1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_dir2.h" 18 #include "xfs_attr.h" 19 #include "xfs_bit.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_trans.h" 22 #include "xfs_buf_item.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_iunlink_item.h" 25 #include "xfs_ialloc.h" 26 #include "xfs_bmap.h" 27 #include "xfs_bmap_util.h" 28 #include "xfs_errortag.h" 29 #include "xfs_error.h" 30 #include "xfs_quota.h" 31 #include "xfs_filestream.h" 32 #include "xfs_trace.h" 33 #include "xfs_icache.h" 34 #include "xfs_symlink.h" 35 #include "xfs_trans_priv.h" 36 #include "xfs_log.h" 37 #include "xfs_bmap_btree.h" 38 #include "xfs_reflink.h" 39 #include "xfs_ag.h" 40 #include "xfs_log_priv.h" 41 #include "xfs_health.h" 42 #include "xfs_pnfs.h" 43 #include "xfs_parent.h" 44 #include "xfs_xattr.h" 45 #include "xfs_inode_util.h" 46 47 struct kmem_cache *xfs_inode_cache; 48 49 /* 50 * These two are wrapper routines around the xfs_ilock() routine used to 51 * centralize some grungy code. They are used in places that wish to lock the 52 * inode solely for reading the extents. The reason these places can't just 53 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 54 * bringing in of the extents from disk for a file in b-tree format. If the 55 * inode is in b-tree format, then we need to lock the inode exclusively until 56 * the extents are read in. Locking it exclusively all the time would limit 57 * our parallelism unnecessarily, though. What we do instead is check to see 58 * if the extents have been read in yet, and only lock the inode exclusively 59 * if they have not. 60 * 61 * The functions return a value which should be given to the corresponding 62 * xfs_iunlock() call. 63 */ 64 uint 65 xfs_ilock_data_map_shared( 66 struct xfs_inode *ip) 67 { 68 uint lock_mode = XFS_ILOCK_SHARED; 69 70 if (xfs_need_iread_extents(&ip->i_df)) 71 lock_mode = XFS_ILOCK_EXCL; 72 xfs_ilock(ip, lock_mode); 73 return lock_mode; 74 } 75 76 uint 77 xfs_ilock_attr_map_shared( 78 struct xfs_inode *ip) 79 { 80 uint lock_mode = XFS_ILOCK_SHARED; 81 82 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) 83 lock_mode = XFS_ILOCK_EXCL; 84 xfs_ilock(ip, lock_mode); 85 return lock_mode; 86 } 87 88 /* 89 * You can't set both SHARED and EXCL for the same lock, 90 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED, 91 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values 92 * to set in lock_flags. 93 */ 94 static inline void 95 xfs_lock_flags_assert( 96 uint lock_flags) 97 { 98 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 99 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 100 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 101 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 102 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 103 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 104 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 105 ASSERT(lock_flags != 0); 106 } 107 108 /* 109 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 110 * multi-reader locks: invalidate_lock and the i_lock. This routine allows 111 * various combinations of the locks to be obtained. 112 * 113 * The 3 locks should always be ordered so that the IO lock is obtained first, 114 * the mmap lock second and the ilock last in order to prevent deadlock. 115 * 116 * Basic locking order: 117 * 118 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock 119 * 120 * mmap_lock locking order: 121 * 122 * i_rwsem -> page lock -> mmap_lock 123 * mmap_lock -> invalidate_lock -> page_lock 124 * 125 * The difference in mmap_lock locking order mean that we cannot hold the 126 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths 127 * can fault in pages during copy in/out (for buffered IO) or require the 128 * mmap_lock in get_user_pages() to map the user pages into the kernel address 129 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page 130 * fault because page faults already hold the mmap_lock. 131 * 132 * Hence to serialise fully against both syscall and mmap based IO, we need to 133 * take both the i_rwsem and the invalidate_lock. These locks should *only* be 134 * both taken in places where we need to invalidate the page cache in a race 135 * free manner (e.g. truncate, hole punch and other extent manipulation 136 * functions). 137 */ 138 void 139 xfs_ilock( 140 xfs_inode_t *ip, 141 uint lock_flags) 142 { 143 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 144 145 xfs_lock_flags_assert(lock_flags); 146 147 if (lock_flags & XFS_IOLOCK_EXCL) { 148 down_write_nested(&VFS_I(ip)->i_rwsem, 149 XFS_IOLOCK_DEP(lock_flags)); 150 } else if (lock_flags & XFS_IOLOCK_SHARED) { 151 down_read_nested(&VFS_I(ip)->i_rwsem, 152 XFS_IOLOCK_DEP(lock_flags)); 153 } 154 155 if (lock_flags & XFS_MMAPLOCK_EXCL) { 156 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 157 XFS_MMAPLOCK_DEP(lock_flags)); 158 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 159 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 160 XFS_MMAPLOCK_DEP(lock_flags)); 161 } 162 163 if (lock_flags & XFS_ILOCK_EXCL) 164 down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 165 else if (lock_flags & XFS_ILOCK_SHARED) 166 down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 167 } 168 169 /* 170 * This is just like xfs_ilock(), except that the caller 171 * is guaranteed not to sleep. It returns 1 if it gets 172 * the requested locks and 0 otherwise. If the IO lock is 173 * obtained but the inode lock cannot be, then the IO lock 174 * is dropped before returning. 175 * 176 * ip -- the inode being locked 177 * lock_flags -- this parameter indicates the inode's locks to be 178 * to be locked. See the comment for xfs_ilock() for a list 179 * of valid values. 180 */ 181 int 182 xfs_ilock_nowait( 183 xfs_inode_t *ip, 184 uint lock_flags) 185 { 186 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 187 188 xfs_lock_flags_assert(lock_flags); 189 190 if (lock_flags & XFS_IOLOCK_EXCL) { 191 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 192 goto out; 193 } else if (lock_flags & XFS_IOLOCK_SHARED) { 194 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 195 goto out; 196 } 197 198 if (lock_flags & XFS_MMAPLOCK_EXCL) { 199 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 200 goto out_undo_iolock; 201 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 202 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 203 goto out_undo_iolock; 204 } 205 206 if (lock_flags & XFS_ILOCK_EXCL) { 207 if (!down_write_trylock(&ip->i_lock)) 208 goto out_undo_mmaplock; 209 } else if (lock_flags & XFS_ILOCK_SHARED) { 210 if (!down_read_trylock(&ip->i_lock)) 211 goto out_undo_mmaplock; 212 } 213 return 1; 214 215 out_undo_mmaplock: 216 if (lock_flags & XFS_MMAPLOCK_EXCL) 217 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 218 else if (lock_flags & XFS_MMAPLOCK_SHARED) 219 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 220 out_undo_iolock: 221 if (lock_flags & XFS_IOLOCK_EXCL) 222 up_write(&VFS_I(ip)->i_rwsem); 223 else if (lock_flags & XFS_IOLOCK_SHARED) 224 up_read(&VFS_I(ip)->i_rwsem); 225 out: 226 return 0; 227 } 228 229 /* 230 * xfs_iunlock() is used to drop the inode locks acquired with 231 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 232 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 233 * that we know which locks to drop. 234 * 235 * ip -- the inode being unlocked 236 * lock_flags -- this parameter indicates the inode's locks to be 237 * to be unlocked. See the comment for xfs_ilock() for a list 238 * of valid values for this parameter. 239 * 240 */ 241 void 242 xfs_iunlock( 243 xfs_inode_t *ip, 244 uint lock_flags) 245 { 246 xfs_lock_flags_assert(lock_flags); 247 248 if (lock_flags & XFS_IOLOCK_EXCL) 249 up_write(&VFS_I(ip)->i_rwsem); 250 else if (lock_flags & XFS_IOLOCK_SHARED) 251 up_read(&VFS_I(ip)->i_rwsem); 252 253 if (lock_flags & XFS_MMAPLOCK_EXCL) 254 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 255 else if (lock_flags & XFS_MMAPLOCK_SHARED) 256 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 257 258 if (lock_flags & XFS_ILOCK_EXCL) 259 up_write(&ip->i_lock); 260 else if (lock_flags & XFS_ILOCK_SHARED) 261 up_read(&ip->i_lock); 262 263 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 264 } 265 266 /* 267 * give up write locks. the i/o lock cannot be held nested 268 * if it is being demoted. 269 */ 270 void 271 xfs_ilock_demote( 272 xfs_inode_t *ip, 273 uint lock_flags) 274 { 275 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 276 ASSERT((lock_flags & 277 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 278 279 if (lock_flags & XFS_ILOCK_EXCL) 280 downgrade_write(&ip->i_lock); 281 if (lock_flags & XFS_MMAPLOCK_EXCL) 282 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); 283 if (lock_flags & XFS_IOLOCK_EXCL) 284 downgrade_write(&VFS_I(ip)->i_rwsem); 285 286 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 287 } 288 289 void 290 xfs_assert_ilocked( 291 struct xfs_inode *ip, 292 uint lock_flags) 293 { 294 /* 295 * Sometimes we assert the ILOCK is held exclusively, but we're in 296 * a workqueue, so lockdep doesn't know we're the owner. 297 */ 298 if (lock_flags & XFS_ILOCK_SHARED) 299 rwsem_assert_held(&ip->i_lock); 300 else if (lock_flags & XFS_ILOCK_EXCL) 301 rwsem_assert_held_write_nolockdep(&ip->i_lock); 302 303 if (lock_flags & XFS_MMAPLOCK_SHARED) 304 rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock); 305 else if (lock_flags & XFS_MMAPLOCK_EXCL) 306 rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock); 307 308 if (lock_flags & XFS_IOLOCK_SHARED) 309 rwsem_assert_held(&VFS_I(ip)->i_rwsem); 310 else if (lock_flags & XFS_IOLOCK_EXCL) 311 rwsem_assert_held_write(&VFS_I(ip)->i_rwsem); 312 } 313 314 /* 315 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 316 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 317 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 318 * errors and warnings. 319 */ 320 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 321 static bool 322 xfs_lockdep_subclass_ok( 323 int subclass) 324 { 325 return subclass < MAX_LOCKDEP_SUBCLASSES; 326 } 327 #else 328 #define xfs_lockdep_subclass_ok(subclass) (true) 329 #endif 330 331 /* 332 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 333 * value. This can be called for any type of inode lock combination, including 334 * parent locking. Care must be taken to ensure we don't overrun the subclass 335 * storage fields in the class mask we build. 336 */ 337 static inline uint 338 xfs_lock_inumorder( 339 uint lock_mode, 340 uint subclass) 341 { 342 uint class = 0; 343 344 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 345 XFS_ILOCK_RTSUM))); 346 ASSERT(xfs_lockdep_subclass_ok(subclass)); 347 348 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 349 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 350 class += subclass << XFS_IOLOCK_SHIFT; 351 } 352 353 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 354 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 355 class += subclass << XFS_MMAPLOCK_SHIFT; 356 } 357 358 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 359 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 360 class += subclass << XFS_ILOCK_SHIFT; 361 } 362 363 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 364 } 365 366 /* 367 * The following routine will lock n inodes in exclusive mode. We assume the 368 * caller calls us with the inodes in i_ino order. 369 * 370 * We need to detect deadlock where an inode that we lock is in the AIL and we 371 * start waiting for another inode that is locked by a thread in a long running 372 * transaction (such as truncate). This can result in deadlock since the long 373 * running trans might need to wait for the inode we just locked in order to 374 * push the tail and free space in the log. 375 * 376 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 377 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 378 * lock more than one at a time, lockdep will report false positives saying we 379 * have violated locking orders. 380 */ 381 void 382 xfs_lock_inodes( 383 struct xfs_inode **ips, 384 int inodes, 385 uint lock_mode) 386 { 387 int attempts = 0; 388 uint i; 389 int j; 390 bool try_lock; 391 struct xfs_log_item *lp; 392 393 /* 394 * Currently supports between 2 and 5 inodes with exclusive locking. We 395 * support an arbitrary depth of locking here, but absolute limits on 396 * inodes depend on the type of locking and the limits placed by 397 * lockdep annotations in xfs_lock_inumorder. These are all checked by 398 * the asserts. 399 */ 400 ASSERT(ips && inodes >= 2 && inodes <= 5); 401 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 402 XFS_ILOCK_EXCL)); 403 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 404 XFS_ILOCK_SHARED))); 405 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 406 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 407 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 408 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 409 410 if (lock_mode & XFS_IOLOCK_EXCL) { 411 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 412 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 413 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 414 415 again: 416 try_lock = false; 417 i = 0; 418 for (; i < inodes; i++) { 419 ASSERT(ips[i]); 420 421 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 422 continue; 423 424 /* 425 * If try_lock is not set yet, make sure all locked inodes are 426 * not in the AIL. If any are, set try_lock to be used later. 427 */ 428 if (!try_lock) { 429 for (j = (i - 1); j >= 0 && !try_lock; j--) { 430 lp = &ips[j]->i_itemp->ili_item; 431 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 432 try_lock = true; 433 } 434 } 435 436 /* 437 * If any of the previous locks we have locked is in the AIL, 438 * we must TRY to get the second and subsequent locks. If 439 * we can't get any, we must release all we have 440 * and try again. 441 */ 442 if (!try_lock) { 443 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 444 continue; 445 } 446 447 /* try_lock means we have an inode locked that is in the AIL. */ 448 ASSERT(i != 0); 449 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 450 continue; 451 452 /* 453 * Unlock all previous guys and try again. xfs_iunlock will try 454 * to push the tail if the inode is in the AIL. 455 */ 456 attempts++; 457 for (j = i - 1; j >= 0; j--) { 458 /* 459 * Check to see if we've already unlocked this one. Not 460 * the first one going back, and the inode ptr is the 461 * same. 462 */ 463 if (j != (i - 1) && ips[j] == ips[j + 1]) 464 continue; 465 466 xfs_iunlock(ips[j], lock_mode); 467 } 468 469 if ((attempts % 5) == 0) { 470 delay(1); /* Don't just spin the CPU */ 471 } 472 goto again; 473 } 474 } 475 476 /* 477 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and 478 * mmaplock must be double-locked separately since we use i_rwsem and 479 * invalidate_lock for that. We now support taking one lock EXCL and the 480 * other SHARED. 481 */ 482 void 483 xfs_lock_two_inodes( 484 struct xfs_inode *ip0, 485 uint ip0_mode, 486 struct xfs_inode *ip1, 487 uint ip1_mode) 488 { 489 int attempts = 0; 490 struct xfs_log_item *lp; 491 492 ASSERT(hweight32(ip0_mode) == 1); 493 ASSERT(hweight32(ip1_mode) == 1); 494 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 495 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 496 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 497 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 498 ASSERT(ip0->i_ino != ip1->i_ino); 499 500 if (ip0->i_ino > ip1->i_ino) { 501 swap(ip0, ip1); 502 swap(ip0_mode, ip1_mode); 503 } 504 505 again: 506 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 507 508 /* 509 * If the first lock we have locked is in the AIL, we must TRY to get 510 * the second lock. If we can't get it, we must release the first one 511 * and try again. 512 */ 513 lp = &ip0->i_itemp->ili_item; 514 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 515 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 516 xfs_iunlock(ip0, ip0_mode); 517 if ((++attempts % 5) == 0) 518 delay(1); /* Don't just spin the CPU */ 519 goto again; 520 } 521 } else { 522 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 523 } 524 } 525 526 /* 527 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 528 * is allowed, otherwise it has to be an exact match. If a CI match is found, 529 * ci_name->name will point to a the actual name (caller must free) or 530 * will be set to NULL if an exact match is found. 531 */ 532 int 533 xfs_lookup( 534 struct xfs_inode *dp, 535 const struct xfs_name *name, 536 struct xfs_inode **ipp, 537 struct xfs_name *ci_name) 538 { 539 xfs_ino_t inum; 540 int error; 541 542 trace_xfs_lookup(dp, name); 543 544 if (xfs_is_shutdown(dp->i_mount)) 545 return -EIO; 546 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 547 return -EIO; 548 549 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 550 if (error) 551 goto out_unlock; 552 553 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 554 if (error) 555 goto out_free_name; 556 557 return 0; 558 559 out_free_name: 560 if (ci_name) 561 kfree(ci_name->name); 562 out_unlock: 563 *ipp = NULL; 564 return error; 565 } 566 567 /* 568 * Initialise a newly allocated inode and return the in-core inode to the 569 * caller locked exclusively. 570 * 571 * Caller is responsible for unlocking the inode manually upon return 572 */ 573 int 574 xfs_icreate( 575 struct xfs_trans *tp, 576 xfs_ino_t ino, 577 const struct xfs_icreate_args *args, 578 struct xfs_inode **ipp) 579 { 580 struct xfs_mount *mp = tp->t_mountp; 581 struct xfs_inode *ip = NULL; 582 int error; 583 584 /* 585 * Get the in-core inode with the lock held exclusively to prevent 586 * others from looking at until we're done. 587 */ 588 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 589 if (error) 590 return error; 591 592 ASSERT(ip != NULL); 593 xfs_trans_ijoin(tp, ip, 0); 594 xfs_inode_init(tp, args, ip); 595 596 /* now that we have an i_mode we can setup the inode structure */ 597 xfs_setup_inode(ip); 598 599 *ipp = ip; 600 return 0; 601 } 602 603 /* Return dquots for the ids that will be assigned to a new file. */ 604 int 605 xfs_icreate_dqalloc( 606 const struct xfs_icreate_args *args, 607 struct xfs_dquot **udqpp, 608 struct xfs_dquot **gdqpp, 609 struct xfs_dquot **pdqpp) 610 { 611 struct inode *dir = VFS_I(args->pip); 612 kuid_t uid = GLOBAL_ROOT_UID; 613 kgid_t gid = GLOBAL_ROOT_GID; 614 prid_t prid = 0; 615 unsigned int flags = XFS_QMOPT_QUOTALL; 616 617 if (args->idmap) { 618 /* 619 * The uid/gid computation code must match what the VFS uses to 620 * assign i_[ug]id. INHERIT adjusts the gid computation for 621 * setgid/grpid systems. 622 */ 623 uid = mapped_fsuid(args->idmap, i_user_ns(dir)); 624 gid = mapped_fsgid(args->idmap, i_user_ns(dir)); 625 prid = xfs_get_initial_prid(args->pip); 626 flags |= XFS_QMOPT_INHERIT; 627 } 628 629 *udqpp = *gdqpp = *pdqpp = NULL; 630 631 return xfs_qm_vop_dqalloc(args->pip, uid, gid, prid, flags, udqpp, 632 gdqpp, pdqpp); 633 } 634 635 int 636 xfs_create( 637 const struct xfs_icreate_args *args, 638 struct xfs_name *name, 639 struct xfs_inode **ipp) 640 { 641 struct xfs_inode *dp = args->pip; 642 struct xfs_dir_update du = { 643 .dp = dp, 644 .name = name, 645 }; 646 struct xfs_mount *mp = dp->i_mount; 647 struct xfs_trans *tp = NULL; 648 struct xfs_dquot *udqp; 649 struct xfs_dquot *gdqp; 650 struct xfs_dquot *pdqp; 651 struct xfs_trans_res *tres; 652 xfs_ino_t ino; 653 bool unlock_dp_on_error = false; 654 bool is_dir = S_ISDIR(args->mode); 655 uint resblks; 656 int error; 657 658 trace_xfs_create(dp, name); 659 660 if (xfs_is_shutdown(mp)) 661 return -EIO; 662 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 663 return -EIO; 664 665 /* Make sure that we have allocated dquot(s) on disk. */ 666 error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp); 667 if (error) 668 return error; 669 670 if (is_dir) { 671 resblks = xfs_mkdir_space_res(mp, name->len); 672 tres = &M_RES(mp)->tr_mkdir; 673 } else { 674 resblks = xfs_create_space_res(mp, name->len); 675 tres = &M_RES(mp)->tr_create; 676 } 677 678 error = xfs_parent_start(mp, &du.ppargs); 679 if (error) 680 goto out_release_dquots; 681 682 /* 683 * Initially assume that the file does not exist and 684 * reserve the resources for that case. If that is not 685 * the case we'll drop the one we have and get a more 686 * appropriate transaction later. 687 */ 688 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 689 &tp); 690 if (error == -ENOSPC) { 691 /* flush outstanding delalloc blocks and retry */ 692 xfs_flush_inodes(mp); 693 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, 694 resblks, &tp); 695 } 696 if (error) 697 goto out_parent; 698 699 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 700 unlock_dp_on_error = true; 701 702 /* 703 * A newly created regular or special file just has one directory 704 * entry pointing to them, but a directory also the "." entry 705 * pointing to itself. 706 */ 707 error = xfs_dialloc(&tp, args, &ino); 708 if (!error) 709 error = xfs_icreate(tp, ino, args, &du.ip); 710 if (error) 711 goto out_trans_cancel; 712 713 /* 714 * Now we join the directory inode to the transaction. We do not do it 715 * earlier because xfs_dialloc might commit the previous transaction 716 * (and release all the locks). An error from here on will result in 717 * the transaction cancel unlocking dp so don't do it explicitly in the 718 * error path. 719 */ 720 xfs_trans_ijoin(tp, dp, 0); 721 722 error = xfs_dir_create_child(tp, resblks, &du); 723 if (error) 724 goto out_trans_cancel; 725 726 /* 727 * If this is a synchronous mount, make sure that the 728 * create transaction goes to disk before returning to 729 * the user. 730 */ 731 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 732 xfs_trans_set_sync(tp); 733 734 /* 735 * Attach the dquot(s) to the inodes and modify them incore. 736 * These ids of the inode couldn't have changed since the new 737 * inode has been locked ever since it was created. 738 */ 739 xfs_qm_vop_create_dqattach(tp, du.ip, udqp, gdqp, pdqp); 740 741 error = xfs_trans_commit(tp); 742 if (error) 743 goto out_release_inode; 744 745 xfs_qm_dqrele(udqp); 746 xfs_qm_dqrele(gdqp); 747 xfs_qm_dqrele(pdqp); 748 749 *ipp = du.ip; 750 xfs_iunlock(du.ip, XFS_ILOCK_EXCL); 751 xfs_iunlock(dp, XFS_ILOCK_EXCL); 752 xfs_parent_finish(mp, du.ppargs); 753 return 0; 754 755 out_trans_cancel: 756 xfs_trans_cancel(tp); 757 out_release_inode: 758 /* 759 * Wait until after the current transaction is aborted to finish the 760 * setup of the inode and release the inode. This prevents recursive 761 * transactions and deadlocks from xfs_inactive. 762 */ 763 if (du.ip) { 764 xfs_iunlock(du.ip, XFS_ILOCK_EXCL); 765 xfs_finish_inode_setup(du.ip); 766 xfs_irele(du.ip); 767 } 768 out_parent: 769 xfs_parent_finish(mp, du.ppargs); 770 out_release_dquots: 771 xfs_qm_dqrele(udqp); 772 xfs_qm_dqrele(gdqp); 773 xfs_qm_dqrele(pdqp); 774 775 if (unlock_dp_on_error) 776 xfs_iunlock(dp, XFS_ILOCK_EXCL); 777 return error; 778 } 779 780 int 781 xfs_create_tmpfile( 782 const struct xfs_icreate_args *args, 783 struct xfs_inode **ipp) 784 { 785 struct xfs_inode *dp = args->pip; 786 struct xfs_mount *mp = dp->i_mount; 787 struct xfs_inode *ip = NULL; 788 struct xfs_trans *tp = NULL; 789 struct xfs_dquot *udqp; 790 struct xfs_dquot *gdqp; 791 struct xfs_dquot *pdqp; 792 struct xfs_trans_res *tres; 793 xfs_ino_t ino; 794 uint resblks; 795 int error; 796 797 ASSERT(args->flags & XFS_ICREATE_TMPFILE); 798 799 if (xfs_is_shutdown(mp)) 800 return -EIO; 801 802 /* Make sure that we have allocated dquot(s) on disk. */ 803 error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp); 804 if (error) 805 return error; 806 807 resblks = XFS_IALLOC_SPACE_RES(mp); 808 tres = &M_RES(mp)->tr_create_tmpfile; 809 810 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 811 &tp); 812 if (error) 813 goto out_release_dquots; 814 815 error = xfs_dialloc(&tp, args, &ino); 816 if (!error) 817 error = xfs_icreate(tp, ino, args, &ip); 818 if (error) 819 goto out_trans_cancel; 820 821 if (xfs_has_wsync(mp)) 822 xfs_trans_set_sync(tp); 823 824 /* 825 * Attach the dquot(s) to the inodes and modify them incore. 826 * These ids of the inode couldn't have changed since the new 827 * inode has been locked ever since it was created. 828 */ 829 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 830 831 error = xfs_iunlink(tp, ip); 832 if (error) 833 goto out_trans_cancel; 834 835 error = xfs_trans_commit(tp); 836 if (error) 837 goto out_release_inode; 838 839 xfs_qm_dqrele(udqp); 840 xfs_qm_dqrele(gdqp); 841 xfs_qm_dqrele(pdqp); 842 843 *ipp = ip; 844 xfs_iunlock(ip, XFS_ILOCK_EXCL); 845 return 0; 846 847 out_trans_cancel: 848 xfs_trans_cancel(tp); 849 out_release_inode: 850 /* 851 * Wait until after the current transaction is aborted to finish the 852 * setup of the inode and release the inode. This prevents recursive 853 * transactions and deadlocks from xfs_inactive. 854 */ 855 if (ip) { 856 xfs_iunlock(ip, XFS_ILOCK_EXCL); 857 xfs_finish_inode_setup(ip); 858 xfs_irele(ip); 859 } 860 out_release_dquots: 861 xfs_qm_dqrele(udqp); 862 xfs_qm_dqrele(gdqp); 863 xfs_qm_dqrele(pdqp); 864 865 return error; 866 } 867 868 int 869 xfs_link( 870 struct xfs_inode *tdp, 871 struct xfs_inode *sip, 872 struct xfs_name *target_name) 873 { 874 struct xfs_dir_update du = { 875 .dp = tdp, 876 .name = target_name, 877 .ip = sip, 878 }; 879 struct xfs_mount *mp = tdp->i_mount; 880 struct xfs_trans *tp; 881 int error, nospace_error = 0; 882 int resblks; 883 884 trace_xfs_link(tdp, target_name); 885 886 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 887 888 if (xfs_is_shutdown(mp)) 889 return -EIO; 890 if (xfs_ifork_zapped(tdp, XFS_DATA_FORK)) 891 return -EIO; 892 893 error = xfs_qm_dqattach(sip); 894 if (error) 895 goto std_return; 896 897 error = xfs_qm_dqattach(tdp); 898 if (error) 899 goto std_return; 900 901 error = xfs_parent_start(mp, &du.ppargs); 902 if (error) 903 goto std_return; 904 905 resblks = xfs_link_space_res(mp, target_name->len); 906 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks, 907 &tp, &nospace_error); 908 if (error) 909 goto out_parent; 910 911 /* 912 * We don't allow reservationless or quotaless hardlinking when parent 913 * pointers are enabled because we can't back out if the xattrs must 914 * grow. 915 */ 916 if (du.ppargs && nospace_error) { 917 error = nospace_error; 918 goto error_return; 919 } 920 921 /* 922 * If we are using project inheritance, we only allow hard link 923 * creation in our tree when the project IDs are the same; else 924 * the tree quota mechanism could be circumvented. 925 */ 926 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 927 tdp->i_projid != sip->i_projid)) { 928 /* 929 * Project quota setup skips special files which can 930 * leave inodes in a PROJINHERIT directory without a 931 * project ID set. We need to allow links to be made 932 * to these "project-less" inodes because userspace 933 * expects them to succeed after project ID setup, 934 * but everything else should be rejected. 935 */ 936 if (!special_file(VFS_I(sip)->i_mode) || 937 sip->i_projid != 0) { 938 error = -EXDEV; 939 goto error_return; 940 } 941 } 942 943 error = xfs_dir_add_child(tp, resblks, &du); 944 if (error) 945 goto error_return; 946 947 /* 948 * If this is a synchronous mount, make sure that the 949 * link transaction goes to disk before returning to 950 * the user. 951 */ 952 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 953 xfs_trans_set_sync(tp); 954 955 error = xfs_trans_commit(tp); 956 xfs_iunlock(tdp, XFS_ILOCK_EXCL); 957 xfs_iunlock(sip, XFS_ILOCK_EXCL); 958 xfs_parent_finish(mp, du.ppargs); 959 return error; 960 961 error_return: 962 xfs_trans_cancel(tp); 963 xfs_iunlock(tdp, XFS_ILOCK_EXCL); 964 xfs_iunlock(sip, XFS_ILOCK_EXCL); 965 out_parent: 966 xfs_parent_finish(mp, du.ppargs); 967 std_return: 968 if (error == -ENOSPC && nospace_error) 969 error = nospace_error; 970 return error; 971 } 972 973 /* Clear the reflink flag and the cowblocks tag if possible. */ 974 static void 975 xfs_itruncate_clear_reflink_flags( 976 struct xfs_inode *ip) 977 { 978 struct xfs_ifork *dfork; 979 struct xfs_ifork *cfork; 980 981 if (!xfs_is_reflink_inode(ip)) 982 return; 983 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK); 984 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK); 985 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 986 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 987 if (cfork->if_bytes == 0) 988 xfs_inode_clear_cowblocks_tag(ip); 989 } 990 991 /* 992 * Free up the underlying blocks past new_size. The new size must be smaller 993 * than the current size. This routine can be used both for the attribute and 994 * data fork, and does not modify the inode size, which is left to the caller. 995 * 996 * The transaction passed to this routine must have made a permanent log 997 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 998 * given transaction and start new ones, so make sure everything involved in 999 * the transaction is tidy before calling here. Some transaction will be 1000 * returned to the caller to be committed. The incoming transaction must 1001 * already include the inode, and both inode locks must be held exclusively. 1002 * The inode must also be "held" within the transaction. On return the inode 1003 * will be "held" within the returned transaction. This routine does NOT 1004 * require any disk space to be reserved for it within the transaction. 1005 * 1006 * If we get an error, we must return with the inode locked and linked into the 1007 * current transaction. This keeps things simple for the higher level code, 1008 * because it always knows that the inode is locked and held in the transaction 1009 * that returns to it whether errors occur or not. We don't mark the inode 1010 * dirty on error so that transactions can be easily aborted if possible. 1011 */ 1012 int 1013 xfs_itruncate_extents_flags( 1014 struct xfs_trans **tpp, 1015 struct xfs_inode *ip, 1016 int whichfork, 1017 xfs_fsize_t new_size, 1018 int flags) 1019 { 1020 struct xfs_mount *mp = ip->i_mount; 1021 struct xfs_trans *tp = *tpp; 1022 xfs_fileoff_t first_unmap_block; 1023 int error = 0; 1024 1025 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 1026 if (atomic_read(&VFS_I(ip)->i_count)) 1027 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL); 1028 ASSERT(new_size <= XFS_ISIZE(ip)); 1029 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1030 ASSERT(ip->i_itemp != NULL); 1031 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1032 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1033 1034 trace_xfs_itruncate_extents_start(ip, new_size); 1035 1036 flags |= xfs_bmapi_aflag(whichfork); 1037 1038 /* 1039 * Since it is possible for space to become allocated beyond 1040 * the end of the file (in a crash where the space is allocated 1041 * but the inode size is not yet updated), simply remove any 1042 * blocks which show up between the new EOF and the maximum 1043 * possible file size. 1044 * 1045 * We have to free all the blocks to the bmbt maximum offset, even if 1046 * the page cache can't scale that far. 1047 */ 1048 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1049 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1050 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1051 return 0; 1052 } 1053 1054 error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block, 1055 XFS_MAX_FILEOFF); 1056 if (error) 1057 goto out; 1058 1059 if (whichfork == XFS_DATA_FORK) { 1060 /* Remove all pending CoW reservations. */ 1061 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1062 first_unmap_block, XFS_MAX_FILEOFF, true); 1063 if (error) 1064 goto out; 1065 1066 xfs_itruncate_clear_reflink_flags(ip); 1067 } 1068 1069 /* 1070 * Always re-log the inode so that our permanent transaction can keep 1071 * on rolling it forward in the log. 1072 */ 1073 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1074 1075 trace_xfs_itruncate_extents_end(ip, new_size); 1076 1077 out: 1078 *tpp = tp; 1079 return error; 1080 } 1081 1082 /* 1083 * Mark all the buffers attached to this directory stale. In theory we should 1084 * never be freeing a directory with any blocks at all, but this covers the 1085 * case where we've recovered a directory swap with a "temporary" directory 1086 * created by online repair and now need to dump it. 1087 */ 1088 STATIC void 1089 xfs_inactive_dir( 1090 struct xfs_inode *dp) 1091 { 1092 struct xfs_iext_cursor icur; 1093 struct xfs_bmbt_irec got; 1094 struct xfs_mount *mp = dp->i_mount; 1095 struct xfs_da_geometry *geo = mp->m_dir_geo; 1096 struct xfs_ifork *ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK); 1097 xfs_fileoff_t off; 1098 1099 /* 1100 * Invalidate each directory block. All directory blocks are of 1101 * fsbcount length and alignment, so we only need to walk those same 1102 * offsets. We hold the only reference to this inode, so we must wait 1103 * for the buffer locks. 1104 */ 1105 for_each_xfs_iext(ifp, &icur, &got) { 1106 for (off = round_up(got.br_startoff, geo->fsbcount); 1107 off < got.br_startoff + got.br_blockcount; 1108 off += geo->fsbcount) { 1109 struct xfs_buf *bp = NULL; 1110 xfs_fsblock_t fsbno; 1111 int error; 1112 1113 fsbno = (off - got.br_startoff) + got.br_startblock; 1114 error = xfs_buf_incore(mp->m_ddev_targp, 1115 XFS_FSB_TO_DADDR(mp, fsbno), 1116 XFS_FSB_TO_BB(mp, geo->fsbcount), 1117 XBF_LIVESCAN, &bp); 1118 if (error) 1119 continue; 1120 1121 xfs_buf_stale(bp); 1122 xfs_buf_relse(bp); 1123 } 1124 } 1125 } 1126 1127 /* 1128 * xfs_inactive_truncate 1129 * 1130 * Called to perform a truncate when an inode becomes unlinked. 1131 */ 1132 STATIC int 1133 xfs_inactive_truncate( 1134 struct xfs_inode *ip) 1135 { 1136 struct xfs_mount *mp = ip->i_mount; 1137 struct xfs_trans *tp; 1138 int error; 1139 1140 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1141 if (error) { 1142 ASSERT(xfs_is_shutdown(mp)); 1143 return error; 1144 } 1145 xfs_ilock(ip, XFS_ILOCK_EXCL); 1146 xfs_trans_ijoin(tp, ip, 0); 1147 1148 /* 1149 * Log the inode size first to prevent stale data exposure in the event 1150 * of a system crash before the truncate completes. See the related 1151 * comment in xfs_vn_setattr_size() for details. 1152 */ 1153 ip->i_disk_size = 0; 1154 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1155 1156 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1157 if (error) 1158 goto error_trans_cancel; 1159 1160 ASSERT(ip->i_df.if_nextents == 0); 1161 1162 error = xfs_trans_commit(tp); 1163 if (error) 1164 goto error_unlock; 1165 1166 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1167 return 0; 1168 1169 error_trans_cancel: 1170 xfs_trans_cancel(tp); 1171 error_unlock: 1172 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1173 return error; 1174 } 1175 1176 /* 1177 * xfs_inactive_ifree() 1178 * 1179 * Perform the inode free when an inode is unlinked. 1180 */ 1181 STATIC int 1182 xfs_inactive_ifree( 1183 struct xfs_inode *ip) 1184 { 1185 struct xfs_mount *mp = ip->i_mount; 1186 struct xfs_trans *tp; 1187 int error; 1188 1189 /* 1190 * We try to use a per-AG reservation for any block needed by the finobt 1191 * tree, but as the finobt feature predates the per-AG reservation 1192 * support a degraded file system might not have enough space for the 1193 * reservation at mount time. In that case try to dip into the reserved 1194 * pool and pray. 1195 * 1196 * Send a warning if the reservation does happen to fail, as the inode 1197 * now remains allocated and sits on the unlinked list until the fs is 1198 * repaired. 1199 */ 1200 if (unlikely(mp->m_finobt_nores)) { 1201 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1202 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1203 &tp); 1204 } else { 1205 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1206 } 1207 if (error) { 1208 if (error == -ENOSPC) { 1209 xfs_warn_ratelimited(mp, 1210 "Failed to remove inode(s) from unlinked list. " 1211 "Please free space, unmount and run xfs_repair."); 1212 } else { 1213 ASSERT(xfs_is_shutdown(mp)); 1214 } 1215 return error; 1216 } 1217 1218 /* 1219 * We do not hold the inode locked across the entire rolling transaction 1220 * here. We only need to hold it for the first transaction that 1221 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1222 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1223 * here breaks the relationship between cluster buffer invalidation and 1224 * stale inode invalidation on cluster buffer item journal commit 1225 * completion, and can result in leaving dirty stale inodes hanging 1226 * around in memory. 1227 * 1228 * We have no need for serialising this inode operation against other 1229 * operations - we freed the inode and hence reallocation is required 1230 * and that will serialise on reallocating the space the deferops need 1231 * to free. Hence we can unlock the inode on the first commit of 1232 * the transaction rather than roll it right through the deferops. This 1233 * avoids relogging the XFS_ISTALE inode. 1234 * 1235 * We check that xfs_ifree() hasn't grown an internal transaction roll 1236 * by asserting that the inode is still locked when it returns. 1237 */ 1238 xfs_ilock(ip, XFS_ILOCK_EXCL); 1239 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1240 1241 error = xfs_ifree(tp, ip); 1242 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 1243 if (error) { 1244 /* 1245 * If we fail to free the inode, shut down. The cancel 1246 * might do that, we need to make sure. Otherwise the 1247 * inode might be lost for a long time or forever. 1248 */ 1249 if (!xfs_is_shutdown(mp)) { 1250 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1251 __func__, error); 1252 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1253 } 1254 xfs_trans_cancel(tp); 1255 return error; 1256 } 1257 1258 /* 1259 * Credit the quota account(s). The inode is gone. 1260 */ 1261 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1262 1263 return xfs_trans_commit(tp); 1264 } 1265 1266 /* 1267 * Returns true if we need to update the on-disk metadata before we can free 1268 * the memory used by this inode. Updates include freeing post-eof 1269 * preallocations; freeing COW staging extents; and marking the inode free in 1270 * the inobt if it is on the unlinked list. 1271 */ 1272 bool 1273 xfs_inode_needs_inactive( 1274 struct xfs_inode *ip) 1275 { 1276 struct xfs_mount *mp = ip->i_mount; 1277 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 1278 1279 /* 1280 * If the inode is already free, then there can be nothing 1281 * to clean up here. 1282 */ 1283 if (VFS_I(ip)->i_mode == 0) 1284 return false; 1285 1286 /* 1287 * If this is a read-only mount, don't do this (would generate I/O) 1288 * unless we're in log recovery and cleaning the iunlinked list. 1289 */ 1290 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1291 return false; 1292 1293 /* If the log isn't running, push inodes straight to reclaim. */ 1294 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) 1295 return false; 1296 1297 /* Metadata inodes require explicit resource cleanup. */ 1298 if (xfs_is_metadata_inode(ip)) 1299 return false; 1300 1301 /* Want to clean out the cow blocks if there are any. */ 1302 if (cow_ifp && cow_ifp->if_bytes > 0) 1303 return true; 1304 1305 /* Unlinked files must be freed. */ 1306 if (VFS_I(ip)->i_nlink == 0) 1307 return true; 1308 1309 /* 1310 * This file isn't being freed, so check if there are post-eof blocks 1311 * to free. 1312 * 1313 * Note: don't bother with iolock here since lockdep complains about 1314 * acquiring it in reclaim context. We have the only reference to the 1315 * inode at this point anyways. 1316 */ 1317 return xfs_can_free_eofblocks(ip); 1318 } 1319 1320 /* 1321 * Save health status somewhere, if we're dumping an inode with uncorrected 1322 * errors and online repair isn't running. 1323 */ 1324 static inline void 1325 xfs_inactive_health( 1326 struct xfs_inode *ip) 1327 { 1328 struct xfs_mount *mp = ip->i_mount; 1329 struct xfs_perag *pag; 1330 unsigned int sick; 1331 unsigned int checked; 1332 1333 xfs_inode_measure_sickness(ip, &sick, &checked); 1334 if (!sick) 1335 return; 1336 1337 trace_xfs_inode_unfixed_corruption(ip, sick); 1338 1339 if (sick & XFS_SICK_INO_FORGET) 1340 return; 1341 1342 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1343 if (!pag) { 1344 /* There had better still be a perag structure! */ 1345 ASSERT(0); 1346 return; 1347 } 1348 1349 xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES); 1350 xfs_perag_put(pag); 1351 } 1352 1353 /* 1354 * xfs_inactive 1355 * 1356 * This is called when the vnode reference count for the vnode 1357 * goes to zero. If the file has been unlinked, then it must 1358 * now be truncated. Also, we clear all of the read-ahead state 1359 * kept for the inode here since the file is now closed. 1360 */ 1361 int 1362 xfs_inactive( 1363 xfs_inode_t *ip) 1364 { 1365 struct xfs_mount *mp; 1366 int error = 0; 1367 int truncate = 0; 1368 1369 /* 1370 * If the inode is already free, then there can be nothing 1371 * to clean up here. 1372 */ 1373 if (VFS_I(ip)->i_mode == 0) { 1374 ASSERT(ip->i_df.if_broot_bytes == 0); 1375 goto out; 1376 } 1377 1378 mp = ip->i_mount; 1379 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1380 1381 xfs_inactive_health(ip); 1382 1383 /* 1384 * If this is a read-only mount, don't do this (would generate I/O) 1385 * unless we're in log recovery and cleaning the iunlinked list. 1386 */ 1387 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1388 goto out; 1389 1390 /* Metadata inodes require explicit resource cleanup. */ 1391 if (xfs_is_metadata_inode(ip)) 1392 goto out; 1393 1394 /* Try to clean out the cow blocks if there are any. */ 1395 if (xfs_inode_has_cow_data(ip)) 1396 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1397 1398 if (VFS_I(ip)->i_nlink != 0) { 1399 /* 1400 * Note: don't bother with iolock here since lockdep complains 1401 * about acquiring it in reclaim context. We have the only 1402 * reference to the inode at this point anyways. 1403 */ 1404 if (xfs_can_free_eofblocks(ip)) 1405 error = xfs_free_eofblocks(ip); 1406 1407 goto out; 1408 } 1409 1410 if (S_ISREG(VFS_I(ip)->i_mode) && 1411 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || 1412 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1413 truncate = 1; 1414 1415 if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) { 1416 /* 1417 * If this inode is being inactivated during a quotacheck and 1418 * has not yet been scanned by quotacheck, we /must/ remove 1419 * the dquots from the inode before inactivation changes the 1420 * block and inode counts. Most probably this is a result of 1421 * reloading the incore iunlinked list to purge unrecovered 1422 * unlinked inodes. 1423 */ 1424 xfs_qm_dqdetach(ip); 1425 } else { 1426 error = xfs_qm_dqattach(ip); 1427 if (error) 1428 goto out; 1429 } 1430 1431 if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) { 1432 xfs_inactive_dir(ip); 1433 truncate = 1; 1434 } 1435 1436 if (S_ISLNK(VFS_I(ip)->i_mode)) 1437 error = xfs_inactive_symlink(ip); 1438 else if (truncate) 1439 error = xfs_inactive_truncate(ip); 1440 if (error) 1441 goto out; 1442 1443 /* 1444 * If there are attributes associated with the file then blow them away 1445 * now. The code calls a routine that recursively deconstructs the 1446 * attribute fork. If also blows away the in-core attribute fork. 1447 */ 1448 if (xfs_inode_has_attr_fork(ip)) { 1449 error = xfs_attr_inactive(ip); 1450 if (error) 1451 goto out; 1452 } 1453 1454 ASSERT(ip->i_forkoff == 0); 1455 1456 /* 1457 * Free the inode. 1458 */ 1459 error = xfs_inactive_ifree(ip); 1460 1461 out: 1462 /* 1463 * We're done making metadata updates for this inode, so we can release 1464 * the attached dquots. 1465 */ 1466 xfs_qm_dqdetach(ip); 1467 return error; 1468 } 1469 1470 /* 1471 * Find an inode on the unlinked list. This does not take references to the 1472 * inode as we have existence guarantees by holding the AGI buffer lock and that 1473 * only unlinked, referenced inodes can be on the unlinked inode list. If we 1474 * don't find the inode in cache, then let the caller handle the situation. 1475 */ 1476 struct xfs_inode * 1477 xfs_iunlink_lookup( 1478 struct xfs_perag *pag, 1479 xfs_agino_t agino) 1480 { 1481 struct xfs_inode *ip; 1482 1483 rcu_read_lock(); 1484 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 1485 if (!ip) { 1486 /* Caller can handle inode not being in memory. */ 1487 rcu_read_unlock(); 1488 return NULL; 1489 } 1490 1491 /* 1492 * Inode in RCU freeing limbo should not happen. Warn about this and 1493 * let the caller handle the failure. 1494 */ 1495 if (WARN_ON_ONCE(!ip->i_ino)) { 1496 rcu_read_unlock(); 1497 return NULL; 1498 } 1499 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)); 1500 rcu_read_unlock(); 1501 return ip; 1502 } 1503 1504 /* 1505 * Load the inode @next_agino into the cache and set its prev_unlinked pointer 1506 * to @prev_agino. Caller must hold the AGI to synchronize with other changes 1507 * to the unlinked list. 1508 */ 1509 int 1510 xfs_iunlink_reload_next( 1511 struct xfs_trans *tp, 1512 struct xfs_buf *agibp, 1513 xfs_agino_t prev_agino, 1514 xfs_agino_t next_agino) 1515 { 1516 struct xfs_perag *pag = agibp->b_pag; 1517 struct xfs_mount *mp = pag->pag_mount; 1518 struct xfs_inode *next_ip = NULL; 1519 xfs_ino_t ino; 1520 int error; 1521 1522 ASSERT(next_agino != NULLAGINO); 1523 1524 #ifdef DEBUG 1525 rcu_read_lock(); 1526 next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino); 1527 ASSERT(next_ip == NULL); 1528 rcu_read_unlock(); 1529 #endif 1530 1531 xfs_info_ratelimited(mp, 1532 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.", 1533 next_agino, pag->pag_agno); 1534 1535 /* 1536 * Use an untrusted lookup just to be cautious in case the AGI has been 1537 * corrupted and now points at a free inode. That shouldn't happen, 1538 * but we'd rather shut down now since we're already running in a weird 1539 * situation. 1540 */ 1541 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino); 1542 error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip); 1543 if (error) { 1544 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 1545 return error; 1546 } 1547 1548 /* If this is not an unlinked inode, something is very wrong. */ 1549 if (VFS_I(next_ip)->i_nlink != 0) { 1550 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 1551 error = -EFSCORRUPTED; 1552 goto rele; 1553 } 1554 1555 next_ip->i_prev_unlinked = prev_agino; 1556 trace_xfs_iunlink_reload_next(next_ip); 1557 rele: 1558 ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE)); 1559 if (xfs_is_quotacheck_running(mp) && next_ip) 1560 xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED); 1561 xfs_irele(next_ip); 1562 return error; 1563 } 1564 1565 /* 1566 * Look up the inode number specified and if it is not already marked XFS_ISTALE 1567 * mark it stale. We should only find clean inodes in this lookup that aren't 1568 * already stale. 1569 */ 1570 static void 1571 xfs_ifree_mark_inode_stale( 1572 struct xfs_perag *pag, 1573 struct xfs_inode *free_ip, 1574 xfs_ino_t inum) 1575 { 1576 struct xfs_mount *mp = pag->pag_mount; 1577 struct xfs_inode_log_item *iip; 1578 struct xfs_inode *ip; 1579 1580 retry: 1581 rcu_read_lock(); 1582 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 1583 1584 /* Inode not in memory, nothing to do */ 1585 if (!ip) { 1586 rcu_read_unlock(); 1587 return; 1588 } 1589 1590 /* 1591 * because this is an RCU protected lookup, we could find a recently 1592 * freed or even reallocated inode during the lookup. We need to check 1593 * under the i_flags_lock for a valid inode here. Skip it if it is not 1594 * valid, the wrong inode or stale. 1595 */ 1596 spin_lock(&ip->i_flags_lock); 1597 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 1598 goto out_iflags_unlock; 1599 1600 /* 1601 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 1602 * other inodes that we did not find in the list attached to the buffer 1603 * and are not already marked stale. If we can't lock it, back off and 1604 * retry. 1605 */ 1606 if (ip != free_ip) { 1607 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 1608 spin_unlock(&ip->i_flags_lock); 1609 rcu_read_unlock(); 1610 delay(1); 1611 goto retry; 1612 } 1613 } 1614 ip->i_flags |= XFS_ISTALE; 1615 1616 /* 1617 * If the inode is flushing, it is already attached to the buffer. All 1618 * we needed to do here is mark the inode stale so buffer IO completion 1619 * will remove it from the AIL. 1620 */ 1621 iip = ip->i_itemp; 1622 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 1623 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 1624 ASSERT(iip->ili_last_fields); 1625 goto out_iunlock; 1626 } 1627 1628 /* 1629 * Inodes not attached to the buffer can be released immediately. 1630 * Everything else has to go through xfs_iflush_abort() on journal 1631 * commit as the flock synchronises removal of the inode from the 1632 * cluster buffer against inode reclaim. 1633 */ 1634 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 1635 goto out_iunlock; 1636 1637 __xfs_iflags_set(ip, XFS_IFLUSHING); 1638 spin_unlock(&ip->i_flags_lock); 1639 rcu_read_unlock(); 1640 1641 /* we have a dirty inode in memory that has not yet been flushed. */ 1642 spin_lock(&iip->ili_lock); 1643 iip->ili_last_fields = iip->ili_fields; 1644 iip->ili_fields = 0; 1645 iip->ili_fsync_fields = 0; 1646 spin_unlock(&iip->ili_lock); 1647 ASSERT(iip->ili_last_fields); 1648 1649 if (ip != free_ip) 1650 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1651 return; 1652 1653 out_iunlock: 1654 if (ip != free_ip) 1655 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1656 out_iflags_unlock: 1657 spin_unlock(&ip->i_flags_lock); 1658 rcu_read_unlock(); 1659 } 1660 1661 /* 1662 * A big issue when freeing the inode cluster is that we _cannot_ skip any 1663 * inodes that are in memory - they all must be marked stale and attached to 1664 * the cluster buffer. 1665 */ 1666 static int 1667 xfs_ifree_cluster( 1668 struct xfs_trans *tp, 1669 struct xfs_perag *pag, 1670 struct xfs_inode *free_ip, 1671 struct xfs_icluster *xic) 1672 { 1673 struct xfs_mount *mp = free_ip->i_mount; 1674 struct xfs_ino_geometry *igeo = M_IGEO(mp); 1675 struct xfs_buf *bp; 1676 xfs_daddr_t blkno; 1677 xfs_ino_t inum = xic->first_ino; 1678 int nbufs; 1679 int i, j; 1680 int ioffset; 1681 int error; 1682 1683 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 1684 1685 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 1686 /* 1687 * The allocation bitmap tells us which inodes of the chunk were 1688 * physically allocated. Skip the cluster if an inode falls into 1689 * a sparse region. 1690 */ 1691 ioffset = inum - xic->first_ino; 1692 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 1693 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 1694 continue; 1695 } 1696 1697 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 1698 XFS_INO_TO_AGBNO(mp, inum)); 1699 1700 /* 1701 * We obtain and lock the backing buffer first in the process 1702 * here to ensure dirty inodes attached to the buffer remain in 1703 * the flushing state while we mark them stale. 1704 * 1705 * If we scan the in-memory inodes first, then buffer IO can 1706 * complete before we get a lock on it, and hence we may fail 1707 * to mark all the active inodes on the buffer stale. 1708 */ 1709 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 1710 mp->m_bsize * igeo->blocks_per_cluster, 1711 XBF_UNMAPPED, &bp); 1712 if (error) 1713 return error; 1714 1715 /* 1716 * This buffer may not have been correctly initialised as we 1717 * didn't read it from disk. That's not important because we are 1718 * only using to mark the buffer as stale in the log, and to 1719 * attach stale cached inodes on it. 1720 * 1721 * For the inode that triggered the cluster freeing, this 1722 * attachment may occur in xfs_inode_item_precommit() after we 1723 * have marked this buffer stale. If this buffer was not in 1724 * memory before xfs_ifree_cluster() started, it will not be 1725 * marked XBF_DONE and this will cause problems later in 1726 * xfs_inode_item_precommit() when we trip over a (stale, !done) 1727 * buffer to attached to the transaction. 1728 * 1729 * Hence we have to mark the buffer as XFS_DONE here. This is 1730 * safe because we are also marking the buffer as XBF_STALE and 1731 * XFS_BLI_STALE. That means it will never be dispatched for 1732 * IO and it won't be unlocked until the cluster freeing has 1733 * been committed to the journal and the buffer unpinned. If it 1734 * is written, we want to know about it, and we want it to 1735 * fail. We can acheive this by adding a write verifier to the 1736 * buffer. 1737 */ 1738 bp->b_flags |= XBF_DONE; 1739 bp->b_ops = &xfs_inode_buf_ops; 1740 1741 /* 1742 * Now we need to set all the cached clean inodes as XFS_ISTALE, 1743 * too. This requires lookups, and will skip inodes that we've 1744 * already marked XFS_ISTALE. 1745 */ 1746 for (i = 0; i < igeo->inodes_per_cluster; i++) 1747 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); 1748 1749 xfs_trans_stale_inode_buf(tp, bp); 1750 xfs_trans_binval(tp, bp); 1751 } 1752 return 0; 1753 } 1754 1755 /* 1756 * This is called to return an inode to the inode free list. The inode should 1757 * already be truncated to 0 length and have no pages associated with it. This 1758 * routine also assumes that the inode is already a part of the transaction. 1759 * 1760 * The on-disk copy of the inode will have been added to the list of unlinked 1761 * inodes in the AGI. We need to remove the inode from that list atomically with 1762 * respect to freeing it here. 1763 */ 1764 int 1765 xfs_ifree( 1766 struct xfs_trans *tp, 1767 struct xfs_inode *ip) 1768 { 1769 struct xfs_mount *mp = ip->i_mount; 1770 struct xfs_perag *pag; 1771 struct xfs_icluster xic = { 0 }; 1772 struct xfs_inode_log_item *iip = ip->i_itemp; 1773 int error; 1774 1775 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 1776 ASSERT(VFS_I(ip)->i_nlink == 0); 1777 ASSERT(ip->i_df.if_nextents == 0); 1778 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 1779 ASSERT(ip->i_nblocks == 0); 1780 1781 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1782 1783 error = xfs_inode_uninit(tp, pag, ip, &xic); 1784 if (error) 1785 goto out; 1786 1787 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) 1788 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); 1789 1790 /* Don't attempt to replay owner changes for a deleted inode */ 1791 spin_lock(&iip->ili_lock); 1792 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 1793 spin_unlock(&iip->ili_lock); 1794 1795 if (xic.deleted) 1796 error = xfs_ifree_cluster(tp, pag, ip, &xic); 1797 out: 1798 xfs_perag_put(pag); 1799 return error; 1800 } 1801 1802 /* 1803 * This is called to unpin an inode. The caller must have the inode locked 1804 * in at least shared mode so that the buffer cannot be subsequently pinned 1805 * once someone is waiting for it to be unpinned. 1806 */ 1807 static void 1808 xfs_iunpin( 1809 struct xfs_inode *ip) 1810 { 1811 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); 1812 1813 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 1814 1815 /* Give the log a push to start the unpinning I/O */ 1816 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); 1817 1818 } 1819 1820 static void 1821 __xfs_iunpin_wait( 1822 struct xfs_inode *ip) 1823 { 1824 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 1825 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 1826 1827 xfs_iunpin(ip); 1828 1829 do { 1830 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 1831 if (xfs_ipincount(ip)) 1832 io_schedule(); 1833 } while (xfs_ipincount(ip)); 1834 finish_wait(wq, &wait.wq_entry); 1835 } 1836 1837 void 1838 xfs_iunpin_wait( 1839 struct xfs_inode *ip) 1840 { 1841 if (xfs_ipincount(ip)) 1842 __xfs_iunpin_wait(ip); 1843 } 1844 1845 /* 1846 * Removing an inode from the namespace involves removing the directory entry 1847 * and dropping the link count on the inode. Removing the directory entry can 1848 * result in locking an AGF (directory blocks were freed) and removing a link 1849 * count can result in placing the inode on an unlinked list which results in 1850 * locking an AGI. 1851 * 1852 * The big problem here is that we have an ordering constraint on AGF and AGI 1853 * locking - inode allocation locks the AGI, then can allocate a new extent for 1854 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 1855 * removes the inode from the unlinked list, requiring that we lock the AGI 1856 * first, and then freeing the inode can result in an inode chunk being freed 1857 * and hence freeing disk space requiring that we lock an AGF. 1858 * 1859 * Hence the ordering that is imposed by other parts of the code is AGI before 1860 * AGF. This means we cannot remove the directory entry before we drop the inode 1861 * reference count and put it on the unlinked list as this results in a lock 1862 * order of AGF then AGI, and this can deadlock against inode allocation and 1863 * freeing. Therefore we must drop the link counts before we remove the 1864 * directory entry. 1865 * 1866 * This is still safe from a transactional point of view - it is not until we 1867 * get to xfs_defer_finish() that we have the possibility of multiple 1868 * transactions in this operation. Hence as long as we remove the directory 1869 * entry and drop the link count in the first transaction of the remove 1870 * operation, there are no transactional constraints on the ordering here. 1871 */ 1872 int 1873 xfs_remove( 1874 struct xfs_inode *dp, 1875 struct xfs_name *name, 1876 struct xfs_inode *ip) 1877 { 1878 struct xfs_dir_update du = { 1879 .dp = dp, 1880 .name = name, 1881 .ip = ip, 1882 }; 1883 struct xfs_mount *mp = dp->i_mount; 1884 struct xfs_trans *tp = NULL; 1885 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 1886 int dontcare; 1887 int error = 0; 1888 uint resblks; 1889 1890 trace_xfs_remove(dp, name); 1891 1892 if (xfs_is_shutdown(mp)) 1893 return -EIO; 1894 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 1895 return -EIO; 1896 1897 error = xfs_qm_dqattach(dp); 1898 if (error) 1899 goto std_return; 1900 1901 error = xfs_qm_dqattach(ip); 1902 if (error) 1903 goto std_return; 1904 1905 error = xfs_parent_start(mp, &du.ppargs); 1906 if (error) 1907 goto std_return; 1908 1909 /* 1910 * We try to get the real space reservation first, allowing for 1911 * directory btree deletion(s) implying possible bmap insert(s). If we 1912 * can't get the space reservation then we use 0 instead, and avoid the 1913 * bmap btree insert(s) in the directory code by, if the bmap insert 1914 * tries to happen, instead trimming the LAST block from the directory. 1915 * 1916 * Ignore EDQUOT and ENOSPC being returned via nospace_error because 1917 * the directory code can handle a reservationless update and we don't 1918 * want to prevent a user from trying to free space by deleting things. 1919 */ 1920 resblks = xfs_remove_space_res(mp, name->len); 1921 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks, 1922 &tp, &dontcare); 1923 if (error) { 1924 ASSERT(error != -ENOSPC); 1925 goto out_parent; 1926 } 1927 1928 error = xfs_dir_remove_child(tp, resblks, &du); 1929 if (error) 1930 goto out_trans_cancel; 1931 1932 /* 1933 * If this is a synchronous mount, make sure that the 1934 * remove transaction goes to disk before returning to 1935 * the user. 1936 */ 1937 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1938 xfs_trans_set_sync(tp); 1939 1940 error = xfs_trans_commit(tp); 1941 if (error) 1942 goto out_unlock; 1943 1944 if (is_dir && xfs_inode_is_filestream(ip)) 1945 xfs_filestream_deassociate(ip); 1946 1947 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1948 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1949 xfs_parent_finish(mp, du.ppargs); 1950 return 0; 1951 1952 out_trans_cancel: 1953 xfs_trans_cancel(tp); 1954 out_unlock: 1955 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1956 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1957 out_parent: 1958 xfs_parent_finish(mp, du.ppargs); 1959 std_return: 1960 return error; 1961 } 1962 1963 static inline void 1964 xfs_iunlock_rename( 1965 struct xfs_inode **i_tab, 1966 int num_inodes) 1967 { 1968 int i; 1969 1970 for (i = num_inodes - 1; i >= 0; i--) { 1971 /* Skip duplicate inodes if src and target dps are the same */ 1972 if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1])) 1973 continue; 1974 xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL); 1975 } 1976 } 1977 1978 /* 1979 * Enter all inodes for a rename transaction into a sorted array. 1980 */ 1981 #define __XFS_SORT_INODES 5 1982 STATIC void 1983 xfs_sort_for_rename( 1984 struct xfs_inode *dp1, /* in: old (source) directory inode */ 1985 struct xfs_inode *dp2, /* in: new (target) directory inode */ 1986 struct xfs_inode *ip1, /* in: inode of old entry */ 1987 struct xfs_inode *ip2, /* in: inode of new entry */ 1988 struct xfs_inode *wip, /* in: whiteout inode */ 1989 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 1990 int *num_inodes) /* in/out: inodes in array */ 1991 { 1992 int i; 1993 1994 ASSERT(*num_inodes == __XFS_SORT_INODES); 1995 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 1996 1997 /* 1998 * i_tab contains a list of pointers to inodes. We initialize 1999 * the table here & we'll sort it. We will then use it to 2000 * order the acquisition of the inode locks. 2001 * 2002 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2003 */ 2004 i = 0; 2005 i_tab[i++] = dp1; 2006 i_tab[i++] = dp2; 2007 i_tab[i++] = ip1; 2008 if (ip2) 2009 i_tab[i++] = ip2; 2010 if (wip) 2011 i_tab[i++] = wip; 2012 *num_inodes = i; 2013 2014 xfs_sort_inodes(i_tab, *num_inodes); 2015 } 2016 2017 void 2018 xfs_sort_inodes( 2019 struct xfs_inode **i_tab, 2020 unsigned int num_inodes) 2021 { 2022 int i, j; 2023 2024 ASSERT(num_inodes <= __XFS_SORT_INODES); 2025 2026 /* 2027 * Sort the elements via bubble sort. (Remember, there are at 2028 * most 5 elements to sort, so this is adequate.) 2029 */ 2030 for (i = 0; i < num_inodes; i++) { 2031 for (j = 1; j < num_inodes; j++) { 2032 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) 2033 swap(i_tab[j], i_tab[j - 1]); 2034 } 2035 } 2036 } 2037 2038 /* 2039 * xfs_rename_alloc_whiteout() 2040 * 2041 * Return a referenced, unlinked, unlocked inode that can be used as a 2042 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2043 * crash between allocating the inode and linking it into the rename transaction 2044 * recovery will free the inode and we won't leak it. 2045 */ 2046 static int 2047 xfs_rename_alloc_whiteout( 2048 struct mnt_idmap *idmap, 2049 struct xfs_name *src_name, 2050 struct xfs_inode *dp, 2051 struct xfs_inode **wip) 2052 { 2053 struct xfs_icreate_args args = { 2054 .idmap = idmap, 2055 .pip = dp, 2056 .mode = S_IFCHR | WHITEOUT_MODE, 2057 .flags = XFS_ICREATE_TMPFILE, 2058 }; 2059 struct xfs_inode *tmpfile; 2060 struct qstr name; 2061 int error; 2062 2063 error = xfs_create_tmpfile(&args, &tmpfile); 2064 if (error) 2065 return error; 2066 2067 name.name = src_name->name; 2068 name.len = src_name->len; 2069 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name); 2070 if (error) { 2071 xfs_finish_inode_setup(tmpfile); 2072 xfs_irele(tmpfile); 2073 return error; 2074 } 2075 2076 /* 2077 * Prepare the tmpfile inode as if it were created through the VFS. 2078 * Complete the inode setup and flag it as linkable. nlink is already 2079 * zero, so we can skip the drop_nlink. 2080 */ 2081 xfs_setup_iops(tmpfile); 2082 xfs_finish_inode_setup(tmpfile); 2083 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2084 2085 *wip = tmpfile; 2086 return 0; 2087 } 2088 2089 /* 2090 * xfs_rename 2091 */ 2092 int 2093 xfs_rename( 2094 struct mnt_idmap *idmap, 2095 struct xfs_inode *src_dp, 2096 struct xfs_name *src_name, 2097 struct xfs_inode *src_ip, 2098 struct xfs_inode *target_dp, 2099 struct xfs_name *target_name, 2100 struct xfs_inode *target_ip, 2101 unsigned int flags) 2102 { 2103 struct xfs_dir_update du_src = { 2104 .dp = src_dp, 2105 .name = src_name, 2106 .ip = src_ip, 2107 }; 2108 struct xfs_dir_update du_tgt = { 2109 .dp = target_dp, 2110 .name = target_name, 2111 .ip = target_ip, 2112 }; 2113 struct xfs_dir_update du_wip = { }; 2114 struct xfs_mount *mp = src_dp->i_mount; 2115 struct xfs_trans *tp; 2116 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2117 int i; 2118 int num_inodes = __XFS_SORT_INODES; 2119 bool new_parent = (src_dp != target_dp); 2120 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 2121 int spaceres; 2122 bool retried = false; 2123 int error, nospace_error = 0; 2124 2125 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2126 2127 if ((flags & RENAME_EXCHANGE) && !target_ip) 2128 return -EINVAL; 2129 2130 /* 2131 * If we are doing a whiteout operation, allocate the whiteout inode 2132 * we will be placing at the target and ensure the type is set 2133 * appropriately. 2134 */ 2135 if (flags & RENAME_WHITEOUT) { 2136 error = xfs_rename_alloc_whiteout(idmap, src_name, target_dp, 2137 &du_wip.ip); 2138 if (error) 2139 return error; 2140 2141 /* setup target dirent info as whiteout */ 2142 src_name->type = XFS_DIR3_FT_CHRDEV; 2143 } 2144 2145 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, du_wip.ip, 2146 inodes, &num_inodes); 2147 2148 error = xfs_parent_start(mp, &du_src.ppargs); 2149 if (error) 2150 goto out_release_wip; 2151 2152 if (du_wip.ip) { 2153 error = xfs_parent_start(mp, &du_wip.ppargs); 2154 if (error) 2155 goto out_src_ppargs; 2156 } 2157 2158 if (target_ip) { 2159 error = xfs_parent_start(mp, &du_tgt.ppargs); 2160 if (error) 2161 goto out_wip_ppargs; 2162 } 2163 2164 retry: 2165 nospace_error = 0; 2166 spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL, 2167 target_name->len, du_wip.ip != NULL); 2168 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 2169 if (error == -ENOSPC) { 2170 nospace_error = error; 2171 spaceres = 0; 2172 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 2173 &tp); 2174 } 2175 if (error) 2176 goto out_tgt_ppargs; 2177 2178 /* 2179 * We don't allow reservationless renaming when parent pointers are 2180 * enabled because we can't back out if the xattrs must grow. 2181 */ 2182 if (du_src.ppargs && nospace_error) { 2183 error = nospace_error; 2184 xfs_trans_cancel(tp); 2185 goto out_tgt_ppargs; 2186 } 2187 2188 /* 2189 * Attach the dquots to the inodes 2190 */ 2191 error = xfs_qm_vop_rename_dqattach(inodes); 2192 if (error) { 2193 xfs_trans_cancel(tp); 2194 goto out_tgt_ppargs; 2195 } 2196 2197 /* 2198 * Lock all the participating inodes. Depending upon whether 2199 * the target_name exists in the target directory, and 2200 * whether the target directory is the same as the source 2201 * directory, we can lock from 2 to 5 inodes. 2202 */ 2203 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2204 2205 /* 2206 * Join all the inodes to the transaction. 2207 */ 2208 xfs_trans_ijoin(tp, src_dp, 0); 2209 if (new_parent) 2210 xfs_trans_ijoin(tp, target_dp, 0); 2211 xfs_trans_ijoin(tp, src_ip, 0); 2212 if (target_ip) 2213 xfs_trans_ijoin(tp, target_ip, 0); 2214 if (du_wip.ip) 2215 xfs_trans_ijoin(tp, du_wip.ip, 0); 2216 2217 /* 2218 * If we are using project inheritance, we only allow renames 2219 * into our tree when the project IDs are the same; else the 2220 * tree quota mechanism would be circumvented. 2221 */ 2222 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 2223 target_dp->i_projid != src_ip->i_projid)) { 2224 error = -EXDEV; 2225 goto out_trans_cancel; 2226 } 2227 2228 /* RENAME_EXCHANGE is unique from here on. */ 2229 if (flags & RENAME_EXCHANGE) { 2230 error = xfs_dir_exchange_children(tp, &du_src, &du_tgt, 2231 spaceres); 2232 if (error) 2233 goto out_trans_cancel; 2234 goto out_commit; 2235 } 2236 2237 /* 2238 * Try to reserve quota to handle an expansion of the target directory. 2239 * We'll allow the rename to continue in reservationless mode if we hit 2240 * a space usage constraint. If we trigger reservationless mode, save 2241 * the errno if there isn't any free space in the target directory. 2242 */ 2243 if (spaceres != 0) { 2244 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres, 2245 0, false); 2246 if (error == -EDQUOT || error == -ENOSPC) { 2247 if (!retried) { 2248 xfs_trans_cancel(tp); 2249 xfs_iunlock_rename(inodes, num_inodes); 2250 xfs_blockgc_free_quota(target_dp, 0); 2251 retried = true; 2252 goto retry; 2253 } 2254 2255 nospace_error = error; 2256 spaceres = 0; 2257 error = 0; 2258 } 2259 if (error) 2260 goto out_trans_cancel; 2261 } 2262 2263 /* 2264 * We don't allow quotaless renaming when parent pointers are enabled 2265 * because we can't back out if the xattrs must grow. 2266 */ 2267 if (du_src.ppargs && nospace_error) { 2268 error = nospace_error; 2269 goto out_trans_cancel; 2270 } 2271 2272 /* 2273 * Lock the AGI buffers we need to handle bumping the nlink of the 2274 * whiteout inode off the unlinked list and to handle dropping the 2275 * nlink of the target inode. Per locking order rules, do this in 2276 * increasing AG order and before directory block allocation tries to 2277 * grab AGFs because we grab AGIs before AGFs. 2278 * 2279 * The (vfs) caller must ensure that if src is a directory then 2280 * target_ip is either null or an empty directory. 2281 */ 2282 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 2283 if (inodes[i] == du_wip.ip || 2284 (inodes[i] == target_ip && 2285 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 2286 struct xfs_perag *pag; 2287 struct xfs_buf *bp; 2288 2289 pag = xfs_perag_get(mp, 2290 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino)); 2291 error = xfs_read_agi(pag, tp, 0, &bp); 2292 xfs_perag_put(pag); 2293 if (error) 2294 goto out_trans_cancel; 2295 } 2296 } 2297 2298 error = xfs_dir_rename_children(tp, &du_src, &du_tgt, spaceres, 2299 &du_wip); 2300 if (error) 2301 goto out_trans_cancel; 2302 2303 if (du_wip.ip) { 2304 /* 2305 * Now we have a real link, clear the "I'm a tmpfile" state 2306 * flag from the inode so it doesn't accidentally get misused in 2307 * future. 2308 */ 2309 VFS_I(du_wip.ip)->i_state &= ~I_LINKABLE; 2310 } 2311 2312 out_commit: 2313 /* 2314 * If this is a synchronous mount, make sure that the rename 2315 * transaction goes to disk before returning to the user. 2316 */ 2317 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) 2318 xfs_trans_set_sync(tp); 2319 2320 error = xfs_trans_commit(tp); 2321 nospace_error = 0; 2322 goto out_unlock; 2323 2324 out_trans_cancel: 2325 xfs_trans_cancel(tp); 2326 out_unlock: 2327 xfs_iunlock_rename(inodes, num_inodes); 2328 out_tgt_ppargs: 2329 xfs_parent_finish(mp, du_tgt.ppargs); 2330 out_wip_ppargs: 2331 xfs_parent_finish(mp, du_wip.ppargs); 2332 out_src_ppargs: 2333 xfs_parent_finish(mp, du_src.ppargs); 2334 out_release_wip: 2335 if (du_wip.ip) 2336 xfs_irele(du_wip.ip); 2337 if (error == -ENOSPC && nospace_error) 2338 error = nospace_error; 2339 return error; 2340 } 2341 2342 static int 2343 xfs_iflush( 2344 struct xfs_inode *ip, 2345 struct xfs_buf *bp) 2346 { 2347 struct xfs_inode_log_item *iip = ip->i_itemp; 2348 struct xfs_dinode *dip; 2349 struct xfs_mount *mp = ip->i_mount; 2350 int error; 2351 2352 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); 2353 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 2354 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 2355 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 2356 ASSERT(iip->ili_item.li_buf == bp); 2357 2358 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 2359 2360 /* 2361 * We don't flush the inode if any of the following checks fail, but we 2362 * do still update the log item and attach to the backing buffer as if 2363 * the flush happened. This is a formality to facilitate predictable 2364 * error handling as the caller will shutdown and fail the buffer. 2365 */ 2366 error = -EFSCORRUPTED; 2367 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 2368 mp, XFS_ERRTAG_IFLUSH_1)) { 2369 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2370 "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT, 2371 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 2372 goto flush_out; 2373 } 2374 if (S_ISREG(VFS_I(ip)->i_mode)) { 2375 if (XFS_TEST_ERROR( 2376 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 2377 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 2378 mp, XFS_ERRTAG_IFLUSH_3)) { 2379 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2380 "%s: Bad regular inode %llu, ptr "PTR_FMT, 2381 __func__, ip->i_ino, ip); 2382 goto flush_out; 2383 } 2384 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 2385 if (XFS_TEST_ERROR( 2386 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 2387 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 2388 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 2389 mp, XFS_ERRTAG_IFLUSH_4)) { 2390 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2391 "%s: Bad directory inode %llu, ptr "PTR_FMT, 2392 __func__, ip->i_ino, ip); 2393 goto flush_out; 2394 } 2395 } 2396 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) > 2397 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 2398 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2399 "%s: detected corrupt incore inode %llu, " 2400 "total extents = %llu nblocks = %lld, ptr "PTR_FMT, 2401 __func__, ip->i_ino, 2402 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af), 2403 ip->i_nblocks, ip); 2404 goto flush_out; 2405 } 2406 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, 2407 mp, XFS_ERRTAG_IFLUSH_6)) { 2408 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2409 "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT, 2410 __func__, ip->i_ino, ip->i_forkoff, ip); 2411 goto flush_out; 2412 } 2413 2414 /* 2415 * Inode item log recovery for v2 inodes are dependent on the flushiter 2416 * count for correct sequencing. We bump the flush iteration count so 2417 * we can detect flushes which postdate a log record during recovery. 2418 * This is redundant as we now log every change and hence this can't 2419 * happen but we need to still do it to ensure backwards compatibility 2420 * with old kernels that predate logging all inode changes. 2421 */ 2422 if (!xfs_has_v3inodes(mp)) 2423 ip->i_flushiter++; 2424 2425 /* 2426 * If there are inline format data / attr forks attached to this inode, 2427 * make sure they are not corrupt. 2428 */ 2429 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 2430 xfs_ifork_verify_local_data(ip)) 2431 goto flush_out; 2432 if (xfs_inode_has_attr_fork(ip) && 2433 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL && 2434 xfs_ifork_verify_local_attr(ip)) 2435 goto flush_out; 2436 2437 /* 2438 * Copy the dirty parts of the inode into the on-disk inode. We always 2439 * copy out the core of the inode, because if the inode is dirty at all 2440 * the core must be. 2441 */ 2442 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 2443 2444 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 2445 if (!xfs_has_v3inodes(mp)) { 2446 if (ip->i_flushiter == DI_MAX_FLUSH) 2447 ip->i_flushiter = 0; 2448 } 2449 2450 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 2451 if (xfs_inode_has_attr_fork(ip)) 2452 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 2453 2454 /* 2455 * We've recorded everything logged in the inode, so we'd like to clear 2456 * the ili_fields bits so we don't log and flush things unnecessarily. 2457 * However, we can't stop logging all this information until the data 2458 * we've copied into the disk buffer is written to disk. If we did we 2459 * might overwrite the copy of the inode in the log with all the data 2460 * after re-logging only part of it, and in the face of a crash we 2461 * wouldn't have all the data we need to recover. 2462 * 2463 * What we do is move the bits to the ili_last_fields field. When 2464 * logging the inode, these bits are moved back to the ili_fields field. 2465 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 2466 * we know that the information those bits represent is permanently on 2467 * disk. As long as the flush completes before the inode is logged 2468 * again, then both ili_fields and ili_last_fields will be cleared. 2469 */ 2470 error = 0; 2471 flush_out: 2472 spin_lock(&iip->ili_lock); 2473 iip->ili_last_fields = iip->ili_fields; 2474 iip->ili_fields = 0; 2475 iip->ili_fsync_fields = 0; 2476 set_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags); 2477 spin_unlock(&iip->ili_lock); 2478 2479 /* 2480 * Store the current LSN of the inode so that we can tell whether the 2481 * item has moved in the AIL from xfs_buf_inode_iodone(). 2482 */ 2483 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2484 &iip->ili_item.li_lsn); 2485 2486 /* generate the checksum. */ 2487 xfs_dinode_calc_crc(mp, dip); 2488 if (error) 2489 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 2490 return error; 2491 } 2492 2493 /* 2494 * Non-blocking flush of dirty inode metadata into the backing buffer. 2495 * 2496 * The caller must have a reference to the inode and hold the cluster buffer 2497 * locked. The function will walk across all the inodes on the cluster buffer it 2498 * can find and lock without blocking, and flush them to the cluster buffer. 2499 * 2500 * On successful flushing of at least one inode, the caller must write out the 2501 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 2502 * the caller needs to release the buffer. On failure, the filesystem will be 2503 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 2504 * will be returned. 2505 */ 2506 int 2507 xfs_iflush_cluster( 2508 struct xfs_buf *bp) 2509 { 2510 struct xfs_mount *mp = bp->b_mount; 2511 struct xfs_log_item *lip, *n; 2512 struct xfs_inode *ip; 2513 struct xfs_inode_log_item *iip; 2514 int clcount = 0; 2515 int error = 0; 2516 2517 /* 2518 * We must use the safe variant here as on shutdown xfs_iflush_abort() 2519 * will remove itself from the list. 2520 */ 2521 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 2522 iip = (struct xfs_inode_log_item *)lip; 2523 ip = iip->ili_inode; 2524 2525 /* 2526 * Quick and dirty check to avoid locks if possible. 2527 */ 2528 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 2529 continue; 2530 if (xfs_ipincount(ip)) 2531 continue; 2532 2533 /* 2534 * The inode is still attached to the buffer, which means it is 2535 * dirty but reclaim might try to grab it. Check carefully for 2536 * that, and grab the ilock while still holding the i_flags_lock 2537 * to guarantee reclaim will not be able to reclaim this inode 2538 * once we drop the i_flags_lock. 2539 */ 2540 spin_lock(&ip->i_flags_lock); 2541 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 2542 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 2543 spin_unlock(&ip->i_flags_lock); 2544 continue; 2545 } 2546 2547 /* 2548 * ILOCK will pin the inode against reclaim and prevent 2549 * concurrent transactions modifying the inode while we are 2550 * flushing the inode. If we get the lock, set the flushing 2551 * state before we drop the i_flags_lock. 2552 */ 2553 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 2554 spin_unlock(&ip->i_flags_lock); 2555 continue; 2556 } 2557 __xfs_iflags_set(ip, XFS_IFLUSHING); 2558 spin_unlock(&ip->i_flags_lock); 2559 2560 /* 2561 * Abort flushing this inode if we are shut down because the 2562 * inode may not currently be in the AIL. This can occur when 2563 * log I/O failure unpins the inode without inserting into the 2564 * AIL, leaving a dirty/unpinned inode attached to the buffer 2565 * that otherwise looks like it should be flushed. 2566 */ 2567 if (xlog_is_shutdown(mp->m_log)) { 2568 xfs_iunpin_wait(ip); 2569 xfs_iflush_abort(ip); 2570 xfs_iunlock(ip, XFS_ILOCK_SHARED); 2571 error = -EIO; 2572 continue; 2573 } 2574 2575 /* don't block waiting on a log force to unpin dirty inodes */ 2576 if (xfs_ipincount(ip)) { 2577 xfs_iflags_clear(ip, XFS_IFLUSHING); 2578 xfs_iunlock(ip, XFS_ILOCK_SHARED); 2579 continue; 2580 } 2581 2582 if (!xfs_inode_clean(ip)) 2583 error = xfs_iflush(ip, bp); 2584 else 2585 xfs_iflags_clear(ip, XFS_IFLUSHING); 2586 xfs_iunlock(ip, XFS_ILOCK_SHARED); 2587 if (error) 2588 break; 2589 clcount++; 2590 } 2591 2592 if (error) { 2593 /* 2594 * Shutdown first so we kill the log before we release this 2595 * buffer. If it is an INODE_ALLOC buffer and pins the tail 2596 * of the log, failing it before the _log_ is shut down can 2597 * result in the log tail being moved forward in the journal 2598 * on disk because log writes can still be taking place. Hence 2599 * unpinning the tail will allow the ICREATE intent to be 2600 * removed from the log an recovery will fail with uninitialised 2601 * inode cluster buffers. 2602 */ 2603 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2604 bp->b_flags |= XBF_ASYNC; 2605 xfs_buf_ioend_fail(bp); 2606 return error; 2607 } 2608 2609 if (!clcount) 2610 return -EAGAIN; 2611 2612 XFS_STATS_INC(mp, xs_icluster_flushcnt); 2613 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 2614 return 0; 2615 2616 } 2617 2618 /* Release an inode. */ 2619 void 2620 xfs_irele( 2621 struct xfs_inode *ip) 2622 { 2623 trace_xfs_irele(ip, _RET_IP_); 2624 iput(VFS_I(ip)); 2625 } 2626 2627 /* 2628 * Ensure all commited transactions touching the inode are written to the log. 2629 */ 2630 int 2631 xfs_log_force_inode( 2632 struct xfs_inode *ip) 2633 { 2634 xfs_csn_t seq = 0; 2635 2636 xfs_ilock(ip, XFS_ILOCK_SHARED); 2637 if (xfs_ipincount(ip)) 2638 seq = ip->i_itemp->ili_commit_seq; 2639 xfs_iunlock(ip, XFS_ILOCK_SHARED); 2640 2641 if (!seq) 2642 return 0; 2643 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); 2644 } 2645 2646 /* 2647 * Grab the exclusive iolock for a data copy from src to dest, making sure to 2648 * abide vfs locking order (lowest pointer value goes first) and breaking the 2649 * layout leases before proceeding. The loop is needed because we cannot call 2650 * the blocking break_layout() with the iolocks held, and therefore have to 2651 * back out both locks. 2652 */ 2653 static int 2654 xfs_iolock_two_inodes_and_break_layout( 2655 struct inode *src, 2656 struct inode *dest) 2657 { 2658 int error; 2659 2660 if (src > dest) 2661 swap(src, dest); 2662 2663 retry: 2664 /* Wait to break both inodes' layouts before we start locking. */ 2665 error = break_layout(src, true); 2666 if (error) 2667 return error; 2668 if (src != dest) { 2669 error = break_layout(dest, true); 2670 if (error) 2671 return error; 2672 } 2673 2674 /* Lock one inode and make sure nobody got in and leased it. */ 2675 inode_lock(src); 2676 error = break_layout(src, false); 2677 if (error) { 2678 inode_unlock(src); 2679 if (error == -EWOULDBLOCK) 2680 goto retry; 2681 return error; 2682 } 2683 2684 if (src == dest) 2685 return 0; 2686 2687 /* Lock the other inode and make sure nobody got in and leased it. */ 2688 inode_lock_nested(dest, I_MUTEX_NONDIR2); 2689 error = break_layout(dest, false); 2690 if (error) { 2691 inode_unlock(src); 2692 inode_unlock(dest); 2693 if (error == -EWOULDBLOCK) 2694 goto retry; 2695 return error; 2696 } 2697 2698 return 0; 2699 } 2700 2701 static int 2702 xfs_mmaplock_two_inodes_and_break_dax_layout( 2703 struct xfs_inode *ip1, 2704 struct xfs_inode *ip2) 2705 { 2706 int error; 2707 bool retry; 2708 struct page *page; 2709 2710 if (ip1->i_ino > ip2->i_ino) 2711 swap(ip1, ip2); 2712 2713 again: 2714 retry = false; 2715 /* Lock the first inode */ 2716 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); 2717 error = xfs_break_dax_layouts(VFS_I(ip1), &retry); 2718 if (error || retry) { 2719 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 2720 if (error == 0 && retry) 2721 goto again; 2722 return error; 2723 } 2724 2725 if (ip1 == ip2) 2726 return 0; 2727 2728 /* Nested lock the second inode */ 2729 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1)); 2730 /* 2731 * We cannot use xfs_break_dax_layouts() directly here because it may 2732 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable 2733 * for this nested lock case. 2734 */ 2735 page = dax_layout_busy_page(VFS_I(ip2)->i_mapping); 2736 if (page && page_ref_count(page) != 1) { 2737 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 2738 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 2739 goto again; 2740 } 2741 2742 return 0; 2743 } 2744 2745 /* 2746 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 2747 * mmap activity. 2748 */ 2749 int 2750 xfs_ilock2_io_mmap( 2751 struct xfs_inode *ip1, 2752 struct xfs_inode *ip2) 2753 { 2754 int ret; 2755 2756 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 2757 if (ret) 2758 return ret; 2759 2760 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 2761 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2); 2762 if (ret) { 2763 inode_unlock(VFS_I(ip2)); 2764 if (ip1 != ip2) 2765 inode_unlock(VFS_I(ip1)); 2766 return ret; 2767 } 2768 } else 2769 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, 2770 VFS_I(ip2)->i_mapping); 2771 2772 return 0; 2773 } 2774 2775 /* Unlock both inodes to allow IO and mmap activity. */ 2776 void 2777 xfs_iunlock2_io_mmap( 2778 struct xfs_inode *ip1, 2779 struct xfs_inode *ip2) 2780 { 2781 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 2782 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 2783 if (ip1 != ip2) 2784 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 2785 } else 2786 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, 2787 VFS_I(ip2)->i_mapping); 2788 2789 inode_unlock(VFS_I(ip2)); 2790 if (ip1 != ip2) 2791 inode_unlock(VFS_I(ip1)); 2792 } 2793 2794 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */ 2795 void 2796 xfs_iunlock2_remapping( 2797 struct xfs_inode *ip1, 2798 struct xfs_inode *ip2) 2799 { 2800 xfs_iflags_clear(ip1, XFS_IREMAPPING); 2801 2802 if (ip1 != ip2) 2803 xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED); 2804 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 2805 2806 if (ip1 != ip2) 2807 inode_unlock_shared(VFS_I(ip1)); 2808 inode_unlock(VFS_I(ip2)); 2809 } 2810 2811 /* 2812 * Reload the incore inode list for this inode. Caller should ensure that 2813 * the link count cannot change, either by taking ILOCK_SHARED or otherwise 2814 * preventing other threads from executing. 2815 */ 2816 int 2817 xfs_inode_reload_unlinked_bucket( 2818 struct xfs_trans *tp, 2819 struct xfs_inode *ip) 2820 { 2821 struct xfs_mount *mp = tp->t_mountp; 2822 struct xfs_buf *agibp; 2823 struct xfs_agi *agi; 2824 struct xfs_perag *pag; 2825 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2826 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2827 xfs_agino_t prev_agino, next_agino; 2828 unsigned int bucket; 2829 bool foundit = false; 2830 int error; 2831 2832 /* Grab the first inode in the list */ 2833 pag = xfs_perag_get(mp, agno); 2834 error = xfs_ialloc_read_agi(pag, tp, 0, &agibp); 2835 xfs_perag_put(pag); 2836 if (error) 2837 return error; 2838 2839 /* 2840 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the 2841 * incore unlinked list pointers for this inode. Check once more to 2842 * see if we raced with anyone else to reload the unlinked list. 2843 */ 2844 if (!xfs_inode_unlinked_incomplete(ip)) { 2845 foundit = true; 2846 goto out_agibp; 2847 } 2848 2849 bucket = agino % XFS_AGI_UNLINKED_BUCKETS; 2850 agi = agibp->b_addr; 2851 2852 trace_xfs_inode_reload_unlinked_bucket(ip); 2853 2854 xfs_info_ratelimited(mp, 2855 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.", 2856 agino, agno); 2857 2858 prev_agino = NULLAGINO; 2859 next_agino = be32_to_cpu(agi->agi_unlinked[bucket]); 2860 while (next_agino != NULLAGINO) { 2861 struct xfs_inode *next_ip = NULL; 2862 2863 /* Found this caller's inode, set its backlink. */ 2864 if (next_agino == agino) { 2865 next_ip = ip; 2866 next_ip->i_prev_unlinked = prev_agino; 2867 foundit = true; 2868 goto next_inode; 2869 } 2870 2871 /* Try in-memory lookup first. */ 2872 next_ip = xfs_iunlink_lookup(pag, next_agino); 2873 if (next_ip) 2874 goto next_inode; 2875 2876 /* Inode not in memory, try reloading it. */ 2877 error = xfs_iunlink_reload_next(tp, agibp, prev_agino, 2878 next_agino); 2879 if (error) 2880 break; 2881 2882 /* Grab the reloaded inode. */ 2883 next_ip = xfs_iunlink_lookup(pag, next_agino); 2884 if (!next_ip) { 2885 /* No incore inode at all? We reloaded it... */ 2886 ASSERT(next_ip != NULL); 2887 error = -EFSCORRUPTED; 2888 break; 2889 } 2890 2891 next_inode: 2892 prev_agino = next_agino; 2893 next_agino = next_ip->i_next_unlinked; 2894 } 2895 2896 out_agibp: 2897 xfs_trans_brelse(tp, agibp); 2898 /* Should have found this inode somewhere in the iunlinked bucket. */ 2899 if (!error && !foundit) 2900 error = -EFSCORRUPTED; 2901 return error; 2902 } 2903 2904 /* Decide if this inode is missing its unlinked list and reload it. */ 2905 int 2906 xfs_inode_reload_unlinked( 2907 struct xfs_inode *ip) 2908 { 2909 struct xfs_trans *tp; 2910 int error; 2911 2912 error = xfs_trans_alloc_empty(ip->i_mount, &tp); 2913 if (error) 2914 return error; 2915 2916 xfs_ilock(ip, XFS_ILOCK_SHARED); 2917 if (xfs_inode_unlinked_incomplete(ip)) 2918 error = xfs_inode_reload_unlinked_bucket(tp, ip); 2919 xfs_iunlock(ip, XFS_ILOCK_SHARED); 2920 xfs_trans_cancel(tp); 2921 2922 return error; 2923 } 2924 2925 /* Has this inode fork been zapped by repair? */ 2926 bool 2927 xfs_ifork_zapped( 2928 const struct xfs_inode *ip, 2929 int whichfork) 2930 { 2931 unsigned int datamask = 0; 2932 2933 switch (whichfork) { 2934 case XFS_DATA_FORK: 2935 switch (ip->i_vnode.i_mode & S_IFMT) { 2936 case S_IFDIR: 2937 datamask = XFS_SICK_INO_DIR_ZAPPED; 2938 break; 2939 case S_IFLNK: 2940 datamask = XFS_SICK_INO_SYMLINK_ZAPPED; 2941 break; 2942 } 2943 return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask); 2944 case XFS_ATTR_FORK: 2945 return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED; 2946 default: 2947 return false; 2948 } 2949 } 2950 2951 /* Compute the number of data and realtime blocks used by a file. */ 2952 void 2953 xfs_inode_count_blocks( 2954 struct xfs_trans *tp, 2955 struct xfs_inode *ip, 2956 xfs_filblks_t *dblocks, 2957 xfs_filblks_t *rblocks) 2958 { 2959 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 2960 2961 *rblocks = 0; 2962 if (XFS_IS_REALTIME_INODE(ip)) 2963 xfs_bmap_count_leaves(ifp, rblocks); 2964 *dblocks = ip->i_nblocks - *rblocks; 2965 } 2966 2967 static void 2968 xfs_wait_dax_page( 2969 struct inode *inode) 2970 { 2971 struct xfs_inode *ip = XFS_I(inode); 2972 2973 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 2974 schedule(); 2975 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 2976 } 2977 2978 int 2979 xfs_break_dax_layouts( 2980 struct inode *inode, 2981 bool *retry) 2982 { 2983 struct page *page; 2984 2985 xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL); 2986 2987 page = dax_layout_busy_page(inode->i_mapping); 2988 if (!page) 2989 return 0; 2990 2991 *retry = true; 2992 return ___wait_var_event(&page->_refcount, 2993 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 2994 0, 0, xfs_wait_dax_page(inode)); 2995 } 2996 2997 int 2998 xfs_break_layouts( 2999 struct inode *inode, 3000 uint *iolock, 3001 enum layout_break_reason reason) 3002 { 3003 bool retry; 3004 int error; 3005 3006 xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL); 3007 3008 do { 3009 retry = false; 3010 switch (reason) { 3011 case BREAK_UNMAP: 3012 error = xfs_break_dax_layouts(inode, &retry); 3013 if (error || retry) 3014 break; 3015 fallthrough; 3016 case BREAK_WRITE: 3017 error = xfs_break_leased_layouts(inode, iolock, &retry); 3018 break; 3019 default: 3020 WARN_ON_ONCE(1); 3021 error = -EINVAL; 3022 } 3023 } while (error == 0 && retry); 3024 3025 return error; 3026 } 3027 3028 /* Returns the size of fundamental allocation unit for a file, in bytes. */ 3029 unsigned int 3030 xfs_inode_alloc_unitsize( 3031 struct xfs_inode *ip) 3032 { 3033 unsigned int blocks = 1; 3034 3035 if (XFS_IS_REALTIME_INODE(ip)) 3036 blocks = ip->i_mount->m_sb.sb_rextsize; 3037 3038 return XFS_FSB_TO_B(ip->i_mount, blocks); 3039 } 3040 3041 /* Should we always be using copy on write for file writes? */ 3042 bool 3043 xfs_is_always_cow_inode( 3044 struct xfs_inode *ip) 3045 { 3046 return ip->i_mount->m_always_cow && xfs_has_reflink(ip->i_mount); 3047 } 3048