1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_dir2.h" 18 #include "xfs_attr.h" 19 #include "xfs_bit.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_trans.h" 22 #include "xfs_buf_item.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_iunlink_item.h" 25 #include "xfs_ialloc.h" 26 #include "xfs_bmap.h" 27 #include "xfs_bmap_util.h" 28 #include "xfs_errortag.h" 29 #include "xfs_error.h" 30 #include "xfs_quota.h" 31 #include "xfs_filestream.h" 32 #include "xfs_trace.h" 33 #include "xfs_icache.h" 34 #include "xfs_symlink.h" 35 #include "xfs_trans_priv.h" 36 #include "xfs_log.h" 37 #include "xfs_bmap_btree.h" 38 #include "xfs_reflink.h" 39 #include "xfs_ag.h" 40 #include "xfs_log_priv.h" 41 #include "xfs_health.h" 42 #include "xfs_pnfs.h" 43 #include "xfs_parent.h" 44 #include "xfs_xattr.h" 45 #include "xfs_inode_util.h" 46 47 struct kmem_cache *xfs_inode_cache; 48 49 /* 50 * These two are wrapper routines around the xfs_ilock() routine used to 51 * centralize some grungy code. They are used in places that wish to lock the 52 * inode solely for reading the extents. The reason these places can't just 53 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 54 * bringing in of the extents from disk for a file in b-tree format. If the 55 * inode is in b-tree format, then we need to lock the inode exclusively until 56 * the extents are read in. Locking it exclusively all the time would limit 57 * our parallelism unnecessarily, though. What we do instead is check to see 58 * if the extents have been read in yet, and only lock the inode exclusively 59 * if they have not. 60 * 61 * The functions return a value which should be given to the corresponding 62 * xfs_iunlock() call. 63 */ 64 uint 65 xfs_ilock_data_map_shared( 66 struct xfs_inode *ip) 67 { 68 uint lock_mode = XFS_ILOCK_SHARED; 69 70 if (xfs_need_iread_extents(&ip->i_df)) 71 lock_mode = XFS_ILOCK_EXCL; 72 xfs_ilock(ip, lock_mode); 73 return lock_mode; 74 } 75 76 uint 77 xfs_ilock_attr_map_shared( 78 struct xfs_inode *ip) 79 { 80 uint lock_mode = XFS_ILOCK_SHARED; 81 82 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) 83 lock_mode = XFS_ILOCK_EXCL; 84 xfs_ilock(ip, lock_mode); 85 return lock_mode; 86 } 87 88 /* 89 * You can't set both SHARED and EXCL for the same lock, 90 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED, 91 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values 92 * to set in lock_flags. 93 */ 94 static inline void 95 xfs_lock_flags_assert( 96 uint lock_flags) 97 { 98 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 99 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 100 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 101 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 102 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 103 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 104 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 105 ASSERT(lock_flags != 0); 106 } 107 108 /* 109 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 110 * multi-reader locks: invalidate_lock and the i_lock. This routine allows 111 * various combinations of the locks to be obtained. 112 * 113 * The 3 locks should always be ordered so that the IO lock is obtained first, 114 * the mmap lock second and the ilock last in order to prevent deadlock. 115 * 116 * Basic locking order: 117 * 118 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock 119 * 120 * mmap_lock locking order: 121 * 122 * i_rwsem -> page lock -> mmap_lock 123 * mmap_lock -> invalidate_lock -> page_lock 124 * 125 * The difference in mmap_lock locking order mean that we cannot hold the 126 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths 127 * can fault in pages during copy in/out (for buffered IO) or require the 128 * mmap_lock in get_user_pages() to map the user pages into the kernel address 129 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page 130 * fault because page faults already hold the mmap_lock. 131 * 132 * Hence to serialise fully against both syscall and mmap based IO, we need to 133 * take both the i_rwsem and the invalidate_lock. These locks should *only* be 134 * both taken in places where we need to invalidate the page cache in a race 135 * free manner (e.g. truncate, hole punch and other extent manipulation 136 * functions). 137 */ 138 void 139 xfs_ilock( 140 xfs_inode_t *ip, 141 uint lock_flags) 142 { 143 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 144 145 xfs_lock_flags_assert(lock_flags); 146 147 if (lock_flags & XFS_IOLOCK_EXCL) { 148 down_write_nested(&VFS_I(ip)->i_rwsem, 149 XFS_IOLOCK_DEP(lock_flags)); 150 } else if (lock_flags & XFS_IOLOCK_SHARED) { 151 down_read_nested(&VFS_I(ip)->i_rwsem, 152 XFS_IOLOCK_DEP(lock_flags)); 153 } 154 155 if (lock_flags & XFS_MMAPLOCK_EXCL) { 156 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 157 XFS_MMAPLOCK_DEP(lock_flags)); 158 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 159 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 160 XFS_MMAPLOCK_DEP(lock_flags)); 161 } 162 163 if (lock_flags & XFS_ILOCK_EXCL) 164 down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 165 else if (lock_flags & XFS_ILOCK_SHARED) 166 down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 167 } 168 169 /* 170 * This is just like xfs_ilock(), except that the caller 171 * is guaranteed not to sleep. It returns 1 if it gets 172 * the requested locks and 0 otherwise. If the IO lock is 173 * obtained but the inode lock cannot be, then the IO lock 174 * is dropped before returning. 175 * 176 * ip -- the inode being locked 177 * lock_flags -- this parameter indicates the inode's locks to be 178 * to be locked. See the comment for xfs_ilock() for a list 179 * of valid values. 180 */ 181 int 182 xfs_ilock_nowait( 183 xfs_inode_t *ip, 184 uint lock_flags) 185 { 186 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 187 188 xfs_lock_flags_assert(lock_flags); 189 190 if (lock_flags & XFS_IOLOCK_EXCL) { 191 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 192 goto out; 193 } else if (lock_flags & XFS_IOLOCK_SHARED) { 194 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 195 goto out; 196 } 197 198 if (lock_flags & XFS_MMAPLOCK_EXCL) { 199 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 200 goto out_undo_iolock; 201 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 202 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 203 goto out_undo_iolock; 204 } 205 206 if (lock_flags & XFS_ILOCK_EXCL) { 207 if (!down_write_trylock(&ip->i_lock)) 208 goto out_undo_mmaplock; 209 } else if (lock_flags & XFS_ILOCK_SHARED) { 210 if (!down_read_trylock(&ip->i_lock)) 211 goto out_undo_mmaplock; 212 } 213 return 1; 214 215 out_undo_mmaplock: 216 if (lock_flags & XFS_MMAPLOCK_EXCL) 217 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 218 else if (lock_flags & XFS_MMAPLOCK_SHARED) 219 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 220 out_undo_iolock: 221 if (lock_flags & XFS_IOLOCK_EXCL) 222 up_write(&VFS_I(ip)->i_rwsem); 223 else if (lock_flags & XFS_IOLOCK_SHARED) 224 up_read(&VFS_I(ip)->i_rwsem); 225 out: 226 return 0; 227 } 228 229 /* 230 * xfs_iunlock() is used to drop the inode locks acquired with 231 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 232 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 233 * that we know which locks to drop. 234 * 235 * ip -- the inode being unlocked 236 * lock_flags -- this parameter indicates the inode's locks to be 237 * to be unlocked. See the comment for xfs_ilock() for a list 238 * of valid values for this parameter. 239 * 240 */ 241 void 242 xfs_iunlock( 243 xfs_inode_t *ip, 244 uint lock_flags) 245 { 246 xfs_lock_flags_assert(lock_flags); 247 248 if (lock_flags & XFS_IOLOCK_EXCL) 249 up_write(&VFS_I(ip)->i_rwsem); 250 else if (lock_flags & XFS_IOLOCK_SHARED) 251 up_read(&VFS_I(ip)->i_rwsem); 252 253 if (lock_flags & XFS_MMAPLOCK_EXCL) 254 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 255 else if (lock_flags & XFS_MMAPLOCK_SHARED) 256 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 257 258 if (lock_flags & XFS_ILOCK_EXCL) 259 up_write(&ip->i_lock); 260 else if (lock_flags & XFS_ILOCK_SHARED) 261 up_read(&ip->i_lock); 262 263 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 264 } 265 266 /* 267 * give up write locks. the i/o lock cannot be held nested 268 * if it is being demoted. 269 */ 270 void 271 xfs_ilock_demote( 272 xfs_inode_t *ip, 273 uint lock_flags) 274 { 275 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 276 ASSERT((lock_flags & 277 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 278 279 if (lock_flags & XFS_ILOCK_EXCL) 280 downgrade_write(&ip->i_lock); 281 if (lock_flags & XFS_MMAPLOCK_EXCL) 282 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); 283 if (lock_flags & XFS_IOLOCK_EXCL) 284 downgrade_write(&VFS_I(ip)->i_rwsem); 285 286 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 287 } 288 289 void 290 xfs_assert_ilocked( 291 struct xfs_inode *ip, 292 uint lock_flags) 293 { 294 /* 295 * Sometimes we assert the ILOCK is held exclusively, but we're in 296 * a workqueue, so lockdep doesn't know we're the owner. 297 */ 298 if (lock_flags & XFS_ILOCK_SHARED) 299 rwsem_assert_held(&ip->i_lock); 300 else if (lock_flags & XFS_ILOCK_EXCL) 301 rwsem_assert_held_write_nolockdep(&ip->i_lock); 302 303 if (lock_flags & XFS_MMAPLOCK_SHARED) 304 rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock); 305 else if (lock_flags & XFS_MMAPLOCK_EXCL) 306 rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock); 307 308 if (lock_flags & XFS_IOLOCK_SHARED) 309 rwsem_assert_held(&VFS_I(ip)->i_rwsem); 310 else if (lock_flags & XFS_IOLOCK_EXCL) 311 rwsem_assert_held_write(&VFS_I(ip)->i_rwsem); 312 } 313 314 /* 315 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 316 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 317 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 318 * errors and warnings. 319 */ 320 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 321 static bool 322 xfs_lockdep_subclass_ok( 323 int subclass) 324 { 325 return subclass < MAX_LOCKDEP_SUBCLASSES; 326 } 327 #else 328 #define xfs_lockdep_subclass_ok(subclass) (true) 329 #endif 330 331 /* 332 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 333 * value. This can be called for any type of inode lock combination, including 334 * parent locking. Care must be taken to ensure we don't overrun the subclass 335 * storage fields in the class mask we build. 336 */ 337 static inline uint 338 xfs_lock_inumorder( 339 uint lock_mode, 340 uint subclass) 341 { 342 uint class = 0; 343 344 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 345 XFS_ILOCK_RTSUM))); 346 ASSERT(xfs_lockdep_subclass_ok(subclass)); 347 348 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 349 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 350 class += subclass << XFS_IOLOCK_SHIFT; 351 } 352 353 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 354 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 355 class += subclass << XFS_MMAPLOCK_SHIFT; 356 } 357 358 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 359 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 360 class += subclass << XFS_ILOCK_SHIFT; 361 } 362 363 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 364 } 365 366 /* 367 * The following routine will lock n inodes in exclusive mode. We assume the 368 * caller calls us with the inodes in i_ino order. 369 * 370 * We need to detect deadlock where an inode that we lock is in the AIL and we 371 * start waiting for another inode that is locked by a thread in a long running 372 * transaction (such as truncate). This can result in deadlock since the long 373 * running trans might need to wait for the inode we just locked in order to 374 * push the tail and free space in the log. 375 * 376 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 377 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 378 * lock more than one at a time, lockdep will report false positives saying we 379 * have violated locking orders. 380 */ 381 void 382 xfs_lock_inodes( 383 struct xfs_inode **ips, 384 int inodes, 385 uint lock_mode) 386 { 387 int attempts = 0; 388 uint i; 389 int j; 390 bool try_lock; 391 struct xfs_log_item *lp; 392 393 /* 394 * Currently supports between 2 and 5 inodes with exclusive locking. We 395 * support an arbitrary depth of locking here, but absolute limits on 396 * inodes depend on the type of locking and the limits placed by 397 * lockdep annotations in xfs_lock_inumorder. These are all checked by 398 * the asserts. 399 */ 400 ASSERT(ips && inodes >= 2 && inodes <= 5); 401 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 402 XFS_ILOCK_EXCL)); 403 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 404 XFS_ILOCK_SHARED))); 405 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 406 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 407 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 408 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 409 410 if (lock_mode & XFS_IOLOCK_EXCL) { 411 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 412 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 413 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 414 415 again: 416 try_lock = false; 417 i = 0; 418 for (; i < inodes; i++) { 419 ASSERT(ips[i]); 420 421 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 422 continue; 423 424 /* 425 * If try_lock is not set yet, make sure all locked inodes are 426 * not in the AIL. If any are, set try_lock to be used later. 427 */ 428 if (!try_lock) { 429 for (j = (i - 1); j >= 0 && !try_lock; j--) { 430 lp = &ips[j]->i_itemp->ili_item; 431 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 432 try_lock = true; 433 } 434 } 435 436 /* 437 * If any of the previous locks we have locked is in the AIL, 438 * we must TRY to get the second and subsequent locks. If 439 * we can't get any, we must release all we have 440 * and try again. 441 */ 442 if (!try_lock) { 443 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 444 continue; 445 } 446 447 /* try_lock means we have an inode locked that is in the AIL. */ 448 ASSERT(i != 0); 449 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 450 continue; 451 452 /* 453 * Unlock all previous guys and try again. xfs_iunlock will try 454 * to push the tail if the inode is in the AIL. 455 */ 456 attempts++; 457 for (j = i - 1; j >= 0; j--) { 458 /* 459 * Check to see if we've already unlocked this one. Not 460 * the first one going back, and the inode ptr is the 461 * same. 462 */ 463 if (j != (i - 1) && ips[j] == ips[j + 1]) 464 continue; 465 466 xfs_iunlock(ips[j], lock_mode); 467 } 468 469 if ((attempts % 5) == 0) { 470 delay(1); /* Don't just spin the CPU */ 471 } 472 goto again; 473 } 474 } 475 476 /* 477 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and 478 * mmaplock must be double-locked separately since we use i_rwsem and 479 * invalidate_lock for that. We now support taking one lock EXCL and the 480 * other SHARED. 481 */ 482 void 483 xfs_lock_two_inodes( 484 struct xfs_inode *ip0, 485 uint ip0_mode, 486 struct xfs_inode *ip1, 487 uint ip1_mode) 488 { 489 int attempts = 0; 490 struct xfs_log_item *lp; 491 492 ASSERT(hweight32(ip0_mode) == 1); 493 ASSERT(hweight32(ip1_mode) == 1); 494 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 495 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 496 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 497 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 498 ASSERT(ip0->i_ino != ip1->i_ino); 499 500 if (ip0->i_ino > ip1->i_ino) { 501 swap(ip0, ip1); 502 swap(ip0_mode, ip1_mode); 503 } 504 505 again: 506 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 507 508 /* 509 * If the first lock we have locked is in the AIL, we must TRY to get 510 * the second lock. If we can't get it, we must release the first one 511 * and try again. 512 */ 513 lp = &ip0->i_itemp->ili_item; 514 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 515 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 516 xfs_iunlock(ip0, ip0_mode); 517 if ((++attempts % 5) == 0) 518 delay(1); /* Don't just spin the CPU */ 519 goto again; 520 } 521 } else { 522 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 523 } 524 } 525 526 /* 527 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 528 * is allowed, otherwise it has to be an exact match. If a CI match is found, 529 * ci_name->name will point to a the actual name (caller must free) or 530 * will be set to NULL if an exact match is found. 531 */ 532 int 533 xfs_lookup( 534 struct xfs_inode *dp, 535 const struct xfs_name *name, 536 struct xfs_inode **ipp, 537 struct xfs_name *ci_name) 538 { 539 xfs_ino_t inum; 540 int error; 541 542 trace_xfs_lookup(dp, name); 543 544 if (xfs_is_shutdown(dp->i_mount)) 545 return -EIO; 546 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 547 return -EIO; 548 549 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 550 if (error) 551 goto out_unlock; 552 553 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 554 if (error) 555 goto out_free_name; 556 557 return 0; 558 559 out_free_name: 560 if (ci_name) 561 kfree(ci_name->name); 562 out_unlock: 563 *ipp = NULL; 564 return error; 565 } 566 567 /* 568 * Initialise a newly allocated inode and return the in-core inode to the 569 * caller locked exclusively. 570 * 571 * Caller is responsible for unlocking the inode manually upon return 572 */ 573 int 574 xfs_icreate( 575 struct xfs_trans *tp, 576 xfs_ino_t ino, 577 const struct xfs_icreate_args *args, 578 struct xfs_inode **ipp) 579 { 580 struct xfs_mount *mp = tp->t_mountp; 581 struct xfs_inode *ip = NULL; 582 int error; 583 584 /* 585 * Get the in-core inode with the lock held exclusively to prevent 586 * others from looking at until we're done. 587 */ 588 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 589 if (error) 590 return error; 591 592 ASSERT(ip != NULL); 593 xfs_trans_ijoin(tp, ip, 0); 594 xfs_inode_init(tp, args, ip); 595 596 /* now that we have an i_mode we can setup the inode structure */ 597 xfs_setup_inode(ip); 598 599 *ipp = ip; 600 return 0; 601 } 602 603 /* Return dquots for the ids that will be assigned to a new file. */ 604 int 605 xfs_icreate_dqalloc( 606 const struct xfs_icreate_args *args, 607 struct xfs_dquot **udqpp, 608 struct xfs_dquot **gdqpp, 609 struct xfs_dquot **pdqpp) 610 { 611 struct inode *dir = VFS_I(args->pip); 612 kuid_t uid = GLOBAL_ROOT_UID; 613 kgid_t gid = GLOBAL_ROOT_GID; 614 prid_t prid = 0; 615 unsigned int flags = XFS_QMOPT_QUOTALL; 616 617 if (args->idmap) { 618 /* 619 * The uid/gid computation code must match what the VFS uses to 620 * assign i_[ug]id. INHERIT adjusts the gid computation for 621 * setgid/grpid systems. 622 */ 623 uid = mapped_fsuid(args->idmap, i_user_ns(dir)); 624 gid = mapped_fsgid(args->idmap, i_user_ns(dir)); 625 prid = xfs_get_initial_prid(args->pip); 626 flags |= XFS_QMOPT_INHERIT; 627 } 628 629 *udqpp = *gdqpp = *pdqpp = NULL; 630 631 return xfs_qm_vop_dqalloc(args->pip, uid, gid, prid, flags, udqpp, 632 gdqpp, pdqpp); 633 } 634 635 int 636 xfs_create( 637 const struct xfs_icreate_args *args, 638 struct xfs_name *name, 639 struct xfs_inode **ipp) 640 { 641 struct xfs_inode *dp = args->pip; 642 struct xfs_dir_update du = { 643 .dp = dp, 644 .name = name, 645 }; 646 struct xfs_mount *mp = dp->i_mount; 647 struct xfs_trans *tp = NULL; 648 struct xfs_dquot *udqp; 649 struct xfs_dquot *gdqp; 650 struct xfs_dquot *pdqp; 651 struct xfs_trans_res *tres; 652 xfs_ino_t ino; 653 bool unlock_dp_on_error = false; 654 bool is_dir = S_ISDIR(args->mode); 655 uint resblks; 656 int error; 657 658 trace_xfs_create(dp, name); 659 660 if (xfs_is_shutdown(mp)) 661 return -EIO; 662 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 663 return -EIO; 664 665 /* Make sure that we have allocated dquot(s) on disk. */ 666 error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp); 667 if (error) 668 return error; 669 670 if (is_dir) { 671 resblks = xfs_mkdir_space_res(mp, name->len); 672 tres = &M_RES(mp)->tr_mkdir; 673 } else { 674 resblks = xfs_create_space_res(mp, name->len); 675 tres = &M_RES(mp)->tr_create; 676 } 677 678 error = xfs_parent_start(mp, &du.ppargs); 679 if (error) 680 goto out_release_dquots; 681 682 /* 683 * Initially assume that the file does not exist and 684 * reserve the resources for that case. If that is not 685 * the case we'll drop the one we have and get a more 686 * appropriate transaction later. 687 */ 688 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 689 &tp); 690 if (error == -ENOSPC) { 691 /* flush outstanding delalloc blocks and retry */ 692 xfs_flush_inodes(mp); 693 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, 694 resblks, &tp); 695 } 696 if (error) 697 goto out_parent; 698 699 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 700 unlock_dp_on_error = true; 701 702 /* 703 * A newly created regular or special file just has one directory 704 * entry pointing to them, but a directory also the "." entry 705 * pointing to itself. 706 */ 707 error = xfs_dialloc(&tp, dp->i_ino, args->mode, &ino); 708 if (!error) 709 error = xfs_icreate(tp, ino, args, &du.ip); 710 if (error) 711 goto out_trans_cancel; 712 713 /* 714 * Now we join the directory inode to the transaction. We do not do it 715 * earlier because xfs_dialloc might commit the previous transaction 716 * (and release all the locks). An error from here on will result in 717 * the transaction cancel unlocking dp so don't do it explicitly in the 718 * error path. 719 */ 720 xfs_trans_ijoin(tp, dp, 0); 721 722 error = xfs_dir_create_child(tp, resblks, &du); 723 if (error) 724 goto out_trans_cancel; 725 726 /* 727 * If this is a synchronous mount, make sure that the 728 * create transaction goes to disk before returning to 729 * the user. 730 */ 731 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 732 xfs_trans_set_sync(tp); 733 734 /* 735 * Attach the dquot(s) to the inodes and modify them incore. 736 * These ids of the inode couldn't have changed since the new 737 * inode has been locked ever since it was created. 738 */ 739 xfs_qm_vop_create_dqattach(tp, du.ip, udqp, gdqp, pdqp); 740 741 error = xfs_trans_commit(tp); 742 if (error) 743 goto out_release_inode; 744 745 xfs_qm_dqrele(udqp); 746 xfs_qm_dqrele(gdqp); 747 xfs_qm_dqrele(pdqp); 748 749 *ipp = du.ip; 750 xfs_iunlock(du.ip, XFS_ILOCK_EXCL); 751 xfs_iunlock(dp, XFS_ILOCK_EXCL); 752 xfs_parent_finish(mp, du.ppargs); 753 return 0; 754 755 out_trans_cancel: 756 xfs_trans_cancel(tp); 757 out_release_inode: 758 /* 759 * Wait until after the current transaction is aborted to finish the 760 * setup of the inode and release the inode. This prevents recursive 761 * transactions and deadlocks from xfs_inactive. 762 */ 763 if (du.ip) { 764 xfs_iunlock(du.ip, XFS_ILOCK_EXCL); 765 xfs_finish_inode_setup(du.ip); 766 xfs_irele(du.ip); 767 } 768 out_parent: 769 xfs_parent_finish(mp, du.ppargs); 770 out_release_dquots: 771 xfs_qm_dqrele(udqp); 772 xfs_qm_dqrele(gdqp); 773 xfs_qm_dqrele(pdqp); 774 775 if (unlock_dp_on_error) 776 xfs_iunlock(dp, XFS_ILOCK_EXCL); 777 return error; 778 } 779 780 int 781 xfs_create_tmpfile( 782 const struct xfs_icreate_args *args, 783 struct xfs_inode **ipp) 784 { 785 struct xfs_inode *dp = args->pip; 786 struct xfs_mount *mp = dp->i_mount; 787 struct xfs_inode *ip = NULL; 788 struct xfs_trans *tp = NULL; 789 struct xfs_dquot *udqp; 790 struct xfs_dquot *gdqp; 791 struct xfs_dquot *pdqp; 792 struct xfs_trans_res *tres; 793 xfs_ino_t ino; 794 uint resblks; 795 int error; 796 797 ASSERT(args->flags & XFS_ICREATE_TMPFILE); 798 799 if (xfs_is_shutdown(mp)) 800 return -EIO; 801 802 /* Make sure that we have allocated dquot(s) on disk. */ 803 error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp); 804 if (error) 805 return error; 806 807 resblks = XFS_IALLOC_SPACE_RES(mp); 808 tres = &M_RES(mp)->tr_create_tmpfile; 809 810 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 811 &tp); 812 if (error) 813 goto out_release_dquots; 814 815 error = xfs_dialloc(&tp, dp->i_ino, args->mode, &ino); 816 if (!error) 817 error = xfs_icreate(tp, ino, args, &ip); 818 if (error) 819 goto out_trans_cancel; 820 821 if (xfs_has_wsync(mp)) 822 xfs_trans_set_sync(tp); 823 824 /* 825 * Attach the dquot(s) to the inodes and modify them incore. 826 * These ids of the inode couldn't have changed since the new 827 * inode has been locked ever since it was created. 828 */ 829 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 830 831 error = xfs_iunlink(tp, ip); 832 if (error) 833 goto out_trans_cancel; 834 835 error = xfs_trans_commit(tp); 836 if (error) 837 goto out_release_inode; 838 839 xfs_qm_dqrele(udqp); 840 xfs_qm_dqrele(gdqp); 841 xfs_qm_dqrele(pdqp); 842 843 *ipp = ip; 844 xfs_iunlock(ip, XFS_ILOCK_EXCL); 845 return 0; 846 847 out_trans_cancel: 848 xfs_trans_cancel(tp); 849 out_release_inode: 850 /* 851 * Wait until after the current transaction is aborted to finish the 852 * setup of the inode and release the inode. This prevents recursive 853 * transactions and deadlocks from xfs_inactive. 854 */ 855 if (ip) { 856 xfs_iunlock(ip, XFS_ILOCK_EXCL); 857 xfs_finish_inode_setup(ip); 858 xfs_irele(ip); 859 } 860 out_release_dquots: 861 xfs_qm_dqrele(udqp); 862 xfs_qm_dqrele(gdqp); 863 xfs_qm_dqrele(pdqp); 864 865 return error; 866 } 867 868 int 869 xfs_link( 870 struct xfs_inode *tdp, 871 struct xfs_inode *sip, 872 struct xfs_name *target_name) 873 { 874 struct xfs_dir_update du = { 875 .dp = tdp, 876 .name = target_name, 877 .ip = sip, 878 }; 879 struct xfs_mount *mp = tdp->i_mount; 880 struct xfs_trans *tp; 881 int error, nospace_error = 0; 882 int resblks; 883 884 trace_xfs_link(tdp, target_name); 885 886 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 887 888 if (xfs_is_shutdown(mp)) 889 return -EIO; 890 if (xfs_ifork_zapped(tdp, XFS_DATA_FORK)) 891 return -EIO; 892 893 error = xfs_qm_dqattach(sip); 894 if (error) 895 goto std_return; 896 897 error = xfs_qm_dqattach(tdp); 898 if (error) 899 goto std_return; 900 901 error = xfs_parent_start(mp, &du.ppargs); 902 if (error) 903 goto std_return; 904 905 resblks = xfs_link_space_res(mp, target_name->len); 906 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks, 907 &tp, &nospace_error); 908 if (error) 909 goto out_parent; 910 911 /* 912 * We don't allow reservationless or quotaless hardlinking when parent 913 * pointers are enabled because we can't back out if the xattrs must 914 * grow. 915 */ 916 if (du.ppargs && nospace_error) { 917 error = nospace_error; 918 goto error_return; 919 } 920 921 /* 922 * If we are using project inheritance, we only allow hard link 923 * creation in our tree when the project IDs are the same; else 924 * the tree quota mechanism could be circumvented. 925 */ 926 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 927 tdp->i_projid != sip->i_projid)) { 928 /* 929 * Project quota setup skips special files which can 930 * leave inodes in a PROJINHERIT directory without a 931 * project ID set. We need to allow links to be made 932 * to these "project-less" inodes because userspace 933 * expects them to succeed after project ID setup, 934 * but everything else should be rejected. 935 */ 936 if (!special_file(VFS_I(sip)->i_mode) || 937 sip->i_projid != 0) { 938 error = -EXDEV; 939 goto error_return; 940 } 941 } 942 943 error = xfs_dir_add_child(tp, resblks, &du); 944 if (error) 945 goto error_return; 946 947 /* 948 * If this is a synchronous mount, make sure that the 949 * link transaction goes to disk before returning to 950 * the user. 951 */ 952 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 953 xfs_trans_set_sync(tp); 954 955 error = xfs_trans_commit(tp); 956 xfs_iunlock(tdp, XFS_ILOCK_EXCL); 957 xfs_iunlock(sip, XFS_ILOCK_EXCL); 958 xfs_parent_finish(mp, du.ppargs); 959 return error; 960 961 error_return: 962 xfs_trans_cancel(tp); 963 xfs_iunlock(tdp, XFS_ILOCK_EXCL); 964 xfs_iunlock(sip, XFS_ILOCK_EXCL); 965 out_parent: 966 xfs_parent_finish(mp, du.ppargs); 967 std_return: 968 if (error == -ENOSPC && nospace_error) 969 error = nospace_error; 970 return error; 971 } 972 973 /* Clear the reflink flag and the cowblocks tag if possible. */ 974 static void 975 xfs_itruncate_clear_reflink_flags( 976 struct xfs_inode *ip) 977 { 978 struct xfs_ifork *dfork; 979 struct xfs_ifork *cfork; 980 981 if (!xfs_is_reflink_inode(ip)) 982 return; 983 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK); 984 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK); 985 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 986 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 987 if (cfork->if_bytes == 0) 988 xfs_inode_clear_cowblocks_tag(ip); 989 } 990 991 /* 992 * Free up the underlying blocks past new_size. The new size must be smaller 993 * than the current size. This routine can be used both for the attribute and 994 * data fork, and does not modify the inode size, which is left to the caller. 995 * 996 * The transaction passed to this routine must have made a permanent log 997 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 998 * given transaction and start new ones, so make sure everything involved in 999 * the transaction is tidy before calling here. Some transaction will be 1000 * returned to the caller to be committed. The incoming transaction must 1001 * already include the inode, and both inode locks must be held exclusively. 1002 * The inode must also be "held" within the transaction. On return the inode 1003 * will be "held" within the returned transaction. This routine does NOT 1004 * require any disk space to be reserved for it within the transaction. 1005 * 1006 * If we get an error, we must return with the inode locked and linked into the 1007 * current transaction. This keeps things simple for the higher level code, 1008 * because it always knows that the inode is locked and held in the transaction 1009 * that returns to it whether errors occur or not. We don't mark the inode 1010 * dirty on error so that transactions can be easily aborted if possible. 1011 */ 1012 int 1013 xfs_itruncate_extents_flags( 1014 struct xfs_trans **tpp, 1015 struct xfs_inode *ip, 1016 int whichfork, 1017 xfs_fsize_t new_size, 1018 int flags) 1019 { 1020 struct xfs_mount *mp = ip->i_mount; 1021 struct xfs_trans *tp = *tpp; 1022 xfs_fileoff_t first_unmap_block; 1023 int error = 0; 1024 1025 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 1026 if (atomic_read(&VFS_I(ip)->i_count)) 1027 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL); 1028 ASSERT(new_size <= XFS_ISIZE(ip)); 1029 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1030 ASSERT(ip->i_itemp != NULL); 1031 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1032 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1033 1034 trace_xfs_itruncate_extents_start(ip, new_size); 1035 1036 flags |= xfs_bmapi_aflag(whichfork); 1037 1038 /* 1039 * Since it is possible for space to become allocated beyond 1040 * the end of the file (in a crash where the space is allocated 1041 * but the inode size is not yet updated), simply remove any 1042 * blocks which show up between the new EOF and the maximum 1043 * possible file size. 1044 * 1045 * We have to free all the blocks to the bmbt maximum offset, even if 1046 * the page cache can't scale that far. 1047 */ 1048 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1049 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1050 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1051 return 0; 1052 } 1053 1054 error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block, 1055 XFS_MAX_FILEOFF); 1056 if (error) 1057 goto out; 1058 1059 if (whichfork == XFS_DATA_FORK) { 1060 /* Remove all pending CoW reservations. */ 1061 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1062 first_unmap_block, XFS_MAX_FILEOFF, true); 1063 if (error) 1064 goto out; 1065 1066 xfs_itruncate_clear_reflink_flags(ip); 1067 } 1068 1069 /* 1070 * Always re-log the inode so that our permanent transaction can keep 1071 * on rolling it forward in the log. 1072 */ 1073 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1074 1075 trace_xfs_itruncate_extents_end(ip, new_size); 1076 1077 out: 1078 *tpp = tp; 1079 return error; 1080 } 1081 1082 int 1083 xfs_release( 1084 xfs_inode_t *ip) 1085 { 1086 xfs_mount_t *mp = ip->i_mount; 1087 int error = 0; 1088 1089 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1090 return 0; 1091 1092 /* If this is a read-only mount, don't do this (would generate I/O) */ 1093 if (xfs_is_readonly(mp)) 1094 return 0; 1095 1096 if (!xfs_is_shutdown(mp)) { 1097 int truncated; 1098 1099 /* 1100 * If we previously truncated this file and removed old data 1101 * in the process, we want to initiate "early" writeout on 1102 * the last close. This is an attempt to combat the notorious 1103 * NULL files problem which is particularly noticeable from a 1104 * truncate down, buffered (re-)write (delalloc), followed by 1105 * a crash. What we are effectively doing here is 1106 * significantly reducing the time window where we'd otherwise 1107 * be exposed to that problem. 1108 */ 1109 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1110 if (truncated) { 1111 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1112 if (ip->i_delayed_blks > 0) { 1113 error = filemap_flush(VFS_I(ip)->i_mapping); 1114 if (error) 1115 return error; 1116 } 1117 } 1118 } 1119 1120 if (VFS_I(ip)->i_nlink == 0) 1121 return 0; 1122 1123 /* 1124 * If we can't get the iolock just skip truncating the blocks past EOF 1125 * because we could deadlock with the mmap_lock otherwise. We'll get 1126 * another chance to drop them once the last reference to the inode is 1127 * dropped, so we'll never leak blocks permanently. 1128 */ 1129 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) 1130 return 0; 1131 1132 if (xfs_can_free_eofblocks(ip)) { 1133 /* 1134 * Check if the inode is being opened, written and closed 1135 * frequently and we have delayed allocation blocks outstanding 1136 * (e.g. streaming writes from the NFS server), truncating the 1137 * blocks past EOF will cause fragmentation to occur. 1138 * 1139 * In this case don't do the truncation, but we have to be 1140 * careful how we detect this case. Blocks beyond EOF show up as 1141 * i_delayed_blks even when the inode is clean, so we need to 1142 * truncate them away first before checking for a dirty release. 1143 * Hence on the first dirty close we will still remove the 1144 * speculative allocation, but after that we will leave it in 1145 * place. 1146 */ 1147 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1148 goto out_unlock; 1149 1150 error = xfs_free_eofblocks(ip); 1151 if (error) 1152 goto out_unlock; 1153 1154 /* delalloc blocks after truncation means it really is dirty */ 1155 if (ip->i_delayed_blks) 1156 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1157 } 1158 1159 out_unlock: 1160 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1161 return error; 1162 } 1163 1164 /* 1165 * Mark all the buffers attached to this directory stale. In theory we should 1166 * never be freeing a directory with any blocks at all, but this covers the 1167 * case where we've recovered a directory swap with a "temporary" directory 1168 * created by online repair and now need to dump it. 1169 */ 1170 STATIC void 1171 xfs_inactive_dir( 1172 struct xfs_inode *dp) 1173 { 1174 struct xfs_iext_cursor icur; 1175 struct xfs_bmbt_irec got; 1176 struct xfs_mount *mp = dp->i_mount; 1177 struct xfs_da_geometry *geo = mp->m_dir_geo; 1178 struct xfs_ifork *ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK); 1179 xfs_fileoff_t off; 1180 1181 /* 1182 * Invalidate each directory block. All directory blocks are of 1183 * fsbcount length and alignment, so we only need to walk those same 1184 * offsets. We hold the only reference to this inode, so we must wait 1185 * for the buffer locks. 1186 */ 1187 for_each_xfs_iext(ifp, &icur, &got) { 1188 for (off = round_up(got.br_startoff, geo->fsbcount); 1189 off < got.br_startoff + got.br_blockcount; 1190 off += geo->fsbcount) { 1191 struct xfs_buf *bp = NULL; 1192 xfs_fsblock_t fsbno; 1193 int error; 1194 1195 fsbno = (off - got.br_startoff) + got.br_startblock; 1196 error = xfs_buf_incore(mp->m_ddev_targp, 1197 XFS_FSB_TO_DADDR(mp, fsbno), 1198 XFS_FSB_TO_BB(mp, geo->fsbcount), 1199 XBF_LIVESCAN, &bp); 1200 if (error) 1201 continue; 1202 1203 xfs_buf_stale(bp); 1204 xfs_buf_relse(bp); 1205 } 1206 } 1207 } 1208 1209 /* 1210 * xfs_inactive_truncate 1211 * 1212 * Called to perform a truncate when an inode becomes unlinked. 1213 */ 1214 STATIC int 1215 xfs_inactive_truncate( 1216 struct xfs_inode *ip) 1217 { 1218 struct xfs_mount *mp = ip->i_mount; 1219 struct xfs_trans *tp; 1220 int error; 1221 1222 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1223 if (error) { 1224 ASSERT(xfs_is_shutdown(mp)); 1225 return error; 1226 } 1227 xfs_ilock(ip, XFS_ILOCK_EXCL); 1228 xfs_trans_ijoin(tp, ip, 0); 1229 1230 /* 1231 * Log the inode size first to prevent stale data exposure in the event 1232 * of a system crash before the truncate completes. See the related 1233 * comment in xfs_vn_setattr_size() for details. 1234 */ 1235 ip->i_disk_size = 0; 1236 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1237 1238 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1239 if (error) 1240 goto error_trans_cancel; 1241 1242 ASSERT(ip->i_df.if_nextents == 0); 1243 1244 error = xfs_trans_commit(tp); 1245 if (error) 1246 goto error_unlock; 1247 1248 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1249 return 0; 1250 1251 error_trans_cancel: 1252 xfs_trans_cancel(tp); 1253 error_unlock: 1254 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1255 return error; 1256 } 1257 1258 /* 1259 * xfs_inactive_ifree() 1260 * 1261 * Perform the inode free when an inode is unlinked. 1262 */ 1263 STATIC int 1264 xfs_inactive_ifree( 1265 struct xfs_inode *ip) 1266 { 1267 struct xfs_mount *mp = ip->i_mount; 1268 struct xfs_trans *tp; 1269 int error; 1270 1271 /* 1272 * We try to use a per-AG reservation for any block needed by the finobt 1273 * tree, but as the finobt feature predates the per-AG reservation 1274 * support a degraded file system might not have enough space for the 1275 * reservation at mount time. In that case try to dip into the reserved 1276 * pool and pray. 1277 * 1278 * Send a warning if the reservation does happen to fail, as the inode 1279 * now remains allocated and sits on the unlinked list until the fs is 1280 * repaired. 1281 */ 1282 if (unlikely(mp->m_finobt_nores)) { 1283 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1284 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1285 &tp); 1286 } else { 1287 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1288 } 1289 if (error) { 1290 if (error == -ENOSPC) { 1291 xfs_warn_ratelimited(mp, 1292 "Failed to remove inode(s) from unlinked list. " 1293 "Please free space, unmount and run xfs_repair."); 1294 } else { 1295 ASSERT(xfs_is_shutdown(mp)); 1296 } 1297 return error; 1298 } 1299 1300 /* 1301 * We do not hold the inode locked across the entire rolling transaction 1302 * here. We only need to hold it for the first transaction that 1303 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1304 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1305 * here breaks the relationship between cluster buffer invalidation and 1306 * stale inode invalidation on cluster buffer item journal commit 1307 * completion, and can result in leaving dirty stale inodes hanging 1308 * around in memory. 1309 * 1310 * We have no need for serialising this inode operation against other 1311 * operations - we freed the inode and hence reallocation is required 1312 * and that will serialise on reallocating the space the deferops need 1313 * to free. Hence we can unlock the inode on the first commit of 1314 * the transaction rather than roll it right through the deferops. This 1315 * avoids relogging the XFS_ISTALE inode. 1316 * 1317 * We check that xfs_ifree() hasn't grown an internal transaction roll 1318 * by asserting that the inode is still locked when it returns. 1319 */ 1320 xfs_ilock(ip, XFS_ILOCK_EXCL); 1321 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1322 1323 error = xfs_ifree(tp, ip); 1324 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 1325 if (error) { 1326 /* 1327 * If we fail to free the inode, shut down. The cancel 1328 * might do that, we need to make sure. Otherwise the 1329 * inode might be lost for a long time or forever. 1330 */ 1331 if (!xfs_is_shutdown(mp)) { 1332 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1333 __func__, error); 1334 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1335 } 1336 xfs_trans_cancel(tp); 1337 return error; 1338 } 1339 1340 /* 1341 * Credit the quota account(s). The inode is gone. 1342 */ 1343 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1344 1345 return xfs_trans_commit(tp); 1346 } 1347 1348 /* 1349 * Returns true if we need to update the on-disk metadata before we can free 1350 * the memory used by this inode. Updates include freeing post-eof 1351 * preallocations; freeing COW staging extents; and marking the inode free in 1352 * the inobt if it is on the unlinked list. 1353 */ 1354 bool 1355 xfs_inode_needs_inactive( 1356 struct xfs_inode *ip) 1357 { 1358 struct xfs_mount *mp = ip->i_mount; 1359 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 1360 1361 /* 1362 * If the inode is already free, then there can be nothing 1363 * to clean up here. 1364 */ 1365 if (VFS_I(ip)->i_mode == 0) 1366 return false; 1367 1368 /* 1369 * If this is a read-only mount, don't do this (would generate I/O) 1370 * unless we're in log recovery and cleaning the iunlinked list. 1371 */ 1372 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1373 return false; 1374 1375 /* If the log isn't running, push inodes straight to reclaim. */ 1376 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) 1377 return false; 1378 1379 /* Metadata inodes require explicit resource cleanup. */ 1380 if (xfs_is_metadata_inode(ip)) 1381 return false; 1382 1383 /* Want to clean out the cow blocks if there are any. */ 1384 if (cow_ifp && cow_ifp->if_bytes > 0) 1385 return true; 1386 1387 /* Unlinked files must be freed. */ 1388 if (VFS_I(ip)->i_nlink == 0) 1389 return true; 1390 1391 /* 1392 * This file isn't being freed, so check if there are post-eof blocks 1393 * to free. 1394 * 1395 * Note: don't bother with iolock here since lockdep complains about 1396 * acquiring it in reclaim context. We have the only reference to the 1397 * inode at this point anyways. 1398 */ 1399 return xfs_can_free_eofblocks(ip); 1400 } 1401 1402 /* 1403 * Save health status somewhere, if we're dumping an inode with uncorrected 1404 * errors and online repair isn't running. 1405 */ 1406 static inline void 1407 xfs_inactive_health( 1408 struct xfs_inode *ip) 1409 { 1410 struct xfs_mount *mp = ip->i_mount; 1411 struct xfs_perag *pag; 1412 unsigned int sick; 1413 unsigned int checked; 1414 1415 xfs_inode_measure_sickness(ip, &sick, &checked); 1416 if (!sick) 1417 return; 1418 1419 trace_xfs_inode_unfixed_corruption(ip, sick); 1420 1421 if (sick & XFS_SICK_INO_FORGET) 1422 return; 1423 1424 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1425 if (!pag) { 1426 /* There had better still be a perag structure! */ 1427 ASSERT(0); 1428 return; 1429 } 1430 1431 xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES); 1432 xfs_perag_put(pag); 1433 } 1434 1435 /* 1436 * xfs_inactive 1437 * 1438 * This is called when the vnode reference count for the vnode 1439 * goes to zero. If the file has been unlinked, then it must 1440 * now be truncated. Also, we clear all of the read-ahead state 1441 * kept for the inode here since the file is now closed. 1442 */ 1443 int 1444 xfs_inactive( 1445 xfs_inode_t *ip) 1446 { 1447 struct xfs_mount *mp; 1448 int error = 0; 1449 int truncate = 0; 1450 1451 /* 1452 * If the inode is already free, then there can be nothing 1453 * to clean up here. 1454 */ 1455 if (VFS_I(ip)->i_mode == 0) { 1456 ASSERT(ip->i_df.if_broot_bytes == 0); 1457 goto out; 1458 } 1459 1460 mp = ip->i_mount; 1461 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1462 1463 xfs_inactive_health(ip); 1464 1465 /* 1466 * If this is a read-only mount, don't do this (would generate I/O) 1467 * unless we're in log recovery and cleaning the iunlinked list. 1468 */ 1469 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1470 goto out; 1471 1472 /* Metadata inodes require explicit resource cleanup. */ 1473 if (xfs_is_metadata_inode(ip)) 1474 goto out; 1475 1476 /* Try to clean out the cow blocks if there are any. */ 1477 if (xfs_inode_has_cow_data(ip)) 1478 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1479 1480 if (VFS_I(ip)->i_nlink != 0) { 1481 /* 1482 * Note: don't bother with iolock here since lockdep complains 1483 * about acquiring it in reclaim context. We have the only 1484 * reference to the inode at this point anyways. 1485 */ 1486 if (xfs_can_free_eofblocks(ip)) 1487 error = xfs_free_eofblocks(ip); 1488 1489 goto out; 1490 } 1491 1492 if (S_ISREG(VFS_I(ip)->i_mode) && 1493 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || 1494 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1495 truncate = 1; 1496 1497 if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) { 1498 /* 1499 * If this inode is being inactivated during a quotacheck and 1500 * has not yet been scanned by quotacheck, we /must/ remove 1501 * the dquots from the inode before inactivation changes the 1502 * block and inode counts. Most probably this is a result of 1503 * reloading the incore iunlinked list to purge unrecovered 1504 * unlinked inodes. 1505 */ 1506 xfs_qm_dqdetach(ip); 1507 } else { 1508 error = xfs_qm_dqattach(ip); 1509 if (error) 1510 goto out; 1511 } 1512 1513 if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) { 1514 xfs_inactive_dir(ip); 1515 truncate = 1; 1516 } 1517 1518 if (S_ISLNK(VFS_I(ip)->i_mode)) 1519 error = xfs_inactive_symlink(ip); 1520 else if (truncate) 1521 error = xfs_inactive_truncate(ip); 1522 if (error) 1523 goto out; 1524 1525 /* 1526 * If there are attributes associated with the file then blow them away 1527 * now. The code calls a routine that recursively deconstructs the 1528 * attribute fork. If also blows away the in-core attribute fork. 1529 */ 1530 if (xfs_inode_has_attr_fork(ip)) { 1531 error = xfs_attr_inactive(ip); 1532 if (error) 1533 goto out; 1534 } 1535 1536 ASSERT(ip->i_forkoff == 0); 1537 1538 /* 1539 * Free the inode. 1540 */ 1541 error = xfs_inactive_ifree(ip); 1542 1543 out: 1544 /* 1545 * We're done making metadata updates for this inode, so we can release 1546 * the attached dquots. 1547 */ 1548 xfs_qm_dqdetach(ip); 1549 return error; 1550 } 1551 1552 /* 1553 * Find an inode on the unlinked list. This does not take references to the 1554 * inode as we have existence guarantees by holding the AGI buffer lock and that 1555 * only unlinked, referenced inodes can be on the unlinked inode list. If we 1556 * don't find the inode in cache, then let the caller handle the situation. 1557 */ 1558 struct xfs_inode * 1559 xfs_iunlink_lookup( 1560 struct xfs_perag *pag, 1561 xfs_agino_t agino) 1562 { 1563 struct xfs_inode *ip; 1564 1565 rcu_read_lock(); 1566 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 1567 if (!ip) { 1568 /* Caller can handle inode not being in memory. */ 1569 rcu_read_unlock(); 1570 return NULL; 1571 } 1572 1573 /* 1574 * Inode in RCU freeing limbo should not happen. Warn about this and 1575 * let the caller handle the failure. 1576 */ 1577 if (WARN_ON_ONCE(!ip->i_ino)) { 1578 rcu_read_unlock(); 1579 return NULL; 1580 } 1581 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)); 1582 rcu_read_unlock(); 1583 return ip; 1584 } 1585 1586 /* 1587 * Load the inode @next_agino into the cache and set its prev_unlinked pointer 1588 * to @prev_agino. Caller must hold the AGI to synchronize with other changes 1589 * to the unlinked list. 1590 */ 1591 int 1592 xfs_iunlink_reload_next( 1593 struct xfs_trans *tp, 1594 struct xfs_buf *agibp, 1595 xfs_agino_t prev_agino, 1596 xfs_agino_t next_agino) 1597 { 1598 struct xfs_perag *pag = agibp->b_pag; 1599 struct xfs_mount *mp = pag->pag_mount; 1600 struct xfs_inode *next_ip = NULL; 1601 xfs_ino_t ino; 1602 int error; 1603 1604 ASSERT(next_agino != NULLAGINO); 1605 1606 #ifdef DEBUG 1607 rcu_read_lock(); 1608 next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino); 1609 ASSERT(next_ip == NULL); 1610 rcu_read_unlock(); 1611 #endif 1612 1613 xfs_info_ratelimited(mp, 1614 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.", 1615 next_agino, pag->pag_agno); 1616 1617 /* 1618 * Use an untrusted lookup just to be cautious in case the AGI has been 1619 * corrupted and now points at a free inode. That shouldn't happen, 1620 * but we'd rather shut down now since we're already running in a weird 1621 * situation. 1622 */ 1623 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino); 1624 error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip); 1625 if (error) { 1626 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 1627 return error; 1628 } 1629 1630 /* If this is not an unlinked inode, something is very wrong. */ 1631 if (VFS_I(next_ip)->i_nlink != 0) { 1632 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 1633 error = -EFSCORRUPTED; 1634 goto rele; 1635 } 1636 1637 next_ip->i_prev_unlinked = prev_agino; 1638 trace_xfs_iunlink_reload_next(next_ip); 1639 rele: 1640 ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE)); 1641 if (xfs_is_quotacheck_running(mp) && next_ip) 1642 xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED); 1643 xfs_irele(next_ip); 1644 return error; 1645 } 1646 1647 /* 1648 * Look up the inode number specified and if it is not already marked XFS_ISTALE 1649 * mark it stale. We should only find clean inodes in this lookup that aren't 1650 * already stale. 1651 */ 1652 static void 1653 xfs_ifree_mark_inode_stale( 1654 struct xfs_perag *pag, 1655 struct xfs_inode *free_ip, 1656 xfs_ino_t inum) 1657 { 1658 struct xfs_mount *mp = pag->pag_mount; 1659 struct xfs_inode_log_item *iip; 1660 struct xfs_inode *ip; 1661 1662 retry: 1663 rcu_read_lock(); 1664 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 1665 1666 /* Inode not in memory, nothing to do */ 1667 if (!ip) { 1668 rcu_read_unlock(); 1669 return; 1670 } 1671 1672 /* 1673 * because this is an RCU protected lookup, we could find a recently 1674 * freed or even reallocated inode during the lookup. We need to check 1675 * under the i_flags_lock for a valid inode here. Skip it if it is not 1676 * valid, the wrong inode or stale. 1677 */ 1678 spin_lock(&ip->i_flags_lock); 1679 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 1680 goto out_iflags_unlock; 1681 1682 /* 1683 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 1684 * other inodes that we did not find in the list attached to the buffer 1685 * and are not already marked stale. If we can't lock it, back off and 1686 * retry. 1687 */ 1688 if (ip != free_ip) { 1689 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 1690 spin_unlock(&ip->i_flags_lock); 1691 rcu_read_unlock(); 1692 delay(1); 1693 goto retry; 1694 } 1695 } 1696 ip->i_flags |= XFS_ISTALE; 1697 1698 /* 1699 * If the inode is flushing, it is already attached to the buffer. All 1700 * we needed to do here is mark the inode stale so buffer IO completion 1701 * will remove it from the AIL. 1702 */ 1703 iip = ip->i_itemp; 1704 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 1705 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 1706 ASSERT(iip->ili_last_fields); 1707 goto out_iunlock; 1708 } 1709 1710 /* 1711 * Inodes not attached to the buffer can be released immediately. 1712 * Everything else has to go through xfs_iflush_abort() on journal 1713 * commit as the flock synchronises removal of the inode from the 1714 * cluster buffer against inode reclaim. 1715 */ 1716 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 1717 goto out_iunlock; 1718 1719 __xfs_iflags_set(ip, XFS_IFLUSHING); 1720 spin_unlock(&ip->i_flags_lock); 1721 rcu_read_unlock(); 1722 1723 /* we have a dirty inode in memory that has not yet been flushed. */ 1724 spin_lock(&iip->ili_lock); 1725 iip->ili_last_fields = iip->ili_fields; 1726 iip->ili_fields = 0; 1727 iip->ili_fsync_fields = 0; 1728 spin_unlock(&iip->ili_lock); 1729 ASSERT(iip->ili_last_fields); 1730 1731 if (ip != free_ip) 1732 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1733 return; 1734 1735 out_iunlock: 1736 if (ip != free_ip) 1737 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1738 out_iflags_unlock: 1739 spin_unlock(&ip->i_flags_lock); 1740 rcu_read_unlock(); 1741 } 1742 1743 /* 1744 * A big issue when freeing the inode cluster is that we _cannot_ skip any 1745 * inodes that are in memory - they all must be marked stale and attached to 1746 * the cluster buffer. 1747 */ 1748 static int 1749 xfs_ifree_cluster( 1750 struct xfs_trans *tp, 1751 struct xfs_perag *pag, 1752 struct xfs_inode *free_ip, 1753 struct xfs_icluster *xic) 1754 { 1755 struct xfs_mount *mp = free_ip->i_mount; 1756 struct xfs_ino_geometry *igeo = M_IGEO(mp); 1757 struct xfs_buf *bp; 1758 xfs_daddr_t blkno; 1759 xfs_ino_t inum = xic->first_ino; 1760 int nbufs; 1761 int i, j; 1762 int ioffset; 1763 int error; 1764 1765 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 1766 1767 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 1768 /* 1769 * The allocation bitmap tells us which inodes of the chunk were 1770 * physically allocated. Skip the cluster if an inode falls into 1771 * a sparse region. 1772 */ 1773 ioffset = inum - xic->first_ino; 1774 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 1775 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 1776 continue; 1777 } 1778 1779 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 1780 XFS_INO_TO_AGBNO(mp, inum)); 1781 1782 /* 1783 * We obtain and lock the backing buffer first in the process 1784 * here to ensure dirty inodes attached to the buffer remain in 1785 * the flushing state while we mark them stale. 1786 * 1787 * If we scan the in-memory inodes first, then buffer IO can 1788 * complete before we get a lock on it, and hence we may fail 1789 * to mark all the active inodes on the buffer stale. 1790 */ 1791 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 1792 mp->m_bsize * igeo->blocks_per_cluster, 1793 XBF_UNMAPPED, &bp); 1794 if (error) 1795 return error; 1796 1797 /* 1798 * This buffer may not have been correctly initialised as we 1799 * didn't read it from disk. That's not important because we are 1800 * only using to mark the buffer as stale in the log, and to 1801 * attach stale cached inodes on it. 1802 * 1803 * For the inode that triggered the cluster freeing, this 1804 * attachment may occur in xfs_inode_item_precommit() after we 1805 * have marked this buffer stale. If this buffer was not in 1806 * memory before xfs_ifree_cluster() started, it will not be 1807 * marked XBF_DONE and this will cause problems later in 1808 * xfs_inode_item_precommit() when we trip over a (stale, !done) 1809 * buffer to attached to the transaction. 1810 * 1811 * Hence we have to mark the buffer as XFS_DONE here. This is 1812 * safe because we are also marking the buffer as XBF_STALE and 1813 * XFS_BLI_STALE. That means it will never be dispatched for 1814 * IO and it won't be unlocked until the cluster freeing has 1815 * been committed to the journal and the buffer unpinned. If it 1816 * is written, we want to know about it, and we want it to 1817 * fail. We can acheive this by adding a write verifier to the 1818 * buffer. 1819 */ 1820 bp->b_flags |= XBF_DONE; 1821 bp->b_ops = &xfs_inode_buf_ops; 1822 1823 /* 1824 * Now we need to set all the cached clean inodes as XFS_ISTALE, 1825 * too. This requires lookups, and will skip inodes that we've 1826 * already marked XFS_ISTALE. 1827 */ 1828 for (i = 0; i < igeo->inodes_per_cluster; i++) 1829 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); 1830 1831 xfs_trans_stale_inode_buf(tp, bp); 1832 xfs_trans_binval(tp, bp); 1833 } 1834 return 0; 1835 } 1836 1837 /* 1838 * This is called to return an inode to the inode free list. The inode should 1839 * already be truncated to 0 length and have no pages associated with it. This 1840 * routine also assumes that the inode is already a part of the transaction. 1841 * 1842 * The on-disk copy of the inode will have been added to the list of unlinked 1843 * inodes in the AGI. We need to remove the inode from that list atomically with 1844 * respect to freeing it here. 1845 */ 1846 int 1847 xfs_ifree( 1848 struct xfs_trans *tp, 1849 struct xfs_inode *ip) 1850 { 1851 struct xfs_mount *mp = ip->i_mount; 1852 struct xfs_perag *pag; 1853 struct xfs_icluster xic = { 0 }; 1854 struct xfs_inode_log_item *iip = ip->i_itemp; 1855 int error; 1856 1857 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 1858 ASSERT(VFS_I(ip)->i_nlink == 0); 1859 ASSERT(ip->i_df.if_nextents == 0); 1860 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 1861 ASSERT(ip->i_nblocks == 0); 1862 1863 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1864 1865 error = xfs_inode_uninit(tp, pag, ip, &xic); 1866 if (error) 1867 goto out; 1868 1869 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) 1870 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); 1871 1872 /* Don't attempt to replay owner changes for a deleted inode */ 1873 spin_lock(&iip->ili_lock); 1874 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 1875 spin_unlock(&iip->ili_lock); 1876 1877 if (xic.deleted) 1878 error = xfs_ifree_cluster(tp, pag, ip, &xic); 1879 out: 1880 xfs_perag_put(pag); 1881 return error; 1882 } 1883 1884 /* 1885 * This is called to unpin an inode. The caller must have the inode locked 1886 * in at least shared mode so that the buffer cannot be subsequently pinned 1887 * once someone is waiting for it to be unpinned. 1888 */ 1889 static void 1890 xfs_iunpin( 1891 struct xfs_inode *ip) 1892 { 1893 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); 1894 1895 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 1896 1897 /* Give the log a push to start the unpinning I/O */ 1898 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); 1899 1900 } 1901 1902 static void 1903 __xfs_iunpin_wait( 1904 struct xfs_inode *ip) 1905 { 1906 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 1907 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 1908 1909 xfs_iunpin(ip); 1910 1911 do { 1912 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 1913 if (xfs_ipincount(ip)) 1914 io_schedule(); 1915 } while (xfs_ipincount(ip)); 1916 finish_wait(wq, &wait.wq_entry); 1917 } 1918 1919 void 1920 xfs_iunpin_wait( 1921 struct xfs_inode *ip) 1922 { 1923 if (xfs_ipincount(ip)) 1924 __xfs_iunpin_wait(ip); 1925 } 1926 1927 /* 1928 * Removing an inode from the namespace involves removing the directory entry 1929 * and dropping the link count on the inode. Removing the directory entry can 1930 * result in locking an AGF (directory blocks were freed) and removing a link 1931 * count can result in placing the inode on an unlinked list which results in 1932 * locking an AGI. 1933 * 1934 * The big problem here is that we have an ordering constraint on AGF and AGI 1935 * locking - inode allocation locks the AGI, then can allocate a new extent for 1936 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 1937 * removes the inode from the unlinked list, requiring that we lock the AGI 1938 * first, and then freeing the inode can result in an inode chunk being freed 1939 * and hence freeing disk space requiring that we lock an AGF. 1940 * 1941 * Hence the ordering that is imposed by other parts of the code is AGI before 1942 * AGF. This means we cannot remove the directory entry before we drop the inode 1943 * reference count and put it on the unlinked list as this results in a lock 1944 * order of AGF then AGI, and this can deadlock against inode allocation and 1945 * freeing. Therefore we must drop the link counts before we remove the 1946 * directory entry. 1947 * 1948 * This is still safe from a transactional point of view - it is not until we 1949 * get to xfs_defer_finish() that we have the possibility of multiple 1950 * transactions in this operation. Hence as long as we remove the directory 1951 * entry and drop the link count in the first transaction of the remove 1952 * operation, there are no transactional constraints on the ordering here. 1953 */ 1954 int 1955 xfs_remove( 1956 struct xfs_inode *dp, 1957 struct xfs_name *name, 1958 struct xfs_inode *ip) 1959 { 1960 struct xfs_dir_update du = { 1961 .dp = dp, 1962 .name = name, 1963 .ip = ip, 1964 }; 1965 struct xfs_mount *mp = dp->i_mount; 1966 struct xfs_trans *tp = NULL; 1967 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 1968 int dontcare; 1969 int error = 0; 1970 uint resblks; 1971 1972 trace_xfs_remove(dp, name); 1973 1974 if (xfs_is_shutdown(mp)) 1975 return -EIO; 1976 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 1977 return -EIO; 1978 1979 error = xfs_qm_dqattach(dp); 1980 if (error) 1981 goto std_return; 1982 1983 error = xfs_qm_dqattach(ip); 1984 if (error) 1985 goto std_return; 1986 1987 error = xfs_parent_start(mp, &du.ppargs); 1988 if (error) 1989 goto std_return; 1990 1991 /* 1992 * We try to get the real space reservation first, allowing for 1993 * directory btree deletion(s) implying possible bmap insert(s). If we 1994 * can't get the space reservation then we use 0 instead, and avoid the 1995 * bmap btree insert(s) in the directory code by, if the bmap insert 1996 * tries to happen, instead trimming the LAST block from the directory. 1997 * 1998 * Ignore EDQUOT and ENOSPC being returned via nospace_error because 1999 * the directory code can handle a reservationless update and we don't 2000 * want to prevent a user from trying to free space by deleting things. 2001 */ 2002 resblks = xfs_remove_space_res(mp, name->len); 2003 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks, 2004 &tp, &dontcare); 2005 if (error) { 2006 ASSERT(error != -ENOSPC); 2007 goto out_parent; 2008 } 2009 2010 error = xfs_dir_remove_child(tp, resblks, &du); 2011 if (error) 2012 goto out_trans_cancel; 2013 2014 /* 2015 * If this is a synchronous mount, make sure that the 2016 * remove transaction goes to disk before returning to 2017 * the user. 2018 */ 2019 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 2020 xfs_trans_set_sync(tp); 2021 2022 error = xfs_trans_commit(tp); 2023 if (error) 2024 goto out_unlock; 2025 2026 if (is_dir && xfs_inode_is_filestream(ip)) 2027 xfs_filestream_deassociate(ip); 2028 2029 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2030 xfs_iunlock(dp, XFS_ILOCK_EXCL); 2031 xfs_parent_finish(mp, du.ppargs); 2032 return 0; 2033 2034 out_trans_cancel: 2035 xfs_trans_cancel(tp); 2036 out_unlock: 2037 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2038 xfs_iunlock(dp, XFS_ILOCK_EXCL); 2039 out_parent: 2040 xfs_parent_finish(mp, du.ppargs); 2041 std_return: 2042 return error; 2043 } 2044 2045 static inline void 2046 xfs_iunlock_rename( 2047 struct xfs_inode **i_tab, 2048 int num_inodes) 2049 { 2050 int i; 2051 2052 for (i = num_inodes - 1; i >= 0; i--) { 2053 /* Skip duplicate inodes if src and target dps are the same */ 2054 if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1])) 2055 continue; 2056 xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL); 2057 } 2058 } 2059 2060 /* 2061 * Enter all inodes for a rename transaction into a sorted array. 2062 */ 2063 #define __XFS_SORT_INODES 5 2064 STATIC void 2065 xfs_sort_for_rename( 2066 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2067 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2068 struct xfs_inode *ip1, /* in: inode of old entry */ 2069 struct xfs_inode *ip2, /* in: inode of new entry */ 2070 struct xfs_inode *wip, /* in: whiteout inode */ 2071 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2072 int *num_inodes) /* in/out: inodes in array */ 2073 { 2074 int i; 2075 2076 ASSERT(*num_inodes == __XFS_SORT_INODES); 2077 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2078 2079 /* 2080 * i_tab contains a list of pointers to inodes. We initialize 2081 * the table here & we'll sort it. We will then use it to 2082 * order the acquisition of the inode locks. 2083 * 2084 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2085 */ 2086 i = 0; 2087 i_tab[i++] = dp1; 2088 i_tab[i++] = dp2; 2089 i_tab[i++] = ip1; 2090 if (ip2) 2091 i_tab[i++] = ip2; 2092 if (wip) 2093 i_tab[i++] = wip; 2094 *num_inodes = i; 2095 2096 xfs_sort_inodes(i_tab, *num_inodes); 2097 } 2098 2099 void 2100 xfs_sort_inodes( 2101 struct xfs_inode **i_tab, 2102 unsigned int num_inodes) 2103 { 2104 int i, j; 2105 2106 ASSERT(num_inodes <= __XFS_SORT_INODES); 2107 2108 /* 2109 * Sort the elements via bubble sort. (Remember, there are at 2110 * most 5 elements to sort, so this is adequate.) 2111 */ 2112 for (i = 0; i < num_inodes; i++) { 2113 for (j = 1; j < num_inodes; j++) { 2114 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) 2115 swap(i_tab[j], i_tab[j - 1]); 2116 } 2117 } 2118 } 2119 2120 /* 2121 * xfs_rename_alloc_whiteout() 2122 * 2123 * Return a referenced, unlinked, unlocked inode that can be used as a 2124 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2125 * crash between allocating the inode and linking it into the rename transaction 2126 * recovery will free the inode and we won't leak it. 2127 */ 2128 static int 2129 xfs_rename_alloc_whiteout( 2130 struct mnt_idmap *idmap, 2131 struct xfs_name *src_name, 2132 struct xfs_inode *dp, 2133 struct xfs_inode **wip) 2134 { 2135 struct xfs_icreate_args args = { 2136 .idmap = idmap, 2137 .pip = dp, 2138 .mode = S_IFCHR | WHITEOUT_MODE, 2139 .flags = XFS_ICREATE_TMPFILE, 2140 }; 2141 struct xfs_inode *tmpfile; 2142 struct qstr name; 2143 int error; 2144 2145 error = xfs_create_tmpfile(&args, &tmpfile); 2146 if (error) 2147 return error; 2148 2149 name.name = src_name->name; 2150 name.len = src_name->len; 2151 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name); 2152 if (error) { 2153 xfs_finish_inode_setup(tmpfile); 2154 xfs_irele(tmpfile); 2155 return error; 2156 } 2157 2158 /* 2159 * Prepare the tmpfile inode as if it were created through the VFS. 2160 * Complete the inode setup and flag it as linkable. nlink is already 2161 * zero, so we can skip the drop_nlink. 2162 */ 2163 xfs_setup_iops(tmpfile); 2164 xfs_finish_inode_setup(tmpfile); 2165 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2166 2167 *wip = tmpfile; 2168 return 0; 2169 } 2170 2171 /* 2172 * xfs_rename 2173 */ 2174 int 2175 xfs_rename( 2176 struct mnt_idmap *idmap, 2177 struct xfs_inode *src_dp, 2178 struct xfs_name *src_name, 2179 struct xfs_inode *src_ip, 2180 struct xfs_inode *target_dp, 2181 struct xfs_name *target_name, 2182 struct xfs_inode *target_ip, 2183 unsigned int flags) 2184 { 2185 struct xfs_dir_update du_src = { 2186 .dp = src_dp, 2187 .name = src_name, 2188 .ip = src_ip, 2189 }; 2190 struct xfs_dir_update du_tgt = { 2191 .dp = target_dp, 2192 .name = target_name, 2193 .ip = target_ip, 2194 }; 2195 struct xfs_dir_update du_wip = { }; 2196 struct xfs_mount *mp = src_dp->i_mount; 2197 struct xfs_trans *tp; 2198 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2199 int i; 2200 int num_inodes = __XFS_SORT_INODES; 2201 bool new_parent = (src_dp != target_dp); 2202 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 2203 int spaceres; 2204 bool retried = false; 2205 int error, nospace_error = 0; 2206 2207 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2208 2209 if ((flags & RENAME_EXCHANGE) && !target_ip) 2210 return -EINVAL; 2211 2212 /* 2213 * If we are doing a whiteout operation, allocate the whiteout inode 2214 * we will be placing at the target and ensure the type is set 2215 * appropriately. 2216 */ 2217 if (flags & RENAME_WHITEOUT) { 2218 error = xfs_rename_alloc_whiteout(idmap, src_name, target_dp, 2219 &du_wip.ip); 2220 if (error) 2221 return error; 2222 2223 /* setup target dirent info as whiteout */ 2224 src_name->type = XFS_DIR3_FT_CHRDEV; 2225 } 2226 2227 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, du_wip.ip, 2228 inodes, &num_inodes); 2229 2230 error = xfs_parent_start(mp, &du_src.ppargs); 2231 if (error) 2232 goto out_release_wip; 2233 2234 if (du_wip.ip) { 2235 error = xfs_parent_start(mp, &du_wip.ppargs); 2236 if (error) 2237 goto out_src_ppargs; 2238 } 2239 2240 if (target_ip) { 2241 error = xfs_parent_start(mp, &du_tgt.ppargs); 2242 if (error) 2243 goto out_wip_ppargs; 2244 } 2245 2246 retry: 2247 nospace_error = 0; 2248 spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL, 2249 target_name->len, du_wip.ip != NULL); 2250 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 2251 if (error == -ENOSPC) { 2252 nospace_error = error; 2253 spaceres = 0; 2254 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 2255 &tp); 2256 } 2257 if (error) 2258 goto out_tgt_ppargs; 2259 2260 /* 2261 * We don't allow reservationless renaming when parent pointers are 2262 * enabled because we can't back out if the xattrs must grow. 2263 */ 2264 if (du_src.ppargs && nospace_error) { 2265 error = nospace_error; 2266 xfs_trans_cancel(tp); 2267 goto out_tgt_ppargs; 2268 } 2269 2270 /* 2271 * Attach the dquots to the inodes 2272 */ 2273 error = xfs_qm_vop_rename_dqattach(inodes); 2274 if (error) { 2275 xfs_trans_cancel(tp); 2276 goto out_tgt_ppargs; 2277 } 2278 2279 /* 2280 * Lock all the participating inodes. Depending upon whether 2281 * the target_name exists in the target directory, and 2282 * whether the target directory is the same as the source 2283 * directory, we can lock from 2 to 5 inodes. 2284 */ 2285 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2286 2287 /* 2288 * Join all the inodes to the transaction. 2289 */ 2290 xfs_trans_ijoin(tp, src_dp, 0); 2291 if (new_parent) 2292 xfs_trans_ijoin(tp, target_dp, 0); 2293 xfs_trans_ijoin(tp, src_ip, 0); 2294 if (target_ip) 2295 xfs_trans_ijoin(tp, target_ip, 0); 2296 if (du_wip.ip) 2297 xfs_trans_ijoin(tp, du_wip.ip, 0); 2298 2299 /* 2300 * If we are using project inheritance, we only allow renames 2301 * into our tree when the project IDs are the same; else the 2302 * tree quota mechanism would be circumvented. 2303 */ 2304 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 2305 target_dp->i_projid != src_ip->i_projid)) { 2306 error = -EXDEV; 2307 goto out_trans_cancel; 2308 } 2309 2310 /* RENAME_EXCHANGE is unique from here on. */ 2311 if (flags & RENAME_EXCHANGE) { 2312 error = xfs_dir_exchange_children(tp, &du_src, &du_tgt, 2313 spaceres); 2314 if (error) 2315 goto out_trans_cancel; 2316 goto out_commit; 2317 } 2318 2319 /* 2320 * Try to reserve quota to handle an expansion of the target directory. 2321 * We'll allow the rename to continue in reservationless mode if we hit 2322 * a space usage constraint. If we trigger reservationless mode, save 2323 * the errno if there isn't any free space in the target directory. 2324 */ 2325 if (spaceres != 0) { 2326 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres, 2327 0, false); 2328 if (error == -EDQUOT || error == -ENOSPC) { 2329 if (!retried) { 2330 xfs_trans_cancel(tp); 2331 xfs_iunlock_rename(inodes, num_inodes); 2332 xfs_blockgc_free_quota(target_dp, 0); 2333 retried = true; 2334 goto retry; 2335 } 2336 2337 nospace_error = error; 2338 spaceres = 0; 2339 error = 0; 2340 } 2341 if (error) 2342 goto out_trans_cancel; 2343 } 2344 2345 /* 2346 * We don't allow quotaless renaming when parent pointers are enabled 2347 * because we can't back out if the xattrs must grow. 2348 */ 2349 if (du_src.ppargs && nospace_error) { 2350 error = nospace_error; 2351 goto out_trans_cancel; 2352 } 2353 2354 /* 2355 * Lock the AGI buffers we need to handle bumping the nlink of the 2356 * whiteout inode off the unlinked list and to handle dropping the 2357 * nlink of the target inode. Per locking order rules, do this in 2358 * increasing AG order and before directory block allocation tries to 2359 * grab AGFs because we grab AGIs before AGFs. 2360 * 2361 * The (vfs) caller must ensure that if src is a directory then 2362 * target_ip is either null or an empty directory. 2363 */ 2364 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 2365 if (inodes[i] == du_wip.ip || 2366 (inodes[i] == target_ip && 2367 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 2368 struct xfs_perag *pag; 2369 struct xfs_buf *bp; 2370 2371 pag = xfs_perag_get(mp, 2372 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino)); 2373 error = xfs_read_agi(pag, tp, 0, &bp); 2374 xfs_perag_put(pag); 2375 if (error) 2376 goto out_trans_cancel; 2377 } 2378 } 2379 2380 error = xfs_dir_rename_children(tp, &du_src, &du_tgt, spaceres, 2381 &du_wip); 2382 if (error) 2383 goto out_trans_cancel; 2384 2385 if (du_wip.ip) { 2386 /* 2387 * Now we have a real link, clear the "I'm a tmpfile" state 2388 * flag from the inode so it doesn't accidentally get misused in 2389 * future. 2390 */ 2391 VFS_I(du_wip.ip)->i_state &= ~I_LINKABLE; 2392 } 2393 2394 out_commit: 2395 /* 2396 * If this is a synchronous mount, make sure that the rename 2397 * transaction goes to disk before returning to the user. 2398 */ 2399 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) 2400 xfs_trans_set_sync(tp); 2401 2402 error = xfs_trans_commit(tp); 2403 nospace_error = 0; 2404 goto out_unlock; 2405 2406 out_trans_cancel: 2407 xfs_trans_cancel(tp); 2408 out_unlock: 2409 xfs_iunlock_rename(inodes, num_inodes); 2410 out_tgt_ppargs: 2411 xfs_parent_finish(mp, du_tgt.ppargs); 2412 out_wip_ppargs: 2413 xfs_parent_finish(mp, du_wip.ppargs); 2414 out_src_ppargs: 2415 xfs_parent_finish(mp, du_src.ppargs); 2416 out_release_wip: 2417 if (du_wip.ip) 2418 xfs_irele(du_wip.ip); 2419 if (error == -ENOSPC && nospace_error) 2420 error = nospace_error; 2421 return error; 2422 } 2423 2424 static int 2425 xfs_iflush( 2426 struct xfs_inode *ip, 2427 struct xfs_buf *bp) 2428 { 2429 struct xfs_inode_log_item *iip = ip->i_itemp; 2430 struct xfs_dinode *dip; 2431 struct xfs_mount *mp = ip->i_mount; 2432 int error; 2433 2434 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); 2435 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 2436 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 2437 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 2438 ASSERT(iip->ili_item.li_buf == bp); 2439 2440 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 2441 2442 /* 2443 * We don't flush the inode if any of the following checks fail, but we 2444 * do still update the log item and attach to the backing buffer as if 2445 * the flush happened. This is a formality to facilitate predictable 2446 * error handling as the caller will shutdown and fail the buffer. 2447 */ 2448 error = -EFSCORRUPTED; 2449 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 2450 mp, XFS_ERRTAG_IFLUSH_1)) { 2451 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2452 "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT, 2453 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 2454 goto flush_out; 2455 } 2456 if (S_ISREG(VFS_I(ip)->i_mode)) { 2457 if (XFS_TEST_ERROR( 2458 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 2459 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 2460 mp, XFS_ERRTAG_IFLUSH_3)) { 2461 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2462 "%s: Bad regular inode %llu, ptr "PTR_FMT, 2463 __func__, ip->i_ino, ip); 2464 goto flush_out; 2465 } 2466 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 2467 if (XFS_TEST_ERROR( 2468 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 2469 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 2470 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 2471 mp, XFS_ERRTAG_IFLUSH_4)) { 2472 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2473 "%s: Bad directory inode %llu, ptr "PTR_FMT, 2474 __func__, ip->i_ino, ip); 2475 goto flush_out; 2476 } 2477 } 2478 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) > 2479 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 2480 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2481 "%s: detected corrupt incore inode %llu, " 2482 "total extents = %llu nblocks = %lld, ptr "PTR_FMT, 2483 __func__, ip->i_ino, 2484 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af), 2485 ip->i_nblocks, ip); 2486 goto flush_out; 2487 } 2488 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, 2489 mp, XFS_ERRTAG_IFLUSH_6)) { 2490 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2491 "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT, 2492 __func__, ip->i_ino, ip->i_forkoff, ip); 2493 goto flush_out; 2494 } 2495 2496 /* 2497 * Inode item log recovery for v2 inodes are dependent on the flushiter 2498 * count for correct sequencing. We bump the flush iteration count so 2499 * we can detect flushes which postdate a log record during recovery. 2500 * This is redundant as we now log every change and hence this can't 2501 * happen but we need to still do it to ensure backwards compatibility 2502 * with old kernels that predate logging all inode changes. 2503 */ 2504 if (!xfs_has_v3inodes(mp)) 2505 ip->i_flushiter++; 2506 2507 /* 2508 * If there are inline format data / attr forks attached to this inode, 2509 * make sure they are not corrupt. 2510 */ 2511 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 2512 xfs_ifork_verify_local_data(ip)) 2513 goto flush_out; 2514 if (xfs_inode_has_attr_fork(ip) && 2515 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL && 2516 xfs_ifork_verify_local_attr(ip)) 2517 goto flush_out; 2518 2519 /* 2520 * Copy the dirty parts of the inode into the on-disk inode. We always 2521 * copy out the core of the inode, because if the inode is dirty at all 2522 * the core must be. 2523 */ 2524 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 2525 2526 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 2527 if (!xfs_has_v3inodes(mp)) { 2528 if (ip->i_flushiter == DI_MAX_FLUSH) 2529 ip->i_flushiter = 0; 2530 } 2531 2532 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 2533 if (xfs_inode_has_attr_fork(ip)) 2534 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 2535 2536 /* 2537 * We've recorded everything logged in the inode, so we'd like to clear 2538 * the ili_fields bits so we don't log and flush things unnecessarily. 2539 * However, we can't stop logging all this information until the data 2540 * we've copied into the disk buffer is written to disk. If we did we 2541 * might overwrite the copy of the inode in the log with all the data 2542 * after re-logging only part of it, and in the face of a crash we 2543 * wouldn't have all the data we need to recover. 2544 * 2545 * What we do is move the bits to the ili_last_fields field. When 2546 * logging the inode, these bits are moved back to the ili_fields field. 2547 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 2548 * we know that the information those bits represent is permanently on 2549 * disk. As long as the flush completes before the inode is logged 2550 * again, then both ili_fields and ili_last_fields will be cleared. 2551 */ 2552 error = 0; 2553 flush_out: 2554 spin_lock(&iip->ili_lock); 2555 iip->ili_last_fields = iip->ili_fields; 2556 iip->ili_fields = 0; 2557 iip->ili_fsync_fields = 0; 2558 set_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags); 2559 spin_unlock(&iip->ili_lock); 2560 2561 /* 2562 * Store the current LSN of the inode so that we can tell whether the 2563 * item has moved in the AIL from xfs_buf_inode_iodone(). 2564 */ 2565 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2566 &iip->ili_item.li_lsn); 2567 2568 /* generate the checksum. */ 2569 xfs_dinode_calc_crc(mp, dip); 2570 if (error) 2571 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 2572 return error; 2573 } 2574 2575 /* 2576 * Non-blocking flush of dirty inode metadata into the backing buffer. 2577 * 2578 * The caller must have a reference to the inode and hold the cluster buffer 2579 * locked. The function will walk across all the inodes on the cluster buffer it 2580 * can find and lock without blocking, and flush them to the cluster buffer. 2581 * 2582 * On successful flushing of at least one inode, the caller must write out the 2583 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 2584 * the caller needs to release the buffer. On failure, the filesystem will be 2585 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 2586 * will be returned. 2587 */ 2588 int 2589 xfs_iflush_cluster( 2590 struct xfs_buf *bp) 2591 { 2592 struct xfs_mount *mp = bp->b_mount; 2593 struct xfs_log_item *lip, *n; 2594 struct xfs_inode *ip; 2595 struct xfs_inode_log_item *iip; 2596 int clcount = 0; 2597 int error = 0; 2598 2599 /* 2600 * We must use the safe variant here as on shutdown xfs_iflush_abort() 2601 * will remove itself from the list. 2602 */ 2603 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 2604 iip = (struct xfs_inode_log_item *)lip; 2605 ip = iip->ili_inode; 2606 2607 /* 2608 * Quick and dirty check to avoid locks if possible. 2609 */ 2610 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 2611 continue; 2612 if (xfs_ipincount(ip)) 2613 continue; 2614 2615 /* 2616 * The inode is still attached to the buffer, which means it is 2617 * dirty but reclaim might try to grab it. Check carefully for 2618 * that, and grab the ilock while still holding the i_flags_lock 2619 * to guarantee reclaim will not be able to reclaim this inode 2620 * once we drop the i_flags_lock. 2621 */ 2622 spin_lock(&ip->i_flags_lock); 2623 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 2624 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 2625 spin_unlock(&ip->i_flags_lock); 2626 continue; 2627 } 2628 2629 /* 2630 * ILOCK will pin the inode against reclaim and prevent 2631 * concurrent transactions modifying the inode while we are 2632 * flushing the inode. If we get the lock, set the flushing 2633 * state before we drop the i_flags_lock. 2634 */ 2635 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 2636 spin_unlock(&ip->i_flags_lock); 2637 continue; 2638 } 2639 __xfs_iflags_set(ip, XFS_IFLUSHING); 2640 spin_unlock(&ip->i_flags_lock); 2641 2642 /* 2643 * Abort flushing this inode if we are shut down because the 2644 * inode may not currently be in the AIL. This can occur when 2645 * log I/O failure unpins the inode without inserting into the 2646 * AIL, leaving a dirty/unpinned inode attached to the buffer 2647 * that otherwise looks like it should be flushed. 2648 */ 2649 if (xlog_is_shutdown(mp->m_log)) { 2650 xfs_iunpin_wait(ip); 2651 xfs_iflush_abort(ip); 2652 xfs_iunlock(ip, XFS_ILOCK_SHARED); 2653 error = -EIO; 2654 continue; 2655 } 2656 2657 /* don't block waiting on a log force to unpin dirty inodes */ 2658 if (xfs_ipincount(ip)) { 2659 xfs_iflags_clear(ip, XFS_IFLUSHING); 2660 xfs_iunlock(ip, XFS_ILOCK_SHARED); 2661 continue; 2662 } 2663 2664 if (!xfs_inode_clean(ip)) 2665 error = xfs_iflush(ip, bp); 2666 else 2667 xfs_iflags_clear(ip, XFS_IFLUSHING); 2668 xfs_iunlock(ip, XFS_ILOCK_SHARED); 2669 if (error) 2670 break; 2671 clcount++; 2672 } 2673 2674 if (error) { 2675 /* 2676 * Shutdown first so we kill the log before we release this 2677 * buffer. If it is an INODE_ALLOC buffer and pins the tail 2678 * of the log, failing it before the _log_ is shut down can 2679 * result in the log tail being moved forward in the journal 2680 * on disk because log writes can still be taking place. Hence 2681 * unpinning the tail will allow the ICREATE intent to be 2682 * removed from the log an recovery will fail with uninitialised 2683 * inode cluster buffers. 2684 */ 2685 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2686 bp->b_flags |= XBF_ASYNC; 2687 xfs_buf_ioend_fail(bp); 2688 return error; 2689 } 2690 2691 if (!clcount) 2692 return -EAGAIN; 2693 2694 XFS_STATS_INC(mp, xs_icluster_flushcnt); 2695 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 2696 return 0; 2697 2698 } 2699 2700 /* Release an inode. */ 2701 void 2702 xfs_irele( 2703 struct xfs_inode *ip) 2704 { 2705 trace_xfs_irele(ip, _RET_IP_); 2706 iput(VFS_I(ip)); 2707 } 2708 2709 /* 2710 * Ensure all commited transactions touching the inode are written to the log. 2711 */ 2712 int 2713 xfs_log_force_inode( 2714 struct xfs_inode *ip) 2715 { 2716 xfs_csn_t seq = 0; 2717 2718 xfs_ilock(ip, XFS_ILOCK_SHARED); 2719 if (xfs_ipincount(ip)) 2720 seq = ip->i_itemp->ili_commit_seq; 2721 xfs_iunlock(ip, XFS_ILOCK_SHARED); 2722 2723 if (!seq) 2724 return 0; 2725 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); 2726 } 2727 2728 /* 2729 * Grab the exclusive iolock for a data copy from src to dest, making sure to 2730 * abide vfs locking order (lowest pointer value goes first) and breaking the 2731 * layout leases before proceeding. The loop is needed because we cannot call 2732 * the blocking break_layout() with the iolocks held, and therefore have to 2733 * back out both locks. 2734 */ 2735 static int 2736 xfs_iolock_two_inodes_and_break_layout( 2737 struct inode *src, 2738 struct inode *dest) 2739 { 2740 int error; 2741 2742 if (src > dest) 2743 swap(src, dest); 2744 2745 retry: 2746 /* Wait to break both inodes' layouts before we start locking. */ 2747 error = break_layout(src, true); 2748 if (error) 2749 return error; 2750 if (src != dest) { 2751 error = break_layout(dest, true); 2752 if (error) 2753 return error; 2754 } 2755 2756 /* Lock one inode and make sure nobody got in and leased it. */ 2757 inode_lock(src); 2758 error = break_layout(src, false); 2759 if (error) { 2760 inode_unlock(src); 2761 if (error == -EWOULDBLOCK) 2762 goto retry; 2763 return error; 2764 } 2765 2766 if (src == dest) 2767 return 0; 2768 2769 /* Lock the other inode and make sure nobody got in and leased it. */ 2770 inode_lock_nested(dest, I_MUTEX_NONDIR2); 2771 error = break_layout(dest, false); 2772 if (error) { 2773 inode_unlock(src); 2774 inode_unlock(dest); 2775 if (error == -EWOULDBLOCK) 2776 goto retry; 2777 return error; 2778 } 2779 2780 return 0; 2781 } 2782 2783 static int 2784 xfs_mmaplock_two_inodes_and_break_dax_layout( 2785 struct xfs_inode *ip1, 2786 struct xfs_inode *ip2) 2787 { 2788 int error; 2789 bool retry; 2790 struct page *page; 2791 2792 if (ip1->i_ino > ip2->i_ino) 2793 swap(ip1, ip2); 2794 2795 again: 2796 retry = false; 2797 /* Lock the first inode */ 2798 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); 2799 error = xfs_break_dax_layouts(VFS_I(ip1), &retry); 2800 if (error || retry) { 2801 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 2802 if (error == 0 && retry) 2803 goto again; 2804 return error; 2805 } 2806 2807 if (ip1 == ip2) 2808 return 0; 2809 2810 /* Nested lock the second inode */ 2811 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1)); 2812 /* 2813 * We cannot use xfs_break_dax_layouts() directly here because it may 2814 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable 2815 * for this nested lock case. 2816 */ 2817 page = dax_layout_busy_page(VFS_I(ip2)->i_mapping); 2818 if (page && page_ref_count(page) != 1) { 2819 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 2820 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 2821 goto again; 2822 } 2823 2824 return 0; 2825 } 2826 2827 /* 2828 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 2829 * mmap activity. 2830 */ 2831 int 2832 xfs_ilock2_io_mmap( 2833 struct xfs_inode *ip1, 2834 struct xfs_inode *ip2) 2835 { 2836 int ret; 2837 2838 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 2839 if (ret) 2840 return ret; 2841 2842 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 2843 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2); 2844 if (ret) { 2845 inode_unlock(VFS_I(ip2)); 2846 if (ip1 != ip2) 2847 inode_unlock(VFS_I(ip1)); 2848 return ret; 2849 } 2850 } else 2851 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, 2852 VFS_I(ip2)->i_mapping); 2853 2854 return 0; 2855 } 2856 2857 /* Unlock both inodes to allow IO and mmap activity. */ 2858 void 2859 xfs_iunlock2_io_mmap( 2860 struct xfs_inode *ip1, 2861 struct xfs_inode *ip2) 2862 { 2863 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 2864 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 2865 if (ip1 != ip2) 2866 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 2867 } else 2868 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, 2869 VFS_I(ip2)->i_mapping); 2870 2871 inode_unlock(VFS_I(ip2)); 2872 if (ip1 != ip2) 2873 inode_unlock(VFS_I(ip1)); 2874 } 2875 2876 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */ 2877 void 2878 xfs_iunlock2_remapping( 2879 struct xfs_inode *ip1, 2880 struct xfs_inode *ip2) 2881 { 2882 xfs_iflags_clear(ip1, XFS_IREMAPPING); 2883 2884 if (ip1 != ip2) 2885 xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED); 2886 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 2887 2888 if (ip1 != ip2) 2889 inode_unlock_shared(VFS_I(ip1)); 2890 inode_unlock(VFS_I(ip2)); 2891 } 2892 2893 /* 2894 * Reload the incore inode list for this inode. Caller should ensure that 2895 * the link count cannot change, either by taking ILOCK_SHARED or otherwise 2896 * preventing other threads from executing. 2897 */ 2898 int 2899 xfs_inode_reload_unlinked_bucket( 2900 struct xfs_trans *tp, 2901 struct xfs_inode *ip) 2902 { 2903 struct xfs_mount *mp = tp->t_mountp; 2904 struct xfs_buf *agibp; 2905 struct xfs_agi *agi; 2906 struct xfs_perag *pag; 2907 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2908 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2909 xfs_agino_t prev_agino, next_agino; 2910 unsigned int bucket; 2911 bool foundit = false; 2912 int error; 2913 2914 /* Grab the first inode in the list */ 2915 pag = xfs_perag_get(mp, agno); 2916 error = xfs_ialloc_read_agi(pag, tp, 0, &agibp); 2917 xfs_perag_put(pag); 2918 if (error) 2919 return error; 2920 2921 /* 2922 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the 2923 * incore unlinked list pointers for this inode. Check once more to 2924 * see if we raced with anyone else to reload the unlinked list. 2925 */ 2926 if (!xfs_inode_unlinked_incomplete(ip)) { 2927 foundit = true; 2928 goto out_agibp; 2929 } 2930 2931 bucket = agino % XFS_AGI_UNLINKED_BUCKETS; 2932 agi = agibp->b_addr; 2933 2934 trace_xfs_inode_reload_unlinked_bucket(ip); 2935 2936 xfs_info_ratelimited(mp, 2937 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.", 2938 agino, agno); 2939 2940 prev_agino = NULLAGINO; 2941 next_agino = be32_to_cpu(agi->agi_unlinked[bucket]); 2942 while (next_agino != NULLAGINO) { 2943 struct xfs_inode *next_ip = NULL; 2944 2945 /* Found this caller's inode, set its backlink. */ 2946 if (next_agino == agino) { 2947 next_ip = ip; 2948 next_ip->i_prev_unlinked = prev_agino; 2949 foundit = true; 2950 goto next_inode; 2951 } 2952 2953 /* Try in-memory lookup first. */ 2954 next_ip = xfs_iunlink_lookup(pag, next_agino); 2955 if (next_ip) 2956 goto next_inode; 2957 2958 /* Inode not in memory, try reloading it. */ 2959 error = xfs_iunlink_reload_next(tp, agibp, prev_agino, 2960 next_agino); 2961 if (error) 2962 break; 2963 2964 /* Grab the reloaded inode. */ 2965 next_ip = xfs_iunlink_lookup(pag, next_agino); 2966 if (!next_ip) { 2967 /* No incore inode at all? We reloaded it... */ 2968 ASSERT(next_ip != NULL); 2969 error = -EFSCORRUPTED; 2970 break; 2971 } 2972 2973 next_inode: 2974 prev_agino = next_agino; 2975 next_agino = next_ip->i_next_unlinked; 2976 } 2977 2978 out_agibp: 2979 xfs_trans_brelse(tp, agibp); 2980 /* Should have found this inode somewhere in the iunlinked bucket. */ 2981 if (!error && !foundit) 2982 error = -EFSCORRUPTED; 2983 return error; 2984 } 2985 2986 /* Decide if this inode is missing its unlinked list and reload it. */ 2987 int 2988 xfs_inode_reload_unlinked( 2989 struct xfs_inode *ip) 2990 { 2991 struct xfs_trans *tp; 2992 int error; 2993 2994 error = xfs_trans_alloc_empty(ip->i_mount, &tp); 2995 if (error) 2996 return error; 2997 2998 xfs_ilock(ip, XFS_ILOCK_SHARED); 2999 if (xfs_inode_unlinked_incomplete(ip)) 3000 error = xfs_inode_reload_unlinked_bucket(tp, ip); 3001 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3002 xfs_trans_cancel(tp); 3003 3004 return error; 3005 } 3006 3007 /* Has this inode fork been zapped by repair? */ 3008 bool 3009 xfs_ifork_zapped( 3010 const struct xfs_inode *ip, 3011 int whichfork) 3012 { 3013 unsigned int datamask = 0; 3014 3015 switch (whichfork) { 3016 case XFS_DATA_FORK: 3017 switch (ip->i_vnode.i_mode & S_IFMT) { 3018 case S_IFDIR: 3019 datamask = XFS_SICK_INO_DIR_ZAPPED; 3020 break; 3021 case S_IFLNK: 3022 datamask = XFS_SICK_INO_SYMLINK_ZAPPED; 3023 break; 3024 } 3025 return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask); 3026 case XFS_ATTR_FORK: 3027 return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED; 3028 default: 3029 return false; 3030 } 3031 } 3032 3033 /* Compute the number of data and realtime blocks used by a file. */ 3034 void 3035 xfs_inode_count_blocks( 3036 struct xfs_trans *tp, 3037 struct xfs_inode *ip, 3038 xfs_filblks_t *dblocks, 3039 xfs_filblks_t *rblocks) 3040 { 3041 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 3042 3043 *rblocks = 0; 3044 if (XFS_IS_REALTIME_INODE(ip)) 3045 xfs_bmap_count_leaves(ifp, rblocks); 3046 *dblocks = ip->i_nblocks - *rblocks; 3047 } 3048 3049 static void 3050 xfs_wait_dax_page( 3051 struct inode *inode) 3052 { 3053 struct xfs_inode *ip = XFS_I(inode); 3054 3055 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 3056 schedule(); 3057 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 3058 } 3059 3060 int 3061 xfs_break_dax_layouts( 3062 struct inode *inode, 3063 bool *retry) 3064 { 3065 struct page *page; 3066 3067 xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL); 3068 3069 page = dax_layout_busy_page(inode->i_mapping); 3070 if (!page) 3071 return 0; 3072 3073 *retry = true; 3074 return ___wait_var_event(&page->_refcount, 3075 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 3076 0, 0, xfs_wait_dax_page(inode)); 3077 } 3078 3079 int 3080 xfs_break_layouts( 3081 struct inode *inode, 3082 uint *iolock, 3083 enum layout_break_reason reason) 3084 { 3085 bool retry; 3086 int error; 3087 3088 xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL); 3089 3090 do { 3091 retry = false; 3092 switch (reason) { 3093 case BREAK_UNMAP: 3094 error = xfs_break_dax_layouts(inode, &retry); 3095 if (error || retry) 3096 break; 3097 fallthrough; 3098 case BREAK_WRITE: 3099 error = xfs_break_leased_layouts(inode, iolock, &retry); 3100 break; 3101 default: 3102 WARN_ON_ONCE(1); 3103 error = -EINVAL; 3104 } 3105 } while (error == 0 && retry); 3106 3107 return error; 3108 } 3109 3110 /* Returns the size of fundamental allocation unit for a file, in bytes. */ 3111 unsigned int 3112 xfs_inode_alloc_unitsize( 3113 struct xfs_inode *ip) 3114 { 3115 unsigned int blocks = 1; 3116 3117 if (XFS_IS_REALTIME_INODE(ip)) 3118 blocks = ip->i_mount->m_sb.sb_rextsize; 3119 3120 return XFS_FSB_TO_B(ip->i_mount, blocks); 3121 } 3122 3123 /* Should we always be using copy on write for file writes? */ 3124 bool 3125 xfs_is_always_cow_inode( 3126 struct xfs_inode *ip) 3127 { 3128 return ip->i_mount->m_always_cow && xfs_has_reflink(ip->i_mount); 3129 } 3130