just bail out rather than crash in 557 * kmem_alloc() or memcpy() below. 558 */ 559 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 560 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 561 "corrupt inode %Lu " 562 "(bad size %d for local fork, size = %d).", 563 (unsigned long long) ip->i_ino, size, 564 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 565 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, 566 ip->i_mount, dip); 567 return XFS_ERROR(EFSCORRUPTED); 568 } 569 ifp = XFS_IFORK_PTR(ip, whichfork); 570 real_size = 0; 571 if (size == 0) 572 ifp->if_u1.if_data = NULL; 573 else if (size <= sizeof(ifp->if_u2.if_inline_data)) 574 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 575 else { 576 real_size = roundup(size, 4); 577 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 578 } 579 ifp->if_bytes = size; 580 ifp->if_real_bytes = real_size; 581 if (size) 582 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); 583 ifp->if_flags &= ~XFS_IFEXTENTS; 584 ifp->if_flags |= XFS_IFINLINE; 585 return 0; 586 } 587 588 /* 589 * The file consists of a set of extents all 590 * of which fit into the on-disk inode. 591 * If there are few enough extents to fit into 592 * the if_inline_ext, then copy them there. 593 * Otherwise allocate a buffer for them and copy 594 * them into it. Either way, set if_extents 595 * to point at the extents. 596 */ 597 STATIC int 598 xfs_iformat_extents( 599 xfs_inode_t *ip, 600 xfs_dinode_t *dip, 601 int whichfork) 602 { 603 xfs_bmbt_rec_t *ep, *dp; 604 xfs_ifork_t *ifp; 605 int nex; 606 int size; 607 int i; 608 609 ifp = XFS_IFORK_PTR(ip, whichfork); 610 nex = XFS_DFORK_NEXTENTS(dip, whichfork); 611 size = nex * (uint)sizeof(xfs_bmbt_rec_t); 612 613 /* 614 * If the number of extents is unreasonable, then something 615 * is wrong and we just bail out rather than crash in 616 * kmem_alloc() or memcpy() below. 617 */ 618 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 619 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 620 "corrupt inode %Lu ((a)extents = %d).", 621 (unsigned long long) ip->i_ino, nex); 622 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, 623 ip->i_mount, dip); 624 return XFS_ERROR(EFSCORRUPTED); 625 } 626 627 ifp->if_real_bytes = 0; 628 if (nex == 0) 629 ifp->if_u1.if_extents = NULL; 630 else if (nex <= XFS_INLINE_EXTS) 631 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 632 else 633 xfs_iext_add(ifp, 0, nex); 634 635 ifp->if_bytes = size; 636 if (size) { 637 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 638 xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip)); 639 for (i = 0; i < nex; i++, dp++) { 640 ep = xfs_iext_get_ext(ifp, i); 641 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0), 642 ARCH_CONVERT); 643 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1), 644 ARCH_CONVERT); 645 } 646 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex, 647 whichfork); 648 if (whichfork != XFS_DATA_FORK || 649 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) 650 if (unlikely(xfs_check_nostate_extents( 651 ifp, 0, nex))) { 652 XFS_ERROR_REPORT("xfs_iformat_extents(2)", 653 XFS_ERRLEVEL_LOW, 654 ip->i_mount); 655 return XFS_ERROR(EFSCORRUPTED); 656 } 657 } 658 ifp->if_flags |= XFS_IFEXTENTS; 659 return 0; 660 } 661 662 /* 663 * The file has too many extents to fit into 664 * the inode, so they are in B-tree format. 665 * Allocate a buffer for the root of the B-tree 666 * and copy the root into it. The i_extents 667 * field will remain NULL until all of the 668 * extents are read in (when they are needed). 669 */ 670 STATIC int 671 xfs_iformat_btree( 672 xfs_inode_t *ip, 673 xfs_dinode_t *dip, 674 int whichfork) 675 { 676 xfs_bmdr_block_t *dfp; 677 xfs_ifork_t *ifp; 678 /* REFERENCED */ 679 int nrecs; 680 int size; 681 682 ifp = XFS_IFORK_PTR(ip, whichfork); 683 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 684 size = XFS_BMAP_BROOT_SPACE(dfp); 685 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp); 686 687 /* 688 * blow out if -- fork has less extents than can fit in 689 * fork (fork shouldn't be a btree format), root btree 690 * block has more records than can fit into the fork, 691 * or the number of extents is greater than the number of 692 * blocks. 693 */ 694 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max 695 || XFS_BMDR_SPACE_CALC(nrecs) > 696 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) 697 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { 698 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 699 "corrupt inode %Lu (btree).", 700 (unsigned long long) ip->i_ino); 701 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, 702 ip->i_mount); 703 return XFS_ERROR(EFSCORRUPTED); 704 } 705 706 ifp->if_broot_bytes = size; 707 ifp->if_broot = kmem_alloc(size, KM_SLEEP); 708 ASSERT(ifp->if_broot != NULL); 709 /* 710 * Copy and convert from the on-disk structure 711 * to the in-memory structure. 712 */ 713 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 714 ifp->if_broot, size); 715 ifp->if_flags &= ~XFS_IFEXTENTS; 716 ifp->if_flags |= XFS_IFBROOT; 717 718 return 0; 719 } 720 721 /* 722 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk 723 * and native format 724 * 725 * buf = on-disk representation 726 * dip = native representation 727 * dir = direction - +ve -> disk to native 728 * -ve -> native to disk 729 */ 730 void 731 xfs_xlate_dinode_core( 732 xfs_caddr_t buf, 733 xfs_dinode_core_t *dip, 734 int dir) 735 { 736 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf; 737 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip; 738 xfs_arch_t arch = ARCH_CONVERT; 739 740 ASSERT(dir); 741 742 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch); 743 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch); 744 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch); 745 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch); 746 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch); 747 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch); 748 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch); 749 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch); 750 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch); 751 752 if (dir > 0) { 753 memcpy(mem_core->di_pad, buf_core->di_pad, 754 sizeof(buf_core->di_pad)); 755 } else { 756 memcpy(buf_core->di_pad, mem_core->di_pad, 757 sizeof(buf_core->di_pad)); 758 } 759 760 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch); 761 762 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec, 763 dir, arch); 764 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec, 765 dir, arch); 766 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec, 767 dir, arch); 768 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec, 769 dir, arch); 770 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec, 771 dir, arch); 772 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec, 773 dir, arch); 774 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch); 775 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch); 776 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch); 777 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch); 778 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch); 779 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch); 780 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch); 781 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch); 782 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch); 783 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch); 784 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch); 785 } 786 787 STATIC uint 788 _xfs_dic2xflags( 789 __uint16_t di_flags) 790 { 791 uint flags = 0; 792 793 if (di_flags & XFS_DIFLAG_ANY) { 794 if (di_flags & XFS_DIFLAG_REALTIME) 795 flags |= XFS_XFLAG_REALTIME; 796 if (di_flags & XFS_DIFLAG_PREALLOC) 797 flags |= XFS_XFLAG_PREALLOC; 798 if (di_flags & XFS_DIFLAG_IMMUTABLE) 799 flags |= XFS_XFLAG_IMMUTABLE; 800 if (di_flags & XFS_DIFLAG_APPEND) 801 flags |= XFS_XFLAG_APPEND; 802 if (di_flags & XFS_DIFLAG_SYNC) 803 flags |= XFS_XFLAG_SYNC; 804 if (di_flags & XFS_DIFLAG_NOATIME) 805 flags |= XFS_XFLAG_NOATIME; 806 if (di_flags & XFS_DIFLAG_NODUMP) 807 flags |= XFS_XFLAG_NODUMP; 808 if (di_flags & XFS_DIFLAG_RTINHERIT) 809 flags |= XFS_XFLAG_RTINHERIT; 810 if (di_flags & XFS_DIFLAG_PROJINHERIT) 811 flags |= XFS_XFLAG_PROJINHERIT; 812 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 813 flags |= XFS_XFLAG_NOSYMLINKS; 814 if (di_flags & XFS_DIFLAG_EXTSIZE) 815 flags |= XFS_XFLAG_EXTSIZE; 816 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 817 flags |= XFS_XFLAG_EXTSZINHERIT; 818 if (di_flags & XFS_DIFLAG_NODEFRAG) 819 flags |= XFS_XFLAG_NODEFRAG; 820 } 821 822 return flags; 823 } 824 825 uint 826 xfs_ip2xflags( 827 xfs_inode_t *ip) 828 { 829 xfs_dinode_core_t *dic = &ip->i_d; 830 831 return _xfs_dic2xflags(dic->di_flags) | 832 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0); 833 } 834 835 uint 836 xfs_dic2xflags( 837 xfs_dinode_core_t *dic) 838 { 839 return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) | 840 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0); 841 } 842 843 /* 844 * Given a mount structure and an inode number, return a pointer 845 * to a newly allocated in-core inode corresponding to the given 846 * inode number. 847 * 848 * Initialize the inode's attributes and extent pointers if it 849 * already has them (it will not if the inode has no links). 850 */ 851 int 852 xfs_iread( 853 xfs_mount_t *mp, 854 xfs_trans_t *tp, 855 xfs_ino_t ino, 856 xfs_inode_t **ipp, 857 xfs_daddr_t bno) 858 { 859 xfs_buf_t *bp; 860 xfs_dinode_t *dip; 861 xfs_inode_t *ip; 862 int error; 863 864 ASSERT(xfs_inode_zone != NULL); 865 866 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP); 867 ip->i_ino = ino; 868 ip->i_mount = mp; 869 870 /* 871 * Get pointer's to the on-disk inode and the buffer containing it. 872 * If the inode number refers to a block outside the file system 873 * then xfs_itobp() will return NULL. In this case we should 874 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will 875 * know that this is a new incore inode. 876 */ 877 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, 0); 878 if (error) { 879 kmem_zone_free(xfs_inode_zone, ip); 880 return error; 881 } 882 883 /* 884 * Initialize inode's trace buffers. 885 * Do this before xfs_iformat in case it adds entries. 886 */ 887 #ifdef XFS_BMAP_TRACE 888 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP); 889 #endif 890 #ifdef XFS_BMBT_TRACE 891 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP); 892 #endif 893 #ifdef XFS_RW_TRACE 894 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP); 895 #endif 896 #ifdef XFS_ILOCK_TRACE 897 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP); 898 #endif 899 #ifdef XFS_DIR2_TRACE 900 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP); 901 #endif 902 903 /* 904 * If we got something that isn't an inode it means someone 905 * (nfs or dmi) has a stale handle. 906 */ 907 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) { 908 kmem_zone_free(xfs_inode_zone, ip); 909 xfs_trans_brelse(tp, bp); 910 #ifdef DEBUG 911 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 912 "dip->di_core.di_magic (0x%x) != " 913 "XFS_DINODE_MAGIC (0x%x)", 914 INT_GET(dip->di_core.di_magic, ARCH_CONVERT), 915 XFS_DINODE_MAGIC); 916 #endif /* DEBUG */ 917 return XFS_ERROR(EINVAL); 918 } 919 920 /* 921 * If the on-disk inode is already linked to a directory 922 * entry, copy all of the inode into the in-core inode. 923 * xfs_iformat() handles copying in the inode format 924 * specific information. 925 * Otherwise, just get the truly permanent information. 926 */ 927 if (dip->di_core.di_mode) { 928 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, 929 &(ip->i_d), 1); 930 error = xfs_iformat(ip, dip); 931 if (error) { 932 kmem_zone_free(xfs_inode_zone, ip); 933 xfs_trans_brelse(tp, bp); 934 #ifdef DEBUG 935 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 936 "xfs_iformat() returned error %d", 937 error); 938 #endif /* DEBUG */ 939 return error; 940 } 941 } else { 942 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT); 943 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT); 944 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT); 945 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT); 946 /* 947 * Make sure to pull in the mode here as well in 948 * case the inode is released without being used. 949 * This ensures that xfs_inactive() will see that 950 * the inode is already free and not try to mess 951 * with the uninitialized part of it. 952 */ 953 ip->i_d.di_mode = 0; 954 /* 955 * Initialize the per-fork minima and maxima for a new 956 * inode here. xfs_iformat will do it for old inodes. 957 */ 958 ip->i_df.if_ext_max = 959 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 960 } 961 962 INIT_LIST_HEAD(&ip->i_reclaim); 963 964 /* 965 * The inode format changed when we moved the link count and 966 * made it 32 bits long. If this is an old format inode, 967 * convert it in memory to look like a new one. If it gets 968 * flushed to disk we will convert back before flushing or 969 * logging it. We zero out the new projid field and the old link 970 * count field. We'll handle clearing the pad field (the remains 971 * of the old uuid field) when we actually convert the inode to 972 * the new format. We don't change the version number so that we 973 * can distinguish this from a real new format inode. 974 */ 975 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { 976 ip->i_d.di_nlink = ip->i_d.di_onlink; 977 ip->i_d.di_onlink = 0; 978 ip->i_d.di_projid = 0; 979 } 980 981 ip->i_delayed_blks = 0; 982 983 /* 984 * Mark the buffer containing the inode as something to keep 985 * around for a while. This helps to keep recently accessed 986 * meta-data in-core longer. 987 */ 988 XFS_BUF_SET_REF(bp, XFS_INO_REF); 989 990 /* 991 * Use xfs_trans_brelse() to release the buffer containing the 992 * on-disk inode, because it was acquired with xfs_trans_read_buf() 993 * in xfs_itobp() above. If tp is NULL, this is just a normal 994 * brelse(). If we're within a transaction, then xfs_trans_brelse() 995 * will only release the buffer if it is not dirty within the 996 * transaction. It will be OK to release the buffer in this case, 997 * because inodes on disk are never destroyed and we will be 998 * locking the new in-core inode before putting it in the hash 999 * table where other processes can find it. Thus we don't have 1000 * to worry about the inode being changed just because we released 1001 * the buffer. 1002 */ 1003 xfs_trans_brelse(tp, bp); 1004 *ipp = ip; 1005 return 0; 1006 } 1007 1008 /* 1009 * Read in extents from a btree-format inode. 1010 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. 1011 */ 1012 int 1013 xfs_iread_extents( 1014 xfs_trans_t *tp, 1015 xfs_inode_t *ip, 1016 int whichfork) 1017 { 1018 int error; 1019 xfs_ifork_t *ifp; 1020 xfs_extnum_t nextents; 1021 size_t size; 1022 1023 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { 1024 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, 1025 ip->i_mount); 1026 return XFS_ERROR(EFSCORRUPTED); 1027 } 1028 nextents = XFS_IFORK_NEXTENTS(ip, whichfork); 1029 size = nextents * sizeof(xfs_bmbt_rec_t); 1030 ifp = XFS_IFORK_PTR(ip, whichfork); 1031 1032 /* 1033 * We know that the size is valid (it's checked in iformat_btree) 1034 */ 1035 ifp->if_lastex = NULLEXTNUM; 1036 ifp->if_bytes = ifp->if_real_bytes = 0; 1037 ifp->if_flags |= XFS_IFEXTENTS; 1038 xfs_iext_add(ifp, 0, nextents); 1039 error = xfs_bmap_read_extents(tp, ip, whichfork); 1040 if (error) { 1041 xfs_iext_destroy(ifp); 1042 ifp->if_flags &= ~XFS_IFEXTENTS; 1043 return error; 1044 } 1045 xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip)); 1046 return 0; 1047 } 1048 1049 /* 1050 * Allocate an inode on disk and return a copy of its in-core version. 1051 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 1052 * appropriately within the inode. The uid and gid for the inode are 1053 * set according to the contents of the given cred structure. 1054 * 1055 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 1056 * has a free inode available, call xfs_iget() 1057 * to obtain the in-core version of the allocated inode. Finally, 1058 * fill in the inode and log its initial contents. In this case, 1059 * ialloc_context would be set to NULL and call_again set to false. 1060 * 1061 * If xfs_dialloc() does not have an available inode, 1062 * it will replenish its supply by doing an allocation. Since we can 1063 * only do one allocation within a transaction without deadlocks, we 1064 * must commit the current transaction before returning the inode itself. 1065 * In this case, therefore, we will set call_again to true and return. 1066 * The caller should then commit the current transaction, start a new 1067 * transaction, and call xfs_ialloc() again to actually get the inode. 1068 * 1069 * To ensure that some other process does not grab the inode that 1070 * was allocated during the first call to xfs_ialloc(), this routine 1071 * also returns the [locked] bp pointing to the head of the freelist 1072 * as ialloc_context. The caller should hold this buffer across 1073 * the commit and pass it back into this routine on the second call. 1074 */ 1075 int 1076 xfs_ialloc( 1077 xfs_trans_t *tp, 1078 xfs_inode_t *pip, 1079 mode_t mode, 1080 xfs_nlink_t nlink, 1081 xfs_dev_t rdev, 1082 cred_t *cr, 1083 xfs_prid_t prid, 1084 int okalloc, 1085 xfs_buf_t **ialloc_context, 1086 boolean_t *call_again, 1087 xfs_inode_t **ipp) 1088 { 1089 xfs_ino_t ino; 1090 xfs_inode_t *ip; 1091 bhv_vnode_t *vp; 1092 uint flags; 1093 int error; 1094 1095 /* 1096 * Call the space management code to pick 1097 * the on-disk inode to be allocated. 1098 */ 1099 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc, 1100 ialloc_context, call_again, &ino); 1101 if (error != 0) { 1102 return error; 1103 } 1104 if (*call_again || ino == NULLFSINO) { 1105 *ipp = NULL; 1106 return 0; 1107 } 1108 ASSERT(*ialloc_context == NULL); 1109 1110 /* 1111 * Get the in-core inode with the lock held exclusively. 1112 * This is because we're setting fields here we need 1113 * to prevent others from looking at until we're done. 1114 */ 1115 error = xfs_trans_iget(tp->t_mountp, tp, ino, 1116 IGET_CREATE, XFS_ILOCK_EXCL, &ip); 1117 if (error != 0) { 1118 return error; 1119 } 1120 ASSERT(ip != NULL); 1121 1122 vp = XFS_ITOV(ip); 1123 ip->i_d.di_mode = (__uint16_t)mode; 1124 ip->i_d.di_onlink = 0; 1125 ip->i_d.di_nlink = nlink; 1126 ASSERT(ip->i_d.di_nlink == nlink); 1127 ip->i_d.di_uid = current_fsuid(cr); 1128 ip->i_d.di_gid = current_fsgid(cr); 1129 ip->i_d.di_projid = prid; 1130 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1131 1132 /* 1133 * If the superblock version is up to where we support new format 1134 * inodes and this is currently an old format inode, then change 1135 * the inode version number now. This way we only do the conversion 1136 * here rather than here and in the flush/logging code. 1137 */ 1138 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) && 1139 ip->i_d.di_version == XFS_DINODE_VERSION_1) { 1140 ip->i_d.di_version = XFS_DINODE_VERSION_2; 1141 /* 1142 * We've already zeroed the old link count, the projid field, 1143 * and the pad field. 1144 */ 1145 } 1146 1147 /* 1148 * Project ids won't be stored on disk if we are using a version 1 inode. 1149 */ 1150 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1)) 1151 xfs_bump_ino_vers2(tp, ip); 1152 1153 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) { 1154 ip->i_d.di_gid = pip->i_d.di_gid; 1155 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { 1156 ip->i_d.di_mode |= S_ISGID; 1157 } 1158 } 1159 1160 /* 1161 * If the group ID of the new file does not match the effective group 1162 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 1163 * (and only if the irix_sgid_inherit compatibility variable is set). 1164 */ 1165 if ((irix_sgid_inherit) && 1166 (ip->i_d.di_mode & S_ISGID) && 1167 (!in_group_p((gid_t)ip->i_d.di_gid))) { 1168 ip->i_d.di_mode &= ~S_ISGID; 1169 } 1170 1171 ip->i_d.di_size = 0; 1172 ip->i_d.di_nextents = 0; 1173 ASSERT(ip->i_d.di_nblocks == 0); 1174 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD); 1175 /* 1176 * di_gen will have been taken care of in xfs_iread. 1177 */ 1178 ip->i_d.di_extsize = 0; 1179 ip->i_d.di_dmevmask = 0; 1180 ip->i_d.di_dmstate = 0; 1181 ip->i_d.di_flags = 0; 1182 flags = XFS_ILOG_CORE; 1183 switch (mode & S_IFMT) { 1184 case S_IFIFO: 1185 case S_IFCHR: 1186 case S_IFBLK: 1187 case S_IFSOCK: 1188 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 1189 ip->i_df.if_u2.if_rdev = rdev; 1190 ip->i_df.if_flags = 0; 1191 flags |= XFS_ILOG_DEV; 1192 break; 1193 case S_IFREG: 1194 case S_IFDIR: 1195 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 1196 uint di_flags = 0; 1197 1198 if ((mode & S_IFMT) == S_IFDIR) { 1199 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1200 di_flags |= XFS_DIFLAG_RTINHERIT; 1201 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1202 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 1203 ip->i_d.di_extsize = pip->i_d.di_extsize; 1204 } 1205 } else if ((mode & S_IFMT) == S_IFREG) { 1206 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) { 1207 di_flags |= XFS_DIFLAG_REALTIME; 1208 ip->i_iocore.io_flags |= XFS_IOCORE_RT; 1209 } 1210 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1211 di_flags |= XFS_DIFLAG_EXTSIZE; 1212 ip->i_d.di_extsize = pip->i_d.di_extsize; 1213 } 1214 } 1215 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 1216 xfs_inherit_noatime) 1217 di_flags |= XFS_DIFLAG_NOATIME; 1218 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 1219 xfs_inherit_nodump) 1220 di_flags |= XFS_DIFLAG_NODUMP; 1221 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 1222 xfs_inherit_sync) 1223 di_flags |= XFS_DIFLAG_SYNC; 1224 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 1225 xfs_inherit_nosymlinks) 1226 di_flags |= XFS_DIFLAG_NOSYMLINKS; 1227 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 1228 di_flags |= XFS_DIFLAG_PROJINHERIT; 1229 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 1230 xfs_inherit_nodefrag) 1231 di_flags |= XFS_DIFLAG_NODEFRAG; 1232 ip->i_d.di_flags |= di_flags; 1233 } 1234 /* FALLTHROUGH */ 1235 case S_IFLNK: 1236 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1237 ip->i_df.if_flags = XFS_IFEXTENTS; 1238 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 1239 ip->i_df.if_u1.if_extents = NULL; 1240 break; 1241 default: 1242 ASSERT(0); 1243 } 1244 /* 1245 * Attribute fork settings for new inode. 1246 */ 1247 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1248 ip->i_d.di_anextents = 0; 1249 1250 /* 1251 * Log the new values stuffed into the inode. 1252 */ 1253 xfs_trans_log_inode(tp, ip, flags); 1254 1255 /* now that we have an i_mode we can setup inode ops and unlock */ 1256 bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1); 1257 1258 *ipp = ip; 1259 return 0; 1260 } 1261 1262 /* 1263 * Check to make sure that there are no blocks allocated to the 1264 * file beyond the size of the file. We don't check this for 1265 * files with fixed size extents or real time extents, but we 1266 * at least do it for regular files. 1267 */ 1268 #ifdef DEBUG 1269 void 1270 xfs_isize_check( 1271 xfs_mount_t *mp, 1272 xfs_inode_t *ip, 1273 xfs_fsize_t isize) 1274 { 1275 xfs_fileoff_t map_first; 1276 int nimaps; 1277 xfs_bmbt_irec_t imaps[2]; 1278 1279 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) 1280 return; 1281 1282 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE)) 1283 return; 1284 1285 nimaps = 2; 1286 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 1287 /* 1288 * The filesystem could be shutting down, so bmapi may return 1289 * an error. 1290 */ 1291 if (xfs_bmapi(NULL, ip, map_first, 1292 (XFS_B_TO_FSB(mp, 1293 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - 1294 map_first), 1295 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, 1296 NULL, NULL)) 1297 return; 1298 ASSERT(nimaps == 1); 1299 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); 1300 } 1301 #endif /* DEBUG */ 1302 1303 /* 1304 * Calculate the last possible buffered byte in a file. This must 1305 * include data that was buffered beyond the EOF by the write code. 1306 * This also needs to deal with overflowing the xfs_fsize_t type 1307 * which can happen for sizes near the limit. 1308 * 1309 * We also need to take into account any blocks beyond the EOF. It 1310 * may be the case that they were buffered by a write which failed. 1311 * In that case the pages will still be in memory, but the inode size 1312 * will never have been updated. 1313 */ 1314 xfs_fsize_t 1315 xfs_file_last_byte( 1316 xfs_inode_t *ip) 1317 { 1318 xfs_mount_t *mp; 1319 xfs_fsize_t last_byte; 1320 xfs_fileoff_t last_block; 1321 xfs_fileoff_t size_last_block; 1322 int error; 1323 1324 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS)); 1325 1326 mp = ip->i_mount; 1327 /* 1328 * Only check for blocks beyond the EOF if the extents have 1329 * been read in. This eliminates the need for the inode lock, 1330 * and it also saves us from looking when it really isn't 1331 * necessary. 1332 */ 1333 if (ip->i_df.if_flags & XFS_IFEXTENTS) { 1334 error = xfs_bmap_last_offset(NULL, ip, &last_block, 1335 XFS_DATA_FORK); 1336 if (error) { 1337 last_block = 0; 1338 } 1339 } else { 1340 last_block = 0; 1341 } 1342 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size); 1343 last_block = XFS_FILEOFF_MAX(last_block, size_last_block); 1344 1345 last_byte = XFS_FSB_TO_B(mp, last_block); 1346 if (last_byte < 0) { 1347 return XFS_MAXIOFFSET(mp); 1348 } 1349 last_byte += (1 << mp->m_writeio_log); 1350 if (last_byte < 0) { 1351 return XFS_MAXIOFFSET(mp); 1352 } 1353 return last_byte; 1354 } 1355 1356 #if defined(XFS_RW_TRACE) 1357 STATIC void 1358 xfs_itrunc_trace( 1359 int tag, 1360 xfs_inode_t *ip, 1361 int flag, 1362 xfs_fsize_t new_size, 1363 xfs_off_t toss_start, 1364 xfs_off_t toss_finish) 1365 { 1366 if (ip->i_rwtrace == NULL) { 1367 return; 1368 } 1369 1370 ktrace_enter(ip->i_rwtrace, 1371 (void*)((long)tag), 1372 (void*)ip, 1373 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff), 1374 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff), 1375 (void*)((long)flag), 1376 (void*)(unsigned long)((new_size >> 32) & 0xffffffff), 1377 (void*)(unsigned long)(new_size & 0xffffffff), 1378 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff), 1379 (void*)(unsigned long)(toss_start & 0xffffffff), 1380 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff), 1381 (void*)(unsigned long)(toss_finish & 0xffffffff), 1382 (void*)(unsigned long)current_cpu(), 1383 (void*)(unsigned long)current_pid(), 1384 (void*)NULL, 1385 (void*)NULL, 1386 (void*)NULL); 1387 } 1388 #else 1389 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) 1390 #endif 1391 1392 /* 1393 * Start the truncation of the file to new_size. The new size 1394 * must be smaller than the current size. This routine will 1395 * clear the buffer and page caches of file data in the removed 1396 * range, and xfs_itruncate_finish() will remove the underlying 1397 * disk blocks. 1398 * 1399 * The inode must have its I/O lock locked EXCLUSIVELY, and it 1400 * must NOT have the inode lock held at all. This is because we're 1401 * calling into the buffer/page cache code and we can't hold the 1402 * inode lock when we do so. 1403 * 1404 * We need to wait for any direct I/Os in flight to complete before we 1405 * proceed with the truncate. This is needed to prevent the extents 1406 * being read or written by the direct I/Os from being removed while the 1407 * I/O is in flight as there is no other method of synchronising 1408 * direct I/O with the truncate operation. Also, because we hold 1409 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being 1410 * started until the truncate completes and drops the lock. Essentially, 1411 * the vn_iowait() call forms an I/O barrier that provides strict ordering 1412 * between direct I/Os and the truncate operation. 1413 * 1414 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE 1415 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used 1416 * in the case that the caller is locking things out of order and 1417 * may not be able to call xfs_itruncate_finish() with the inode lock 1418 * held without dropping the I/O lock. If the caller must drop the 1419 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() 1420 * must be called again with all the same restrictions as the initial 1421 * call. 1422 */ 1423 void 1424 xfs_itruncate_start( 1425 xfs_inode_t *ip, 1426 uint flags, 1427 xfs_fsize_t new_size) 1428 { 1429 xfs_fsize_t last_byte; 1430 xfs_off_t toss_start; 1431 xfs_mount_t *mp; 1432 bhv_vnode_t *vp; 1433 1434 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); 1435 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); 1436 ASSERT((flags == XFS_ITRUNC_DEFINITE) || 1437 (flags == XFS_ITRUNC_MAYBE)); 1438 1439 mp = ip->i_mount; 1440 vp = XFS_ITOV(ip); 1441 1442 vn_iowait(vp); /* wait for the completion of any pending DIOs */ 1443 1444 /* 1445 * Call toss_pages or flushinval_pages to get rid of pages 1446 * overlapping the region being removed. We have to use 1447 * the less efficient flushinval_pages in the case that the 1448 * caller may not be able to finish the truncate without 1449 * dropping the inode's I/O lock. Make sure 1450 * to catch any pages brought in by buffers overlapping 1451 * the EOF by searching out beyond the isize by our 1452 * block size. We round new_size up to a block boundary 1453 * so that we don't toss things on the same block as 1454 * new_size but before it. 1455 * 1456 * Before calling toss_page or flushinval_pages, make sure to 1457 * call remapf() over the same region if the file is mapped. 1458 * This frees up mapped file references to the pages in the 1459 * given range and for the flushinval_pages case it ensures 1460 * that we get the latest mapped changes flushed out. 1461 */ 1462 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1463 toss_start = XFS_FSB_TO_B(mp, toss_start); 1464 if (toss_start < 0) { 1465 /* 1466 * The place to start tossing is beyond our maximum 1467 * file size, so there is no way that the data extended 1468 * out there. 1469 */ 1470 return; 1471 } 1472 last_byte = xfs_file_last_byte(ip); 1473 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, 1474 last_byte); 1475 if (last_byte > toss_start) { 1476 if (flags & XFS_ITRUNC_DEFINITE) { 1477 bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED); 1478 } else { 1479 bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED); 1480 } 1481 } 1482 1483 #ifdef DEBUG 1484 if (new_size == 0) { 1485 ASSERT(VN_CACHED(vp) == 0); 1486 } 1487 #endif 1488 } 1489 1490 /* 1491 * Shrink the file to the given new_size. The new 1492 * size must be smaller than the current size. 1493 * This will free up the underlying blocks 1494 * in the removed range after a call to xfs_itruncate_start() 1495 * or xfs_atruncate_start(). 1496 * 1497 * The transaction passed to this routine must have made 1498 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES. 1499 * This routine may commit the given transaction and 1500 * start new ones, so make sure everything involved in 1501 * the transaction is tidy before calling here. 1502 * Some transaction will be returned to the caller to be 1503 * committed. The incoming transaction must already include 1504 * the inode, and both inode locks must be held exclusively. 1505 * The inode must also be "held" within the transaction. On 1506 * return the inode will be "held" within the returned transaction. 1507 * This routine does NOT require any disk space to be reserved 1508 * for it within the transaction. 1509 * 1510 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, 1511 * and it indicates the fork which is to be truncated. For the 1512 * attribute fork we only support truncation to size 0. 1513 * 1514 * We use the sync parameter to indicate whether or not the first 1515 * transaction we perform might have to be synchronous. For the attr fork, 1516 * it needs to be so if the unlink of the inode is not yet known to be 1517 * permanent in the log. This keeps us from freeing and reusing the 1518 * blocks of the attribute fork before the unlink of the inode becomes 1519 * permanent. 1520 * 1521 * For the data fork, we normally have to run synchronously if we're 1522 * being called out of the inactive path or we're being called 1523 * out of the create path where we're truncating an existing file. 1524 * Either way, the truncate needs to be sync so blocks don't reappear 1525 * in the file with altered data in case of a crash. wsync filesystems 1526 * can run the first case async because anything that shrinks the inode 1527 * has to run sync so by the time we're called here from inactive, the 1528 * inode size is permanently set to 0. 1529 * 1530 * Calls from the truncate path always need to be sync unless we're 1531 * in a wsync filesystem and the file has already been unlinked. 1532 * 1533 * The caller is responsible for correctly setting the sync parameter. 1534 * It gets too hard for us to guess here which path we're being called 1535 * out of just based on inode state. 1536 */ 1537 int 1538 xfs_itruncate_finish( 1539 xfs_trans_t **tp, 1540 xfs_inode_t *ip, 1541 xfs_fsize_t new_size, 1542 int fork, 1543 int sync) 1544 { 1545 xfs_fsblock_t first_block; 1546 xfs_fileoff_t first_unmap_block; 1547 xfs_fileoff_t last_block; 1548 xfs_filblks_t unmap_len=0; 1549 xfs_mount_t *mp; 1550 xfs_trans_t *ntp; 1551 int done; 1552 int committed; 1553 xfs_bmap_free_t free_list; 1554 int error; 1555 1556 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); 1557 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0); 1558 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); 1559 ASSERT(*tp != NULL); 1560 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 1561 ASSERT(ip->i_transp == *tp); 1562 ASSERT(ip->i_itemp != NULL); 1563 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); 1564 1565 1566 ntp = *tp; 1567 mp = (ntp)->t_mountp; 1568 ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); 1569 1570 /* 1571 * We only support truncating the entire attribute fork. 1572 */ 1573 if (fork == XFS_ATTR_FORK) { 1574 new_size = 0LL; 1575 } 1576 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1577 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); 1578 /* 1579 * The first thing we do is set the size to new_size permanently 1580 * on disk. This way we don't have to worry about anyone ever 1581 * being able to look at the data being freed even in the face 1582 * of a crash. What we're getting around here is the case where 1583 * we free a block, it is allocated to another file, it is written 1584 * to, and then we crash. If the new data gets written to the 1585 * file but the log buffers containing the free and reallocation 1586 * don't, then we'd end up with garbage in the blocks being freed. 1587 * As long as we make the new_size permanent before actually 1588 * freeing any blocks it doesn't matter if they get writtten to. 1589 * 1590 * The callers must signal into us whether or not the size 1591 * setting here must be synchronous. There are a few cases 1592 * where it doesn't have to be synchronous. Those cases 1593 * occur if the file is unlinked and we know the unlink is 1594 * permanent or if the blocks being truncated are guaranteed 1595 * to be beyond the inode eof (regardless of the link count) 1596 * and the eof value is permanent. Both of these cases occur 1597 * only on wsync-mounted filesystems. In those cases, we're 1598 * guaranteed that no user will ever see the data in the blocks 1599 * that are being truncated so the truncate can run async. 1600 * In the free beyond eof case, the file may wind up with 1601 * more blocks allocated to it than it needs if we crash 1602 * and that won't get fixed until the next time the file 1603 * is re-opened and closed but that's ok as that shouldn't 1604 * be too many blocks. 1605 * 1606 * However, we can't just make all wsync xactions run async 1607 * because there's one call out of the create path that needs 1608 * to run sync where it's truncating an existing file to size 1609 * 0 whose size is > 0. 1610 * 1611 * It's probably possible to come up with a test in this 1612 * routine that would correctly distinguish all the above 1613 * cases from the values of the function parameters and the 1614 * inode state but for sanity's sake, I've decided to let the 1615 * layers above just tell us. It's simpler to correctly figure 1616 * out in the layer above exactly under what conditions we 1617 * can run async and I think it's easier for others read and 1618 * follow the logic in case something has to be changed. 1619 * cscope is your friend -- rcc. 1620 * 1621 * The attribute fork is much simpler. 1622 * 1623 * For the attribute fork we allow the caller to tell us whether 1624 * the unlink of the inode that led to this call is yet permanent 1625 * in the on disk log. If it is not and we will be freeing extents 1626 * in this inode then we make the first transaction synchronous 1627 * to make sure that the unlink is permanent by the time we free 1628 * the blocks. 1629 */ 1630 if (fork == XFS_DATA_FORK) { 1631 if (ip->i_d.di_nextents > 0) { 1632 ip->i_d.di_size = new_size; 1633 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1634 } 1635 } else if (sync) { 1636 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); 1637 if (ip->i_d.di_anextents > 0) 1638 xfs_trans_set_sync(ntp); 1639 } 1640 ASSERT(fork == XFS_DATA_FORK || 1641 (fork == XFS_ATTR_FORK && 1642 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || 1643 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); 1644 1645 /* 1646 * Since it is possible for space to become allocated beyond 1647 * the end of the file (in a crash where the space is allocated 1648 * but the inode size is not yet updated), simply remove any 1649 * blocks which show up between the new EOF and the maximum 1650 * possible file size. If the first block to be removed is 1651 * beyond the maximum file size (ie it is the same as last_block), 1652 * then there is nothing to do. 1653 */ 1654 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); 1655 ASSERT(first_unmap_block <= last_block); 1656 done = 0; 1657 if (last_block == first_unmap_block) { 1658 done = 1; 1659 } else { 1660 unmap_len = last_block - first_unmap_block + 1; 1661 } 1662 while (!done) { 1663 /* 1664 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() 1665 * will tell us whether it freed the entire range or 1666 * not. If this is a synchronous mount (wsync), 1667 * then we can tell bunmapi to keep all the 1668 * transactions asynchronous since the unlink 1669 * transaction that made this inode inactive has 1670 * already hit the disk. There's no danger of 1671 * the freed blocks being reused, there being a 1672 * crash, and the reused blocks suddenly reappearing 1673 * in this file with garbage in them once recovery 1674 * runs. 1675 */ 1676 XFS_BMAP_INIT(&free_list, &first_block); 1677 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore, 1678 first_unmap_block, unmap_len, 1679 XFS_BMAPI_AFLAG(fork) | 1680 (sync ? 0 : XFS_BMAPI_ASYNC), 1681 XFS_ITRUNC_MAX_EXTENTS, 1682 &first_block, &free_list, 1683 NULL, &done); 1684 if (error) { 1685 /* 1686 * If the bunmapi call encounters an error, 1687 * return to the caller where the transaction 1688 * can be properly aborted. We just need to 1689 * make sure we're not holding any resources 1690 * that we were not when we came in. 1691 */ 1692 xfs_bmap_cancel(&free_list); 1693 return error; 1694 } 1695 1696 /* 1697 * Duplicate the transaction that has the permanent 1698 * reservation and commit the old transaction. 1699 */ 1700 error = xfs_bmap_finish(tp, &free_list, first_block, 1701 &committed); 1702 ntp = *tp; 1703 if (error) { 1704 /* 1705 * If the bmap finish call encounters an error, 1706 * return to the caller where the transaction 1707 * can be properly aborted. We just need to 1708 * make sure we're not holding any resources 1709 * that we were not when we came in. 1710 * 1711 * Aborting from this point might lose some 1712 * blocks in the file system, but oh well. 1713 */ 1714 xfs_bmap_cancel(&free_list); 1715 if (committed) { 1716 /* 1717 * If the passed in transaction committed 1718 * in xfs_bmap_finish(), then we want to 1719 * add the inode to this one before returning. 1720 * This keeps things simple for the higher 1721 * level code, because it always knows that 1722 * the inode is locked and held in the 1723 * transaction that returns to it whether 1724 * errors occur or not. We don't mark the 1725 * inode dirty so that this transaction can 1726 * be easily aborted if possible. 1727 */ 1728 xfs_trans_ijoin(ntp, ip, 1729 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1730 xfs_trans_ihold(ntp, ip); 1731 } 1732 return error; 1733 } 1734 1735 if (committed) { 1736 /* 1737 * The first xact was committed, 1738 * so add the inode to the new one. 1739 * Mark it dirty so it will be logged 1740 * and moved forward in the log as 1741 * part of every commit. 1742 */ 1743 xfs_trans_ijoin(ntp, ip, 1744 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1745 xfs_trans_ihold(ntp, ip); 1746 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1747 } 1748 ntp = xfs_trans_dup(ntp); 1749 (void) xfs_trans_commit(*tp, 0, NULL); 1750 *tp = ntp; 1751 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 1752 XFS_TRANS_PERM_LOG_RES, 1753 XFS_ITRUNCATE_LOG_COUNT); 1754 /* 1755 * Add the inode being truncated to the next chained 1756 * transaction. 1757 */ 1758 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1759 xfs_trans_ihold(ntp, ip); 1760 if (error) 1761 return (error); 1762 } 1763 /* 1764 * Only update the size in the case of the data fork, but 1765 * always re-log the inode so that our permanent transaction 1766 * can keep on rolling it forward in the log. 1767 */ 1768 if (fork == XFS_DATA_FORK) { 1769 xfs_isize_check(mp, ip, new_size); 1770 ip->i_d.di_size = new_size; 1771 } 1772 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1773 ASSERT((new_size != 0) || 1774 (fork == XFS_ATTR_FORK) || 1775 (ip->i_delayed_blks == 0)); 1776 ASSERT((new_size != 0) || 1777 (fork == XFS_ATTR_FORK) || 1778 (ip->i_d.di_nextents == 0)); 1779 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); 1780 return 0; 1781 } 1782 1783 1784 /* 1785 * xfs_igrow_start 1786 * 1787 * Do the first part of growing a file: zero any data in the last 1788 * block that is beyond the old EOF. We need to do this before 1789 * the inode is joined to the transaction to modify the i_size. 1790 * That way we can drop the inode lock and call into the buffer 1791 * cache to get the buffer mapping the EOF. 1792 */ 1793 int 1794 xfs_igrow_start( 1795 xfs_inode_t *ip, 1796 xfs_fsize_t new_size, 1797 cred_t *credp) 1798 { 1799 int error; 1800 1801 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); 1802 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); 1803 ASSERT(new_size > ip->i_d.di_size); 1804 1805 /* 1806 * Zero any pages that may have been created by 1807 * xfs_write_file() beyond the end of the file 1808 * and any blocks between the old and new file sizes. 1809 */ 1810 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, 1811 ip->i_d.di_size, new_size); 1812 return error; 1813 } 1814 1815 /* 1816 * xfs_igrow_finish 1817 * 1818 * This routine is called to extend the size of a file. 1819 * The inode must have both the iolock and the ilock locked 1820 * for update and it must be a part of the current transaction. 1821 * The xfs_igrow_start() function must have been called previously. 1822 * If the change_flag is not zero, the inode change timestamp will 1823 * be updated. 1824 */ 1825 void 1826 xfs_igrow_finish( 1827 xfs_trans_t *tp, 1828 xfs_inode_t *ip, 1829 xfs_fsize_t new_size, 1830 int change_flag) 1831 { 1832 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); 1833 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); 1834 ASSERT(ip->i_transp == tp); 1835 ASSERT(new_size > ip->i_d.di_size); 1836 1837 /* 1838 * Update the file size. Update the inode change timestamp 1839 * if change_flag set. 1840 */ 1841 ip->i_d.di_size = new_size; 1842 if (change_flag) 1843 xfs_ichgtime(ip, XFS_ICHGTIME_CHG); 1844 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1845 1846 } 1847 1848 1849 /* 1850 * This is called when the inode's link count goes to 0. 1851 * We place the on-disk inode on a list in the AGI. It 1852 * will be pulled from this list when the inode is freed. 1853 */ 1854 int 1855 xfs_iunlink( 1856 xfs_trans_t *tp, 1857 xfs_inode_t *ip) 1858 { 1859 xfs_mount_t *mp; 1860 xfs_agi_t *agi; 1861 xfs_dinode_t *dip; 1862 xfs_buf_t *agibp; 1863 xfs_buf_t *ibp; 1864 xfs_agnumber_t agno; 1865 xfs_daddr_t agdaddr; 1866 xfs_agino_t agino; 1867 short bucket_index; 1868 int offset; 1869 int error; 1870 int agi_ok; 1871 1872 ASSERT(ip->i_d.di_nlink == 0); 1873 ASSERT(ip->i_d.di_mode != 0); 1874 ASSERT(ip->i_transp == tp); 1875 1876 mp = tp->t_mountp; 1877 1878 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1879 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 1880 1881 /* 1882 * Get the agi buffer first. It ensures lock ordering 1883 * on the list. 1884 */ 1885 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, 1886 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 1887 if (error) { 1888 return error; 1889 } 1890 /* 1891 * Validate the magic number of the agi block. 1892 */ 1893 agi = XFS_BUF_TO_AGI(agibp); 1894 agi_ok = 1895 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && 1896 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); 1897 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK, 1898 XFS_RANDOM_IUNLINK))) { 1899 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi); 1900 xfs_trans_brelse(tp, agibp); 1901 return XFS_ERROR(EFSCORRUPTED); 1902 } 1903 /* 1904 * Get the index into the agi hash table for the 1905 * list this inode will go on. 1906 */ 1907 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1908 ASSERT(agino != 0); 1909 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1910 ASSERT(agi->agi_unlinked[bucket_index]); 1911 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1912 1913 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) { 1914 /* 1915 * There is already another inode in the bucket we need 1916 * to add ourselves to. Add us at the front of the list. 1917 * Here we put the head pointer into our next pointer, 1918 * and then we fall through to point the head at us. 1919 */ 1920 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0); 1921 if (error) { 1922 return error; 1923 } 1924 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO); 1925 ASSERT(dip->di_next_unlinked); 1926 /* both on-disk, don't endian flip twice */ 1927 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1928 offset = ip->i_boffset + 1929 offsetof(xfs_dinode_t, di_next_unlinked); 1930 xfs_trans_inode_buf(tp, ibp); 1931 xfs_trans_log_buf(tp, ibp, offset, 1932 (offset + sizeof(xfs_agino_t) - 1)); 1933 xfs_inobp_check(mp, ibp); 1934 } 1935 1936 /* 1937 * Point the bucket head pointer at the inode being inserted. 1938 */ 1939 ASSERT(agino != 0); 1940 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1941 offset = offsetof(xfs_agi_t, agi_unlinked) + 1942 (sizeof(xfs_agino_t) * bucket_index); 1943 xfs_trans_log_buf(tp, agibp, offset, 1944 (offset + sizeof(xfs_agino_t) - 1)); 1945 return 0; 1946 } 1947 1948 /* 1949 * Pull the on-disk inode from the AGI unlinked list. 1950 */ 1951 STATIC int 1952 xfs_iunlink_remove( 1953 xfs_trans_t *tp, 1954 xfs_inode_t *ip) 1955 { 1956 xfs_ino_t next_ino; 1957 xfs_mount_t *mp; 1958 xfs_agi_t *agi; 1959 xfs_dinode_t *dip; 1960 xfs_buf_t *agibp; 1961 xfs_buf_t *ibp; 1962 xfs_agnumber_t agno; 1963 xfs_daddr_t agdaddr; 1964 xfs_agino_t agino; 1965 xfs_agino_t next_agino; 1966 xfs_buf_t *last_ibp; 1967 xfs_dinode_t *last_dip = NULL; 1968 short bucket_index; 1969 int offset, last_offset = 0; 1970 int error; 1971 int agi_ok; 1972 1973 /* 1974 * First pull the on-disk inode from the AGI unlinked list. 1975 */ 1976 mp = tp->t_mountp; 1977 1978 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1979 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 1980 1981 /* 1982 * Get the agi buffer first. It ensures lock ordering 1983 * on the list. 1984 */ 1985 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, 1986 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 1987 if (error) { 1988 cmn_err(CE_WARN, 1989 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.", 1990 error, mp->m_fsname); 1991 return error; 1992 } 1993 /* 1994 * Validate the magic number of the agi block. 1995 */ 1996 agi = XFS_BUF_TO_AGI(agibp); 1997 agi_ok = 1998 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && 1999 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); 2000 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE, 2001 XFS_RANDOM_IUNLINK_REMOVE))) { 2002 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW, 2003 mp, agi); 2004 xfs_trans_brelse(tp, agibp); 2005 cmn_err(CE_WARN, 2006 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.", 2007 mp->m_fsname); 2008 return XFS_ERROR(EFSCORRUPTED); 2009 } 2010 /* 2011 * Get the index into the agi hash table for the 2012 * list this inode will go on. 2013 */ 2014 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2015 ASSERT(agino != 0); 2016 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2017 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO); 2018 ASSERT(agi->agi_unlinked[bucket_index]); 2019 2020 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2021 /* 2022 * We're at the head of the list. Get the inode's 2023 * on-disk buffer to see if there is anyone after us 2024 * on the list. Only modify our next pointer if it 2025 * is not already NULLAGINO. This saves us the overhead 2026 * of dealing with the buffer when there is no need to 2027 * change it. 2028 */ 2029 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0); 2030 if (error) { 2031 cmn_err(CE_WARN, 2032 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 2033 error, mp->m_fsname); 2034 return error; 2035 } 2036 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); 2037 ASSERT(next_agino != 0); 2038 if (next_agino != NULLAGINO) { 2039 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); 2040 offset = ip->i_boffset + 2041 offsetof(xfs_dinode_t, di_next_unlinked); 2042 xfs_trans_inode_buf(tp, ibp); 2043 xfs_trans_log_buf(tp, ibp, offset, 2044 (offset + sizeof(xfs_agino_t) - 1)); 2045 xfs_inobp_check(mp, ibp); 2046 } else { 2047 xfs_trans_brelse(tp, ibp); 2048 } 2049 /* 2050 * Point the bucket head pointer at the next inode. 2051 */ 2052 ASSERT(next_agino != 0); 2053 ASSERT(next_agino != agino); 2054 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2055 offset = offsetof(xfs_agi_t, agi_unlinked) + 2056 (sizeof(xfs_agino_t) * bucket_index); 2057 xfs_trans_log_buf(tp, agibp, offset, 2058 (offset + sizeof(xfs_agino_t) - 1)); 2059 } else { 2060 /* 2061 * We need to search the list for the inode being freed. 2062 */ 2063 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2064 last_ibp = NULL; 2065 while (next_agino != agino) { 2066 /* 2067 * If the last inode wasn't the one pointing to 2068 * us, then release its buffer since we're not 2069 * going to do anything with it. 2070 */ 2071 if (last_ibp != NULL) { 2072 xfs_trans_brelse(tp, last_ibp); 2073 } 2074 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2075 error = xfs_inotobp(mp, tp, next_ino, &last_dip, 2076 &last_ibp, &last_offset); 2077 if (error) { 2078 cmn_err(CE_WARN, 2079 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", 2080 error, mp->m_fsname); 2081 return error; 2082 } 2083 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT); 2084 ASSERT(next_agino != NULLAGINO); 2085 ASSERT(next_agino != 0); 2086 } 2087 /* 2088 * Now last_ibp points to the buffer previous to us on 2089 * the unlinked list. Pull us from the list. 2090 */ 2091 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0); 2092 if (error) { 2093 cmn_err(CE_WARN, 2094 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 2095 error, mp->m_fsname); 2096 return error; 2097 } 2098 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); 2099 ASSERT(next_agino != 0); 2100 ASSERT(next_agino != agino); 2101 if (next_agino != NULLAGINO) { 2102 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); 2103 offset = ip->i_boffset + 2104 offsetof(xfs_dinode_t, di_next_unlinked); 2105 xfs_trans_inode_buf(tp, ibp); 2106 xfs_trans_log_buf(tp, ibp, offset, 2107 (offset + sizeof(xfs_agino_t) - 1)); 2108 xfs_inobp_check(mp, ibp); 2109 } else { 2110 xfs_trans_brelse(tp, ibp); 2111 } 2112 /* 2113 * Point the previous inode on the list to the next inode. 2114 */ 2115 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino); 2116 ASSERT(next_agino != 0); 2117 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2118 xfs_trans_inode_buf(tp, last_ibp); 2119 xfs_trans_log_buf(tp, last_ibp, offset, 2120 (offset + sizeof(xfs_agino_t) - 1)); 2121 xfs_inobp_check(mp, last_ibp); 2122 } 2123 return 0; 2124 } 2125 2126 static __inline__ int xfs_inode_clean(xfs_inode_t *ip) 2127 { 2128 return (((ip->i_itemp == NULL) || 2129 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) && 2130 (ip->i_update_core == 0)); 2131 } 2132 2133 STATIC void 2134 xfs_ifree_cluster( 2135 xfs_inode_t *free_ip, 2136 xfs_trans_t *tp, 2137 xfs_ino_t inum) 2138 { 2139 xfs_mount_t *mp = free_ip->i_mount; 2140 int blks_per_cluster; 2141 int nbufs; 2142 int ninodes; 2143 int i, j, found, pre_flushed; 2144 xfs_daddr_t blkno; 2145 xfs_buf_t *bp; 2146 xfs_ihash_t *ih; 2147 xfs_inode_t *ip, **ip_found; 2148 xfs_inode_log_item_t *iip; 2149 xfs_log_item_t *lip; 2150 SPLDECL(s); 2151 2152 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { 2153 blks_per_cluster = 1; 2154 ninodes = mp->m_sb.sb_inopblock; 2155 nbufs = XFS_IALLOC_BLOCKS(mp); 2156 } else { 2157 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / 2158 mp->m_sb.sb_blocksize; 2159 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; 2160 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; 2161 } 2162 2163 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS); 2164 2165 for (j = 0; j < nbufs; j++, inum += ninodes) { 2166 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2167 XFS_INO_TO_AGBNO(mp, inum)); 2168 2169 2170 /* 2171 * Look for each inode in memory and attempt to lock it, 2172 * we can be racing with flush and tail pushing here. 2173 * any inode we get the locks on, add to an array of 2174 * inode items to process later. 2175 * 2176 * The get the buffer lock, we could beat a flush 2177 * or tail pushing thread to the lock here, in which 2178 * case they will go looking for the inode buffer 2179 * and fail, we need some other form of interlock 2180 * here. 2181 */ 2182 found = 0; 2183 for (i = 0; i < ninodes; i++) { 2184 ih = XFS_IHASH(mp, inum + i); 2185 read_lock(&ih->ih_lock); 2186 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { 2187 if (ip->i_ino == inum + i) 2188 break; 2189 } 2190 2191 /* Inode not in memory or we found it already, 2192 * nothing to do 2193 */ 2194 if (!ip || (ip->i_flags & XFS_ISTALE)) { 2195 read_unlock(&ih->ih_lock); 2196 continue; 2197 } 2198 2199 if (xfs_inode_clean(ip)) { 2200 read_unlock(&ih->ih_lock); 2201 continue; 2202 } 2203 2204 /* If we can get the locks then add it to the 2205 * list, otherwise by the time we get the bp lock 2206 * below it will already be attached to the 2207 * inode buffer. 2208 */ 2209 2210 /* This inode will already be locked - by us, lets 2211 * keep it that way. 2212 */ 2213 2214 if (ip == free_ip) { 2215 if (xfs_iflock_nowait(ip)) { 2216 ip->i_flags |= XFS_ISTALE; 2217 2218 if (xfs_inode_clean(ip)) { 2219 xfs_ifunlock(ip); 2220 } else { 2221 ip_found[found++] = ip; 2222 } 2223 } 2224 read_unlock(&ih->ih_lock); 2225 continue; 2226 } 2227 2228 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2229 if (xfs_iflock_nowait(ip)) { 2230 ip->i_flags |= XFS_ISTALE; 2231 2232 if (xfs_inode_clean(ip)) { 2233 xfs_ifunlock(ip); 2234 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2235 } else { 2236 ip_found[found++] = ip; 2237 } 2238 } else { 2239 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2240 } 2241 } 2242 2243 read_unlock(&ih->ih_lock); 2244 } 2245 2246 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2247 mp->m_bsize * blks_per_cluster, 2248 XFS_BUF_LOCK); 2249 2250 pre_flushed = 0; 2251 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 2252 while (lip) { 2253 if (lip->li_type == XFS_LI_INODE) { 2254 iip = (xfs_inode_log_item_t *)lip; 2255 ASSERT(iip->ili_logged == 1); 2256 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done; 2257 AIL_LOCK(mp,s); 2258 iip->ili_flush_lsn = iip->ili_item.li_lsn; 2259 AIL_UNLOCK(mp, s); 2260 iip->ili_inode->i_flags |= XFS_ISTALE; 2261 pre_flushed++; 2262 } 2263 lip = lip->li_bio_list; 2264 } 2265 2266 for (i = 0; i < found; i++) { 2267 ip = ip_found[i]; 2268 iip = ip->i_itemp; 2269 2270 if (!iip) { 2271 ip->i_update_core = 0; 2272 xfs_ifunlock(ip); 2273 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2274 continue; 2275 } 2276 2277 iip->ili_last_fields = iip->ili_format.ilf_fields; 2278 iip->ili_format.ilf_fields = 0; 2279 iip->ili_logged = 1; 2280 AIL_LOCK(mp,s); 2281 iip->ili_flush_lsn = iip->ili_item.li_lsn; 2282 AIL_UNLOCK(mp, s); 2283 2284 xfs_buf_attach_iodone(bp, 2285 (void(*)(xfs_buf_t*,xfs_log_item_t*)) 2286 xfs_istale_done, (xfs_log_item_t *)iip); 2287 if (ip != free_ip) { 2288 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2289 } 2290 } 2291 2292 if (found || pre_flushed) 2293 xfs_trans_stale_inode_buf(tp, bp); 2294 xfs_trans_binval(tp, bp); 2295 } 2296 2297 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *)); 2298 } 2299 2300 /* 2301 * This is called to return an inode to the inode free list. 2302 * The inode should already be truncated to 0 length and have 2303 * no pages associated with it. This routine also assumes that 2304 * the inode is already a part of the transaction. 2305 * 2306 * The on-disk copy of the inode will have been added to the list 2307 * of unlinked inodes in the AGI. We need to remove the inode from 2308 * that list atomically with respect to freeing it here. 2309 */ 2310 int 2311 xfs_ifree( 2312 xfs_trans_t *tp, 2313 xfs_inode_t *ip, 2314 xfs_bmap_free_t *flist) 2315 { 2316 int error; 2317 int delete; 2318 xfs_ino_t first_ino; 2319 2320 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); 2321 ASSERT(ip->i_transp == tp); 2322 ASSERT(ip->i_d.di_nlink == 0); 2323 ASSERT(ip->i_d.di_nextents == 0); 2324 ASSERT(ip->i_d.di_anextents == 0); 2325 ASSERT((ip->i_d.di_size == 0) || 2326 ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); 2327 ASSERT(ip->i_d.di_nblocks == 0); 2328 2329 /* 2330 * Pull the on-disk inode from the AGI unlinked list. 2331 */ 2332 error = xfs_iunlink_remove(tp, ip); 2333 if (error != 0) { 2334 return error; 2335 } 2336 2337 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2338 if (error != 0) { 2339 return error; 2340 } 2341 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2342 ip->i_d.di_flags = 0; 2343 ip->i_d.di_dmevmask = 0; 2344 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2345 ip->i_df.if_ext_max = 2346 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 2347 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2348 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2349 /* 2350 * Bump the generation count so no one will be confused 2351 * by reincarnations of this inode. 2352 */ 2353 ip->i_d.di_gen++; 2354 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2355 2356 if (delete) { 2357 xfs_ifree_cluster(ip, tp, first_ino); 2358 } 2359 2360 return 0; 2361 } 2362 2363 /* 2364 * Reallocate the space for if_broot based on the number of records 2365 * being added or deleted as indicated in rec_diff. Move the records 2366 * and pointers in if_broot to fit the new size. When shrinking this 2367 * will eliminate holes between the records and pointers created by 2368 * the caller. When growing this will create holes to be filled in 2369 * by the caller. 2370 * 2371 * The caller must not request to add more records than would fit in 2372 * the on-disk inode root. If the if_broot is currently NULL, then 2373 * if we adding records one will be allocated. The caller must also 2374 * not request that the number of records go below zero, although 2375 * it can go to zero. 2376 * 2377 * ip -- the inode whose if_broot area is changing 2378 * ext_diff -- the change in the number of records, positive or negative, 2379 * requested for the if_broot array. 2380 */ 2381 void 2382 xfs_iroot_realloc( 2383 xfs_inode_t *ip, 2384 int rec_diff, 2385 int whichfork) 2386 { 2387 int cur_max; 2388 xfs_ifork_t *ifp; 2389 xfs_bmbt_block_t *new_broot; 2390 int new_max; 2391 size_t new_size; 2392 char *np; 2393 char *op; 2394 2395 /* 2396 * Handle the degenerate case quietly. 2397 */ 2398 if (rec_diff == 0) { 2399 return; 2400 } 2401 2402 ifp = XFS_IFORK_PTR(ip, whichfork); 2403 if (rec_diff > 0) { 2404 /* 2405 * If there wasn't any memory allocated before, just 2406 * allocate it now and get out. 2407 */ 2408 if (ifp->if_broot_bytes == 0) { 2409 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); 2410 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size, 2411 KM_SLEEP); 2412 ifp->if_broot_bytes = (int)new_size; 2413 return; 2414 } 2415 2416 /* 2417 * If there is already an existing if_broot, then we need 2418 * to realloc() it and shift the pointers to their new 2419 * location. The records don't change location because 2420 * they are kept butted up against the btree block header. 2421 */ 2422 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); 2423 new_max = cur_max + rec_diff; 2424 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2425 ifp->if_broot = (xfs_bmbt_block_t *) 2426 kmem_realloc(ifp->if_broot, 2427 new_size, 2428 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ 2429 KM_SLEEP); 2430 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2431 ifp->if_broot_bytes); 2432 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2433 (int)new_size); 2434 ifp->if_broot_bytes = (int)new_size; 2435 ASSERT(ifp->if_broot_bytes <= 2436 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2437 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); 2438 return; 2439 } 2440 2441 /* 2442 * rec_diff is less than 0. In this case, we are shrinking the 2443 * if_broot buffer. It must already exist. If we go to zero 2444 * records, just get rid of the root and clear the status bit. 2445 */ 2446 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 2447 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); 2448 new_max = cur_max + rec_diff; 2449 ASSERT(new_max >= 0); 2450 if (new_max > 0) 2451 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2452 else 2453 new_size = 0; 2454 if (new_size > 0) { 2455 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP); 2456 /* 2457 * First copy over the btree block header. 2458 */ 2459 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t)); 2460 } else { 2461 new_broot = NULL; 2462 ifp->if_flags &= ~XFS_IFBROOT; 2463 } 2464 2465 /* 2466 * Only copy the records and pointers if there are any. 2467 */ 2468 if (new_max > 0) { 2469 /* 2470 * First copy the records. 2471 */ 2472 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1, 2473 ifp->if_broot_bytes); 2474 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1, 2475 (int)new_size); 2476 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 2477 2478 /* 2479 * Then copy the pointers. 2480 */ 2481 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2482 ifp->if_broot_bytes); 2483 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1, 2484 (int)new_size); 2485 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); 2486 } 2487 kmem_free(ifp->if_broot, ifp->if_broot_bytes); 2488 ifp->if_broot = new_broot; 2489 ifp->if_broot_bytes = (int)new_size; 2490 ASSERT(ifp->if_broot_bytes <= 2491 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2492 return; 2493 } 2494 2495 2496 /* 2497 * This is called when the amount of space needed for if_data 2498 * is increased or decreased. The change in size is indicated by 2499 * the number of bytes that need to be added or deleted in the 2500 * byte_diff parameter. 2501 * 2502 * If the amount of space needed has decreased below the size of the 2503 * inline buffer, then switch to using the inline buffer. Otherwise, 2504 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 2505 * to what is needed. 2506 * 2507 * ip -- the inode whose if_data area is changing 2508 * byte_diff -- the change in the number of bytes, positive or negative, 2509 * requested for the if_data array. 2510 */ 2511 void 2512 xfs_idata_realloc( 2513 xfs_inode_t *ip, 2514 int byte_diff, 2515 int whichfork) 2516 { 2517 xfs_ifork_t *ifp; 2518 int new_size; 2519 int real_size; 2520 2521 if (byte_diff == 0) { 2522 return; 2523 } 2524 2525 ifp = XFS_IFORK_PTR(ip, whichfork); 2526 new_size = (int)ifp->if_bytes + byte_diff; 2527 ASSERT(new_size >= 0); 2528 2529 if (new_size == 0) { 2530 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2531 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2532 } 2533 ifp->if_u1.if_data = NULL; 2534 real_size = 0; 2535 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { 2536 /* 2537 * If the valid extents/data can fit in if_inline_ext/data, 2538 * copy them from the malloc'd vector and free it. 2539 */ 2540 if (ifp->if_u1.if_data == NULL) { 2541 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2542 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2543 ASSERT(ifp->if_real_bytes != 0); 2544 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, 2545 new_size); 2546 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2547 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2548 } 2549 real_size = 0; 2550 } else { 2551 /* 2552 * Stuck with malloc/realloc. 2553 * For inline data, the underlying buffer must be 2554 * a multiple of 4 bytes in size so that it can be 2555 * logged and stay on word boundaries. We enforce 2556 * that here. 2557 */ 2558 real_size = roundup(new_size, 4); 2559 if (ifp->if_u1.if_data == NULL) { 2560 ASSERT(ifp->if_real_bytes == 0); 2561 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2562 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2563 /* 2564 * Only do the realloc if the underlying size 2565 * is really changing. 2566 */ 2567 if (ifp->if_real_bytes != real_size) { 2568 ifp->if_u1.if_data = 2569 kmem_realloc(ifp->if_u1.if_data, 2570 real_size, 2571 ifp->if_real_bytes, 2572 KM_SLEEP); 2573 } 2574 } else { 2575 ASSERT(ifp->if_real_bytes == 0); 2576 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2577 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, 2578 ifp->if_bytes); 2579 } 2580 } 2581 ifp->if_real_bytes = real_size; 2582 ifp->if_bytes = new_size; 2583 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2584 } 2585 2586 2587 2588 2589 /* 2590 * Map inode to disk block and offset. 2591 * 2592 * mp -- the mount point structure for the current file system 2593 * tp -- the current transaction 2594 * ino -- the inode number of the inode to be located 2595 * imap -- this structure is filled in with the information necessary 2596 * to retrieve the given inode from disk 2597 * flags -- flags to pass to xfs_dilocate indicating whether or not 2598 * lookups in the inode btree were OK or not 2599 */ 2600 int 2601 xfs_imap( 2602 xfs_mount_t *mp, 2603 xfs_trans_t *tp, 2604 xfs_ino_t ino, 2605 xfs_imap_t *imap, 2606 uint flags) 2607 { 2608 xfs_fsblock_t fsbno; 2609 int len; 2610 int off; 2611 int error; 2612 2613 fsbno = imap->im_blkno ? 2614 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK; 2615 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags); 2616 if (error != 0) { 2617 return error; 2618 } 2619 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno); 2620 imap->im_len = XFS_FSB_TO_BB(mp, len); 2621 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno); 2622 imap->im_ioffset = (ushort)off; 2623 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog); 2624 return 0; 2625 } 2626 2627 void 2628 xfs_idestroy_fork( 2629 xfs_inode_t *ip, 2630 int whichfork) 2631 { 2632 xfs_ifork_t *ifp; 2633 2634 ifp = XFS_IFORK_PTR(ip, whichfork); 2635 if (ifp->if_broot != NULL) { 2636 kmem_free(ifp->if_broot, ifp->if_broot_bytes); 2637 ifp->if_broot = NULL; 2638 } 2639 2640 /* 2641 * If the format is local, then we can't have an extents 2642 * array so just look for an inline data array. If we're 2643 * not local then we may or may not have an extents list, 2644 * so check and free it up if we do. 2645 */ 2646 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 2647 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && 2648 (ifp->if_u1.if_data != NULL)) { 2649 ASSERT(ifp->if_real_bytes != 0); 2650 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2651 ifp->if_u1.if_data = NULL; 2652 ifp->if_real_bytes = 0; 2653 } 2654 } else if ((ifp->if_flags & XFS_IFEXTENTS) && 2655 ((ifp->if_flags & XFS_IFEXTIREC) || 2656 ((ifp->if_u1.if_extents != NULL) && 2657 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { 2658 ASSERT(ifp->if_real_bytes != 0); 2659 xfs_iext_destroy(ifp); 2660 } 2661 ASSERT(ifp->if_u1.if_extents == NULL || 2662 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); 2663 ASSERT(ifp->if_real_bytes == 0); 2664 if (whichfork == XFS_ATTR_FORK) { 2665 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 2666 ip->i_afp = NULL; 2667 } 2668 } 2669 2670 /* 2671 * This is called free all the memory associated with an inode. 2672 * It must free the inode itself and any buffers allocated for 2673 * if_extents/if_data and if_broot. It must also free the lock 2674 * associated with the inode. 2675 */ 2676 void 2677 xfs_idestroy( 2678 xfs_inode_t *ip) 2679 { 2680 2681 switch (ip->i_d.di_mode & S_IFMT) { 2682 case S_IFREG: 2683 case S_IFDIR: 2684 case S_IFLNK: 2685 xfs_idestroy_fork(ip, XFS_DATA_FORK); 2686 break; 2687 } 2688 if (ip->i_afp) 2689 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 2690 mrfree(&ip->i_lock); 2691 mrfree(&ip->i_iolock); 2692 freesema(&ip->i_flock); 2693 #ifdef XFS_BMAP_TRACE 2694 ktrace_free(ip->i_xtrace); 2695 #endif 2696 #ifdef XFS_BMBT_TRACE 2697 ktrace_free(ip->i_btrace); 2698 #endif 2699 #ifdef XFS_RW_TRACE 2700 ktrace_free(ip->i_rwtrace); 2701 #endif 2702 #ifdef XFS_ILOCK_TRACE 2703 ktrace_free(ip->i_lock_trace); 2704 #endif 2705 #ifdef XFS_DIR2_TRACE 2706 ktrace_free(ip->i_dir_trace); 2707 #endif 2708 if (ip->i_itemp) { 2709 /* XXXdpd should be able to assert this but shutdown 2710 * is leaving the AIL behind. */ 2711 ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) || 2712 XFS_FORCED_SHUTDOWN(ip->i_mount)); 2713 xfs_inode_item_destroy(ip); 2714 } 2715 kmem_zone_free(xfs_inode_zone, ip); 2716 } 2717 2718 2719 /* 2720 * Increment the pin count of the given buffer. 2721 * This value is protected by ipinlock spinlock in the mount structure. 2722 */ 2723 void 2724 xfs_ipin( 2725 xfs_inode_t *ip) 2726 { 2727 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); 2728 2729 atomic_inc(&ip->i_pincount); 2730 } 2731 2732 /* 2733 * Decrement the pin count of the given inode, and wake up 2734 * anyone in xfs_iwait_unpin() if the count goes to 0. The 2735 * inode must have been previously pinned with a call to xfs_ipin(). 2736 */ 2737 void 2738 xfs_iunpin( 2739 xfs_inode_t *ip) 2740 { 2741 ASSERT(atomic_read(&ip->i_pincount) > 0); 2742 2743 if (atomic_dec_and_test(&ip->i_pincount)) { 2744 /* 2745 * If the inode is currently being reclaimed, the 2746 * linux inode _and_ the xfs vnode may have been 2747 * freed so we cannot reference either of them safely. 2748 * Hence we should not try to do anything to them 2749 * if the xfs inode is currently in the reclaim 2750 * path. 2751 * 2752 * However, we still need to issue the unpin wakeup 2753 * call as the inode reclaim may be blocked waiting for 2754 * the inode to become unpinned. 2755 */ 2756 if (!(ip->i_flags & (XFS_IRECLAIM|XFS_IRECLAIMABLE))) { 2757 bhv_vnode_t *vp = XFS_ITOV_NULL(ip); 2758 2759 /* make sync come back and flush this inode */ 2760 if (vp) { 2761 struct inode *inode = vn_to_inode(vp); 2762 2763 if (!(inode->i_state & 2764 (I_NEW|I_FREEING|I_CLEAR))) 2765 mark_inode_dirty_sync(inode); 2766 } 2767 } 2768 wake_up(&ip->i_ipin_wait); 2769 } 2770 } 2771 2772 /* 2773 * This is called to wait for the given inode to be unpinned. 2774 * It will sleep until this happens. The caller must have the 2775 * inode locked in at least shared mode so that the buffer cannot 2776 * be subsequently pinned once someone is waiting for it to be 2777 * unpinned. 2778 */ 2779 STATIC void 2780 xfs_iunpin_wait( 2781 xfs_inode_t *ip) 2782 { 2783 xfs_inode_log_item_t *iip; 2784 xfs_lsn_t lsn; 2785 2786 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS)); 2787 2788 if (atomic_read(&ip->i_pincount) == 0) { 2789 return; 2790 } 2791 2792 iip = ip->i_itemp; 2793 if (iip && iip->ili_last_lsn) { 2794 lsn = iip->ili_last_lsn; 2795 } else { 2796 lsn = (xfs_lsn_t)0; 2797 } 2798 2799 /* 2800 * Give the log a push so we don't wait here too long. 2801 */ 2802 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE); 2803 2804 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0)); 2805 } 2806 2807 2808 /* 2809 * xfs_iextents_copy() 2810 * 2811 * This is called to copy the REAL extents (as opposed to the delayed 2812 * allocation extents) from the inode into the given buffer. It 2813 * returns the number of bytes copied into the buffer. 2814 * 2815 * If there are no delayed allocation extents, then we can just 2816 * memcpy() the extents into the buffer. Otherwise, we need to 2817 * examine each extent in turn and skip those which are delayed. 2818 */ 2819 int 2820 xfs_iextents_copy( 2821 xfs_inode_t *ip, 2822 xfs_bmbt_rec_t *buffer, 2823 int whichfork) 2824 { 2825 int copied; 2826 xfs_bmbt_rec_t *dest_ep; 2827 xfs_bmbt_rec_t *ep; 2828 #ifdef XFS_BMAP_TRACE 2829 static char fname[] = "xfs_iextents_copy"; 2830 #endif 2831 int i; 2832 xfs_ifork_t *ifp; 2833 int nrecs; 2834 xfs_fsblock_t start_block; 2835 2836 ifp = XFS_IFORK_PTR(ip, whichfork); 2837 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 2838 ASSERT(ifp->if_bytes > 0); 2839 2840 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2841 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork); 2842 ASSERT(nrecs > 0); 2843 2844 /* 2845 * There are some delayed allocation extents in the 2846 * inode, so copy the extents one at a time and skip 2847 * the delayed ones. There must be at least one 2848 * non-delayed extent. 2849 */ 2850 dest_ep = buffer; 2851 copied = 0; 2852 for (i = 0; i < nrecs; i++) { 2853 ep = xfs_iext_get_ext(ifp, i); 2854 start_block = xfs_bmbt_get_startblock(ep); 2855 if (ISNULLSTARTBLOCK(start_block)) { 2856 /* 2857 * It's a delayed allocation extent, so skip it. 2858 */ 2859 continue; 2860 } 2861 2862 /* Translate to on disk format */ 2863 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT), 2864 (__uint64_t*)&dest_ep->l0); 2865 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT), 2866 (__uint64_t*)&dest_ep->l1); 2867 dest_ep++; 2868 copied++; 2869 } 2870 ASSERT(copied != 0); 2871 xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip)); 2872 2873 return (copied * (uint)sizeof(xfs_bmbt_rec_t)); 2874 } 2875 2876 /* 2877 * Each of the following cases stores data into the same region 2878 * of the on-disk inode, so only one of them can be valid at 2879 * any given time. While it is possible to have conflicting formats 2880 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 2881 * in EXTENTS format, this can only happen when the fork has 2882 * changed formats after being modified but before being flushed. 2883 * In these cases, the format always takes precedence, because the 2884 * format indicates the current state of the fork. 2885 */ 2886 /*ARGSUSED*/ 2887 STATIC int 2888 xfs_iflush_fork( 2889 xfs_inode_t *ip, 2890 xfs_dinode_t *dip, 2891 xfs_inode_log_item_t *iip, 2892 int whichfork, 2893 xfs_buf_t *bp) 2894 { 2895 char *cp; 2896 xfs_ifork_t *ifp; 2897 xfs_mount_t *mp; 2898 #ifdef XFS_TRANS_DEBUG 2899 int first; 2900 #endif 2901 static const short brootflag[2] = 2902 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 2903 static const short dataflag[2] = 2904 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 2905 static const short extflag[2] = 2906 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 2907 2908 if (iip == NULL) 2909 return 0; 2910 ifp = XFS_IFORK_PTR(ip, whichfork); 2911 /* 2912 * This can happen if we gave up in iformat in an error path, 2913 * for the attribute fork. 2914 */ 2915 if (ifp == NULL) { 2916 ASSERT(whichfork == XFS_ATTR_FORK); 2917 return 0; 2918 } 2919 cp = XFS_DFORK_PTR(dip, whichfork); 2920 mp = ip->i_mount; 2921 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 2922 case XFS_DINODE_FMT_LOCAL: 2923 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && 2924 (ifp->if_bytes > 0)) { 2925 ASSERT(ifp->if_u1.if_data != NULL); 2926 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2927 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 2928 } 2929 break; 2930 2931 case XFS_DINODE_FMT_EXTENTS: 2932 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 2933 !(iip->ili_format.ilf_fields & extflag[whichfork])); 2934 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) || 2935 (ifp->if_bytes == 0)); 2936 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) || 2937 (ifp->if_bytes > 0)); 2938 if ((iip->ili_format.ilf_fields & extflag[whichfork]) && 2939 (ifp->if_bytes > 0)) { 2940 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 2941 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 2942 whichfork); 2943 } 2944 break; 2945 2946 case XFS_DINODE_FMT_BTREE: 2947 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && 2948 (ifp->if_broot_bytes > 0)) { 2949 ASSERT(ifp->if_broot != NULL); 2950 ASSERT(ifp->if_broot_bytes <= 2951 (XFS_IFORK_SIZE(ip, whichfork) + 2952 XFS_BROOT_SIZE_ADJ)); 2953 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes, 2954 (xfs_bmdr_block_t *)cp, 2955 XFS_DFORK_SIZE(dip, mp, whichfork)); 2956 } 2957 break; 2958 2959 case XFS_DINODE_FMT_DEV: 2960 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 2961 ASSERT(whichfork == XFS_DATA_FORK); 2962 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev); 2963 } 2964 break; 2965 2966 case XFS_DINODE_FMT_UUID: 2967 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 2968 ASSERT(whichfork == XFS_DATA_FORK); 2969 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid, 2970 sizeof(uuid_t)); 2971 } 2972 break; 2973 2974 default: 2975 ASSERT(0); 2976 break; 2977 } 2978 2979 return 0; 2980 } 2981 2982 /* 2983 * xfs_iflush() will write a modified inode's changes out to the 2984 * inode's on disk home. The caller must have the inode lock held 2985 * in at least shared mode and the inode flush semaphore must be 2986 * held as well. The inode lock will still be held upon return from 2987 * the call and the caller is free to unlock it. 2988 * The inode flush lock will be unlocked when the inode reaches the disk. 2989 * The flags indicate how the inode's buffer should be written out. 2990 */ 2991 int 2992 xfs_iflush( 2993 xfs_inode_t *ip, 2994 uint flags) 2995 { 2996 xfs_inode_log_item_t *iip; 2997 xfs_buf_t *bp; 2998 xfs_dinode_t *dip; 2999 xfs_mount_t *mp; 3000 int error; 3001 /* REFERENCED */ 3002 xfs_chash_t *ch; 3003 xfs_inode_t *iq; 3004 int clcount; /* count of inodes clustered */ 3005 int bufwasdelwri; 3006 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; 3007 SPLDECL(s); 3008 3009 XFS_STATS_INC(xs_iflush_count); 3010 3011 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 3012 ASSERT(issemalocked(&(ip->i_flock))); 3013 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3014 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3015 3016 iip = ip->i_itemp; 3017 mp = ip->i_mount; 3018 3019 /* 3020 * If the inode isn't dirty, then just release the inode 3021 * flush lock and do nothing. 3022 */ 3023 if ((ip->i_update_core == 0) && 3024 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3025 ASSERT((iip != NULL) ? 3026 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1); 3027 xfs_ifunlock(ip); 3028 return 0; 3029 } 3030 3031 /* 3032 * We can't flush the inode until it is unpinned, so 3033 * wait for it. We know noone new can pin it, because 3034 * we are holding the inode lock shared and you need 3035 * to hold it exclusively to pin the inode. 3036 */ 3037 xfs_iunpin_wait(ip); 3038 3039 /* 3040 * This may have been unpinned because the filesystem is shutting 3041 * down forcibly. If that's the case we must not write this inode 3042 * to disk, because the log record didn't make it to disk! 3043 */ 3044 if (XFS_FORCED_SHUTDOWN(mp)) { 3045 ip->i_update_core = 0; 3046 if (iip) 3047 iip->ili_format.ilf_fields = 0; 3048 xfs_ifunlock(ip); 3049 return XFS_ERROR(EIO); 3050 } 3051 3052 /* 3053 * Get the buffer containing the on-disk inode. 3054 */ 3055 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0); 3056 if (error) { 3057 xfs_ifunlock(ip); 3058 return error; 3059 } 3060 3061 /* 3062 * Decide how buffer will be flushed out. This is done before 3063 * the call to xfs_iflush_int because this field is zeroed by it. 3064 */ 3065 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3066 /* 3067 * Flush out the inode buffer according to the directions 3068 * of the caller. In the cases where the caller has given 3069 * us a choice choose the non-delwri case. This is because 3070 * the inode is in the AIL and we need to get it out soon. 3071 */ 3072 switch (flags) { 3073 case XFS_IFLUSH_SYNC: 3074 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 3075 flags = 0; 3076 break; 3077 case XFS_IFLUSH_ASYNC: 3078 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 3079 flags = INT_ASYNC; 3080 break; 3081 case XFS_IFLUSH_DELWRI: 3082 flags = INT_DELWRI; 3083 break; 3084 default: 3085 ASSERT(0); 3086 flags = 0; 3087 break; 3088 } 3089 } else { 3090 switch (flags) { 3091 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 3092 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 3093 case XFS_IFLUSH_DELWRI: 3094 flags = INT_DELWRI; 3095 break; 3096 case XFS_IFLUSH_ASYNC: 3097 flags = INT_ASYNC; 3098 break; 3099 case XFS_IFLUSH_SYNC: 3100 flags = 0; 3101 break; 3102 default: 3103 ASSERT(0); 3104 flags = 0; 3105 break; 3106 } 3107 } 3108 3109 /* 3110 * First flush out the inode that xfs_iflush was called with. 3111 */ 3112 error = xfs_iflush_int(ip, bp); 3113 if (error) { 3114 goto corrupt_out; 3115 } 3116 3117 /* 3118 * inode clustering: 3119 * see if other inodes can be gathered into this write 3120 */ 3121 3122 ip->i_chash->chl_buf = bp; 3123 3124 ch = XFS_CHASH(mp, ip->i_blkno); 3125 s = mutex_spinlock(&ch->ch_lock); 3126 3127 clcount = 0; 3128 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) { 3129 /* 3130 * Do an un-protected check to see if the inode is dirty and 3131 * is a candidate for flushing. These checks will be repeated 3132 * later after the appropriate locks are acquired. 3133 */ 3134 iip = iq->i_itemp; 3135 if ((iq->i_update_core == 0) && 3136 ((iip == NULL) || 3137 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) && 3138 xfs_ipincount(iq) == 0) { 3139 continue; 3140 } 3141 3142 /* 3143 * Try to get locks. If any are unavailable, 3144 * then this inode cannot be flushed and is skipped. 3145 */ 3146 3147 /* get inode locks (just i_lock) */ 3148 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) { 3149 /* get inode flush lock */ 3150 if (xfs_iflock_nowait(iq)) { 3151 /* check if pinned */ 3152 if (xfs_ipincount(iq) == 0) { 3153 /* arriving here means that 3154 * this inode can be flushed. 3155 * first re-check that it's 3156 * dirty 3157 */ 3158 iip = iq->i_itemp; 3159 if ((iq->i_update_core != 0)|| 3160 ((iip != NULL) && 3161 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3162 clcount++; 3163 error = xfs_iflush_int(iq, bp); 3164 if (error) { 3165 xfs_iunlock(iq, 3166 XFS_ILOCK_SHARED); 3167 goto cluster_corrupt_out; 3168 } 3169 } else { 3170 xfs_ifunlock(iq); 3171 } 3172 } else { 3173 xfs_ifunlock(iq); 3174 } 3175 } 3176 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3177 } 3178 } 3179 mutex_spinunlock(&ch->ch_lock, s); 3180 3181 if (clcount) { 3182 XFS_STATS_INC(xs_icluster_flushcnt); 3183 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 3184 } 3185 3186 /* 3187 * If the buffer is pinned then push on the log so we won't 3188 * get stuck waiting in the write for too long. 3189 */ 3190 if (XFS_BUF_ISPINNED(bp)){ 3191 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); 3192 } 3193 3194 if (flags & INT_DELWRI) { 3195 xfs_bdwrite(mp, bp); 3196 } else if (flags & INT_ASYNC) { 3197 xfs_bawrite(mp, bp); 3198 } else { 3199 error = xfs_bwrite(mp, bp); 3200 } 3201 return error; 3202 3203 corrupt_out: 3204 xfs_buf_relse(bp); 3205 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3206 xfs_iflush_abort(ip); 3207 /* 3208 * Unlocks the flush lock 3209 */ 3210 return XFS_ERROR(EFSCORRUPTED); 3211 3212 cluster_corrupt_out: 3213 /* Corruption detected in the clustering loop. Invalidate the 3214 * inode buffer and shut down the filesystem. 3215 */ 3216 mutex_spinunlock(&ch->ch_lock, s); 3217 3218 /* 3219 * Clean up the buffer. If it was B_DELWRI, just release it -- 3220 * brelse can handle it with no problems. If not, shut down the 3221 * filesystem before releasing the buffer. 3222 */ 3223 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) { 3224 xfs_buf_relse(bp); 3225 } 3226 3227 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3228 3229 if(!bufwasdelwri) { 3230 /* 3231 * Just like incore_relse: if we have b_iodone functions, 3232 * mark the buffer as an error and call them. Otherwise 3233 * mark it as stale and brelse. 3234 */ 3235 if (XFS_BUF_IODONE_FUNC(bp)) { 3236 XFS_BUF_CLR_BDSTRAT_FUNC(bp); 3237 XFS_BUF_UNDONE(bp); 3238 XFS_BUF_STALE(bp); 3239 XFS_BUF_SHUT(bp); 3240 XFS_BUF_ERROR(bp,EIO); 3241 xfs_biodone(bp); 3242 } else { 3243 XFS_BUF_STALE(bp); 3244 xfs_buf_relse(bp); 3245 } 3246 } 3247 3248 xfs_iflush_abort(iq); 3249 /* 3250 * Unlocks the flush lock 3251 */ 3252 return XFS_ERROR(EFSCORRUPTED); 3253 } 3254 3255 3256 STATIC int 3257 xfs_iflush_int( 3258 xfs_inode_t *ip, 3259 xfs_buf_t *bp) 3260 { 3261 xfs_inode_log_item_t *iip; 3262 xfs_dinode_t *dip; 3263 xfs_mount_t *mp; 3264 #ifdef XFS_TRANS_DEBUG 3265 int first; 3266 #endif 3267 SPLDECL(s); 3268 3269 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 3270 ASSERT(issemalocked(&(ip->i_flock))); 3271 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3272 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3273 3274 iip = ip->i_itemp; 3275 mp = ip->i_mount; 3276 3277 3278 /* 3279 * If the inode isn't dirty, then just release the inode 3280 * flush lock and do nothing. 3281 */ 3282 if ((ip->i_update_core == 0) && 3283 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3284 xfs_ifunlock(ip); 3285 return 0; 3286 } 3287 3288 /* set *dip = inode's place in the buffer */ 3289 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset); 3290 3291 /* 3292 * Clear i_update_core before copying out the data. 3293 * This is for coordination with our timestamp updates 3294 * that don't hold the inode lock. They will always 3295 * update the timestamps BEFORE setting i_update_core, 3296 * so if we clear i_update_core after they set it we 3297 * are guaranteed to see their updates to the timestamps. 3298 * I believe that this depends on strongly ordered memory 3299 * semantics, but we have that. We use the SYNCHRONIZE 3300 * macro to make sure that the compiler does not reorder 3301 * the i_update_core access below the data copy below. 3302 */ 3303 ip->i_update_core = 0; 3304 SYNCHRONIZE(); 3305 3306 /* 3307 * Make sure to get the latest atime from the Linux inode. 3308 */ 3309 xfs_synchronize_atime(ip); 3310 3311 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC, 3312 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3313 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3314 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3315 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip); 3316 goto corrupt_out; 3317 } 3318 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3319 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3320 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3321 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3322 ip->i_ino, ip, ip->i_d.di_magic); 3323 goto corrupt_out; 3324 } 3325 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { 3326 if (XFS_TEST_ERROR( 3327 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3328 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3329 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3330 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3331 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", 3332 ip->i_ino, ip); 3333 goto corrupt_out; 3334 } 3335 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { 3336 if (XFS_TEST_ERROR( 3337 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3338 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3339 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3340 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3341 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3342 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", 3343 ip->i_ino, ip); 3344 goto corrupt_out; 3345 } 3346 } 3347 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3348 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3349 XFS_RANDOM_IFLUSH_5)) { 3350 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3351 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", 3352 ip->i_ino, 3353 ip->i_d.di_nextents + ip->i_d.di_anextents, 3354 ip->i_d.di_nblocks, 3355 ip); 3356 goto corrupt_out; 3357 } 3358 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3359 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3360 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3361 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3362 ip->i_ino, ip->i_d.di_forkoff, ip); 3363 goto corrupt_out; 3364 } 3365 /* 3366 * bump the flush iteration count, used to detect flushes which 3367 * postdate a log record during recovery. 3368 */ 3369 3370 ip->i_d.di_flushiter++; 3371 3372 /* 3373 * Copy the dirty parts of the inode into the on-disk 3374 * inode. We always copy out the core of the inode, 3375 * because if the inode is dirty at all the core must 3376 * be. 3377 */ 3378 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1); 3379 3380 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3381 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3382 ip->i_d.di_flushiter = 0; 3383 3384 /* 3385 * If this is really an old format inode and the superblock version 3386 * has not been updated to support only new format inodes, then 3387 * convert back to the old inode format. If the superblock version 3388 * has been updated, then make the conversion permanent. 3389 */ 3390 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || 3391 XFS_SB_VERSION_HASNLINK(&mp->m_sb)); 3392 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { 3393 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { 3394 /* 3395 * Convert it back. 3396 */ 3397 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 3398 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink); 3399 } else { 3400 /* 3401 * The superblock version has already been bumped, 3402 * so just make the conversion to the new inode 3403 * format permanent. 3404 */ 3405 ip->i_d.di_version = XFS_DINODE_VERSION_2; 3406 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2); 3407 ip->i_d.di_onlink = 0; 3408 dip->di_core.di_onlink = 0; 3409 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 3410 memset(&(dip->di_core.di_pad[0]), 0, 3411 sizeof(dip->di_core.di_pad)); 3412 ASSERT(ip->i_d.di_projid == 0); 3413 } 3414 } 3415 3416 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) { 3417 goto corrupt_out; 3418 } 3419 3420 if (XFS_IFORK_Q(ip)) { 3421 /* 3422 * The only error from xfs_iflush_fork is on the data fork. 3423 */ 3424 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 3425 } 3426 xfs_inobp_check(mp, bp); 3427 3428 /* 3429 * We've recorded everything logged in the inode, so we'd 3430 * like to clear the ilf_fields bits so we don't log and 3431 * flush things unnecessarily. However, we can't stop 3432 * logging all this information until the data we've copied 3433 * into the disk buffer is written to disk. If we did we might 3434 * overwrite the copy of the inode in the log with all the 3435 * data after re-logging only part of it, and in the face of 3436 * a crash we wouldn't have all the data we need to recover. 3437 * 3438 * What we do is move the bits to the ili_last_fields field. 3439 * When logging the inode, these bits are moved back to the 3440 * ilf_fields field. In the xfs_iflush_done() routine we 3441 * clear ili_last_fields, since we know that the information 3442 * those bits represent is permanently on disk. As long as 3443 * the flush completes before the inode is logged again, then 3444 * both ilf_fields and ili_last_fields will be cleared. 3445 * 3446 * We can play with the ilf_fields bits here, because the inode 3447 * lock must be held exclusively in order to set bits there 3448 * and the flush lock protects the ili_last_fields bits. 3449 * Set ili_logged so the flush done 3450 * routine can tell whether or not to look in the AIL. 3451 * Also, store the current LSN of the inode so that we can tell 3452 * whether the item has moved in the AIL from xfs_iflush_done(). 3453 * In order to read the lsn we need the AIL lock, because 3454 * it is a 64 bit value that cannot be read atomically. 3455 */ 3456 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3457 iip->ili_last_fields = iip->ili_format.ilf_fields; 3458 iip->ili_format.ilf_fields = 0; 3459 iip->ili_logged = 1; 3460 3461 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */ 3462 AIL_LOCK(mp,s); 3463 iip->ili_flush_lsn = iip->ili_item.li_lsn; 3464 AIL_UNLOCK(mp, s); 3465 3466 /* 3467 * Attach the function xfs_iflush_done to the inode's 3468 * buffer. This will remove the inode from the AIL 3469 * and unlock the inode's flush lock when the inode is 3470 * completely written to disk. 3471 */ 3472 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) 3473 xfs_iflush_done, (xfs_log_item_t *)iip); 3474 3475 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 3476 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); 3477 } else { 3478 /* 3479 * We're flushing an inode which is not in the AIL and has 3480 * not been logged but has i_update_core set. For this 3481 * case we can use a B_DELWRI flush and immediately drop 3482 * the inode flush lock because we can avoid the whole 3483 * AIL state thing. It's OK to drop the flush lock now, 3484 * because we've already locked the buffer and to do anything 3485 * you really need both. 3486 */ 3487 if (iip != NULL) { 3488 ASSERT(iip->ili_logged == 0); 3489 ASSERT(iip->ili_last_fields == 0); 3490 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); 3491 } 3492 xfs_ifunlock(ip); 3493 } 3494 3495 return 0; 3496 3497 corrupt_out: 3498 return XFS_ERROR(EFSCORRUPTED); 3499 } 3500 3501 3502 /* 3503 * Flush all inactive inodes in mp. 3504 */ 3505 void 3506 xfs_iflush_all( 3507 xfs_mount_t *mp) 3508 { 3509 xfs_inode_t *ip; 3510 bhv_vnode_t *vp; 3511 3512 again: 3513 XFS_MOUNT_ILOCK(mp); 3514 ip = mp->m_inodes; 3515 if (ip == NULL) 3516 goto out; 3517 3518 do { 3519 /* Make sure we skip markers inserted by sync */ 3520 if (ip->i_mount == NULL) { 3521 ip = ip->i_mnext; 3522 continue; 3523 } 3524 3525 vp = XFS_ITOV_NULL(ip); 3526 if (!vp) { 3527 XFS_MOUNT_IUNLOCK(mp); 3528 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC); 3529 goto again; 3530 } 3531 3532 ASSERT(vn_count(vp) == 0); 3533 3534 ip = ip->i_mnext; 3535 } while (ip != mp->m_inodes); 3536 out: 3537 XFS_MOUNT_IUNLOCK(mp); 3538 } 3539 3540 /* 3541 * xfs_iaccess: check accessibility of inode for mode. 3542 */ 3543 int 3544 xfs_iaccess( 3545 xfs_inode_t *ip, 3546 mode_t mode, 3547 cred_t *cr) 3548 { 3549 int error; 3550 mode_t orgmode = mode; 3551 struct inode *inode = vn_to_inode(XFS_ITOV(ip)); 3552 3553 if (mode & S_IWUSR) { 3554 umode_t imode = inode->i_mode; 3555 3556 if (IS_RDONLY(inode) && 3557 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode))) 3558 return XFS_ERROR(EROFS); 3559 3560 if (IS_IMMUTABLE(inode)) 3561 return XFS_ERROR(EACCES); 3562 } 3563 3564 /* 3565 * If there's an Access Control List it's used instead of 3566 * the mode bits. 3567 */ 3568 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1) 3569 return error ? XFS_ERROR(error) : 0; 3570 3571 if (current_fsuid(cr) != ip->i_d.di_uid) { 3572 mode >>= 3; 3573 if (!in_group_p((gid_t)ip->i_d.di_gid)) 3574 mode >>= 3; 3575 } 3576 3577 /* 3578 * If the DACs are ok we don't need any capability check. 3579 */ 3580 if ((ip->i_d.di_mode & mode) == mode) 3581 return 0; 3582 /* 3583 * Read/write DACs are always overridable. 3584 * Executable DACs are overridable if at least one exec bit is set. 3585 */ 3586 if (!(orgmode & S_IXUSR) || 3587 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) 3588 if (capable_cred(cr, CAP_DAC_OVERRIDE)) 3589 return 0; 3590 3591 if ((orgmode == S_IRUSR) || 3592 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) { 3593 if (capable_cred(cr, CAP_DAC_READ_SEARCH)) 3594 return 0; 3595 #ifdef NOISE 3596 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode); 3597 #endif /* NOISE */ 3598 return XFS_ERROR(EACCES); 3599 } 3600 return XFS_ERROR(EACCES); 3601 } 3602 3603 /* 3604 * xfs_iroundup: round up argument to next power of two 3605 */ 3606 uint 3607 xfs_iroundup( 3608 uint v) 3609 { 3610 int i; 3611 uint m; 3612 3613 if ((v & (v - 1)) == 0) 3614 return v; 3615 ASSERT((v & 0x80000000) == 0); 3616 if ((v & (v + 1)) == 0) 3617 return v + 1; 3618 for (i = 0, m = 1; i < 31; i++, m <<= 1) { 3619 if (v & m) 3620 continue; 3621 v |= m; 3622 if ((v & (v + 1)) == 0) 3623 return v + 1; 3624 } 3625 ASSERT(0); 3626 return( 0 ); 3627 } 3628 3629 #ifdef XFS_ILOCK_TRACE 3630 ktrace_t *xfs_ilock_trace_buf; 3631 3632 void 3633 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) 3634 { 3635 ktrace_enter(ip->i_lock_trace, 3636 (void *)ip, 3637 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */ 3638 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */ 3639 (void *)ra, /* caller of ilock */ 3640 (void *)(unsigned long)current_cpu(), 3641 (void *)(unsigned long)current_pid(), 3642 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); 3643 } 3644 #endif 3645 3646 /* 3647 * Return a pointer to the extent record at file index idx. 3648 */ 3649 xfs_bmbt_rec_t * 3650 xfs_iext_get_ext( 3651 xfs_ifork_t *ifp, /* inode fork pointer */ 3652 xfs_extnum_t idx) /* index of target extent */ 3653 { 3654 ASSERT(idx >= 0); 3655 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { 3656 return ifp->if_u1.if_ext_irec->er_extbuf; 3657 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3658 xfs_ext_irec_t *erp; /* irec pointer */ 3659 int erp_idx = 0; /* irec index */ 3660 xfs_extnum_t page_idx = idx; /* ext index in target list */ 3661 3662 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3663 return &erp->er_extbuf[page_idx]; 3664 } else if (ifp->if_bytes) { 3665 return &ifp->if_u1.if_extents[idx]; 3666 } else { 3667 return NULL; 3668 } 3669 } 3670 3671 /* 3672 * Insert new item(s) into the extent records for incore inode 3673 * fork 'ifp'. 'count' new items are inserted at index 'idx'. 3674 */ 3675 void 3676 xfs_iext_insert( 3677 xfs_ifork_t *ifp, /* inode fork pointer */ 3678 xfs_extnum_t idx, /* starting index of new items */ 3679 xfs_extnum_t count, /* number of inserted items */ 3680 xfs_bmbt_irec_t *new) /* items to insert */ 3681 { 3682 xfs_bmbt_rec_t *ep; /* extent record pointer */ 3683 xfs_extnum_t i; /* extent record index */ 3684 3685 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3686 xfs_iext_add(ifp, idx, count); 3687 for (i = idx; i < idx + count; i++, new++) { 3688 ep = xfs_iext_get_ext(ifp, i); 3689 xfs_bmbt_set_all(ep, new); 3690 } 3691 } 3692 3693 /* 3694 * This is called when the amount of space required for incore file 3695 * extents needs to be increased. The ext_diff parameter stores the 3696 * number of new extents being added and the idx parameter contains 3697 * the extent index where the new extents will be added. If the new 3698 * extents are being appended, then we just need to (re)allocate and 3699 * initialize the space. Otherwise, if the new extents are being 3700 * inserted into the middle of the existing entries, a bit more work 3701 * is required to make room for the new extents to be inserted. The 3702 * caller is responsible for filling in the new extent entries upon 3703 * return. 3704 */ 3705 void 3706 xfs_iext_add( 3707 xfs_ifork_t *ifp, /* inode fork pointer */ 3708 xfs_extnum_t idx, /* index to begin adding exts */ 3709 int ext_diff) /* number of extents to add */ 3710 { 3711 int byte_diff; /* new bytes being added */ 3712 int new_size; /* size of extents after adding */ 3713 xfs_extnum_t nextents; /* number of extents in file */ 3714 3715 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3716 ASSERT((idx >= 0) && (idx <= nextents)); 3717 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); 3718 new_size = ifp->if_bytes + byte_diff; 3719 /* 3720 * If the new number of extents (nextents + ext_diff) 3721 * fits inside the inode, then continue to use the inline 3722 * extent buffer. 3723 */ 3724 if (nextents + ext_diff <= XFS_INLINE_EXTS) { 3725 if (idx < nextents) { 3726 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], 3727 &ifp->if_u2.if_inline_ext[idx], 3728 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3729 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); 3730 } 3731 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3732 ifp->if_real_bytes = 0; 3733 ifp->if_lastex = nextents + ext_diff; 3734 } 3735 /* 3736 * Otherwise use a linear (direct) extent list. 3737 * If the extents are currently inside the inode, 3738 * xfs_iext_realloc_direct will switch us from 3739 * inline to direct extent allocation mode. 3740 */ 3741 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { 3742 xfs_iext_realloc_direct(ifp, new_size); 3743 if (idx < nextents) { 3744 memmove(&ifp->if_u1.if_extents[idx + ext_diff], 3745 &ifp->if_u1.if_extents[idx], 3746 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3747 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); 3748 } 3749 } 3750 /* Indirection array */ 3751 else { 3752 xfs_ext_irec_t *erp; 3753 int erp_idx = 0; 3754 int page_idx = idx; 3755 3756 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); 3757 if (ifp->if_flags & XFS_IFEXTIREC) { 3758 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); 3759 } else { 3760 xfs_iext_irec_init(ifp); 3761 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3762 erp = ifp->if_u1.if_ext_irec; 3763 } 3764 /* Extents fit in target extent page */ 3765 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { 3766 if (page_idx < erp->er_extcount) { 3767 memmove(&erp->er_extbuf[page_idx + ext_diff], 3768 &erp->er_extbuf[page_idx], 3769 (erp->er_extcount - page_idx) * 3770 sizeof(xfs_bmbt_rec_t)); 3771 memset(&erp->er_extbuf[page_idx], 0, byte_diff); 3772 } 3773 erp->er_extcount += ext_diff; 3774 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3775 } 3776 /* Insert a new extent page */ 3777 else if (erp) { 3778 xfs_iext_add_indirect_multi(ifp, 3779 erp_idx, page_idx, ext_diff); 3780 } 3781 /* 3782 * If extent(s) are being appended to the last page in 3783 * the indirection array and the new extent(s) don't fit 3784 * in the page, then erp is NULL and erp_idx is set to 3785 * the next index needed in the indirection array. 3786 */ 3787 else { 3788 int count = ext_diff; 3789 3790 while (count) { 3791 erp = xfs_iext_irec_new(ifp, erp_idx); 3792 erp->er_extcount = count; 3793 count -= MIN(count, (int)XFS_LINEAR_EXTS); 3794 if (count) { 3795 erp_idx++; 3796 } 3797 } 3798 } 3799 } 3800 ifp->if_bytes = new_size; 3801 } 3802 3803 /* 3804 * This is called when incore extents are being added to the indirection 3805 * array and the new extents do not fit in the target extent list. The 3806 * erp_idx parameter contains the irec index for the target extent list 3807 * in the indirection array, and the idx parameter contains the extent 3808 * index within the list. The number of extents being added is stored 3809 * in the count parameter. 3810 * 3811 * |-------| |-------| 3812 * | | | | idx - number of extents before idx 3813 * | idx | | count | 3814 * | | | | count - number of extents being inserted at idx 3815 * |-------| |-------| 3816 * | count | | nex2 | nex2 - number of extents after idx + count 3817 * |-------| |-------| 3818 */ 3819 void 3820 xfs_iext_add_indirect_multi( 3821 xfs_ifork_t *ifp, /* inode fork pointer */ 3822 int erp_idx, /* target extent irec index */ 3823 xfs_extnum_t idx, /* index within target list */ 3824 int count) /* new extents being added */ 3825 { 3826 int byte_diff; /* new bytes being added */ 3827 xfs_ext_irec_t *erp; /* pointer to irec entry */ 3828 xfs_extnum_t ext_diff; /* number of extents to add */ 3829 xfs_extnum_t ext_cnt; /* new extents still needed */ 3830 xfs_extnum_t nex2; /* extents after idx + count */ 3831 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */ 3832 int nlists; /* number of irec's (lists) */ 3833 3834 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3835 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3836 nex2 = erp->er_extcount - idx; 3837 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3838 3839 /* 3840 * Save second part of target extent list 3841 * (all extents past */ 3842 if (nex2) { 3843 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3844 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP); 3845 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); 3846 erp->er_extcount -= nex2; 3847 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); 3848 memset(&erp->er_extbuf[idx], 0, byte_diff); 3849 } 3850 3851 /* 3852 * Add the new extents to the end of the target 3853 * list, then allocate new irec record(s) and 3854 * extent buffer(s) as needed to store the rest 3855 * of the new extents. 3856 */ 3857 ext_cnt = count; 3858 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); 3859 if (ext_diff) { 3860 erp->er_extcount += ext_diff; 3861 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3862 ext_cnt -= ext_diff; 3863 } 3864 while (ext_cnt) { 3865 erp_idx++; 3866 erp = xfs_iext_irec_new(ifp, erp_idx); 3867 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); 3868 erp->er_extcount = ext_diff; 3869 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3870 ext_cnt -= ext_diff; 3871 } 3872 3873 /* Add nex2 extents back to indirection array */ 3874 if (nex2) { 3875 xfs_extnum_t ext_avail; 3876 int i; 3877 3878 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3879 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; 3880 i = 0; 3881 /* 3882 * If nex2 extents fit in the current page, append 3883 * nex2_ep after the new extents. 3884 */ 3885 if (nex2 <= ext_avail) { 3886 i = erp->er_extcount; 3887 } 3888 /* 3889 * Otherwise, check if space is available in the 3890 * next page. 3891 */ 3892 else if ((erp_idx < nlists - 1) && 3893 (nex2 <= (ext_avail = XFS_LINEAR_EXTS - 3894 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { 3895 erp_idx++; 3896 erp++; 3897 /* Create a hole for nex2 extents */ 3898 memmove(&erp->er_extbuf[nex2], erp->er_extbuf, 3899 erp->er_extcount * sizeof(xfs_bmbt_rec_t)); 3900 } 3901 /* 3902 * Final choice, create a new extent page for 3903 * nex2 extents. 3904 */ 3905 else { 3906 erp_idx++; 3907 erp = xfs_iext_irec_new(ifp, erp_idx); 3908 } 3909 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); 3910 kmem_free(nex2_ep, byte_diff); 3911 erp->er_extcount += nex2; 3912 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); 3913 } 3914 } 3915 3916 /* 3917 * This is called when the amount of space required for incore file 3918 * extents needs to be decreased. The ext_diff parameter stores the 3919 * number of extents to be removed and the idx parameter contains 3920 * the extent index where the extents will be removed from. 3921 * 3922 * If the amount of space needed has decreased below the linear 3923 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous 3924 * extent array. Otherwise, use kmem_realloc() to adjust the 3925 * size to what is needed. 3926 */ 3927 void 3928 xfs_iext_remove( 3929 xfs_ifork_t *ifp, /* inode fork pointer */ 3930 xfs_extnum_t idx, /* index to begin removing exts */ 3931 int ext_diff) /* number of extents to remove */ 3932 { 3933 xfs_extnum_t nextents; /* number of extents in file */ 3934 int new_size; /* size of extents after removal */ 3935 3936 ASSERT(ext_diff > 0); 3937 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3938 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); 3939 3940 if (new_size == 0) { 3941 xfs_iext_destroy(ifp); 3942 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3943 xfs_iext_remove_indirect(ifp, idx, ext_diff); 3944 } else if (ifp->if_real_bytes) { 3945 xfs_iext_remove_direct(ifp, idx, ext_diff); 3946 } else { 3947 xfs_iext_remove_inline(ifp, idx, ext_diff); 3948 } 3949 ifp->if_bytes = new_size; 3950 } 3951 3952 /* 3953 * This removes ext_diff extents from the inline buffer, beginning 3954 * at extent index idx. 3955 */ 3956 void 3957 xfs_iext_remove_inline( 3958 xfs_ifork_t *ifp, /* inode fork pointer */ 3959 xfs_extnum_t idx, /* index to begin removing exts */ 3960 int ext_diff) /* number of extents to remove */ 3961 { 3962 int nextents; /* number of extents in file */ 3963 3964 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3965 ASSERT(idx < XFS_INLINE_EXTS); 3966 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3967 ASSERT(((nextents - ext_diff) > 0) && 3968 (nextents - ext_diff) < XFS_INLINE_EXTS); 3969 3970 if (idx + ext_diff < nextents) { 3971 memmove(&ifp->if_u2.if_inline_ext[idx], 3972 &ifp->if_u2.if_inline_ext[idx + ext_diff], 3973 (nextents - (idx + ext_diff)) * 3974 sizeof(xfs_bmbt_rec_t)); 3975 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], 3976 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3977 } else { 3978 memset(&ifp->if_u2.if_inline_ext[idx], 0, 3979 ext_diff * sizeof(xfs_bmbt_rec_t)); 3980 } 3981 } 3982 3983 /* 3984 * This removes ext_diff extents from a linear (direct) extent list, 3985 * beginning at extent index idx. If the extents are being removed 3986 * from the end of the list (ie. truncate) then we just need to re- 3987 * allocate the list to remove the extra space. Otherwise, if the 3988 * extents are being removed from the middle of the existing extent 3989 * entries, then we first need to move the extent records beginning 3990 * at idx + ext_diff up in the list to overwrite the records being 3991 * removed, then remove the extra space via kmem_realloc. 3992 */ 3993 void 3994 xfs_iext_remove_direct( 3995 xfs_ifork_t *ifp, /* inode fork pointer */ 3996 xfs_extnum_t idx, /* index to begin removing exts */ 3997 int ext_diff) /* number of extents to remove */ 3998 { 3999 xfs_extnum_t nextents; /* number of extents in file */ 4000 int new_size; /* size of extents after removal */ 4001 4002 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 4003 new_size = ifp->if_bytes - 4004 (ext_diff * sizeof(xfs_bmbt_rec_t)); 4005 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4006 4007 if (new_size == 0) { 4008 xfs_iext_destroy(ifp); 4009 return; 4010 } 4011 /* Move extents up in the list (if needed) */ 4012 if (idx + ext_diff < nextents) { 4013 memmove(&ifp->if_u1.if_extents[idx], 4014 &ifp->if_u1.if_extents[idx + ext_diff], 4015 (nextents - (idx + ext_diff)) * 4016 sizeof(xfs_bmbt_rec_t)); 4017 } 4018 memset(&ifp->if_u1.if_extents[nextents - ext_diff], 4019 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 4020 /* 4021 * Reallocate the direct extent list. If the extents 4022 * will fit inside the inode then xfs_iext_realloc_direct 4023 * will switch from direct to inline extent allocation 4024 * mode for us. 4025 */ 4026 xfs_iext_realloc_direct(ifp, new_size); 4027 ifp->if_bytes = new_size; 4028 } 4029 4030 /* 4031 * This is called when incore extents are being removed from the 4032 * indirection array and the extents being removed span multiple extent 4033 * buffers. The idx parameter contains the file extent index where we 4034 * want to begin removing extents, and the count parameter contains 4035 * how many extents need to be removed. 4036 * 4037 * |-------| |-------| 4038 * | nex1 | | | nex1 - number of extents before idx 4039 * |-------| | count | 4040 * | | | | count - number of extents being removed at idx 4041 * | count | |-------| 4042 * | | | nex2 | nex2 - number of extents after idx + count 4043 * |-------| |-------| 4044 */ 4045 void 4046 xfs_iext_remove_indirect( 4047 xfs_ifork_t *ifp, /* inode fork pointer */ 4048 xfs_extnum_t idx, /* index to begin removing extents */ 4049 int count) /* number of extents to remove */ 4050 { 4051 xfs_ext_irec_t *erp; /* indirection array pointer */ 4052 int erp_idx = 0; /* indirection array index */ 4053 xfs_extnum_t ext_cnt; /* extents left to remove */ 4054 xfs_extnum_t ext_diff; /* extents to remove in current list */ 4055 xfs_extnum_t nex1; /* number of extents before idx */ 4056 xfs_extnum_t nex2; /* extents after idx + count */ 4057 int nlists; /* entries in indirection array */ 4058 int page_idx = idx; /* index in target extent list */ 4059 4060 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4061 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 4062 ASSERT(erp != NULL); 4063 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4064 nex1 = page_idx; 4065 ext_cnt = count; 4066 while (ext_cnt) { 4067 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); 4068 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); 4069 /* 4070 * Check for deletion of entire list; 4071 * xfs_iext_irec_remove() updates extent offsets. 4072 */ 4073 if (ext_diff == erp->er_extcount) { 4074 xfs_iext_irec_remove(ifp, erp_idx); 4075 ext_cnt -= ext_diff; 4076 nex1 = 0; 4077 if (ext_cnt) { 4078 ASSERT(erp_idx < ifp->if_real_bytes / 4079 XFS_IEXT_BUFSZ); 4080 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4081 nex1 = 0; 4082 continue; 4083 } else { 4084 break; 4085 } 4086 } 4087 /* Move extents up (if needed) */ 4088 if (nex2) { 4089 memmove(&erp->er_extbuf[nex1], 4090 &erp->er_extbuf[nex1 + ext_diff], 4091 nex2 * sizeof(xfs_bmbt_rec_t)); 4092 } 4093 /* Zero out rest of page */ 4094 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - 4095 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); 4096 /* Update remaining counters */ 4097 erp->er_extcount -= ext_diff; 4098 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); 4099 ext_cnt -= ext_diff; 4100 nex1 = 0; 4101 erp_idx++; 4102 erp++; 4103 } 4104 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); 4105 xfs_iext_irec_compact(ifp); 4106 } 4107 4108 /* 4109 * Create, destroy, or resize a linear (direct) block of extents. 4110 */ 4111 void 4112 xfs_iext_realloc_direct( 4113 xfs_ifork_t *ifp, /* inode fork pointer */ 4114 int new_size) /* new size of extents */ 4115 { 4116 int rnew_size; /* real new size of extents */ 4117 4118 rnew_size = new_size; 4119 4120 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || 4121 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && 4122 (new_size != ifp->if_real_bytes))); 4123 4124 /* Free extent records */ 4125 if (new_size == 0) { 4126 xfs_iext_destroy(ifp); 4127 } 4128 /* Resize direct extent list and zero any new bytes */ 4129 else if (ifp->if_real_bytes) { 4130 /* Check if extents will fit inside the inode */ 4131 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { 4132 xfs_iext_direct_to_inline(ifp, new_size / 4133 (uint)sizeof(xfs_bmbt_rec_t)); 4134 ifp->if_bytes = new_size; 4135 return; 4136 } 4137 if ((new_size & (new_size - 1)) != 0) { 4138 rnew_size = xfs_iroundup(new_size); 4139 } 4140 if (rnew_size != ifp->if_real_bytes) { 4141 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) 4142 kmem_realloc(ifp->if_u1.if_extents, 4143 rnew_size, 4144 ifp->if_real_bytes, 4145 KM_SLEEP); 4146 } 4147 if (rnew_size > ifp->if_real_bytes) { 4148 memset(&ifp->if_u1.if_extents[ifp->if_bytes / 4149 (uint)sizeof(xfs_bmbt_rec_t)], 0, 4150 rnew_size - ifp->if_real_bytes); 4151 } 4152 } 4153 /* 4154 * Switch from the inline extent buffer to a direct 4155 * extent list. Be sure to include the inline extent 4156 * bytes in new_size. 4157 */ 4158 else { 4159 new_size += ifp->if_bytes; 4160 if ((new_size & (new_size - 1)) != 0) { 4161 rnew_size = xfs_iroundup(new_size); 4162 } 4163 xfs_iext_inline_to_direct(ifp, rnew_size); 4164 } 4165 ifp->if_real_bytes = rnew_size; 4166 ifp->if_bytes = new_size; 4167 } 4168 4169 /* 4170 * Switch from linear (direct) extent records to inline buffer. 4171 */ 4172 void 4173 xfs_iext_direct_to_inline( 4174 xfs_ifork_t *ifp, /* inode fork pointer */ 4175 xfs_extnum_t nextents) /* number of extents in file */ 4176 { 4177 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 4178 ASSERT(nextents <= XFS_INLINE_EXTS); 4179 /* 4180 * The inline buffer was zeroed when we switched 4181 * from inline to direct extent allocation mode, 4182 * so we don't need to clear it here. 4183 */ 4184 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, 4185 nextents * sizeof(xfs_bmbt_rec_t)); 4186 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); 4187 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 4188 ifp->if_real_bytes = 0; 4189 } 4190 4191 /* 4192 * Switch from inline buffer to linear (direct) extent records. 4193 * new_size should already be rounded up to the next power of 2 4194 * by the caller (when appropriate), so use new_size as it is. 4195 * However, since new_size may be rounded up, we can't update 4196 * if_bytes here. It is the caller's responsibility to update 4197 * if_bytes upon return. 4198 */ 4199 void 4200 xfs_iext_inline_to_direct( 4201 xfs_ifork_t *ifp, /* inode fork pointer */ 4202 int new_size) /* number of extents in file */ 4203 { 4204 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) 4205 kmem_alloc(new_size, KM_SLEEP); 4206 memset(ifp->if_u1.if_extents, 0, new_size); 4207 if (ifp->if_bytes) { 4208 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, 4209 ifp->if_bytes); 4210 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 4211 sizeof(xfs_bmbt_rec_t)); 4212 } 4213 ifp->if_real_bytes = new_size; 4214 } 4215 4216 /* 4217 * Resize an extent indirection array to new_size bytes. 4218 */ 4219 void 4220 xfs_iext_realloc_indirect( 4221 xfs_ifork_t *ifp, /* inode fork pointer */ 4222 int new_size) /* new indirection array size */ 4223 { 4224 int nlists; /* number of irec's (ex lists) */ 4225 int size; /* current indirection array size */ 4226 4227 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4228 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4229 size = nlists * sizeof(xfs_ext_irec_t); 4230 ASSERT(ifp->if_real_bytes); 4231 ASSERT((new_size >= 0) && (new_size != size)); 4232 if (new_size == 0) { 4233 xfs_iext_destroy(ifp); 4234 } else { 4235 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) 4236 kmem_realloc(ifp->if_u1.if_ext_irec, 4237 new_size, size, KM_SLEEP); 4238 } 4239 } 4240 4241 /* 4242 * Switch from indirection array to linear (direct) extent allocations. 4243 */ 4244 void 4245 xfs_iext_indirect_to_direct( 4246 xfs_ifork_t *ifp) /* inode fork pointer */ 4247 { 4248 xfs_bmbt_rec_t *ep; /* extent record pointer */ 4249 xfs_extnum_t nextents; /* number of extents in file */ 4250 int size; /* size of file extents */ 4251 4252 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4253 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4254 ASSERT(nextents <= XFS_LINEAR_EXTS); 4255 size = nextents * sizeof(xfs_bmbt_rec_t); 4256 4257 xfs_iext_irec_compact_full(ifp); 4258 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); 4259 4260 ep = ifp->if_u1.if_ext_irec->er_extbuf; 4261 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t)); 4262 ifp->if_flags &= ~XFS_IFEXTIREC; 4263 ifp->if_u1.if_extents = ep; 4264 ifp->if_bytes = size; 4265 if (nextents < XFS_LINEAR_EXTS) { 4266 xfs_iext_realloc_direct(ifp, size); 4267 } 4268 } 4269 4270 /* 4271 * Free incore file extents. 4272 */ 4273 void 4274 xfs_iext_destroy( 4275 xfs_ifork_t *ifp) /* inode fork pointer */ 4276 { 4277 if (ifp->if_flags & XFS_IFEXTIREC) { 4278 int erp_idx; 4279 int nlists; 4280 4281 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4282 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { 4283 xfs_iext_irec_remove(ifp, erp_idx); 4284 } 4285 ifp->if_flags &= ~XFS_IFEXTIREC; 4286 } else if (ifp->if_real_bytes) { 4287 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); 4288 } else if (ifp->if_bytes) { 4289 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 4290 sizeof(xfs_bmbt_rec_t)); 4291 } 4292 ifp->if_u1.if_extents = NULL; 4293 ifp->if_real_bytes = 0; 4294 ifp->if_bytes = 0; 4295 } 4296 4297 /* 4298 * Return a pointer to the extent record for file system block bno. 4299 */ 4300 xfs_bmbt_rec_t * /* pointer to found extent record */ 4301 xfs_iext_bno_to_ext( 4302 xfs_ifork_t *ifp, /* inode fork pointer */ 4303 xfs_fileoff_t bno, /* block number to search for */ 4304 xfs_extnum_t *idxp) /* index of target extent */ 4305 { 4306 xfs_bmbt_rec_t *base; /* pointer to first extent */ 4307 xfs_filblks_t blockcount = 0; /* number of blocks in extent */ 4308 xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */ 4309 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 4310 int high; /* upper boundary in search */ 4311 xfs_extnum_t idx = 0; /* index of target extent */ 4312 int low; /* lower boundary in search */ 4313 xfs_extnum_t nextents; /* number of file extents */ 4314 xfs_fileoff_t startoff = 0; /* start offset of extent */ 4315 4316 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4317 if (nextents == 0) { 4318 *idxp = 0; 4319 return NULL; 4320 } 4321 low = 0; 4322 if (ifp->if_flags & XFS_IFEXTIREC) { 4323 /* Find target extent list */ 4324 int erp_idx = 0; 4325 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); 4326 base = erp->er_extbuf; 4327 high = erp->er_extcount - 1; 4328 } else { 4329 base = ifp->if_u1.if_extents; 4330 high = nextents - 1; 4331 } 4332 /* Binary search extent records */ 4333 while (low <= high) { 4334 idx = (low + high) >> 1; 4335 ep = base + idx; 4336 startoff = xfs_bmbt_get_startoff(ep); 4337 blockcount = xfs_bmbt_get_blockcount(ep); 4338 if (bno < startoff) { 4339 high = idx - 1; 4340 } else if (bno >= startoff + blockcount) { 4341 low = idx + 1; 4342 } else { 4343 /* Convert back to file-based extent index */ 4344 if (ifp->if_flags & XFS_IFEXTIREC) { 4345 idx += erp->er_extoff; 4346 } 4347 *idxp = idx; 4348 return ep; 4349 } 4350 } 4351 /* Convert back to file-based extent index */ 4352 if (ifp->if_flags & XFS_IFEXTIREC) { 4353 idx += erp->er_extoff; 4354 } 4355 if (bno >= startoff + blockcount) { 4356 if (++idx == nextents) { 4357 ep = NULL; 4358 } else { 4359 ep = xfs_iext_get_ext(ifp, idx); 4360 } 4361 } 4362 *idxp = idx; 4363 return ep; 4364 } 4365 4366 /* 4367 * Return a pointer to the indirection array entry containing the 4368 * extent record for filesystem block bno. Store the index of the 4369 * target irec in *erp_idxp. 4370 */ 4371 xfs_ext_irec_t * /* pointer to found extent record */ 4372 xfs_iext_bno_to_irec( 4373 xfs_ifork_t *ifp, /* inode fork pointer */ 4374 xfs_fileoff_t bno, /* block number to search for */ 4375 int *erp_idxp) /* irec index of target ext list */ 4376 { 4377 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 4378 xfs_ext_irec_t *erp_next; /* next indirection array entry */ 4379 int erp_idx; /* indirection array index */ 4380 int nlists; /* number of extent irec's (lists) */ 4381 int high; /* binary search upper limit */ 4382 int low; /* binary search lower limit */ 4383 4384 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4385 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4386 erp_idx = 0; 4387 low = 0; 4388 high = nlists - 1; 4389 while (low <= high) { 4390 erp_idx = (low + high) >> 1; 4391 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4392 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; 4393 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { 4394 high = erp_idx - 1; 4395 } else if (erp_next && bno >= 4396 xfs_bmbt_get_startoff(erp_next->er_extbuf)) { 4397 low = erp_idx + 1; 4398 } else { 4399 break; 4400 } 4401 } 4402 *erp_idxp = erp_idx; 4403 return erp; 4404 } 4405 4406 /* 4407 * Return a pointer to the indirection array entry containing the 4408 * extent record at file extent index *idxp. Store the index of the 4409 * target irec in *erp_idxp and store the page index of the target 4410 * extent record in *idxp. 4411 */ 4412 xfs_ext_irec_t * 4413 xfs_iext_idx_to_irec( 4414 xfs_ifork_t *ifp, /* inode fork pointer */ 4415 xfs_extnum_t *idxp, /* extent index (file -> page) */ 4416 int *erp_idxp, /* pointer to target irec */ 4417 int realloc) /* new bytes were just added */ 4418 { 4419 xfs_ext_irec_t *prev; /* pointer to previous irec */ 4420 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */ 4421 int erp_idx; /* indirection array index */ 4422 int nlists; /* number of irec's (ex lists) */ 4423 int high; /* binary search upper limit */ 4424 int low; /* binary search lower limit */ 4425 xfs_extnum_t page_idx = *idxp; /* extent index in target list */ 4426 4427 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4428 ASSERT(page_idx >= 0 && page_idx <= 4429 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t)); 4430 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4431 erp_idx = 0; 4432 low = 0; 4433 high = nlists - 1; 4434 4435 /* Binary search extent irec's */ 4436 while (low <= high) { 4437 erp_idx = (low + high) >> 1; 4438 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4439 prev = erp_idx > 0 ? erp - 1 : NULL; 4440 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && 4441 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { 4442 high = erp_idx - 1; 4443 } else if (page_idx > erp->er_extoff + erp->er_extcount || 4444 (page_idx == erp->er_extoff + erp->er_extcount && 4445 !realloc)) { 4446 low = erp_idx + 1; 4447 } else if (page_idx == erp->er_extoff + erp->er_extcount && 4448 erp->er_extcount == XFS_LINEAR_EXTS) { 4449 ASSERT(realloc); 4450 page_idx = 0; 4451 erp_idx++; 4452 erp = erp_idx < nlists ? erp + 1 : NULL; 4453 break; 4454 } else { 4455 page_idx -= erp->er_extoff; 4456 break; 4457 } 4458 } 4459 *idxp = page_idx; 4460 *erp_idxp = erp_idx; 4461 return(erp); 4462 } 4463 4464 /* 4465 * Allocate and initialize an indirection array once the space needed 4466 * for incore extents increases above XFS_IEXT_BUFSZ. 4467 */ 4468 void 4469 xfs_iext_irec_init( 4470 xfs_ifork_t *ifp) /* inode fork pointer */ 4471 { 4472 xfs_ext_irec_t *erp; /* indirection array pointer */ 4473 xfs_extnum_t nextents; /* number of extents in file */ 4474 4475 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 4476 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4477 ASSERT(nextents <= XFS_LINEAR_EXTS); 4478 4479 erp = (xfs_ext_irec_t *) 4480 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP); 4481 4482 if (nextents == 0) { 4483 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) 4484 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP); 4485 } else if (!ifp->if_real_bytes) { 4486 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); 4487 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { 4488 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); 4489 } 4490 erp->er_extbuf = ifp->if_u1.if_extents; 4491 erp->er_extcount = nextents; 4492 erp->er_extoff = 0; 4493 4494 ifp->if_flags |= XFS_IFEXTIREC; 4495 ifp->if_real_bytes = XFS_IEXT_BUFSZ; 4496 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); 4497 ifp->if_u1.if_ext_irec = erp; 4498 4499 return; 4500 } 4501 4502 /* 4503 * Allocate and initialize a new entry in the indirection array. 4504 */ 4505 xfs_ext_irec_t * 4506 xfs_iext_irec_new( 4507 xfs_ifork_t *ifp, /* inode fork pointer */ 4508 int erp_idx) /* index for new irec */ 4509 { 4510 xfs_ext_irec_t *erp; /* indirection array pointer */ 4511 int i; /* loop counter */ 4512 int nlists; /* number of irec's (ex lists) */ 4513 4514 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4515 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4516 4517 /* Resize indirection array */ 4518 xfs_iext_realloc_indirect(ifp, ++nlists * 4519 sizeof(xfs_ext_irec_t)); 4520 /* 4521 * Move records down in the array so the 4522 * new page can use erp_idx. 4523 */ 4524 erp = ifp->if_u1.if_ext_irec; 4525 for (i = nlists - 1; i > erp_idx; i--) { 4526 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); 4527 } 4528 ASSERT(i == erp_idx); 4529 4530 /* Initialize new extent record */ 4531 erp = ifp->if_u1.if_ext_irec; 4532 erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *) 4533 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP); 4534 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4535 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); 4536 erp[erp_idx].er_extcount = 0; 4537 erp[erp_idx].er_extoff = erp_idx > 0 ? 4538 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; 4539 return (&erp[erp_idx]); 4540 } 4541 4542 /* 4543 * Remove a record from the indirection array. 4544 */ 4545 void 4546 xfs_iext_irec_remove( 4547 xfs_ifork_t *ifp, /* inode fork pointer */ 4548 int erp_idx) /* irec index to remove */ 4549 { 4550 xfs_ext_irec_t *erp; /* indirection array pointer */ 4551 int i; /* loop counter */ 4552 int nlists; /* number of irec's (ex lists) */ 4553 4554 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4555 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4556 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4557 if (erp->er_extbuf) { 4558 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, 4559 -erp->er_extcount); 4560 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ); 4561 } 4562 /* Compact extent records */ 4563 erp = ifp->if_u1.if_ext_irec; 4564 for (i = erp_idx; i < nlists - 1; i++) { 4565 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); 4566 } 4567 /* 4568 * Manually free the last extent record from the indirection 4569 * array. A call to xfs_iext_realloc_indirect() with a size 4570 * of zero would result in a call to xfs_iext_destroy() which 4571 * would in turn call this function again, creating a nasty 4572 * infinite loop. 4573 */ 4574 if (--nlists) { 4575 xfs_iext_realloc_indirect(ifp, 4576 nlists * sizeof(xfs_ext_irec_t)); 4577 } else { 4578 kmem_free(ifp->if_u1.if_ext_irec, 4579 sizeof(xfs_ext_irec_t)); 4580 } 4581 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4582 } 4583 4584 /* 4585 * This is called to clean up large amounts of unused memory allocated 4586 * by the indirection array. Before compacting anything though, verify 4587 * that the indirection array is still needed and switch back to the 4588 * linear extent list (or even the inline buffer) if possible. The 4589 * compaction policy is as follows: 4590 * 4591 * Full Compaction: Extents fit into a single page (or inline buffer) 4592 * Full Compaction: Extents occupy less than 10% of allocated space 4593 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space 4594 * No Compaction: Extents occupy at least 50% of allocated space 4595 */ 4596 void 4597 xfs_iext_irec_compact( 4598 xfs_ifork_t *ifp) /* inode fork pointer */ 4599 { 4600 xfs_extnum_t nextents; /* number of extents in file */ 4601 int nlists; /* number of irec's (ex lists) */ 4602 4603 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4604 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4605 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4606 4607 if (nextents == 0) { 4608 xfs_iext_destroy(ifp); 4609 } else if (nextents <= XFS_INLINE_EXTS) { 4610 xfs_iext_indirect_to_direct(ifp); 4611 xfs_iext_direct_to_inline(ifp, nextents); 4612 } else if (nextents <= XFS_LINEAR_EXTS) { 4613 xfs_iext_indirect_to_direct(ifp); 4614 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) { 4615 xfs_iext_irec_compact_full(ifp); 4616 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { 4617 xfs_iext_irec_compact_pages(ifp); 4618 } 4619 } 4620 4621 /* 4622 * Combine extents from neighboring extent pages. 4623 */ 4624 void 4625 xfs_iext_irec_compact_pages( 4626 xfs_ifork_t *ifp) /* inode fork pointer */ 4627 { 4628 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */ 4629 int erp_idx = 0; /* indirection array index */ 4630 int nlists; /* number of irec's (ex lists) */ 4631 4632 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4633 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4634 while (erp_idx < nlists - 1) { 4635 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4636 erp_next = erp + 1; 4637 if (erp_next->er_extcount <= 4638 (XFS_LINEAR_EXTS - erp->er_extcount)) { 4639 memmove(&erp->er_extbuf[erp->er_extcount], 4640 erp_next->er_extbuf, erp_next->er_extcount * 4641 sizeof(xfs_bmbt_rec_t)); 4642 erp->er_extcount += erp_next->er_extcount; 4643 /* 4644 * Free page before removing extent record 4645 * so er_extoffs don't get modified in 4646 * xfs_iext_irec_remove. 4647 */ 4648 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ); 4649 erp_next->er_extbuf = NULL; 4650 xfs_iext_irec_remove(ifp, erp_idx + 1); 4651 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4652 } else { 4653 erp_idx++; 4654 } 4655 } 4656 } 4657 4658 /* 4659 * Fully compact the extent records managed by the indirection array. 4660 */ 4661 void 4662 xfs_iext_irec_compact_full( 4663 xfs_ifork_t *ifp) /* inode fork pointer */ 4664 { 4665 xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */ 4666 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */ 4667 int erp_idx = 0; /* extent irec index */ 4668 int ext_avail; /* empty entries in ex list */ 4669 int ext_diff; /* number of exts to add */ 4670 int nlists; /* number of irec's (ex lists) */ 4671 4672 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4673 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4674 erp = ifp->if_u1.if_ext_irec; 4675 ep = &erp->er_extbuf[erp->er_extcount]; 4676 erp_next = erp + 1; 4677 ep_next = erp_next->er_extbuf; 4678 while (erp_idx < nlists - 1) { 4679 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; 4680 ext_diff = MIN(ext_avail, erp_next->er_extcount); 4681 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t)); 4682 erp->er_extcount += ext_diff; 4683 erp_next->er_extcount -= ext_diff; 4684 /* Remove next page */ 4685 if (erp_next->er_extcount == 0) { 4686 /* 4687 * Free page before removing extent record 4688 * so er_extoffs don't get modified in 4689 * xfs_iext_irec_remove. 4690 */ 4691 kmem_free(erp_next->er_extbuf, 4692 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t)); 4693 erp_next->er_extbuf = NULL; 4694 xfs_iext_irec_remove(ifp, erp_idx + 1); 4695 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4696 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4697 /* Update next page */ 4698 } else { 4699 /* Move rest of page up to become next new page */ 4700 memmove(erp_next->er_extbuf, ep_next, 4701 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t)); 4702 ep_next = erp_next->er_extbuf; 4703 memset(&ep_next[erp_next->er_extcount], 0, 4704 (XFS_LINEAR_EXTS - erp_next->er_extcount) * 4705 sizeof(xfs_bmbt_rec_t)); 4706 } 4707 if (erp->er_extcount == XFS_LINEAR_EXTS) { 4708 erp_idx++; 4709 if (erp_idx < nlists) 4710 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4711 else 4712 break; 4713 } 4714 ep = &erp->er_extbuf[erp->er_extcount]; 4715 erp_next = erp + 1; 4716 ep_next = erp_next->er_extbuf; 4717 } 4718 } 4719 4720 /* 4721 * This is called to update the er_extoff field in the indirection 4722 * array when extents have been added or removed from one of the 4723 * extent lists. erp_idx contains the irec index to begin updating 4724 * at and ext_diff contains the number of extents that were added 4725 * or removed. 4726 */ 4727 void 4728 xfs_iext_irec_update_extoffs( 4729 xfs_ifork_t *ifp, /* inode fork pointer */ 4730 int erp_idx, /* irec index to update */ 4731 int ext_diff) /* number of new extents */ 4732 { 4733 int i; /* loop counter */ 4734 int nlists; /* number of irec's (ex lists */ 4735 4736 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4737 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4738 for (i = erp_idx; i < nlists; i++) { 4739 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; 4740 } 4741 } 4742