xref: /linux/fs/xfs/xfs_inode.c (revision 68f715a820b02f965e2afc584a6cb542843cbc98)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans_space.h"
20 #include "xfs_trans.h"
21 #include "xfs_buf_item.h"
22 #include "xfs_inode_item.h"
23 #include "xfs_iunlink_item.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_bmap.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_log.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
38 #include "xfs_ag.h"
39 #include "xfs_log_priv.h"
40 #include "xfs_health.h"
41 
42 struct kmem_cache *xfs_inode_cache;
43 
44 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
45 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
46 	struct xfs_inode *);
47 
48 /*
49  * helper function to extract extent size hint from inode
50  */
51 xfs_extlen_t
52 xfs_get_extsz_hint(
53 	struct xfs_inode	*ip)
54 {
55 	/*
56 	 * No point in aligning allocations if we need to COW to actually
57 	 * write to them.
58 	 */
59 	if (xfs_is_always_cow_inode(ip))
60 		return 0;
61 	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
62 		return ip->i_extsize;
63 	if (XFS_IS_REALTIME_INODE(ip))
64 		return ip->i_mount->m_sb.sb_rextsize;
65 	return 0;
66 }
67 
68 /*
69  * Helper function to extract CoW extent size hint from inode.
70  * Between the extent size hint and the CoW extent size hint, we
71  * return the greater of the two.  If the value is zero (automatic),
72  * use the default size.
73  */
74 xfs_extlen_t
75 xfs_get_cowextsz_hint(
76 	struct xfs_inode	*ip)
77 {
78 	xfs_extlen_t		a, b;
79 
80 	a = 0;
81 	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
82 		a = ip->i_cowextsize;
83 	b = xfs_get_extsz_hint(ip);
84 
85 	a = max(a, b);
86 	if (a == 0)
87 		return XFS_DEFAULT_COWEXTSZ_HINT;
88 	return a;
89 }
90 
91 /*
92  * These two are wrapper routines around the xfs_ilock() routine used to
93  * centralize some grungy code.  They are used in places that wish to lock the
94  * inode solely for reading the extents.  The reason these places can't just
95  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
96  * bringing in of the extents from disk for a file in b-tree format.  If the
97  * inode is in b-tree format, then we need to lock the inode exclusively until
98  * the extents are read in.  Locking it exclusively all the time would limit
99  * our parallelism unnecessarily, though.  What we do instead is check to see
100  * if the extents have been read in yet, and only lock the inode exclusively
101  * if they have not.
102  *
103  * The functions return a value which should be given to the corresponding
104  * xfs_iunlock() call.
105  */
106 uint
107 xfs_ilock_data_map_shared(
108 	struct xfs_inode	*ip)
109 {
110 	uint			lock_mode = XFS_ILOCK_SHARED;
111 
112 	if (xfs_need_iread_extents(&ip->i_df))
113 		lock_mode = XFS_ILOCK_EXCL;
114 	xfs_ilock(ip, lock_mode);
115 	return lock_mode;
116 }
117 
118 uint
119 xfs_ilock_attr_map_shared(
120 	struct xfs_inode	*ip)
121 {
122 	uint			lock_mode = XFS_ILOCK_SHARED;
123 
124 	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
125 		lock_mode = XFS_ILOCK_EXCL;
126 	xfs_ilock(ip, lock_mode);
127 	return lock_mode;
128 }
129 
130 /*
131  * You can't set both SHARED and EXCL for the same lock,
132  * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
133  * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
134  * to set in lock_flags.
135  */
136 static inline void
137 xfs_lock_flags_assert(
138 	uint		lock_flags)
139 {
140 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
141 		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
142 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
143 		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
144 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
145 		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
146 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
147 	ASSERT(lock_flags != 0);
148 }
149 
150 /*
151  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
152  * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
153  * various combinations of the locks to be obtained.
154  *
155  * The 3 locks should always be ordered so that the IO lock is obtained first,
156  * the mmap lock second and the ilock last in order to prevent deadlock.
157  *
158  * Basic locking order:
159  *
160  * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
161  *
162  * mmap_lock locking order:
163  *
164  * i_rwsem -> page lock -> mmap_lock
165  * mmap_lock -> invalidate_lock -> page_lock
166  *
167  * The difference in mmap_lock locking order mean that we cannot hold the
168  * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
169  * can fault in pages during copy in/out (for buffered IO) or require the
170  * mmap_lock in get_user_pages() to map the user pages into the kernel address
171  * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
172  * fault because page faults already hold the mmap_lock.
173  *
174  * Hence to serialise fully against both syscall and mmap based IO, we need to
175  * take both the i_rwsem and the invalidate_lock. These locks should *only* be
176  * both taken in places where we need to invalidate the page cache in a race
177  * free manner (e.g. truncate, hole punch and other extent manipulation
178  * functions).
179  */
180 void
181 xfs_ilock(
182 	xfs_inode_t		*ip,
183 	uint			lock_flags)
184 {
185 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
186 
187 	xfs_lock_flags_assert(lock_flags);
188 
189 	if (lock_flags & XFS_IOLOCK_EXCL) {
190 		down_write_nested(&VFS_I(ip)->i_rwsem,
191 				  XFS_IOLOCK_DEP(lock_flags));
192 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
193 		down_read_nested(&VFS_I(ip)->i_rwsem,
194 				 XFS_IOLOCK_DEP(lock_flags));
195 	}
196 
197 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
198 		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
199 				  XFS_MMAPLOCK_DEP(lock_flags));
200 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
201 		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
202 				 XFS_MMAPLOCK_DEP(lock_flags));
203 	}
204 
205 	if (lock_flags & XFS_ILOCK_EXCL)
206 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
207 	else if (lock_flags & XFS_ILOCK_SHARED)
208 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
209 }
210 
211 /*
212  * This is just like xfs_ilock(), except that the caller
213  * is guaranteed not to sleep.  It returns 1 if it gets
214  * the requested locks and 0 otherwise.  If the IO lock is
215  * obtained but the inode lock cannot be, then the IO lock
216  * is dropped before returning.
217  *
218  * ip -- the inode being locked
219  * lock_flags -- this parameter indicates the inode's locks to be
220  *       to be locked.  See the comment for xfs_ilock() for a list
221  *	 of valid values.
222  */
223 int
224 xfs_ilock_nowait(
225 	xfs_inode_t		*ip,
226 	uint			lock_flags)
227 {
228 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
229 
230 	xfs_lock_flags_assert(lock_flags);
231 
232 	if (lock_flags & XFS_IOLOCK_EXCL) {
233 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
234 			goto out;
235 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
236 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
237 			goto out;
238 	}
239 
240 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
241 		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
242 			goto out_undo_iolock;
243 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
244 		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
245 			goto out_undo_iolock;
246 	}
247 
248 	if (lock_flags & XFS_ILOCK_EXCL) {
249 		if (!mrtryupdate(&ip->i_lock))
250 			goto out_undo_mmaplock;
251 	} else if (lock_flags & XFS_ILOCK_SHARED) {
252 		if (!mrtryaccess(&ip->i_lock))
253 			goto out_undo_mmaplock;
254 	}
255 	return 1;
256 
257 out_undo_mmaplock:
258 	if (lock_flags & XFS_MMAPLOCK_EXCL)
259 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
260 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
261 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
262 out_undo_iolock:
263 	if (lock_flags & XFS_IOLOCK_EXCL)
264 		up_write(&VFS_I(ip)->i_rwsem);
265 	else if (lock_flags & XFS_IOLOCK_SHARED)
266 		up_read(&VFS_I(ip)->i_rwsem);
267 out:
268 	return 0;
269 }
270 
271 /*
272  * xfs_iunlock() is used to drop the inode locks acquired with
273  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
274  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
275  * that we know which locks to drop.
276  *
277  * ip -- the inode being unlocked
278  * lock_flags -- this parameter indicates the inode's locks to be
279  *       to be unlocked.  See the comment for xfs_ilock() for a list
280  *	 of valid values for this parameter.
281  *
282  */
283 void
284 xfs_iunlock(
285 	xfs_inode_t		*ip,
286 	uint			lock_flags)
287 {
288 	xfs_lock_flags_assert(lock_flags);
289 
290 	if (lock_flags & XFS_IOLOCK_EXCL)
291 		up_write(&VFS_I(ip)->i_rwsem);
292 	else if (lock_flags & XFS_IOLOCK_SHARED)
293 		up_read(&VFS_I(ip)->i_rwsem);
294 
295 	if (lock_flags & XFS_MMAPLOCK_EXCL)
296 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
297 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
298 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
299 
300 	if (lock_flags & XFS_ILOCK_EXCL)
301 		mrunlock_excl(&ip->i_lock);
302 	else if (lock_flags & XFS_ILOCK_SHARED)
303 		mrunlock_shared(&ip->i_lock);
304 
305 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
306 }
307 
308 /*
309  * give up write locks.  the i/o lock cannot be held nested
310  * if it is being demoted.
311  */
312 void
313 xfs_ilock_demote(
314 	xfs_inode_t		*ip,
315 	uint			lock_flags)
316 {
317 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
318 	ASSERT((lock_flags &
319 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
320 
321 	if (lock_flags & XFS_ILOCK_EXCL)
322 		mrdemote(&ip->i_lock);
323 	if (lock_flags & XFS_MMAPLOCK_EXCL)
324 		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
325 	if (lock_flags & XFS_IOLOCK_EXCL)
326 		downgrade_write(&VFS_I(ip)->i_rwsem);
327 
328 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
329 }
330 
331 #if defined(DEBUG) || defined(XFS_WARN)
332 static inline bool
333 __xfs_rwsem_islocked(
334 	struct rw_semaphore	*rwsem,
335 	bool			shared)
336 {
337 	if (!debug_locks)
338 		return rwsem_is_locked(rwsem);
339 
340 	if (!shared)
341 		return lockdep_is_held_type(rwsem, 0);
342 
343 	/*
344 	 * We are checking that the lock is held at least in shared
345 	 * mode but don't care that it might be held exclusively
346 	 * (i.e. shared | excl). Hence we check if the lock is held
347 	 * in any mode rather than an explicit shared mode.
348 	 */
349 	return lockdep_is_held_type(rwsem, -1);
350 }
351 
352 bool
353 xfs_isilocked(
354 	struct xfs_inode	*ip,
355 	uint			lock_flags)
356 {
357 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
358 		if (!(lock_flags & XFS_ILOCK_SHARED))
359 			return !!ip->i_lock.mr_writer;
360 		return rwsem_is_locked(&ip->i_lock.mr_lock);
361 	}
362 
363 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
364 		return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock,
365 				(lock_flags & XFS_MMAPLOCK_SHARED));
366 	}
367 
368 	if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
369 		return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
370 				(lock_flags & XFS_IOLOCK_SHARED));
371 	}
372 
373 	ASSERT(0);
374 	return false;
375 }
376 #endif
377 
378 /*
379  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
380  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
381  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
382  * errors and warnings.
383  */
384 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
385 static bool
386 xfs_lockdep_subclass_ok(
387 	int subclass)
388 {
389 	return subclass < MAX_LOCKDEP_SUBCLASSES;
390 }
391 #else
392 #define xfs_lockdep_subclass_ok(subclass)	(true)
393 #endif
394 
395 /*
396  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
397  * value. This can be called for any type of inode lock combination, including
398  * parent locking. Care must be taken to ensure we don't overrun the subclass
399  * storage fields in the class mask we build.
400  */
401 static inline uint
402 xfs_lock_inumorder(
403 	uint	lock_mode,
404 	uint	subclass)
405 {
406 	uint	class = 0;
407 
408 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
409 			      XFS_ILOCK_RTSUM)));
410 	ASSERT(xfs_lockdep_subclass_ok(subclass));
411 
412 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
413 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
414 		class += subclass << XFS_IOLOCK_SHIFT;
415 	}
416 
417 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
418 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
419 		class += subclass << XFS_MMAPLOCK_SHIFT;
420 	}
421 
422 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
423 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
424 		class += subclass << XFS_ILOCK_SHIFT;
425 	}
426 
427 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
428 }
429 
430 /*
431  * The following routine will lock n inodes in exclusive mode.  We assume the
432  * caller calls us with the inodes in i_ino order.
433  *
434  * We need to detect deadlock where an inode that we lock is in the AIL and we
435  * start waiting for another inode that is locked by a thread in a long running
436  * transaction (such as truncate). This can result in deadlock since the long
437  * running trans might need to wait for the inode we just locked in order to
438  * push the tail and free space in the log.
439  *
440  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
441  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
442  * lock more than one at a time, lockdep will report false positives saying we
443  * have violated locking orders.
444  */
445 static void
446 xfs_lock_inodes(
447 	struct xfs_inode	**ips,
448 	int			inodes,
449 	uint			lock_mode)
450 {
451 	int			attempts = 0;
452 	uint			i;
453 	int			j;
454 	bool			try_lock;
455 	struct xfs_log_item	*lp;
456 
457 	/*
458 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
459 	 * support an arbitrary depth of locking here, but absolute limits on
460 	 * inodes depend on the type of locking and the limits placed by
461 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
462 	 * the asserts.
463 	 */
464 	ASSERT(ips && inodes >= 2 && inodes <= 5);
465 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
466 			    XFS_ILOCK_EXCL));
467 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
468 			      XFS_ILOCK_SHARED)));
469 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
470 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
471 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
472 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
473 
474 	if (lock_mode & XFS_IOLOCK_EXCL) {
475 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
476 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
477 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
478 
479 again:
480 	try_lock = false;
481 	i = 0;
482 	for (; i < inodes; i++) {
483 		ASSERT(ips[i]);
484 
485 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
486 			continue;
487 
488 		/*
489 		 * If try_lock is not set yet, make sure all locked inodes are
490 		 * not in the AIL.  If any are, set try_lock to be used later.
491 		 */
492 		if (!try_lock) {
493 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
494 				lp = &ips[j]->i_itemp->ili_item;
495 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
496 					try_lock = true;
497 			}
498 		}
499 
500 		/*
501 		 * If any of the previous locks we have locked is in the AIL,
502 		 * we must TRY to get the second and subsequent locks. If
503 		 * we can't get any, we must release all we have
504 		 * and try again.
505 		 */
506 		if (!try_lock) {
507 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
508 			continue;
509 		}
510 
511 		/* try_lock means we have an inode locked that is in the AIL. */
512 		ASSERT(i != 0);
513 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
514 			continue;
515 
516 		/*
517 		 * Unlock all previous guys and try again.  xfs_iunlock will try
518 		 * to push the tail if the inode is in the AIL.
519 		 */
520 		attempts++;
521 		for (j = i - 1; j >= 0; j--) {
522 			/*
523 			 * Check to see if we've already unlocked this one.  Not
524 			 * the first one going back, and the inode ptr is the
525 			 * same.
526 			 */
527 			if (j != (i - 1) && ips[j] == ips[j + 1])
528 				continue;
529 
530 			xfs_iunlock(ips[j], lock_mode);
531 		}
532 
533 		if ((attempts % 5) == 0) {
534 			delay(1); /* Don't just spin the CPU */
535 		}
536 		goto again;
537 	}
538 }
539 
540 /*
541  * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
542  * mmaplock must be double-locked separately since we use i_rwsem and
543  * invalidate_lock for that. We now support taking one lock EXCL and the
544  * other SHARED.
545  */
546 void
547 xfs_lock_two_inodes(
548 	struct xfs_inode	*ip0,
549 	uint			ip0_mode,
550 	struct xfs_inode	*ip1,
551 	uint			ip1_mode)
552 {
553 	int			attempts = 0;
554 	struct xfs_log_item	*lp;
555 
556 	ASSERT(hweight32(ip0_mode) == 1);
557 	ASSERT(hweight32(ip1_mode) == 1);
558 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
559 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
561 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
562 	ASSERT(ip0->i_ino != ip1->i_ino);
563 
564 	if (ip0->i_ino > ip1->i_ino) {
565 		swap(ip0, ip1);
566 		swap(ip0_mode, ip1_mode);
567 	}
568 
569  again:
570 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
571 
572 	/*
573 	 * If the first lock we have locked is in the AIL, we must TRY to get
574 	 * the second lock. If we can't get it, we must release the first one
575 	 * and try again.
576 	 */
577 	lp = &ip0->i_itemp->ili_item;
578 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
579 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
580 			xfs_iunlock(ip0, ip0_mode);
581 			if ((++attempts % 5) == 0)
582 				delay(1); /* Don't just spin the CPU */
583 			goto again;
584 		}
585 	} else {
586 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
587 	}
588 }
589 
590 uint
591 xfs_ip2xflags(
592 	struct xfs_inode	*ip)
593 {
594 	uint			flags = 0;
595 
596 	if (ip->i_diflags & XFS_DIFLAG_ANY) {
597 		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
598 			flags |= FS_XFLAG_REALTIME;
599 		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
600 			flags |= FS_XFLAG_PREALLOC;
601 		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
602 			flags |= FS_XFLAG_IMMUTABLE;
603 		if (ip->i_diflags & XFS_DIFLAG_APPEND)
604 			flags |= FS_XFLAG_APPEND;
605 		if (ip->i_diflags & XFS_DIFLAG_SYNC)
606 			flags |= FS_XFLAG_SYNC;
607 		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
608 			flags |= FS_XFLAG_NOATIME;
609 		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
610 			flags |= FS_XFLAG_NODUMP;
611 		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
612 			flags |= FS_XFLAG_RTINHERIT;
613 		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
614 			flags |= FS_XFLAG_PROJINHERIT;
615 		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
616 			flags |= FS_XFLAG_NOSYMLINKS;
617 		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
618 			flags |= FS_XFLAG_EXTSIZE;
619 		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
620 			flags |= FS_XFLAG_EXTSZINHERIT;
621 		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
622 			flags |= FS_XFLAG_NODEFRAG;
623 		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
624 			flags |= FS_XFLAG_FILESTREAM;
625 	}
626 
627 	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
628 		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
629 			flags |= FS_XFLAG_DAX;
630 		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
631 			flags |= FS_XFLAG_COWEXTSIZE;
632 	}
633 
634 	if (xfs_inode_has_attr_fork(ip))
635 		flags |= FS_XFLAG_HASATTR;
636 	return flags;
637 }
638 
639 /*
640  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
641  * is allowed, otherwise it has to be an exact match. If a CI match is found,
642  * ci_name->name will point to a the actual name (caller must free) or
643  * will be set to NULL if an exact match is found.
644  */
645 int
646 xfs_lookup(
647 	struct xfs_inode	*dp,
648 	const struct xfs_name	*name,
649 	struct xfs_inode	**ipp,
650 	struct xfs_name		*ci_name)
651 {
652 	xfs_ino_t		inum;
653 	int			error;
654 
655 	trace_xfs_lookup(dp, name);
656 
657 	if (xfs_is_shutdown(dp->i_mount))
658 		return -EIO;
659 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
660 		return -EIO;
661 
662 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
663 	if (error)
664 		goto out_unlock;
665 
666 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
667 	if (error)
668 		goto out_free_name;
669 
670 	return 0;
671 
672 out_free_name:
673 	if (ci_name)
674 		kmem_free(ci_name->name);
675 out_unlock:
676 	*ipp = NULL;
677 	return error;
678 }
679 
680 /* Propagate di_flags from a parent inode to a child inode. */
681 static void
682 xfs_inode_inherit_flags(
683 	struct xfs_inode	*ip,
684 	const struct xfs_inode	*pip)
685 {
686 	unsigned int		di_flags = 0;
687 	xfs_failaddr_t		failaddr;
688 	umode_t			mode = VFS_I(ip)->i_mode;
689 
690 	if (S_ISDIR(mode)) {
691 		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
692 			di_flags |= XFS_DIFLAG_RTINHERIT;
693 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
694 			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
695 			ip->i_extsize = pip->i_extsize;
696 		}
697 		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
698 			di_flags |= XFS_DIFLAG_PROJINHERIT;
699 	} else if (S_ISREG(mode)) {
700 		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
701 		    xfs_has_realtime(ip->i_mount))
702 			di_flags |= XFS_DIFLAG_REALTIME;
703 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
704 			di_flags |= XFS_DIFLAG_EXTSIZE;
705 			ip->i_extsize = pip->i_extsize;
706 		}
707 	}
708 	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
709 	    xfs_inherit_noatime)
710 		di_flags |= XFS_DIFLAG_NOATIME;
711 	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
712 	    xfs_inherit_nodump)
713 		di_flags |= XFS_DIFLAG_NODUMP;
714 	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
715 	    xfs_inherit_sync)
716 		di_flags |= XFS_DIFLAG_SYNC;
717 	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
718 	    xfs_inherit_nosymlinks)
719 		di_flags |= XFS_DIFLAG_NOSYMLINKS;
720 	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
721 	    xfs_inherit_nodefrag)
722 		di_flags |= XFS_DIFLAG_NODEFRAG;
723 	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
724 		di_flags |= XFS_DIFLAG_FILESTREAM;
725 
726 	ip->i_diflags |= di_flags;
727 
728 	/*
729 	 * Inode verifiers on older kernels only check that the extent size
730 	 * hint is an integer multiple of the rt extent size on realtime files.
731 	 * They did not check the hint alignment on a directory with both
732 	 * rtinherit and extszinherit flags set.  If the misaligned hint is
733 	 * propagated from a directory into a new realtime file, new file
734 	 * allocations will fail due to math errors in the rt allocator and/or
735 	 * trip the verifiers.  Validate the hint settings in the new file so
736 	 * that we don't let broken hints propagate.
737 	 */
738 	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
739 			VFS_I(ip)->i_mode, ip->i_diflags);
740 	if (failaddr) {
741 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
742 				   XFS_DIFLAG_EXTSZINHERIT);
743 		ip->i_extsize = 0;
744 	}
745 }
746 
747 /* Propagate di_flags2 from a parent inode to a child inode. */
748 static void
749 xfs_inode_inherit_flags2(
750 	struct xfs_inode	*ip,
751 	const struct xfs_inode	*pip)
752 {
753 	xfs_failaddr_t		failaddr;
754 
755 	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
756 		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
757 		ip->i_cowextsize = pip->i_cowextsize;
758 	}
759 	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
760 		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
761 
762 	/* Don't let invalid cowextsize hints propagate. */
763 	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
764 			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
765 	if (failaddr) {
766 		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
767 		ip->i_cowextsize = 0;
768 	}
769 }
770 
771 /*
772  * Initialise a newly allocated inode and return the in-core inode to the
773  * caller locked exclusively.
774  */
775 int
776 xfs_init_new_inode(
777 	struct mnt_idmap	*idmap,
778 	struct xfs_trans	*tp,
779 	struct xfs_inode	*pip,
780 	xfs_ino_t		ino,
781 	umode_t			mode,
782 	xfs_nlink_t		nlink,
783 	dev_t			rdev,
784 	prid_t			prid,
785 	bool			init_xattrs,
786 	struct xfs_inode	**ipp)
787 {
788 	struct inode		*dir = pip ? VFS_I(pip) : NULL;
789 	struct xfs_mount	*mp = tp->t_mountp;
790 	struct xfs_inode	*ip;
791 	unsigned int		flags;
792 	int			error;
793 	struct timespec64	tv;
794 	struct inode		*inode;
795 
796 	/*
797 	 * Protect against obviously corrupt allocation btree records. Later
798 	 * xfs_iget checks will catch re-allocation of other active in-memory
799 	 * and on-disk inodes. If we don't catch reallocating the parent inode
800 	 * here we will deadlock in xfs_iget() so we have to do these checks
801 	 * first.
802 	 */
803 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
804 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
805 		return -EFSCORRUPTED;
806 	}
807 
808 	/*
809 	 * Get the in-core inode with the lock held exclusively to prevent
810 	 * others from looking at until we're done.
811 	 */
812 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
813 	if (error)
814 		return error;
815 
816 	ASSERT(ip != NULL);
817 	inode = VFS_I(ip);
818 	set_nlink(inode, nlink);
819 	inode->i_rdev = rdev;
820 	ip->i_projid = prid;
821 
822 	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
823 		inode_fsuid_set(inode, idmap);
824 		inode->i_gid = dir->i_gid;
825 		inode->i_mode = mode;
826 	} else {
827 		inode_init_owner(idmap, inode, dir, mode);
828 	}
829 
830 	/*
831 	 * If the group ID of the new file does not match the effective group
832 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
833 	 * (and only if the irix_sgid_inherit compatibility variable is set).
834 	 */
835 	if (irix_sgid_inherit && (inode->i_mode & S_ISGID) &&
836 	    !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode)))
837 		inode->i_mode &= ~S_ISGID;
838 
839 	ip->i_disk_size = 0;
840 	ip->i_df.if_nextents = 0;
841 	ASSERT(ip->i_nblocks == 0);
842 
843 	tv = inode_set_ctime_current(inode);
844 	inode_set_mtime_to_ts(inode, tv);
845 	inode_set_atime_to_ts(inode, tv);
846 
847 	ip->i_extsize = 0;
848 	ip->i_diflags = 0;
849 
850 	if (xfs_has_v3inodes(mp)) {
851 		inode_set_iversion(inode, 1);
852 		ip->i_cowextsize = 0;
853 		ip->i_crtime = tv;
854 	}
855 
856 	flags = XFS_ILOG_CORE;
857 	switch (mode & S_IFMT) {
858 	case S_IFIFO:
859 	case S_IFCHR:
860 	case S_IFBLK:
861 	case S_IFSOCK:
862 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
863 		flags |= XFS_ILOG_DEV;
864 		break;
865 	case S_IFREG:
866 	case S_IFDIR:
867 		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
868 			xfs_inode_inherit_flags(ip, pip);
869 		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
870 			xfs_inode_inherit_flags2(ip, pip);
871 		fallthrough;
872 	case S_IFLNK:
873 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
874 		ip->i_df.if_bytes = 0;
875 		ip->i_df.if_data = NULL;
876 		break;
877 	default:
878 		ASSERT(0);
879 	}
880 
881 	/*
882 	 * If we need to create attributes immediately after allocating the
883 	 * inode, initialise an empty attribute fork right now. We use the
884 	 * default fork offset for attributes here as we don't know exactly what
885 	 * size or how many attributes we might be adding. We can do this
886 	 * safely here because we know the data fork is completely empty and
887 	 * this saves us from needing to run a separate transaction to set the
888 	 * fork offset in the immediate future.
889 	 */
890 	if (init_xattrs && xfs_has_attr(mp)) {
891 		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
892 		xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
893 	}
894 
895 	/*
896 	 * Log the new values stuffed into the inode.
897 	 */
898 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
899 	xfs_trans_log_inode(tp, ip, flags);
900 
901 	/* now that we have an i_mode we can setup the inode structure */
902 	xfs_setup_inode(ip);
903 
904 	*ipp = ip;
905 	return 0;
906 }
907 
908 /*
909  * Decrement the link count on an inode & log the change.  If this causes the
910  * link count to go to zero, move the inode to AGI unlinked list so that it can
911  * be freed when the last active reference goes away via xfs_inactive().
912  */
913 static int			/* error */
914 xfs_droplink(
915 	xfs_trans_t *tp,
916 	xfs_inode_t *ip)
917 {
918 	if (VFS_I(ip)->i_nlink == 0) {
919 		xfs_alert(ip->i_mount,
920 			  "%s: Attempt to drop inode (%llu) with nlink zero.",
921 			  __func__, ip->i_ino);
922 		return -EFSCORRUPTED;
923 	}
924 
925 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
926 
927 	drop_nlink(VFS_I(ip));
928 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
929 
930 	if (VFS_I(ip)->i_nlink)
931 		return 0;
932 
933 	return xfs_iunlink(tp, ip);
934 }
935 
936 /*
937  * Increment the link count on an inode & log the change.
938  */
939 static void
940 xfs_bumplink(
941 	xfs_trans_t *tp,
942 	xfs_inode_t *ip)
943 {
944 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
945 
946 	inc_nlink(VFS_I(ip));
947 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
948 }
949 
950 int
951 xfs_create(
952 	struct mnt_idmap	*idmap,
953 	xfs_inode_t		*dp,
954 	struct xfs_name		*name,
955 	umode_t			mode,
956 	dev_t			rdev,
957 	bool			init_xattrs,
958 	xfs_inode_t		**ipp)
959 {
960 	int			is_dir = S_ISDIR(mode);
961 	struct xfs_mount	*mp = dp->i_mount;
962 	struct xfs_inode	*ip = NULL;
963 	struct xfs_trans	*tp = NULL;
964 	int			error;
965 	bool                    unlock_dp_on_error = false;
966 	prid_t			prid;
967 	struct xfs_dquot	*udqp = NULL;
968 	struct xfs_dquot	*gdqp = NULL;
969 	struct xfs_dquot	*pdqp = NULL;
970 	struct xfs_trans_res	*tres;
971 	uint			resblks;
972 	xfs_ino_t		ino;
973 
974 	trace_xfs_create(dp, name);
975 
976 	if (xfs_is_shutdown(mp))
977 		return -EIO;
978 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
979 		return -EIO;
980 
981 	prid = xfs_get_initial_prid(dp);
982 
983 	/*
984 	 * Make sure that we have allocated dquot(s) on disk.
985 	 */
986 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
987 			mapped_fsgid(idmap, &init_user_ns), prid,
988 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
989 			&udqp, &gdqp, &pdqp);
990 	if (error)
991 		return error;
992 
993 	if (is_dir) {
994 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
995 		tres = &M_RES(mp)->tr_mkdir;
996 	} else {
997 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
998 		tres = &M_RES(mp)->tr_create;
999 	}
1000 
1001 	/*
1002 	 * Initially assume that the file does not exist and
1003 	 * reserve the resources for that case.  If that is not
1004 	 * the case we'll drop the one we have and get a more
1005 	 * appropriate transaction later.
1006 	 */
1007 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1008 			&tp);
1009 	if (error == -ENOSPC) {
1010 		/* flush outstanding delalloc blocks and retry */
1011 		xfs_flush_inodes(mp);
1012 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1013 				resblks, &tp);
1014 	}
1015 	if (error)
1016 		goto out_release_dquots;
1017 
1018 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1019 	unlock_dp_on_error = true;
1020 
1021 	/*
1022 	 * A newly created regular or special file just has one directory
1023 	 * entry pointing to them, but a directory also the "." entry
1024 	 * pointing to itself.
1025 	 */
1026 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1027 	if (!error)
1028 		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1029 				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1030 	if (error)
1031 		goto out_trans_cancel;
1032 
1033 	/*
1034 	 * Now we join the directory inode to the transaction.  We do not do it
1035 	 * earlier because xfs_dialloc might commit the previous transaction
1036 	 * (and release all the locks).  An error from here on will result in
1037 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1038 	 * error path.
1039 	 */
1040 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1041 	unlock_dp_on_error = false;
1042 
1043 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1044 					resblks - XFS_IALLOC_SPACE_RES(mp));
1045 	if (error) {
1046 		ASSERT(error != -ENOSPC);
1047 		goto out_trans_cancel;
1048 	}
1049 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1050 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1051 
1052 	if (is_dir) {
1053 		error = xfs_dir_init(tp, ip, dp);
1054 		if (error)
1055 			goto out_trans_cancel;
1056 
1057 		xfs_bumplink(tp, dp);
1058 	}
1059 
1060 	/*
1061 	 * If this is a synchronous mount, make sure that the
1062 	 * create transaction goes to disk before returning to
1063 	 * the user.
1064 	 */
1065 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1066 		xfs_trans_set_sync(tp);
1067 
1068 	/*
1069 	 * Attach the dquot(s) to the inodes and modify them incore.
1070 	 * These ids of the inode couldn't have changed since the new
1071 	 * inode has been locked ever since it was created.
1072 	 */
1073 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1074 
1075 	error = xfs_trans_commit(tp);
1076 	if (error)
1077 		goto out_release_inode;
1078 
1079 	xfs_qm_dqrele(udqp);
1080 	xfs_qm_dqrele(gdqp);
1081 	xfs_qm_dqrele(pdqp);
1082 
1083 	*ipp = ip;
1084 	return 0;
1085 
1086  out_trans_cancel:
1087 	xfs_trans_cancel(tp);
1088  out_release_inode:
1089 	/*
1090 	 * Wait until after the current transaction is aborted to finish the
1091 	 * setup of the inode and release the inode.  This prevents recursive
1092 	 * transactions and deadlocks from xfs_inactive.
1093 	 */
1094 	if (ip) {
1095 		xfs_finish_inode_setup(ip);
1096 		xfs_irele(ip);
1097 	}
1098  out_release_dquots:
1099 	xfs_qm_dqrele(udqp);
1100 	xfs_qm_dqrele(gdqp);
1101 	xfs_qm_dqrele(pdqp);
1102 
1103 	if (unlock_dp_on_error)
1104 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1105 	return error;
1106 }
1107 
1108 int
1109 xfs_create_tmpfile(
1110 	struct mnt_idmap	*idmap,
1111 	struct xfs_inode	*dp,
1112 	umode_t			mode,
1113 	struct xfs_inode	**ipp)
1114 {
1115 	struct xfs_mount	*mp = dp->i_mount;
1116 	struct xfs_inode	*ip = NULL;
1117 	struct xfs_trans	*tp = NULL;
1118 	int			error;
1119 	prid_t                  prid;
1120 	struct xfs_dquot	*udqp = NULL;
1121 	struct xfs_dquot	*gdqp = NULL;
1122 	struct xfs_dquot	*pdqp = NULL;
1123 	struct xfs_trans_res	*tres;
1124 	uint			resblks;
1125 	xfs_ino_t		ino;
1126 
1127 	if (xfs_is_shutdown(mp))
1128 		return -EIO;
1129 
1130 	prid = xfs_get_initial_prid(dp);
1131 
1132 	/*
1133 	 * Make sure that we have allocated dquot(s) on disk.
1134 	 */
1135 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1136 			mapped_fsgid(idmap, &init_user_ns), prid,
1137 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1138 			&udqp, &gdqp, &pdqp);
1139 	if (error)
1140 		return error;
1141 
1142 	resblks = XFS_IALLOC_SPACE_RES(mp);
1143 	tres = &M_RES(mp)->tr_create_tmpfile;
1144 
1145 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1146 			&tp);
1147 	if (error)
1148 		goto out_release_dquots;
1149 
1150 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1151 	if (!error)
1152 		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1153 				0, 0, prid, false, &ip);
1154 	if (error)
1155 		goto out_trans_cancel;
1156 
1157 	if (xfs_has_wsync(mp))
1158 		xfs_trans_set_sync(tp);
1159 
1160 	/*
1161 	 * Attach the dquot(s) to the inodes and modify them incore.
1162 	 * These ids of the inode couldn't have changed since the new
1163 	 * inode has been locked ever since it was created.
1164 	 */
1165 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1166 
1167 	error = xfs_iunlink(tp, ip);
1168 	if (error)
1169 		goto out_trans_cancel;
1170 
1171 	error = xfs_trans_commit(tp);
1172 	if (error)
1173 		goto out_release_inode;
1174 
1175 	xfs_qm_dqrele(udqp);
1176 	xfs_qm_dqrele(gdqp);
1177 	xfs_qm_dqrele(pdqp);
1178 
1179 	*ipp = ip;
1180 	return 0;
1181 
1182  out_trans_cancel:
1183 	xfs_trans_cancel(tp);
1184  out_release_inode:
1185 	/*
1186 	 * Wait until after the current transaction is aborted to finish the
1187 	 * setup of the inode and release the inode.  This prevents recursive
1188 	 * transactions and deadlocks from xfs_inactive.
1189 	 */
1190 	if (ip) {
1191 		xfs_finish_inode_setup(ip);
1192 		xfs_irele(ip);
1193 	}
1194  out_release_dquots:
1195 	xfs_qm_dqrele(udqp);
1196 	xfs_qm_dqrele(gdqp);
1197 	xfs_qm_dqrele(pdqp);
1198 
1199 	return error;
1200 }
1201 
1202 int
1203 xfs_link(
1204 	xfs_inode_t		*tdp,
1205 	xfs_inode_t		*sip,
1206 	struct xfs_name		*target_name)
1207 {
1208 	xfs_mount_t		*mp = tdp->i_mount;
1209 	xfs_trans_t		*tp;
1210 	int			error, nospace_error = 0;
1211 	int			resblks;
1212 
1213 	trace_xfs_link(tdp, target_name);
1214 
1215 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1216 
1217 	if (xfs_is_shutdown(mp))
1218 		return -EIO;
1219 	if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
1220 		return -EIO;
1221 
1222 	error = xfs_qm_dqattach(sip);
1223 	if (error)
1224 		goto std_return;
1225 
1226 	error = xfs_qm_dqattach(tdp);
1227 	if (error)
1228 		goto std_return;
1229 
1230 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1231 	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1232 			&tp, &nospace_error);
1233 	if (error)
1234 		goto std_return;
1235 
1236 	/*
1237 	 * If we are using project inheritance, we only allow hard link
1238 	 * creation in our tree when the project IDs are the same; else
1239 	 * the tree quota mechanism could be circumvented.
1240 	 */
1241 	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1242 		     tdp->i_projid != sip->i_projid)) {
1243 		error = -EXDEV;
1244 		goto error_return;
1245 	}
1246 
1247 	if (!resblks) {
1248 		error = xfs_dir_canenter(tp, tdp, target_name);
1249 		if (error)
1250 			goto error_return;
1251 	}
1252 
1253 	/*
1254 	 * Handle initial link state of O_TMPFILE inode
1255 	 */
1256 	if (VFS_I(sip)->i_nlink == 0) {
1257 		struct xfs_perag	*pag;
1258 
1259 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1260 		error = xfs_iunlink_remove(tp, pag, sip);
1261 		xfs_perag_put(pag);
1262 		if (error)
1263 			goto error_return;
1264 	}
1265 
1266 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1267 				   resblks);
1268 	if (error)
1269 		goto error_return;
1270 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1271 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1272 
1273 	xfs_bumplink(tp, sip);
1274 
1275 	/*
1276 	 * If this is a synchronous mount, make sure that the
1277 	 * link transaction goes to disk before returning to
1278 	 * the user.
1279 	 */
1280 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1281 		xfs_trans_set_sync(tp);
1282 
1283 	return xfs_trans_commit(tp);
1284 
1285  error_return:
1286 	xfs_trans_cancel(tp);
1287  std_return:
1288 	if (error == -ENOSPC && nospace_error)
1289 		error = nospace_error;
1290 	return error;
1291 }
1292 
1293 /* Clear the reflink flag and the cowblocks tag if possible. */
1294 static void
1295 xfs_itruncate_clear_reflink_flags(
1296 	struct xfs_inode	*ip)
1297 {
1298 	struct xfs_ifork	*dfork;
1299 	struct xfs_ifork	*cfork;
1300 
1301 	if (!xfs_is_reflink_inode(ip))
1302 		return;
1303 	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1304 	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1305 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1306 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1307 	if (cfork->if_bytes == 0)
1308 		xfs_inode_clear_cowblocks_tag(ip);
1309 }
1310 
1311 /*
1312  * Free up the underlying blocks past new_size.  The new size must be smaller
1313  * than the current size.  This routine can be used both for the attribute and
1314  * data fork, and does not modify the inode size, which is left to the caller.
1315  *
1316  * The transaction passed to this routine must have made a permanent log
1317  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1318  * given transaction and start new ones, so make sure everything involved in
1319  * the transaction is tidy before calling here.  Some transaction will be
1320  * returned to the caller to be committed.  The incoming transaction must
1321  * already include the inode, and both inode locks must be held exclusively.
1322  * The inode must also be "held" within the transaction.  On return the inode
1323  * will be "held" within the returned transaction.  This routine does NOT
1324  * require any disk space to be reserved for it within the transaction.
1325  *
1326  * If we get an error, we must return with the inode locked and linked into the
1327  * current transaction. This keeps things simple for the higher level code,
1328  * because it always knows that the inode is locked and held in the transaction
1329  * that returns to it whether errors occur or not.  We don't mark the inode
1330  * dirty on error so that transactions can be easily aborted if possible.
1331  */
1332 int
1333 xfs_itruncate_extents_flags(
1334 	struct xfs_trans	**tpp,
1335 	struct xfs_inode	*ip,
1336 	int			whichfork,
1337 	xfs_fsize_t		new_size,
1338 	int			flags)
1339 {
1340 	struct xfs_mount	*mp = ip->i_mount;
1341 	struct xfs_trans	*tp = *tpp;
1342 	xfs_fileoff_t		first_unmap_block;
1343 	int			error = 0;
1344 
1345 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1346 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1347 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1348 	ASSERT(new_size <= XFS_ISIZE(ip));
1349 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1350 	ASSERT(ip->i_itemp != NULL);
1351 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1352 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1353 
1354 	trace_xfs_itruncate_extents_start(ip, new_size);
1355 
1356 	flags |= xfs_bmapi_aflag(whichfork);
1357 
1358 	/*
1359 	 * Since it is possible for space to become allocated beyond
1360 	 * the end of the file (in a crash where the space is allocated
1361 	 * but the inode size is not yet updated), simply remove any
1362 	 * blocks which show up between the new EOF and the maximum
1363 	 * possible file size.
1364 	 *
1365 	 * We have to free all the blocks to the bmbt maximum offset, even if
1366 	 * the page cache can't scale that far.
1367 	 */
1368 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1369 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1370 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1371 		return 0;
1372 	}
1373 
1374 	error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1375 			XFS_MAX_FILEOFF);
1376 	if (error)
1377 		goto out;
1378 
1379 	if (whichfork == XFS_DATA_FORK) {
1380 		/* Remove all pending CoW reservations. */
1381 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1382 				first_unmap_block, XFS_MAX_FILEOFF, true);
1383 		if (error)
1384 			goto out;
1385 
1386 		xfs_itruncate_clear_reflink_flags(ip);
1387 	}
1388 
1389 	/*
1390 	 * Always re-log the inode so that our permanent transaction can keep
1391 	 * on rolling it forward in the log.
1392 	 */
1393 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1394 
1395 	trace_xfs_itruncate_extents_end(ip, new_size);
1396 
1397 out:
1398 	*tpp = tp;
1399 	return error;
1400 }
1401 
1402 int
1403 xfs_release(
1404 	xfs_inode_t	*ip)
1405 {
1406 	xfs_mount_t	*mp = ip->i_mount;
1407 	int		error = 0;
1408 
1409 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1410 		return 0;
1411 
1412 	/* If this is a read-only mount, don't do this (would generate I/O) */
1413 	if (xfs_is_readonly(mp))
1414 		return 0;
1415 
1416 	if (!xfs_is_shutdown(mp)) {
1417 		int truncated;
1418 
1419 		/*
1420 		 * If we previously truncated this file and removed old data
1421 		 * in the process, we want to initiate "early" writeout on
1422 		 * the last close.  This is an attempt to combat the notorious
1423 		 * NULL files problem which is particularly noticeable from a
1424 		 * truncate down, buffered (re-)write (delalloc), followed by
1425 		 * a crash.  What we are effectively doing here is
1426 		 * significantly reducing the time window where we'd otherwise
1427 		 * be exposed to that problem.
1428 		 */
1429 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1430 		if (truncated) {
1431 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1432 			if (ip->i_delayed_blks > 0) {
1433 				error = filemap_flush(VFS_I(ip)->i_mapping);
1434 				if (error)
1435 					return error;
1436 			}
1437 		}
1438 	}
1439 
1440 	if (VFS_I(ip)->i_nlink == 0)
1441 		return 0;
1442 
1443 	/*
1444 	 * If we can't get the iolock just skip truncating the blocks past EOF
1445 	 * because we could deadlock with the mmap_lock otherwise. We'll get
1446 	 * another chance to drop them once the last reference to the inode is
1447 	 * dropped, so we'll never leak blocks permanently.
1448 	 */
1449 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1450 		return 0;
1451 
1452 	if (xfs_can_free_eofblocks(ip, false)) {
1453 		/*
1454 		 * Check if the inode is being opened, written and closed
1455 		 * frequently and we have delayed allocation blocks outstanding
1456 		 * (e.g. streaming writes from the NFS server), truncating the
1457 		 * blocks past EOF will cause fragmentation to occur.
1458 		 *
1459 		 * In this case don't do the truncation, but we have to be
1460 		 * careful how we detect this case. Blocks beyond EOF show up as
1461 		 * i_delayed_blks even when the inode is clean, so we need to
1462 		 * truncate them away first before checking for a dirty release.
1463 		 * Hence on the first dirty close we will still remove the
1464 		 * speculative allocation, but after that we will leave it in
1465 		 * place.
1466 		 */
1467 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1468 			goto out_unlock;
1469 
1470 		error = xfs_free_eofblocks(ip);
1471 		if (error)
1472 			goto out_unlock;
1473 
1474 		/* delalloc blocks after truncation means it really is dirty */
1475 		if (ip->i_delayed_blks)
1476 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1477 	}
1478 
1479 out_unlock:
1480 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1481 	return error;
1482 }
1483 
1484 /*
1485  * xfs_inactive_truncate
1486  *
1487  * Called to perform a truncate when an inode becomes unlinked.
1488  */
1489 STATIC int
1490 xfs_inactive_truncate(
1491 	struct xfs_inode *ip)
1492 {
1493 	struct xfs_mount	*mp = ip->i_mount;
1494 	struct xfs_trans	*tp;
1495 	int			error;
1496 
1497 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1498 	if (error) {
1499 		ASSERT(xfs_is_shutdown(mp));
1500 		return error;
1501 	}
1502 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1503 	xfs_trans_ijoin(tp, ip, 0);
1504 
1505 	/*
1506 	 * Log the inode size first to prevent stale data exposure in the event
1507 	 * of a system crash before the truncate completes. See the related
1508 	 * comment in xfs_vn_setattr_size() for details.
1509 	 */
1510 	ip->i_disk_size = 0;
1511 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1512 
1513 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1514 	if (error)
1515 		goto error_trans_cancel;
1516 
1517 	ASSERT(ip->i_df.if_nextents == 0);
1518 
1519 	error = xfs_trans_commit(tp);
1520 	if (error)
1521 		goto error_unlock;
1522 
1523 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1524 	return 0;
1525 
1526 error_trans_cancel:
1527 	xfs_trans_cancel(tp);
1528 error_unlock:
1529 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1530 	return error;
1531 }
1532 
1533 /*
1534  * xfs_inactive_ifree()
1535  *
1536  * Perform the inode free when an inode is unlinked.
1537  */
1538 STATIC int
1539 xfs_inactive_ifree(
1540 	struct xfs_inode *ip)
1541 {
1542 	struct xfs_mount	*mp = ip->i_mount;
1543 	struct xfs_trans	*tp;
1544 	int			error;
1545 
1546 	/*
1547 	 * We try to use a per-AG reservation for any block needed by the finobt
1548 	 * tree, but as the finobt feature predates the per-AG reservation
1549 	 * support a degraded file system might not have enough space for the
1550 	 * reservation at mount time.  In that case try to dip into the reserved
1551 	 * pool and pray.
1552 	 *
1553 	 * Send a warning if the reservation does happen to fail, as the inode
1554 	 * now remains allocated and sits on the unlinked list until the fs is
1555 	 * repaired.
1556 	 */
1557 	if (unlikely(mp->m_finobt_nores)) {
1558 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1559 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1560 				&tp);
1561 	} else {
1562 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1563 	}
1564 	if (error) {
1565 		if (error == -ENOSPC) {
1566 			xfs_warn_ratelimited(mp,
1567 			"Failed to remove inode(s) from unlinked list. "
1568 			"Please free space, unmount and run xfs_repair.");
1569 		} else {
1570 			ASSERT(xfs_is_shutdown(mp));
1571 		}
1572 		return error;
1573 	}
1574 
1575 	/*
1576 	 * We do not hold the inode locked across the entire rolling transaction
1577 	 * here. We only need to hold it for the first transaction that
1578 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1579 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1580 	 * here breaks the relationship between cluster buffer invalidation and
1581 	 * stale inode invalidation on cluster buffer item journal commit
1582 	 * completion, and can result in leaving dirty stale inodes hanging
1583 	 * around in memory.
1584 	 *
1585 	 * We have no need for serialising this inode operation against other
1586 	 * operations - we freed the inode and hence reallocation is required
1587 	 * and that will serialise on reallocating the space the deferops need
1588 	 * to free. Hence we can unlock the inode on the first commit of
1589 	 * the transaction rather than roll it right through the deferops. This
1590 	 * avoids relogging the XFS_ISTALE inode.
1591 	 *
1592 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1593 	 * by asserting that the inode is still locked when it returns.
1594 	 */
1595 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1596 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1597 
1598 	error = xfs_ifree(tp, ip);
1599 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1600 	if (error) {
1601 		/*
1602 		 * If we fail to free the inode, shut down.  The cancel
1603 		 * might do that, we need to make sure.  Otherwise the
1604 		 * inode might be lost for a long time or forever.
1605 		 */
1606 		if (!xfs_is_shutdown(mp)) {
1607 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1608 				__func__, error);
1609 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1610 		}
1611 		xfs_trans_cancel(tp);
1612 		return error;
1613 	}
1614 
1615 	/*
1616 	 * Credit the quota account(s). The inode is gone.
1617 	 */
1618 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1619 
1620 	return xfs_trans_commit(tp);
1621 }
1622 
1623 /*
1624  * Returns true if we need to update the on-disk metadata before we can free
1625  * the memory used by this inode.  Updates include freeing post-eof
1626  * preallocations; freeing COW staging extents; and marking the inode free in
1627  * the inobt if it is on the unlinked list.
1628  */
1629 bool
1630 xfs_inode_needs_inactive(
1631 	struct xfs_inode	*ip)
1632 {
1633 	struct xfs_mount	*mp = ip->i_mount;
1634 	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1635 
1636 	/*
1637 	 * If the inode is already free, then there can be nothing
1638 	 * to clean up here.
1639 	 */
1640 	if (VFS_I(ip)->i_mode == 0)
1641 		return false;
1642 
1643 	/*
1644 	 * If this is a read-only mount, don't do this (would generate I/O)
1645 	 * unless we're in log recovery and cleaning the iunlinked list.
1646 	 */
1647 	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1648 		return false;
1649 
1650 	/* If the log isn't running, push inodes straight to reclaim. */
1651 	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1652 		return false;
1653 
1654 	/* Metadata inodes require explicit resource cleanup. */
1655 	if (xfs_is_metadata_inode(ip))
1656 		return false;
1657 
1658 	/* Want to clean out the cow blocks if there are any. */
1659 	if (cow_ifp && cow_ifp->if_bytes > 0)
1660 		return true;
1661 
1662 	/* Unlinked files must be freed. */
1663 	if (VFS_I(ip)->i_nlink == 0)
1664 		return true;
1665 
1666 	/*
1667 	 * This file isn't being freed, so check if there are post-eof blocks
1668 	 * to free.  @force is true because we are evicting an inode from the
1669 	 * cache.  Post-eof blocks must be freed, lest we end up with broken
1670 	 * free space accounting.
1671 	 *
1672 	 * Note: don't bother with iolock here since lockdep complains about
1673 	 * acquiring it in reclaim context. We have the only reference to the
1674 	 * inode at this point anyways.
1675 	 */
1676 	return xfs_can_free_eofblocks(ip, true);
1677 }
1678 
1679 /*
1680  * xfs_inactive
1681  *
1682  * This is called when the vnode reference count for the vnode
1683  * goes to zero.  If the file has been unlinked, then it must
1684  * now be truncated.  Also, we clear all of the read-ahead state
1685  * kept for the inode here since the file is now closed.
1686  */
1687 int
1688 xfs_inactive(
1689 	xfs_inode_t	*ip)
1690 {
1691 	struct xfs_mount	*mp;
1692 	int			error = 0;
1693 	int			truncate = 0;
1694 
1695 	/*
1696 	 * If the inode is already free, then there can be nothing
1697 	 * to clean up here.
1698 	 */
1699 	if (VFS_I(ip)->i_mode == 0) {
1700 		ASSERT(ip->i_df.if_broot_bytes == 0);
1701 		goto out;
1702 	}
1703 
1704 	mp = ip->i_mount;
1705 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1706 
1707 	/*
1708 	 * If this is a read-only mount, don't do this (would generate I/O)
1709 	 * unless we're in log recovery and cleaning the iunlinked list.
1710 	 */
1711 	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1712 		goto out;
1713 
1714 	/* Metadata inodes require explicit resource cleanup. */
1715 	if (xfs_is_metadata_inode(ip))
1716 		goto out;
1717 
1718 	/* Try to clean out the cow blocks if there are any. */
1719 	if (xfs_inode_has_cow_data(ip))
1720 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1721 
1722 	if (VFS_I(ip)->i_nlink != 0) {
1723 		/*
1724 		 * force is true because we are evicting an inode from the
1725 		 * cache. Post-eof blocks must be freed, lest we end up with
1726 		 * broken free space accounting.
1727 		 *
1728 		 * Note: don't bother with iolock here since lockdep complains
1729 		 * about acquiring it in reclaim context. We have the only
1730 		 * reference to the inode at this point anyways.
1731 		 */
1732 		if (xfs_can_free_eofblocks(ip, true))
1733 			error = xfs_free_eofblocks(ip);
1734 
1735 		goto out;
1736 	}
1737 
1738 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1739 	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1740 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1741 		truncate = 1;
1742 
1743 	if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1744 		/*
1745 		 * If this inode is being inactivated during a quotacheck and
1746 		 * has not yet been scanned by quotacheck, we /must/ remove
1747 		 * the dquots from the inode before inactivation changes the
1748 		 * block and inode counts.  Most probably this is a result of
1749 		 * reloading the incore iunlinked list to purge unrecovered
1750 		 * unlinked inodes.
1751 		 */
1752 		xfs_qm_dqdetach(ip);
1753 	} else {
1754 		error = xfs_qm_dqattach(ip);
1755 		if (error)
1756 			goto out;
1757 	}
1758 
1759 	if (S_ISLNK(VFS_I(ip)->i_mode))
1760 		error = xfs_inactive_symlink(ip);
1761 	else if (truncate)
1762 		error = xfs_inactive_truncate(ip);
1763 	if (error)
1764 		goto out;
1765 
1766 	/*
1767 	 * If there are attributes associated with the file then blow them away
1768 	 * now.  The code calls a routine that recursively deconstructs the
1769 	 * attribute fork. If also blows away the in-core attribute fork.
1770 	 */
1771 	if (xfs_inode_has_attr_fork(ip)) {
1772 		error = xfs_attr_inactive(ip);
1773 		if (error)
1774 			goto out;
1775 	}
1776 
1777 	ASSERT(ip->i_forkoff == 0);
1778 
1779 	/*
1780 	 * Free the inode.
1781 	 */
1782 	error = xfs_inactive_ifree(ip);
1783 
1784 out:
1785 	/*
1786 	 * We're done making metadata updates for this inode, so we can release
1787 	 * the attached dquots.
1788 	 */
1789 	xfs_qm_dqdetach(ip);
1790 	return error;
1791 }
1792 
1793 /*
1794  * In-Core Unlinked List Lookups
1795  * =============================
1796  *
1797  * Every inode is supposed to be reachable from some other piece of metadata
1798  * with the exception of the root directory.  Inodes with a connection to a
1799  * file descriptor but not linked from anywhere in the on-disk directory tree
1800  * are collectively known as unlinked inodes, though the filesystem itself
1801  * maintains links to these inodes so that on-disk metadata are consistent.
1802  *
1803  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1804  * header contains a number of buckets that point to an inode, and each inode
1805  * record has a pointer to the next inode in the hash chain.  This
1806  * singly-linked list causes scaling problems in the iunlink remove function
1807  * because we must walk that list to find the inode that points to the inode
1808  * being removed from the unlinked hash bucket list.
1809  *
1810  * Hence we keep an in-memory double linked list to link each inode on an
1811  * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1812  * based lists would require having 64 list heads in the perag, one for each
1813  * list. This is expensive in terms of memory (think millions of AGs) and cache
1814  * misses on lookups. Instead, use the fact that inodes on the unlinked list
1815  * must be referenced at the VFS level to keep them on the list and hence we
1816  * have an existence guarantee for inodes on the unlinked list.
1817  *
1818  * Given we have an existence guarantee, we can use lockless inode cache lookups
1819  * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1820  * for the double linked unlinked list, and we don't need any extra locking to
1821  * keep the list safe as all manipulations are done under the AGI buffer lock.
1822  * Keeping the list up to date does not require memory allocation, just finding
1823  * the XFS inode and updating the next/prev unlinked list aginos.
1824  */
1825 
1826 /*
1827  * Find an inode on the unlinked list. This does not take references to the
1828  * inode as we have existence guarantees by holding the AGI buffer lock and that
1829  * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1830  * don't find the inode in cache, then let the caller handle the situation.
1831  */
1832 static struct xfs_inode *
1833 xfs_iunlink_lookup(
1834 	struct xfs_perag	*pag,
1835 	xfs_agino_t		agino)
1836 {
1837 	struct xfs_inode	*ip;
1838 
1839 	rcu_read_lock();
1840 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1841 	if (!ip) {
1842 		/* Caller can handle inode not being in memory. */
1843 		rcu_read_unlock();
1844 		return NULL;
1845 	}
1846 
1847 	/*
1848 	 * Inode in RCU freeing limbo should not happen.  Warn about this and
1849 	 * let the caller handle the failure.
1850 	 */
1851 	if (WARN_ON_ONCE(!ip->i_ino)) {
1852 		rcu_read_unlock();
1853 		return NULL;
1854 	}
1855 	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1856 	rcu_read_unlock();
1857 	return ip;
1858 }
1859 
1860 /*
1861  * Update the prev pointer of the next agino.  Returns -ENOLINK if the inode
1862  * is not in cache.
1863  */
1864 static int
1865 xfs_iunlink_update_backref(
1866 	struct xfs_perag	*pag,
1867 	xfs_agino_t		prev_agino,
1868 	xfs_agino_t		next_agino)
1869 {
1870 	struct xfs_inode	*ip;
1871 
1872 	/* No update necessary if we are at the end of the list. */
1873 	if (next_agino == NULLAGINO)
1874 		return 0;
1875 
1876 	ip = xfs_iunlink_lookup(pag, next_agino);
1877 	if (!ip)
1878 		return -ENOLINK;
1879 
1880 	ip->i_prev_unlinked = prev_agino;
1881 	return 0;
1882 }
1883 
1884 /*
1885  * Point the AGI unlinked bucket at an inode and log the results.  The caller
1886  * is responsible for validating the old value.
1887  */
1888 STATIC int
1889 xfs_iunlink_update_bucket(
1890 	struct xfs_trans	*tp,
1891 	struct xfs_perag	*pag,
1892 	struct xfs_buf		*agibp,
1893 	unsigned int		bucket_index,
1894 	xfs_agino_t		new_agino)
1895 {
1896 	struct xfs_agi		*agi = agibp->b_addr;
1897 	xfs_agino_t		old_value;
1898 	int			offset;
1899 
1900 	ASSERT(xfs_verify_agino_or_null(pag, new_agino));
1901 
1902 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1903 	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1904 			old_value, new_agino);
1905 
1906 	/*
1907 	 * We should never find the head of the list already set to the value
1908 	 * passed in because either we're adding or removing ourselves from the
1909 	 * head of the list.
1910 	 */
1911 	if (old_value == new_agino) {
1912 		xfs_buf_mark_corrupt(agibp);
1913 		return -EFSCORRUPTED;
1914 	}
1915 
1916 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1917 	offset = offsetof(struct xfs_agi, agi_unlinked) +
1918 			(sizeof(xfs_agino_t) * bucket_index);
1919 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
1920 	return 0;
1921 }
1922 
1923 /*
1924  * Load the inode @next_agino into the cache and set its prev_unlinked pointer
1925  * to @prev_agino.  Caller must hold the AGI to synchronize with other changes
1926  * to the unlinked list.
1927  */
1928 STATIC int
1929 xfs_iunlink_reload_next(
1930 	struct xfs_trans	*tp,
1931 	struct xfs_buf		*agibp,
1932 	xfs_agino_t		prev_agino,
1933 	xfs_agino_t		next_agino)
1934 {
1935 	struct xfs_perag	*pag = agibp->b_pag;
1936 	struct xfs_mount	*mp = pag->pag_mount;
1937 	struct xfs_inode	*next_ip = NULL;
1938 	xfs_ino_t		ino;
1939 	int			error;
1940 
1941 	ASSERT(next_agino != NULLAGINO);
1942 
1943 #ifdef DEBUG
1944 	rcu_read_lock();
1945 	next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
1946 	ASSERT(next_ip == NULL);
1947 	rcu_read_unlock();
1948 #endif
1949 
1950 	xfs_info_ratelimited(mp,
1951  "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.",
1952 			next_agino, pag->pag_agno);
1953 
1954 	/*
1955 	 * Use an untrusted lookup just to be cautious in case the AGI has been
1956 	 * corrupted and now points at a free inode.  That shouldn't happen,
1957 	 * but we'd rather shut down now since we're already running in a weird
1958 	 * situation.
1959 	 */
1960 	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino);
1961 	error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip);
1962 	if (error)
1963 		return error;
1964 
1965 	/* If this is not an unlinked inode, something is very wrong. */
1966 	if (VFS_I(next_ip)->i_nlink != 0) {
1967 		error = -EFSCORRUPTED;
1968 		goto rele;
1969 	}
1970 
1971 	next_ip->i_prev_unlinked = prev_agino;
1972 	trace_xfs_iunlink_reload_next(next_ip);
1973 rele:
1974 	ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
1975 	if (xfs_is_quotacheck_running(mp) && next_ip)
1976 		xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
1977 	xfs_irele(next_ip);
1978 	return error;
1979 }
1980 
1981 static int
1982 xfs_iunlink_insert_inode(
1983 	struct xfs_trans	*tp,
1984 	struct xfs_perag	*pag,
1985 	struct xfs_buf		*agibp,
1986 	struct xfs_inode	*ip)
1987 {
1988 	struct xfs_mount	*mp = tp->t_mountp;
1989 	struct xfs_agi		*agi = agibp->b_addr;
1990 	xfs_agino_t		next_agino;
1991 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1992 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1993 	int			error;
1994 
1995 	/*
1996 	 * Get the index into the agi hash table for the list this inode will
1997 	 * go on.  Make sure the pointer isn't garbage and that this inode
1998 	 * isn't already on the list.
1999 	 */
2000 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2001 	if (next_agino == agino ||
2002 	    !xfs_verify_agino_or_null(pag, next_agino)) {
2003 		xfs_buf_mark_corrupt(agibp);
2004 		return -EFSCORRUPTED;
2005 	}
2006 
2007 	/*
2008 	 * Update the prev pointer in the next inode to point back to this
2009 	 * inode.
2010 	 */
2011 	error = xfs_iunlink_update_backref(pag, agino, next_agino);
2012 	if (error == -ENOLINK)
2013 		error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino);
2014 	if (error)
2015 		return error;
2016 
2017 	if (next_agino != NULLAGINO) {
2018 		/*
2019 		 * There is already another inode in the bucket, so point this
2020 		 * inode to the current head of the list.
2021 		 */
2022 		error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
2023 		if (error)
2024 			return error;
2025 		ip->i_next_unlinked = next_agino;
2026 	}
2027 
2028 	/* Point the head of the list to point to this inode. */
2029 	ip->i_prev_unlinked = NULLAGINO;
2030 	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2031 }
2032 
2033 /*
2034  * This is called when the inode's link count has gone to 0 or we are creating
2035  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2036  *
2037  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2038  * list when the inode is freed.
2039  */
2040 STATIC int
2041 xfs_iunlink(
2042 	struct xfs_trans	*tp,
2043 	struct xfs_inode	*ip)
2044 {
2045 	struct xfs_mount	*mp = tp->t_mountp;
2046 	struct xfs_perag	*pag;
2047 	struct xfs_buf		*agibp;
2048 	int			error;
2049 
2050 	ASSERT(VFS_I(ip)->i_nlink == 0);
2051 	ASSERT(VFS_I(ip)->i_mode != 0);
2052 	trace_xfs_iunlink(ip);
2053 
2054 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2055 
2056 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2057 	error = xfs_read_agi(pag, tp, &agibp);
2058 	if (error)
2059 		goto out;
2060 
2061 	error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
2062 out:
2063 	xfs_perag_put(pag);
2064 	return error;
2065 }
2066 
2067 static int
2068 xfs_iunlink_remove_inode(
2069 	struct xfs_trans	*tp,
2070 	struct xfs_perag	*pag,
2071 	struct xfs_buf		*agibp,
2072 	struct xfs_inode	*ip)
2073 {
2074 	struct xfs_mount	*mp = tp->t_mountp;
2075 	struct xfs_agi		*agi = agibp->b_addr;
2076 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2077 	xfs_agino_t		head_agino;
2078 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2079 	int			error;
2080 
2081 	trace_xfs_iunlink_remove(ip);
2082 
2083 	/*
2084 	 * Get the index into the agi hash table for the list this inode will
2085 	 * go on.  Make sure the head pointer isn't garbage.
2086 	 */
2087 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2088 	if (!xfs_verify_agino(pag, head_agino)) {
2089 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2090 				agi, sizeof(*agi));
2091 		return -EFSCORRUPTED;
2092 	}
2093 
2094 	/*
2095 	 * Set our inode's next_unlinked pointer to NULL and then return
2096 	 * the old pointer value so that we can update whatever was previous
2097 	 * to us in the list to point to whatever was next in the list.
2098 	 */
2099 	error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2100 	if (error)
2101 		return error;
2102 
2103 	/*
2104 	 * Update the prev pointer in the next inode to point back to previous
2105 	 * inode in the chain.
2106 	 */
2107 	error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2108 			ip->i_next_unlinked);
2109 	if (error == -ENOLINK)
2110 		error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked,
2111 				ip->i_next_unlinked);
2112 	if (error)
2113 		return error;
2114 
2115 	if (head_agino != agino) {
2116 		struct xfs_inode	*prev_ip;
2117 
2118 		prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2119 		if (!prev_ip)
2120 			return -EFSCORRUPTED;
2121 
2122 		error = xfs_iunlink_log_inode(tp, prev_ip, pag,
2123 				ip->i_next_unlinked);
2124 		prev_ip->i_next_unlinked = ip->i_next_unlinked;
2125 	} else {
2126 		/* Point the head of the list to the next unlinked inode. */
2127 		error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2128 				ip->i_next_unlinked);
2129 	}
2130 
2131 	ip->i_next_unlinked = NULLAGINO;
2132 	ip->i_prev_unlinked = 0;
2133 	return error;
2134 }
2135 
2136 /*
2137  * Pull the on-disk inode from the AGI unlinked list.
2138  */
2139 STATIC int
2140 xfs_iunlink_remove(
2141 	struct xfs_trans	*tp,
2142 	struct xfs_perag	*pag,
2143 	struct xfs_inode	*ip)
2144 {
2145 	struct xfs_buf		*agibp;
2146 	int			error;
2147 
2148 	trace_xfs_iunlink_remove(ip);
2149 
2150 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2151 	error = xfs_read_agi(pag, tp, &agibp);
2152 	if (error)
2153 		return error;
2154 
2155 	return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
2156 }
2157 
2158 /*
2159  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2160  * mark it stale. We should only find clean inodes in this lookup that aren't
2161  * already stale.
2162  */
2163 static void
2164 xfs_ifree_mark_inode_stale(
2165 	struct xfs_perag	*pag,
2166 	struct xfs_inode	*free_ip,
2167 	xfs_ino_t		inum)
2168 {
2169 	struct xfs_mount	*mp = pag->pag_mount;
2170 	struct xfs_inode_log_item *iip;
2171 	struct xfs_inode	*ip;
2172 
2173 retry:
2174 	rcu_read_lock();
2175 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2176 
2177 	/* Inode not in memory, nothing to do */
2178 	if (!ip) {
2179 		rcu_read_unlock();
2180 		return;
2181 	}
2182 
2183 	/*
2184 	 * because this is an RCU protected lookup, we could find a recently
2185 	 * freed or even reallocated inode during the lookup. We need to check
2186 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2187 	 * valid, the wrong inode or stale.
2188 	 */
2189 	spin_lock(&ip->i_flags_lock);
2190 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2191 		goto out_iflags_unlock;
2192 
2193 	/*
2194 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2195 	 * other inodes that we did not find in the list attached to the buffer
2196 	 * and are not already marked stale. If we can't lock it, back off and
2197 	 * retry.
2198 	 */
2199 	if (ip != free_ip) {
2200 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2201 			spin_unlock(&ip->i_flags_lock);
2202 			rcu_read_unlock();
2203 			delay(1);
2204 			goto retry;
2205 		}
2206 	}
2207 	ip->i_flags |= XFS_ISTALE;
2208 
2209 	/*
2210 	 * If the inode is flushing, it is already attached to the buffer.  All
2211 	 * we needed to do here is mark the inode stale so buffer IO completion
2212 	 * will remove it from the AIL.
2213 	 */
2214 	iip = ip->i_itemp;
2215 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2216 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2217 		ASSERT(iip->ili_last_fields);
2218 		goto out_iunlock;
2219 	}
2220 
2221 	/*
2222 	 * Inodes not attached to the buffer can be released immediately.
2223 	 * Everything else has to go through xfs_iflush_abort() on journal
2224 	 * commit as the flock synchronises removal of the inode from the
2225 	 * cluster buffer against inode reclaim.
2226 	 */
2227 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2228 		goto out_iunlock;
2229 
2230 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2231 	spin_unlock(&ip->i_flags_lock);
2232 	rcu_read_unlock();
2233 
2234 	/* we have a dirty inode in memory that has not yet been flushed. */
2235 	spin_lock(&iip->ili_lock);
2236 	iip->ili_last_fields = iip->ili_fields;
2237 	iip->ili_fields = 0;
2238 	iip->ili_fsync_fields = 0;
2239 	spin_unlock(&iip->ili_lock);
2240 	ASSERT(iip->ili_last_fields);
2241 
2242 	if (ip != free_ip)
2243 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2244 	return;
2245 
2246 out_iunlock:
2247 	if (ip != free_ip)
2248 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2249 out_iflags_unlock:
2250 	spin_unlock(&ip->i_flags_lock);
2251 	rcu_read_unlock();
2252 }
2253 
2254 /*
2255  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2256  * inodes that are in memory - they all must be marked stale and attached to
2257  * the cluster buffer.
2258  */
2259 static int
2260 xfs_ifree_cluster(
2261 	struct xfs_trans	*tp,
2262 	struct xfs_perag	*pag,
2263 	struct xfs_inode	*free_ip,
2264 	struct xfs_icluster	*xic)
2265 {
2266 	struct xfs_mount	*mp = free_ip->i_mount;
2267 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2268 	struct xfs_buf		*bp;
2269 	xfs_daddr_t		blkno;
2270 	xfs_ino_t		inum = xic->first_ino;
2271 	int			nbufs;
2272 	int			i, j;
2273 	int			ioffset;
2274 	int			error;
2275 
2276 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2277 
2278 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2279 		/*
2280 		 * The allocation bitmap tells us which inodes of the chunk were
2281 		 * physically allocated. Skip the cluster if an inode falls into
2282 		 * a sparse region.
2283 		 */
2284 		ioffset = inum - xic->first_ino;
2285 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2286 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2287 			continue;
2288 		}
2289 
2290 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2291 					 XFS_INO_TO_AGBNO(mp, inum));
2292 
2293 		/*
2294 		 * We obtain and lock the backing buffer first in the process
2295 		 * here to ensure dirty inodes attached to the buffer remain in
2296 		 * the flushing state while we mark them stale.
2297 		 *
2298 		 * If we scan the in-memory inodes first, then buffer IO can
2299 		 * complete before we get a lock on it, and hence we may fail
2300 		 * to mark all the active inodes on the buffer stale.
2301 		 */
2302 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2303 				mp->m_bsize * igeo->blocks_per_cluster,
2304 				XBF_UNMAPPED, &bp);
2305 		if (error)
2306 			return error;
2307 
2308 		/*
2309 		 * This buffer may not have been correctly initialised as we
2310 		 * didn't read it from disk. That's not important because we are
2311 		 * only using to mark the buffer as stale in the log, and to
2312 		 * attach stale cached inodes on it. That means it will never be
2313 		 * dispatched for IO. If it is, we want to know about it, and we
2314 		 * want it to fail. We can acheive this by adding a write
2315 		 * verifier to the buffer.
2316 		 */
2317 		bp->b_ops = &xfs_inode_buf_ops;
2318 
2319 		/*
2320 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2321 		 * too. This requires lookups, and will skip inodes that we've
2322 		 * already marked XFS_ISTALE.
2323 		 */
2324 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2325 			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2326 
2327 		xfs_trans_stale_inode_buf(tp, bp);
2328 		xfs_trans_binval(tp, bp);
2329 	}
2330 	return 0;
2331 }
2332 
2333 /*
2334  * This is called to return an inode to the inode free list.  The inode should
2335  * already be truncated to 0 length and have no pages associated with it.  This
2336  * routine also assumes that the inode is already a part of the transaction.
2337  *
2338  * The on-disk copy of the inode will have been added to the list of unlinked
2339  * inodes in the AGI. We need to remove the inode from that list atomically with
2340  * respect to freeing it here.
2341  */
2342 int
2343 xfs_ifree(
2344 	struct xfs_trans	*tp,
2345 	struct xfs_inode	*ip)
2346 {
2347 	struct xfs_mount	*mp = ip->i_mount;
2348 	struct xfs_perag	*pag;
2349 	struct xfs_icluster	xic = { 0 };
2350 	struct xfs_inode_log_item *iip = ip->i_itemp;
2351 	int			error;
2352 
2353 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2354 	ASSERT(VFS_I(ip)->i_nlink == 0);
2355 	ASSERT(ip->i_df.if_nextents == 0);
2356 	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2357 	ASSERT(ip->i_nblocks == 0);
2358 
2359 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2360 
2361 	/*
2362 	 * Free the inode first so that we guarantee that the AGI lock is going
2363 	 * to be taken before we remove the inode from the unlinked list. This
2364 	 * makes the AGI lock -> unlinked list modification order the same as
2365 	 * used in O_TMPFILE creation.
2366 	 */
2367 	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2368 	if (error)
2369 		goto out;
2370 
2371 	error = xfs_iunlink_remove(tp, pag, ip);
2372 	if (error)
2373 		goto out;
2374 
2375 	/*
2376 	 * Free any local-format data sitting around before we reset the
2377 	 * data fork to extents format.  Note that the attr fork data has
2378 	 * already been freed by xfs_attr_inactive.
2379 	 */
2380 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2381 		kmem_free(ip->i_df.if_data);
2382 		ip->i_df.if_data = NULL;
2383 		ip->i_df.if_bytes = 0;
2384 	}
2385 
2386 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2387 	ip->i_diflags = 0;
2388 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2389 	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2390 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2391 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2392 		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2393 
2394 	/* Don't attempt to replay owner changes for a deleted inode */
2395 	spin_lock(&iip->ili_lock);
2396 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2397 	spin_unlock(&iip->ili_lock);
2398 
2399 	/*
2400 	 * Bump the generation count so no one will be confused
2401 	 * by reincarnations of this inode.
2402 	 */
2403 	VFS_I(ip)->i_generation++;
2404 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2405 
2406 	if (xic.deleted)
2407 		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2408 out:
2409 	xfs_perag_put(pag);
2410 	return error;
2411 }
2412 
2413 /*
2414  * This is called to unpin an inode.  The caller must have the inode locked
2415  * in at least shared mode so that the buffer cannot be subsequently pinned
2416  * once someone is waiting for it to be unpinned.
2417  */
2418 static void
2419 xfs_iunpin(
2420 	struct xfs_inode	*ip)
2421 {
2422 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2423 
2424 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2425 
2426 	/* Give the log a push to start the unpinning I/O */
2427 	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2428 
2429 }
2430 
2431 static void
2432 __xfs_iunpin_wait(
2433 	struct xfs_inode	*ip)
2434 {
2435 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2436 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2437 
2438 	xfs_iunpin(ip);
2439 
2440 	do {
2441 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2442 		if (xfs_ipincount(ip))
2443 			io_schedule();
2444 	} while (xfs_ipincount(ip));
2445 	finish_wait(wq, &wait.wq_entry);
2446 }
2447 
2448 void
2449 xfs_iunpin_wait(
2450 	struct xfs_inode	*ip)
2451 {
2452 	if (xfs_ipincount(ip))
2453 		__xfs_iunpin_wait(ip);
2454 }
2455 
2456 /*
2457  * Removing an inode from the namespace involves removing the directory entry
2458  * and dropping the link count on the inode. Removing the directory entry can
2459  * result in locking an AGF (directory blocks were freed) and removing a link
2460  * count can result in placing the inode on an unlinked list which results in
2461  * locking an AGI.
2462  *
2463  * The big problem here is that we have an ordering constraint on AGF and AGI
2464  * locking - inode allocation locks the AGI, then can allocate a new extent for
2465  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2466  * removes the inode from the unlinked list, requiring that we lock the AGI
2467  * first, and then freeing the inode can result in an inode chunk being freed
2468  * and hence freeing disk space requiring that we lock an AGF.
2469  *
2470  * Hence the ordering that is imposed by other parts of the code is AGI before
2471  * AGF. This means we cannot remove the directory entry before we drop the inode
2472  * reference count and put it on the unlinked list as this results in a lock
2473  * order of AGF then AGI, and this can deadlock against inode allocation and
2474  * freeing. Therefore we must drop the link counts before we remove the
2475  * directory entry.
2476  *
2477  * This is still safe from a transactional point of view - it is not until we
2478  * get to xfs_defer_finish() that we have the possibility of multiple
2479  * transactions in this operation. Hence as long as we remove the directory
2480  * entry and drop the link count in the first transaction of the remove
2481  * operation, there are no transactional constraints on the ordering here.
2482  */
2483 int
2484 xfs_remove(
2485 	xfs_inode_t             *dp,
2486 	struct xfs_name		*name,
2487 	xfs_inode_t		*ip)
2488 {
2489 	xfs_mount_t		*mp = dp->i_mount;
2490 	xfs_trans_t             *tp = NULL;
2491 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2492 	int			dontcare;
2493 	int                     error = 0;
2494 	uint			resblks;
2495 
2496 	trace_xfs_remove(dp, name);
2497 
2498 	if (xfs_is_shutdown(mp))
2499 		return -EIO;
2500 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
2501 		return -EIO;
2502 
2503 	error = xfs_qm_dqattach(dp);
2504 	if (error)
2505 		goto std_return;
2506 
2507 	error = xfs_qm_dqattach(ip);
2508 	if (error)
2509 		goto std_return;
2510 
2511 	/*
2512 	 * We try to get the real space reservation first, allowing for
2513 	 * directory btree deletion(s) implying possible bmap insert(s).  If we
2514 	 * can't get the space reservation then we use 0 instead, and avoid the
2515 	 * bmap btree insert(s) in the directory code by, if the bmap insert
2516 	 * tries to happen, instead trimming the LAST block from the directory.
2517 	 *
2518 	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2519 	 * the directory code can handle a reservationless update and we don't
2520 	 * want to prevent a user from trying to free space by deleting things.
2521 	 */
2522 	resblks = XFS_REMOVE_SPACE_RES(mp);
2523 	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2524 			&tp, &dontcare);
2525 	if (error) {
2526 		ASSERT(error != -ENOSPC);
2527 		goto std_return;
2528 	}
2529 
2530 	/*
2531 	 * If we're removing a directory perform some additional validation.
2532 	 */
2533 	if (is_dir) {
2534 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2535 		if (VFS_I(ip)->i_nlink != 2) {
2536 			error = -ENOTEMPTY;
2537 			goto out_trans_cancel;
2538 		}
2539 		if (!xfs_dir_isempty(ip)) {
2540 			error = -ENOTEMPTY;
2541 			goto out_trans_cancel;
2542 		}
2543 
2544 		/* Drop the link from ip's "..".  */
2545 		error = xfs_droplink(tp, dp);
2546 		if (error)
2547 			goto out_trans_cancel;
2548 
2549 		/* Drop the "." link from ip to self.  */
2550 		error = xfs_droplink(tp, ip);
2551 		if (error)
2552 			goto out_trans_cancel;
2553 
2554 		/*
2555 		 * Point the unlinked child directory's ".." entry to the root
2556 		 * directory to eliminate back-references to inodes that may
2557 		 * get freed before the child directory is closed.  If the fs
2558 		 * gets shrunk, this can lead to dirent inode validation errors.
2559 		 */
2560 		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2561 			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2562 					tp->t_mountp->m_sb.sb_rootino, 0);
2563 			if (error)
2564 				goto out_trans_cancel;
2565 		}
2566 	} else {
2567 		/*
2568 		 * When removing a non-directory we need to log the parent
2569 		 * inode here.  For a directory this is done implicitly
2570 		 * by the xfs_droplink call for the ".." entry.
2571 		 */
2572 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2573 	}
2574 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2575 
2576 	/* Drop the link from dp to ip. */
2577 	error = xfs_droplink(tp, ip);
2578 	if (error)
2579 		goto out_trans_cancel;
2580 
2581 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2582 	if (error) {
2583 		ASSERT(error != -ENOENT);
2584 		goto out_trans_cancel;
2585 	}
2586 
2587 	/*
2588 	 * If this is a synchronous mount, make sure that the
2589 	 * remove transaction goes to disk before returning to
2590 	 * the user.
2591 	 */
2592 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2593 		xfs_trans_set_sync(tp);
2594 
2595 	error = xfs_trans_commit(tp);
2596 	if (error)
2597 		goto std_return;
2598 
2599 	if (is_dir && xfs_inode_is_filestream(ip))
2600 		xfs_filestream_deassociate(ip);
2601 
2602 	return 0;
2603 
2604  out_trans_cancel:
2605 	xfs_trans_cancel(tp);
2606  std_return:
2607 	return error;
2608 }
2609 
2610 /*
2611  * Enter all inodes for a rename transaction into a sorted array.
2612  */
2613 #define __XFS_SORT_INODES	5
2614 STATIC void
2615 xfs_sort_for_rename(
2616 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2617 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2618 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2619 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2620 	struct xfs_inode	*wip,	/* in: whiteout inode */
2621 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2622 	int			*num_inodes)  /* in/out: inodes in array */
2623 {
2624 	int			i, j;
2625 
2626 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2627 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2628 
2629 	/*
2630 	 * i_tab contains a list of pointers to inodes.  We initialize
2631 	 * the table here & we'll sort it.  We will then use it to
2632 	 * order the acquisition of the inode locks.
2633 	 *
2634 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2635 	 */
2636 	i = 0;
2637 	i_tab[i++] = dp1;
2638 	i_tab[i++] = dp2;
2639 	i_tab[i++] = ip1;
2640 	if (ip2)
2641 		i_tab[i++] = ip2;
2642 	if (wip)
2643 		i_tab[i++] = wip;
2644 	*num_inodes = i;
2645 
2646 	/*
2647 	 * Sort the elements via bubble sort.  (Remember, there are at
2648 	 * most 5 elements to sort, so this is adequate.)
2649 	 */
2650 	for (i = 0; i < *num_inodes; i++) {
2651 		for (j = 1; j < *num_inodes; j++) {
2652 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2653 				struct xfs_inode *temp = i_tab[j];
2654 				i_tab[j] = i_tab[j-1];
2655 				i_tab[j-1] = temp;
2656 			}
2657 		}
2658 	}
2659 }
2660 
2661 static int
2662 xfs_finish_rename(
2663 	struct xfs_trans	*tp)
2664 {
2665 	/*
2666 	 * If this is a synchronous mount, make sure that the rename transaction
2667 	 * goes to disk before returning to the user.
2668 	 */
2669 	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2670 		xfs_trans_set_sync(tp);
2671 
2672 	return xfs_trans_commit(tp);
2673 }
2674 
2675 /*
2676  * xfs_cross_rename()
2677  *
2678  * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2679  */
2680 STATIC int
2681 xfs_cross_rename(
2682 	struct xfs_trans	*tp,
2683 	struct xfs_inode	*dp1,
2684 	struct xfs_name		*name1,
2685 	struct xfs_inode	*ip1,
2686 	struct xfs_inode	*dp2,
2687 	struct xfs_name		*name2,
2688 	struct xfs_inode	*ip2,
2689 	int			spaceres)
2690 {
2691 	int		error = 0;
2692 	int		ip1_flags = 0;
2693 	int		ip2_flags = 0;
2694 	int		dp2_flags = 0;
2695 
2696 	/* Swap inode number for dirent in first parent */
2697 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2698 	if (error)
2699 		goto out_trans_abort;
2700 
2701 	/* Swap inode number for dirent in second parent */
2702 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2703 	if (error)
2704 		goto out_trans_abort;
2705 
2706 	/*
2707 	 * If we're renaming one or more directories across different parents,
2708 	 * update the respective ".." entries (and link counts) to match the new
2709 	 * parents.
2710 	 */
2711 	if (dp1 != dp2) {
2712 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2713 
2714 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2715 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2716 						dp1->i_ino, spaceres);
2717 			if (error)
2718 				goto out_trans_abort;
2719 
2720 			/* transfer ip2 ".." reference to dp1 */
2721 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2722 				error = xfs_droplink(tp, dp2);
2723 				if (error)
2724 					goto out_trans_abort;
2725 				xfs_bumplink(tp, dp1);
2726 			}
2727 
2728 			/*
2729 			 * Although ip1 isn't changed here, userspace needs
2730 			 * to be warned about the change, so that applications
2731 			 * relying on it (like backup ones), will properly
2732 			 * notify the change
2733 			 */
2734 			ip1_flags |= XFS_ICHGTIME_CHG;
2735 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2736 		}
2737 
2738 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2739 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2740 						dp2->i_ino, spaceres);
2741 			if (error)
2742 				goto out_trans_abort;
2743 
2744 			/* transfer ip1 ".." reference to dp2 */
2745 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2746 				error = xfs_droplink(tp, dp1);
2747 				if (error)
2748 					goto out_trans_abort;
2749 				xfs_bumplink(tp, dp2);
2750 			}
2751 
2752 			/*
2753 			 * Although ip2 isn't changed here, userspace needs
2754 			 * to be warned about the change, so that applications
2755 			 * relying on it (like backup ones), will properly
2756 			 * notify the change
2757 			 */
2758 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2759 			ip2_flags |= XFS_ICHGTIME_CHG;
2760 		}
2761 	}
2762 
2763 	if (ip1_flags) {
2764 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2765 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2766 	}
2767 	if (ip2_flags) {
2768 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2769 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2770 	}
2771 	if (dp2_flags) {
2772 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2773 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2774 	}
2775 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2776 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2777 	return xfs_finish_rename(tp);
2778 
2779 out_trans_abort:
2780 	xfs_trans_cancel(tp);
2781 	return error;
2782 }
2783 
2784 /*
2785  * xfs_rename_alloc_whiteout()
2786  *
2787  * Return a referenced, unlinked, unlocked inode that can be used as a
2788  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2789  * crash between allocating the inode and linking it into the rename transaction
2790  * recovery will free the inode and we won't leak it.
2791  */
2792 static int
2793 xfs_rename_alloc_whiteout(
2794 	struct mnt_idmap	*idmap,
2795 	struct xfs_name		*src_name,
2796 	struct xfs_inode	*dp,
2797 	struct xfs_inode	**wip)
2798 {
2799 	struct xfs_inode	*tmpfile;
2800 	struct qstr		name;
2801 	int			error;
2802 
2803 	error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE,
2804 				   &tmpfile);
2805 	if (error)
2806 		return error;
2807 
2808 	name.name = src_name->name;
2809 	name.len = src_name->len;
2810 	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2811 	if (error) {
2812 		xfs_finish_inode_setup(tmpfile);
2813 		xfs_irele(tmpfile);
2814 		return error;
2815 	}
2816 
2817 	/*
2818 	 * Prepare the tmpfile inode as if it were created through the VFS.
2819 	 * Complete the inode setup and flag it as linkable.  nlink is already
2820 	 * zero, so we can skip the drop_nlink.
2821 	 */
2822 	xfs_setup_iops(tmpfile);
2823 	xfs_finish_inode_setup(tmpfile);
2824 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2825 
2826 	*wip = tmpfile;
2827 	return 0;
2828 }
2829 
2830 /*
2831  * xfs_rename
2832  */
2833 int
2834 xfs_rename(
2835 	struct mnt_idmap	*idmap,
2836 	struct xfs_inode	*src_dp,
2837 	struct xfs_name		*src_name,
2838 	struct xfs_inode	*src_ip,
2839 	struct xfs_inode	*target_dp,
2840 	struct xfs_name		*target_name,
2841 	struct xfs_inode	*target_ip,
2842 	unsigned int		flags)
2843 {
2844 	struct xfs_mount	*mp = src_dp->i_mount;
2845 	struct xfs_trans	*tp;
2846 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2847 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2848 	int			i;
2849 	int			num_inodes = __XFS_SORT_INODES;
2850 	bool			new_parent = (src_dp != target_dp);
2851 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2852 	int			spaceres;
2853 	bool			retried = false;
2854 	int			error, nospace_error = 0;
2855 
2856 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2857 
2858 	if ((flags & RENAME_EXCHANGE) && !target_ip)
2859 		return -EINVAL;
2860 
2861 	/*
2862 	 * If we are doing a whiteout operation, allocate the whiteout inode
2863 	 * we will be placing at the target and ensure the type is set
2864 	 * appropriately.
2865 	 */
2866 	if (flags & RENAME_WHITEOUT) {
2867 		error = xfs_rename_alloc_whiteout(idmap, src_name,
2868 						  target_dp, &wip);
2869 		if (error)
2870 			return error;
2871 
2872 		/* setup target dirent info as whiteout */
2873 		src_name->type = XFS_DIR3_FT_CHRDEV;
2874 	}
2875 
2876 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2877 				inodes, &num_inodes);
2878 
2879 retry:
2880 	nospace_error = 0;
2881 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2882 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2883 	if (error == -ENOSPC) {
2884 		nospace_error = error;
2885 		spaceres = 0;
2886 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2887 				&tp);
2888 	}
2889 	if (error)
2890 		goto out_release_wip;
2891 
2892 	/*
2893 	 * Attach the dquots to the inodes
2894 	 */
2895 	error = xfs_qm_vop_rename_dqattach(inodes);
2896 	if (error)
2897 		goto out_trans_cancel;
2898 
2899 	/*
2900 	 * Lock all the participating inodes. Depending upon whether
2901 	 * the target_name exists in the target directory, and
2902 	 * whether the target directory is the same as the source
2903 	 * directory, we can lock from 2 to 5 inodes.
2904 	 */
2905 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2906 
2907 	/*
2908 	 * Join all the inodes to the transaction. From this point on,
2909 	 * we can rely on either trans_commit or trans_cancel to unlock
2910 	 * them.
2911 	 */
2912 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2913 	if (new_parent)
2914 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2915 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2916 	if (target_ip)
2917 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2918 	if (wip)
2919 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2920 
2921 	/*
2922 	 * If we are using project inheritance, we only allow renames
2923 	 * into our tree when the project IDs are the same; else the
2924 	 * tree quota mechanism would be circumvented.
2925 	 */
2926 	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2927 		     target_dp->i_projid != src_ip->i_projid)) {
2928 		error = -EXDEV;
2929 		goto out_trans_cancel;
2930 	}
2931 
2932 	/* RENAME_EXCHANGE is unique from here on. */
2933 	if (flags & RENAME_EXCHANGE)
2934 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2935 					target_dp, target_name, target_ip,
2936 					spaceres);
2937 
2938 	/*
2939 	 * Try to reserve quota to handle an expansion of the target directory.
2940 	 * We'll allow the rename to continue in reservationless mode if we hit
2941 	 * a space usage constraint.  If we trigger reservationless mode, save
2942 	 * the errno if there isn't any free space in the target directory.
2943 	 */
2944 	if (spaceres != 0) {
2945 		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2946 				0, false);
2947 		if (error == -EDQUOT || error == -ENOSPC) {
2948 			if (!retried) {
2949 				xfs_trans_cancel(tp);
2950 				xfs_blockgc_free_quota(target_dp, 0);
2951 				retried = true;
2952 				goto retry;
2953 			}
2954 
2955 			nospace_error = error;
2956 			spaceres = 0;
2957 			error = 0;
2958 		}
2959 		if (error)
2960 			goto out_trans_cancel;
2961 	}
2962 
2963 	/*
2964 	 * Check for expected errors before we dirty the transaction
2965 	 * so we can return an error without a transaction abort.
2966 	 */
2967 	if (target_ip == NULL) {
2968 		/*
2969 		 * If there's no space reservation, check the entry will
2970 		 * fit before actually inserting it.
2971 		 */
2972 		if (!spaceres) {
2973 			error = xfs_dir_canenter(tp, target_dp, target_name);
2974 			if (error)
2975 				goto out_trans_cancel;
2976 		}
2977 	} else {
2978 		/*
2979 		 * If target exists and it's a directory, check that whether
2980 		 * it can be destroyed.
2981 		 */
2982 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
2983 		    (!xfs_dir_isempty(target_ip) ||
2984 		     (VFS_I(target_ip)->i_nlink > 2))) {
2985 			error = -EEXIST;
2986 			goto out_trans_cancel;
2987 		}
2988 	}
2989 
2990 	/*
2991 	 * Lock the AGI buffers we need to handle bumping the nlink of the
2992 	 * whiteout inode off the unlinked list and to handle dropping the
2993 	 * nlink of the target inode.  Per locking order rules, do this in
2994 	 * increasing AG order and before directory block allocation tries to
2995 	 * grab AGFs because we grab AGIs before AGFs.
2996 	 *
2997 	 * The (vfs) caller must ensure that if src is a directory then
2998 	 * target_ip is either null or an empty directory.
2999 	 */
3000 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3001 		if (inodes[i] == wip ||
3002 		    (inodes[i] == target_ip &&
3003 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3004 			struct xfs_perag	*pag;
3005 			struct xfs_buf		*bp;
3006 
3007 			pag = xfs_perag_get(mp,
3008 					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
3009 			error = xfs_read_agi(pag, tp, &bp);
3010 			xfs_perag_put(pag);
3011 			if (error)
3012 				goto out_trans_cancel;
3013 		}
3014 	}
3015 
3016 	/*
3017 	 * Directory entry creation below may acquire the AGF. Remove
3018 	 * the whiteout from the unlinked list first to preserve correct
3019 	 * AGI/AGF locking order. This dirties the transaction so failures
3020 	 * after this point will abort and log recovery will clean up the
3021 	 * mess.
3022 	 *
3023 	 * For whiteouts, we need to bump the link count on the whiteout
3024 	 * inode. After this point, we have a real link, clear the tmpfile
3025 	 * state flag from the inode so it doesn't accidentally get misused
3026 	 * in future.
3027 	 */
3028 	if (wip) {
3029 		struct xfs_perag	*pag;
3030 
3031 		ASSERT(VFS_I(wip)->i_nlink == 0);
3032 
3033 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3034 		error = xfs_iunlink_remove(tp, pag, wip);
3035 		xfs_perag_put(pag);
3036 		if (error)
3037 			goto out_trans_cancel;
3038 
3039 		xfs_bumplink(tp, wip);
3040 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3041 	}
3042 
3043 	/*
3044 	 * Set up the target.
3045 	 */
3046 	if (target_ip == NULL) {
3047 		/*
3048 		 * If target does not exist and the rename crosses
3049 		 * directories, adjust the target directory link count
3050 		 * to account for the ".." reference from the new entry.
3051 		 */
3052 		error = xfs_dir_createname(tp, target_dp, target_name,
3053 					   src_ip->i_ino, spaceres);
3054 		if (error)
3055 			goto out_trans_cancel;
3056 
3057 		xfs_trans_ichgtime(tp, target_dp,
3058 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3059 
3060 		if (new_parent && src_is_directory) {
3061 			xfs_bumplink(tp, target_dp);
3062 		}
3063 	} else { /* target_ip != NULL */
3064 		/*
3065 		 * Link the source inode under the target name.
3066 		 * If the source inode is a directory and we are moving
3067 		 * it across directories, its ".." entry will be
3068 		 * inconsistent until we replace that down below.
3069 		 *
3070 		 * In case there is already an entry with the same
3071 		 * name at the destination directory, remove it first.
3072 		 */
3073 		error = xfs_dir_replace(tp, target_dp, target_name,
3074 					src_ip->i_ino, spaceres);
3075 		if (error)
3076 			goto out_trans_cancel;
3077 
3078 		xfs_trans_ichgtime(tp, target_dp,
3079 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3080 
3081 		/*
3082 		 * Decrement the link count on the target since the target
3083 		 * dir no longer points to it.
3084 		 */
3085 		error = xfs_droplink(tp, target_ip);
3086 		if (error)
3087 			goto out_trans_cancel;
3088 
3089 		if (src_is_directory) {
3090 			/*
3091 			 * Drop the link from the old "." entry.
3092 			 */
3093 			error = xfs_droplink(tp, target_ip);
3094 			if (error)
3095 				goto out_trans_cancel;
3096 		}
3097 	} /* target_ip != NULL */
3098 
3099 	/*
3100 	 * Remove the source.
3101 	 */
3102 	if (new_parent && src_is_directory) {
3103 		/*
3104 		 * Rewrite the ".." entry to point to the new
3105 		 * directory.
3106 		 */
3107 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3108 					target_dp->i_ino, spaceres);
3109 		ASSERT(error != -EEXIST);
3110 		if (error)
3111 			goto out_trans_cancel;
3112 	}
3113 
3114 	/*
3115 	 * We always want to hit the ctime on the source inode.
3116 	 *
3117 	 * This isn't strictly required by the standards since the source
3118 	 * inode isn't really being changed, but old unix file systems did
3119 	 * it and some incremental backup programs won't work without it.
3120 	 */
3121 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3122 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3123 
3124 	/*
3125 	 * Adjust the link count on src_dp.  This is necessary when
3126 	 * renaming a directory, either within one parent when
3127 	 * the target existed, or across two parent directories.
3128 	 */
3129 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3130 
3131 		/*
3132 		 * Decrement link count on src_directory since the
3133 		 * entry that's moved no longer points to it.
3134 		 */
3135 		error = xfs_droplink(tp, src_dp);
3136 		if (error)
3137 			goto out_trans_cancel;
3138 	}
3139 
3140 	/*
3141 	 * For whiteouts, we only need to update the source dirent with the
3142 	 * inode number of the whiteout inode rather than removing it
3143 	 * altogether.
3144 	 */
3145 	if (wip)
3146 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3147 					spaceres);
3148 	else
3149 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3150 					   spaceres);
3151 
3152 	if (error)
3153 		goto out_trans_cancel;
3154 
3155 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3156 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3157 	if (new_parent)
3158 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3159 
3160 	error = xfs_finish_rename(tp);
3161 	if (wip)
3162 		xfs_irele(wip);
3163 	return error;
3164 
3165 out_trans_cancel:
3166 	xfs_trans_cancel(tp);
3167 out_release_wip:
3168 	if (wip)
3169 		xfs_irele(wip);
3170 	if (error == -ENOSPC && nospace_error)
3171 		error = nospace_error;
3172 	return error;
3173 }
3174 
3175 static int
3176 xfs_iflush(
3177 	struct xfs_inode	*ip,
3178 	struct xfs_buf		*bp)
3179 {
3180 	struct xfs_inode_log_item *iip = ip->i_itemp;
3181 	struct xfs_dinode	*dip;
3182 	struct xfs_mount	*mp = ip->i_mount;
3183 	int			error;
3184 
3185 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3186 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3187 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3188 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3189 	ASSERT(iip->ili_item.li_buf == bp);
3190 
3191 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3192 
3193 	/*
3194 	 * We don't flush the inode if any of the following checks fail, but we
3195 	 * do still update the log item and attach to the backing buffer as if
3196 	 * the flush happened. This is a formality to facilitate predictable
3197 	 * error handling as the caller will shutdown and fail the buffer.
3198 	 */
3199 	error = -EFSCORRUPTED;
3200 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3201 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3202 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3203 			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
3204 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3205 		goto flush_out;
3206 	}
3207 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3208 		if (XFS_TEST_ERROR(
3209 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3210 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3211 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3212 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3213 				"%s: Bad regular inode %llu, ptr "PTR_FMT,
3214 				__func__, ip->i_ino, ip);
3215 			goto flush_out;
3216 		}
3217 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3218 		if (XFS_TEST_ERROR(
3219 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3220 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3221 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3222 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3223 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3224 				"%s: Bad directory inode %llu, ptr "PTR_FMT,
3225 				__func__, ip->i_ino, ip);
3226 			goto flush_out;
3227 		}
3228 	}
3229 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3230 				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3231 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3232 			"%s: detected corrupt incore inode %llu, "
3233 			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3234 			__func__, ip->i_ino,
3235 			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3236 			ip->i_nblocks, ip);
3237 		goto flush_out;
3238 	}
3239 	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3240 				mp, XFS_ERRTAG_IFLUSH_6)) {
3241 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3242 			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
3243 			__func__, ip->i_ino, ip->i_forkoff, ip);
3244 		goto flush_out;
3245 	}
3246 
3247 	/*
3248 	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3249 	 * count for correct sequencing.  We bump the flush iteration count so
3250 	 * we can detect flushes which postdate a log record during recovery.
3251 	 * This is redundant as we now log every change and hence this can't
3252 	 * happen but we need to still do it to ensure backwards compatibility
3253 	 * with old kernels that predate logging all inode changes.
3254 	 */
3255 	if (!xfs_has_v3inodes(mp))
3256 		ip->i_flushiter++;
3257 
3258 	/*
3259 	 * If there are inline format data / attr forks attached to this inode,
3260 	 * make sure they are not corrupt.
3261 	 */
3262 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3263 	    xfs_ifork_verify_local_data(ip))
3264 		goto flush_out;
3265 	if (xfs_inode_has_attr_fork(ip) &&
3266 	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3267 	    xfs_ifork_verify_local_attr(ip))
3268 		goto flush_out;
3269 
3270 	/*
3271 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3272 	 * copy out the core of the inode, because if the inode is dirty at all
3273 	 * the core must be.
3274 	 */
3275 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3276 
3277 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3278 	if (!xfs_has_v3inodes(mp)) {
3279 		if (ip->i_flushiter == DI_MAX_FLUSH)
3280 			ip->i_flushiter = 0;
3281 	}
3282 
3283 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3284 	if (xfs_inode_has_attr_fork(ip))
3285 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3286 
3287 	/*
3288 	 * We've recorded everything logged in the inode, so we'd like to clear
3289 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3290 	 * However, we can't stop logging all this information until the data
3291 	 * we've copied into the disk buffer is written to disk.  If we did we
3292 	 * might overwrite the copy of the inode in the log with all the data
3293 	 * after re-logging only part of it, and in the face of a crash we
3294 	 * wouldn't have all the data we need to recover.
3295 	 *
3296 	 * What we do is move the bits to the ili_last_fields field.  When
3297 	 * logging the inode, these bits are moved back to the ili_fields field.
3298 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3299 	 * we know that the information those bits represent is permanently on
3300 	 * disk.  As long as the flush completes before the inode is logged
3301 	 * again, then both ili_fields and ili_last_fields will be cleared.
3302 	 */
3303 	error = 0;
3304 flush_out:
3305 	spin_lock(&iip->ili_lock);
3306 	iip->ili_last_fields = iip->ili_fields;
3307 	iip->ili_fields = 0;
3308 	iip->ili_fsync_fields = 0;
3309 	spin_unlock(&iip->ili_lock);
3310 
3311 	/*
3312 	 * Store the current LSN of the inode so that we can tell whether the
3313 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3314 	 */
3315 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3316 				&iip->ili_item.li_lsn);
3317 
3318 	/* generate the checksum. */
3319 	xfs_dinode_calc_crc(mp, dip);
3320 	return error;
3321 }
3322 
3323 /*
3324  * Non-blocking flush of dirty inode metadata into the backing buffer.
3325  *
3326  * The caller must have a reference to the inode and hold the cluster buffer
3327  * locked. The function will walk across all the inodes on the cluster buffer it
3328  * can find and lock without blocking, and flush them to the cluster buffer.
3329  *
3330  * On successful flushing of at least one inode, the caller must write out the
3331  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3332  * the caller needs to release the buffer. On failure, the filesystem will be
3333  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3334  * will be returned.
3335  */
3336 int
3337 xfs_iflush_cluster(
3338 	struct xfs_buf		*bp)
3339 {
3340 	struct xfs_mount	*mp = bp->b_mount;
3341 	struct xfs_log_item	*lip, *n;
3342 	struct xfs_inode	*ip;
3343 	struct xfs_inode_log_item *iip;
3344 	int			clcount = 0;
3345 	int			error = 0;
3346 
3347 	/*
3348 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3349 	 * will remove itself from the list.
3350 	 */
3351 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3352 		iip = (struct xfs_inode_log_item *)lip;
3353 		ip = iip->ili_inode;
3354 
3355 		/*
3356 		 * Quick and dirty check to avoid locks if possible.
3357 		 */
3358 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3359 			continue;
3360 		if (xfs_ipincount(ip))
3361 			continue;
3362 
3363 		/*
3364 		 * The inode is still attached to the buffer, which means it is
3365 		 * dirty but reclaim might try to grab it. Check carefully for
3366 		 * that, and grab the ilock while still holding the i_flags_lock
3367 		 * to guarantee reclaim will not be able to reclaim this inode
3368 		 * once we drop the i_flags_lock.
3369 		 */
3370 		spin_lock(&ip->i_flags_lock);
3371 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3372 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3373 			spin_unlock(&ip->i_flags_lock);
3374 			continue;
3375 		}
3376 
3377 		/*
3378 		 * ILOCK will pin the inode against reclaim and prevent
3379 		 * concurrent transactions modifying the inode while we are
3380 		 * flushing the inode. If we get the lock, set the flushing
3381 		 * state before we drop the i_flags_lock.
3382 		 */
3383 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3384 			spin_unlock(&ip->i_flags_lock);
3385 			continue;
3386 		}
3387 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3388 		spin_unlock(&ip->i_flags_lock);
3389 
3390 		/*
3391 		 * Abort flushing this inode if we are shut down because the
3392 		 * inode may not currently be in the AIL. This can occur when
3393 		 * log I/O failure unpins the inode without inserting into the
3394 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3395 		 * that otherwise looks like it should be flushed.
3396 		 */
3397 		if (xlog_is_shutdown(mp->m_log)) {
3398 			xfs_iunpin_wait(ip);
3399 			xfs_iflush_abort(ip);
3400 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3401 			error = -EIO;
3402 			continue;
3403 		}
3404 
3405 		/* don't block waiting on a log force to unpin dirty inodes */
3406 		if (xfs_ipincount(ip)) {
3407 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3408 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3409 			continue;
3410 		}
3411 
3412 		if (!xfs_inode_clean(ip))
3413 			error = xfs_iflush(ip, bp);
3414 		else
3415 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3416 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3417 		if (error)
3418 			break;
3419 		clcount++;
3420 	}
3421 
3422 	if (error) {
3423 		/*
3424 		 * Shutdown first so we kill the log before we release this
3425 		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3426 		 * of the log, failing it before the _log_ is shut down can
3427 		 * result in the log tail being moved forward in the journal
3428 		 * on disk because log writes can still be taking place. Hence
3429 		 * unpinning the tail will allow the ICREATE intent to be
3430 		 * removed from the log an recovery will fail with uninitialised
3431 		 * inode cluster buffers.
3432 		 */
3433 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3434 		bp->b_flags |= XBF_ASYNC;
3435 		xfs_buf_ioend_fail(bp);
3436 		return error;
3437 	}
3438 
3439 	if (!clcount)
3440 		return -EAGAIN;
3441 
3442 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3443 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3444 	return 0;
3445 
3446 }
3447 
3448 /* Release an inode. */
3449 void
3450 xfs_irele(
3451 	struct xfs_inode	*ip)
3452 {
3453 	trace_xfs_irele(ip, _RET_IP_);
3454 	iput(VFS_I(ip));
3455 }
3456 
3457 /*
3458  * Ensure all commited transactions touching the inode are written to the log.
3459  */
3460 int
3461 xfs_log_force_inode(
3462 	struct xfs_inode	*ip)
3463 {
3464 	xfs_csn_t		seq = 0;
3465 
3466 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3467 	if (xfs_ipincount(ip))
3468 		seq = ip->i_itemp->ili_commit_seq;
3469 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3470 
3471 	if (!seq)
3472 		return 0;
3473 	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3474 }
3475 
3476 /*
3477  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3478  * abide vfs locking order (lowest pointer value goes first) and breaking the
3479  * layout leases before proceeding.  The loop is needed because we cannot call
3480  * the blocking break_layout() with the iolocks held, and therefore have to
3481  * back out both locks.
3482  */
3483 static int
3484 xfs_iolock_two_inodes_and_break_layout(
3485 	struct inode		*src,
3486 	struct inode		*dest)
3487 {
3488 	int			error;
3489 
3490 	if (src > dest)
3491 		swap(src, dest);
3492 
3493 retry:
3494 	/* Wait to break both inodes' layouts before we start locking. */
3495 	error = break_layout(src, true);
3496 	if (error)
3497 		return error;
3498 	if (src != dest) {
3499 		error = break_layout(dest, true);
3500 		if (error)
3501 			return error;
3502 	}
3503 
3504 	/* Lock one inode and make sure nobody got in and leased it. */
3505 	inode_lock(src);
3506 	error = break_layout(src, false);
3507 	if (error) {
3508 		inode_unlock(src);
3509 		if (error == -EWOULDBLOCK)
3510 			goto retry;
3511 		return error;
3512 	}
3513 
3514 	if (src == dest)
3515 		return 0;
3516 
3517 	/* Lock the other inode and make sure nobody got in and leased it. */
3518 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3519 	error = break_layout(dest, false);
3520 	if (error) {
3521 		inode_unlock(src);
3522 		inode_unlock(dest);
3523 		if (error == -EWOULDBLOCK)
3524 			goto retry;
3525 		return error;
3526 	}
3527 
3528 	return 0;
3529 }
3530 
3531 static int
3532 xfs_mmaplock_two_inodes_and_break_dax_layout(
3533 	struct xfs_inode	*ip1,
3534 	struct xfs_inode	*ip2)
3535 {
3536 	int			error;
3537 	bool			retry;
3538 	struct page		*page;
3539 
3540 	if (ip1->i_ino > ip2->i_ino)
3541 		swap(ip1, ip2);
3542 
3543 again:
3544 	retry = false;
3545 	/* Lock the first inode */
3546 	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3547 	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3548 	if (error || retry) {
3549 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3550 		if (error == 0 && retry)
3551 			goto again;
3552 		return error;
3553 	}
3554 
3555 	if (ip1 == ip2)
3556 		return 0;
3557 
3558 	/* Nested lock the second inode */
3559 	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3560 	/*
3561 	 * We cannot use xfs_break_dax_layouts() directly here because it may
3562 	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3563 	 * for this nested lock case.
3564 	 */
3565 	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3566 	if (page && page_ref_count(page) != 1) {
3567 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3568 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3569 		goto again;
3570 	}
3571 
3572 	return 0;
3573 }
3574 
3575 /*
3576  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3577  * mmap activity.
3578  */
3579 int
3580 xfs_ilock2_io_mmap(
3581 	struct xfs_inode	*ip1,
3582 	struct xfs_inode	*ip2)
3583 {
3584 	int			ret;
3585 
3586 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3587 	if (ret)
3588 		return ret;
3589 
3590 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3591 		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3592 		if (ret) {
3593 			inode_unlock(VFS_I(ip2));
3594 			if (ip1 != ip2)
3595 				inode_unlock(VFS_I(ip1));
3596 			return ret;
3597 		}
3598 	} else
3599 		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3600 					    VFS_I(ip2)->i_mapping);
3601 
3602 	return 0;
3603 }
3604 
3605 /* Unlock both inodes to allow IO and mmap activity. */
3606 void
3607 xfs_iunlock2_io_mmap(
3608 	struct xfs_inode	*ip1,
3609 	struct xfs_inode	*ip2)
3610 {
3611 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3612 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3613 		if (ip1 != ip2)
3614 			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3615 	} else
3616 		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3617 					      VFS_I(ip2)->i_mapping);
3618 
3619 	inode_unlock(VFS_I(ip2));
3620 	if (ip1 != ip2)
3621 		inode_unlock(VFS_I(ip1));
3622 }
3623 
3624 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
3625 void
3626 xfs_iunlock2_remapping(
3627 	struct xfs_inode	*ip1,
3628 	struct xfs_inode	*ip2)
3629 {
3630 	xfs_iflags_clear(ip1, XFS_IREMAPPING);
3631 
3632 	if (ip1 != ip2)
3633 		xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
3634 	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3635 
3636 	if (ip1 != ip2)
3637 		inode_unlock_shared(VFS_I(ip1));
3638 	inode_unlock(VFS_I(ip2));
3639 }
3640 
3641 /*
3642  * Reload the incore inode list for this inode.  Caller should ensure that
3643  * the link count cannot change, either by taking ILOCK_SHARED or otherwise
3644  * preventing other threads from executing.
3645  */
3646 int
3647 xfs_inode_reload_unlinked_bucket(
3648 	struct xfs_trans	*tp,
3649 	struct xfs_inode	*ip)
3650 {
3651 	struct xfs_mount	*mp = tp->t_mountp;
3652 	struct xfs_buf		*agibp;
3653 	struct xfs_agi		*agi;
3654 	struct xfs_perag	*pag;
3655 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
3656 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
3657 	xfs_agino_t		prev_agino, next_agino;
3658 	unsigned int		bucket;
3659 	bool			foundit = false;
3660 	int			error;
3661 
3662 	/* Grab the first inode in the list */
3663 	pag = xfs_perag_get(mp, agno);
3664 	error = xfs_ialloc_read_agi(pag, tp, &agibp);
3665 	xfs_perag_put(pag);
3666 	if (error)
3667 		return error;
3668 
3669 	/*
3670 	 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
3671 	 * incore unlinked list pointers for this inode.  Check once more to
3672 	 * see if we raced with anyone else to reload the unlinked list.
3673 	 */
3674 	if (!xfs_inode_unlinked_incomplete(ip)) {
3675 		foundit = true;
3676 		goto out_agibp;
3677 	}
3678 
3679 	bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
3680 	agi = agibp->b_addr;
3681 
3682 	trace_xfs_inode_reload_unlinked_bucket(ip);
3683 
3684 	xfs_info_ratelimited(mp,
3685  "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.",
3686 			agino, agno);
3687 
3688 	prev_agino = NULLAGINO;
3689 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3690 	while (next_agino != NULLAGINO) {
3691 		struct xfs_inode	*next_ip = NULL;
3692 
3693 		/* Found this caller's inode, set its backlink. */
3694 		if (next_agino == agino) {
3695 			next_ip = ip;
3696 			next_ip->i_prev_unlinked = prev_agino;
3697 			foundit = true;
3698 			goto next_inode;
3699 		}
3700 
3701 		/* Try in-memory lookup first. */
3702 		next_ip = xfs_iunlink_lookup(pag, next_agino);
3703 		if (next_ip)
3704 			goto next_inode;
3705 
3706 		/* Inode not in memory, try reloading it. */
3707 		error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
3708 				next_agino);
3709 		if (error)
3710 			break;
3711 
3712 		/* Grab the reloaded inode. */
3713 		next_ip = xfs_iunlink_lookup(pag, next_agino);
3714 		if (!next_ip) {
3715 			/* No incore inode at all?  We reloaded it... */
3716 			ASSERT(next_ip != NULL);
3717 			error = -EFSCORRUPTED;
3718 			break;
3719 		}
3720 
3721 next_inode:
3722 		prev_agino = next_agino;
3723 		next_agino = next_ip->i_next_unlinked;
3724 	}
3725 
3726 out_agibp:
3727 	xfs_trans_brelse(tp, agibp);
3728 	/* Should have found this inode somewhere in the iunlinked bucket. */
3729 	if (!error && !foundit)
3730 		error = -EFSCORRUPTED;
3731 	return error;
3732 }
3733 
3734 /* Decide if this inode is missing its unlinked list and reload it. */
3735 int
3736 xfs_inode_reload_unlinked(
3737 	struct xfs_inode	*ip)
3738 {
3739 	struct xfs_trans	*tp;
3740 	int			error;
3741 
3742 	error = xfs_trans_alloc_empty(ip->i_mount, &tp);
3743 	if (error)
3744 		return error;
3745 
3746 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3747 	if (xfs_inode_unlinked_incomplete(ip))
3748 		error = xfs_inode_reload_unlinked_bucket(tp, ip);
3749 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3750 	xfs_trans_cancel(tp);
3751 
3752 	return error;
3753 }
3754 
3755 /* Has this inode fork been zapped by repair? */
3756 bool
3757 xfs_ifork_zapped(
3758 	const struct xfs_inode	*ip,
3759 	int			whichfork)
3760 {
3761 	unsigned int		datamask = 0;
3762 
3763 	switch (whichfork) {
3764 	case XFS_DATA_FORK:
3765 		switch (ip->i_vnode.i_mode & S_IFMT) {
3766 		case S_IFDIR:
3767 			datamask = XFS_SICK_INO_DIR_ZAPPED;
3768 			break;
3769 		case S_IFLNK:
3770 			datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
3771 			break;
3772 		}
3773 		return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
3774 	case XFS_ATTR_FORK:
3775 		return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
3776 	default:
3777 		return false;
3778 	}
3779 }
3780