1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_shared.h" 23 #include "xfs_format.h" 24 #include "xfs_log_format.h" 25 #include "xfs_trans_resv.h" 26 #include "xfs_sb.h" 27 #include "xfs_mount.h" 28 #include "xfs_defer.h" 29 #include "xfs_inode.h" 30 #include "xfs_da_format.h" 31 #include "xfs_da_btree.h" 32 #include "xfs_dir2.h" 33 #include "xfs_attr_sf.h" 34 #include "xfs_attr.h" 35 #include "xfs_trans_space.h" 36 #include "xfs_trans.h" 37 #include "xfs_buf_item.h" 38 #include "xfs_inode_item.h" 39 #include "xfs_ialloc.h" 40 #include "xfs_bmap.h" 41 #include "xfs_bmap_util.h" 42 #include "xfs_error.h" 43 #include "xfs_quota.h" 44 #include "xfs_filestream.h" 45 #include "xfs_cksum.h" 46 #include "xfs_trace.h" 47 #include "xfs_icache.h" 48 #include "xfs_symlink.h" 49 #include "xfs_trans_priv.h" 50 #include "xfs_log.h" 51 #include "xfs_bmap_btree.h" 52 #include "xfs_reflink.h" 53 54 kmem_zone_t *xfs_inode_zone; 55 56 /* 57 * Used in xfs_itruncate_extents(). This is the maximum number of extents 58 * freed from a file in a single transaction. 59 */ 60 #define XFS_ITRUNC_MAX_EXTENTS 2 61 62 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); 63 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 64 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 65 66 /* 67 * helper function to extract extent size hint from inode 68 */ 69 xfs_extlen_t 70 xfs_get_extsz_hint( 71 struct xfs_inode *ip) 72 { 73 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 74 return ip->i_d.di_extsize; 75 if (XFS_IS_REALTIME_INODE(ip)) 76 return ip->i_mount->m_sb.sb_rextsize; 77 return 0; 78 } 79 80 /* 81 * Helper function to extract CoW extent size hint from inode. 82 * Between the extent size hint and the CoW extent size hint, we 83 * return the greater of the two. If the value is zero (automatic), 84 * use the default size. 85 */ 86 xfs_extlen_t 87 xfs_get_cowextsz_hint( 88 struct xfs_inode *ip) 89 { 90 xfs_extlen_t a, b; 91 92 a = 0; 93 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 94 a = ip->i_d.di_cowextsize; 95 b = xfs_get_extsz_hint(ip); 96 97 a = max(a, b); 98 if (a == 0) 99 return XFS_DEFAULT_COWEXTSZ_HINT; 100 return a; 101 } 102 103 /* 104 * These two are wrapper routines around the xfs_ilock() routine used to 105 * centralize some grungy code. They are used in places that wish to lock the 106 * inode solely for reading the extents. The reason these places can't just 107 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 108 * bringing in of the extents from disk for a file in b-tree format. If the 109 * inode is in b-tree format, then we need to lock the inode exclusively until 110 * the extents are read in. Locking it exclusively all the time would limit 111 * our parallelism unnecessarily, though. What we do instead is check to see 112 * if the extents have been read in yet, and only lock the inode exclusively 113 * if they have not. 114 * 115 * The functions return a value which should be given to the corresponding 116 * xfs_iunlock() call. 117 */ 118 uint 119 xfs_ilock_data_map_shared( 120 struct xfs_inode *ip) 121 { 122 uint lock_mode = XFS_ILOCK_SHARED; 123 124 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 125 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 126 lock_mode = XFS_ILOCK_EXCL; 127 xfs_ilock(ip, lock_mode); 128 return lock_mode; 129 } 130 131 uint 132 xfs_ilock_attr_map_shared( 133 struct xfs_inode *ip) 134 { 135 uint lock_mode = XFS_ILOCK_SHARED; 136 137 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 138 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 139 lock_mode = XFS_ILOCK_EXCL; 140 xfs_ilock(ip, lock_mode); 141 return lock_mode; 142 } 143 144 /* 145 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 146 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows 147 * various combinations of the locks to be obtained. 148 * 149 * The 3 locks should always be ordered so that the IO lock is obtained first, 150 * the mmap lock second and the ilock last in order to prevent deadlock. 151 * 152 * Basic locking order: 153 * 154 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock 155 * 156 * mmap_sem locking order: 157 * 158 * i_rwsem -> page lock -> mmap_sem 159 * mmap_sem -> i_mmap_lock -> page_lock 160 * 161 * The difference in mmap_sem locking order mean that we cannot hold the 162 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 163 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem 164 * in get_user_pages() to map the user pages into the kernel address space for 165 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because 166 * page faults already hold the mmap_sem. 167 * 168 * Hence to serialise fully against both syscall and mmap based IO, we need to 169 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both 170 * taken in places where we need to invalidate the page cache in a race 171 * free manner (e.g. truncate, hole punch and other extent manipulation 172 * functions). 173 */ 174 void 175 xfs_ilock( 176 xfs_inode_t *ip, 177 uint lock_flags) 178 { 179 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 180 181 /* 182 * You can't set both SHARED and EXCL for the same lock, 183 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 184 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 185 */ 186 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 187 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 188 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 189 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 190 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 191 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 192 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 193 194 if (lock_flags & XFS_IOLOCK_EXCL) { 195 down_write_nested(&VFS_I(ip)->i_rwsem, 196 XFS_IOLOCK_DEP(lock_flags)); 197 } else if (lock_flags & XFS_IOLOCK_SHARED) { 198 down_read_nested(&VFS_I(ip)->i_rwsem, 199 XFS_IOLOCK_DEP(lock_flags)); 200 } 201 202 if (lock_flags & XFS_MMAPLOCK_EXCL) 203 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 204 else if (lock_flags & XFS_MMAPLOCK_SHARED) 205 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 206 207 if (lock_flags & XFS_ILOCK_EXCL) 208 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 209 else if (lock_flags & XFS_ILOCK_SHARED) 210 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 211 } 212 213 /* 214 * This is just like xfs_ilock(), except that the caller 215 * is guaranteed not to sleep. It returns 1 if it gets 216 * the requested locks and 0 otherwise. If the IO lock is 217 * obtained but the inode lock cannot be, then the IO lock 218 * is dropped before returning. 219 * 220 * ip -- the inode being locked 221 * lock_flags -- this parameter indicates the inode's locks to be 222 * to be locked. See the comment for xfs_ilock() for a list 223 * of valid values. 224 */ 225 int 226 xfs_ilock_nowait( 227 xfs_inode_t *ip, 228 uint lock_flags) 229 { 230 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 231 232 /* 233 * You can't set both SHARED and EXCL for the same lock, 234 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 235 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 236 */ 237 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 238 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 239 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 240 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 241 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 242 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 243 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 244 245 if (lock_flags & XFS_IOLOCK_EXCL) { 246 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 247 goto out; 248 } else if (lock_flags & XFS_IOLOCK_SHARED) { 249 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 250 goto out; 251 } 252 253 if (lock_flags & XFS_MMAPLOCK_EXCL) { 254 if (!mrtryupdate(&ip->i_mmaplock)) 255 goto out_undo_iolock; 256 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 257 if (!mrtryaccess(&ip->i_mmaplock)) 258 goto out_undo_iolock; 259 } 260 261 if (lock_flags & XFS_ILOCK_EXCL) { 262 if (!mrtryupdate(&ip->i_lock)) 263 goto out_undo_mmaplock; 264 } else if (lock_flags & XFS_ILOCK_SHARED) { 265 if (!mrtryaccess(&ip->i_lock)) 266 goto out_undo_mmaplock; 267 } 268 return 1; 269 270 out_undo_mmaplock: 271 if (lock_flags & XFS_MMAPLOCK_EXCL) 272 mrunlock_excl(&ip->i_mmaplock); 273 else if (lock_flags & XFS_MMAPLOCK_SHARED) 274 mrunlock_shared(&ip->i_mmaplock); 275 out_undo_iolock: 276 if (lock_flags & XFS_IOLOCK_EXCL) 277 up_write(&VFS_I(ip)->i_rwsem); 278 else if (lock_flags & XFS_IOLOCK_SHARED) 279 up_read(&VFS_I(ip)->i_rwsem); 280 out: 281 return 0; 282 } 283 284 /* 285 * xfs_iunlock() is used to drop the inode locks acquired with 286 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 287 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 288 * that we know which locks to drop. 289 * 290 * ip -- the inode being unlocked 291 * lock_flags -- this parameter indicates the inode's locks to be 292 * to be unlocked. See the comment for xfs_ilock() for a list 293 * of valid values for this parameter. 294 * 295 */ 296 void 297 xfs_iunlock( 298 xfs_inode_t *ip, 299 uint lock_flags) 300 { 301 /* 302 * You can't set both SHARED and EXCL for the same lock, 303 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 304 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 305 */ 306 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 307 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 308 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 309 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 310 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 311 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 312 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 313 ASSERT(lock_flags != 0); 314 315 if (lock_flags & XFS_IOLOCK_EXCL) 316 up_write(&VFS_I(ip)->i_rwsem); 317 else if (lock_flags & XFS_IOLOCK_SHARED) 318 up_read(&VFS_I(ip)->i_rwsem); 319 320 if (lock_flags & XFS_MMAPLOCK_EXCL) 321 mrunlock_excl(&ip->i_mmaplock); 322 else if (lock_flags & XFS_MMAPLOCK_SHARED) 323 mrunlock_shared(&ip->i_mmaplock); 324 325 if (lock_flags & XFS_ILOCK_EXCL) 326 mrunlock_excl(&ip->i_lock); 327 else if (lock_flags & XFS_ILOCK_SHARED) 328 mrunlock_shared(&ip->i_lock); 329 330 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 331 } 332 333 /* 334 * give up write locks. the i/o lock cannot be held nested 335 * if it is being demoted. 336 */ 337 void 338 xfs_ilock_demote( 339 xfs_inode_t *ip, 340 uint lock_flags) 341 { 342 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 343 ASSERT((lock_flags & 344 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 345 346 if (lock_flags & XFS_ILOCK_EXCL) 347 mrdemote(&ip->i_lock); 348 if (lock_flags & XFS_MMAPLOCK_EXCL) 349 mrdemote(&ip->i_mmaplock); 350 if (lock_flags & XFS_IOLOCK_EXCL) 351 downgrade_write(&VFS_I(ip)->i_rwsem); 352 353 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 354 } 355 356 #if defined(DEBUG) || defined(XFS_WARN) 357 int 358 xfs_isilocked( 359 xfs_inode_t *ip, 360 uint lock_flags) 361 { 362 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 363 if (!(lock_flags & XFS_ILOCK_SHARED)) 364 return !!ip->i_lock.mr_writer; 365 return rwsem_is_locked(&ip->i_lock.mr_lock); 366 } 367 368 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 369 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 370 return !!ip->i_mmaplock.mr_writer; 371 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 372 } 373 374 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 375 if (!(lock_flags & XFS_IOLOCK_SHARED)) 376 return !debug_locks || 377 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); 378 return rwsem_is_locked(&VFS_I(ip)->i_rwsem); 379 } 380 381 ASSERT(0); 382 return 0; 383 } 384 #endif 385 386 #ifdef DEBUG 387 int xfs_locked_n; 388 int xfs_small_retries; 389 int xfs_middle_retries; 390 int xfs_lots_retries; 391 int xfs_lock_delays; 392 #endif 393 394 /* 395 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 396 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 397 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 398 * errors and warnings. 399 */ 400 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 401 static bool 402 xfs_lockdep_subclass_ok( 403 int subclass) 404 { 405 return subclass < MAX_LOCKDEP_SUBCLASSES; 406 } 407 #else 408 #define xfs_lockdep_subclass_ok(subclass) (true) 409 #endif 410 411 /* 412 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 413 * value. This can be called for any type of inode lock combination, including 414 * parent locking. Care must be taken to ensure we don't overrun the subclass 415 * storage fields in the class mask we build. 416 */ 417 static inline int 418 xfs_lock_inumorder(int lock_mode, int subclass) 419 { 420 int class = 0; 421 422 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 423 XFS_ILOCK_RTSUM))); 424 ASSERT(xfs_lockdep_subclass_ok(subclass)); 425 426 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 427 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 428 class += subclass << XFS_IOLOCK_SHIFT; 429 } 430 431 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 432 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 433 class += subclass << XFS_MMAPLOCK_SHIFT; 434 } 435 436 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 437 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 438 class += subclass << XFS_ILOCK_SHIFT; 439 } 440 441 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 442 } 443 444 /* 445 * The following routine will lock n inodes in exclusive mode. We assume the 446 * caller calls us with the inodes in i_ino order. 447 * 448 * We need to detect deadlock where an inode that we lock is in the AIL and we 449 * start waiting for another inode that is locked by a thread in a long running 450 * transaction (such as truncate). This can result in deadlock since the long 451 * running trans might need to wait for the inode we just locked in order to 452 * push the tail and free space in the log. 453 * 454 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 455 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 456 * lock more than one at a time, lockdep will report false positives saying we 457 * have violated locking orders. 458 */ 459 static void 460 xfs_lock_inodes( 461 xfs_inode_t **ips, 462 int inodes, 463 uint lock_mode) 464 { 465 int attempts = 0, i, j, try_lock; 466 xfs_log_item_t *lp; 467 468 /* 469 * Currently supports between 2 and 5 inodes with exclusive locking. We 470 * support an arbitrary depth of locking here, but absolute limits on 471 * inodes depend on the the type of locking and the limits placed by 472 * lockdep annotations in xfs_lock_inumorder. These are all checked by 473 * the asserts. 474 */ 475 ASSERT(ips && inodes >= 2 && inodes <= 5); 476 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 477 XFS_ILOCK_EXCL)); 478 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 479 XFS_ILOCK_SHARED))); 480 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 481 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 482 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 483 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 484 485 if (lock_mode & XFS_IOLOCK_EXCL) { 486 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 487 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 488 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 489 490 try_lock = 0; 491 i = 0; 492 again: 493 for (; i < inodes; i++) { 494 ASSERT(ips[i]); 495 496 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 497 continue; 498 499 /* 500 * If try_lock is not set yet, make sure all locked inodes are 501 * not in the AIL. If any are, set try_lock to be used later. 502 */ 503 if (!try_lock) { 504 for (j = (i - 1); j >= 0 && !try_lock; j--) { 505 lp = (xfs_log_item_t *)ips[j]->i_itemp; 506 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) 507 try_lock++; 508 } 509 } 510 511 /* 512 * If any of the previous locks we have locked is in the AIL, 513 * we must TRY to get the second and subsequent locks. If 514 * we can't get any, we must release all we have 515 * and try again. 516 */ 517 if (!try_lock) { 518 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 519 continue; 520 } 521 522 /* try_lock means we have an inode locked that is in the AIL. */ 523 ASSERT(i != 0); 524 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 525 continue; 526 527 /* 528 * Unlock all previous guys and try again. xfs_iunlock will try 529 * to push the tail if the inode is in the AIL. 530 */ 531 attempts++; 532 for (j = i - 1; j >= 0; j--) { 533 /* 534 * Check to see if we've already unlocked this one. Not 535 * the first one going back, and the inode ptr is the 536 * same. 537 */ 538 if (j != (i - 1) && ips[j] == ips[j + 1]) 539 continue; 540 541 xfs_iunlock(ips[j], lock_mode); 542 } 543 544 if ((attempts % 5) == 0) { 545 delay(1); /* Don't just spin the CPU */ 546 #ifdef DEBUG 547 xfs_lock_delays++; 548 #endif 549 } 550 i = 0; 551 try_lock = 0; 552 goto again; 553 } 554 555 #ifdef DEBUG 556 if (attempts) { 557 if (attempts < 5) xfs_small_retries++; 558 else if (attempts < 100) xfs_middle_retries++; 559 else xfs_lots_retries++; 560 } else { 561 xfs_locked_n++; 562 } 563 #endif 564 } 565 566 /* 567 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 568 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 569 * lock more than one at a time, lockdep will report false positives saying we 570 * have violated locking orders. 571 */ 572 void 573 xfs_lock_two_inodes( 574 xfs_inode_t *ip0, 575 xfs_inode_t *ip1, 576 uint lock_mode) 577 { 578 xfs_inode_t *temp; 579 int attempts = 0; 580 xfs_log_item_t *lp; 581 582 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 583 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) 584 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 585 586 ASSERT(ip0->i_ino != ip1->i_ino); 587 588 if (ip0->i_ino > ip1->i_ino) { 589 temp = ip0; 590 ip0 = ip1; 591 ip1 = temp; 592 } 593 594 again: 595 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0)); 596 597 /* 598 * If the first lock we have locked is in the AIL, we must TRY to get 599 * the second lock. If we can't get it, we must release the first one 600 * and try again. 601 */ 602 lp = (xfs_log_item_t *)ip0->i_itemp; 603 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 604 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) { 605 xfs_iunlock(ip0, lock_mode); 606 if ((++attempts % 5) == 0) 607 delay(1); /* Don't just spin the CPU */ 608 goto again; 609 } 610 } else { 611 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1)); 612 } 613 } 614 615 616 void 617 __xfs_iflock( 618 struct xfs_inode *ip) 619 { 620 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 621 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 622 623 do { 624 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 625 if (xfs_isiflocked(ip)) 626 io_schedule(); 627 } while (!xfs_iflock_nowait(ip)); 628 629 finish_wait(wq, &wait.wait); 630 } 631 632 STATIC uint 633 _xfs_dic2xflags( 634 __uint16_t di_flags, 635 uint64_t di_flags2, 636 bool has_attr) 637 { 638 uint flags = 0; 639 640 if (di_flags & XFS_DIFLAG_ANY) { 641 if (di_flags & XFS_DIFLAG_REALTIME) 642 flags |= FS_XFLAG_REALTIME; 643 if (di_flags & XFS_DIFLAG_PREALLOC) 644 flags |= FS_XFLAG_PREALLOC; 645 if (di_flags & XFS_DIFLAG_IMMUTABLE) 646 flags |= FS_XFLAG_IMMUTABLE; 647 if (di_flags & XFS_DIFLAG_APPEND) 648 flags |= FS_XFLAG_APPEND; 649 if (di_flags & XFS_DIFLAG_SYNC) 650 flags |= FS_XFLAG_SYNC; 651 if (di_flags & XFS_DIFLAG_NOATIME) 652 flags |= FS_XFLAG_NOATIME; 653 if (di_flags & XFS_DIFLAG_NODUMP) 654 flags |= FS_XFLAG_NODUMP; 655 if (di_flags & XFS_DIFLAG_RTINHERIT) 656 flags |= FS_XFLAG_RTINHERIT; 657 if (di_flags & XFS_DIFLAG_PROJINHERIT) 658 flags |= FS_XFLAG_PROJINHERIT; 659 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 660 flags |= FS_XFLAG_NOSYMLINKS; 661 if (di_flags & XFS_DIFLAG_EXTSIZE) 662 flags |= FS_XFLAG_EXTSIZE; 663 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 664 flags |= FS_XFLAG_EXTSZINHERIT; 665 if (di_flags & XFS_DIFLAG_NODEFRAG) 666 flags |= FS_XFLAG_NODEFRAG; 667 if (di_flags & XFS_DIFLAG_FILESTREAM) 668 flags |= FS_XFLAG_FILESTREAM; 669 } 670 671 if (di_flags2 & XFS_DIFLAG2_ANY) { 672 if (di_flags2 & XFS_DIFLAG2_DAX) 673 flags |= FS_XFLAG_DAX; 674 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 675 flags |= FS_XFLAG_COWEXTSIZE; 676 } 677 678 if (has_attr) 679 flags |= FS_XFLAG_HASATTR; 680 681 return flags; 682 } 683 684 uint 685 xfs_ip2xflags( 686 struct xfs_inode *ip) 687 { 688 struct xfs_icdinode *dic = &ip->i_d; 689 690 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 691 } 692 693 /* 694 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 695 * is allowed, otherwise it has to be an exact match. If a CI match is found, 696 * ci_name->name will point to a the actual name (caller must free) or 697 * will be set to NULL if an exact match is found. 698 */ 699 int 700 xfs_lookup( 701 xfs_inode_t *dp, 702 struct xfs_name *name, 703 xfs_inode_t **ipp, 704 struct xfs_name *ci_name) 705 { 706 xfs_ino_t inum; 707 int error; 708 709 trace_xfs_lookup(dp, name); 710 711 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 712 return -EIO; 713 714 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 715 if (error) 716 goto out_unlock; 717 718 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 719 if (error) 720 goto out_free_name; 721 722 return 0; 723 724 out_free_name: 725 if (ci_name) 726 kmem_free(ci_name->name); 727 out_unlock: 728 *ipp = NULL; 729 return error; 730 } 731 732 /* 733 * Allocate an inode on disk and return a copy of its in-core version. 734 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 735 * appropriately within the inode. The uid and gid for the inode are 736 * set according to the contents of the given cred structure. 737 * 738 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 739 * has a free inode available, call xfs_iget() to obtain the in-core 740 * version of the allocated inode. Finally, fill in the inode and 741 * log its initial contents. In this case, ialloc_context would be 742 * set to NULL. 743 * 744 * If xfs_dialloc() does not have an available inode, it will replenish 745 * its supply by doing an allocation. Since we can only do one 746 * allocation within a transaction without deadlocks, we must commit 747 * the current transaction before returning the inode itself. 748 * In this case, therefore, we will set ialloc_context and return. 749 * The caller should then commit the current transaction, start a new 750 * transaction, and call xfs_ialloc() again to actually get the inode. 751 * 752 * To ensure that some other process does not grab the inode that 753 * was allocated during the first call to xfs_ialloc(), this routine 754 * also returns the [locked] bp pointing to the head of the freelist 755 * as ialloc_context. The caller should hold this buffer across 756 * the commit and pass it back into this routine on the second call. 757 * 758 * If we are allocating quota inodes, we do not have a parent inode 759 * to attach to or associate with (i.e. pip == NULL) because they 760 * are not linked into the directory structure - they are attached 761 * directly to the superblock - and so have no parent. 762 */ 763 static int 764 xfs_ialloc( 765 xfs_trans_t *tp, 766 xfs_inode_t *pip, 767 umode_t mode, 768 xfs_nlink_t nlink, 769 xfs_dev_t rdev, 770 prid_t prid, 771 int okalloc, 772 xfs_buf_t **ialloc_context, 773 xfs_inode_t **ipp) 774 { 775 struct xfs_mount *mp = tp->t_mountp; 776 xfs_ino_t ino; 777 xfs_inode_t *ip; 778 uint flags; 779 int error; 780 struct timespec tv; 781 struct inode *inode; 782 783 /* 784 * Call the space management code to pick 785 * the on-disk inode to be allocated. 786 */ 787 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 788 ialloc_context, &ino); 789 if (error) 790 return error; 791 if (*ialloc_context || ino == NULLFSINO) { 792 *ipp = NULL; 793 return 0; 794 } 795 ASSERT(*ialloc_context == NULL); 796 797 /* 798 * Get the in-core inode with the lock held exclusively. 799 * This is because we're setting fields here we need 800 * to prevent others from looking at until we're done. 801 */ 802 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 803 XFS_ILOCK_EXCL, &ip); 804 if (error) 805 return error; 806 ASSERT(ip != NULL); 807 inode = VFS_I(ip); 808 809 /* 810 * We always convert v1 inodes to v2 now - we only support filesystems 811 * with >= v2 inode capability, so there is no reason for ever leaving 812 * an inode in v1 format. 813 */ 814 if (ip->i_d.di_version == 1) 815 ip->i_d.di_version = 2; 816 817 inode->i_mode = mode; 818 set_nlink(inode, nlink); 819 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 820 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 821 xfs_set_projid(ip, prid); 822 823 if (pip && XFS_INHERIT_GID(pip)) { 824 ip->i_d.di_gid = pip->i_d.di_gid; 825 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) 826 inode->i_mode |= S_ISGID; 827 } 828 829 /* 830 * If the group ID of the new file does not match the effective group 831 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 832 * (and only if the irix_sgid_inherit compatibility variable is set). 833 */ 834 if ((irix_sgid_inherit) && 835 (inode->i_mode & S_ISGID) && 836 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) 837 inode->i_mode &= ~S_ISGID; 838 839 ip->i_d.di_size = 0; 840 ip->i_d.di_nextents = 0; 841 ASSERT(ip->i_d.di_nblocks == 0); 842 843 tv = current_time(inode); 844 inode->i_mtime = tv; 845 inode->i_atime = tv; 846 inode->i_ctime = tv; 847 848 ip->i_d.di_extsize = 0; 849 ip->i_d.di_dmevmask = 0; 850 ip->i_d.di_dmstate = 0; 851 ip->i_d.di_flags = 0; 852 853 if (ip->i_d.di_version == 3) { 854 inode->i_version = 1; 855 ip->i_d.di_flags2 = 0; 856 ip->i_d.di_cowextsize = 0; 857 ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec; 858 ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec; 859 } 860 861 862 flags = XFS_ILOG_CORE; 863 switch (mode & S_IFMT) { 864 case S_IFIFO: 865 case S_IFCHR: 866 case S_IFBLK: 867 case S_IFSOCK: 868 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 869 ip->i_df.if_u2.if_rdev = rdev; 870 ip->i_df.if_flags = 0; 871 flags |= XFS_ILOG_DEV; 872 break; 873 case S_IFREG: 874 case S_IFDIR: 875 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 876 uint64_t di_flags2 = 0; 877 uint di_flags = 0; 878 879 if (S_ISDIR(mode)) { 880 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 881 di_flags |= XFS_DIFLAG_RTINHERIT; 882 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 883 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 884 ip->i_d.di_extsize = pip->i_d.di_extsize; 885 } 886 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 887 di_flags |= XFS_DIFLAG_PROJINHERIT; 888 } else if (S_ISREG(mode)) { 889 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 890 di_flags |= XFS_DIFLAG_REALTIME; 891 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 892 di_flags |= XFS_DIFLAG_EXTSIZE; 893 ip->i_d.di_extsize = pip->i_d.di_extsize; 894 } 895 } 896 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 897 xfs_inherit_noatime) 898 di_flags |= XFS_DIFLAG_NOATIME; 899 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 900 xfs_inherit_nodump) 901 di_flags |= XFS_DIFLAG_NODUMP; 902 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 903 xfs_inherit_sync) 904 di_flags |= XFS_DIFLAG_SYNC; 905 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 906 xfs_inherit_nosymlinks) 907 di_flags |= XFS_DIFLAG_NOSYMLINKS; 908 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 909 xfs_inherit_nodefrag) 910 di_flags |= XFS_DIFLAG_NODEFRAG; 911 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 912 di_flags |= XFS_DIFLAG_FILESTREAM; 913 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 914 di_flags2 |= XFS_DIFLAG2_DAX; 915 916 ip->i_d.di_flags |= di_flags; 917 ip->i_d.di_flags2 |= di_flags2; 918 } 919 if (pip && 920 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) && 921 pip->i_d.di_version == 3 && 922 ip->i_d.di_version == 3) { 923 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { 924 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 925 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; 926 } 927 } 928 /* FALLTHROUGH */ 929 case S_IFLNK: 930 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 931 ip->i_df.if_flags = XFS_IFEXTENTS; 932 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 933 ip->i_df.if_u1.if_extents = NULL; 934 break; 935 default: 936 ASSERT(0); 937 } 938 /* 939 * Attribute fork settings for new inode. 940 */ 941 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 942 ip->i_d.di_anextents = 0; 943 944 /* 945 * Log the new values stuffed into the inode. 946 */ 947 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 948 xfs_trans_log_inode(tp, ip, flags); 949 950 /* now that we have an i_mode we can setup the inode structure */ 951 xfs_setup_inode(ip); 952 953 *ipp = ip; 954 return 0; 955 } 956 957 /* 958 * Allocates a new inode from disk and return a pointer to the 959 * incore copy. This routine will internally commit the current 960 * transaction and allocate a new one if the Space Manager needed 961 * to do an allocation to replenish the inode free-list. 962 * 963 * This routine is designed to be called from xfs_create and 964 * xfs_create_dir. 965 * 966 */ 967 int 968 xfs_dir_ialloc( 969 xfs_trans_t **tpp, /* input: current transaction; 970 output: may be a new transaction. */ 971 xfs_inode_t *dp, /* directory within whose allocate 972 the inode. */ 973 umode_t mode, 974 xfs_nlink_t nlink, 975 xfs_dev_t rdev, 976 prid_t prid, /* project id */ 977 int okalloc, /* ok to allocate new space */ 978 xfs_inode_t **ipp, /* pointer to inode; it will be 979 locked. */ 980 int *committed) 981 982 { 983 xfs_trans_t *tp; 984 xfs_inode_t *ip; 985 xfs_buf_t *ialloc_context = NULL; 986 int code; 987 void *dqinfo; 988 uint tflags; 989 990 tp = *tpp; 991 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 992 993 /* 994 * xfs_ialloc will return a pointer to an incore inode if 995 * the Space Manager has an available inode on the free 996 * list. Otherwise, it will do an allocation and replenish 997 * the freelist. Since we can only do one allocation per 998 * transaction without deadlocks, we will need to commit the 999 * current transaction and start a new one. We will then 1000 * need to call xfs_ialloc again to get the inode. 1001 * 1002 * If xfs_ialloc did an allocation to replenish the freelist, 1003 * it returns the bp containing the head of the freelist as 1004 * ialloc_context. We will hold a lock on it across the 1005 * transaction commit so that no other process can steal 1006 * the inode(s) that we've just allocated. 1007 */ 1008 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc, 1009 &ialloc_context, &ip); 1010 1011 /* 1012 * Return an error if we were unable to allocate a new inode. 1013 * This should only happen if we run out of space on disk or 1014 * encounter a disk error. 1015 */ 1016 if (code) { 1017 *ipp = NULL; 1018 return code; 1019 } 1020 if (!ialloc_context && !ip) { 1021 *ipp = NULL; 1022 return -ENOSPC; 1023 } 1024 1025 /* 1026 * If the AGI buffer is non-NULL, then we were unable to get an 1027 * inode in one operation. We need to commit the current 1028 * transaction and call xfs_ialloc() again. It is guaranteed 1029 * to succeed the second time. 1030 */ 1031 if (ialloc_context) { 1032 /* 1033 * Normally, xfs_trans_commit releases all the locks. 1034 * We call bhold to hang on to the ialloc_context across 1035 * the commit. Holding this buffer prevents any other 1036 * processes from doing any allocations in this 1037 * allocation group. 1038 */ 1039 xfs_trans_bhold(tp, ialloc_context); 1040 1041 /* 1042 * We want the quota changes to be associated with the next 1043 * transaction, NOT this one. So, detach the dqinfo from this 1044 * and attach it to the next transaction. 1045 */ 1046 dqinfo = NULL; 1047 tflags = 0; 1048 if (tp->t_dqinfo) { 1049 dqinfo = (void *)tp->t_dqinfo; 1050 tp->t_dqinfo = NULL; 1051 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1052 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1053 } 1054 1055 code = xfs_trans_roll(&tp, NULL); 1056 if (committed != NULL) 1057 *committed = 1; 1058 1059 /* 1060 * Re-attach the quota info that we detached from prev trx. 1061 */ 1062 if (dqinfo) { 1063 tp->t_dqinfo = dqinfo; 1064 tp->t_flags |= tflags; 1065 } 1066 1067 if (code) { 1068 xfs_buf_relse(ialloc_context); 1069 *tpp = tp; 1070 *ipp = NULL; 1071 return code; 1072 } 1073 xfs_trans_bjoin(tp, ialloc_context); 1074 1075 /* 1076 * Call ialloc again. Since we've locked out all 1077 * other allocations in this allocation group, 1078 * this call should always succeed. 1079 */ 1080 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1081 okalloc, &ialloc_context, &ip); 1082 1083 /* 1084 * If we get an error at this point, return to the caller 1085 * so that the current transaction can be aborted. 1086 */ 1087 if (code) { 1088 *tpp = tp; 1089 *ipp = NULL; 1090 return code; 1091 } 1092 ASSERT(!ialloc_context && ip); 1093 1094 } else { 1095 if (committed != NULL) 1096 *committed = 0; 1097 } 1098 1099 *ipp = ip; 1100 *tpp = tp; 1101 1102 return 0; 1103 } 1104 1105 /* 1106 * Decrement the link count on an inode & log the change. If this causes the 1107 * link count to go to zero, move the inode to AGI unlinked list so that it can 1108 * be freed when the last active reference goes away via xfs_inactive(). 1109 */ 1110 static int /* error */ 1111 xfs_droplink( 1112 xfs_trans_t *tp, 1113 xfs_inode_t *ip) 1114 { 1115 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1116 1117 drop_nlink(VFS_I(ip)); 1118 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1119 1120 if (VFS_I(ip)->i_nlink) 1121 return 0; 1122 1123 return xfs_iunlink(tp, ip); 1124 } 1125 1126 /* 1127 * Increment the link count on an inode & log the change. 1128 */ 1129 static int 1130 xfs_bumplink( 1131 xfs_trans_t *tp, 1132 xfs_inode_t *ip) 1133 { 1134 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1135 1136 ASSERT(ip->i_d.di_version > 1); 1137 inc_nlink(VFS_I(ip)); 1138 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1139 return 0; 1140 } 1141 1142 int 1143 xfs_create( 1144 xfs_inode_t *dp, 1145 struct xfs_name *name, 1146 umode_t mode, 1147 xfs_dev_t rdev, 1148 xfs_inode_t **ipp) 1149 { 1150 int is_dir = S_ISDIR(mode); 1151 struct xfs_mount *mp = dp->i_mount; 1152 struct xfs_inode *ip = NULL; 1153 struct xfs_trans *tp = NULL; 1154 int error; 1155 struct xfs_defer_ops dfops; 1156 xfs_fsblock_t first_block; 1157 bool unlock_dp_on_error = false; 1158 prid_t prid; 1159 struct xfs_dquot *udqp = NULL; 1160 struct xfs_dquot *gdqp = NULL; 1161 struct xfs_dquot *pdqp = NULL; 1162 struct xfs_trans_res *tres; 1163 uint resblks; 1164 1165 trace_xfs_create(dp, name); 1166 1167 if (XFS_FORCED_SHUTDOWN(mp)) 1168 return -EIO; 1169 1170 prid = xfs_get_initial_prid(dp); 1171 1172 /* 1173 * Make sure that we have allocated dquot(s) on disk. 1174 */ 1175 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1176 xfs_kgid_to_gid(current_fsgid()), prid, 1177 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1178 &udqp, &gdqp, &pdqp); 1179 if (error) 1180 return error; 1181 1182 if (is_dir) { 1183 rdev = 0; 1184 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1185 tres = &M_RES(mp)->tr_mkdir; 1186 } else { 1187 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1188 tres = &M_RES(mp)->tr_create; 1189 } 1190 1191 /* 1192 * Initially assume that the file does not exist and 1193 * reserve the resources for that case. If that is not 1194 * the case we'll drop the one we have and get a more 1195 * appropriate transaction later. 1196 */ 1197 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1198 if (error == -ENOSPC) { 1199 /* flush outstanding delalloc blocks and retry */ 1200 xfs_flush_inodes(mp); 1201 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1202 } 1203 if (error == -ENOSPC) { 1204 /* No space at all so try a "no-allocation" reservation */ 1205 resblks = 0; 1206 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp); 1207 } 1208 if (error) 1209 goto out_release_inode; 1210 1211 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1212 unlock_dp_on_error = true; 1213 1214 xfs_defer_init(&dfops, &first_block); 1215 1216 /* 1217 * Reserve disk quota and the inode. 1218 */ 1219 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1220 pdqp, resblks, 1, 0); 1221 if (error) 1222 goto out_trans_cancel; 1223 1224 if (!resblks) { 1225 error = xfs_dir_canenter(tp, dp, name); 1226 if (error) 1227 goto out_trans_cancel; 1228 } 1229 1230 /* 1231 * A newly created regular or special file just has one directory 1232 * entry pointing to them, but a directory also the "." entry 1233 * pointing to itself. 1234 */ 1235 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, 1236 prid, resblks > 0, &ip, NULL); 1237 if (error) 1238 goto out_trans_cancel; 1239 1240 /* 1241 * Now we join the directory inode to the transaction. We do not do it 1242 * earlier because xfs_dir_ialloc might commit the previous transaction 1243 * (and release all the locks). An error from here on will result in 1244 * the transaction cancel unlocking dp so don't do it explicitly in the 1245 * error path. 1246 */ 1247 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1248 unlock_dp_on_error = false; 1249 1250 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1251 &first_block, &dfops, resblks ? 1252 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1253 if (error) { 1254 ASSERT(error != -ENOSPC); 1255 goto out_trans_cancel; 1256 } 1257 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1258 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1259 1260 if (is_dir) { 1261 error = xfs_dir_init(tp, ip, dp); 1262 if (error) 1263 goto out_bmap_cancel; 1264 1265 error = xfs_bumplink(tp, dp); 1266 if (error) 1267 goto out_bmap_cancel; 1268 } 1269 1270 /* 1271 * If this is a synchronous mount, make sure that the 1272 * create transaction goes to disk before returning to 1273 * the user. 1274 */ 1275 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1276 xfs_trans_set_sync(tp); 1277 1278 /* 1279 * Attach the dquot(s) to the inodes and modify them incore. 1280 * These ids of the inode couldn't have changed since the new 1281 * inode has been locked ever since it was created. 1282 */ 1283 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1284 1285 error = xfs_defer_finish(&tp, &dfops, NULL); 1286 if (error) 1287 goto out_bmap_cancel; 1288 1289 error = xfs_trans_commit(tp); 1290 if (error) 1291 goto out_release_inode; 1292 1293 xfs_qm_dqrele(udqp); 1294 xfs_qm_dqrele(gdqp); 1295 xfs_qm_dqrele(pdqp); 1296 1297 *ipp = ip; 1298 return 0; 1299 1300 out_bmap_cancel: 1301 xfs_defer_cancel(&dfops); 1302 out_trans_cancel: 1303 xfs_trans_cancel(tp); 1304 out_release_inode: 1305 /* 1306 * Wait until after the current transaction is aborted to finish the 1307 * setup of the inode and release the inode. This prevents recursive 1308 * transactions and deadlocks from xfs_inactive. 1309 */ 1310 if (ip) { 1311 xfs_finish_inode_setup(ip); 1312 IRELE(ip); 1313 } 1314 1315 xfs_qm_dqrele(udqp); 1316 xfs_qm_dqrele(gdqp); 1317 xfs_qm_dqrele(pdqp); 1318 1319 if (unlock_dp_on_error) 1320 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1321 return error; 1322 } 1323 1324 int 1325 xfs_create_tmpfile( 1326 struct xfs_inode *dp, 1327 struct dentry *dentry, 1328 umode_t mode, 1329 struct xfs_inode **ipp) 1330 { 1331 struct xfs_mount *mp = dp->i_mount; 1332 struct xfs_inode *ip = NULL; 1333 struct xfs_trans *tp = NULL; 1334 int error; 1335 prid_t prid; 1336 struct xfs_dquot *udqp = NULL; 1337 struct xfs_dquot *gdqp = NULL; 1338 struct xfs_dquot *pdqp = NULL; 1339 struct xfs_trans_res *tres; 1340 uint resblks; 1341 1342 if (XFS_FORCED_SHUTDOWN(mp)) 1343 return -EIO; 1344 1345 prid = xfs_get_initial_prid(dp); 1346 1347 /* 1348 * Make sure that we have allocated dquot(s) on disk. 1349 */ 1350 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1351 xfs_kgid_to_gid(current_fsgid()), prid, 1352 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1353 &udqp, &gdqp, &pdqp); 1354 if (error) 1355 return error; 1356 1357 resblks = XFS_IALLOC_SPACE_RES(mp); 1358 tres = &M_RES(mp)->tr_create_tmpfile; 1359 1360 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1361 if (error == -ENOSPC) { 1362 /* No space at all so try a "no-allocation" reservation */ 1363 resblks = 0; 1364 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp); 1365 } 1366 if (error) 1367 goto out_release_inode; 1368 1369 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1370 pdqp, resblks, 1, 0); 1371 if (error) 1372 goto out_trans_cancel; 1373 1374 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, 1375 prid, resblks > 0, &ip, NULL); 1376 if (error) 1377 goto out_trans_cancel; 1378 1379 if (mp->m_flags & XFS_MOUNT_WSYNC) 1380 xfs_trans_set_sync(tp); 1381 1382 /* 1383 * Attach the dquot(s) to the inodes and modify them incore. 1384 * These ids of the inode couldn't have changed since the new 1385 * inode has been locked ever since it was created. 1386 */ 1387 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1388 1389 error = xfs_iunlink(tp, ip); 1390 if (error) 1391 goto out_trans_cancel; 1392 1393 error = xfs_trans_commit(tp); 1394 if (error) 1395 goto out_release_inode; 1396 1397 xfs_qm_dqrele(udqp); 1398 xfs_qm_dqrele(gdqp); 1399 xfs_qm_dqrele(pdqp); 1400 1401 *ipp = ip; 1402 return 0; 1403 1404 out_trans_cancel: 1405 xfs_trans_cancel(tp); 1406 out_release_inode: 1407 /* 1408 * Wait until after the current transaction is aborted to finish the 1409 * setup of the inode and release the inode. This prevents recursive 1410 * transactions and deadlocks from xfs_inactive. 1411 */ 1412 if (ip) { 1413 xfs_finish_inode_setup(ip); 1414 IRELE(ip); 1415 } 1416 1417 xfs_qm_dqrele(udqp); 1418 xfs_qm_dqrele(gdqp); 1419 xfs_qm_dqrele(pdqp); 1420 1421 return error; 1422 } 1423 1424 int 1425 xfs_link( 1426 xfs_inode_t *tdp, 1427 xfs_inode_t *sip, 1428 struct xfs_name *target_name) 1429 { 1430 xfs_mount_t *mp = tdp->i_mount; 1431 xfs_trans_t *tp; 1432 int error; 1433 struct xfs_defer_ops dfops; 1434 xfs_fsblock_t first_block; 1435 int resblks; 1436 1437 trace_xfs_link(tdp, target_name); 1438 1439 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1440 1441 if (XFS_FORCED_SHUTDOWN(mp)) 1442 return -EIO; 1443 1444 error = xfs_qm_dqattach(sip, 0); 1445 if (error) 1446 goto std_return; 1447 1448 error = xfs_qm_dqattach(tdp, 0); 1449 if (error) 1450 goto std_return; 1451 1452 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1453 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1454 if (error == -ENOSPC) { 1455 resblks = 0; 1456 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1457 } 1458 if (error) 1459 goto std_return; 1460 1461 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL); 1462 1463 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1464 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1465 1466 /* 1467 * If we are using project inheritance, we only allow hard link 1468 * creation in our tree when the project IDs are the same; else 1469 * the tree quota mechanism could be circumvented. 1470 */ 1471 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1472 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1473 error = -EXDEV; 1474 goto error_return; 1475 } 1476 1477 if (!resblks) { 1478 error = xfs_dir_canenter(tp, tdp, target_name); 1479 if (error) 1480 goto error_return; 1481 } 1482 1483 xfs_defer_init(&dfops, &first_block); 1484 1485 /* 1486 * Handle initial link state of O_TMPFILE inode 1487 */ 1488 if (VFS_I(sip)->i_nlink == 0) { 1489 error = xfs_iunlink_remove(tp, sip); 1490 if (error) 1491 goto error_return; 1492 } 1493 1494 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1495 &first_block, &dfops, resblks); 1496 if (error) 1497 goto error_return; 1498 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1499 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1500 1501 error = xfs_bumplink(tp, sip); 1502 if (error) 1503 goto error_return; 1504 1505 /* 1506 * If this is a synchronous mount, make sure that the 1507 * link transaction goes to disk before returning to 1508 * the user. 1509 */ 1510 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1511 xfs_trans_set_sync(tp); 1512 1513 error = xfs_defer_finish(&tp, &dfops, NULL); 1514 if (error) { 1515 xfs_defer_cancel(&dfops); 1516 goto error_return; 1517 } 1518 1519 return xfs_trans_commit(tp); 1520 1521 error_return: 1522 xfs_trans_cancel(tp); 1523 std_return: 1524 return error; 1525 } 1526 1527 /* 1528 * Free up the underlying blocks past new_size. The new size must be smaller 1529 * than the current size. This routine can be used both for the attribute and 1530 * data fork, and does not modify the inode size, which is left to the caller. 1531 * 1532 * The transaction passed to this routine must have made a permanent log 1533 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1534 * given transaction and start new ones, so make sure everything involved in 1535 * the transaction is tidy before calling here. Some transaction will be 1536 * returned to the caller to be committed. The incoming transaction must 1537 * already include the inode, and both inode locks must be held exclusively. 1538 * The inode must also be "held" within the transaction. On return the inode 1539 * will be "held" within the returned transaction. This routine does NOT 1540 * require any disk space to be reserved for it within the transaction. 1541 * 1542 * If we get an error, we must return with the inode locked and linked into the 1543 * current transaction. This keeps things simple for the higher level code, 1544 * because it always knows that the inode is locked and held in the transaction 1545 * that returns to it whether errors occur or not. We don't mark the inode 1546 * dirty on error so that transactions can be easily aborted if possible. 1547 */ 1548 int 1549 xfs_itruncate_extents( 1550 struct xfs_trans **tpp, 1551 struct xfs_inode *ip, 1552 int whichfork, 1553 xfs_fsize_t new_size) 1554 { 1555 struct xfs_mount *mp = ip->i_mount; 1556 struct xfs_trans *tp = *tpp; 1557 struct xfs_defer_ops dfops; 1558 xfs_fsblock_t first_block; 1559 xfs_fileoff_t first_unmap_block; 1560 xfs_fileoff_t last_block; 1561 xfs_filblks_t unmap_len; 1562 int error = 0; 1563 int done = 0; 1564 1565 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1566 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1567 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1568 ASSERT(new_size <= XFS_ISIZE(ip)); 1569 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1570 ASSERT(ip->i_itemp != NULL); 1571 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1572 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1573 1574 trace_xfs_itruncate_extents_start(ip, new_size); 1575 1576 /* 1577 * Since it is possible for space to become allocated beyond 1578 * the end of the file (in a crash where the space is allocated 1579 * but the inode size is not yet updated), simply remove any 1580 * blocks which show up between the new EOF and the maximum 1581 * possible file size. If the first block to be removed is 1582 * beyond the maximum file size (ie it is the same as last_block), 1583 * then there is nothing to do. 1584 */ 1585 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1586 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1587 if (first_unmap_block == last_block) 1588 return 0; 1589 1590 ASSERT(first_unmap_block < last_block); 1591 unmap_len = last_block - first_unmap_block + 1; 1592 while (!done) { 1593 xfs_defer_init(&dfops, &first_block); 1594 error = xfs_bunmapi(tp, ip, 1595 first_unmap_block, unmap_len, 1596 xfs_bmapi_aflag(whichfork), 1597 XFS_ITRUNC_MAX_EXTENTS, 1598 &first_block, &dfops, 1599 &done); 1600 if (error) 1601 goto out_bmap_cancel; 1602 1603 /* 1604 * Duplicate the transaction that has the permanent 1605 * reservation and commit the old transaction. 1606 */ 1607 error = xfs_defer_finish(&tp, &dfops, ip); 1608 if (error) 1609 goto out_bmap_cancel; 1610 1611 error = xfs_trans_roll(&tp, ip); 1612 if (error) 1613 goto out; 1614 } 1615 1616 /* Remove all pending CoW reservations. */ 1617 error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block, 1618 last_block); 1619 if (error) 1620 goto out; 1621 1622 /* 1623 * Clear the reflink flag if we truncated everything. 1624 */ 1625 if (ip->i_d.di_nblocks == 0 && xfs_is_reflink_inode(ip)) { 1626 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1627 xfs_inode_clear_cowblocks_tag(ip); 1628 } 1629 1630 /* 1631 * Always re-log the inode so that our permanent transaction can keep 1632 * on rolling it forward in the log. 1633 */ 1634 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1635 1636 trace_xfs_itruncate_extents_end(ip, new_size); 1637 1638 out: 1639 *tpp = tp; 1640 return error; 1641 out_bmap_cancel: 1642 /* 1643 * If the bunmapi call encounters an error, return to the caller where 1644 * the transaction can be properly aborted. We just need to make sure 1645 * we're not holding any resources that we were not when we came in. 1646 */ 1647 xfs_defer_cancel(&dfops); 1648 goto out; 1649 } 1650 1651 int 1652 xfs_release( 1653 xfs_inode_t *ip) 1654 { 1655 xfs_mount_t *mp = ip->i_mount; 1656 int error; 1657 1658 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1659 return 0; 1660 1661 /* If this is a read-only mount, don't do this (would generate I/O) */ 1662 if (mp->m_flags & XFS_MOUNT_RDONLY) 1663 return 0; 1664 1665 if (!XFS_FORCED_SHUTDOWN(mp)) { 1666 int truncated; 1667 1668 /* 1669 * If we previously truncated this file and removed old data 1670 * in the process, we want to initiate "early" writeout on 1671 * the last close. This is an attempt to combat the notorious 1672 * NULL files problem which is particularly noticeable from a 1673 * truncate down, buffered (re-)write (delalloc), followed by 1674 * a crash. What we are effectively doing here is 1675 * significantly reducing the time window where we'd otherwise 1676 * be exposed to that problem. 1677 */ 1678 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1679 if (truncated) { 1680 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1681 if (ip->i_delayed_blks > 0) { 1682 error = filemap_flush(VFS_I(ip)->i_mapping); 1683 if (error) 1684 return error; 1685 } 1686 } 1687 } 1688 1689 if (VFS_I(ip)->i_nlink == 0) 1690 return 0; 1691 1692 if (xfs_can_free_eofblocks(ip, false)) { 1693 1694 /* 1695 * If we can't get the iolock just skip truncating the blocks 1696 * past EOF because we could deadlock with the mmap_sem 1697 * otherwise. We'll get another chance to drop them once the 1698 * last reference to the inode is dropped, so we'll never leak 1699 * blocks permanently. 1700 * 1701 * Further, check if the inode is being opened, written and 1702 * closed frequently and we have delayed allocation blocks 1703 * outstanding (e.g. streaming writes from the NFS server), 1704 * truncating the blocks past EOF will cause fragmentation to 1705 * occur. 1706 * 1707 * In this case don't do the truncation, either, but we have to 1708 * be careful how we detect this case. Blocks beyond EOF show 1709 * up as i_delayed_blks even when the inode is clean, so we 1710 * need to truncate them away first before checking for a dirty 1711 * release. Hence on the first dirty close we will still remove 1712 * the speculative allocation, but after that we will leave it 1713 * in place. 1714 */ 1715 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1716 return 0; 1717 1718 error = xfs_free_eofblocks(mp, ip, true); 1719 if (error && error != -EAGAIN) 1720 return error; 1721 1722 /* delalloc blocks after truncation means it really is dirty */ 1723 if (ip->i_delayed_blks) 1724 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1725 } 1726 return 0; 1727 } 1728 1729 /* 1730 * xfs_inactive_truncate 1731 * 1732 * Called to perform a truncate when an inode becomes unlinked. 1733 */ 1734 STATIC int 1735 xfs_inactive_truncate( 1736 struct xfs_inode *ip) 1737 { 1738 struct xfs_mount *mp = ip->i_mount; 1739 struct xfs_trans *tp; 1740 int error; 1741 1742 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1743 if (error) { 1744 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1745 return error; 1746 } 1747 1748 xfs_ilock(ip, XFS_ILOCK_EXCL); 1749 xfs_trans_ijoin(tp, ip, 0); 1750 1751 /* 1752 * Log the inode size first to prevent stale data exposure in the event 1753 * of a system crash before the truncate completes. See the related 1754 * comment in xfs_vn_setattr_size() for details. 1755 */ 1756 ip->i_d.di_size = 0; 1757 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1758 1759 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1760 if (error) 1761 goto error_trans_cancel; 1762 1763 ASSERT(ip->i_d.di_nextents == 0); 1764 1765 error = xfs_trans_commit(tp); 1766 if (error) 1767 goto error_unlock; 1768 1769 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1770 return 0; 1771 1772 error_trans_cancel: 1773 xfs_trans_cancel(tp); 1774 error_unlock: 1775 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1776 return error; 1777 } 1778 1779 /* 1780 * xfs_inactive_ifree() 1781 * 1782 * Perform the inode free when an inode is unlinked. 1783 */ 1784 STATIC int 1785 xfs_inactive_ifree( 1786 struct xfs_inode *ip) 1787 { 1788 struct xfs_defer_ops dfops; 1789 xfs_fsblock_t first_block; 1790 struct xfs_mount *mp = ip->i_mount; 1791 struct xfs_trans *tp; 1792 int error; 1793 1794 /* 1795 * We try to use a per-AG reservation for any block needed by the finobt 1796 * tree, but as the finobt feature predates the per-AG reservation 1797 * support a degraded file system might not have enough space for the 1798 * reservation at mount time. In that case try to dip into the reserved 1799 * pool and pray. 1800 * 1801 * Send a warning if the reservation does happen to fail, as the inode 1802 * now remains allocated and sits on the unlinked list until the fs is 1803 * repaired. 1804 */ 1805 if (unlikely(mp->m_inotbt_nores)) { 1806 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1807 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1808 &tp); 1809 } else { 1810 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1811 } 1812 if (error) { 1813 if (error == -ENOSPC) { 1814 xfs_warn_ratelimited(mp, 1815 "Failed to remove inode(s) from unlinked list. " 1816 "Please free space, unmount and run xfs_repair."); 1817 } else { 1818 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1819 } 1820 return error; 1821 } 1822 1823 xfs_ilock(ip, XFS_ILOCK_EXCL); 1824 xfs_trans_ijoin(tp, ip, 0); 1825 1826 xfs_defer_init(&dfops, &first_block); 1827 error = xfs_ifree(tp, ip, &dfops); 1828 if (error) { 1829 /* 1830 * If we fail to free the inode, shut down. The cancel 1831 * might do that, we need to make sure. Otherwise the 1832 * inode might be lost for a long time or forever. 1833 */ 1834 if (!XFS_FORCED_SHUTDOWN(mp)) { 1835 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1836 __func__, error); 1837 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1838 } 1839 xfs_trans_cancel(tp); 1840 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1841 return error; 1842 } 1843 1844 /* 1845 * Credit the quota account(s). The inode is gone. 1846 */ 1847 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1848 1849 /* 1850 * Just ignore errors at this point. There is nothing we can do except 1851 * to try to keep going. Make sure it's not a silent error. 1852 */ 1853 error = xfs_defer_finish(&tp, &dfops, NULL); 1854 if (error) { 1855 xfs_notice(mp, "%s: xfs_defer_finish returned error %d", 1856 __func__, error); 1857 xfs_defer_cancel(&dfops); 1858 } 1859 error = xfs_trans_commit(tp); 1860 if (error) 1861 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1862 __func__, error); 1863 1864 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1865 return 0; 1866 } 1867 1868 /* 1869 * xfs_inactive 1870 * 1871 * This is called when the vnode reference count for the vnode 1872 * goes to zero. If the file has been unlinked, then it must 1873 * now be truncated. Also, we clear all of the read-ahead state 1874 * kept for the inode here since the file is now closed. 1875 */ 1876 void 1877 xfs_inactive( 1878 xfs_inode_t *ip) 1879 { 1880 struct xfs_mount *mp; 1881 int error; 1882 int truncate = 0; 1883 1884 /* 1885 * If the inode is already free, then there can be nothing 1886 * to clean up here. 1887 */ 1888 if (VFS_I(ip)->i_mode == 0) { 1889 ASSERT(ip->i_df.if_real_bytes == 0); 1890 ASSERT(ip->i_df.if_broot_bytes == 0); 1891 return; 1892 } 1893 1894 mp = ip->i_mount; 1895 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1896 1897 /* If this is a read-only mount, don't do this (would generate I/O) */ 1898 if (mp->m_flags & XFS_MOUNT_RDONLY) 1899 return; 1900 1901 if (VFS_I(ip)->i_nlink != 0) { 1902 /* 1903 * force is true because we are evicting an inode from the 1904 * cache. Post-eof blocks must be freed, lest we end up with 1905 * broken free space accounting. 1906 */ 1907 if (xfs_can_free_eofblocks(ip, true)) 1908 xfs_free_eofblocks(mp, ip, false); 1909 1910 return; 1911 } 1912 1913 if (S_ISREG(VFS_I(ip)->i_mode) && 1914 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1915 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1916 truncate = 1; 1917 1918 error = xfs_qm_dqattach(ip, 0); 1919 if (error) 1920 return; 1921 1922 if (S_ISLNK(VFS_I(ip)->i_mode)) 1923 error = xfs_inactive_symlink(ip); 1924 else if (truncate) 1925 error = xfs_inactive_truncate(ip); 1926 if (error) 1927 return; 1928 1929 /* 1930 * If there are attributes associated with the file then blow them away 1931 * now. The code calls a routine that recursively deconstructs the 1932 * attribute fork. If also blows away the in-core attribute fork. 1933 */ 1934 if (XFS_IFORK_Q(ip)) { 1935 error = xfs_attr_inactive(ip); 1936 if (error) 1937 return; 1938 } 1939 1940 ASSERT(!ip->i_afp); 1941 ASSERT(ip->i_d.di_anextents == 0); 1942 ASSERT(ip->i_d.di_forkoff == 0); 1943 1944 /* 1945 * Free the inode. 1946 */ 1947 error = xfs_inactive_ifree(ip); 1948 if (error) 1949 return; 1950 1951 /* 1952 * Release the dquots held by inode, if any. 1953 */ 1954 xfs_qm_dqdetach(ip); 1955 } 1956 1957 /* 1958 * This is called when the inode's link count goes to 0 or we are creating a 1959 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be 1960 * set to true as the link count is dropped to zero by the VFS after we've 1961 * created the file successfully, so we have to add it to the unlinked list 1962 * while the link count is non-zero. 1963 * 1964 * We place the on-disk inode on a list in the AGI. It will be pulled from this 1965 * list when the inode is freed. 1966 */ 1967 STATIC int 1968 xfs_iunlink( 1969 struct xfs_trans *tp, 1970 struct xfs_inode *ip) 1971 { 1972 xfs_mount_t *mp = tp->t_mountp; 1973 xfs_agi_t *agi; 1974 xfs_dinode_t *dip; 1975 xfs_buf_t *agibp; 1976 xfs_buf_t *ibp; 1977 xfs_agino_t agino; 1978 short bucket_index; 1979 int offset; 1980 int error; 1981 1982 ASSERT(VFS_I(ip)->i_mode != 0); 1983 1984 /* 1985 * Get the agi buffer first. It ensures lock ordering 1986 * on the list. 1987 */ 1988 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1989 if (error) 1990 return error; 1991 agi = XFS_BUF_TO_AGI(agibp); 1992 1993 /* 1994 * Get the index into the agi hash table for the 1995 * list this inode will go on. 1996 */ 1997 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1998 ASSERT(agino != 0); 1999 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2000 ASSERT(agi->agi_unlinked[bucket_index]); 2001 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 2002 2003 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 2004 /* 2005 * There is already another inode in the bucket we need 2006 * to add ourselves to. Add us at the front of the list. 2007 * Here we put the head pointer into our next pointer, 2008 * and then we fall through to point the head at us. 2009 */ 2010 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2011 0, 0); 2012 if (error) 2013 return error; 2014 2015 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 2016 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 2017 offset = ip->i_imap.im_boffset + 2018 offsetof(xfs_dinode_t, di_next_unlinked); 2019 2020 /* need to recalc the inode CRC if appropriate */ 2021 xfs_dinode_calc_crc(mp, dip); 2022 2023 xfs_trans_inode_buf(tp, ibp); 2024 xfs_trans_log_buf(tp, ibp, offset, 2025 (offset + sizeof(xfs_agino_t) - 1)); 2026 xfs_inobp_check(mp, ibp); 2027 } 2028 2029 /* 2030 * Point the bucket head pointer at the inode being inserted. 2031 */ 2032 ASSERT(agino != 0); 2033 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 2034 offset = offsetof(xfs_agi_t, agi_unlinked) + 2035 (sizeof(xfs_agino_t) * bucket_index); 2036 xfs_trans_log_buf(tp, agibp, offset, 2037 (offset + sizeof(xfs_agino_t) - 1)); 2038 return 0; 2039 } 2040 2041 /* 2042 * Pull the on-disk inode from the AGI unlinked list. 2043 */ 2044 STATIC int 2045 xfs_iunlink_remove( 2046 xfs_trans_t *tp, 2047 xfs_inode_t *ip) 2048 { 2049 xfs_ino_t next_ino; 2050 xfs_mount_t *mp; 2051 xfs_agi_t *agi; 2052 xfs_dinode_t *dip; 2053 xfs_buf_t *agibp; 2054 xfs_buf_t *ibp; 2055 xfs_agnumber_t agno; 2056 xfs_agino_t agino; 2057 xfs_agino_t next_agino; 2058 xfs_buf_t *last_ibp; 2059 xfs_dinode_t *last_dip = NULL; 2060 short bucket_index; 2061 int offset, last_offset = 0; 2062 int error; 2063 2064 mp = tp->t_mountp; 2065 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2066 2067 /* 2068 * Get the agi buffer first. It ensures lock ordering 2069 * on the list. 2070 */ 2071 error = xfs_read_agi(mp, tp, agno, &agibp); 2072 if (error) 2073 return error; 2074 2075 agi = XFS_BUF_TO_AGI(agibp); 2076 2077 /* 2078 * Get the index into the agi hash table for the 2079 * list this inode will go on. 2080 */ 2081 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2082 ASSERT(agino != 0); 2083 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2084 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 2085 ASSERT(agi->agi_unlinked[bucket_index]); 2086 2087 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2088 /* 2089 * We're at the head of the list. Get the inode's on-disk 2090 * buffer to see if there is anyone after us on the list. 2091 * Only modify our next pointer if it is not already NULLAGINO. 2092 * This saves us the overhead of dealing with the buffer when 2093 * there is no need to change it. 2094 */ 2095 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2096 0, 0); 2097 if (error) { 2098 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2099 __func__, error); 2100 return error; 2101 } 2102 next_agino = be32_to_cpu(dip->di_next_unlinked); 2103 ASSERT(next_agino != 0); 2104 if (next_agino != NULLAGINO) { 2105 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2106 offset = ip->i_imap.im_boffset + 2107 offsetof(xfs_dinode_t, di_next_unlinked); 2108 2109 /* need to recalc the inode CRC if appropriate */ 2110 xfs_dinode_calc_crc(mp, dip); 2111 2112 xfs_trans_inode_buf(tp, ibp); 2113 xfs_trans_log_buf(tp, ibp, offset, 2114 (offset + sizeof(xfs_agino_t) - 1)); 2115 xfs_inobp_check(mp, ibp); 2116 } else { 2117 xfs_trans_brelse(tp, ibp); 2118 } 2119 /* 2120 * Point the bucket head pointer at the next inode. 2121 */ 2122 ASSERT(next_agino != 0); 2123 ASSERT(next_agino != agino); 2124 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2125 offset = offsetof(xfs_agi_t, agi_unlinked) + 2126 (sizeof(xfs_agino_t) * bucket_index); 2127 xfs_trans_log_buf(tp, agibp, offset, 2128 (offset + sizeof(xfs_agino_t) - 1)); 2129 } else { 2130 /* 2131 * We need to search the list for the inode being freed. 2132 */ 2133 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2134 last_ibp = NULL; 2135 while (next_agino != agino) { 2136 struct xfs_imap imap; 2137 2138 if (last_ibp) 2139 xfs_trans_brelse(tp, last_ibp); 2140 2141 imap.im_blkno = 0; 2142 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2143 2144 error = xfs_imap(mp, tp, next_ino, &imap, 0); 2145 if (error) { 2146 xfs_warn(mp, 2147 "%s: xfs_imap returned error %d.", 2148 __func__, error); 2149 return error; 2150 } 2151 2152 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 2153 &last_ibp, 0, 0); 2154 if (error) { 2155 xfs_warn(mp, 2156 "%s: xfs_imap_to_bp returned error %d.", 2157 __func__, error); 2158 return error; 2159 } 2160 2161 last_offset = imap.im_boffset; 2162 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2163 ASSERT(next_agino != NULLAGINO); 2164 ASSERT(next_agino != 0); 2165 } 2166 2167 /* 2168 * Now last_ibp points to the buffer previous to us on the 2169 * unlinked list. Pull us from the list. 2170 */ 2171 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2172 0, 0); 2173 if (error) { 2174 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 2175 __func__, error); 2176 return error; 2177 } 2178 next_agino = be32_to_cpu(dip->di_next_unlinked); 2179 ASSERT(next_agino != 0); 2180 ASSERT(next_agino != agino); 2181 if (next_agino != NULLAGINO) { 2182 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2183 offset = ip->i_imap.im_boffset + 2184 offsetof(xfs_dinode_t, di_next_unlinked); 2185 2186 /* need to recalc the inode CRC if appropriate */ 2187 xfs_dinode_calc_crc(mp, dip); 2188 2189 xfs_trans_inode_buf(tp, ibp); 2190 xfs_trans_log_buf(tp, ibp, offset, 2191 (offset + sizeof(xfs_agino_t) - 1)); 2192 xfs_inobp_check(mp, ibp); 2193 } else { 2194 xfs_trans_brelse(tp, ibp); 2195 } 2196 /* 2197 * Point the previous inode on the list to the next inode. 2198 */ 2199 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2200 ASSERT(next_agino != 0); 2201 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2202 2203 /* need to recalc the inode CRC if appropriate */ 2204 xfs_dinode_calc_crc(mp, last_dip); 2205 2206 xfs_trans_inode_buf(tp, last_ibp); 2207 xfs_trans_log_buf(tp, last_ibp, offset, 2208 (offset + sizeof(xfs_agino_t) - 1)); 2209 xfs_inobp_check(mp, last_ibp); 2210 } 2211 return 0; 2212 } 2213 2214 /* 2215 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2216 * inodes that are in memory - they all must be marked stale and attached to 2217 * the cluster buffer. 2218 */ 2219 STATIC int 2220 xfs_ifree_cluster( 2221 xfs_inode_t *free_ip, 2222 xfs_trans_t *tp, 2223 struct xfs_icluster *xic) 2224 { 2225 xfs_mount_t *mp = free_ip->i_mount; 2226 int blks_per_cluster; 2227 int inodes_per_cluster; 2228 int nbufs; 2229 int i, j; 2230 int ioffset; 2231 xfs_daddr_t blkno; 2232 xfs_buf_t *bp; 2233 xfs_inode_t *ip; 2234 xfs_inode_log_item_t *iip; 2235 xfs_log_item_t *lip; 2236 struct xfs_perag *pag; 2237 xfs_ino_t inum; 2238 2239 inum = xic->first_ino; 2240 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2241 blks_per_cluster = xfs_icluster_size_fsb(mp); 2242 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 2243 nbufs = mp->m_ialloc_blks / blks_per_cluster; 2244 2245 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { 2246 /* 2247 * The allocation bitmap tells us which inodes of the chunk were 2248 * physically allocated. Skip the cluster if an inode falls into 2249 * a sparse region. 2250 */ 2251 ioffset = inum - xic->first_ino; 2252 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2253 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0); 2254 continue; 2255 } 2256 2257 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2258 XFS_INO_TO_AGBNO(mp, inum)); 2259 2260 /* 2261 * We obtain and lock the backing buffer first in the process 2262 * here, as we have to ensure that any dirty inode that we 2263 * can't get the flush lock on is attached to the buffer. 2264 * If we scan the in-memory inodes first, then buffer IO can 2265 * complete before we get a lock on it, and hence we may fail 2266 * to mark all the active inodes on the buffer stale. 2267 */ 2268 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2269 mp->m_bsize * blks_per_cluster, 2270 XBF_UNMAPPED); 2271 2272 if (!bp) 2273 return -ENOMEM; 2274 2275 /* 2276 * This buffer may not have been correctly initialised as we 2277 * didn't read it from disk. That's not important because we are 2278 * only using to mark the buffer as stale in the log, and to 2279 * attach stale cached inodes on it. That means it will never be 2280 * dispatched for IO. If it is, we want to know about it, and we 2281 * want it to fail. We can acheive this by adding a write 2282 * verifier to the buffer. 2283 */ 2284 bp->b_ops = &xfs_inode_buf_ops; 2285 2286 /* 2287 * Walk the inodes already attached to the buffer and mark them 2288 * stale. These will all have the flush locks held, so an 2289 * in-memory inode walk can't lock them. By marking them all 2290 * stale first, we will not attempt to lock them in the loop 2291 * below as the XFS_ISTALE flag will be set. 2292 */ 2293 lip = bp->b_fspriv; 2294 while (lip) { 2295 if (lip->li_type == XFS_LI_INODE) { 2296 iip = (xfs_inode_log_item_t *)lip; 2297 ASSERT(iip->ili_logged == 1); 2298 lip->li_cb = xfs_istale_done; 2299 xfs_trans_ail_copy_lsn(mp->m_ail, 2300 &iip->ili_flush_lsn, 2301 &iip->ili_item.li_lsn); 2302 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2303 } 2304 lip = lip->li_bio_list; 2305 } 2306 2307 2308 /* 2309 * For each inode in memory attempt to add it to the inode 2310 * buffer and set it up for being staled on buffer IO 2311 * completion. This is safe as we've locked out tail pushing 2312 * and flushing by locking the buffer. 2313 * 2314 * We have already marked every inode that was part of a 2315 * transaction stale above, which means there is no point in 2316 * even trying to lock them. 2317 */ 2318 for (i = 0; i < inodes_per_cluster; i++) { 2319 retry: 2320 rcu_read_lock(); 2321 ip = radix_tree_lookup(&pag->pag_ici_root, 2322 XFS_INO_TO_AGINO(mp, (inum + i))); 2323 2324 /* Inode not in memory, nothing to do */ 2325 if (!ip) { 2326 rcu_read_unlock(); 2327 continue; 2328 } 2329 2330 /* 2331 * because this is an RCU protected lookup, we could 2332 * find a recently freed or even reallocated inode 2333 * during the lookup. We need to check under the 2334 * i_flags_lock for a valid inode here. Skip it if it 2335 * is not valid, the wrong inode or stale. 2336 */ 2337 spin_lock(&ip->i_flags_lock); 2338 if (ip->i_ino != inum + i || 2339 __xfs_iflags_test(ip, XFS_ISTALE)) { 2340 spin_unlock(&ip->i_flags_lock); 2341 rcu_read_unlock(); 2342 continue; 2343 } 2344 spin_unlock(&ip->i_flags_lock); 2345 2346 /* 2347 * Don't try to lock/unlock the current inode, but we 2348 * _cannot_ skip the other inodes that we did not find 2349 * in the list attached to the buffer and are not 2350 * already marked stale. If we can't lock it, back off 2351 * and retry. 2352 */ 2353 if (ip != free_ip && 2354 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2355 rcu_read_unlock(); 2356 delay(1); 2357 goto retry; 2358 } 2359 rcu_read_unlock(); 2360 2361 xfs_iflock(ip); 2362 xfs_iflags_set(ip, XFS_ISTALE); 2363 2364 /* 2365 * we don't need to attach clean inodes or those only 2366 * with unlogged changes (which we throw away, anyway). 2367 */ 2368 iip = ip->i_itemp; 2369 if (!iip || xfs_inode_clean(ip)) { 2370 ASSERT(ip != free_ip); 2371 xfs_ifunlock(ip); 2372 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2373 continue; 2374 } 2375 2376 iip->ili_last_fields = iip->ili_fields; 2377 iip->ili_fields = 0; 2378 iip->ili_fsync_fields = 0; 2379 iip->ili_logged = 1; 2380 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2381 &iip->ili_item.li_lsn); 2382 2383 xfs_buf_attach_iodone(bp, xfs_istale_done, 2384 &iip->ili_item); 2385 2386 if (ip != free_ip) 2387 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2388 } 2389 2390 xfs_trans_stale_inode_buf(tp, bp); 2391 xfs_trans_binval(tp, bp); 2392 } 2393 2394 xfs_perag_put(pag); 2395 return 0; 2396 } 2397 2398 /* 2399 * This is called to return an inode to the inode free list. 2400 * The inode should already be truncated to 0 length and have 2401 * no pages associated with it. This routine also assumes that 2402 * the inode is already a part of the transaction. 2403 * 2404 * The on-disk copy of the inode will have been added to the list 2405 * of unlinked inodes in the AGI. We need to remove the inode from 2406 * that list atomically with respect to freeing it here. 2407 */ 2408 int 2409 xfs_ifree( 2410 xfs_trans_t *tp, 2411 xfs_inode_t *ip, 2412 struct xfs_defer_ops *dfops) 2413 { 2414 int error; 2415 struct xfs_icluster xic = { 0 }; 2416 2417 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2418 ASSERT(VFS_I(ip)->i_nlink == 0); 2419 ASSERT(ip->i_d.di_nextents == 0); 2420 ASSERT(ip->i_d.di_anextents == 0); 2421 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2422 ASSERT(ip->i_d.di_nblocks == 0); 2423 2424 /* 2425 * Pull the on-disk inode from the AGI unlinked list. 2426 */ 2427 error = xfs_iunlink_remove(tp, ip); 2428 if (error) 2429 return error; 2430 2431 error = xfs_difree(tp, ip->i_ino, dfops, &xic); 2432 if (error) 2433 return error; 2434 2435 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2436 ip->i_d.di_flags = 0; 2437 ip->i_d.di_dmevmask = 0; 2438 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2439 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2440 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2441 /* 2442 * Bump the generation count so no one will be confused 2443 * by reincarnations of this inode. 2444 */ 2445 VFS_I(ip)->i_generation++; 2446 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2447 2448 if (xic.deleted) 2449 error = xfs_ifree_cluster(ip, tp, &xic); 2450 2451 return error; 2452 } 2453 2454 /* 2455 * This is called to unpin an inode. The caller must have the inode locked 2456 * in at least shared mode so that the buffer cannot be subsequently pinned 2457 * once someone is waiting for it to be unpinned. 2458 */ 2459 static void 2460 xfs_iunpin( 2461 struct xfs_inode *ip) 2462 { 2463 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2464 2465 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2466 2467 /* Give the log a push to start the unpinning I/O */ 2468 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2469 2470 } 2471 2472 static void 2473 __xfs_iunpin_wait( 2474 struct xfs_inode *ip) 2475 { 2476 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2477 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2478 2479 xfs_iunpin(ip); 2480 2481 do { 2482 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2483 if (xfs_ipincount(ip)) 2484 io_schedule(); 2485 } while (xfs_ipincount(ip)); 2486 finish_wait(wq, &wait.wait); 2487 } 2488 2489 void 2490 xfs_iunpin_wait( 2491 struct xfs_inode *ip) 2492 { 2493 if (xfs_ipincount(ip)) 2494 __xfs_iunpin_wait(ip); 2495 } 2496 2497 /* 2498 * Removing an inode from the namespace involves removing the directory entry 2499 * and dropping the link count on the inode. Removing the directory entry can 2500 * result in locking an AGF (directory blocks were freed) and removing a link 2501 * count can result in placing the inode on an unlinked list which results in 2502 * locking an AGI. 2503 * 2504 * The big problem here is that we have an ordering constraint on AGF and AGI 2505 * locking - inode allocation locks the AGI, then can allocate a new extent for 2506 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2507 * removes the inode from the unlinked list, requiring that we lock the AGI 2508 * first, and then freeing the inode can result in an inode chunk being freed 2509 * and hence freeing disk space requiring that we lock an AGF. 2510 * 2511 * Hence the ordering that is imposed by other parts of the code is AGI before 2512 * AGF. This means we cannot remove the directory entry before we drop the inode 2513 * reference count and put it on the unlinked list as this results in a lock 2514 * order of AGF then AGI, and this can deadlock against inode allocation and 2515 * freeing. Therefore we must drop the link counts before we remove the 2516 * directory entry. 2517 * 2518 * This is still safe from a transactional point of view - it is not until we 2519 * get to xfs_defer_finish() that we have the possibility of multiple 2520 * transactions in this operation. Hence as long as we remove the directory 2521 * entry and drop the link count in the first transaction of the remove 2522 * operation, there are no transactional constraints on the ordering here. 2523 */ 2524 int 2525 xfs_remove( 2526 xfs_inode_t *dp, 2527 struct xfs_name *name, 2528 xfs_inode_t *ip) 2529 { 2530 xfs_mount_t *mp = dp->i_mount; 2531 xfs_trans_t *tp = NULL; 2532 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2533 int error = 0; 2534 struct xfs_defer_ops dfops; 2535 xfs_fsblock_t first_block; 2536 uint resblks; 2537 2538 trace_xfs_remove(dp, name); 2539 2540 if (XFS_FORCED_SHUTDOWN(mp)) 2541 return -EIO; 2542 2543 error = xfs_qm_dqattach(dp, 0); 2544 if (error) 2545 goto std_return; 2546 2547 error = xfs_qm_dqattach(ip, 0); 2548 if (error) 2549 goto std_return; 2550 2551 /* 2552 * We try to get the real space reservation first, 2553 * allowing for directory btree deletion(s) implying 2554 * possible bmap insert(s). If we can't get the space 2555 * reservation then we use 0 instead, and avoid the bmap 2556 * btree insert(s) in the directory code by, if the bmap 2557 * insert tries to happen, instead trimming the LAST 2558 * block from the directory. 2559 */ 2560 resblks = XFS_REMOVE_SPACE_RES(mp); 2561 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2562 if (error == -ENOSPC) { 2563 resblks = 0; 2564 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2565 &tp); 2566 } 2567 if (error) { 2568 ASSERT(error != -ENOSPC); 2569 goto std_return; 2570 } 2571 2572 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL); 2573 2574 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2575 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2576 2577 /* 2578 * If we're removing a directory perform some additional validation. 2579 */ 2580 if (is_dir) { 2581 ASSERT(VFS_I(ip)->i_nlink >= 2); 2582 if (VFS_I(ip)->i_nlink != 2) { 2583 error = -ENOTEMPTY; 2584 goto out_trans_cancel; 2585 } 2586 if (!xfs_dir_isempty(ip)) { 2587 error = -ENOTEMPTY; 2588 goto out_trans_cancel; 2589 } 2590 2591 /* Drop the link from ip's "..". */ 2592 error = xfs_droplink(tp, dp); 2593 if (error) 2594 goto out_trans_cancel; 2595 2596 /* Drop the "." link from ip to self. */ 2597 error = xfs_droplink(tp, ip); 2598 if (error) 2599 goto out_trans_cancel; 2600 } else { 2601 /* 2602 * When removing a non-directory we need to log the parent 2603 * inode here. For a directory this is done implicitly 2604 * by the xfs_droplink call for the ".." entry. 2605 */ 2606 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2607 } 2608 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2609 2610 /* Drop the link from dp to ip. */ 2611 error = xfs_droplink(tp, ip); 2612 if (error) 2613 goto out_trans_cancel; 2614 2615 xfs_defer_init(&dfops, &first_block); 2616 error = xfs_dir_removename(tp, dp, name, ip->i_ino, 2617 &first_block, &dfops, resblks); 2618 if (error) { 2619 ASSERT(error != -ENOENT); 2620 goto out_bmap_cancel; 2621 } 2622 2623 /* 2624 * If this is a synchronous mount, make sure that the 2625 * remove transaction goes to disk before returning to 2626 * the user. 2627 */ 2628 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2629 xfs_trans_set_sync(tp); 2630 2631 error = xfs_defer_finish(&tp, &dfops, NULL); 2632 if (error) 2633 goto out_bmap_cancel; 2634 2635 error = xfs_trans_commit(tp); 2636 if (error) 2637 goto std_return; 2638 2639 if (is_dir && xfs_inode_is_filestream(ip)) 2640 xfs_filestream_deassociate(ip); 2641 2642 return 0; 2643 2644 out_bmap_cancel: 2645 xfs_defer_cancel(&dfops); 2646 out_trans_cancel: 2647 xfs_trans_cancel(tp); 2648 std_return: 2649 return error; 2650 } 2651 2652 /* 2653 * Enter all inodes for a rename transaction into a sorted array. 2654 */ 2655 #define __XFS_SORT_INODES 5 2656 STATIC void 2657 xfs_sort_for_rename( 2658 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2659 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2660 struct xfs_inode *ip1, /* in: inode of old entry */ 2661 struct xfs_inode *ip2, /* in: inode of new entry */ 2662 struct xfs_inode *wip, /* in: whiteout inode */ 2663 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2664 int *num_inodes) /* in/out: inodes in array */ 2665 { 2666 int i, j; 2667 2668 ASSERT(*num_inodes == __XFS_SORT_INODES); 2669 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2670 2671 /* 2672 * i_tab contains a list of pointers to inodes. We initialize 2673 * the table here & we'll sort it. We will then use it to 2674 * order the acquisition of the inode locks. 2675 * 2676 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2677 */ 2678 i = 0; 2679 i_tab[i++] = dp1; 2680 i_tab[i++] = dp2; 2681 i_tab[i++] = ip1; 2682 if (ip2) 2683 i_tab[i++] = ip2; 2684 if (wip) 2685 i_tab[i++] = wip; 2686 *num_inodes = i; 2687 2688 /* 2689 * Sort the elements via bubble sort. (Remember, there are at 2690 * most 5 elements to sort, so this is adequate.) 2691 */ 2692 for (i = 0; i < *num_inodes; i++) { 2693 for (j = 1; j < *num_inodes; j++) { 2694 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2695 struct xfs_inode *temp = i_tab[j]; 2696 i_tab[j] = i_tab[j-1]; 2697 i_tab[j-1] = temp; 2698 } 2699 } 2700 } 2701 } 2702 2703 static int 2704 xfs_finish_rename( 2705 struct xfs_trans *tp, 2706 struct xfs_defer_ops *dfops) 2707 { 2708 int error; 2709 2710 /* 2711 * If this is a synchronous mount, make sure that the rename transaction 2712 * goes to disk before returning to the user. 2713 */ 2714 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2715 xfs_trans_set_sync(tp); 2716 2717 error = xfs_defer_finish(&tp, dfops, NULL); 2718 if (error) { 2719 xfs_defer_cancel(dfops); 2720 xfs_trans_cancel(tp); 2721 return error; 2722 } 2723 2724 return xfs_trans_commit(tp); 2725 } 2726 2727 /* 2728 * xfs_cross_rename() 2729 * 2730 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 2731 */ 2732 STATIC int 2733 xfs_cross_rename( 2734 struct xfs_trans *tp, 2735 struct xfs_inode *dp1, 2736 struct xfs_name *name1, 2737 struct xfs_inode *ip1, 2738 struct xfs_inode *dp2, 2739 struct xfs_name *name2, 2740 struct xfs_inode *ip2, 2741 struct xfs_defer_ops *dfops, 2742 xfs_fsblock_t *first_block, 2743 int spaceres) 2744 { 2745 int error = 0; 2746 int ip1_flags = 0; 2747 int ip2_flags = 0; 2748 int dp2_flags = 0; 2749 2750 /* Swap inode number for dirent in first parent */ 2751 error = xfs_dir_replace(tp, dp1, name1, 2752 ip2->i_ino, 2753 first_block, dfops, spaceres); 2754 if (error) 2755 goto out_trans_abort; 2756 2757 /* Swap inode number for dirent in second parent */ 2758 error = xfs_dir_replace(tp, dp2, name2, 2759 ip1->i_ino, 2760 first_block, dfops, spaceres); 2761 if (error) 2762 goto out_trans_abort; 2763 2764 /* 2765 * If we're renaming one or more directories across different parents, 2766 * update the respective ".." entries (and link counts) to match the new 2767 * parents. 2768 */ 2769 if (dp1 != dp2) { 2770 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2771 2772 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2773 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2774 dp1->i_ino, first_block, 2775 dfops, spaceres); 2776 if (error) 2777 goto out_trans_abort; 2778 2779 /* transfer ip2 ".." reference to dp1 */ 2780 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2781 error = xfs_droplink(tp, dp2); 2782 if (error) 2783 goto out_trans_abort; 2784 error = xfs_bumplink(tp, dp1); 2785 if (error) 2786 goto out_trans_abort; 2787 } 2788 2789 /* 2790 * Although ip1 isn't changed here, userspace needs 2791 * to be warned about the change, so that applications 2792 * relying on it (like backup ones), will properly 2793 * notify the change 2794 */ 2795 ip1_flags |= XFS_ICHGTIME_CHG; 2796 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2797 } 2798 2799 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2800 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2801 dp2->i_ino, first_block, 2802 dfops, spaceres); 2803 if (error) 2804 goto out_trans_abort; 2805 2806 /* transfer ip1 ".." reference to dp2 */ 2807 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2808 error = xfs_droplink(tp, dp1); 2809 if (error) 2810 goto out_trans_abort; 2811 error = xfs_bumplink(tp, dp2); 2812 if (error) 2813 goto out_trans_abort; 2814 } 2815 2816 /* 2817 * Although ip2 isn't changed here, userspace needs 2818 * to be warned about the change, so that applications 2819 * relying on it (like backup ones), will properly 2820 * notify the change 2821 */ 2822 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2823 ip2_flags |= XFS_ICHGTIME_CHG; 2824 } 2825 } 2826 2827 if (ip1_flags) { 2828 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2829 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2830 } 2831 if (ip2_flags) { 2832 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2833 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2834 } 2835 if (dp2_flags) { 2836 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2837 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2838 } 2839 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2840 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2841 return xfs_finish_rename(tp, dfops); 2842 2843 out_trans_abort: 2844 xfs_defer_cancel(dfops); 2845 xfs_trans_cancel(tp); 2846 return error; 2847 } 2848 2849 /* 2850 * xfs_rename_alloc_whiteout() 2851 * 2852 * Return a referenced, unlinked, unlocked inode that that can be used as a 2853 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2854 * crash between allocating the inode and linking it into the rename transaction 2855 * recovery will free the inode and we won't leak it. 2856 */ 2857 static int 2858 xfs_rename_alloc_whiteout( 2859 struct xfs_inode *dp, 2860 struct xfs_inode **wip) 2861 { 2862 struct xfs_inode *tmpfile; 2863 int error; 2864 2865 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile); 2866 if (error) 2867 return error; 2868 2869 /* 2870 * Prepare the tmpfile inode as if it were created through the VFS. 2871 * Otherwise, the link increment paths will complain about nlink 0->1. 2872 * Drop the link count as done by d_tmpfile(), complete the inode setup 2873 * and flag it as linkable. 2874 */ 2875 drop_nlink(VFS_I(tmpfile)); 2876 xfs_setup_iops(tmpfile); 2877 xfs_finish_inode_setup(tmpfile); 2878 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2879 2880 *wip = tmpfile; 2881 return 0; 2882 } 2883 2884 /* 2885 * xfs_rename 2886 */ 2887 int 2888 xfs_rename( 2889 struct xfs_inode *src_dp, 2890 struct xfs_name *src_name, 2891 struct xfs_inode *src_ip, 2892 struct xfs_inode *target_dp, 2893 struct xfs_name *target_name, 2894 struct xfs_inode *target_ip, 2895 unsigned int flags) 2896 { 2897 struct xfs_mount *mp = src_dp->i_mount; 2898 struct xfs_trans *tp; 2899 struct xfs_defer_ops dfops; 2900 xfs_fsblock_t first_block; 2901 struct xfs_inode *wip = NULL; /* whiteout inode */ 2902 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2903 int num_inodes = __XFS_SORT_INODES; 2904 bool new_parent = (src_dp != target_dp); 2905 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 2906 int spaceres; 2907 int error; 2908 2909 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2910 2911 if ((flags & RENAME_EXCHANGE) && !target_ip) 2912 return -EINVAL; 2913 2914 /* 2915 * If we are doing a whiteout operation, allocate the whiteout inode 2916 * we will be placing at the target and ensure the type is set 2917 * appropriately. 2918 */ 2919 if (flags & RENAME_WHITEOUT) { 2920 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 2921 error = xfs_rename_alloc_whiteout(target_dp, &wip); 2922 if (error) 2923 return error; 2924 2925 /* setup target dirent info as whiteout */ 2926 src_name->type = XFS_DIR3_FT_CHRDEV; 2927 } 2928 2929 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 2930 inodes, &num_inodes); 2931 2932 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2933 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 2934 if (error == -ENOSPC) { 2935 spaceres = 0; 2936 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 2937 &tp); 2938 } 2939 if (error) 2940 goto out_release_wip; 2941 2942 /* 2943 * Attach the dquots to the inodes 2944 */ 2945 error = xfs_qm_vop_rename_dqattach(inodes); 2946 if (error) 2947 goto out_trans_cancel; 2948 2949 /* 2950 * Lock all the participating inodes. Depending upon whether 2951 * the target_name exists in the target directory, and 2952 * whether the target directory is the same as the source 2953 * directory, we can lock from 2 to 4 inodes. 2954 */ 2955 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2956 2957 /* 2958 * Join all the inodes to the transaction. From this point on, 2959 * we can rely on either trans_commit or trans_cancel to unlock 2960 * them. 2961 */ 2962 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 2963 if (new_parent) 2964 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 2965 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2966 if (target_ip) 2967 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2968 if (wip) 2969 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 2970 2971 /* 2972 * If we are using project inheritance, we only allow renames 2973 * into our tree when the project IDs are the same; else the 2974 * tree quota mechanism would be circumvented. 2975 */ 2976 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 2977 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 2978 error = -EXDEV; 2979 goto out_trans_cancel; 2980 } 2981 2982 xfs_defer_init(&dfops, &first_block); 2983 2984 /* RENAME_EXCHANGE is unique from here on. */ 2985 if (flags & RENAME_EXCHANGE) 2986 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 2987 target_dp, target_name, target_ip, 2988 &dfops, &first_block, spaceres); 2989 2990 /* 2991 * Set up the target. 2992 */ 2993 if (target_ip == NULL) { 2994 /* 2995 * If there's no space reservation, check the entry will 2996 * fit before actually inserting it. 2997 */ 2998 if (!spaceres) { 2999 error = xfs_dir_canenter(tp, target_dp, target_name); 3000 if (error) 3001 goto out_trans_cancel; 3002 } 3003 /* 3004 * If target does not exist and the rename crosses 3005 * directories, adjust the target directory link count 3006 * to account for the ".." reference from the new entry. 3007 */ 3008 error = xfs_dir_createname(tp, target_dp, target_name, 3009 src_ip->i_ino, &first_block, 3010 &dfops, spaceres); 3011 if (error) 3012 goto out_bmap_cancel; 3013 3014 xfs_trans_ichgtime(tp, target_dp, 3015 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3016 3017 if (new_parent && src_is_directory) { 3018 error = xfs_bumplink(tp, target_dp); 3019 if (error) 3020 goto out_bmap_cancel; 3021 } 3022 } else { /* target_ip != NULL */ 3023 /* 3024 * If target exists and it's a directory, check that both 3025 * target and source are directories and that target can be 3026 * destroyed, or that neither is a directory. 3027 */ 3028 if (S_ISDIR(VFS_I(target_ip)->i_mode)) { 3029 /* 3030 * Make sure target dir is empty. 3031 */ 3032 if (!(xfs_dir_isempty(target_ip)) || 3033 (VFS_I(target_ip)->i_nlink > 2)) { 3034 error = -EEXIST; 3035 goto out_trans_cancel; 3036 } 3037 } 3038 3039 /* 3040 * Link the source inode under the target name. 3041 * If the source inode is a directory and we are moving 3042 * it across directories, its ".." entry will be 3043 * inconsistent until we replace that down below. 3044 * 3045 * In case there is already an entry with the same 3046 * name at the destination directory, remove it first. 3047 */ 3048 error = xfs_dir_replace(tp, target_dp, target_name, 3049 src_ip->i_ino, 3050 &first_block, &dfops, spaceres); 3051 if (error) 3052 goto out_bmap_cancel; 3053 3054 xfs_trans_ichgtime(tp, target_dp, 3055 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3056 3057 /* 3058 * Decrement the link count on the target since the target 3059 * dir no longer points to it. 3060 */ 3061 error = xfs_droplink(tp, target_ip); 3062 if (error) 3063 goto out_bmap_cancel; 3064 3065 if (src_is_directory) { 3066 /* 3067 * Drop the link from the old "." entry. 3068 */ 3069 error = xfs_droplink(tp, target_ip); 3070 if (error) 3071 goto out_bmap_cancel; 3072 } 3073 } /* target_ip != NULL */ 3074 3075 /* 3076 * Remove the source. 3077 */ 3078 if (new_parent && src_is_directory) { 3079 /* 3080 * Rewrite the ".." entry to point to the new 3081 * directory. 3082 */ 3083 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3084 target_dp->i_ino, 3085 &first_block, &dfops, spaceres); 3086 ASSERT(error != -EEXIST); 3087 if (error) 3088 goto out_bmap_cancel; 3089 } 3090 3091 /* 3092 * We always want to hit the ctime on the source inode. 3093 * 3094 * This isn't strictly required by the standards since the source 3095 * inode isn't really being changed, but old unix file systems did 3096 * it and some incremental backup programs won't work without it. 3097 */ 3098 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3099 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3100 3101 /* 3102 * Adjust the link count on src_dp. This is necessary when 3103 * renaming a directory, either within one parent when 3104 * the target existed, or across two parent directories. 3105 */ 3106 if (src_is_directory && (new_parent || target_ip != NULL)) { 3107 3108 /* 3109 * Decrement link count on src_directory since the 3110 * entry that's moved no longer points to it. 3111 */ 3112 error = xfs_droplink(tp, src_dp); 3113 if (error) 3114 goto out_bmap_cancel; 3115 } 3116 3117 /* 3118 * For whiteouts, we only need to update the source dirent with the 3119 * inode number of the whiteout inode rather than removing it 3120 * altogether. 3121 */ 3122 if (wip) { 3123 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3124 &first_block, &dfops, spaceres); 3125 } else 3126 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3127 &first_block, &dfops, spaceres); 3128 if (error) 3129 goto out_bmap_cancel; 3130 3131 /* 3132 * For whiteouts, we need to bump the link count on the whiteout inode. 3133 * This means that failures all the way up to this point leave the inode 3134 * on the unlinked list and so cleanup is a simple matter of dropping 3135 * the remaining reference to it. If we fail here after bumping the link 3136 * count, we're shutting down the filesystem so we'll never see the 3137 * intermediate state on disk. 3138 */ 3139 if (wip) { 3140 ASSERT(VFS_I(wip)->i_nlink == 0); 3141 error = xfs_bumplink(tp, wip); 3142 if (error) 3143 goto out_bmap_cancel; 3144 error = xfs_iunlink_remove(tp, wip); 3145 if (error) 3146 goto out_bmap_cancel; 3147 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); 3148 3149 /* 3150 * Now we have a real link, clear the "I'm a tmpfile" state 3151 * flag from the inode so it doesn't accidentally get misused in 3152 * future. 3153 */ 3154 VFS_I(wip)->i_state &= ~I_LINKABLE; 3155 } 3156 3157 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3158 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3159 if (new_parent) 3160 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3161 3162 error = xfs_finish_rename(tp, &dfops); 3163 if (wip) 3164 IRELE(wip); 3165 return error; 3166 3167 out_bmap_cancel: 3168 xfs_defer_cancel(&dfops); 3169 out_trans_cancel: 3170 xfs_trans_cancel(tp); 3171 out_release_wip: 3172 if (wip) 3173 IRELE(wip); 3174 return error; 3175 } 3176 3177 STATIC int 3178 xfs_iflush_cluster( 3179 struct xfs_inode *ip, 3180 struct xfs_buf *bp) 3181 { 3182 struct xfs_mount *mp = ip->i_mount; 3183 struct xfs_perag *pag; 3184 unsigned long first_index, mask; 3185 unsigned long inodes_per_cluster; 3186 int cilist_size; 3187 struct xfs_inode **cilist; 3188 struct xfs_inode *cip; 3189 int nr_found; 3190 int clcount = 0; 3191 int bufwasdelwri; 3192 int i; 3193 3194 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3195 3196 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 3197 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 3198 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); 3199 if (!cilist) 3200 goto out_put; 3201 3202 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); 3203 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3204 rcu_read_lock(); 3205 /* really need a gang lookup range call here */ 3206 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, 3207 first_index, inodes_per_cluster); 3208 if (nr_found == 0) 3209 goto out_free; 3210 3211 for (i = 0; i < nr_found; i++) { 3212 cip = cilist[i]; 3213 if (cip == ip) 3214 continue; 3215 3216 /* 3217 * because this is an RCU protected lookup, we could find a 3218 * recently freed or even reallocated inode during the lookup. 3219 * We need to check under the i_flags_lock for a valid inode 3220 * here. Skip it if it is not valid or the wrong inode. 3221 */ 3222 spin_lock(&cip->i_flags_lock); 3223 if (!cip->i_ino || 3224 __xfs_iflags_test(cip, XFS_ISTALE)) { 3225 spin_unlock(&cip->i_flags_lock); 3226 continue; 3227 } 3228 3229 /* 3230 * Once we fall off the end of the cluster, no point checking 3231 * any more inodes in the list because they will also all be 3232 * outside the cluster. 3233 */ 3234 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { 3235 spin_unlock(&cip->i_flags_lock); 3236 break; 3237 } 3238 spin_unlock(&cip->i_flags_lock); 3239 3240 /* 3241 * Do an un-protected check to see if the inode is dirty and 3242 * is a candidate for flushing. These checks will be repeated 3243 * later after the appropriate locks are acquired. 3244 */ 3245 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) 3246 continue; 3247 3248 /* 3249 * Try to get locks. If any are unavailable or it is pinned, 3250 * then this inode cannot be flushed and is skipped. 3251 */ 3252 3253 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) 3254 continue; 3255 if (!xfs_iflock_nowait(cip)) { 3256 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3257 continue; 3258 } 3259 if (xfs_ipincount(cip)) { 3260 xfs_ifunlock(cip); 3261 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3262 continue; 3263 } 3264 3265 3266 /* 3267 * Check the inode number again, just to be certain we are not 3268 * racing with freeing in xfs_reclaim_inode(). See the comments 3269 * in that function for more information as to why the initial 3270 * check is not sufficient. 3271 */ 3272 if (!cip->i_ino) { 3273 xfs_ifunlock(cip); 3274 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3275 continue; 3276 } 3277 3278 /* 3279 * arriving here means that this inode can be flushed. First 3280 * re-check that it's dirty before flushing. 3281 */ 3282 if (!xfs_inode_clean(cip)) { 3283 int error; 3284 error = xfs_iflush_int(cip, bp); 3285 if (error) { 3286 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3287 goto cluster_corrupt_out; 3288 } 3289 clcount++; 3290 } else { 3291 xfs_ifunlock(cip); 3292 } 3293 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3294 } 3295 3296 if (clcount) { 3297 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3298 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3299 } 3300 3301 out_free: 3302 rcu_read_unlock(); 3303 kmem_free(cilist); 3304 out_put: 3305 xfs_perag_put(pag); 3306 return 0; 3307 3308 3309 cluster_corrupt_out: 3310 /* 3311 * Corruption detected in the clustering loop. Invalidate the 3312 * inode buffer and shut down the filesystem. 3313 */ 3314 rcu_read_unlock(); 3315 /* 3316 * Clean up the buffer. If it was delwri, just release it -- 3317 * brelse can handle it with no problems. If not, shut down the 3318 * filesystem before releasing the buffer. 3319 */ 3320 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); 3321 if (bufwasdelwri) 3322 xfs_buf_relse(bp); 3323 3324 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3325 3326 if (!bufwasdelwri) { 3327 /* 3328 * Just like incore_relse: if we have b_iodone functions, 3329 * mark the buffer as an error and call them. Otherwise 3330 * mark it as stale and brelse. 3331 */ 3332 if (bp->b_iodone) { 3333 bp->b_flags &= ~XBF_DONE; 3334 xfs_buf_stale(bp); 3335 xfs_buf_ioerror(bp, -EIO); 3336 xfs_buf_ioend(bp); 3337 } else { 3338 xfs_buf_stale(bp); 3339 xfs_buf_relse(bp); 3340 } 3341 } 3342 3343 /* 3344 * Unlocks the flush lock 3345 */ 3346 xfs_iflush_abort(cip, false); 3347 kmem_free(cilist); 3348 xfs_perag_put(pag); 3349 return -EFSCORRUPTED; 3350 } 3351 3352 /* 3353 * Flush dirty inode metadata into the backing buffer. 3354 * 3355 * The caller must have the inode lock and the inode flush lock held. The 3356 * inode lock will still be held upon return to the caller, and the inode 3357 * flush lock will be released after the inode has reached the disk. 3358 * 3359 * The caller must write out the buffer returned in *bpp and release it. 3360 */ 3361 int 3362 xfs_iflush( 3363 struct xfs_inode *ip, 3364 struct xfs_buf **bpp) 3365 { 3366 struct xfs_mount *mp = ip->i_mount; 3367 struct xfs_buf *bp = NULL; 3368 struct xfs_dinode *dip; 3369 int error; 3370 3371 XFS_STATS_INC(mp, xs_iflush_count); 3372 3373 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3374 ASSERT(xfs_isiflocked(ip)); 3375 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3376 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3377 3378 *bpp = NULL; 3379 3380 xfs_iunpin_wait(ip); 3381 3382 /* 3383 * For stale inodes we cannot rely on the backing buffer remaining 3384 * stale in cache for the remaining life of the stale inode and so 3385 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3386 * inodes below. We have to check this after ensuring the inode is 3387 * unpinned so that it is safe to reclaim the stale inode after the 3388 * flush call. 3389 */ 3390 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3391 xfs_ifunlock(ip); 3392 return 0; 3393 } 3394 3395 /* 3396 * This may have been unpinned because the filesystem is shutting 3397 * down forcibly. If that's the case we must not write this inode 3398 * to disk, because the log record didn't make it to disk. 3399 * 3400 * We also have to remove the log item from the AIL in this case, 3401 * as we wait for an empty AIL as part of the unmount process. 3402 */ 3403 if (XFS_FORCED_SHUTDOWN(mp)) { 3404 error = -EIO; 3405 goto abort_out; 3406 } 3407 3408 /* 3409 * Get the buffer containing the on-disk inode. We are doing a try-lock 3410 * operation here, so we may get an EAGAIN error. In that case, we 3411 * simply want to return with the inode still dirty. 3412 * 3413 * If we get any other error, we effectively have a corruption situation 3414 * and we cannot flush the inode, so we treat it the same as failing 3415 * xfs_iflush_int(). 3416 */ 3417 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3418 0); 3419 if (error == -EAGAIN) { 3420 xfs_ifunlock(ip); 3421 return error; 3422 } 3423 if (error) 3424 goto corrupt_out; 3425 3426 /* 3427 * First flush out the inode that xfs_iflush was called with. 3428 */ 3429 error = xfs_iflush_int(ip, bp); 3430 if (error) 3431 goto corrupt_out; 3432 3433 /* 3434 * If the buffer is pinned then push on the log now so we won't 3435 * get stuck waiting in the write for too long. 3436 */ 3437 if (xfs_buf_ispinned(bp)) 3438 xfs_log_force(mp, 0); 3439 3440 /* 3441 * inode clustering: 3442 * see if other inodes can be gathered into this write 3443 */ 3444 error = xfs_iflush_cluster(ip, bp); 3445 if (error) 3446 goto cluster_corrupt_out; 3447 3448 *bpp = bp; 3449 return 0; 3450 3451 corrupt_out: 3452 if (bp) 3453 xfs_buf_relse(bp); 3454 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3455 cluster_corrupt_out: 3456 error = -EFSCORRUPTED; 3457 abort_out: 3458 /* 3459 * Unlocks the flush lock 3460 */ 3461 xfs_iflush_abort(ip, false); 3462 return error; 3463 } 3464 3465 STATIC int 3466 xfs_iflush_int( 3467 struct xfs_inode *ip, 3468 struct xfs_buf *bp) 3469 { 3470 struct xfs_inode_log_item *iip = ip->i_itemp; 3471 struct xfs_dinode *dip; 3472 struct xfs_mount *mp = ip->i_mount; 3473 3474 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3475 ASSERT(xfs_isiflocked(ip)); 3476 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3477 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3478 ASSERT(iip != NULL && iip->ili_fields != 0); 3479 ASSERT(ip->i_d.di_version > 1); 3480 3481 /* set *dip = inode's place in the buffer */ 3482 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3483 3484 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3485 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3486 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3487 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3488 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3489 goto corrupt_out; 3490 } 3491 if (S_ISREG(VFS_I(ip)->i_mode)) { 3492 if (XFS_TEST_ERROR( 3493 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3494 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3495 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3496 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3497 "%s: Bad regular inode %Lu, ptr 0x%p", 3498 __func__, ip->i_ino, ip); 3499 goto corrupt_out; 3500 } 3501 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3502 if (XFS_TEST_ERROR( 3503 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3504 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3505 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3506 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3507 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3508 "%s: Bad directory inode %Lu, ptr 0x%p", 3509 __func__, ip->i_ino, ip); 3510 goto corrupt_out; 3511 } 3512 } 3513 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3514 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3515 XFS_RANDOM_IFLUSH_5)) { 3516 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3517 "%s: detected corrupt incore inode %Lu, " 3518 "total extents = %d, nblocks = %Ld, ptr 0x%p", 3519 __func__, ip->i_ino, 3520 ip->i_d.di_nextents + ip->i_d.di_anextents, 3521 ip->i_d.di_nblocks, ip); 3522 goto corrupt_out; 3523 } 3524 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3525 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3526 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3527 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3528 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3529 goto corrupt_out; 3530 } 3531 3532 /* 3533 * Inode item log recovery for v2 inodes are dependent on the 3534 * di_flushiter count for correct sequencing. We bump the flush 3535 * iteration count so we can detect flushes which postdate a log record 3536 * during recovery. This is redundant as we now log every change and 3537 * hence this can't happen but we need to still do it to ensure 3538 * backwards compatibility with old kernels that predate logging all 3539 * inode changes. 3540 */ 3541 if (ip->i_d.di_version < 3) 3542 ip->i_d.di_flushiter++; 3543 3544 /* 3545 * Copy the dirty parts of the inode into the on-disk inode. We always 3546 * copy out the core of the inode, because if the inode is dirty at all 3547 * the core must be. 3548 */ 3549 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3550 3551 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3552 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3553 ip->i_d.di_flushiter = 0; 3554 3555 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3556 if (XFS_IFORK_Q(ip)) 3557 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3558 xfs_inobp_check(mp, bp); 3559 3560 /* 3561 * We've recorded everything logged in the inode, so we'd like to clear 3562 * the ili_fields bits so we don't log and flush things unnecessarily. 3563 * However, we can't stop logging all this information until the data 3564 * we've copied into the disk buffer is written to disk. If we did we 3565 * might overwrite the copy of the inode in the log with all the data 3566 * after re-logging only part of it, and in the face of a crash we 3567 * wouldn't have all the data we need to recover. 3568 * 3569 * What we do is move the bits to the ili_last_fields field. When 3570 * logging the inode, these bits are moved back to the ili_fields field. 3571 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3572 * know that the information those bits represent is permanently on 3573 * disk. As long as the flush completes before the inode is logged 3574 * again, then both ili_fields and ili_last_fields will be cleared. 3575 * 3576 * We can play with the ili_fields bits here, because the inode lock 3577 * must be held exclusively in order to set bits there and the flush 3578 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3579 * done routine can tell whether or not to look in the AIL. Also, store 3580 * the current LSN of the inode so that we can tell whether the item has 3581 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3582 * need the AIL lock, because it is a 64 bit value that cannot be read 3583 * atomically. 3584 */ 3585 iip->ili_last_fields = iip->ili_fields; 3586 iip->ili_fields = 0; 3587 iip->ili_fsync_fields = 0; 3588 iip->ili_logged = 1; 3589 3590 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3591 &iip->ili_item.li_lsn); 3592 3593 /* 3594 * Attach the function xfs_iflush_done to the inode's 3595 * buffer. This will remove the inode from the AIL 3596 * and unlock the inode's flush lock when the inode is 3597 * completely written to disk. 3598 */ 3599 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3600 3601 /* generate the checksum. */ 3602 xfs_dinode_calc_crc(mp, dip); 3603 3604 ASSERT(bp->b_fspriv != NULL); 3605 ASSERT(bp->b_iodone != NULL); 3606 return 0; 3607 3608 corrupt_out: 3609 return -EFSCORRUPTED; 3610 } 3611