xref: /linux/fs/xfs/xfs_inode.c (revision 50a0844bf8c4d38be540e423672ef9408d029252)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans_space.h"
20 #include "xfs_trans.h"
21 #include "xfs_buf_item.h"
22 #include "xfs_inode_item.h"
23 #include "xfs_iunlink_item.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_bmap.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_log.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
38 #include "xfs_ag.h"
39 #include "xfs_log_priv.h"
40 #include "xfs_health.h"
41 
42 struct kmem_cache *xfs_inode_cache;
43 
44 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
45 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
46 	struct xfs_inode *);
47 
48 /*
49  * helper function to extract extent size hint from inode
50  */
51 xfs_extlen_t
52 xfs_get_extsz_hint(
53 	struct xfs_inode	*ip)
54 {
55 	/*
56 	 * No point in aligning allocations if we need to COW to actually
57 	 * write to them.
58 	 */
59 	if (xfs_is_always_cow_inode(ip))
60 		return 0;
61 	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
62 		return ip->i_extsize;
63 	if (XFS_IS_REALTIME_INODE(ip))
64 		return ip->i_mount->m_sb.sb_rextsize;
65 	return 0;
66 }
67 
68 /*
69  * Helper function to extract CoW extent size hint from inode.
70  * Between the extent size hint and the CoW extent size hint, we
71  * return the greater of the two.  If the value is zero (automatic),
72  * use the default size.
73  */
74 xfs_extlen_t
75 xfs_get_cowextsz_hint(
76 	struct xfs_inode	*ip)
77 {
78 	xfs_extlen_t		a, b;
79 
80 	a = 0;
81 	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
82 		a = ip->i_cowextsize;
83 	b = xfs_get_extsz_hint(ip);
84 
85 	a = max(a, b);
86 	if (a == 0)
87 		return XFS_DEFAULT_COWEXTSZ_HINT;
88 	return a;
89 }
90 
91 /*
92  * These two are wrapper routines around the xfs_ilock() routine used to
93  * centralize some grungy code.  They are used in places that wish to lock the
94  * inode solely for reading the extents.  The reason these places can't just
95  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
96  * bringing in of the extents from disk for a file in b-tree format.  If the
97  * inode is in b-tree format, then we need to lock the inode exclusively until
98  * the extents are read in.  Locking it exclusively all the time would limit
99  * our parallelism unnecessarily, though.  What we do instead is check to see
100  * if the extents have been read in yet, and only lock the inode exclusively
101  * if they have not.
102  *
103  * The functions return a value which should be given to the corresponding
104  * xfs_iunlock() call.
105  */
106 uint
107 xfs_ilock_data_map_shared(
108 	struct xfs_inode	*ip)
109 {
110 	uint			lock_mode = XFS_ILOCK_SHARED;
111 
112 	if (xfs_need_iread_extents(&ip->i_df))
113 		lock_mode = XFS_ILOCK_EXCL;
114 	xfs_ilock(ip, lock_mode);
115 	return lock_mode;
116 }
117 
118 uint
119 xfs_ilock_attr_map_shared(
120 	struct xfs_inode	*ip)
121 {
122 	uint			lock_mode = XFS_ILOCK_SHARED;
123 
124 	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
125 		lock_mode = XFS_ILOCK_EXCL;
126 	xfs_ilock(ip, lock_mode);
127 	return lock_mode;
128 }
129 
130 /*
131  * You can't set both SHARED and EXCL for the same lock,
132  * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
133  * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
134  * to set in lock_flags.
135  */
136 static inline void
137 xfs_lock_flags_assert(
138 	uint		lock_flags)
139 {
140 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
141 		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
142 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
143 		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
144 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
145 		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
146 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
147 	ASSERT(lock_flags != 0);
148 }
149 
150 /*
151  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
152  * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
153  * various combinations of the locks to be obtained.
154  *
155  * The 3 locks should always be ordered so that the IO lock is obtained first,
156  * the mmap lock second and the ilock last in order to prevent deadlock.
157  *
158  * Basic locking order:
159  *
160  * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
161  *
162  * mmap_lock locking order:
163  *
164  * i_rwsem -> page lock -> mmap_lock
165  * mmap_lock -> invalidate_lock -> page_lock
166  *
167  * The difference in mmap_lock locking order mean that we cannot hold the
168  * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
169  * can fault in pages during copy in/out (for buffered IO) or require the
170  * mmap_lock in get_user_pages() to map the user pages into the kernel address
171  * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
172  * fault because page faults already hold the mmap_lock.
173  *
174  * Hence to serialise fully against both syscall and mmap based IO, we need to
175  * take both the i_rwsem and the invalidate_lock. These locks should *only* be
176  * both taken in places where we need to invalidate the page cache in a race
177  * free manner (e.g. truncate, hole punch and other extent manipulation
178  * functions).
179  */
180 void
181 xfs_ilock(
182 	xfs_inode_t		*ip,
183 	uint			lock_flags)
184 {
185 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
186 
187 	xfs_lock_flags_assert(lock_flags);
188 
189 	if (lock_flags & XFS_IOLOCK_EXCL) {
190 		down_write_nested(&VFS_I(ip)->i_rwsem,
191 				  XFS_IOLOCK_DEP(lock_flags));
192 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
193 		down_read_nested(&VFS_I(ip)->i_rwsem,
194 				 XFS_IOLOCK_DEP(lock_flags));
195 	}
196 
197 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
198 		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
199 				  XFS_MMAPLOCK_DEP(lock_flags));
200 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
201 		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
202 				 XFS_MMAPLOCK_DEP(lock_flags));
203 	}
204 
205 	if (lock_flags & XFS_ILOCK_EXCL)
206 		down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
207 	else if (lock_flags & XFS_ILOCK_SHARED)
208 		down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
209 }
210 
211 /*
212  * This is just like xfs_ilock(), except that the caller
213  * is guaranteed not to sleep.  It returns 1 if it gets
214  * the requested locks and 0 otherwise.  If the IO lock is
215  * obtained but the inode lock cannot be, then the IO lock
216  * is dropped before returning.
217  *
218  * ip -- the inode being locked
219  * lock_flags -- this parameter indicates the inode's locks to be
220  *       to be locked.  See the comment for xfs_ilock() for a list
221  *	 of valid values.
222  */
223 int
224 xfs_ilock_nowait(
225 	xfs_inode_t		*ip,
226 	uint			lock_flags)
227 {
228 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
229 
230 	xfs_lock_flags_assert(lock_flags);
231 
232 	if (lock_flags & XFS_IOLOCK_EXCL) {
233 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
234 			goto out;
235 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
236 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
237 			goto out;
238 	}
239 
240 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
241 		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
242 			goto out_undo_iolock;
243 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
244 		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
245 			goto out_undo_iolock;
246 	}
247 
248 	if (lock_flags & XFS_ILOCK_EXCL) {
249 		if (!down_write_trylock(&ip->i_lock))
250 			goto out_undo_mmaplock;
251 	} else if (lock_flags & XFS_ILOCK_SHARED) {
252 		if (!down_read_trylock(&ip->i_lock))
253 			goto out_undo_mmaplock;
254 	}
255 	return 1;
256 
257 out_undo_mmaplock:
258 	if (lock_flags & XFS_MMAPLOCK_EXCL)
259 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
260 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
261 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
262 out_undo_iolock:
263 	if (lock_flags & XFS_IOLOCK_EXCL)
264 		up_write(&VFS_I(ip)->i_rwsem);
265 	else if (lock_flags & XFS_IOLOCK_SHARED)
266 		up_read(&VFS_I(ip)->i_rwsem);
267 out:
268 	return 0;
269 }
270 
271 /*
272  * xfs_iunlock() is used to drop the inode locks acquired with
273  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
274  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
275  * that we know which locks to drop.
276  *
277  * ip -- the inode being unlocked
278  * lock_flags -- this parameter indicates the inode's locks to be
279  *       to be unlocked.  See the comment for xfs_ilock() for a list
280  *	 of valid values for this parameter.
281  *
282  */
283 void
284 xfs_iunlock(
285 	xfs_inode_t		*ip,
286 	uint			lock_flags)
287 {
288 	xfs_lock_flags_assert(lock_flags);
289 
290 	if (lock_flags & XFS_IOLOCK_EXCL)
291 		up_write(&VFS_I(ip)->i_rwsem);
292 	else if (lock_flags & XFS_IOLOCK_SHARED)
293 		up_read(&VFS_I(ip)->i_rwsem);
294 
295 	if (lock_flags & XFS_MMAPLOCK_EXCL)
296 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
297 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
298 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
299 
300 	if (lock_flags & XFS_ILOCK_EXCL)
301 		up_write(&ip->i_lock);
302 	else if (lock_flags & XFS_ILOCK_SHARED)
303 		up_read(&ip->i_lock);
304 
305 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
306 }
307 
308 /*
309  * give up write locks.  the i/o lock cannot be held nested
310  * if it is being demoted.
311  */
312 void
313 xfs_ilock_demote(
314 	xfs_inode_t		*ip,
315 	uint			lock_flags)
316 {
317 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
318 	ASSERT((lock_flags &
319 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
320 
321 	if (lock_flags & XFS_ILOCK_EXCL)
322 		downgrade_write(&ip->i_lock);
323 	if (lock_flags & XFS_MMAPLOCK_EXCL)
324 		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
325 	if (lock_flags & XFS_IOLOCK_EXCL)
326 		downgrade_write(&VFS_I(ip)->i_rwsem);
327 
328 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
329 }
330 
331 void
332 xfs_assert_ilocked(
333 	struct xfs_inode	*ip,
334 	uint			lock_flags)
335 {
336 	/*
337 	 * Sometimes we assert the ILOCK is held exclusively, but we're in
338 	 * a workqueue, so lockdep doesn't know we're the owner.
339 	 */
340 	if (lock_flags & XFS_ILOCK_SHARED)
341 		rwsem_assert_held(&ip->i_lock);
342 	else if (lock_flags & XFS_ILOCK_EXCL)
343 		rwsem_assert_held_write_nolockdep(&ip->i_lock);
344 
345 	if (lock_flags & XFS_MMAPLOCK_SHARED)
346 		rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
347 	else if (lock_flags & XFS_MMAPLOCK_EXCL)
348 		rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
349 
350 	if (lock_flags & XFS_IOLOCK_SHARED)
351 		rwsem_assert_held(&VFS_I(ip)->i_rwsem);
352 	else if (lock_flags & XFS_IOLOCK_EXCL)
353 		rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
354 }
355 
356 /*
357  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
358  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
359  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
360  * errors and warnings.
361  */
362 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
363 static bool
364 xfs_lockdep_subclass_ok(
365 	int subclass)
366 {
367 	return subclass < MAX_LOCKDEP_SUBCLASSES;
368 }
369 #else
370 #define xfs_lockdep_subclass_ok(subclass)	(true)
371 #endif
372 
373 /*
374  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
375  * value. This can be called for any type of inode lock combination, including
376  * parent locking. Care must be taken to ensure we don't overrun the subclass
377  * storage fields in the class mask we build.
378  */
379 static inline uint
380 xfs_lock_inumorder(
381 	uint	lock_mode,
382 	uint	subclass)
383 {
384 	uint	class = 0;
385 
386 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
387 			      XFS_ILOCK_RTSUM)));
388 	ASSERT(xfs_lockdep_subclass_ok(subclass));
389 
390 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
391 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
392 		class += subclass << XFS_IOLOCK_SHIFT;
393 	}
394 
395 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
396 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
397 		class += subclass << XFS_MMAPLOCK_SHIFT;
398 	}
399 
400 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
401 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
402 		class += subclass << XFS_ILOCK_SHIFT;
403 	}
404 
405 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
406 }
407 
408 /*
409  * The following routine will lock n inodes in exclusive mode.  We assume the
410  * caller calls us with the inodes in i_ino order.
411  *
412  * We need to detect deadlock where an inode that we lock is in the AIL and we
413  * start waiting for another inode that is locked by a thread in a long running
414  * transaction (such as truncate). This can result in deadlock since the long
415  * running trans might need to wait for the inode we just locked in order to
416  * push the tail and free space in the log.
417  *
418  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
419  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
420  * lock more than one at a time, lockdep will report false positives saying we
421  * have violated locking orders.
422  */
423 static void
424 xfs_lock_inodes(
425 	struct xfs_inode	**ips,
426 	int			inodes,
427 	uint			lock_mode)
428 {
429 	int			attempts = 0;
430 	uint			i;
431 	int			j;
432 	bool			try_lock;
433 	struct xfs_log_item	*lp;
434 
435 	/*
436 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
437 	 * support an arbitrary depth of locking here, but absolute limits on
438 	 * inodes depend on the type of locking and the limits placed by
439 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
440 	 * the asserts.
441 	 */
442 	ASSERT(ips && inodes >= 2 && inodes <= 5);
443 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
444 			    XFS_ILOCK_EXCL));
445 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
446 			      XFS_ILOCK_SHARED)));
447 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
448 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
449 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
450 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
451 
452 	if (lock_mode & XFS_IOLOCK_EXCL) {
453 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
454 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
455 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
456 
457 again:
458 	try_lock = false;
459 	i = 0;
460 	for (; i < inodes; i++) {
461 		ASSERT(ips[i]);
462 
463 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
464 			continue;
465 
466 		/*
467 		 * If try_lock is not set yet, make sure all locked inodes are
468 		 * not in the AIL.  If any are, set try_lock to be used later.
469 		 */
470 		if (!try_lock) {
471 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
472 				lp = &ips[j]->i_itemp->ili_item;
473 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
474 					try_lock = true;
475 			}
476 		}
477 
478 		/*
479 		 * If any of the previous locks we have locked is in the AIL,
480 		 * we must TRY to get the second and subsequent locks. If
481 		 * we can't get any, we must release all we have
482 		 * and try again.
483 		 */
484 		if (!try_lock) {
485 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
486 			continue;
487 		}
488 
489 		/* try_lock means we have an inode locked that is in the AIL. */
490 		ASSERT(i != 0);
491 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
492 			continue;
493 
494 		/*
495 		 * Unlock all previous guys and try again.  xfs_iunlock will try
496 		 * to push the tail if the inode is in the AIL.
497 		 */
498 		attempts++;
499 		for (j = i - 1; j >= 0; j--) {
500 			/*
501 			 * Check to see if we've already unlocked this one.  Not
502 			 * the first one going back, and the inode ptr is the
503 			 * same.
504 			 */
505 			if (j != (i - 1) && ips[j] == ips[j + 1])
506 				continue;
507 
508 			xfs_iunlock(ips[j], lock_mode);
509 		}
510 
511 		if ((attempts % 5) == 0) {
512 			delay(1); /* Don't just spin the CPU */
513 		}
514 		goto again;
515 	}
516 }
517 
518 /*
519  * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
520  * mmaplock must be double-locked separately since we use i_rwsem and
521  * invalidate_lock for that. We now support taking one lock EXCL and the
522  * other SHARED.
523  */
524 void
525 xfs_lock_two_inodes(
526 	struct xfs_inode	*ip0,
527 	uint			ip0_mode,
528 	struct xfs_inode	*ip1,
529 	uint			ip1_mode)
530 {
531 	int			attempts = 0;
532 	struct xfs_log_item	*lp;
533 
534 	ASSERT(hweight32(ip0_mode) == 1);
535 	ASSERT(hweight32(ip1_mode) == 1);
536 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
537 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
538 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
539 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
540 	ASSERT(ip0->i_ino != ip1->i_ino);
541 
542 	if (ip0->i_ino > ip1->i_ino) {
543 		swap(ip0, ip1);
544 		swap(ip0_mode, ip1_mode);
545 	}
546 
547  again:
548 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
549 
550 	/*
551 	 * If the first lock we have locked is in the AIL, we must TRY to get
552 	 * the second lock. If we can't get it, we must release the first one
553 	 * and try again.
554 	 */
555 	lp = &ip0->i_itemp->ili_item;
556 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
557 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
558 			xfs_iunlock(ip0, ip0_mode);
559 			if ((++attempts % 5) == 0)
560 				delay(1); /* Don't just spin the CPU */
561 			goto again;
562 		}
563 	} else {
564 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
565 	}
566 }
567 
568 uint
569 xfs_ip2xflags(
570 	struct xfs_inode	*ip)
571 {
572 	uint			flags = 0;
573 
574 	if (ip->i_diflags & XFS_DIFLAG_ANY) {
575 		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
576 			flags |= FS_XFLAG_REALTIME;
577 		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
578 			flags |= FS_XFLAG_PREALLOC;
579 		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
580 			flags |= FS_XFLAG_IMMUTABLE;
581 		if (ip->i_diflags & XFS_DIFLAG_APPEND)
582 			flags |= FS_XFLAG_APPEND;
583 		if (ip->i_diflags & XFS_DIFLAG_SYNC)
584 			flags |= FS_XFLAG_SYNC;
585 		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
586 			flags |= FS_XFLAG_NOATIME;
587 		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
588 			flags |= FS_XFLAG_NODUMP;
589 		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
590 			flags |= FS_XFLAG_RTINHERIT;
591 		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
592 			flags |= FS_XFLAG_PROJINHERIT;
593 		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
594 			flags |= FS_XFLAG_NOSYMLINKS;
595 		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
596 			flags |= FS_XFLAG_EXTSIZE;
597 		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
598 			flags |= FS_XFLAG_EXTSZINHERIT;
599 		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
600 			flags |= FS_XFLAG_NODEFRAG;
601 		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
602 			flags |= FS_XFLAG_FILESTREAM;
603 	}
604 
605 	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
606 		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
607 			flags |= FS_XFLAG_DAX;
608 		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
609 			flags |= FS_XFLAG_COWEXTSIZE;
610 	}
611 
612 	if (xfs_inode_has_attr_fork(ip))
613 		flags |= FS_XFLAG_HASATTR;
614 	return flags;
615 }
616 
617 /*
618  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
619  * is allowed, otherwise it has to be an exact match. If a CI match is found,
620  * ci_name->name will point to a the actual name (caller must free) or
621  * will be set to NULL if an exact match is found.
622  */
623 int
624 xfs_lookup(
625 	struct xfs_inode	*dp,
626 	const struct xfs_name	*name,
627 	struct xfs_inode	**ipp,
628 	struct xfs_name		*ci_name)
629 {
630 	xfs_ino_t		inum;
631 	int			error;
632 
633 	trace_xfs_lookup(dp, name);
634 
635 	if (xfs_is_shutdown(dp->i_mount))
636 		return -EIO;
637 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
638 		return -EIO;
639 
640 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
641 	if (error)
642 		goto out_unlock;
643 
644 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
645 	if (error)
646 		goto out_free_name;
647 
648 	return 0;
649 
650 out_free_name:
651 	if (ci_name)
652 		kfree(ci_name->name);
653 out_unlock:
654 	*ipp = NULL;
655 	return error;
656 }
657 
658 /* Propagate di_flags from a parent inode to a child inode. */
659 static void
660 xfs_inode_inherit_flags(
661 	struct xfs_inode	*ip,
662 	const struct xfs_inode	*pip)
663 {
664 	unsigned int		di_flags = 0;
665 	xfs_failaddr_t		failaddr;
666 	umode_t			mode = VFS_I(ip)->i_mode;
667 
668 	if (S_ISDIR(mode)) {
669 		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
670 			di_flags |= XFS_DIFLAG_RTINHERIT;
671 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
672 			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
673 			ip->i_extsize = pip->i_extsize;
674 		}
675 		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
676 			di_flags |= XFS_DIFLAG_PROJINHERIT;
677 	} else if (S_ISREG(mode)) {
678 		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
679 		    xfs_has_realtime(ip->i_mount))
680 			di_flags |= XFS_DIFLAG_REALTIME;
681 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
682 			di_flags |= XFS_DIFLAG_EXTSIZE;
683 			ip->i_extsize = pip->i_extsize;
684 		}
685 	}
686 	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
687 	    xfs_inherit_noatime)
688 		di_flags |= XFS_DIFLAG_NOATIME;
689 	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
690 	    xfs_inherit_nodump)
691 		di_flags |= XFS_DIFLAG_NODUMP;
692 	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
693 	    xfs_inherit_sync)
694 		di_flags |= XFS_DIFLAG_SYNC;
695 	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
696 	    xfs_inherit_nosymlinks)
697 		di_flags |= XFS_DIFLAG_NOSYMLINKS;
698 	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
699 	    xfs_inherit_nodefrag)
700 		di_flags |= XFS_DIFLAG_NODEFRAG;
701 	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
702 		di_flags |= XFS_DIFLAG_FILESTREAM;
703 
704 	ip->i_diflags |= di_flags;
705 
706 	/*
707 	 * Inode verifiers on older kernels only check that the extent size
708 	 * hint is an integer multiple of the rt extent size on realtime files.
709 	 * They did not check the hint alignment on a directory with both
710 	 * rtinherit and extszinherit flags set.  If the misaligned hint is
711 	 * propagated from a directory into a new realtime file, new file
712 	 * allocations will fail due to math errors in the rt allocator and/or
713 	 * trip the verifiers.  Validate the hint settings in the new file so
714 	 * that we don't let broken hints propagate.
715 	 */
716 	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
717 			VFS_I(ip)->i_mode, ip->i_diflags);
718 	if (failaddr) {
719 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
720 				   XFS_DIFLAG_EXTSZINHERIT);
721 		ip->i_extsize = 0;
722 	}
723 }
724 
725 /* Propagate di_flags2 from a parent inode to a child inode. */
726 static void
727 xfs_inode_inherit_flags2(
728 	struct xfs_inode	*ip,
729 	const struct xfs_inode	*pip)
730 {
731 	xfs_failaddr_t		failaddr;
732 
733 	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
734 		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
735 		ip->i_cowextsize = pip->i_cowextsize;
736 	}
737 	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
738 		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
739 
740 	/* Don't let invalid cowextsize hints propagate. */
741 	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
742 			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
743 	if (failaddr) {
744 		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
745 		ip->i_cowextsize = 0;
746 	}
747 }
748 
749 /*
750  * Initialise a newly allocated inode and return the in-core inode to the
751  * caller locked exclusively.
752  */
753 int
754 xfs_init_new_inode(
755 	struct mnt_idmap	*idmap,
756 	struct xfs_trans	*tp,
757 	struct xfs_inode	*pip,
758 	xfs_ino_t		ino,
759 	umode_t			mode,
760 	xfs_nlink_t		nlink,
761 	dev_t			rdev,
762 	prid_t			prid,
763 	bool			init_xattrs,
764 	struct xfs_inode	**ipp)
765 {
766 	struct inode		*dir = pip ? VFS_I(pip) : NULL;
767 	struct xfs_mount	*mp = tp->t_mountp;
768 	struct xfs_inode	*ip;
769 	unsigned int		flags;
770 	int			error;
771 	struct timespec64	tv;
772 	struct inode		*inode;
773 
774 	/*
775 	 * Protect against obviously corrupt allocation btree records. Later
776 	 * xfs_iget checks will catch re-allocation of other active in-memory
777 	 * and on-disk inodes. If we don't catch reallocating the parent inode
778 	 * here we will deadlock in xfs_iget() so we have to do these checks
779 	 * first.
780 	 */
781 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
782 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
783 		xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino),
784 				XFS_SICK_AG_INOBT);
785 		return -EFSCORRUPTED;
786 	}
787 
788 	/*
789 	 * Get the in-core inode with the lock held exclusively to prevent
790 	 * others from looking at until we're done.
791 	 */
792 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
793 	if (error)
794 		return error;
795 
796 	ASSERT(ip != NULL);
797 	inode = VFS_I(ip);
798 	set_nlink(inode, nlink);
799 	inode->i_rdev = rdev;
800 	ip->i_projid = prid;
801 
802 	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
803 		inode_fsuid_set(inode, idmap);
804 		inode->i_gid = dir->i_gid;
805 		inode->i_mode = mode;
806 	} else {
807 		inode_init_owner(idmap, inode, dir, mode);
808 	}
809 
810 	/*
811 	 * If the group ID of the new file does not match the effective group
812 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
813 	 * (and only if the irix_sgid_inherit compatibility variable is set).
814 	 */
815 	if (irix_sgid_inherit && (inode->i_mode & S_ISGID) &&
816 	    !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode)))
817 		inode->i_mode &= ~S_ISGID;
818 
819 	ip->i_disk_size = 0;
820 	ip->i_df.if_nextents = 0;
821 	ASSERT(ip->i_nblocks == 0);
822 
823 	tv = inode_set_ctime_current(inode);
824 	inode_set_mtime_to_ts(inode, tv);
825 	inode_set_atime_to_ts(inode, tv);
826 
827 	ip->i_extsize = 0;
828 	ip->i_diflags = 0;
829 
830 	if (xfs_has_v3inodes(mp)) {
831 		inode_set_iversion(inode, 1);
832 		ip->i_cowextsize = 0;
833 		ip->i_crtime = tv;
834 	}
835 
836 	flags = XFS_ILOG_CORE;
837 	switch (mode & S_IFMT) {
838 	case S_IFIFO:
839 	case S_IFCHR:
840 	case S_IFBLK:
841 	case S_IFSOCK:
842 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
843 		flags |= XFS_ILOG_DEV;
844 		break;
845 	case S_IFREG:
846 	case S_IFDIR:
847 		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
848 			xfs_inode_inherit_flags(ip, pip);
849 		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
850 			xfs_inode_inherit_flags2(ip, pip);
851 		fallthrough;
852 	case S_IFLNK:
853 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
854 		ip->i_df.if_bytes = 0;
855 		ip->i_df.if_data = NULL;
856 		break;
857 	default:
858 		ASSERT(0);
859 	}
860 
861 	/*
862 	 * If we need to create attributes immediately after allocating the
863 	 * inode, initialise an empty attribute fork right now. We use the
864 	 * default fork offset for attributes here as we don't know exactly what
865 	 * size or how many attributes we might be adding. We can do this
866 	 * safely here because we know the data fork is completely empty and
867 	 * this saves us from needing to run a separate transaction to set the
868 	 * fork offset in the immediate future.
869 	 */
870 	if (init_xattrs && xfs_has_attr(mp)) {
871 		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
872 		xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
873 	}
874 
875 	/*
876 	 * Log the new values stuffed into the inode.
877 	 */
878 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
879 	xfs_trans_log_inode(tp, ip, flags);
880 
881 	/* now that we have an i_mode we can setup the inode structure */
882 	xfs_setup_inode(ip);
883 
884 	*ipp = ip;
885 	return 0;
886 }
887 
888 /*
889  * Decrement the link count on an inode & log the change.  If this causes the
890  * link count to go to zero, move the inode to AGI unlinked list so that it can
891  * be freed when the last active reference goes away via xfs_inactive().
892  */
893 static int			/* error */
894 xfs_droplink(
895 	xfs_trans_t *tp,
896 	xfs_inode_t *ip)
897 {
898 	if (VFS_I(ip)->i_nlink == 0) {
899 		xfs_alert(ip->i_mount,
900 			  "%s: Attempt to drop inode (%llu) with nlink zero.",
901 			  __func__, ip->i_ino);
902 		return -EFSCORRUPTED;
903 	}
904 
905 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
906 
907 	drop_nlink(VFS_I(ip));
908 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
909 
910 	if (VFS_I(ip)->i_nlink)
911 		return 0;
912 
913 	return xfs_iunlink(tp, ip);
914 }
915 
916 /*
917  * Increment the link count on an inode & log the change.
918  */
919 static void
920 xfs_bumplink(
921 	xfs_trans_t *tp,
922 	xfs_inode_t *ip)
923 {
924 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
925 
926 	inc_nlink(VFS_I(ip));
927 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
928 }
929 
930 #ifdef CONFIG_XFS_LIVE_HOOKS
931 /*
932  * Use a static key here to reduce the overhead of directory live update hooks.
933  * If the compiler supports jump labels, the static branch will be replaced by
934  * a nop sled when there are no hook users.  Online fsck is currently the only
935  * caller, so this is a reasonable tradeoff.
936  *
937  * Note: Patching the kernel code requires taking the cpu hotplug lock.  Other
938  * parts of the kernel allocate memory with that lock held, which means that
939  * XFS callers cannot hold any locks that might be used by memory reclaim or
940  * writeback when calling the static_branch_{inc,dec} functions.
941  */
942 DEFINE_STATIC_XFS_HOOK_SWITCH(xfs_dir_hooks_switch);
943 
944 void
945 xfs_dir_hook_disable(void)
946 {
947 	xfs_hooks_switch_off(&xfs_dir_hooks_switch);
948 }
949 
950 void
951 xfs_dir_hook_enable(void)
952 {
953 	xfs_hooks_switch_on(&xfs_dir_hooks_switch);
954 }
955 
956 /* Call hooks for a directory update relating to a child dirent update. */
957 inline void
958 xfs_dir_update_hook(
959 	struct xfs_inode		*dp,
960 	struct xfs_inode		*ip,
961 	int				delta,
962 	const struct xfs_name		*name)
963 {
964 	if (xfs_hooks_switched_on(&xfs_dir_hooks_switch)) {
965 		struct xfs_dir_update_params	p = {
966 			.dp		= dp,
967 			.ip		= ip,
968 			.delta		= delta,
969 			.name		= name,
970 		};
971 		struct xfs_mount	*mp = ip->i_mount;
972 
973 		xfs_hooks_call(&mp->m_dir_update_hooks, 0, &p);
974 	}
975 }
976 
977 /* Call the specified function during a directory update. */
978 int
979 xfs_dir_hook_add(
980 	struct xfs_mount	*mp,
981 	struct xfs_dir_hook	*hook)
982 {
983 	return xfs_hooks_add(&mp->m_dir_update_hooks, &hook->dirent_hook);
984 }
985 
986 /* Stop calling the specified function during a directory update. */
987 void
988 xfs_dir_hook_del(
989 	struct xfs_mount	*mp,
990 	struct xfs_dir_hook	*hook)
991 {
992 	xfs_hooks_del(&mp->m_dir_update_hooks, &hook->dirent_hook);
993 }
994 
995 /* Configure directory update hook functions. */
996 void
997 xfs_dir_hook_setup(
998 	struct xfs_dir_hook	*hook,
999 	notifier_fn_t		mod_fn)
1000 {
1001 	xfs_hook_setup(&hook->dirent_hook, mod_fn);
1002 }
1003 #endif /* CONFIG_XFS_LIVE_HOOKS */
1004 
1005 int
1006 xfs_create(
1007 	struct mnt_idmap	*idmap,
1008 	xfs_inode_t		*dp,
1009 	struct xfs_name		*name,
1010 	umode_t			mode,
1011 	dev_t			rdev,
1012 	bool			init_xattrs,
1013 	xfs_inode_t		**ipp)
1014 {
1015 	int			is_dir = S_ISDIR(mode);
1016 	struct xfs_mount	*mp = dp->i_mount;
1017 	struct xfs_inode	*ip = NULL;
1018 	struct xfs_trans	*tp = NULL;
1019 	int			error;
1020 	bool                    unlock_dp_on_error = false;
1021 	prid_t			prid;
1022 	struct xfs_dquot	*udqp = NULL;
1023 	struct xfs_dquot	*gdqp = NULL;
1024 	struct xfs_dquot	*pdqp = NULL;
1025 	struct xfs_trans_res	*tres;
1026 	uint			resblks;
1027 	xfs_ino_t		ino;
1028 
1029 	trace_xfs_create(dp, name);
1030 
1031 	if (xfs_is_shutdown(mp))
1032 		return -EIO;
1033 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
1034 		return -EIO;
1035 
1036 	prid = xfs_get_initial_prid(dp);
1037 
1038 	/*
1039 	 * Make sure that we have allocated dquot(s) on disk.
1040 	 */
1041 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1042 			mapped_fsgid(idmap, &init_user_ns), prid,
1043 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1044 			&udqp, &gdqp, &pdqp);
1045 	if (error)
1046 		return error;
1047 
1048 	if (is_dir) {
1049 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1050 		tres = &M_RES(mp)->tr_mkdir;
1051 	} else {
1052 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1053 		tres = &M_RES(mp)->tr_create;
1054 	}
1055 
1056 	/*
1057 	 * Initially assume that the file does not exist and
1058 	 * reserve the resources for that case.  If that is not
1059 	 * the case we'll drop the one we have and get a more
1060 	 * appropriate transaction later.
1061 	 */
1062 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1063 			&tp);
1064 	if (error == -ENOSPC) {
1065 		/* flush outstanding delalloc blocks and retry */
1066 		xfs_flush_inodes(mp);
1067 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1068 				resblks, &tp);
1069 	}
1070 	if (error)
1071 		goto out_release_dquots;
1072 
1073 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1074 	unlock_dp_on_error = true;
1075 
1076 	/*
1077 	 * A newly created regular or special file just has one directory
1078 	 * entry pointing to them, but a directory also the "." entry
1079 	 * pointing to itself.
1080 	 */
1081 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1082 	if (!error)
1083 		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1084 				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1085 	if (error)
1086 		goto out_trans_cancel;
1087 
1088 	/*
1089 	 * Now we join the directory inode to the transaction.  We do not do it
1090 	 * earlier because xfs_dialloc might commit the previous transaction
1091 	 * (and release all the locks).  An error from here on will result in
1092 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1093 	 * error path.
1094 	 */
1095 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1096 	unlock_dp_on_error = false;
1097 
1098 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1099 					resblks - XFS_IALLOC_SPACE_RES(mp));
1100 	if (error) {
1101 		ASSERT(error != -ENOSPC);
1102 		goto out_trans_cancel;
1103 	}
1104 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1105 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1106 
1107 	if (is_dir) {
1108 		error = xfs_dir_init(tp, ip, dp);
1109 		if (error)
1110 			goto out_trans_cancel;
1111 
1112 		xfs_bumplink(tp, dp);
1113 	}
1114 
1115 	/*
1116 	 * Create ip with a reference from dp, and add '.' and '..' references
1117 	 * if it's a directory.
1118 	 */
1119 	xfs_dir_update_hook(dp, ip, 1, name);
1120 
1121 	/*
1122 	 * If this is a synchronous mount, make sure that the
1123 	 * create transaction goes to disk before returning to
1124 	 * the user.
1125 	 */
1126 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1127 		xfs_trans_set_sync(tp);
1128 
1129 	/*
1130 	 * Attach the dquot(s) to the inodes and modify them incore.
1131 	 * These ids of the inode couldn't have changed since the new
1132 	 * inode has been locked ever since it was created.
1133 	 */
1134 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1135 
1136 	error = xfs_trans_commit(tp);
1137 	if (error)
1138 		goto out_release_inode;
1139 
1140 	xfs_qm_dqrele(udqp);
1141 	xfs_qm_dqrele(gdqp);
1142 	xfs_qm_dqrele(pdqp);
1143 
1144 	*ipp = ip;
1145 	return 0;
1146 
1147  out_trans_cancel:
1148 	xfs_trans_cancel(tp);
1149  out_release_inode:
1150 	/*
1151 	 * Wait until after the current transaction is aborted to finish the
1152 	 * setup of the inode and release the inode.  This prevents recursive
1153 	 * transactions and deadlocks from xfs_inactive.
1154 	 */
1155 	if (ip) {
1156 		xfs_finish_inode_setup(ip);
1157 		xfs_irele(ip);
1158 	}
1159  out_release_dquots:
1160 	xfs_qm_dqrele(udqp);
1161 	xfs_qm_dqrele(gdqp);
1162 	xfs_qm_dqrele(pdqp);
1163 
1164 	if (unlock_dp_on_error)
1165 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1166 	return error;
1167 }
1168 
1169 int
1170 xfs_create_tmpfile(
1171 	struct mnt_idmap	*idmap,
1172 	struct xfs_inode	*dp,
1173 	umode_t			mode,
1174 	struct xfs_inode	**ipp)
1175 {
1176 	struct xfs_mount	*mp = dp->i_mount;
1177 	struct xfs_inode	*ip = NULL;
1178 	struct xfs_trans	*tp = NULL;
1179 	int			error;
1180 	prid_t                  prid;
1181 	struct xfs_dquot	*udqp = NULL;
1182 	struct xfs_dquot	*gdqp = NULL;
1183 	struct xfs_dquot	*pdqp = NULL;
1184 	struct xfs_trans_res	*tres;
1185 	uint			resblks;
1186 	xfs_ino_t		ino;
1187 
1188 	if (xfs_is_shutdown(mp))
1189 		return -EIO;
1190 
1191 	prid = xfs_get_initial_prid(dp);
1192 
1193 	/*
1194 	 * Make sure that we have allocated dquot(s) on disk.
1195 	 */
1196 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1197 			mapped_fsgid(idmap, &init_user_ns), prid,
1198 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1199 			&udqp, &gdqp, &pdqp);
1200 	if (error)
1201 		return error;
1202 
1203 	resblks = XFS_IALLOC_SPACE_RES(mp);
1204 	tres = &M_RES(mp)->tr_create_tmpfile;
1205 
1206 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1207 			&tp);
1208 	if (error)
1209 		goto out_release_dquots;
1210 
1211 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1212 	if (!error)
1213 		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1214 				0, 0, prid, false, &ip);
1215 	if (error)
1216 		goto out_trans_cancel;
1217 
1218 	if (xfs_has_wsync(mp))
1219 		xfs_trans_set_sync(tp);
1220 
1221 	/*
1222 	 * Attach the dquot(s) to the inodes and modify them incore.
1223 	 * These ids of the inode couldn't have changed since the new
1224 	 * inode has been locked ever since it was created.
1225 	 */
1226 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1227 
1228 	error = xfs_iunlink(tp, ip);
1229 	if (error)
1230 		goto out_trans_cancel;
1231 
1232 	error = xfs_trans_commit(tp);
1233 	if (error)
1234 		goto out_release_inode;
1235 
1236 	xfs_qm_dqrele(udqp);
1237 	xfs_qm_dqrele(gdqp);
1238 	xfs_qm_dqrele(pdqp);
1239 
1240 	*ipp = ip;
1241 	return 0;
1242 
1243  out_trans_cancel:
1244 	xfs_trans_cancel(tp);
1245  out_release_inode:
1246 	/*
1247 	 * Wait until after the current transaction is aborted to finish the
1248 	 * setup of the inode and release the inode.  This prevents recursive
1249 	 * transactions and deadlocks from xfs_inactive.
1250 	 */
1251 	if (ip) {
1252 		xfs_finish_inode_setup(ip);
1253 		xfs_irele(ip);
1254 	}
1255  out_release_dquots:
1256 	xfs_qm_dqrele(udqp);
1257 	xfs_qm_dqrele(gdqp);
1258 	xfs_qm_dqrele(pdqp);
1259 
1260 	return error;
1261 }
1262 
1263 int
1264 xfs_link(
1265 	xfs_inode_t		*tdp,
1266 	xfs_inode_t		*sip,
1267 	struct xfs_name		*target_name)
1268 {
1269 	xfs_mount_t		*mp = tdp->i_mount;
1270 	xfs_trans_t		*tp;
1271 	int			error, nospace_error = 0;
1272 	int			resblks;
1273 
1274 	trace_xfs_link(tdp, target_name);
1275 
1276 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1277 
1278 	if (xfs_is_shutdown(mp))
1279 		return -EIO;
1280 	if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
1281 		return -EIO;
1282 
1283 	error = xfs_qm_dqattach(sip);
1284 	if (error)
1285 		goto std_return;
1286 
1287 	error = xfs_qm_dqattach(tdp);
1288 	if (error)
1289 		goto std_return;
1290 
1291 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1292 	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1293 			&tp, &nospace_error);
1294 	if (error)
1295 		goto std_return;
1296 
1297 	/*
1298 	 * If we are using project inheritance, we only allow hard link
1299 	 * creation in our tree when the project IDs are the same; else
1300 	 * the tree quota mechanism could be circumvented.
1301 	 */
1302 	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1303 		     tdp->i_projid != sip->i_projid)) {
1304 		error = -EXDEV;
1305 		goto error_return;
1306 	}
1307 
1308 	if (!resblks) {
1309 		error = xfs_dir_canenter(tp, tdp, target_name);
1310 		if (error)
1311 			goto error_return;
1312 	}
1313 
1314 	/*
1315 	 * Handle initial link state of O_TMPFILE inode
1316 	 */
1317 	if (VFS_I(sip)->i_nlink == 0) {
1318 		struct xfs_perag	*pag;
1319 
1320 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1321 		error = xfs_iunlink_remove(tp, pag, sip);
1322 		xfs_perag_put(pag);
1323 		if (error)
1324 			goto error_return;
1325 	}
1326 
1327 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1328 				   resblks);
1329 	if (error)
1330 		goto error_return;
1331 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1332 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1333 
1334 	xfs_bumplink(tp, sip);
1335 	xfs_dir_update_hook(tdp, sip, 1, target_name);
1336 
1337 	/*
1338 	 * If this is a synchronous mount, make sure that the
1339 	 * link transaction goes to disk before returning to
1340 	 * the user.
1341 	 */
1342 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1343 		xfs_trans_set_sync(tp);
1344 
1345 	return xfs_trans_commit(tp);
1346 
1347  error_return:
1348 	xfs_trans_cancel(tp);
1349  std_return:
1350 	if (error == -ENOSPC && nospace_error)
1351 		error = nospace_error;
1352 	return error;
1353 }
1354 
1355 /* Clear the reflink flag and the cowblocks tag if possible. */
1356 static void
1357 xfs_itruncate_clear_reflink_flags(
1358 	struct xfs_inode	*ip)
1359 {
1360 	struct xfs_ifork	*dfork;
1361 	struct xfs_ifork	*cfork;
1362 
1363 	if (!xfs_is_reflink_inode(ip))
1364 		return;
1365 	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1366 	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1367 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1368 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1369 	if (cfork->if_bytes == 0)
1370 		xfs_inode_clear_cowblocks_tag(ip);
1371 }
1372 
1373 /*
1374  * Free up the underlying blocks past new_size.  The new size must be smaller
1375  * than the current size.  This routine can be used both for the attribute and
1376  * data fork, and does not modify the inode size, which is left to the caller.
1377  *
1378  * The transaction passed to this routine must have made a permanent log
1379  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1380  * given transaction and start new ones, so make sure everything involved in
1381  * the transaction is tidy before calling here.  Some transaction will be
1382  * returned to the caller to be committed.  The incoming transaction must
1383  * already include the inode, and both inode locks must be held exclusively.
1384  * The inode must also be "held" within the transaction.  On return the inode
1385  * will be "held" within the returned transaction.  This routine does NOT
1386  * require any disk space to be reserved for it within the transaction.
1387  *
1388  * If we get an error, we must return with the inode locked and linked into the
1389  * current transaction. This keeps things simple for the higher level code,
1390  * because it always knows that the inode is locked and held in the transaction
1391  * that returns to it whether errors occur or not.  We don't mark the inode
1392  * dirty on error so that transactions can be easily aborted if possible.
1393  */
1394 int
1395 xfs_itruncate_extents_flags(
1396 	struct xfs_trans	**tpp,
1397 	struct xfs_inode	*ip,
1398 	int			whichfork,
1399 	xfs_fsize_t		new_size,
1400 	int			flags)
1401 {
1402 	struct xfs_mount	*mp = ip->i_mount;
1403 	struct xfs_trans	*tp = *tpp;
1404 	xfs_fileoff_t		first_unmap_block;
1405 	int			error = 0;
1406 
1407 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1408 	if (atomic_read(&VFS_I(ip)->i_count))
1409 		xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
1410 	ASSERT(new_size <= XFS_ISIZE(ip));
1411 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1412 	ASSERT(ip->i_itemp != NULL);
1413 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1414 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1415 
1416 	trace_xfs_itruncate_extents_start(ip, new_size);
1417 
1418 	flags |= xfs_bmapi_aflag(whichfork);
1419 
1420 	/*
1421 	 * Since it is possible for space to become allocated beyond
1422 	 * the end of the file (in a crash where the space is allocated
1423 	 * but the inode size is not yet updated), simply remove any
1424 	 * blocks which show up between the new EOF and the maximum
1425 	 * possible file size.
1426 	 *
1427 	 * We have to free all the blocks to the bmbt maximum offset, even if
1428 	 * the page cache can't scale that far.
1429 	 */
1430 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1431 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1432 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1433 		return 0;
1434 	}
1435 
1436 	error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1437 			XFS_MAX_FILEOFF);
1438 	if (error)
1439 		goto out;
1440 
1441 	if (whichfork == XFS_DATA_FORK) {
1442 		/* Remove all pending CoW reservations. */
1443 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1444 				first_unmap_block, XFS_MAX_FILEOFF, true);
1445 		if (error)
1446 			goto out;
1447 
1448 		xfs_itruncate_clear_reflink_flags(ip);
1449 	}
1450 
1451 	/*
1452 	 * Always re-log the inode so that our permanent transaction can keep
1453 	 * on rolling it forward in the log.
1454 	 */
1455 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1456 
1457 	trace_xfs_itruncate_extents_end(ip, new_size);
1458 
1459 out:
1460 	*tpp = tp;
1461 	return error;
1462 }
1463 
1464 int
1465 xfs_release(
1466 	xfs_inode_t	*ip)
1467 {
1468 	xfs_mount_t	*mp = ip->i_mount;
1469 	int		error = 0;
1470 
1471 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1472 		return 0;
1473 
1474 	/* If this is a read-only mount, don't do this (would generate I/O) */
1475 	if (xfs_is_readonly(mp))
1476 		return 0;
1477 
1478 	if (!xfs_is_shutdown(mp)) {
1479 		int truncated;
1480 
1481 		/*
1482 		 * If we previously truncated this file and removed old data
1483 		 * in the process, we want to initiate "early" writeout on
1484 		 * the last close.  This is an attempt to combat the notorious
1485 		 * NULL files problem which is particularly noticeable from a
1486 		 * truncate down, buffered (re-)write (delalloc), followed by
1487 		 * a crash.  What we are effectively doing here is
1488 		 * significantly reducing the time window where we'd otherwise
1489 		 * be exposed to that problem.
1490 		 */
1491 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1492 		if (truncated) {
1493 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1494 			if (ip->i_delayed_blks > 0) {
1495 				error = filemap_flush(VFS_I(ip)->i_mapping);
1496 				if (error)
1497 					return error;
1498 			}
1499 		}
1500 	}
1501 
1502 	if (VFS_I(ip)->i_nlink == 0)
1503 		return 0;
1504 
1505 	/*
1506 	 * If we can't get the iolock just skip truncating the blocks past EOF
1507 	 * because we could deadlock with the mmap_lock otherwise. We'll get
1508 	 * another chance to drop them once the last reference to the inode is
1509 	 * dropped, so we'll never leak blocks permanently.
1510 	 */
1511 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1512 		return 0;
1513 
1514 	if (xfs_can_free_eofblocks(ip, false)) {
1515 		/*
1516 		 * Check if the inode is being opened, written and closed
1517 		 * frequently and we have delayed allocation blocks outstanding
1518 		 * (e.g. streaming writes from the NFS server), truncating the
1519 		 * blocks past EOF will cause fragmentation to occur.
1520 		 *
1521 		 * In this case don't do the truncation, but we have to be
1522 		 * careful how we detect this case. Blocks beyond EOF show up as
1523 		 * i_delayed_blks even when the inode is clean, so we need to
1524 		 * truncate them away first before checking for a dirty release.
1525 		 * Hence on the first dirty close we will still remove the
1526 		 * speculative allocation, but after that we will leave it in
1527 		 * place.
1528 		 */
1529 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1530 			goto out_unlock;
1531 
1532 		error = xfs_free_eofblocks(ip);
1533 		if (error)
1534 			goto out_unlock;
1535 
1536 		/* delalloc blocks after truncation means it really is dirty */
1537 		if (ip->i_delayed_blks)
1538 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1539 	}
1540 
1541 out_unlock:
1542 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1543 	return error;
1544 }
1545 
1546 /*
1547  * xfs_inactive_truncate
1548  *
1549  * Called to perform a truncate when an inode becomes unlinked.
1550  */
1551 STATIC int
1552 xfs_inactive_truncate(
1553 	struct xfs_inode *ip)
1554 {
1555 	struct xfs_mount	*mp = ip->i_mount;
1556 	struct xfs_trans	*tp;
1557 	int			error;
1558 
1559 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1560 	if (error) {
1561 		ASSERT(xfs_is_shutdown(mp));
1562 		return error;
1563 	}
1564 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1565 	xfs_trans_ijoin(tp, ip, 0);
1566 
1567 	/*
1568 	 * Log the inode size first to prevent stale data exposure in the event
1569 	 * of a system crash before the truncate completes. See the related
1570 	 * comment in xfs_vn_setattr_size() for details.
1571 	 */
1572 	ip->i_disk_size = 0;
1573 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1574 
1575 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1576 	if (error)
1577 		goto error_trans_cancel;
1578 
1579 	ASSERT(ip->i_df.if_nextents == 0);
1580 
1581 	error = xfs_trans_commit(tp);
1582 	if (error)
1583 		goto error_unlock;
1584 
1585 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1586 	return 0;
1587 
1588 error_trans_cancel:
1589 	xfs_trans_cancel(tp);
1590 error_unlock:
1591 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1592 	return error;
1593 }
1594 
1595 /*
1596  * xfs_inactive_ifree()
1597  *
1598  * Perform the inode free when an inode is unlinked.
1599  */
1600 STATIC int
1601 xfs_inactive_ifree(
1602 	struct xfs_inode *ip)
1603 {
1604 	struct xfs_mount	*mp = ip->i_mount;
1605 	struct xfs_trans	*tp;
1606 	int			error;
1607 
1608 	/*
1609 	 * We try to use a per-AG reservation for any block needed by the finobt
1610 	 * tree, but as the finobt feature predates the per-AG reservation
1611 	 * support a degraded file system might not have enough space for the
1612 	 * reservation at mount time.  In that case try to dip into the reserved
1613 	 * pool and pray.
1614 	 *
1615 	 * Send a warning if the reservation does happen to fail, as the inode
1616 	 * now remains allocated and sits on the unlinked list until the fs is
1617 	 * repaired.
1618 	 */
1619 	if (unlikely(mp->m_finobt_nores)) {
1620 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1621 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1622 				&tp);
1623 	} else {
1624 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1625 	}
1626 	if (error) {
1627 		if (error == -ENOSPC) {
1628 			xfs_warn_ratelimited(mp,
1629 			"Failed to remove inode(s) from unlinked list. "
1630 			"Please free space, unmount and run xfs_repair.");
1631 		} else {
1632 			ASSERT(xfs_is_shutdown(mp));
1633 		}
1634 		return error;
1635 	}
1636 
1637 	/*
1638 	 * We do not hold the inode locked across the entire rolling transaction
1639 	 * here. We only need to hold it for the first transaction that
1640 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1641 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1642 	 * here breaks the relationship between cluster buffer invalidation and
1643 	 * stale inode invalidation on cluster buffer item journal commit
1644 	 * completion, and can result in leaving dirty stale inodes hanging
1645 	 * around in memory.
1646 	 *
1647 	 * We have no need for serialising this inode operation against other
1648 	 * operations - we freed the inode and hence reallocation is required
1649 	 * and that will serialise on reallocating the space the deferops need
1650 	 * to free. Hence we can unlock the inode on the first commit of
1651 	 * the transaction rather than roll it right through the deferops. This
1652 	 * avoids relogging the XFS_ISTALE inode.
1653 	 *
1654 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1655 	 * by asserting that the inode is still locked when it returns.
1656 	 */
1657 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1658 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1659 
1660 	error = xfs_ifree(tp, ip);
1661 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1662 	if (error) {
1663 		/*
1664 		 * If we fail to free the inode, shut down.  The cancel
1665 		 * might do that, we need to make sure.  Otherwise the
1666 		 * inode might be lost for a long time or forever.
1667 		 */
1668 		if (!xfs_is_shutdown(mp)) {
1669 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1670 				__func__, error);
1671 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1672 		}
1673 		xfs_trans_cancel(tp);
1674 		return error;
1675 	}
1676 
1677 	/*
1678 	 * Credit the quota account(s). The inode is gone.
1679 	 */
1680 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1681 
1682 	return xfs_trans_commit(tp);
1683 }
1684 
1685 /*
1686  * Returns true if we need to update the on-disk metadata before we can free
1687  * the memory used by this inode.  Updates include freeing post-eof
1688  * preallocations; freeing COW staging extents; and marking the inode free in
1689  * the inobt if it is on the unlinked list.
1690  */
1691 bool
1692 xfs_inode_needs_inactive(
1693 	struct xfs_inode	*ip)
1694 {
1695 	struct xfs_mount	*mp = ip->i_mount;
1696 	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1697 
1698 	/*
1699 	 * If the inode is already free, then there can be nothing
1700 	 * to clean up here.
1701 	 */
1702 	if (VFS_I(ip)->i_mode == 0)
1703 		return false;
1704 
1705 	/*
1706 	 * If this is a read-only mount, don't do this (would generate I/O)
1707 	 * unless we're in log recovery and cleaning the iunlinked list.
1708 	 */
1709 	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1710 		return false;
1711 
1712 	/* If the log isn't running, push inodes straight to reclaim. */
1713 	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1714 		return false;
1715 
1716 	/* Metadata inodes require explicit resource cleanup. */
1717 	if (xfs_is_metadata_inode(ip))
1718 		return false;
1719 
1720 	/* Want to clean out the cow blocks if there are any. */
1721 	if (cow_ifp && cow_ifp->if_bytes > 0)
1722 		return true;
1723 
1724 	/* Unlinked files must be freed. */
1725 	if (VFS_I(ip)->i_nlink == 0)
1726 		return true;
1727 
1728 	/*
1729 	 * This file isn't being freed, so check if there are post-eof blocks
1730 	 * to free.  @force is true because we are evicting an inode from the
1731 	 * cache.  Post-eof blocks must be freed, lest we end up with broken
1732 	 * free space accounting.
1733 	 *
1734 	 * Note: don't bother with iolock here since lockdep complains about
1735 	 * acquiring it in reclaim context. We have the only reference to the
1736 	 * inode at this point anyways.
1737 	 */
1738 	return xfs_can_free_eofblocks(ip, true);
1739 }
1740 
1741 /*
1742  * Save health status somewhere, if we're dumping an inode with uncorrected
1743  * errors and online repair isn't running.
1744  */
1745 static inline void
1746 xfs_inactive_health(
1747 	struct xfs_inode	*ip)
1748 {
1749 	struct xfs_mount	*mp = ip->i_mount;
1750 	struct xfs_perag	*pag;
1751 	unsigned int		sick;
1752 	unsigned int		checked;
1753 
1754 	xfs_inode_measure_sickness(ip, &sick, &checked);
1755 	if (!sick)
1756 		return;
1757 
1758 	trace_xfs_inode_unfixed_corruption(ip, sick);
1759 
1760 	if (sick & XFS_SICK_INO_FORGET)
1761 		return;
1762 
1763 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1764 	if (!pag) {
1765 		/* There had better still be a perag structure! */
1766 		ASSERT(0);
1767 		return;
1768 	}
1769 
1770 	xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
1771 	xfs_perag_put(pag);
1772 }
1773 
1774 /*
1775  * xfs_inactive
1776  *
1777  * This is called when the vnode reference count for the vnode
1778  * goes to zero.  If the file has been unlinked, then it must
1779  * now be truncated.  Also, we clear all of the read-ahead state
1780  * kept for the inode here since the file is now closed.
1781  */
1782 int
1783 xfs_inactive(
1784 	xfs_inode_t	*ip)
1785 {
1786 	struct xfs_mount	*mp;
1787 	int			error = 0;
1788 	int			truncate = 0;
1789 
1790 	/*
1791 	 * If the inode is already free, then there can be nothing
1792 	 * to clean up here.
1793 	 */
1794 	if (VFS_I(ip)->i_mode == 0) {
1795 		ASSERT(ip->i_df.if_broot_bytes == 0);
1796 		goto out;
1797 	}
1798 
1799 	mp = ip->i_mount;
1800 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1801 
1802 	xfs_inactive_health(ip);
1803 
1804 	/*
1805 	 * If this is a read-only mount, don't do this (would generate I/O)
1806 	 * unless we're in log recovery and cleaning the iunlinked list.
1807 	 */
1808 	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1809 		goto out;
1810 
1811 	/* Metadata inodes require explicit resource cleanup. */
1812 	if (xfs_is_metadata_inode(ip))
1813 		goto out;
1814 
1815 	/* Try to clean out the cow blocks if there are any. */
1816 	if (xfs_inode_has_cow_data(ip))
1817 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1818 
1819 	if (VFS_I(ip)->i_nlink != 0) {
1820 		/*
1821 		 * force is true because we are evicting an inode from the
1822 		 * cache. Post-eof blocks must be freed, lest we end up with
1823 		 * broken free space accounting.
1824 		 *
1825 		 * Note: don't bother with iolock here since lockdep complains
1826 		 * about acquiring it in reclaim context. We have the only
1827 		 * reference to the inode at this point anyways.
1828 		 */
1829 		if (xfs_can_free_eofblocks(ip, true))
1830 			error = xfs_free_eofblocks(ip);
1831 
1832 		goto out;
1833 	}
1834 
1835 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1836 	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1837 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1838 		truncate = 1;
1839 
1840 	if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1841 		/*
1842 		 * If this inode is being inactivated during a quotacheck and
1843 		 * has not yet been scanned by quotacheck, we /must/ remove
1844 		 * the dquots from the inode before inactivation changes the
1845 		 * block and inode counts.  Most probably this is a result of
1846 		 * reloading the incore iunlinked list to purge unrecovered
1847 		 * unlinked inodes.
1848 		 */
1849 		xfs_qm_dqdetach(ip);
1850 	} else {
1851 		error = xfs_qm_dqattach(ip);
1852 		if (error)
1853 			goto out;
1854 	}
1855 
1856 	if (S_ISLNK(VFS_I(ip)->i_mode))
1857 		error = xfs_inactive_symlink(ip);
1858 	else if (truncate)
1859 		error = xfs_inactive_truncate(ip);
1860 	if (error)
1861 		goto out;
1862 
1863 	/*
1864 	 * If there are attributes associated with the file then blow them away
1865 	 * now.  The code calls a routine that recursively deconstructs the
1866 	 * attribute fork. If also blows away the in-core attribute fork.
1867 	 */
1868 	if (xfs_inode_has_attr_fork(ip)) {
1869 		error = xfs_attr_inactive(ip);
1870 		if (error)
1871 			goto out;
1872 	}
1873 
1874 	ASSERT(ip->i_forkoff == 0);
1875 
1876 	/*
1877 	 * Free the inode.
1878 	 */
1879 	error = xfs_inactive_ifree(ip);
1880 
1881 out:
1882 	/*
1883 	 * We're done making metadata updates for this inode, so we can release
1884 	 * the attached dquots.
1885 	 */
1886 	xfs_qm_dqdetach(ip);
1887 	return error;
1888 }
1889 
1890 /*
1891  * In-Core Unlinked List Lookups
1892  * =============================
1893  *
1894  * Every inode is supposed to be reachable from some other piece of metadata
1895  * with the exception of the root directory.  Inodes with a connection to a
1896  * file descriptor but not linked from anywhere in the on-disk directory tree
1897  * are collectively known as unlinked inodes, though the filesystem itself
1898  * maintains links to these inodes so that on-disk metadata are consistent.
1899  *
1900  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1901  * header contains a number of buckets that point to an inode, and each inode
1902  * record has a pointer to the next inode in the hash chain.  This
1903  * singly-linked list causes scaling problems in the iunlink remove function
1904  * because we must walk that list to find the inode that points to the inode
1905  * being removed from the unlinked hash bucket list.
1906  *
1907  * Hence we keep an in-memory double linked list to link each inode on an
1908  * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1909  * based lists would require having 64 list heads in the perag, one for each
1910  * list. This is expensive in terms of memory (think millions of AGs) and cache
1911  * misses on lookups. Instead, use the fact that inodes on the unlinked list
1912  * must be referenced at the VFS level to keep them on the list and hence we
1913  * have an existence guarantee for inodes on the unlinked list.
1914  *
1915  * Given we have an existence guarantee, we can use lockless inode cache lookups
1916  * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1917  * for the double linked unlinked list, and we don't need any extra locking to
1918  * keep the list safe as all manipulations are done under the AGI buffer lock.
1919  * Keeping the list up to date does not require memory allocation, just finding
1920  * the XFS inode and updating the next/prev unlinked list aginos.
1921  */
1922 
1923 /*
1924  * Find an inode on the unlinked list. This does not take references to the
1925  * inode as we have existence guarantees by holding the AGI buffer lock and that
1926  * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1927  * don't find the inode in cache, then let the caller handle the situation.
1928  */
1929 static struct xfs_inode *
1930 xfs_iunlink_lookup(
1931 	struct xfs_perag	*pag,
1932 	xfs_agino_t		agino)
1933 {
1934 	struct xfs_inode	*ip;
1935 
1936 	rcu_read_lock();
1937 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1938 	if (!ip) {
1939 		/* Caller can handle inode not being in memory. */
1940 		rcu_read_unlock();
1941 		return NULL;
1942 	}
1943 
1944 	/*
1945 	 * Inode in RCU freeing limbo should not happen.  Warn about this and
1946 	 * let the caller handle the failure.
1947 	 */
1948 	if (WARN_ON_ONCE(!ip->i_ino)) {
1949 		rcu_read_unlock();
1950 		return NULL;
1951 	}
1952 	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1953 	rcu_read_unlock();
1954 	return ip;
1955 }
1956 
1957 /*
1958  * Update the prev pointer of the next agino.  Returns -ENOLINK if the inode
1959  * is not in cache.
1960  */
1961 static int
1962 xfs_iunlink_update_backref(
1963 	struct xfs_perag	*pag,
1964 	xfs_agino_t		prev_agino,
1965 	xfs_agino_t		next_agino)
1966 {
1967 	struct xfs_inode	*ip;
1968 
1969 	/* No update necessary if we are at the end of the list. */
1970 	if (next_agino == NULLAGINO)
1971 		return 0;
1972 
1973 	ip = xfs_iunlink_lookup(pag, next_agino);
1974 	if (!ip)
1975 		return -ENOLINK;
1976 
1977 	ip->i_prev_unlinked = prev_agino;
1978 	return 0;
1979 }
1980 
1981 /*
1982  * Point the AGI unlinked bucket at an inode and log the results.  The caller
1983  * is responsible for validating the old value.
1984  */
1985 STATIC int
1986 xfs_iunlink_update_bucket(
1987 	struct xfs_trans	*tp,
1988 	struct xfs_perag	*pag,
1989 	struct xfs_buf		*agibp,
1990 	unsigned int		bucket_index,
1991 	xfs_agino_t		new_agino)
1992 {
1993 	struct xfs_agi		*agi = agibp->b_addr;
1994 	xfs_agino_t		old_value;
1995 	int			offset;
1996 
1997 	ASSERT(xfs_verify_agino_or_null(pag, new_agino));
1998 
1999 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2000 	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
2001 			old_value, new_agino);
2002 
2003 	/*
2004 	 * We should never find the head of the list already set to the value
2005 	 * passed in because either we're adding or removing ourselves from the
2006 	 * head of the list.
2007 	 */
2008 	if (old_value == new_agino) {
2009 		xfs_buf_mark_corrupt(agibp);
2010 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2011 		return -EFSCORRUPTED;
2012 	}
2013 
2014 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2015 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2016 			(sizeof(xfs_agino_t) * bucket_index);
2017 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2018 	return 0;
2019 }
2020 
2021 /*
2022  * Load the inode @next_agino into the cache and set its prev_unlinked pointer
2023  * to @prev_agino.  Caller must hold the AGI to synchronize with other changes
2024  * to the unlinked list.
2025  */
2026 STATIC int
2027 xfs_iunlink_reload_next(
2028 	struct xfs_trans	*tp,
2029 	struct xfs_buf		*agibp,
2030 	xfs_agino_t		prev_agino,
2031 	xfs_agino_t		next_agino)
2032 {
2033 	struct xfs_perag	*pag = agibp->b_pag;
2034 	struct xfs_mount	*mp = pag->pag_mount;
2035 	struct xfs_inode	*next_ip = NULL;
2036 	xfs_ino_t		ino;
2037 	int			error;
2038 
2039 	ASSERT(next_agino != NULLAGINO);
2040 
2041 #ifdef DEBUG
2042 	rcu_read_lock();
2043 	next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
2044 	ASSERT(next_ip == NULL);
2045 	rcu_read_unlock();
2046 #endif
2047 
2048 	xfs_info_ratelimited(mp,
2049  "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.",
2050 			next_agino, pag->pag_agno);
2051 
2052 	/*
2053 	 * Use an untrusted lookup just to be cautious in case the AGI has been
2054 	 * corrupted and now points at a free inode.  That shouldn't happen,
2055 	 * but we'd rather shut down now since we're already running in a weird
2056 	 * situation.
2057 	 */
2058 	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino);
2059 	error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip);
2060 	if (error) {
2061 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2062 		return error;
2063 	}
2064 
2065 	/* If this is not an unlinked inode, something is very wrong. */
2066 	if (VFS_I(next_ip)->i_nlink != 0) {
2067 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2068 		error = -EFSCORRUPTED;
2069 		goto rele;
2070 	}
2071 
2072 	next_ip->i_prev_unlinked = prev_agino;
2073 	trace_xfs_iunlink_reload_next(next_ip);
2074 rele:
2075 	ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
2076 	if (xfs_is_quotacheck_running(mp) && next_ip)
2077 		xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
2078 	xfs_irele(next_ip);
2079 	return error;
2080 }
2081 
2082 static int
2083 xfs_iunlink_insert_inode(
2084 	struct xfs_trans	*tp,
2085 	struct xfs_perag	*pag,
2086 	struct xfs_buf		*agibp,
2087 	struct xfs_inode	*ip)
2088 {
2089 	struct xfs_mount	*mp = tp->t_mountp;
2090 	struct xfs_agi		*agi = agibp->b_addr;
2091 	xfs_agino_t		next_agino;
2092 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2093 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2094 	int			error;
2095 
2096 	/*
2097 	 * Get the index into the agi hash table for the list this inode will
2098 	 * go on.  Make sure the pointer isn't garbage and that this inode
2099 	 * isn't already on the list.
2100 	 */
2101 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2102 	if (next_agino == agino ||
2103 	    !xfs_verify_agino_or_null(pag, next_agino)) {
2104 		xfs_buf_mark_corrupt(agibp);
2105 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2106 		return -EFSCORRUPTED;
2107 	}
2108 
2109 	/*
2110 	 * Update the prev pointer in the next inode to point back to this
2111 	 * inode.
2112 	 */
2113 	error = xfs_iunlink_update_backref(pag, agino, next_agino);
2114 	if (error == -ENOLINK)
2115 		error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino);
2116 	if (error)
2117 		return error;
2118 
2119 	if (next_agino != NULLAGINO) {
2120 		/*
2121 		 * There is already another inode in the bucket, so point this
2122 		 * inode to the current head of the list.
2123 		 */
2124 		error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
2125 		if (error)
2126 			return error;
2127 		ip->i_next_unlinked = next_agino;
2128 	}
2129 
2130 	/* Point the head of the list to point to this inode. */
2131 	ip->i_prev_unlinked = NULLAGINO;
2132 	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2133 }
2134 
2135 /*
2136  * This is called when the inode's link count has gone to 0 or we are creating
2137  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2138  *
2139  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2140  * list when the inode is freed.
2141  */
2142 STATIC int
2143 xfs_iunlink(
2144 	struct xfs_trans	*tp,
2145 	struct xfs_inode	*ip)
2146 {
2147 	struct xfs_mount	*mp = tp->t_mountp;
2148 	struct xfs_perag	*pag;
2149 	struct xfs_buf		*agibp;
2150 	int			error;
2151 
2152 	ASSERT(VFS_I(ip)->i_nlink == 0);
2153 	ASSERT(VFS_I(ip)->i_mode != 0);
2154 	trace_xfs_iunlink(ip);
2155 
2156 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2157 
2158 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2159 	error = xfs_read_agi(pag, tp, &agibp);
2160 	if (error)
2161 		goto out;
2162 
2163 	error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
2164 out:
2165 	xfs_perag_put(pag);
2166 	return error;
2167 }
2168 
2169 static int
2170 xfs_iunlink_remove_inode(
2171 	struct xfs_trans	*tp,
2172 	struct xfs_perag	*pag,
2173 	struct xfs_buf		*agibp,
2174 	struct xfs_inode	*ip)
2175 {
2176 	struct xfs_mount	*mp = tp->t_mountp;
2177 	struct xfs_agi		*agi = agibp->b_addr;
2178 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2179 	xfs_agino_t		head_agino;
2180 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2181 	int			error;
2182 
2183 	trace_xfs_iunlink_remove(ip);
2184 
2185 	/*
2186 	 * Get the index into the agi hash table for the list this inode will
2187 	 * go on.  Make sure the head pointer isn't garbage.
2188 	 */
2189 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2190 	if (!xfs_verify_agino(pag, head_agino)) {
2191 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2192 				agi, sizeof(*agi));
2193 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2194 		return -EFSCORRUPTED;
2195 	}
2196 
2197 	/*
2198 	 * Set our inode's next_unlinked pointer to NULL and then return
2199 	 * the old pointer value so that we can update whatever was previous
2200 	 * to us in the list to point to whatever was next in the list.
2201 	 */
2202 	error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2203 	if (error)
2204 		return error;
2205 
2206 	/*
2207 	 * Update the prev pointer in the next inode to point back to previous
2208 	 * inode in the chain.
2209 	 */
2210 	error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2211 			ip->i_next_unlinked);
2212 	if (error == -ENOLINK)
2213 		error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked,
2214 				ip->i_next_unlinked);
2215 	if (error)
2216 		return error;
2217 
2218 	if (head_agino != agino) {
2219 		struct xfs_inode	*prev_ip;
2220 
2221 		prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2222 		if (!prev_ip) {
2223 			xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
2224 			return -EFSCORRUPTED;
2225 		}
2226 
2227 		error = xfs_iunlink_log_inode(tp, prev_ip, pag,
2228 				ip->i_next_unlinked);
2229 		prev_ip->i_next_unlinked = ip->i_next_unlinked;
2230 	} else {
2231 		/* Point the head of the list to the next unlinked inode. */
2232 		error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2233 				ip->i_next_unlinked);
2234 	}
2235 
2236 	ip->i_next_unlinked = NULLAGINO;
2237 	ip->i_prev_unlinked = 0;
2238 	return error;
2239 }
2240 
2241 /*
2242  * Pull the on-disk inode from the AGI unlinked list.
2243  */
2244 STATIC int
2245 xfs_iunlink_remove(
2246 	struct xfs_trans	*tp,
2247 	struct xfs_perag	*pag,
2248 	struct xfs_inode	*ip)
2249 {
2250 	struct xfs_buf		*agibp;
2251 	int			error;
2252 
2253 	trace_xfs_iunlink_remove(ip);
2254 
2255 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2256 	error = xfs_read_agi(pag, tp, &agibp);
2257 	if (error)
2258 		return error;
2259 
2260 	return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
2261 }
2262 
2263 /*
2264  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2265  * mark it stale. We should only find clean inodes in this lookup that aren't
2266  * already stale.
2267  */
2268 static void
2269 xfs_ifree_mark_inode_stale(
2270 	struct xfs_perag	*pag,
2271 	struct xfs_inode	*free_ip,
2272 	xfs_ino_t		inum)
2273 {
2274 	struct xfs_mount	*mp = pag->pag_mount;
2275 	struct xfs_inode_log_item *iip;
2276 	struct xfs_inode	*ip;
2277 
2278 retry:
2279 	rcu_read_lock();
2280 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2281 
2282 	/* Inode not in memory, nothing to do */
2283 	if (!ip) {
2284 		rcu_read_unlock();
2285 		return;
2286 	}
2287 
2288 	/*
2289 	 * because this is an RCU protected lookup, we could find a recently
2290 	 * freed or even reallocated inode during the lookup. We need to check
2291 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2292 	 * valid, the wrong inode or stale.
2293 	 */
2294 	spin_lock(&ip->i_flags_lock);
2295 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2296 		goto out_iflags_unlock;
2297 
2298 	/*
2299 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2300 	 * other inodes that we did not find in the list attached to the buffer
2301 	 * and are not already marked stale. If we can't lock it, back off and
2302 	 * retry.
2303 	 */
2304 	if (ip != free_ip) {
2305 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2306 			spin_unlock(&ip->i_flags_lock);
2307 			rcu_read_unlock();
2308 			delay(1);
2309 			goto retry;
2310 		}
2311 	}
2312 	ip->i_flags |= XFS_ISTALE;
2313 
2314 	/*
2315 	 * If the inode is flushing, it is already attached to the buffer.  All
2316 	 * we needed to do here is mark the inode stale so buffer IO completion
2317 	 * will remove it from the AIL.
2318 	 */
2319 	iip = ip->i_itemp;
2320 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2321 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2322 		ASSERT(iip->ili_last_fields);
2323 		goto out_iunlock;
2324 	}
2325 
2326 	/*
2327 	 * Inodes not attached to the buffer can be released immediately.
2328 	 * Everything else has to go through xfs_iflush_abort() on journal
2329 	 * commit as the flock synchronises removal of the inode from the
2330 	 * cluster buffer against inode reclaim.
2331 	 */
2332 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2333 		goto out_iunlock;
2334 
2335 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2336 	spin_unlock(&ip->i_flags_lock);
2337 	rcu_read_unlock();
2338 
2339 	/* we have a dirty inode in memory that has not yet been flushed. */
2340 	spin_lock(&iip->ili_lock);
2341 	iip->ili_last_fields = iip->ili_fields;
2342 	iip->ili_fields = 0;
2343 	iip->ili_fsync_fields = 0;
2344 	spin_unlock(&iip->ili_lock);
2345 	ASSERT(iip->ili_last_fields);
2346 
2347 	if (ip != free_ip)
2348 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2349 	return;
2350 
2351 out_iunlock:
2352 	if (ip != free_ip)
2353 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2354 out_iflags_unlock:
2355 	spin_unlock(&ip->i_flags_lock);
2356 	rcu_read_unlock();
2357 }
2358 
2359 /*
2360  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2361  * inodes that are in memory - they all must be marked stale and attached to
2362  * the cluster buffer.
2363  */
2364 static int
2365 xfs_ifree_cluster(
2366 	struct xfs_trans	*tp,
2367 	struct xfs_perag	*pag,
2368 	struct xfs_inode	*free_ip,
2369 	struct xfs_icluster	*xic)
2370 {
2371 	struct xfs_mount	*mp = free_ip->i_mount;
2372 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2373 	struct xfs_buf		*bp;
2374 	xfs_daddr_t		blkno;
2375 	xfs_ino_t		inum = xic->first_ino;
2376 	int			nbufs;
2377 	int			i, j;
2378 	int			ioffset;
2379 	int			error;
2380 
2381 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2382 
2383 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2384 		/*
2385 		 * The allocation bitmap tells us which inodes of the chunk were
2386 		 * physically allocated. Skip the cluster if an inode falls into
2387 		 * a sparse region.
2388 		 */
2389 		ioffset = inum - xic->first_ino;
2390 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2391 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2392 			continue;
2393 		}
2394 
2395 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2396 					 XFS_INO_TO_AGBNO(mp, inum));
2397 
2398 		/*
2399 		 * We obtain and lock the backing buffer first in the process
2400 		 * here to ensure dirty inodes attached to the buffer remain in
2401 		 * the flushing state while we mark them stale.
2402 		 *
2403 		 * If we scan the in-memory inodes first, then buffer IO can
2404 		 * complete before we get a lock on it, and hence we may fail
2405 		 * to mark all the active inodes on the buffer stale.
2406 		 */
2407 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2408 				mp->m_bsize * igeo->blocks_per_cluster,
2409 				XBF_UNMAPPED, &bp);
2410 		if (error)
2411 			return error;
2412 
2413 		/*
2414 		 * This buffer may not have been correctly initialised as we
2415 		 * didn't read it from disk. That's not important because we are
2416 		 * only using to mark the buffer as stale in the log, and to
2417 		 * attach stale cached inodes on it. That means it will never be
2418 		 * dispatched for IO. If it is, we want to know about it, and we
2419 		 * want it to fail. We can acheive this by adding a write
2420 		 * verifier to the buffer.
2421 		 */
2422 		bp->b_ops = &xfs_inode_buf_ops;
2423 
2424 		/*
2425 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2426 		 * too. This requires lookups, and will skip inodes that we've
2427 		 * already marked XFS_ISTALE.
2428 		 */
2429 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2430 			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2431 
2432 		xfs_trans_stale_inode_buf(tp, bp);
2433 		xfs_trans_binval(tp, bp);
2434 	}
2435 	return 0;
2436 }
2437 
2438 /*
2439  * This is called to return an inode to the inode free list.  The inode should
2440  * already be truncated to 0 length and have no pages associated with it.  This
2441  * routine also assumes that the inode is already a part of the transaction.
2442  *
2443  * The on-disk copy of the inode will have been added to the list of unlinked
2444  * inodes in the AGI. We need to remove the inode from that list atomically with
2445  * respect to freeing it here.
2446  */
2447 int
2448 xfs_ifree(
2449 	struct xfs_trans	*tp,
2450 	struct xfs_inode	*ip)
2451 {
2452 	struct xfs_mount	*mp = ip->i_mount;
2453 	struct xfs_perag	*pag;
2454 	struct xfs_icluster	xic = { 0 };
2455 	struct xfs_inode_log_item *iip = ip->i_itemp;
2456 	int			error;
2457 
2458 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
2459 	ASSERT(VFS_I(ip)->i_nlink == 0);
2460 	ASSERT(ip->i_df.if_nextents == 0);
2461 	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2462 	ASSERT(ip->i_nblocks == 0);
2463 
2464 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2465 
2466 	/*
2467 	 * Free the inode first so that we guarantee that the AGI lock is going
2468 	 * to be taken before we remove the inode from the unlinked list. This
2469 	 * makes the AGI lock -> unlinked list modification order the same as
2470 	 * used in O_TMPFILE creation.
2471 	 */
2472 	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2473 	if (error)
2474 		goto out;
2475 
2476 	error = xfs_iunlink_remove(tp, pag, ip);
2477 	if (error)
2478 		goto out;
2479 
2480 	/*
2481 	 * Free any local-format data sitting around before we reset the
2482 	 * data fork to extents format.  Note that the attr fork data has
2483 	 * already been freed by xfs_attr_inactive.
2484 	 */
2485 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2486 		kfree(ip->i_df.if_data);
2487 		ip->i_df.if_data = NULL;
2488 		ip->i_df.if_bytes = 0;
2489 	}
2490 
2491 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2492 	ip->i_diflags = 0;
2493 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2494 	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2495 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2496 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2497 		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2498 
2499 	/* Don't attempt to replay owner changes for a deleted inode */
2500 	spin_lock(&iip->ili_lock);
2501 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2502 	spin_unlock(&iip->ili_lock);
2503 
2504 	/*
2505 	 * Bump the generation count so no one will be confused
2506 	 * by reincarnations of this inode.
2507 	 */
2508 	VFS_I(ip)->i_generation++;
2509 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2510 
2511 	if (xic.deleted)
2512 		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2513 out:
2514 	xfs_perag_put(pag);
2515 	return error;
2516 }
2517 
2518 /*
2519  * This is called to unpin an inode.  The caller must have the inode locked
2520  * in at least shared mode so that the buffer cannot be subsequently pinned
2521  * once someone is waiting for it to be unpinned.
2522  */
2523 static void
2524 xfs_iunpin(
2525 	struct xfs_inode	*ip)
2526 {
2527 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
2528 
2529 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2530 
2531 	/* Give the log a push to start the unpinning I/O */
2532 	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2533 
2534 }
2535 
2536 static void
2537 __xfs_iunpin_wait(
2538 	struct xfs_inode	*ip)
2539 {
2540 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2541 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2542 
2543 	xfs_iunpin(ip);
2544 
2545 	do {
2546 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2547 		if (xfs_ipincount(ip))
2548 			io_schedule();
2549 	} while (xfs_ipincount(ip));
2550 	finish_wait(wq, &wait.wq_entry);
2551 }
2552 
2553 void
2554 xfs_iunpin_wait(
2555 	struct xfs_inode	*ip)
2556 {
2557 	if (xfs_ipincount(ip))
2558 		__xfs_iunpin_wait(ip);
2559 }
2560 
2561 /*
2562  * Removing an inode from the namespace involves removing the directory entry
2563  * and dropping the link count on the inode. Removing the directory entry can
2564  * result in locking an AGF (directory blocks were freed) and removing a link
2565  * count can result in placing the inode on an unlinked list which results in
2566  * locking an AGI.
2567  *
2568  * The big problem here is that we have an ordering constraint on AGF and AGI
2569  * locking - inode allocation locks the AGI, then can allocate a new extent for
2570  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2571  * removes the inode from the unlinked list, requiring that we lock the AGI
2572  * first, and then freeing the inode can result in an inode chunk being freed
2573  * and hence freeing disk space requiring that we lock an AGF.
2574  *
2575  * Hence the ordering that is imposed by other parts of the code is AGI before
2576  * AGF. This means we cannot remove the directory entry before we drop the inode
2577  * reference count and put it on the unlinked list as this results in a lock
2578  * order of AGF then AGI, and this can deadlock against inode allocation and
2579  * freeing. Therefore we must drop the link counts before we remove the
2580  * directory entry.
2581  *
2582  * This is still safe from a transactional point of view - it is not until we
2583  * get to xfs_defer_finish() that we have the possibility of multiple
2584  * transactions in this operation. Hence as long as we remove the directory
2585  * entry and drop the link count in the first transaction of the remove
2586  * operation, there are no transactional constraints on the ordering here.
2587  */
2588 int
2589 xfs_remove(
2590 	xfs_inode_t             *dp,
2591 	struct xfs_name		*name,
2592 	xfs_inode_t		*ip)
2593 {
2594 	xfs_mount_t		*mp = dp->i_mount;
2595 	xfs_trans_t             *tp = NULL;
2596 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2597 	int			dontcare;
2598 	int                     error = 0;
2599 	uint			resblks;
2600 
2601 	trace_xfs_remove(dp, name);
2602 
2603 	if (xfs_is_shutdown(mp))
2604 		return -EIO;
2605 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
2606 		return -EIO;
2607 
2608 	error = xfs_qm_dqattach(dp);
2609 	if (error)
2610 		goto std_return;
2611 
2612 	error = xfs_qm_dqattach(ip);
2613 	if (error)
2614 		goto std_return;
2615 
2616 	/*
2617 	 * We try to get the real space reservation first, allowing for
2618 	 * directory btree deletion(s) implying possible bmap insert(s).  If we
2619 	 * can't get the space reservation then we use 0 instead, and avoid the
2620 	 * bmap btree insert(s) in the directory code by, if the bmap insert
2621 	 * tries to happen, instead trimming the LAST block from the directory.
2622 	 *
2623 	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2624 	 * the directory code can handle a reservationless update and we don't
2625 	 * want to prevent a user from trying to free space by deleting things.
2626 	 */
2627 	resblks = XFS_REMOVE_SPACE_RES(mp);
2628 	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2629 			&tp, &dontcare);
2630 	if (error) {
2631 		ASSERT(error != -ENOSPC);
2632 		goto std_return;
2633 	}
2634 
2635 	/*
2636 	 * If we're removing a directory perform some additional validation.
2637 	 */
2638 	if (is_dir) {
2639 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2640 		if (VFS_I(ip)->i_nlink != 2) {
2641 			error = -ENOTEMPTY;
2642 			goto out_trans_cancel;
2643 		}
2644 		if (!xfs_dir_isempty(ip)) {
2645 			error = -ENOTEMPTY;
2646 			goto out_trans_cancel;
2647 		}
2648 
2649 		/* Drop the link from ip's "..".  */
2650 		error = xfs_droplink(tp, dp);
2651 		if (error)
2652 			goto out_trans_cancel;
2653 
2654 		/* Drop the "." link from ip to self.  */
2655 		error = xfs_droplink(tp, ip);
2656 		if (error)
2657 			goto out_trans_cancel;
2658 
2659 		/*
2660 		 * Point the unlinked child directory's ".." entry to the root
2661 		 * directory to eliminate back-references to inodes that may
2662 		 * get freed before the child directory is closed.  If the fs
2663 		 * gets shrunk, this can lead to dirent inode validation errors.
2664 		 */
2665 		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2666 			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2667 					tp->t_mountp->m_sb.sb_rootino, 0);
2668 			if (error)
2669 				goto out_trans_cancel;
2670 		}
2671 	} else {
2672 		/*
2673 		 * When removing a non-directory we need to log the parent
2674 		 * inode here.  For a directory this is done implicitly
2675 		 * by the xfs_droplink call for the ".." entry.
2676 		 */
2677 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2678 	}
2679 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2680 
2681 	/* Drop the link from dp to ip. */
2682 	error = xfs_droplink(tp, ip);
2683 	if (error)
2684 		goto out_trans_cancel;
2685 
2686 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2687 	if (error) {
2688 		ASSERT(error != -ENOENT);
2689 		goto out_trans_cancel;
2690 	}
2691 
2692 	/*
2693 	 * Drop the link from dp to ip, and if ip was a directory, remove the
2694 	 * '.' and '..' references since we freed the directory.
2695 	 */
2696 	xfs_dir_update_hook(dp, ip, -1, name);
2697 
2698 	/*
2699 	 * If this is a synchronous mount, make sure that the
2700 	 * remove transaction goes to disk before returning to
2701 	 * the user.
2702 	 */
2703 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2704 		xfs_trans_set_sync(tp);
2705 
2706 	error = xfs_trans_commit(tp);
2707 	if (error)
2708 		goto std_return;
2709 
2710 	if (is_dir && xfs_inode_is_filestream(ip))
2711 		xfs_filestream_deassociate(ip);
2712 
2713 	return 0;
2714 
2715  out_trans_cancel:
2716 	xfs_trans_cancel(tp);
2717  std_return:
2718 	return error;
2719 }
2720 
2721 /*
2722  * Enter all inodes for a rename transaction into a sorted array.
2723  */
2724 #define __XFS_SORT_INODES	5
2725 STATIC void
2726 xfs_sort_for_rename(
2727 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2728 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2729 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2730 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2731 	struct xfs_inode	*wip,	/* in: whiteout inode */
2732 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2733 	int			*num_inodes)  /* in/out: inodes in array */
2734 {
2735 	int			i, j;
2736 
2737 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2738 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2739 
2740 	/*
2741 	 * i_tab contains a list of pointers to inodes.  We initialize
2742 	 * the table here & we'll sort it.  We will then use it to
2743 	 * order the acquisition of the inode locks.
2744 	 *
2745 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2746 	 */
2747 	i = 0;
2748 	i_tab[i++] = dp1;
2749 	i_tab[i++] = dp2;
2750 	i_tab[i++] = ip1;
2751 	if (ip2)
2752 		i_tab[i++] = ip2;
2753 	if (wip)
2754 		i_tab[i++] = wip;
2755 	*num_inodes = i;
2756 
2757 	/*
2758 	 * Sort the elements via bubble sort.  (Remember, there are at
2759 	 * most 5 elements to sort, so this is adequate.)
2760 	 */
2761 	for (i = 0; i < *num_inodes; i++) {
2762 		for (j = 1; j < *num_inodes; j++) {
2763 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2764 				struct xfs_inode *temp = i_tab[j];
2765 				i_tab[j] = i_tab[j-1];
2766 				i_tab[j-1] = temp;
2767 			}
2768 		}
2769 	}
2770 }
2771 
2772 static int
2773 xfs_finish_rename(
2774 	struct xfs_trans	*tp)
2775 {
2776 	/*
2777 	 * If this is a synchronous mount, make sure that the rename transaction
2778 	 * goes to disk before returning to the user.
2779 	 */
2780 	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2781 		xfs_trans_set_sync(tp);
2782 
2783 	return xfs_trans_commit(tp);
2784 }
2785 
2786 /*
2787  * xfs_cross_rename()
2788  *
2789  * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2790  */
2791 STATIC int
2792 xfs_cross_rename(
2793 	struct xfs_trans	*tp,
2794 	struct xfs_inode	*dp1,
2795 	struct xfs_name		*name1,
2796 	struct xfs_inode	*ip1,
2797 	struct xfs_inode	*dp2,
2798 	struct xfs_name		*name2,
2799 	struct xfs_inode	*ip2,
2800 	int			spaceres)
2801 {
2802 	int		error = 0;
2803 	int		ip1_flags = 0;
2804 	int		ip2_flags = 0;
2805 	int		dp2_flags = 0;
2806 
2807 	/* Swap inode number for dirent in first parent */
2808 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2809 	if (error)
2810 		goto out_trans_abort;
2811 
2812 	/* Swap inode number for dirent in second parent */
2813 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2814 	if (error)
2815 		goto out_trans_abort;
2816 
2817 	/*
2818 	 * If we're renaming one or more directories across different parents,
2819 	 * update the respective ".." entries (and link counts) to match the new
2820 	 * parents.
2821 	 */
2822 	if (dp1 != dp2) {
2823 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2824 
2825 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2826 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2827 						dp1->i_ino, spaceres);
2828 			if (error)
2829 				goto out_trans_abort;
2830 
2831 			/* transfer ip2 ".." reference to dp1 */
2832 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2833 				error = xfs_droplink(tp, dp2);
2834 				if (error)
2835 					goto out_trans_abort;
2836 				xfs_bumplink(tp, dp1);
2837 			}
2838 
2839 			/*
2840 			 * Although ip1 isn't changed here, userspace needs
2841 			 * to be warned about the change, so that applications
2842 			 * relying on it (like backup ones), will properly
2843 			 * notify the change
2844 			 */
2845 			ip1_flags |= XFS_ICHGTIME_CHG;
2846 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2847 		}
2848 
2849 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2850 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2851 						dp2->i_ino, spaceres);
2852 			if (error)
2853 				goto out_trans_abort;
2854 
2855 			/* transfer ip1 ".." reference to dp2 */
2856 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2857 				error = xfs_droplink(tp, dp1);
2858 				if (error)
2859 					goto out_trans_abort;
2860 				xfs_bumplink(tp, dp2);
2861 			}
2862 
2863 			/*
2864 			 * Although ip2 isn't changed here, userspace needs
2865 			 * to be warned about the change, so that applications
2866 			 * relying on it (like backup ones), will properly
2867 			 * notify the change
2868 			 */
2869 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2870 			ip2_flags |= XFS_ICHGTIME_CHG;
2871 		}
2872 	}
2873 
2874 	if (ip1_flags) {
2875 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2876 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2877 	}
2878 	if (ip2_flags) {
2879 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2880 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2881 	}
2882 	if (dp2_flags) {
2883 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2884 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2885 	}
2886 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2887 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2888 
2889 	/*
2890 	 * Inform our hook clients that we've finished an exchange operation as
2891 	 * follows: removed the source and target files from their directories;
2892 	 * added the target to the source directory; and added the source to
2893 	 * the target directory.  All inodes are locked, so it's ok to model a
2894 	 * rename this way so long as we say we deleted entries before we add
2895 	 * new ones.
2896 	 */
2897 	xfs_dir_update_hook(dp1, ip1, -1, name1);
2898 	xfs_dir_update_hook(dp2, ip2, -1, name2);
2899 	xfs_dir_update_hook(dp1, ip2, 1, name1);
2900 	xfs_dir_update_hook(dp2, ip1, 1, name2);
2901 
2902 	return xfs_finish_rename(tp);
2903 
2904 out_trans_abort:
2905 	xfs_trans_cancel(tp);
2906 	return error;
2907 }
2908 
2909 /*
2910  * xfs_rename_alloc_whiteout()
2911  *
2912  * Return a referenced, unlinked, unlocked inode that can be used as a
2913  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2914  * crash between allocating the inode and linking it into the rename transaction
2915  * recovery will free the inode and we won't leak it.
2916  */
2917 static int
2918 xfs_rename_alloc_whiteout(
2919 	struct mnt_idmap	*idmap,
2920 	struct xfs_name		*src_name,
2921 	struct xfs_inode	*dp,
2922 	struct xfs_inode	**wip)
2923 {
2924 	struct xfs_inode	*tmpfile;
2925 	struct qstr		name;
2926 	int			error;
2927 
2928 	error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE,
2929 				   &tmpfile);
2930 	if (error)
2931 		return error;
2932 
2933 	name.name = src_name->name;
2934 	name.len = src_name->len;
2935 	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2936 	if (error) {
2937 		xfs_finish_inode_setup(tmpfile);
2938 		xfs_irele(tmpfile);
2939 		return error;
2940 	}
2941 
2942 	/*
2943 	 * Prepare the tmpfile inode as if it were created through the VFS.
2944 	 * Complete the inode setup and flag it as linkable.  nlink is already
2945 	 * zero, so we can skip the drop_nlink.
2946 	 */
2947 	xfs_setup_iops(tmpfile);
2948 	xfs_finish_inode_setup(tmpfile);
2949 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2950 
2951 	*wip = tmpfile;
2952 	return 0;
2953 }
2954 
2955 /*
2956  * xfs_rename
2957  */
2958 int
2959 xfs_rename(
2960 	struct mnt_idmap	*idmap,
2961 	struct xfs_inode	*src_dp,
2962 	struct xfs_name		*src_name,
2963 	struct xfs_inode	*src_ip,
2964 	struct xfs_inode	*target_dp,
2965 	struct xfs_name		*target_name,
2966 	struct xfs_inode	*target_ip,
2967 	unsigned int		flags)
2968 {
2969 	struct xfs_mount	*mp = src_dp->i_mount;
2970 	struct xfs_trans	*tp;
2971 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2972 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2973 	int			i;
2974 	int			num_inodes = __XFS_SORT_INODES;
2975 	bool			new_parent = (src_dp != target_dp);
2976 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2977 	int			spaceres;
2978 	bool			retried = false;
2979 	int			error, nospace_error = 0;
2980 
2981 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2982 
2983 	if ((flags & RENAME_EXCHANGE) && !target_ip)
2984 		return -EINVAL;
2985 
2986 	/*
2987 	 * If we are doing a whiteout operation, allocate the whiteout inode
2988 	 * we will be placing at the target and ensure the type is set
2989 	 * appropriately.
2990 	 */
2991 	if (flags & RENAME_WHITEOUT) {
2992 		error = xfs_rename_alloc_whiteout(idmap, src_name,
2993 						  target_dp, &wip);
2994 		if (error)
2995 			return error;
2996 
2997 		/* setup target dirent info as whiteout */
2998 		src_name->type = XFS_DIR3_FT_CHRDEV;
2999 	}
3000 
3001 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3002 				inodes, &num_inodes);
3003 
3004 retry:
3005 	nospace_error = 0;
3006 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3007 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3008 	if (error == -ENOSPC) {
3009 		nospace_error = error;
3010 		spaceres = 0;
3011 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3012 				&tp);
3013 	}
3014 	if (error)
3015 		goto out_release_wip;
3016 
3017 	/*
3018 	 * Attach the dquots to the inodes
3019 	 */
3020 	error = xfs_qm_vop_rename_dqattach(inodes);
3021 	if (error)
3022 		goto out_trans_cancel;
3023 
3024 	/*
3025 	 * Lock all the participating inodes. Depending upon whether
3026 	 * the target_name exists in the target directory, and
3027 	 * whether the target directory is the same as the source
3028 	 * directory, we can lock from 2 to 5 inodes.
3029 	 */
3030 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3031 
3032 	/*
3033 	 * Join all the inodes to the transaction. From this point on,
3034 	 * we can rely on either trans_commit or trans_cancel to unlock
3035 	 * them.
3036 	 */
3037 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3038 	if (new_parent)
3039 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3040 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3041 	if (target_ip)
3042 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3043 	if (wip)
3044 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3045 
3046 	/*
3047 	 * If we are using project inheritance, we only allow renames
3048 	 * into our tree when the project IDs are the same; else the
3049 	 * tree quota mechanism would be circumvented.
3050 	 */
3051 	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3052 		     target_dp->i_projid != src_ip->i_projid)) {
3053 		error = -EXDEV;
3054 		goto out_trans_cancel;
3055 	}
3056 
3057 	/* RENAME_EXCHANGE is unique from here on. */
3058 	if (flags & RENAME_EXCHANGE)
3059 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3060 					target_dp, target_name, target_ip,
3061 					spaceres);
3062 
3063 	/*
3064 	 * Try to reserve quota to handle an expansion of the target directory.
3065 	 * We'll allow the rename to continue in reservationless mode if we hit
3066 	 * a space usage constraint.  If we trigger reservationless mode, save
3067 	 * the errno if there isn't any free space in the target directory.
3068 	 */
3069 	if (spaceres != 0) {
3070 		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
3071 				0, false);
3072 		if (error == -EDQUOT || error == -ENOSPC) {
3073 			if (!retried) {
3074 				xfs_trans_cancel(tp);
3075 				xfs_blockgc_free_quota(target_dp, 0);
3076 				retried = true;
3077 				goto retry;
3078 			}
3079 
3080 			nospace_error = error;
3081 			spaceres = 0;
3082 			error = 0;
3083 		}
3084 		if (error)
3085 			goto out_trans_cancel;
3086 	}
3087 
3088 	/*
3089 	 * Check for expected errors before we dirty the transaction
3090 	 * so we can return an error without a transaction abort.
3091 	 */
3092 	if (target_ip == NULL) {
3093 		/*
3094 		 * If there's no space reservation, check the entry will
3095 		 * fit before actually inserting it.
3096 		 */
3097 		if (!spaceres) {
3098 			error = xfs_dir_canenter(tp, target_dp, target_name);
3099 			if (error)
3100 				goto out_trans_cancel;
3101 		}
3102 	} else {
3103 		/*
3104 		 * If target exists and it's a directory, check that whether
3105 		 * it can be destroyed.
3106 		 */
3107 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3108 		    (!xfs_dir_isempty(target_ip) ||
3109 		     (VFS_I(target_ip)->i_nlink > 2))) {
3110 			error = -EEXIST;
3111 			goto out_trans_cancel;
3112 		}
3113 	}
3114 
3115 	/*
3116 	 * Lock the AGI buffers we need to handle bumping the nlink of the
3117 	 * whiteout inode off the unlinked list and to handle dropping the
3118 	 * nlink of the target inode.  Per locking order rules, do this in
3119 	 * increasing AG order and before directory block allocation tries to
3120 	 * grab AGFs because we grab AGIs before AGFs.
3121 	 *
3122 	 * The (vfs) caller must ensure that if src is a directory then
3123 	 * target_ip is either null or an empty directory.
3124 	 */
3125 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3126 		if (inodes[i] == wip ||
3127 		    (inodes[i] == target_ip &&
3128 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3129 			struct xfs_perag	*pag;
3130 			struct xfs_buf		*bp;
3131 
3132 			pag = xfs_perag_get(mp,
3133 					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
3134 			error = xfs_read_agi(pag, tp, &bp);
3135 			xfs_perag_put(pag);
3136 			if (error)
3137 				goto out_trans_cancel;
3138 		}
3139 	}
3140 
3141 	/*
3142 	 * Directory entry creation below may acquire the AGF. Remove
3143 	 * the whiteout from the unlinked list first to preserve correct
3144 	 * AGI/AGF locking order. This dirties the transaction so failures
3145 	 * after this point will abort and log recovery will clean up the
3146 	 * mess.
3147 	 *
3148 	 * For whiteouts, we need to bump the link count on the whiteout
3149 	 * inode. After this point, we have a real link, clear the tmpfile
3150 	 * state flag from the inode so it doesn't accidentally get misused
3151 	 * in future.
3152 	 */
3153 	if (wip) {
3154 		struct xfs_perag	*pag;
3155 
3156 		ASSERT(VFS_I(wip)->i_nlink == 0);
3157 
3158 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3159 		error = xfs_iunlink_remove(tp, pag, wip);
3160 		xfs_perag_put(pag);
3161 		if (error)
3162 			goto out_trans_cancel;
3163 
3164 		xfs_bumplink(tp, wip);
3165 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3166 	}
3167 
3168 	/*
3169 	 * Set up the target.
3170 	 */
3171 	if (target_ip == NULL) {
3172 		/*
3173 		 * If target does not exist and the rename crosses
3174 		 * directories, adjust the target directory link count
3175 		 * to account for the ".." reference from the new entry.
3176 		 */
3177 		error = xfs_dir_createname(tp, target_dp, target_name,
3178 					   src_ip->i_ino, spaceres);
3179 		if (error)
3180 			goto out_trans_cancel;
3181 
3182 		xfs_trans_ichgtime(tp, target_dp,
3183 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3184 
3185 		if (new_parent && src_is_directory) {
3186 			xfs_bumplink(tp, target_dp);
3187 		}
3188 	} else { /* target_ip != NULL */
3189 		/*
3190 		 * Link the source inode under the target name.
3191 		 * If the source inode is a directory and we are moving
3192 		 * it across directories, its ".." entry will be
3193 		 * inconsistent until we replace that down below.
3194 		 *
3195 		 * In case there is already an entry with the same
3196 		 * name at the destination directory, remove it first.
3197 		 */
3198 		error = xfs_dir_replace(tp, target_dp, target_name,
3199 					src_ip->i_ino, spaceres);
3200 		if (error)
3201 			goto out_trans_cancel;
3202 
3203 		xfs_trans_ichgtime(tp, target_dp,
3204 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3205 
3206 		/*
3207 		 * Decrement the link count on the target since the target
3208 		 * dir no longer points to it.
3209 		 */
3210 		error = xfs_droplink(tp, target_ip);
3211 		if (error)
3212 			goto out_trans_cancel;
3213 
3214 		if (src_is_directory) {
3215 			/*
3216 			 * Drop the link from the old "." entry.
3217 			 */
3218 			error = xfs_droplink(tp, target_ip);
3219 			if (error)
3220 				goto out_trans_cancel;
3221 		}
3222 	} /* target_ip != NULL */
3223 
3224 	/*
3225 	 * Remove the source.
3226 	 */
3227 	if (new_parent && src_is_directory) {
3228 		/*
3229 		 * Rewrite the ".." entry to point to the new
3230 		 * directory.
3231 		 */
3232 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3233 					target_dp->i_ino, spaceres);
3234 		ASSERT(error != -EEXIST);
3235 		if (error)
3236 			goto out_trans_cancel;
3237 	}
3238 
3239 	/*
3240 	 * We always want to hit the ctime on the source inode.
3241 	 *
3242 	 * This isn't strictly required by the standards since the source
3243 	 * inode isn't really being changed, but old unix file systems did
3244 	 * it and some incremental backup programs won't work without it.
3245 	 */
3246 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3247 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3248 
3249 	/*
3250 	 * Adjust the link count on src_dp.  This is necessary when
3251 	 * renaming a directory, either within one parent when
3252 	 * the target existed, or across two parent directories.
3253 	 */
3254 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3255 
3256 		/*
3257 		 * Decrement link count on src_directory since the
3258 		 * entry that's moved no longer points to it.
3259 		 */
3260 		error = xfs_droplink(tp, src_dp);
3261 		if (error)
3262 			goto out_trans_cancel;
3263 	}
3264 
3265 	/*
3266 	 * For whiteouts, we only need to update the source dirent with the
3267 	 * inode number of the whiteout inode rather than removing it
3268 	 * altogether.
3269 	 */
3270 	if (wip)
3271 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3272 					spaceres);
3273 	else
3274 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3275 					   spaceres);
3276 
3277 	if (error)
3278 		goto out_trans_cancel;
3279 
3280 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3281 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3282 	if (new_parent)
3283 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3284 
3285 	/*
3286 	 * Inform our hook clients that we've finished a rename operation as
3287 	 * follows: removed the source and target files from their directories;
3288 	 * that we've added the source to the target directory; and finally
3289 	 * that we've added the whiteout, if there was one.  All inodes are
3290 	 * locked, so it's ok to model a rename this way so long as we say we
3291 	 * deleted entries before we add new ones.
3292 	 */
3293 	if (target_ip)
3294 		xfs_dir_update_hook(target_dp, target_ip, -1, target_name);
3295 	xfs_dir_update_hook(src_dp, src_ip, -1, src_name);
3296 	xfs_dir_update_hook(target_dp, src_ip, 1, target_name);
3297 	if (wip)
3298 		xfs_dir_update_hook(src_dp, wip, 1, src_name);
3299 
3300 	error = xfs_finish_rename(tp);
3301 	if (wip)
3302 		xfs_irele(wip);
3303 	return error;
3304 
3305 out_trans_cancel:
3306 	xfs_trans_cancel(tp);
3307 out_release_wip:
3308 	if (wip)
3309 		xfs_irele(wip);
3310 	if (error == -ENOSPC && nospace_error)
3311 		error = nospace_error;
3312 	return error;
3313 }
3314 
3315 static int
3316 xfs_iflush(
3317 	struct xfs_inode	*ip,
3318 	struct xfs_buf		*bp)
3319 {
3320 	struct xfs_inode_log_item *iip = ip->i_itemp;
3321 	struct xfs_dinode	*dip;
3322 	struct xfs_mount	*mp = ip->i_mount;
3323 	int			error;
3324 
3325 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
3326 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3327 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3328 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3329 	ASSERT(iip->ili_item.li_buf == bp);
3330 
3331 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3332 
3333 	/*
3334 	 * We don't flush the inode if any of the following checks fail, but we
3335 	 * do still update the log item and attach to the backing buffer as if
3336 	 * the flush happened. This is a formality to facilitate predictable
3337 	 * error handling as the caller will shutdown and fail the buffer.
3338 	 */
3339 	error = -EFSCORRUPTED;
3340 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3341 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3342 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3343 			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
3344 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3345 		goto flush_out;
3346 	}
3347 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3348 		if (XFS_TEST_ERROR(
3349 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3350 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3351 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3352 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3353 				"%s: Bad regular inode %llu, ptr "PTR_FMT,
3354 				__func__, ip->i_ino, ip);
3355 			goto flush_out;
3356 		}
3357 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3358 		if (XFS_TEST_ERROR(
3359 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3360 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3361 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3362 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3363 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3364 				"%s: Bad directory inode %llu, ptr "PTR_FMT,
3365 				__func__, ip->i_ino, ip);
3366 			goto flush_out;
3367 		}
3368 	}
3369 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3370 				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3371 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3372 			"%s: detected corrupt incore inode %llu, "
3373 			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3374 			__func__, ip->i_ino,
3375 			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3376 			ip->i_nblocks, ip);
3377 		goto flush_out;
3378 	}
3379 	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3380 				mp, XFS_ERRTAG_IFLUSH_6)) {
3381 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3382 			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
3383 			__func__, ip->i_ino, ip->i_forkoff, ip);
3384 		goto flush_out;
3385 	}
3386 
3387 	/*
3388 	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3389 	 * count for correct sequencing.  We bump the flush iteration count so
3390 	 * we can detect flushes which postdate a log record during recovery.
3391 	 * This is redundant as we now log every change and hence this can't
3392 	 * happen but we need to still do it to ensure backwards compatibility
3393 	 * with old kernels that predate logging all inode changes.
3394 	 */
3395 	if (!xfs_has_v3inodes(mp))
3396 		ip->i_flushiter++;
3397 
3398 	/*
3399 	 * If there are inline format data / attr forks attached to this inode,
3400 	 * make sure they are not corrupt.
3401 	 */
3402 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3403 	    xfs_ifork_verify_local_data(ip))
3404 		goto flush_out;
3405 	if (xfs_inode_has_attr_fork(ip) &&
3406 	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3407 	    xfs_ifork_verify_local_attr(ip))
3408 		goto flush_out;
3409 
3410 	/*
3411 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3412 	 * copy out the core of the inode, because if the inode is dirty at all
3413 	 * the core must be.
3414 	 */
3415 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3416 
3417 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3418 	if (!xfs_has_v3inodes(mp)) {
3419 		if (ip->i_flushiter == DI_MAX_FLUSH)
3420 			ip->i_flushiter = 0;
3421 	}
3422 
3423 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3424 	if (xfs_inode_has_attr_fork(ip))
3425 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3426 
3427 	/*
3428 	 * We've recorded everything logged in the inode, so we'd like to clear
3429 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3430 	 * However, we can't stop logging all this information until the data
3431 	 * we've copied into the disk buffer is written to disk.  If we did we
3432 	 * might overwrite the copy of the inode in the log with all the data
3433 	 * after re-logging only part of it, and in the face of a crash we
3434 	 * wouldn't have all the data we need to recover.
3435 	 *
3436 	 * What we do is move the bits to the ili_last_fields field.  When
3437 	 * logging the inode, these bits are moved back to the ili_fields field.
3438 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3439 	 * we know that the information those bits represent is permanently on
3440 	 * disk.  As long as the flush completes before the inode is logged
3441 	 * again, then both ili_fields and ili_last_fields will be cleared.
3442 	 */
3443 	error = 0;
3444 flush_out:
3445 	spin_lock(&iip->ili_lock);
3446 	iip->ili_last_fields = iip->ili_fields;
3447 	iip->ili_fields = 0;
3448 	iip->ili_fsync_fields = 0;
3449 	spin_unlock(&iip->ili_lock);
3450 
3451 	/*
3452 	 * Store the current LSN of the inode so that we can tell whether the
3453 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3454 	 */
3455 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3456 				&iip->ili_item.li_lsn);
3457 
3458 	/* generate the checksum. */
3459 	xfs_dinode_calc_crc(mp, dip);
3460 	if (error)
3461 		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
3462 	return error;
3463 }
3464 
3465 /*
3466  * Non-blocking flush of dirty inode metadata into the backing buffer.
3467  *
3468  * The caller must have a reference to the inode and hold the cluster buffer
3469  * locked. The function will walk across all the inodes on the cluster buffer it
3470  * can find and lock without blocking, and flush them to the cluster buffer.
3471  *
3472  * On successful flushing of at least one inode, the caller must write out the
3473  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3474  * the caller needs to release the buffer. On failure, the filesystem will be
3475  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3476  * will be returned.
3477  */
3478 int
3479 xfs_iflush_cluster(
3480 	struct xfs_buf		*bp)
3481 {
3482 	struct xfs_mount	*mp = bp->b_mount;
3483 	struct xfs_log_item	*lip, *n;
3484 	struct xfs_inode	*ip;
3485 	struct xfs_inode_log_item *iip;
3486 	int			clcount = 0;
3487 	int			error = 0;
3488 
3489 	/*
3490 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3491 	 * will remove itself from the list.
3492 	 */
3493 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3494 		iip = (struct xfs_inode_log_item *)lip;
3495 		ip = iip->ili_inode;
3496 
3497 		/*
3498 		 * Quick and dirty check to avoid locks if possible.
3499 		 */
3500 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3501 			continue;
3502 		if (xfs_ipincount(ip))
3503 			continue;
3504 
3505 		/*
3506 		 * The inode is still attached to the buffer, which means it is
3507 		 * dirty but reclaim might try to grab it. Check carefully for
3508 		 * that, and grab the ilock while still holding the i_flags_lock
3509 		 * to guarantee reclaim will not be able to reclaim this inode
3510 		 * once we drop the i_flags_lock.
3511 		 */
3512 		spin_lock(&ip->i_flags_lock);
3513 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3514 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3515 			spin_unlock(&ip->i_flags_lock);
3516 			continue;
3517 		}
3518 
3519 		/*
3520 		 * ILOCK will pin the inode against reclaim and prevent
3521 		 * concurrent transactions modifying the inode while we are
3522 		 * flushing the inode. If we get the lock, set the flushing
3523 		 * state before we drop the i_flags_lock.
3524 		 */
3525 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3526 			spin_unlock(&ip->i_flags_lock);
3527 			continue;
3528 		}
3529 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3530 		spin_unlock(&ip->i_flags_lock);
3531 
3532 		/*
3533 		 * Abort flushing this inode if we are shut down because the
3534 		 * inode may not currently be in the AIL. This can occur when
3535 		 * log I/O failure unpins the inode without inserting into the
3536 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3537 		 * that otherwise looks like it should be flushed.
3538 		 */
3539 		if (xlog_is_shutdown(mp->m_log)) {
3540 			xfs_iunpin_wait(ip);
3541 			xfs_iflush_abort(ip);
3542 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3543 			error = -EIO;
3544 			continue;
3545 		}
3546 
3547 		/* don't block waiting on a log force to unpin dirty inodes */
3548 		if (xfs_ipincount(ip)) {
3549 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3550 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3551 			continue;
3552 		}
3553 
3554 		if (!xfs_inode_clean(ip))
3555 			error = xfs_iflush(ip, bp);
3556 		else
3557 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3558 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3559 		if (error)
3560 			break;
3561 		clcount++;
3562 	}
3563 
3564 	if (error) {
3565 		/*
3566 		 * Shutdown first so we kill the log before we release this
3567 		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3568 		 * of the log, failing it before the _log_ is shut down can
3569 		 * result in the log tail being moved forward in the journal
3570 		 * on disk because log writes can still be taking place. Hence
3571 		 * unpinning the tail will allow the ICREATE intent to be
3572 		 * removed from the log an recovery will fail with uninitialised
3573 		 * inode cluster buffers.
3574 		 */
3575 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3576 		bp->b_flags |= XBF_ASYNC;
3577 		xfs_buf_ioend_fail(bp);
3578 		return error;
3579 	}
3580 
3581 	if (!clcount)
3582 		return -EAGAIN;
3583 
3584 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3585 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3586 	return 0;
3587 
3588 }
3589 
3590 /* Release an inode. */
3591 void
3592 xfs_irele(
3593 	struct xfs_inode	*ip)
3594 {
3595 	trace_xfs_irele(ip, _RET_IP_);
3596 	iput(VFS_I(ip));
3597 }
3598 
3599 /*
3600  * Ensure all commited transactions touching the inode are written to the log.
3601  */
3602 int
3603 xfs_log_force_inode(
3604 	struct xfs_inode	*ip)
3605 {
3606 	xfs_csn_t		seq = 0;
3607 
3608 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3609 	if (xfs_ipincount(ip))
3610 		seq = ip->i_itemp->ili_commit_seq;
3611 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3612 
3613 	if (!seq)
3614 		return 0;
3615 	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3616 }
3617 
3618 /*
3619  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3620  * abide vfs locking order (lowest pointer value goes first) and breaking the
3621  * layout leases before proceeding.  The loop is needed because we cannot call
3622  * the blocking break_layout() with the iolocks held, and therefore have to
3623  * back out both locks.
3624  */
3625 static int
3626 xfs_iolock_two_inodes_and_break_layout(
3627 	struct inode		*src,
3628 	struct inode		*dest)
3629 {
3630 	int			error;
3631 
3632 	if (src > dest)
3633 		swap(src, dest);
3634 
3635 retry:
3636 	/* Wait to break both inodes' layouts before we start locking. */
3637 	error = break_layout(src, true);
3638 	if (error)
3639 		return error;
3640 	if (src != dest) {
3641 		error = break_layout(dest, true);
3642 		if (error)
3643 			return error;
3644 	}
3645 
3646 	/* Lock one inode and make sure nobody got in and leased it. */
3647 	inode_lock(src);
3648 	error = break_layout(src, false);
3649 	if (error) {
3650 		inode_unlock(src);
3651 		if (error == -EWOULDBLOCK)
3652 			goto retry;
3653 		return error;
3654 	}
3655 
3656 	if (src == dest)
3657 		return 0;
3658 
3659 	/* Lock the other inode and make sure nobody got in and leased it. */
3660 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3661 	error = break_layout(dest, false);
3662 	if (error) {
3663 		inode_unlock(src);
3664 		inode_unlock(dest);
3665 		if (error == -EWOULDBLOCK)
3666 			goto retry;
3667 		return error;
3668 	}
3669 
3670 	return 0;
3671 }
3672 
3673 static int
3674 xfs_mmaplock_two_inodes_and_break_dax_layout(
3675 	struct xfs_inode	*ip1,
3676 	struct xfs_inode	*ip2)
3677 {
3678 	int			error;
3679 	bool			retry;
3680 	struct page		*page;
3681 
3682 	if (ip1->i_ino > ip2->i_ino)
3683 		swap(ip1, ip2);
3684 
3685 again:
3686 	retry = false;
3687 	/* Lock the first inode */
3688 	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3689 	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3690 	if (error || retry) {
3691 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3692 		if (error == 0 && retry)
3693 			goto again;
3694 		return error;
3695 	}
3696 
3697 	if (ip1 == ip2)
3698 		return 0;
3699 
3700 	/* Nested lock the second inode */
3701 	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3702 	/*
3703 	 * We cannot use xfs_break_dax_layouts() directly here because it may
3704 	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3705 	 * for this nested lock case.
3706 	 */
3707 	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3708 	if (page && page_ref_count(page) != 1) {
3709 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3710 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3711 		goto again;
3712 	}
3713 
3714 	return 0;
3715 }
3716 
3717 /*
3718  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3719  * mmap activity.
3720  */
3721 int
3722 xfs_ilock2_io_mmap(
3723 	struct xfs_inode	*ip1,
3724 	struct xfs_inode	*ip2)
3725 {
3726 	int			ret;
3727 
3728 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3729 	if (ret)
3730 		return ret;
3731 
3732 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3733 		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3734 		if (ret) {
3735 			inode_unlock(VFS_I(ip2));
3736 			if (ip1 != ip2)
3737 				inode_unlock(VFS_I(ip1));
3738 			return ret;
3739 		}
3740 	} else
3741 		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3742 					    VFS_I(ip2)->i_mapping);
3743 
3744 	return 0;
3745 }
3746 
3747 /* Unlock both inodes to allow IO and mmap activity. */
3748 void
3749 xfs_iunlock2_io_mmap(
3750 	struct xfs_inode	*ip1,
3751 	struct xfs_inode	*ip2)
3752 {
3753 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3754 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3755 		if (ip1 != ip2)
3756 			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3757 	} else
3758 		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3759 					      VFS_I(ip2)->i_mapping);
3760 
3761 	inode_unlock(VFS_I(ip2));
3762 	if (ip1 != ip2)
3763 		inode_unlock(VFS_I(ip1));
3764 }
3765 
3766 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
3767 void
3768 xfs_iunlock2_remapping(
3769 	struct xfs_inode	*ip1,
3770 	struct xfs_inode	*ip2)
3771 {
3772 	xfs_iflags_clear(ip1, XFS_IREMAPPING);
3773 
3774 	if (ip1 != ip2)
3775 		xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
3776 	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3777 
3778 	if (ip1 != ip2)
3779 		inode_unlock_shared(VFS_I(ip1));
3780 	inode_unlock(VFS_I(ip2));
3781 }
3782 
3783 /*
3784  * Reload the incore inode list for this inode.  Caller should ensure that
3785  * the link count cannot change, either by taking ILOCK_SHARED or otherwise
3786  * preventing other threads from executing.
3787  */
3788 int
3789 xfs_inode_reload_unlinked_bucket(
3790 	struct xfs_trans	*tp,
3791 	struct xfs_inode	*ip)
3792 {
3793 	struct xfs_mount	*mp = tp->t_mountp;
3794 	struct xfs_buf		*agibp;
3795 	struct xfs_agi		*agi;
3796 	struct xfs_perag	*pag;
3797 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
3798 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
3799 	xfs_agino_t		prev_agino, next_agino;
3800 	unsigned int		bucket;
3801 	bool			foundit = false;
3802 	int			error;
3803 
3804 	/* Grab the first inode in the list */
3805 	pag = xfs_perag_get(mp, agno);
3806 	error = xfs_ialloc_read_agi(pag, tp, &agibp);
3807 	xfs_perag_put(pag);
3808 	if (error)
3809 		return error;
3810 
3811 	/*
3812 	 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
3813 	 * incore unlinked list pointers for this inode.  Check once more to
3814 	 * see if we raced with anyone else to reload the unlinked list.
3815 	 */
3816 	if (!xfs_inode_unlinked_incomplete(ip)) {
3817 		foundit = true;
3818 		goto out_agibp;
3819 	}
3820 
3821 	bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
3822 	agi = agibp->b_addr;
3823 
3824 	trace_xfs_inode_reload_unlinked_bucket(ip);
3825 
3826 	xfs_info_ratelimited(mp,
3827  "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.",
3828 			agino, agno);
3829 
3830 	prev_agino = NULLAGINO;
3831 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3832 	while (next_agino != NULLAGINO) {
3833 		struct xfs_inode	*next_ip = NULL;
3834 
3835 		/* Found this caller's inode, set its backlink. */
3836 		if (next_agino == agino) {
3837 			next_ip = ip;
3838 			next_ip->i_prev_unlinked = prev_agino;
3839 			foundit = true;
3840 			goto next_inode;
3841 		}
3842 
3843 		/* Try in-memory lookup first. */
3844 		next_ip = xfs_iunlink_lookup(pag, next_agino);
3845 		if (next_ip)
3846 			goto next_inode;
3847 
3848 		/* Inode not in memory, try reloading it. */
3849 		error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
3850 				next_agino);
3851 		if (error)
3852 			break;
3853 
3854 		/* Grab the reloaded inode. */
3855 		next_ip = xfs_iunlink_lookup(pag, next_agino);
3856 		if (!next_ip) {
3857 			/* No incore inode at all?  We reloaded it... */
3858 			ASSERT(next_ip != NULL);
3859 			error = -EFSCORRUPTED;
3860 			break;
3861 		}
3862 
3863 next_inode:
3864 		prev_agino = next_agino;
3865 		next_agino = next_ip->i_next_unlinked;
3866 	}
3867 
3868 out_agibp:
3869 	xfs_trans_brelse(tp, agibp);
3870 	/* Should have found this inode somewhere in the iunlinked bucket. */
3871 	if (!error && !foundit)
3872 		error = -EFSCORRUPTED;
3873 	return error;
3874 }
3875 
3876 /* Decide if this inode is missing its unlinked list and reload it. */
3877 int
3878 xfs_inode_reload_unlinked(
3879 	struct xfs_inode	*ip)
3880 {
3881 	struct xfs_trans	*tp;
3882 	int			error;
3883 
3884 	error = xfs_trans_alloc_empty(ip->i_mount, &tp);
3885 	if (error)
3886 		return error;
3887 
3888 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3889 	if (xfs_inode_unlinked_incomplete(ip))
3890 		error = xfs_inode_reload_unlinked_bucket(tp, ip);
3891 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3892 	xfs_trans_cancel(tp);
3893 
3894 	return error;
3895 }
3896 
3897 /* Has this inode fork been zapped by repair? */
3898 bool
3899 xfs_ifork_zapped(
3900 	const struct xfs_inode	*ip,
3901 	int			whichfork)
3902 {
3903 	unsigned int		datamask = 0;
3904 
3905 	switch (whichfork) {
3906 	case XFS_DATA_FORK:
3907 		switch (ip->i_vnode.i_mode & S_IFMT) {
3908 		case S_IFDIR:
3909 			datamask = XFS_SICK_INO_DIR_ZAPPED;
3910 			break;
3911 		case S_IFLNK:
3912 			datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
3913 			break;
3914 		}
3915 		return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
3916 	case XFS_ATTR_FORK:
3917 		return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
3918 	default:
3919 		return false;
3920 	}
3921 }
3922 
3923 /* Compute the number of data and realtime blocks used by a file. */
3924 void
3925 xfs_inode_count_blocks(
3926 	struct xfs_trans	*tp,
3927 	struct xfs_inode	*ip,
3928 	xfs_filblks_t		*dblocks,
3929 	xfs_filblks_t		*rblocks)
3930 {
3931 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
3932 
3933 	*rblocks = 0;
3934 	if (XFS_IS_REALTIME_INODE(ip))
3935 		xfs_bmap_count_leaves(ifp, rblocks);
3936 	*dblocks = ip->i_nblocks - *rblocks;
3937 }
3938