1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_dir2.h" 18 #include "xfs_attr.h" 19 #include "xfs_bit.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_trans.h" 22 #include "xfs_buf_item.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_iunlink_item.h" 25 #include "xfs_ialloc.h" 26 #include "xfs_bmap.h" 27 #include "xfs_bmap_util.h" 28 #include "xfs_errortag.h" 29 #include "xfs_error.h" 30 #include "xfs_quota.h" 31 #include "xfs_filestream.h" 32 #include "xfs_trace.h" 33 #include "xfs_icache.h" 34 #include "xfs_symlink.h" 35 #include "xfs_trans_priv.h" 36 #include "xfs_log.h" 37 #include "xfs_bmap_btree.h" 38 #include "xfs_reflink.h" 39 #include "xfs_ag.h" 40 #include "xfs_log_priv.h" 41 #include "xfs_health.h" 42 #include "xfs_pnfs.h" 43 #include "xfs_parent.h" 44 #include "xfs_xattr.h" 45 46 struct kmem_cache *xfs_inode_cache; 47 48 /* 49 * helper function to extract extent size hint from inode 50 */ 51 xfs_extlen_t 52 xfs_get_extsz_hint( 53 struct xfs_inode *ip) 54 { 55 /* 56 * No point in aligning allocations if we need to COW to actually 57 * write to them. 58 */ 59 if (xfs_is_always_cow_inode(ip)) 60 return 0; 61 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize) 62 return ip->i_extsize; 63 if (XFS_IS_REALTIME_INODE(ip) && 64 ip->i_mount->m_sb.sb_rextsize > 1) 65 return ip->i_mount->m_sb.sb_rextsize; 66 return 0; 67 } 68 69 /* 70 * Helper function to extract CoW extent size hint from inode. 71 * Between the extent size hint and the CoW extent size hint, we 72 * return the greater of the two. If the value is zero (automatic), 73 * use the default size. 74 */ 75 xfs_extlen_t 76 xfs_get_cowextsz_hint( 77 struct xfs_inode *ip) 78 { 79 xfs_extlen_t a, b; 80 81 a = 0; 82 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 83 a = ip->i_cowextsize; 84 b = xfs_get_extsz_hint(ip); 85 86 a = max(a, b); 87 if (a == 0) 88 return XFS_DEFAULT_COWEXTSZ_HINT; 89 return a; 90 } 91 92 /* 93 * These two are wrapper routines around the xfs_ilock() routine used to 94 * centralize some grungy code. They are used in places that wish to lock the 95 * inode solely for reading the extents. The reason these places can't just 96 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 97 * bringing in of the extents from disk for a file in b-tree format. If the 98 * inode is in b-tree format, then we need to lock the inode exclusively until 99 * the extents are read in. Locking it exclusively all the time would limit 100 * our parallelism unnecessarily, though. What we do instead is check to see 101 * if the extents have been read in yet, and only lock the inode exclusively 102 * if they have not. 103 * 104 * The functions return a value which should be given to the corresponding 105 * xfs_iunlock() call. 106 */ 107 uint 108 xfs_ilock_data_map_shared( 109 struct xfs_inode *ip) 110 { 111 uint lock_mode = XFS_ILOCK_SHARED; 112 113 if (xfs_need_iread_extents(&ip->i_df)) 114 lock_mode = XFS_ILOCK_EXCL; 115 xfs_ilock(ip, lock_mode); 116 return lock_mode; 117 } 118 119 uint 120 xfs_ilock_attr_map_shared( 121 struct xfs_inode *ip) 122 { 123 uint lock_mode = XFS_ILOCK_SHARED; 124 125 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) 126 lock_mode = XFS_ILOCK_EXCL; 127 xfs_ilock(ip, lock_mode); 128 return lock_mode; 129 } 130 131 /* 132 * You can't set both SHARED and EXCL for the same lock, 133 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED, 134 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values 135 * to set in lock_flags. 136 */ 137 static inline void 138 xfs_lock_flags_assert( 139 uint lock_flags) 140 { 141 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 142 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 143 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 144 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 145 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 146 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 147 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 148 ASSERT(lock_flags != 0); 149 } 150 151 /* 152 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 153 * multi-reader locks: invalidate_lock and the i_lock. This routine allows 154 * various combinations of the locks to be obtained. 155 * 156 * The 3 locks should always be ordered so that the IO lock is obtained first, 157 * the mmap lock second and the ilock last in order to prevent deadlock. 158 * 159 * Basic locking order: 160 * 161 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock 162 * 163 * mmap_lock locking order: 164 * 165 * i_rwsem -> page lock -> mmap_lock 166 * mmap_lock -> invalidate_lock -> page_lock 167 * 168 * The difference in mmap_lock locking order mean that we cannot hold the 169 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths 170 * can fault in pages during copy in/out (for buffered IO) or require the 171 * mmap_lock in get_user_pages() to map the user pages into the kernel address 172 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page 173 * fault because page faults already hold the mmap_lock. 174 * 175 * Hence to serialise fully against both syscall and mmap based IO, we need to 176 * take both the i_rwsem and the invalidate_lock. These locks should *only* be 177 * both taken in places where we need to invalidate the page cache in a race 178 * free manner (e.g. truncate, hole punch and other extent manipulation 179 * functions). 180 */ 181 void 182 xfs_ilock( 183 xfs_inode_t *ip, 184 uint lock_flags) 185 { 186 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 187 188 xfs_lock_flags_assert(lock_flags); 189 190 if (lock_flags & XFS_IOLOCK_EXCL) { 191 down_write_nested(&VFS_I(ip)->i_rwsem, 192 XFS_IOLOCK_DEP(lock_flags)); 193 } else if (lock_flags & XFS_IOLOCK_SHARED) { 194 down_read_nested(&VFS_I(ip)->i_rwsem, 195 XFS_IOLOCK_DEP(lock_flags)); 196 } 197 198 if (lock_flags & XFS_MMAPLOCK_EXCL) { 199 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 200 XFS_MMAPLOCK_DEP(lock_flags)); 201 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 202 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 203 XFS_MMAPLOCK_DEP(lock_flags)); 204 } 205 206 if (lock_flags & XFS_ILOCK_EXCL) 207 down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 208 else if (lock_flags & XFS_ILOCK_SHARED) 209 down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 210 } 211 212 /* 213 * This is just like xfs_ilock(), except that the caller 214 * is guaranteed not to sleep. It returns 1 if it gets 215 * the requested locks and 0 otherwise. If the IO lock is 216 * obtained but the inode lock cannot be, then the IO lock 217 * is dropped before returning. 218 * 219 * ip -- the inode being locked 220 * lock_flags -- this parameter indicates the inode's locks to be 221 * to be locked. See the comment for xfs_ilock() for a list 222 * of valid values. 223 */ 224 int 225 xfs_ilock_nowait( 226 xfs_inode_t *ip, 227 uint lock_flags) 228 { 229 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 230 231 xfs_lock_flags_assert(lock_flags); 232 233 if (lock_flags & XFS_IOLOCK_EXCL) { 234 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 235 goto out; 236 } else if (lock_flags & XFS_IOLOCK_SHARED) { 237 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 238 goto out; 239 } 240 241 if (lock_flags & XFS_MMAPLOCK_EXCL) { 242 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 243 goto out_undo_iolock; 244 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 245 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 246 goto out_undo_iolock; 247 } 248 249 if (lock_flags & XFS_ILOCK_EXCL) { 250 if (!down_write_trylock(&ip->i_lock)) 251 goto out_undo_mmaplock; 252 } else if (lock_flags & XFS_ILOCK_SHARED) { 253 if (!down_read_trylock(&ip->i_lock)) 254 goto out_undo_mmaplock; 255 } 256 return 1; 257 258 out_undo_mmaplock: 259 if (lock_flags & XFS_MMAPLOCK_EXCL) 260 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 261 else if (lock_flags & XFS_MMAPLOCK_SHARED) 262 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 263 out_undo_iolock: 264 if (lock_flags & XFS_IOLOCK_EXCL) 265 up_write(&VFS_I(ip)->i_rwsem); 266 else if (lock_flags & XFS_IOLOCK_SHARED) 267 up_read(&VFS_I(ip)->i_rwsem); 268 out: 269 return 0; 270 } 271 272 /* 273 * xfs_iunlock() is used to drop the inode locks acquired with 274 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 275 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 276 * that we know which locks to drop. 277 * 278 * ip -- the inode being unlocked 279 * lock_flags -- this parameter indicates the inode's locks to be 280 * to be unlocked. See the comment for xfs_ilock() for a list 281 * of valid values for this parameter. 282 * 283 */ 284 void 285 xfs_iunlock( 286 xfs_inode_t *ip, 287 uint lock_flags) 288 { 289 xfs_lock_flags_assert(lock_flags); 290 291 if (lock_flags & XFS_IOLOCK_EXCL) 292 up_write(&VFS_I(ip)->i_rwsem); 293 else if (lock_flags & XFS_IOLOCK_SHARED) 294 up_read(&VFS_I(ip)->i_rwsem); 295 296 if (lock_flags & XFS_MMAPLOCK_EXCL) 297 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 298 else if (lock_flags & XFS_MMAPLOCK_SHARED) 299 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 300 301 if (lock_flags & XFS_ILOCK_EXCL) 302 up_write(&ip->i_lock); 303 else if (lock_flags & XFS_ILOCK_SHARED) 304 up_read(&ip->i_lock); 305 306 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 307 } 308 309 /* 310 * give up write locks. the i/o lock cannot be held nested 311 * if it is being demoted. 312 */ 313 void 314 xfs_ilock_demote( 315 xfs_inode_t *ip, 316 uint lock_flags) 317 { 318 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 319 ASSERT((lock_flags & 320 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 321 322 if (lock_flags & XFS_ILOCK_EXCL) 323 downgrade_write(&ip->i_lock); 324 if (lock_flags & XFS_MMAPLOCK_EXCL) 325 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); 326 if (lock_flags & XFS_IOLOCK_EXCL) 327 downgrade_write(&VFS_I(ip)->i_rwsem); 328 329 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 330 } 331 332 void 333 xfs_assert_ilocked( 334 struct xfs_inode *ip, 335 uint lock_flags) 336 { 337 /* 338 * Sometimes we assert the ILOCK is held exclusively, but we're in 339 * a workqueue, so lockdep doesn't know we're the owner. 340 */ 341 if (lock_flags & XFS_ILOCK_SHARED) 342 rwsem_assert_held(&ip->i_lock); 343 else if (lock_flags & XFS_ILOCK_EXCL) 344 rwsem_assert_held_write_nolockdep(&ip->i_lock); 345 346 if (lock_flags & XFS_MMAPLOCK_SHARED) 347 rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock); 348 else if (lock_flags & XFS_MMAPLOCK_EXCL) 349 rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock); 350 351 if (lock_flags & XFS_IOLOCK_SHARED) 352 rwsem_assert_held(&VFS_I(ip)->i_rwsem); 353 else if (lock_flags & XFS_IOLOCK_EXCL) 354 rwsem_assert_held_write(&VFS_I(ip)->i_rwsem); 355 } 356 357 /* 358 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 359 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 360 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 361 * errors and warnings. 362 */ 363 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 364 static bool 365 xfs_lockdep_subclass_ok( 366 int subclass) 367 { 368 return subclass < MAX_LOCKDEP_SUBCLASSES; 369 } 370 #else 371 #define xfs_lockdep_subclass_ok(subclass) (true) 372 #endif 373 374 /* 375 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 376 * value. This can be called for any type of inode lock combination, including 377 * parent locking. Care must be taken to ensure we don't overrun the subclass 378 * storage fields in the class mask we build. 379 */ 380 static inline uint 381 xfs_lock_inumorder( 382 uint lock_mode, 383 uint subclass) 384 { 385 uint class = 0; 386 387 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 388 XFS_ILOCK_RTSUM))); 389 ASSERT(xfs_lockdep_subclass_ok(subclass)); 390 391 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 392 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 393 class += subclass << XFS_IOLOCK_SHIFT; 394 } 395 396 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 397 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 398 class += subclass << XFS_MMAPLOCK_SHIFT; 399 } 400 401 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 402 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 403 class += subclass << XFS_ILOCK_SHIFT; 404 } 405 406 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 407 } 408 409 /* 410 * The following routine will lock n inodes in exclusive mode. We assume the 411 * caller calls us with the inodes in i_ino order. 412 * 413 * We need to detect deadlock where an inode that we lock is in the AIL and we 414 * start waiting for another inode that is locked by a thread in a long running 415 * transaction (such as truncate). This can result in deadlock since the long 416 * running trans might need to wait for the inode we just locked in order to 417 * push the tail and free space in the log. 418 * 419 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 420 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 421 * lock more than one at a time, lockdep will report false positives saying we 422 * have violated locking orders. 423 */ 424 void 425 xfs_lock_inodes( 426 struct xfs_inode **ips, 427 int inodes, 428 uint lock_mode) 429 { 430 int attempts = 0; 431 uint i; 432 int j; 433 bool try_lock; 434 struct xfs_log_item *lp; 435 436 /* 437 * Currently supports between 2 and 5 inodes with exclusive locking. We 438 * support an arbitrary depth of locking here, but absolute limits on 439 * inodes depend on the type of locking and the limits placed by 440 * lockdep annotations in xfs_lock_inumorder. These are all checked by 441 * the asserts. 442 */ 443 ASSERT(ips && inodes >= 2 && inodes <= 5); 444 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 445 XFS_ILOCK_EXCL)); 446 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 447 XFS_ILOCK_SHARED))); 448 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 449 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 450 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 451 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 452 453 if (lock_mode & XFS_IOLOCK_EXCL) { 454 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 455 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 456 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 457 458 again: 459 try_lock = false; 460 i = 0; 461 for (; i < inodes; i++) { 462 ASSERT(ips[i]); 463 464 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 465 continue; 466 467 /* 468 * If try_lock is not set yet, make sure all locked inodes are 469 * not in the AIL. If any are, set try_lock to be used later. 470 */ 471 if (!try_lock) { 472 for (j = (i - 1); j >= 0 && !try_lock; j--) { 473 lp = &ips[j]->i_itemp->ili_item; 474 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 475 try_lock = true; 476 } 477 } 478 479 /* 480 * If any of the previous locks we have locked is in the AIL, 481 * we must TRY to get the second and subsequent locks. If 482 * we can't get any, we must release all we have 483 * and try again. 484 */ 485 if (!try_lock) { 486 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 487 continue; 488 } 489 490 /* try_lock means we have an inode locked that is in the AIL. */ 491 ASSERT(i != 0); 492 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 493 continue; 494 495 /* 496 * Unlock all previous guys and try again. xfs_iunlock will try 497 * to push the tail if the inode is in the AIL. 498 */ 499 attempts++; 500 for (j = i - 1; j >= 0; j--) { 501 /* 502 * Check to see if we've already unlocked this one. Not 503 * the first one going back, and the inode ptr is the 504 * same. 505 */ 506 if (j != (i - 1) && ips[j] == ips[j + 1]) 507 continue; 508 509 xfs_iunlock(ips[j], lock_mode); 510 } 511 512 if ((attempts % 5) == 0) { 513 delay(1); /* Don't just spin the CPU */ 514 } 515 goto again; 516 } 517 } 518 519 /* 520 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and 521 * mmaplock must be double-locked separately since we use i_rwsem and 522 * invalidate_lock for that. We now support taking one lock EXCL and the 523 * other SHARED. 524 */ 525 void 526 xfs_lock_two_inodes( 527 struct xfs_inode *ip0, 528 uint ip0_mode, 529 struct xfs_inode *ip1, 530 uint ip1_mode) 531 { 532 int attempts = 0; 533 struct xfs_log_item *lp; 534 535 ASSERT(hweight32(ip0_mode) == 1); 536 ASSERT(hweight32(ip1_mode) == 1); 537 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 538 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 539 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 540 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 541 ASSERT(ip0->i_ino != ip1->i_ino); 542 543 if (ip0->i_ino > ip1->i_ino) { 544 swap(ip0, ip1); 545 swap(ip0_mode, ip1_mode); 546 } 547 548 again: 549 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 550 551 /* 552 * If the first lock we have locked is in the AIL, we must TRY to get 553 * the second lock. If we can't get it, we must release the first one 554 * and try again. 555 */ 556 lp = &ip0->i_itemp->ili_item; 557 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 558 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 559 xfs_iunlock(ip0, ip0_mode); 560 if ((++attempts % 5) == 0) 561 delay(1); /* Don't just spin the CPU */ 562 goto again; 563 } 564 } else { 565 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 566 } 567 } 568 569 uint 570 xfs_ip2xflags( 571 struct xfs_inode *ip) 572 { 573 uint flags = 0; 574 575 if (ip->i_diflags & XFS_DIFLAG_ANY) { 576 if (ip->i_diflags & XFS_DIFLAG_REALTIME) 577 flags |= FS_XFLAG_REALTIME; 578 if (ip->i_diflags & XFS_DIFLAG_PREALLOC) 579 flags |= FS_XFLAG_PREALLOC; 580 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 581 flags |= FS_XFLAG_IMMUTABLE; 582 if (ip->i_diflags & XFS_DIFLAG_APPEND) 583 flags |= FS_XFLAG_APPEND; 584 if (ip->i_diflags & XFS_DIFLAG_SYNC) 585 flags |= FS_XFLAG_SYNC; 586 if (ip->i_diflags & XFS_DIFLAG_NOATIME) 587 flags |= FS_XFLAG_NOATIME; 588 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 589 flags |= FS_XFLAG_NODUMP; 590 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT) 591 flags |= FS_XFLAG_RTINHERIT; 592 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT) 593 flags |= FS_XFLAG_PROJINHERIT; 594 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS) 595 flags |= FS_XFLAG_NOSYMLINKS; 596 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE) 597 flags |= FS_XFLAG_EXTSIZE; 598 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) 599 flags |= FS_XFLAG_EXTSZINHERIT; 600 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG) 601 flags |= FS_XFLAG_NODEFRAG; 602 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM) 603 flags |= FS_XFLAG_FILESTREAM; 604 } 605 606 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) { 607 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 608 flags |= FS_XFLAG_DAX; 609 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 610 flags |= FS_XFLAG_COWEXTSIZE; 611 } 612 613 if (xfs_inode_has_attr_fork(ip)) 614 flags |= FS_XFLAG_HASATTR; 615 return flags; 616 } 617 618 /* 619 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 620 * is allowed, otherwise it has to be an exact match. If a CI match is found, 621 * ci_name->name will point to a the actual name (caller must free) or 622 * will be set to NULL if an exact match is found. 623 */ 624 int 625 xfs_lookup( 626 struct xfs_inode *dp, 627 const struct xfs_name *name, 628 struct xfs_inode **ipp, 629 struct xfs_name *ci_name) 630 { 631 xfs_ino_t inum; 632 int error; 633 634 trace_xfs_lookup(dp, name); 635 636 if (xfs_is_shutdown(dp->i_mount)) 637 return -EIO; 638 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 639 return -EIO; 640 641 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 642 if (error) 643 goto out_unlock; 644 645 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 646 if (error) 647 goto out_free_name; 648 649 return 0; 650 651 out_free_name: 652 if (ci_name) 653 kfree(ci_name->name); 654 out_unlock: 655 *ipp = NULL; 656 return error; 657 } 658 659 /* Propagate di_flags from a parent inode to a child inode. */ 660 static void 661 xfs_inode_inherit_flags( 662 struct xfs_inode *ip, 663 const struct xfs_inode *pip) 664 { 665 unsigned int di_flags = 0; 666 xfs_failaddr_t failaddr; 667 umode_t mode = VFS_I(ip)->i_mode; 668 669 if (S_ISDIR(mode)) { 670 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT) 671 di_flags |= XFS_DIFLAG_RTINHERIT; 672 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 673 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 674 ip->i_extsize = pip->i_extsize; 675 } 676 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT) 677 di_flags |= XFS_DIFLAG_PROJINHERIT; 678 } else if (S_ISREG(mode)) { 679 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) && 680 xfs_has_realtime(ip->i_mount)) 681 di_flags |= XFS_DIFLAG_REALTIME; 682 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 683 di_flags |= XFS_DIFLAG_EXTSIZE; 684 ip->i_extsize = pip->i_extsize; 685 } 686 } 687 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) && 688 xfs_inherit_noatime) 689 di_flags |= XFS_DIFLAG_NOATIME; 690 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) && 691 xfs_inherit_nodump) 692 di_flags |= XFS_DIFLAG_NODUMP; 693 if ((pip->i_diflags & XFS_DIFLAG_SYNC) && 694 xfs_inherit_sync) 695 di_flags |= XFS_DIFLAG_SYNC; 696 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) && 697 xfs_inherit_nosymlinks) 698 di_flags |= XFS_DIFLAG_NOSYMLINKS; 699 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) && 700 xfs_inherit_nodefrag) 701 di_flags |= XFS_DIFLAG_NODEFRAG; 702 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM) 703 di_flags |= XFS_DIFLAG_FILESTREAM; 704 705 ip->i_diflags |= di_flags; 706 707 /* 708 * Inode verifiers on older kernels only check that the extent size 709 * hint is an integer multiple of the rt extent size on realtime files. 710 * They did not check the hint alignment on a directory with both 711 * rtinherit and extszinherit flags set. If the misaligned hint is 712 * propagated from a directory into a new realtime file, new file 713 * allocations will fail due to math errors in the rt allocator and/or 714 * trip the verifiers. Validate the hint settings in the new file so 715 * that we don't let broken hints propagate. 716 */ 717 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize, 718 VFS_I(ip)->i_mode, ip->i_diflags); 719 if (failaddr) { 720 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | 721 XFS_DIFLAG_EXTSZINHERIT); 722 ip->i_extsize = 0; 723 } 724 } 725 726 /* Propagate di_flags2 from a parent inode to a child inode. */ 727 static void 728 xfs_inode_inherit_flags2( 729 struct xfs_inode *ip, 730 const struct xfs_inode *pip) 731 { 732 xfs_failaddr_t failaddr; 733 734 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) { 735 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 736 ip->i_cowextsize = pip->i_cowextsize; 737 } 738 if (pip->i_diflags2 & XFS_DIFLAG2_DAX) 739 ip->i_diflags2 |= XFS_DIFLAG2_DAX; 740 741 /* Don't let invalid cowextsize hints propagate. */ 742 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize, 743 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2); 744 if (failaddr) { 745 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE; 746 ip->i_cowextsize = 0; 747 } 748 } 749 750 /* 751 * Initialise a newly allocated inode and return the in-core inode to the 752 * caller locked exclusively. 753 * 754 * Caller is responsible for unlocking the inode manually upon return 755 */ 756 int 757 xfs_init_new_inode( 758 struct mnt_idmap *idmap, 759 struct xfs_trans *tp, 760 struct xfs_inode *pip, 761 xfs_ino_t ino, 762 umode_t mode, 763 xfs_nlink_t nlink, 764 dev_t rdev, 765 prid_t prid, 766 bool init_xattrs, 767 struct xfs_inode **ipp) 768 { 769 struct inode *dir = pip ? VFS_I(pip) : NULL; 770 struct xfs_mount *mp = tp->t_mountp; 771 struct xfs_inode *ip; 772 unsigned int flags; 773 int error; 774 struct timespec64 tv; 775 struct inode *inode; 776 777 /* 778 * Protect against obviously corrupt allocation btree records. Later 779 * xfs_iget checks will catch re-allocation of other active in-memory 780 * and on-disk inodes. If we don't catch reallocating the parent inode 781 * here we will deadlock in xfs_iget() so we have to do these checks 782 * first. 783 */ 784 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 785 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 786 xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino), 787 XFS_SICK_AG_INOBT); 788 return -EFSCORRUPTED; 789 } 790 791 /* 792 * Get the in-core inode with the lock held exclusively to prevent 793 * others from looking at until we're done. 794 */ 795 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 796 if (error) 797 return error; 798 799 ASSERT(ip != NULL); 800 inode = VFS_I(ip); 801 set_nlink(inode, nlink); 802 inode->i_rdev = rdev; 803 ip->i_projid = prid; 804 805 if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) { 806 inode_fsuid_set(inode, idmap); 807 inode->i_gid = dir->i_gid; 808 inode->i_mode = mode; 809 } else { 810 inode_init_owner(idmap, inode, dir, mode); 811 } 812 813 /* 814 * If the group ID of the new file does not match the effective group 815 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 816 * (and only if the irix_sgid_inherit compatibility variable is set). 817 */ 818 if (irix_sgid_inherit && (inode->i_mode & S_ISGID) && 819 !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode))) 820 inode->i_mode &= ~S_ISGID; 821 822 ip->i_disk_size = 0; 823 ip->i_df.if_nextents = 0; 824 ASSERT(ip->i_nblocks == 0); 825 826 tv = inode_set_ctime_current(inode); 827 inode_set_mtime_to_ts(inode, tv); 828 inode_set_atime_to_ts(inode, tv); 829 830 ip->i_extsize = 0; 831 ip->i_diflags = 0; 832 833 if (xfs_has_v3inodes(mp)) { 834 inode_set_iversion(inode, 1); 835 ip->i_cowextsize = 0; 836 ip->i_crtime = tv; 837 } 838 839 flags = XFS_ILOG_CORE; 840 switch (mode & S_IFMT) { 841 case S_IFIFO: 842 case S_IFCHR: 843 case S_IFBLK: 844 case S_IFSOCK: 845 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 846 flags |= XFS_ILOG_DEV; 847 break; 848 case S_IFREG: 849 case S_IFDIR: 850 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY)) 851 xfs_inode_inherit_flags(ip, pip); 852 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY)) 853 xfs_inode_inherit_flags2(ip, pip); 854 fallthrough; 855 case S_IFLNK: 856 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 857 ip->i_df.if_bytes = 0; 858 ip->i_df.if_data = NULL; 859 break; 860 default: 861 ASSERT(0); 862 } 863 864 /* 865 * If we need to create attributes immediately after allocating the 866 * inode, initialise an empty attribute fork right now. We use the 867 * default fork offset for attributes here as we don't know exactly what 868 * size or how many attributes we might be adding. We can do this 869 * safely here because we know the data fork is completely empty and 870 * this saves us from needing to run a separate transaction to set the 871 * fork offset in the immediate future. 872 */ 873 if (init_xattrs && xfs_has_attr(mp)) { 874 ip->i_forkoff = xfs_default_attroffset(ip) >> 3; 875 xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0); 876 } 877 878 /* 879 * Log the new values stuffed into the inode. 880 */ 881 xfs_trans_ijoin(tp, ip, 0); 882 xfs_trans_log_inode(tp, ip, flags); 883 884 /* now that we have an i_mode we can setup the inode structure */ 885 xfs_setup_inode(ip); 886 887 *ipp = ip; 888 return 0; 889 } 890 891 /* 892 * Decrement the link count on an inode & log the change. If this causes the 893 * link count to go to zero, move the inode to AGI unlinked list so that it can 894 * be freed when the last active reference goes away via xfs_inactive(). 895 */ 896 int 897 xfs_droplink( 898 struct xfs_trans *tp, 899 struct xfs_inode *ip) 900 { 901 struct inode *inode = VFS_I(ip); 902 903 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 904 905 if (inode->i_nlink == 0) { 906 xfs_info_ratelimited(tp->t_mountp, 907 "Inode 0x%llx link count dropped below zero. Pinning link count.", 908 ip->i_ino); 909 set_nlink(inode, XFS_NLINK_PINNED); 910 } 911 if (inode->i_nlink != XFS_NLINK_PINNED) 912 drop_nlink(inode); 913 914 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 915 916 if (inode->i_nlink) 917 return 0; 918 919 return xfs_iunlink(tp, ip); 920 } 921 922 /* 923 * Increment the link count on an inode & log the change. 924 */ 925 void 926 xfs_bumplink( 927 struct xfs_trans *tp, 928 struct xfs_inode *ip) 929 { 930 struct inode *inode = VFS_I(ip); 931 932 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 933 934 if (inode->i_nlink == XFS_NLINK_PINNED - 1) 935 xfs_info_ratelimited(tp->t_mountp, 936 "Inode 0x%llx link count exceeded maximum. Pinning link count.", 937 ip->i_ino); 938 if (inode->i_nlink != XFS_NLINK_PINNED) 939 inc_nlink(inode); 940 941 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 942 } 943 944 #ifdef CONFIG_XFS_LIVE_HOOKS 945 /* 946 * Use a static key here to reduce the overhead of directory live update hooks. 947 * If the compiler supports jump labels, the static branch will be replaced by 948 * a nop sled when there are no hook users. Online fsck is currently the only 949 * caller, so this is a reasonable tradeoff. 950 * 951 * Note: Patching the kernel code requires taking the cpu hotplug lock. Other 952 * parts of the kernel allocate memory with that lock held, which means that 953 * XFS callers cannot hold any locks that might be used by memory reclaim or 954 * writeback when calling the static_branch_{inc,dec} functions. 955 */ 956 DEFINE_STATIC_XFS_HOOK_SWITCH(xfs_dir_hooks_switch); 957 958 void 959 xfs_dir_hook_disable(void) 960 { 961 xfs_hooks_switch_off(&xfs_dir_hooks_switch); 962 } 963 964 void 965 xfs_dir_hook_enable(void) 966 { 967 xfs_hooks_switch_on(&xfs_dir_hooks_switch); 968 } 969 970 /* Call hooks for a directory update relating to a child dirent update. */ 971 inline void 972 xfs_dir_update_hook( 973 struct xfs_inode *dp, 974 struct xfs_inode *ip, 975 int delta, 976 const struct xfs_name *name) 977 { 978 if (xfs_hooks_switched_on(&xfs_dir_hooks_switch)) { 979 struct xfs_dir_update_params p = { 980 .dp = dp, 981 .ip = ip, 982 .delta = delta, 983 .name = name, 984 }; 985 struct xfs_mount *mp = ip->i_mount; 986 987 xfs_hooks_call(&mp->m_dir_update_hooks, 0, &p); 988 } 989 } 990 991 /* Call the specified function during a directory update. */ 992 int 993 xfs_dir_hook_add( 994 struct xfs_mount *mp, 995 struct xfs_dir_hook *hook) 996 { 997 return xfs_hooks_add(&mp->m_dir_update_hooks, &hook->dirent_hook); 998 } 999 1000 /* Stop calling the specified function during a directory update. */ 1001 void 1002 xfs_dir_hook_del( 1003 struct xfs_mount *mp, 1004 struct xfs_dir_hook *hook) 1005 { 1006 xfs_hooks_del(&mp->m_dir_update_hooks, &hook->dirent_hook); 1007 } 1008 1009 /* Configure directory update hook functions. */ 1010 void 1011 xfs_dir_hook_setup( 1012 struct xfs_dir_hook *hook, 1013 notifier_fn_t mod_fn) 1014 { 1015 xfs_hook_setup(&hook->dirent_hook, mod_fn); 1016 } 1017 #endif /* CONFIG_XFS_LIVE_HOOKS */ 1018 1019 int 1020 xfs_create( 1021 struct mnt_idmap *idmap, 1022 struct xfs_inode *dp, 1023 struct xfs_name *name, 1024 umode_t mode, 1025 dev_t rdev, 1026 bool init_xattrs, 1027 xfs_inode_t **ipp) 1028 { 1029 int is_dir = S_ISDIR(mode); 1030 struct xfs_mount *mp = dp->i_mount; 1031 struct xfs_inode *ip = NULL; 1032 struct xfs_trans *tp = NULL; 1033 int error; 1034 bool unlock_dp_on_error = false; 1035 prid_t prid; 1036 struct xfs_dquot *udqp = NULL; 1037 struct xfs_dquot *gdqp = NULL; 1038 struct xfs_dquot *pdqp = NULL; 1039 struct xfs_trans_res *tres; 1040 uint resblks; 1041 xfs_ino_t ino; 1042 struct xfs_parent_args *ppargs; 1043 1044 trace_xfs_create(dp, name); 1045 1046 if (xfs_is_shutdown(mp)) 1047 return -EIO; 1048 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 1049 return -EIO; 1050 1051 prid = xfs_get_initial_prid(dp); 1052 1053 /* 1054 * Make sure that we have allocated dquot(s) on disk. 1055 */ 1056 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns), 1057 mapped_fsgid(idmap, &init_user_ns), prid, 1058 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1059 &udqp, &gdqp, &pdqp); 1060 if (error) 1061 return error; 1062 1063 if (is_dir) { 1064 resblks = xfs_mkdir_space_res(mp, name->len); 1065 tres = &M_RES(mp)->tr_mkdir; 1066 } else { 1067 resblks = xfs_create_space_res(mp, name->len); 1068 tres = &M_RES(mp)->tr_create; 1069 } 1070 1071 error = xfs_parent_start(mp, &ppargs); 1072 if (error) 1073 goto out_release_dquots; 1074 1075 /* 1076 * Initially assume that the file does not exist and 1077 * reserve the resources for that case. If that is not 1078 * the case we'll drop the one we have and get a more 1079 * appropriate transaction later. 1080 */ 1081 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1082 &tp); 1083 if (error == -ENOSPC) { 1084 /* flush outstanding delalloc blocks and retry */ 1085 xfs_flush_inodes(mp); 1086 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, 1087 resblks, &tp); 1088 } 1089 if (error) 1090 goto out_parent; 1091 1092 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1093 unlock_dp_on_error = true; 1094 1095 /* 1096 * A newly created regular or special file just has one directory 1097 * entry pointing to them, but a directory also the "." entry 1098 * pointing to itself. 1099 */ 1100 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1101 if (!error) 1102 error = xfs_init_new_inode(idmap, tp, dp, ino, mode, 1103 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip); 1104 if (error) 1105 goto out_trans_cancel; 1106 1107 /* 1108 * Now we join the directory inode to the transaction. We do not do it 1109 * earlier because xfs_dialloc might commit the previous transaction 1110 * (and release all the locks). An error from here on will result in 1111 * the transaction cancel unlocking dp so don't do it explicitly in the 1112 * error path. 1113 */ 1114 xfs_trans_ijoin(tp, dp, 0); 1115 1116 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1117 resblks - XFS_IALLOC_SPACE_RES(mp)); 1118 if (error) { 1119 ASSERT(error != -ENOSPC); 1120 goto out_trans_cancel; 1121 } 1122 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1123 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1124 1125 if (is_dir) { 1126 error = xfs_dir_init(tp, ip, dp); 1127 if (error) 1128 goto out_trans_cancel; 1129 1130 xfs_bumplink(tp, dp); 1131 } 1132 1133 /* 1134 * If we have parent pointers, we need to add the attribute containing 1135 * the parent information now. 1136 */ 1137 if (ppargs) { 1138 error = xfs_parent_addname(tp, ppargs, dp, name, ip); 1139 if (error) 1140 goto out_trans_cancel; 1141 } 1142 1143 /* 1144 * Create ip with a reference from dp, and add '.' and '..' references 1145 * if it's a directory. 1146 */ 1147 xfs_dir_update_hook(dp, ip, 1, name); 1148 1149 /* 1150 * If this is a synchronous mount, make sure that the 1151 * create transaction goes to disk before returning to 1152 * the user. 1153 */ 1154 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1155 xfs_trans_set_sync(tp); 1156 1157 /* 1158 * Attach the dquot(s) to the inodes and modify them incore. 1159 * These ids of the inode couldn't have changed since the new 1160 * inode has been locked ever since it was created. 1161 */ 1162 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1163 1164 error = xfs_trans_commit(tp); 1165 if (error) 1166 goto out_release_inode; 1167 1168 xfs_qm_dqrele(udqp); 1169 xfs_qm_dqrele(gdqp); 1170 xfs_qm_dqrele(pdqp); 1171 1172 *ipp = ip; 1173 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1174 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1175 xfs_parent_finish(mp, ppargs); 1176 return 0; 1177 1178 out_trans_cancel: 1179 xfs_trans_cancel(tp); 1180 out_release_inode: 1181 /* 1182 * Wait until after the current transaction is aborted to finish the 1183 * setup of the inode and release the inode. This prevents recursive 1184 * transactions and deadlocks from xfs_inactive. 1185 */ 1186 if (ip) { 1187 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1188 xfs_finish_inode_setup(ip); 1189 xfs_irele(ip); 1190 } 1191 out_parent: 1192 xfs_parent_finish(mp, ppargs); 1193 out_release_dquots: 1194 xfs_qm_dqrele(udqp); 1195 xfs_qm_dqrele(gdqp); 1196 xfs_qm_dqrele(pdqp); 1197 1198 if (unlock_dp_on_error) 1199 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1200 return error; 1201 } 1202 1203 int 1204 xfs_create_tmpfile( 1205 struct mnt_idmap *idmap, 1206 struct xfs_inode *dp, 1207 umode_t mode, 1208 bool init_xattrs, 1209 struct xfs_inode **ipp) 1210 { 1211 struct xfs_mount *mp = dp->i_mount; 1212 struct xfs_inode *ip = NULL; 1213 struct xfs_trans *tp = NULL; 1214 int error; 1215 prid_t prid; 1216 struct xfs_dquot *udqp = NULL; 1217 struct xfs_dquot *gdqp = NULL; 1218 struct xfs_dquot *pdqp = NULL; 1219 struct xfs_trans_res *tres; 1220 uint resblks; 1221 xfs_ino_t ino; 1222 1223 if (xfs_is_shutdown(mp)) 1224 return -EIO; 1225 1226 prid = xfs_get_initial_prid(dp); 1227 1228 /* 1229 * Make sure that we have allocated dquot(s) on disk. 1230 */ 1231 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns), 1232 mapped_fsgid(idmap, &init_user_ns), prid, 1233 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1234 &udqp, &gdqp, &pdqp); 1235 if (error) 1236 return error; 1237 1238 resblks = XFS_IALLOC_SPACE_RES(mp); 1239 tres = &M_RES(mp)->tr_create_tmpfile; 1240 1241 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1242 &tp); 1243 if (error) 1244 goto out_release_dquots; 1245 1246 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1247 if (!error) 1248 error = xfs_init_new_inode(idmap, tp, dp, ino, mode, 1249 0, 0, prid, init_xattrs, &ip); 1250 if (error) 1251 goto out_trans_cancel; 1252 1253 if (xfs_has_wsync(mp)) 1254 xfs_trans_set_sync(tp); 1255 1256 /* 1257 * Attach the dquot(s) to the inodes and modify them incore. 1258 * These ids of the inode couldn't have changed since the new 1259 * inode has been locked ever since it was created. 1260 */ 1261 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1262 1263 error = xfs_iunlink(tp, ip); 1264 if (error) 1265 goto out_trans_cancel; 1266 1267 error = xfs_trans_commit(tp); 1268 if (error) 1269 goto out_release_inode; 1270 1271 xfs_qm_dqrele(udqp); 1272 xfs_qm_dqrele(gdqp); 1273 xfs_qm_dqrele(pdqp); 1274 1275 *ipp = ip; 1276 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1277 return 0; 1278 1279 out_trans_cancel: 1280 xfs_trans_cancel(tp); 1281 out_release_inode: 1282 /* 1283 * Wait until after the current transaction is aborted to finish the 1284 * setup of the inode and release the inode. This prevents recursive 1285 * transactions and deadlocks from xfs_inactive. 1286 */ 1287 if (ip) { 1288 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1289 xfs_finish_inode_setup(ip); 1290 xfs_irele(ip); 1291 } 1292 out_release_dquots: 1293 xfs_qm_dqrele(udqp); 1294 xfs_qm_dqrele(gdqp); 1295 xfs_qm_dqrele(pdqp); 1296 1297 return error; 1298 } 1299 1300 int 1301 xfs_link( 1302 struct xfs_inode *tdp, 1303 struct xfs_inode *sip, 1304 struct xfs_name *target_name) 1305 { 1306 struct xfs_mount *mp = tdp->i_mount; 1307 struct xfs_trans *tp; 1308 int error, nospace_error = 0; 1309 int resblks; 1310 struct xfs_parent_args *ppargs; 1311 1312 trace_xfs_link(tdp, target_name); 1313 1314 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1315 1316 if (xfs_is_shutdown(mp)) 1317 return -EIO; 1318 if (xfs_ifork_zapped(tdp, XFS_DATA_FORK)) 1319 return -EIO; 1320 1321 error = xfs_qm_dqattach(sip); 1322 if (error) 1323 goto std_return; 1324 1325 error = xfs_qm_dqattach(tdp); 1326 if (error) 1327 goto std_return; 1328 1329 error = xfs_parent_start(mp, &ppargs); 1330 if (error) 1331 goto std_return; 1332 1333 resblks = xfs_link_space_res(mp, target_name->len); 1334 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks, 1335 &tp, &nospace_error); 1336 if (error) 1337 goto out_parent; 1338 1339 /* 1340 * We don't allow reservationless or quotaless hardlinking when parent 1341 * pointers are enabled because we can't back out if the xattrs must 1342 * grow. 1343 */ 1344 if (ppargs && nospace_error) { 1345 error = nospace_error; 1346 goto error_return; 1347 } 1348 1349 /* 1350 * If we are using project inheritance, we only allow hard link 1351 * creation in our tree when the project IDs are the same; else 1352 * the tree quota mechanism could be circumvented. 1353 */ 1354 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 1355 tdp->i_projid != sip->i_projid)) { 1356 /* 1357 * Project quota setup skips special files which can 1358 * leave inodes in a PROJINHERIT directory without a 1359 * project ID set. We need to allow links to be made 1360 * to these "project-less" inodes because userspace 1361 * expects them to succeed after project ID setup, 1362 * but everything else should be rejected. 1363 */ 1364 if (!special_file(VFS_I(sip)->i_mode) || 1365 sip->i_projid != 0) { 1366 error = -EXDEV; 1367 goto error_return; 1368 } 1369 } 1370 1371 if (!resblks) { 1372 error = xfs_dir_canenter(tp, tdp, target_name); 1373 if (error) 1374 goto error_return; 1375 } 1376 1377 /* 1378 * Handle initial link state of O_TMPFILE inode 1379 */ 1380 if (VFS_I(sip)->i_nlink == 0) { 1381 struct xfs_perag *pag; 1382 1383 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino)); 1384 error = xfs_iunlink_remove(tp, pag, sip); 1385 xfs_perag_put(pag); 1386 if (error) 1387 goto error_return; 1388 } 1389 1390 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1391 resblks); 1392 if (error) 1393 goto error_return; 1394 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1395 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1396 1397 xfs_bumplink(tp, sip); 1398 1399 /* 1400 * If we have parent pointers, we now need to add the parent record to 1401 * the attribute fork of the inode. If this is the initial parent 1402 * attribute, we need to create it correctly, otherwise we can just add 1403 * the parent to the inode. 1404 */ 1405 if (ppargs) { 1406 error = xfs_parent_addname(tp, ppargs, tdp, target_name, sip); 1407 if (error) 1408 goto error_return; 1409 } 1410 1411 xfs_dir_update_hook(tdp, sip, 1, target_name); 1412 1413 /* 1414 * If this is a synchronous mount, make sure that the 1415 * link transaction goes to disk before returning to 1416 * the user. 1417 */ 1418 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1419 xfs_trans_set_sync(tp); 1420 1421 error = xfs_trans_commit(tp); 1422 xfs_iunlock(tdp, XFS_ILOCK_EXCL); 1423 xfs_iunlock(sip, XFS_ILOCK_EXCL); 1424 xfs_parent_finish(mp, ppargs); 1425 return error; 1426 1427 error_return: 1428 xfs_trans_cancel(tp); 1429 xfs_iunlock(tdp, XFS_ILOCK_EXCL); 1430 xfs_iunlock(sip, XFS_ILOCK_EXCL); 1431 out_parent: 1432 xfs_parent_finish(mp, ppargs); 1433 std_return: 1434 if (error == -ENOSPC && nospace_error) 1435 error = nospace_error; 1436 return error; 1437 } 1438 1439 /* Clear the reflink flag and the cowblocks tag if possible. */ 1440 static void 1441 xfs_itruncate_clear_reflink_flags( 1442 struct xfs_inode *ip) 1443 { 1444 struct xfs_ifork *dfork; 1445 struct xfs_ifork *cfork; 1446 1447 if (!xfs_is_reflink_inode(ip)) 1448 return; 1449 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK); 1450 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK); 1451 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1452 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1453 if (cfork->if_bytes == 0) 1454 xfs_inode_clear_cowblocks_tag(ip); 1455 } 1456 1457 /* 1458 * Free up the underlying blocks past new_size. The new size must be smaller 1459 * than the current size. This routine can be used both for the attribute and 1460 * data fork, and does not modify the inode size, which is left to the caller. 1461 * 1462 * The transaction passed to this routine must have made a permanent log 1463 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1464 * given transaction and start new ones, so make sure everything involved in 1465 * the transaction is tidy before calling here. Some transaction will be 1466 * returned to the caller to be committed. The incoming transaction must 1467 * already include the inode, and both inode locks must be held exclusively. 1468 * The inode must also be "held" within the transaction. On return the inode 1469 * will be "held" within the returned transaction. This routine does NOT 1470 * require any disk space to be reserved for it within the transaction. 1471 * 1472 * If we get an error, we must return with the inode locked and linked into the 1473 * current transaction. This keeps things simple for the higher level code, 1474 * because it always knows that the inode is locked and held in the transaction 1475 * that returns to it whether errors occur or not. We don't mark the inode 1476 * dirty on error so that transactions can be easily aborted if possible. 1477 */ 1478 int 1479 xfs_itruncate_extents_flags( 1480 struct xfs_trans **tpp, 1481 struct xfs_inode *ip, 1482 int whichfork, 1483 xfs_fsize_t new_size, 1484 int flags) 1485 { 1486 struct xfs_mount *mp = ip->i_mount; 1487 struct xfs_trans *tp = *tpp; 1488 xfs_fileoff_t first_unmap_block; 1489 int error = 0; 1490 1491 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 1492 if (atomic_read(&VFS_I(ip)->i_count)) 1493 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL); 1494 ASSERT(new_size <= XFS_ISIZE(ip)); 1495 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1496 ASSERT(ip->i_itemp != NULL); 1497 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1498 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1499 1500 trace_xfs_itruncate_extents_start(ip, new_size); 1501 1502 flags |= xfs_bmapi_aflag(whichfork); 1503 1504 /* 1505 * Since it is possible for space to become allocated beyond 1506 * the end of the file (in a crash where the space is allocated 1507 * but the inode size is not yet updated), simply remove any 1508 * blocks which show up between the new EOF and the maximum 1509 * possible file size. 1510 * 1511 * We have to free all the blocks to the bmbt maximum offset, even if 1512 * the page cache can't scale that far. 1513 */ 1514 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1515 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1516 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1517 return 0; 1518 } 1519 1520 error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block, 1521 XFS_MAX_FILEOFF); 1522 if (error) 1523 goto out; 1524 1525 if (whichfork == XFS_DATA_FORK) { 1526 /* Remove all pending CoW reservations. */ 1527 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1528 first_unmap_block, XFS_MAX_FILEOFF, true); 1529 if (error) 1530 goto out; 1531 1532 xfs_itruncate_clear_reflink_flags(ip); 1533 } 1534 1535 /* 1536 * Always re-log the inode so that our permanent transaction can keep 1537 * on rolling it forward in the log. 1538 */ 1539 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1540 1541 trace_xfs_itruncate_extents_end(ip, new_size); 1542 1543 out: 1544 *tpp = tp; 1545 return error; 1546 } 1547 1548 int 1549 xfs_release( 1550 xfs_inode_t *ip) 1551 { 1552 xfs_mount_t *mp = ip->i_mount; 1553 int error = 0; 1554 1555 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1556 return 0; 1557 1558 /* If this is a read-only mount, don't do this (would generate I/O) */ 1559 if (xfs_is_readonly(mp)) 1560 return 0; 1561 1562 if (!xfs_is_shutdown(mp)) { 1563 int truncated; 1564 1565 /* 1566 * If we previously truncated this file and removed old data 1567 * in the process, we want to initiate "early" writeout on 1568 * the last close. This is an attempt to combat the notorious 1569 * NULL files problem which is particularly noticeable from a 1570 * truncate down, buffered (re-)write (delalloc), followed by 1571 * a crash. What we are effectively doing here is 1572 * significantly reducing the time window where we'd otherwise 1573 * be exposed to that problem. 1574 */ 1575 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1576 if (truncated) { 1577 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1578 if (ip->i_delayed_blks > 0) { 1579 error = filemap_flush(VFS_I(ip)->i_mapping); 1580 if (error) 1581 return error; 1582 } 1583 } 1584 } 1585 1586 if (VFS_I(ip)->i_nlink == 0) 1587 return 0; 1588 1589 /* 1590 * If we can't get the iolock just skip truncating the blocks past EOF 1591 * because we could deadlock with the mmap_lock otherwise. We'll get 1592 * another chance to drop them once the last reference to the inode is 1593 * dropped, so we'll never leak blocks permanently. 1594 */ 1595 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) 1596 return 0; 1597 1598 if (xfs_can_free_eofblocks(ip, false)) { 1599 /* 1600 * Check if the inode is being opened, written and closed 1601 * frequently and we have delayed allocation blocks outstanding 1602 * (e.g. streaming writes from the NFS server), truncating the 1603 * blocks past EOF will cause fragmentation to occur. 1604 * 1605 * In this case don't do the truncation, but we have to be 1606 * careful how we detect this case. Blocks beyond EOF show up as 1607 * i_delayed_blks even when the inode is clean, so we need to 1608 * truncate them away first before checking for a dirty release. 1609 * Hence on the first dirty close we will still remove the 1610 * speculative allocation, but after that we will leave it in 1611 * place. 1612 */ 1613 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1614 goto out_unlock; 1615 1616 error = xfs_free_eofblocks(ip); 1617 if (error) 1618 goto out_unlock; 1619 1620 /* delalloc blocks after truncation means it really is dirty */ 1621 if (ip->i_delayed_blks) 1622 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1623 } 1624 1625 out_unlock: 1626 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1627 return error; 1628 } 1629 1630 /* 1631 * Mark all the buffers attached to this directory stale. In theory we should 1632 * never be freeing a directory with any blocks at all, but this covers the 1633 * case where we've recovered a directory swap with a "temporary" directory 1634 * created by online repair and now need to dump it. 1635 */ 1636 STATIC void 1637 xfs_inactive_dir( 1638 struct xfs_inode *dp) 1639 { 1640 struct xfs_iext_cursor icur; 1641 struct xfs_bmbt_irec got; 1642 struct xfs_mount *mp = dp->i_mount; 1643 struct xfs_da_geometry *geo = mp->m_dir_geo; 1644 struct xfs_ifork *ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK); 1645 xfs_fileoff_t off; 1646 1647 /* 1648 * Invalidate each directory block. All directory blocks are of 1649 * fsbcount length and alignment, so we only need to walk those same 1650 * offsets. We hold the only reference to this inode, so we must wait 1651 * for the buffer locks. 1652 */ 1653 for_each_xfs_iext(ifp, &icur, &got) { 1654 for (off = round_up(got.br_startoff, geo->fsbcount); 1655 off < got.br_startoff + got.br_blockcount; 1656 off += geo->fsbcount) { 1657 struct xfs_buf *bp = NULL; 1658 xfs_fsblock_t fsbno; 1659 int error; 1660 1661 fsbno = (off - got.br_startoff) + got.br_startblock; 1662 error = xfs_buf_incore(mp->m_ddev_targp, 1663 XFS_FSB_TO_DADDR(mp, fsbno), 1664 XFS_FSB_TO_BB(mp, geo->fsbcount), 1665 XBF_LIVESCAN, &bp); 1666 if (error) 1667 continue; 1668 1669 xfs_buf_stale(bp); 1670 xfs_buf_relse(bp); 1671 } 1672 } 1673 } 1674 1675 /* 1676 * xfs_inactive_truncate 1677 * 1678 * Called to perform a truncate when an inode becomes unlinked. 1679 */ 1680 STATIC int 1681 xfs_inactive_truncate( 1682 struct xfs_inode *ip) 1683 { 1684 struct xfs_mount *mp = ip->i_mount; 1685 struct xfs_trans *tp; 1686 int error; 1687 1688 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1689 if (error) { 1690 ASSERT(xfs_is_shutdown(mp)); 1691 return error; 1692 } 1693 xfs_ilock(ip, XFS_ILOCK_EXCL); 1694 xfs_trans_ijoin(tp, ip, 0); 1695 1696 /* 1697 * Log the inode size first to prevent stale data exposure in the event 1698 * of a system crash before the truncate completes. See the related 1699 * comment in xfs_vn_setattr_size() for details. 1700 */ 1701 ip->i_disk_size = 0; 1702 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1703 1704 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1705 if (error) 1706 goto error_trans_cancel; 1707 1708 ASSERT(ip->i_df.if_nextents == 0); 1709 1710 error = xfs_trans_commit(tp); 1711 if (error) 1712 goto error_unlock; 1713 1714 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1715 return 0; 1716 1717 error_trans_cancel: 1718 xfs_trans_cancel(tp); 1719 error_unlock: 1720 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1721 return error; 1722 } 1723 1724 /* 1725 * xfs_inactive_ifree() 1726 * 1727 * Perform the inode free when an inode is unlinked. 1728 */ 1729 STATIC int 1730 xfs_inactive_ifree( 1731 struct xfs_inode *ip) 1732 { 1733 struct xfs_mount *mp = ip->i_mount; 1734 struct xfs_trans *tp; 1735 int error; 1736 1737 /* 1738 * We try to use a per-AG reservation for any block needed by the finobt 1739 * tree, but as the finobt feature predates the per-AG reservation 1740 * support a degraded file system might not have enough space for the 1741 * reservation at mount time. In that case try to dip into the reserved 1742 * pool and pray. 1743 * 1744 * Send a warning if the reservation does happen to fail, as the inode 1745 * now remains allocated and sits on the unlinked list until the fs is 1746 * repaired. 1747 */ 1748 if (unlikely(mp->m_finobt_nores)) { 1749 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1750 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1751 &tp); 1752 } else { 1753 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1754 } 1755 if (error) { 1756 if (error == -ENOSPC) { 1757 xfs_warn_ratelimited(mp, 1758 "Failed to remove inode(s) from unlinked list. " 1759 "Please free space, unmount and run xfs_repair."); 1760 } else { 1761 ASSERT(xfs_is_shutdown(mp)); 1762 } 1763 return error; 1764 } 1765 1766 /* 1767 * We do not hold the inode locked across the entire rolling transaction 1768 * here. We only need to hold it for the first transaction that 1769 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1770 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1771 * here breaks the relationship between cluster buffer invalidation and 1772 * stale inode invalidation on cluster buffer item journal commit 1773 * completion, and can result in leaving dirty stale inodes hanging 1774 * around in memory. 1775 * 1776 * We have no need for serialising this inode operation against other 1777 * operations - we freed the inode and hence reallocation is required 1778 * and that will serialise on reallocating the space the deferops need 1779 * to free. Hence we can unlock the inode on the first commit of 1780 * the transaction rather than roll it right through the deferops. This 1781 * avoids relogging the XFS_ISTALE inode. 1782 * 1783 * We check that xfs_ifree() hasn't grown an internal transaction roll 1784 * by asserting that the inode is still locked when it returns. 1785 */ 1786 xfs_ilock(ip, XFS_ILOCK_EXCL); 1787 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1788 1789 error = xfs_ifree(tp, ip); 1790 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 1791 if (error) { 1792 /* 1793 * If we fail to free the inode, shut down. The cancel 1794 * might do that, we need to make sure. Otherwise the 1795 * inode might be lost for a long time or forever. 1796 */ 1797 if (!xfs_is_shutdown(mp)) { 1798 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1799 __func__, error); 1800 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1801 } 1802 xfs_trans_cancel(tp); 1803 return error; 1804 } 1805 1806 /* 1807 * Credit the quota account(s). The inode is gone. 1808 */ 1809 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1810 1811 return xfs_trans_commit(tp); 1812 } 1813 1814 /* 1815 * Returns true if we need to update the on-disk metadata before we can free 1816 * the memory used by this inode. Updates include freeing post-eof 1817 * preallocations; freeing COW staging extents; and marking the inode free in 1818 * the inobt if it is on the unlinked list. 1819 */ 1820 bool 1821 xfs_inode_needs_inactive( 1822 struct xfs_inode *ip) 1823 { 1824 struct xfs_mount *mp = ip->i_mount; 1825 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 1826 1827 /* 1828 * If the inode is already free, then there can be nothing 1829 * to clean up here. 1830 */ 1831 if (VFS_I(ip)->i_mode == 0) 1832 return false; 1833 1834 /* 1835 * If this is a read-only mount, don't do this (would generate I/O) 1836 * unless we're in log recovery and cleaning the iunlinked list. 1837 */ 1838 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1839 return false; 1840 1841 /* If the log isn't running, push inodes straight to reclaim. */ 1842 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) 1843 return false; 1844 1845 /* Metadata inodes require explicit resource cleanup. */ 1846 if (xfs_is_metadata_inode(ip)) 1847 return false; 1848 1849 /* Want to clean out the cow blocks if there are any. */ 1850 if (cow_ifp && cow_ifp->if_bytes > 0) 1851 return true; 1852 1853 /* Unlinked files must be freed. */ 1854 if (VFS_I(ip)->i_nlink == 0) 1855 return true; 1856 1857 /* 1858 * This file isn't being freed, so check if there are post-eof blocks 1859 * to free. @force is true because we are evicting an inode from the 1860 * cache. Post-eof blocks must be freed, lest we end up with broken 1861 * free space accounting. 1862 * 1863 * Note: don't bother with iolock here since lockdep complains about 1864 * acquiring it in reclaim context. We have the only reference to the 1865 * inode at this point anyways. 1866 */ 1867 return xfs_can_free_eofblocks(ip, true); 1868 } 1869 1870 /* 1871 * Save health status somewhere, if we're dumping an inode with uncorrected 1872 * errors and online repair isn't running. 1873 */ 1874 static inline void 1875 xfs_inactive_health( 1876 struct xfs_inode *ip) 1877 { 1878 struct xfs_mount *mp = ip->i_mount; 1879 struct xfs_perag *pag; 1880 unsigned int sick; 1881 unsigned int checked; 1882 1883 xfs_inode_measure_sickness(ip, &sick, &checked); 1884 if (!sick) 1885 return; 1886 1887 trace_xfs_inode_unfixed_corruption(ip, sick); 1888 1889 if (sick & XFS_SICK_INO_FORGET) 1890 return; 1891 1892 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1893 if (!pag) { 1894 /* There had better still be a perag structure! */ 1895 ASSERT(0); 1896 return; 1897 } 1898 1899 xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES); 1900 xfs_perag_put(pag); 1901 } 1902 1903 /* 1904 * xfs_inactive 1905 * 1906 * This is called when the vnode reference count for the vnode 1907 * goes to zero. If the file has been unlinked, then it must 1908 * now be truncated. Also, we clear all of the read-ahead state 1909 * kept for the inode here since the file is now closed. 1910 */ 1911 int 1912 xfs_inactive( 1913 xfs_inode_t *ip) 1914 { 1915 struct xfs_mount *mp; 1916 int error = 0; 1917 int truncate = 0; 1918 1919 /* 1920 * If the inode is already free, then there can be nothing 1921 * to clean up here. 1922 */ 1923 if (VFS_I(ip)->i_mode == 0) { 1924 ASSERT(ip->i_df.if_broot_bytes == 0); 1925 goto out; 1926 } 1927 1928 mp = ip->i_mount; 1929 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1930 1931 xfs_inactive_health(ip); 1932 1933 /* 1934 * If this is a read-only mount, don't do this (would generate I/O) 1935 * unless we're in log recovery and cleaning the iunlinked list. 1936 */ 1937 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1938 goto out; 1939 1940 /* Metadata inodes require explicit resource cleanup. */ 1941 if (xfs_is_metadata_inode(ip)) 1942 goto out; 1943 1944 /* Try to clean out the cow blocks if there are any. */ 1945 if (xfs_inode_has_cow_data(ip)) 1946 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1947 1948 if (VFS_I(ip)->i_nlink != 0) { 1949 /* 1950 * force is true because we are evicting an inode from the 1951 * cache. Post-eof blocks must be freed, lest we end up with 1952 * broken free space accounting. 1953 * 1954 * Note: don't bother with iolock here since lockdep complains 1955 * about acquiring it in reclaim context. We have the only 1956 * reference to the inode at this point anyways. 1957 */ 1958 if (xfs_can_free_eofblocks(ip, true)) 1959 error = xfs_free_eofblocks(ip); 1960 1961 goto out; 1962 } 1963 1964 if (S_ISREG(VFS_I(ip)->i_mode) && 1965 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || 1966 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1967 truncate = 1; 1968 1969 if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) { 1970 /* 1971 * If this inode is being inactivated during a quotacheck and 1972 * has not yet been scanned by quotacheck, we /must/ remove 1973 * the dquots from the inode before inactivation changes the 1974 * block and inode counts. Most probably this is a result of 1975 * reloading the incore iunlinked list to purge unrecovered 1976 * unlinked inodes. 1977 */ 1978 xfs_qm_dqdetach(ip); 1979 } else { 1980 error = xfs_qm_dqattach(ip); 1981 if (error) 1982 goto out; 1983 } 1984 1985 if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) { 1986 xfs_inactive_dir(ip); 1987 truncate = 1; 1988 } 1989 1990 if (S_ISLNK(VFS_I(ip)->i_mode)) 1991 error = xfs_inactive_symlink(ip); 1992 else if (truncate) 1993 error = xfs_inactive_truncate(ip); 1994 if (error) 1995 goto out; 1996 1997 /* 1998 * If there are attributes associated with the file then blow them away 1999 * now. The code calls a routine that recursively deconstructs the 2000 * attribute fork. If also blows away the in-core attribute fork. 2001 */ 2002 if (xfs_inode_has_attr_fork(ip)) { 2003 error = xfs_attr_inactive(ip); 2004 if (error) 2005 goto out; 2006 } 2007 2008 ASSERT(ip->i_forkoff == 0); 2009 2010 /* 2011 * Free the inode. 2012 */ 2013 error = xfs_inactive_ifree(ip); 2014 2015 out: 2016 /* 2017 * We're done making metadata updates for this inode, so we can release 2018 * the attached dquots. 2019 */ 2020 xfs_qm_dqdetach(ip); 2021 return error; 2022 } 2023 2024 /* 2025 * In-Core Unlinked List Lookups 2026 * ============================= 2027 * 2028 * Every inode is supposed to be reachable from some other piece of metadata 2029 * with the exception of the root directory. Inodes with a connection to a 2030 * file descriptor but not linked from anywhere in the on-disk directory tree 2031 * are collectively known as unlinked inodes, though the filesystem itself 2032 * maintains links to these inodes so that on-disk metadata are consistent. 2033 * 2034 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 2035 * header contains a number of buckets that point to an inode, and each inode 2036 * record has a pointer to the next inode in the hash chain. This 2037 * singly-linked list causes scaling problems in the iunlink remove function 2038 * because we must walk that list to find the inode that points to the inode 2039 * being removed from the unlinked hash bucket list. 2040 * 2041 * Hence we keep an in-memory double linked list to link each inode on an 2042 * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer 2043 * based lists would require having 64 list heads in the perag, one for each 2044 * list. This is expensive in terms of memory (think millions of AGs) and cache 2045 * misses on lookups. Instead, use the fact that inodes on the unlinked list 2046 * must be referenced at the VFS level to keep them on the list and hence we 2047 * have an existence guarantee for inodes on the unlinked list. 2048 * 2049 * Given we have an existence guarantee, we can use lockless inode cache lookups 2050 * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode 2051 * for the double linked unlinked list, and we don't need any extra locking to 2052 * keep the list safe as all manipulations are done under the AGI buffer lock. 2053 * Keeping the list up to date does not require memory allocation, just finding 2054 * the XFS inode and updating the next/prev unlinked list aginos. 2055 */ 2056 2057 /* 2058 * Find an inode on the unlinked list. This does not take references to the 2059 * inode as we have existence guarantees by holding the AGI buffer lock and that 2060 * only unlinked, referenced inodes can be on the unlinked inode list. If we 2061 * don't find the inode in cache, then let the caller handle the situation. 2062 */ 2063 struct xfs_inode * 2064 xfs_iunlink_lookup( 2065 struct xfs_perag *pag, 2066 xfs_agino_t agino) 2067 { 2068 struct xfs_inode *ip; 2069 2070 rcu_read_lock(); 2071 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 2072 if (!ip) { 2073 /* Caller can handle inode not being in memory. */ 2074 rcu_read_unlock(); 2075 return NULL; 2076 } 2077 2078 /* 2079 * Inode in RCU freeing limbo should not happen. Warn about this and 2080 * let the caller handle the failure. 2081 */ 2082 if (WARN_ON_ONCE(!ip->i_ino)) { 2083 rcu_read_unlock(); 2084 return NULL; 2085 } 2086 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)); 2087 rcu_read_unlock(); 2088 return ip; 2089 } 2090 2091 /* 2092 * Update the prev pointer of the next agino. Returns -ENOLINK if the inode 2093 * is not in cache. 2094 */ 2095 static int 2096 xfs_iunlink_update_backref( 2097 struct xfs_perag *pag, 2098 xfs_agino_t prev_agino, 2099 xfs_agino_t next_agino) 2100 { 2101 struct xfs_inode *ip; 2102 2103 /* No update necessary if we are at the end of the list. */ 2104 if (next_agino == NULLAGINO) 2105 return 0; 2106 2107 ip = xfs_iunlink_lookup(pag, next_agino); 2108 if (!ip) 2109 return -ENOLINK; 2110 2111 ip->i_prev_unlinked = prev_agino; 2112 return 0; 2113 } 2114 2115 /* 2116 * Point the AGI unlinked bucket at an inode and log the results. The caller 2117 * is responsible for validating the old value. 2118 */ 2119 STATIC int 2120 xfs_iunlink_update_bucket( 2121 struct xfs_trans *tp, 2122 struct xfs_perag *pag, 2123 struct xfs_buf *agibp, 2124 unsigned int bucket_index, 2125 xfs_agino_t new_agino) 2126 { 2127 struct xfs_agi *agi = agibp->b_addr; 2128 xfs_agino_t old_value; 2129 int offset; 2130 2131 ASSERT(xfs_verify_agino_or_null(pag, new_agino)); 2132 2133 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2134 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index, 2135 old_value, new_agino); 2136 2137 /* 2138 * We should never find the head of the list already set to the value 2139 * passed in because either we're adding or removing ourselves from the 2140 * head of the list. 2141 */ 2142 if (old_value == new_agino) { 2143 xfs_buf_mark_corrupt(agibp); 2144 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 2145 return -EFSCORRUPTED; 2146 } 2147 2148 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 2149 offset = offsetof(struct xfs_agi, agi_unlinked) + 2150 (sizeof(xfs_agino_t) * bucket_index); 2151 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 2152 return 0; 2153 } 2154 2155 /* 2156 * Load the inode @next_agino into the cache and set its prev_unlinked pointer 2157 * to @prev_agino. Caller must hold the AGI to synchronize with other changes 2158 * to the unlinked list. 2159 */ 2160 STATIC int 2161 xfs_iunlink_reload_next( 2162 struct xfs_trans *tp, 2163 struct xfs_buf *agibp, 2164 xfs_agino_t prev_agino, 2165 xfs_agino_t next_agino) 2166 { 2167 struct xfs_perag *pag = agibp->b_pag; 2168 struct xfs_mount *mp = pag->pag_mount; 2169 struct xfs_inode *next_ip = NULL; 2170 xfs_ino_t ino; 2171 int error; 2172 2173 ASSERT(next_agino != NULLAGINO); 2174 2175 #ifdef DEBUG 2176 rcu_read_lock(); 2177 next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino); 2178 ASSERT(next_ip == NULL); 2179 rcu_read_unlock(); 2180 #endif 2181 2182 xfs_info_ratelimited(mp, 2183 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.", 2184 next_agino, pag->pag_agno); 2185 2186 /* 2187 * Use an untrusted lookup just to be cautious in case the AGI has been 2188 * corrupted and now points at a free inode. That shouldn't happen, 2189 * but we'd rather shut down now since we're already running in a weird 2190 * situation. 2191 */ 2192 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino); 2193 error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip); 2194 if (error) { 2195 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 2196 return error; 2197 } 2198 2199 /* If this is not an unlinked inode, something is very wrong. */ 2200 if (VFS_I(next_ip)->i_nlink != 0) { 2201 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 2202 error = -EFSCORRUPTED; 2203 goto rele; 2204 } 2205 2206 next_ip->i_prev_unlinked = prev_agino; 2207 trace_xfs_iunlink_reload_next(next_ip); 2208 rele: 2209 ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE)); 2210 if (xfs_is_quotacheck_running(mp) && next_ip) 2211 xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED); 2212 xfs_irele(next_ip); 2213 return error; 2214 } 2215 2216 static int 2217 xfs_iunlink_insert_inode( 2218 struct xfs_trans *tp, 2219 struct xfs_perag *pag, 2220 struct xfs_buf *agibp, 2221 struct xfs_inode *ip) 2222 { 2223 struct xfs_mount *mp = tp->t_mountp; 2224 struct xfs_agi *agi = agibp->b_addr; 2225 xfs_agino_t next_agino; 2226 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2227 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2228 int error; 2229 2230 /* 2231 * Get the index into the agi hash table for the list this inode will 2232 * go on. Make sure the pointer isn't garbage and that this inode 2233 * isn't already on the list. 2234 */ 2235 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2236 if (next_agino == agino || 2237 !xfs_verify_agino_or_null(pag, next_agino)) { 2238 xfs_buf_mark_corrupt(agibp); 2239 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 2240 return -EFSCORRUPTED; 2241 } 2242 2243 /* 2244 * Update the prev pointer in the next inode to point back to this 2245 * inode. 2246 */ 2247 error = xfs_iunlink_update_backref(pag, agino, next_agino); 2248 if (error == -ENOLINK) 2249 error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino); 2250 if (error) 2251 return error; 2252 2253 if (next_agino != NULLAGINO) { 2254 /* 2255 * There is already another inode in the bucket, so point this 2256 * inode to the current head of the list. 2257 */ 2258 error = xfs_iunlink_log_inode(tp, ip, pag, next_agino); 2259 if (error) 2260 return error; 2261 ip->i_next_unlinked = next_agino; 2262 } 2263 2264 /* Point the head of the list to point to this inode. */ 2265 ip->i_prev_unlinked = NULLAGINO; 2266 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino); 2267 } 2268 2269 /* 2270 * This is called when the inode's link count has gone to 0 or we are creating 2271 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2272 * 2273 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2274 * list when the inode is freed. 2275 */ 2276 int 2277 xfs_iunlink( 2278 struct xfs_trans *tp, 2279 struct xfs_inode *ip) 2280 { 2281 struct xfs_mount *mp = tp->t_mountp; 2282 struct xfs_perag *pag; 2283 struct xfs_buf *agibp; 2284 int error; 2285 2286 ASSERT(VFS_I(ip)->i_nlink == 0); 2287 ASSERT(VFS_I(ip)->i_mode != 0); 2288 trace_xfs_iunlink(ip); 2289 2290 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2291 2292 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2293 error = xfs_read_agi(pag, tp, 0, &agibp); 2294 if (error) 2295 goto out; 2296 2297 error = xfs_iunlink_insert_inode(tp, pag, agibp, ip); 2298 out: 2299 xfs_perag_put(pag); 2300 return error; 2301 } 2302 2303 static int 2304 xfs_iunlink_remove_inode( 2305 struct xfs_trans *tp, 2306 struct xfs_perag *pag, 2307 struct xfs_buf *agibp, 2308 struct xfs_inode *ip) 2309 { 2310 struct xfs_mount *mp = tp->t_mountp; 2311 struct xfs_agi *agi = agibp->b_addr; 2312 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2313 xfs_agino_t head_agino; 2314 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2315 int error; 2316 2317 trace_xfs_iunlink_remove(ip); 2318 2319 /* 2320 * Get the index into the agi hash table for the list this inode will 2321 * go on. Make sure the head pointer isn't garbage. 2322 */ 2323 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2324 if (!xfs_verify_agino(pag, head_agino)) { 2325 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2326 agi, sizeof(*agi)); 2327 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 2328 return -EFSCORRUPTED; 2329 } 2330 2331 /* 2332 * Set our inode's next_unlinked pointer to NULL and then return 2333 * the old pointer value so that we can update whatever was previous 2334 * to us in the list to point to whatever was next in the list. 2335 */ 2336 error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO); 2337 if (error) 2338 return error; 2339 2340 /* 2341 * Update the prev pointer in the next inode to point back to previous 2342 * inode in the chain. 2343 */ 2344 error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked, 2345 ip->i_next_unlinked); 2346 if (error == -ENOLINK) 2347 error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked, 2348 ip->i_next_unlinked); 2349 if (error) 2350 return error; 2351 2352 if (head_agino != agino) { 2353 struct xfs_inode *prev_ip; 2354 2355 prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked); 2356 if (!prev_ip) { 2357 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 2358 return -EFSCORRUPTED; 2359 } 2360 2361 error = xfs_iunlink_log_inode(tp, prev_ip, pag, 2362 ip->i_next_unlinked); 2363 prev_ip->i_next_unlinked = ip->i_next_unlinked; 2364 } else { 2365 /* Point the head of the list to the next unlinked inode. */ 2366 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, 2367 ip->i_next_unlinked); 2368 } 2369 2370 ip->i_next_unlinked = NULLAGINO; 2371 ip->i_prev_unlinked = 0; 2372 return error; 2373 } 2374 2375 /* 2376 * Pull the on-disk inode from the AGI unlinked list. 2377 */ 2378 int 2379 xfs_iunlink_remove( 2380 struct xfs_trans *tp, 2381 struct xfs_perag *pag, 2382 struct xfs_inode *ip) 2383 { 2384 struct xfs_buf *agibp; 2385 int error; 2386 2387 trace_xfs_iunlink_remove(ip); 2388 2389 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2390 error = xfs_read_agi(pag, tp, 0, &agibp); 2391 if (error) 2392 return error; 2393 2394 return xfs_iunlink_remove_inode(tp, pag, agibp, ip); 2395 } 2396 2397 /* 2398 * Look up the inode number specified and if it is not already marked XFS_ISTALE 2399 * mark it stale. We should only find clean inodes in this lookup that aren't 2400 * already stale. 2401 */ 2402 static void 2403 xfs_ifree_mark_inode_stale( 2404 struct xfs_perag *pag, 2405 struct xfs_inode *free_ip, 2406 xfs_ino_t inum) 2407 { 2408 struct xfs_mount *mp = pag->pag_mount; 2409 struct xfs_inode_log_item *iip; 2410 struct xfs_inode *ip; 2411 2412 retry: 2413 rcu_read_lock(); 2414 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2415 2416 /* Inode not in memory, nothing to do */ 2417 if (!ip) { 2418 rcu_read_unlock(); 2419 return; 2420 } 2421 2422 /* 2423 * because this is an RCU protected lookup, we could find a recently 2424 * freed or even reallocated inode during the lookup. We need to check 2425 * under the i_flags_lock for a valid inode here. Skip it if it is not 2426 * valid, the wrong inode or stale. 2427 */ 2428 spin_lock(&ip->i_flags_lock); 2429 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 2430 goto out_iflags_unlock; 2431 2432 /* 2433 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2434 * other inodes that we did not find in the list attached to the buffer 2435 * and are not already marked stale. If we can't lock it, back off and 2436 * retry. 2437 */ 2438 if (ip != free_ip) { 2439 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2440 spin_unlock(&ip->i_flags_lock); 2441 rcu_read_unlock(); 2442 delay(1); 2443 goto retry; 2444 } 2445 } 2446 ip->i_flags |= XFS_ISTALE; 2447 2448 /* 2449 * If the inode is flushing, it is already attached to the buffer. All 2450 * we needed to do here is mark the inode stale so buffer IO completion 2451 * will remove it from the AIL. 2452 */ 2453 iip = ip->i_itemp; 2454 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 2455 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 2456 ASSERT(iip->ili_last_fields); 2457 goto out_iunlock; 2458 } 2459 2460 /* 2461 * Inodes not attached to the buffer can be released immediately. 2462 * Everything else has to go through xfs_iflush_abort() on journal 2463 * commit as the flock synchronises removal of the inode from the 2464 * cluster buffer against inode reclaim. 2465 */ 2466 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 2467 goto out_iunlock; 2468 2469 __xfs_iflags_set(ip, XFS_IFLUSHING); 2470 spin_unlock(&ip->i_flags_lock); 2471 rcu_read_unlock(); 2472 2473 /* we have a dirty inode in memory that has not yet been flushed. */ 2474 spin_lock(&iip->ili_lock); 2475 iip->ili_last_fields = iip->ili_fields; 2476 iip->ili_fields = 0; 2477 iip->ili_fsync_fields = 0; 2478 spin_unlock(&iip->ili_lock); 2479 ASSERT(iip->ili_last_fields); 2480 2481 if (ip != free_ip) 2482 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2483 return; 2484 2485 out_iunlock: 2486 if (ip != free_ip) 2487 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2488 out_iflags_unlock: 2489 spin_unlock(&ip->i_flags_lock); 2490 rcu_read_unlock(); 2491 } 2492 2493 /* 2494 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2495 * inodes that are in memory - they all must be marked stale and attached to 2496 * the cluster buffer. 2497 */ 2498 static int 2499 xfs_ifree_cluster( 2500 struct xfs_trans *tp, 2501 struct xfs_perag *pag, 2502 struct xfs_inode *free_ip, 2503 struct xfs_icluster *xic) 2504 { 2505 struct xfs_mount *mp = free_ip->i_mount; 2506 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2507 struct xfs_buf *bp; 2508 xfs_daddr_t blkno; 2509 xfs_ino_t inum = xic->first_ino; 2510 int nbufs; 2511 int i, j; 2512 int ioffset; 2513 int error; 2514 2515 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2516 2517 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2518 /* 2519 * The allocation bitmap tells us which inodes of the chunk were 2520 * physically allocated. Skip the cluster if an inode falls into 2521 * a sparse region. 2522 */ 2523 ioffset = inum - xic->first_ino; 2524 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2525 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2526 continue; 2527 } 2528 2529 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2530 XFS_INO_TO_AGBNO(mp, inum)); 2531 2532 /* 2533 * We obtain and lock the backing buffer first in the process 2534 * here to ensure dirty inodes attached to the buffer remain in 2535 * the flushing state while we mark them stale. 2536 * 2537 * If we scan the in-memory inodes first, then buffer IO can 2538 * complete before we get a lock on it, and hence we may fail 2539 * to mark all the active inodes on the buffer stale. 2540 */ 2541 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2542 mp->m_bsize * igeo->blocks_per_cluster, 2543 XBF_UNMAPPED, &bp); 2544 if (error) 2545 return error; 2546 2547 /* 2548 * This buffer may not have been correctly initialised as we 2549 * didn't read it from disk. That's not important because we are 2550 * only using to mark the buffer as stale in the log, and to 2551 * attach stale cached inodes on it. That means it will never be 2552 * dispatched for IO. If it is, we want to know about it, and we 2553 * want it to fail. We can acheive this by adding a write 2554 * verifier to the buffer. 2555 */ 2556 bp->b_ops = &xfs_inode_buf_ops; 2557 2558 /* 2559 * Now we need to set all the cached clean inodes as XFS_ISTALE, 2560 * too. This requires lookups, and will skip inodes that we've 2561 * already marked XFS_ISTALE. 2562 */ 2563 for (i = 0; i < igeo->inodes_per_cluster; i++) 2564 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); 2565 2566 xfs_trans_stale_inode_buf(tp, bp); 2567 xfs_trans_binval(tp, bp); 2568 } 2569 return 0; 2570 } 2571 2572 /* 2573 * This is called to return an inode to the inode free list. The inode should 2574 * already be truncated to 0 length and have no pages associated with it. This 2575 * routine also assumes that the inode is already a part of the transaction. 2576 * 2577 * The on-disk copy of the inode will have been added to the list of unlinked 2578 * inodes in the AGI. We need to remove the inode from that list atomically with 2579 * respect to freeing it here. 2580 */ 2581 int 2582 xfs_ifree( 2583 struct xfs_trans *tp, 2584 struct xfs_inode *ip) 2585 { 2586 struct xfs_mount *mp = ip->i_mount; 2587 struct xfs_perag *pag; 2588 struct xfs_icluster xic = { 0 }; 2589 struct xfs_inode_log_item *iip = ip->i_itemp; 2590 int error; 2591 2592 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 2593 ASSERT(VFS_I(ip)->i_nlink == 0); 2594 ASSERT(ip->i_df.if_nextents == 0); 2595 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2596 ASSERT(ip->i_nblocks == 0); 2597 2598 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2599 2600 /* 2601 * Free the inode first so that we guarantee that the AGI lock is going 2602 * to be taken before we remove the inode from the unlinked list. This 2603 * makes the AGI lock -> unlinked list modification order the same as 2604 * used in O_TMPFILE creation. 2605 */ 2606 error = xfs_difree(tp, pag, ip->i_ino, &xic); 2607 if (error) 2608 goto out; 2609 2610 error = xfs_iunlink_remove(tp, pag, ip); 2611 if (error) 2612 goto out; 2613 2614 /* 2615 * Free any local-format data sitting around before we reset the 2616 * data fork to extents format. Note that the attr fork data has 2617 * already been freed by xfs_attr_inactive. 2618 */ 2619 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2620 kfree(ip->i_df.if_data); 2621 ip->i_df.if_data = NULL; 2622 ip->i_df.if_bytes = 0; 2623 } 2624 2625 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2626 ip->i_diflags = 0; 2627 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 2628 ip->i_forkoff = 0; /* mark the attr fork not in use */ 2629 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2630 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) 2631 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); 2632 2633 /* Don't attempt to replay owner changes for a deleted inode */ 2634 spin_lock(&iip->ili_lock); 2635 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 2636 spin_unlock(&iip->ili_lock); 2637 2638 /* 2639 * Bump the generation count so no one will be confused 2640 * by reincarnations of this inode. 2641 */ 2642 VFS_I(ip)->i_generation++; 2643 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2644 2645 if (xic.deleted) 2646 error = xfs_ifree_cluster(tp, pag, ip, &xic); 2647 out: 2648 xfs_perag_put(pag); 2649 return error; 2650 } 2651 2652 /* 2653 * This is called to unpin an inode. The caller must have the inode locked 2654 * in at least shared mode so that the buffer cannot be subsequently pinned 2655 * once someone is waiting for it to be unpinned. 2656 */ 2657 static void 2658 xfs_iunpin( 2659 struct xfs_inode *ip) 2660 { 2661 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); 2662 2663 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2664 2665 /* Give the log a push to start the unpinning I/O */ 2666 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); 2667 2668 } 2669 2670 static void 2671 __xfs_iunpin_wait( 2672 struct xfs_inode *ip) 2673 { 2674 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2675 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2676 2677 xfs_iunpin(ip); 2678 2679 do { 2680 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2681 if (xfs_ipincount(ip)) 2682 io_schedule(); 2683 } while (xfs_ipincount(ip)); 2684 finish_wait(wq, &wait.wq_entry); 2685 } 2686 2687 void 2688 xfs_iunpin_wait( 2689 struct xfs_inode *ip) 2690 { 2691 if (xfs_ipincount(ip)) 2692 __xfs_iunpin_wait(ip); 2693 } 2694 2695 /* 2696 * Removing an inode from the namespace involves removing the directory entry 2697 * and dropping the link count on the inode. Removing the directory entry can 2698 * result in locking an AGF (directory blocks were freed) and removing a link 2699 * count can result in placing the inode on an unlinked list which results in 2700 * locking an AGI. 2701 * 2702 * The big problem here is that we have an ordering constraint on AGF and AGI 2703 * locking - inode allocation locks the AGI, then can allocate a new extent for 2704 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2705 * removes the inode from the unlinked list, requiring that we lock the AGI 2706 * first, and then freeing the inode can result in an inode chunk being freed 2707 * and hence freeing disk space requiring that we lock an AGF. 2708 * 2709 * Hence the ordering that is imposed by other parts of the code is AGI before 2710 * AGF. This means we cannot remove the directory entry before we drop the inode 2711 * reference count and put it on the unlinked list as this results in a lock 2712 * order of AGF then AGI, and this can deadlock against inode allocation and 2713 * freeing. Therefore we must drop the link counts before we remove the 2714 * directory entry. 2715 * 2716 * This is still safe from a transactional point of view - it is not until we 2717 * get to xfs_defer_finish() that we have the possibility of multiple 2718 * transactions in this operation. Hence as long as we remove the directory 2719 * entry and drop the link count in the first transaction of the remove 2720 * operation, there are no transactional constraints on the ordering here. 2721 */ 2722 int 2723 xfs_remove( 2724 struct xfs_inode *dp, 2725 struct xfs_name *name, 2726 struct xfs_inode *ip) 2727 { 2728 struct xfs_mount *mp = dp->i_mount; 2729 struct xfs_trans *tp = NULL; 2730 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2731 int dontcare; 2732 int error = 0; 2733 uint resblks; 2734 struct xfs_parent_args *ppargs; 2735 2736 trace_xfs_remove(dp, name); 2737 2738 if (xfs_is_shutdown(mp)) 2739 return -EIO; 2740 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 2741 return -EIO; 2742 2743 error = xfs_qm_dqattach(dp); 2744 if (error) 2745 goto std_return; 2746 2747 error = xfs_qm_dqattach(ip); 2748 if (error) 2749 goto std_return; 2750 2751 error = xfs_parent_start(mp, &ppargs); 2752 if (error) 2753 goto std_return; 2754 2755 /* 2756 * We try to get the real space reservation first, allowing for 2757 * directory btree deletion(s) implying possible bmap insert(s). If we 2758 * can't get the space reservation then we use 0 instead, and avoid the 2759 * bmap btree insert(s) in the directory code by, if the bmap insert 2760 * tries to happen, instead trimming the LAST block from the directory. 2761 * 2762 * Ignore EDQUOT and ENOSPC being returned via nospace_error because 2763 * the directory code can handle a reservationless update and we don't 2764 * want to prevent a user from trying to free space by deleting things. 2765 */ 2766 resblks = xfs_remove_space_res(mp, name->len); 2767 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks, 2768 &tp, &dontcare); 2769 if (error) { 2770 ASSERT(error != -ENOSPC); 2771 goto out_parent; 2772 } 2773 2774 /* 2775 * If we're removing a directory perform some additional validation. 2776 */ 2777 if (is_dir) { 2778 ASSERT(VFS_I(ip)->i_nlink >= 2); 2779 if (VFS_I(ip)->i_nlink != 2) { 2780 error = -ENOTEMPTY; 2781 goto out_trans_cancel; 2782 } 2783 if (!xfs_dir_isempty(ip)) { 2784 error = -ENOTEMPTY; 2785 goto out_trans_cancel; 2786 } 2787 2788 /* Drop the link from ip's "..". */ 2789 error = xfs_droplink(tp, dp); 2790 if (error) 2791 goto out_trans_cancel; 2792 2793 /* Drop the "." link from ip to self. */ 2794 error = xfs_droplink(tp, ip); 2795 if (error) 2796 goto out_trans_cancel; 2797 2798 /* 2799 * Point the unlinked child directory's ".." entry to the root 2800 * directory to eliminate back-references to inodes that may 2801 * get freed before the child directory is closed. If the fs 2802 * gets shrunk, this can lead to dirent inode validation errors. 2803 */ 2804 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) { 2805 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot, 2806 tp->t_mountp->m_sb.sb_rootino, 0); 2807 if (error) 2808 goto out_trans_cancel; 2809 } 2810 } else { 2811 /* 2812 * When removing a non-directory we need to log the parent 2813 * inode here. For a directory this is done implicitly 2814 * by the xfs_droplink call for the ".." entry. 2815 */ 2816 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2817 } 2818 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2819 2820 /* Drop the link from dp to ip. */ 2821 error = xfs_droplink(tp, ip); 2822 if (error) 2823 goto out_trans_cancel; 2824 2825 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2826 if (error) { 2827 ASSERT(error != -ENOENT); 2828 goto out_trans_cancel; 2829 } 2830 2831 /* Remove parent pointer. */ 2832 if (ppargs) { 2833 error = xfs_parent_removename(tp, ppargs, dp, name, ip); 2834 if (error) 2835 goto out_trans_cancel; 2836 } 2837 2838 /* 2839 * Drop the link from dp to ip, and if ip was a directory, remove the 2840 * '.' and '..' references since we freed the directory. 2841 */ 2842 xfs_dir_update_hook(dp, ip, -1, name); 2843 2844 /* 2845 * If this is a synchronous mount, make sure that the 2846 * remove transaction goes to disk before returning to 2847 * the user. 2848 */ 2849 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 2850 xfs_trans_set_sync(tp); 2851 2852 error = xfs_trans_commit(tp); 2853 if (error) 2854 goto out_unlock; 2855 2856 if (is_dir && xfs_inode_is_filestream(ip)) 2857 xfs_filestream_deassociate(ip); 2858 2859 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2860 xfs_iunlock(dp, XFS_ILOCK_EXCL); 2861 xfs_parent_finish(mp, ppargs); 2862 return 0; 2863 2864 out_trans_cancel: 2865 xfs_trans_cancel(tp); 2866 out_unlock: 2867 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2868 xfs_iunlock(dp, XFS_ILOCK_EXCL); 2869 out_parent: 2870 xfs_parent_finish(mp, ppargs); 2871 std_return: 2872 return error; 2873 } 2874 2875 static inline void 2876 xfs_iunlock_rename( 2877 struct xfs_inode **i_tab, 2878 int num_inodes) 2879 { 2880 int i; 2881 2882 for (i = num_inodes - 1; i >= 0; i--) { 2883 /* Skip duplicate inodes if src and target dps are the same */ 2884 if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1])) 2885 continue; 2886 xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL); 2887 } 2888 } 2889 2890 /* 2891 * Enter all inodes for a rename transaction into a sorted array. 2892 */ 2893 #define __XFS_SORT_INODES 5 2894 STATIC void 2895 xfs_sort_for_rename( 2896 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2897 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2898 struct xfs_inode *ip1, /* in: inode of old entry */ 2899 struct xfs_inode *ip2, /* in: inode of new entry */ 2900 struct xfs_inode *wip, /* in: whiteout inode */ 2901 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2902 int *num_inodes) /* in/out: inodes in array */ 2903 { 2904 int i; 2905 2906 ASSERT(*num_inodes == __XFS_SORT_INODES); 2907 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2908 2909 /* 2910 * i_tab contains a list of pointers to inodes. We initialize 2911 * the table here & we'll sort it. We will then use it to 2912 * order the acquisition of the inode locks. 2913 * 2914 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2915 */ 2916 i = 0; 2917 i_tab[i++] = dp1; 2918 i_tab[i++] = dp2; 2919 i_tab[i++] = ip1; 2920 if (ip2) 2921 i_tab[i++] = ip2; 2922 if (wip) 2923 i_tab[i++] = wip; 2924 *num_inodes = i; 2925 2926 xfs_sort_inodes(i_tab, *num_inodes); 2927 } 2928 2929 void 2930 xfs_sort_inodes( 2931 struct xfs_inode **i_tab, 2932 unsigned int num_inodes) 2933 { 2934 int i, j; 2935 2936 ASSERT(num_inodes <= __XFS_SORT_INODES); 2937 2938 /* 2939 * Sort the elements via bubble sort. (Remember, there are at 2940 * most 5 elements to sort, so this is adequate.) 2941 */ 2942 for (i = 0; i < num_inodes; i++) { 2943 for (j = 1; j < num_inodes; j++) { 2944 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) 2945 swap(i_tab[j], i_tab[j - 1]); 2946 } 2947 } 2948 } 2949 2950 static int 2951 xfs_finish_rename( 2952 struct xfs_trans *tp) 2953 { 2954 /* 2955 * If this is a synchronous mount, make sure that the rename transaction 2956 * goes to disk before returning to the user. 2957 */ 2958 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) 2959 xfs_trans_set_sync(tp); 2960 2961 return xfs_trans_commit(tp); 2962 } 2963 2964 /* 2965 * xfs_cross_rename() 2966 * 2967 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall 2968 */ 2969 STATIC int 2970 xfs_cross_rename( 2971 struct xfs_trans *tp, 2972 struct xfs_inode *dp1, 2973 struct xfs_name *name1, 2974 struct xfs_inode *ip1, 2975 struct xfs_parent_args *ip1_ppargs, 2976 struct xfs_inode *dp2, 2977 struct xfs_name *name2, 2978 struct xfs_inode *ip2, 2979 struct xfs_parent_args *ip2_ppargs, 2980 int spaceres) 2981 { 2982 int error = 0; 2983 int ip1_flags = 0; 2984 int ip2_flags = 0; 2985 int dp2_flags = 0; 2986 2987 /* Swap inode number for dirent in first parent */ 2988 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 2989 if (error) 2990 goto out_trans_abort; 2991 2992 /* Swap inode number for dirent in second parent */ 2993 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 2994 if (error) 2995 goto out_trans_abort; 2996 2997 /* 2998 * If we're renaming one or more directories across different parents, 2999 * update the respective ".." entries (and link counts) to match the new 3000 * parents. 3001 */ 3002 if (dp1 != dp2) { 3003 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3004 3005 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 3006 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 3007 dp1->i_ino, spaceres); 3008 if (error) 3009 goto out_trans_abort; 3010 3011 /* transfer ip2 ".." reference to dp1 */ 3012 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 3013 error = xfs_droplink(tp, dp2); 3014 if (error) 3015 goto out_trans_abort; 3016 xfs_bumplink(tp, dp1); 3017 } 3018 3019 /* 3020 * Although ip1 isn't changed here, userspace needs 3021 * to be warned about the change, so that applications 3022 * relying on it (like backup ones), will properly 3023 * notify the change 3024 */ 3025 ip1_flags |= XFS_ICHGTIME_CHG; 3026 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3027 } 3028 3029 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 3030 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 3031 dp2->i_ino, spaceres); 3032 if (error) 3033 goto out_trans_abort; 3034 3035 /* transfer ip1 ".." reference to dp2 */ 3036 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 3037 error = xfs_droplink(tp, dp1); 3038 if (error) 3039 goto out_trans_abort; 3040 xfs_bumplink(tp, dp2); 3041 } 3042 3043 /* 3044 * Although ip2 isn't changed here, userspace needs 3045 * to be warned about the change, so that applications 3046 * relying on it (like backup ones), will properly 3047 * notify the change 3048 */ 3049 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3050 ip2_flags |= XFS_ICHGTIME_CHG; 3051 } 3052 } 3053 3054 /* Schedule parent pointer replacements */ 3055 if (ip1_ppargs) { 3056 error = xfs_parent_replacename(tp, ip1_ppargs, dp1, name1, dp2, 3057 name2, ip1); 3058 if (error) 3059 goto out_trans_abort; 3060 } 3061 3062 if (ip2_ppargs) { 3063 error = xfs_parent_replacename(tp, ip2_ppargs, dp2, name2, dp1, 3064 name1, ip2); 3065 if (error) 3066 goto out_trans_abort; 3067 } 3068 3069 if (ip1_flags) { 3070 xfs_trans_ichgtime(tp, ip1, ip1_flags); 3071 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 3072 } 3073 if (ip2_flags) { 3074 xfs_trans_ichgtime(tp, ip2, ip2_flags); 3075 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 3076 } 3077 if (dp2_flags) { 3078 xfs_trans_ichgtime(tp, dp2, dp2_flags); 3079 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 3080 } 3081 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3082 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 3083 3084 /* 3085 * Inform our hook clients that we've finished an exchange operation as 3086 * follows: removed the source and target files from their directories; 3087 * added the target to the source directory; and added the source to 3088 * the target directory. All inodes are locked, so it's ok to model a 3089 * rename this way so long as we say we deleted entries before we add 3090 * new ones. 3091 */ 3092 xfs_dir_update_hook(dp1, ip1, -1, name1); 3093 xfs_dir_update_hook(dp2, ip2, -1, name2); 3094 xfs_dir_update_hook(dp1, ip2, 1, name1); 3095 xfs_dir_update_hook(dp2, ip1, 1, name2); 3096 3097 return xfs_finish_rename(tp); 3098 3099 out_trans_abort: 3100 xfs_trans_cancel(tp); 3101 return error; 3102 } 3103 3104 /* 3105 * xfs_rename_alloc_whiteout() 3106 * 3107 * Return a referenced, unlinked, unlocked inode that can be used as a 3108 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 3109 * crash between allocating the inode and linking it into the rename transaction 3110 * recovery will free the inode and we won't leak it. 3111 */ 3112 static int 3113 xfs_rename_alloc_whiteout( 3114 struct mnt_idmap *idmap, 3115 struct xfs_name *src_name, 3116 struct xfs_inode *dp, 3117 struct xfs_inode **wip) 3118 { 3119 struct xfs_inode *tmpfile; 3120 struct qstr name; 3121 int error; 3122 3123 error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE, 3124 xfs_has_parent(dp->i_mount), &tmpfile); 3125 if (error) 3126 return error; 3127 3128 name.name = src_name->name; 3129 name.len = src_name->len; 3130 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name); 3131 if (error) { 3132 xfs_finish_inode_setup(tmpfile); 3133 xfs_irele(tmpfile); 3134 return error; 3135 } 3136 3137 /* 3138 * Prepare the tmpfile inode as if it were created through the VFS. 3139 * Complete the inode setup and flag it as linkable. nlink is already 3140 * zero, so we can skip the drop_nlink. 3141 */ 3142 xfs_setup_iops(tmpfile); 3143 xfs_finish_inode_setup(tmpfile); 3144 VFS_I(tmpfile)->i_state |= I_LINKABLE; 3145 3146 *wip = tmpfile; 3147 return 0; 3148 } 3149 3150 /* 3151 * xfs_rename 3152 */ 3153 int 3154 xfs_rename( 3155 struct mnt_idmap *idmap, 3156 struct xfs_inode *src_dp, 3157 struct xfs_name *src_name, 3158 struct xfs_inode *src_ip, 3159 struct xfs_inode *target_dp, 3160 struct xfs_name *target_name, 3161 struct xfs_inode *target_ip, 3162 unsigned int flags) 3163 { 3164 struct xfs_mount *mp = src_dp->i_mount; 3165 struct xfs_trans *tp; 3166 struct xfs_inode *wip = NULL; /* whiteout inode */ 3167 struct xfs_inode *inodes[__XFS_SORT_INODES]; 3168 struct xfs_parent_args *src_ppargs = NULL; 3169 struct xfs_parent_args *tgt_ppargs = NULL; 3170 struct xfs_parent_args *wip_ppargs = NULL; 3171 int i; 3172 int num_inodes = __XFS_SORT_INODES; 3173 bool new_parent = (src_dp != target_dp); 3174 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 3175 int spaceres; 3176 bool retried = false; 3177 int error, nospace_error = 0; 3178 3179 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 3180 3181 if ((flags & RENAME_EXCHANGE) && !target_ip) 3182 return -EINVAL; 3183 3184 /* 3185 * If we are doing a whiteout operation, allocate the whiteout inode 3186 * we will be placing at the target and ensure the type is set 3187 * appropriately. 3188 */ 3189 if (flags & RENAME_WHITEOUT) { 3190 error = xfs_rename_alloc_whiteout(idmap, src_name, 3191 target_dp, &wip); 3192 if (error) 3193 return error; 3194 3195 /* setup target dirent info as whiteout */ 3196 src_name->type = XFS_DIR3_FT_CHRDEV; 3197 } 3198 3199 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3200 inodes, &num_inodes); 3201 3202 error = xfs_parent_start(mp, &src_ppargs); 3203 if (error) 3204 goto out_release_wip; 3205 3206 if (wip) { 3207 error = xfs_parent_start(mp, &wip_ppargs); 3208 if (error) 3209 goto out_src_ppargs; 3210 } 3211 3212 if (target_ip) { 3213 error = xfs_parent_start(mp, &tgt_ppargs); 3214 if (error) 3215 goto out_wip_ppargs; 3216 } 3217 3218 retry: 3219 nospace_error = 0; 3220 spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL, 3221 target_name->len, wip != NULL); 3222 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3223 if (error == -ENOSPC) { 3224 nospace_error = error; 3225 spaceres = 0; 3226 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3227 &tp); 3228 } 3229 if (error) 3230 goto out_tgt_ppargs; 3231 3232 /* 3233 * We don't allow reservationless renaming when parent pointers are 3234 * enabled because we can't back out if the xattrs must grow. 3235 */ 3236 if (src_ppargs && nospace_error) { 3237 error = nospace_error; 3238 xfs_trans_cancel(tp); 3239 goto out_tgt_ppargs; 3240 } 3241 3242 /* 3243 * Attach the dquots to the inodes 3244 */ 3245 error = xfs_qm_vop_rename_dqattach(inodes); 3246 if (error) { 3247 xfs_trans_cancel(tp); 3248 goto out_tgt_ppargs; 3249 } 3250 3251 /* 3252 * Lock all the participating inodes. Depending upon whether 3253 * the target_name exists in the target directory, and 3254 * whether the target directory is the same as the source 3255 * directory, we can lock from 2 to 5 inodes. 3256 */ 3257 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3258 3259 /* 3260 * Join all the inodes to the transaction. 3261 */ 3262 xfs_trans_ijoin(tp, src_dp, 0); 3263 if (new_parent) 3264 xfs_trans_ijoin(tp, target_dp, 0); 3265 xfs_trans_ijoin(tp, src_ip, 0); 3266 if (target_ip) 3267 xfs_trans_ijoin(tp, target_ip, 0); 3268 if (wip) 3269 xfs_trans_ijoin(tp, wip, 0); 3270 3271 /* 3272 * If we are using project inheritance, we only allow renames 3273 * into our tree when the project IDs are the same; else the 3274 * tree quota mechanism would be circumvented. 3275 */ 3276 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 3277 target_dp->i_projid != src_ip->i_projid)) { 3278 error = -EXDEV; 3279 goto out_trans_cancel; 3280 } 3281 3282 /* RENAME_EXCHANGE is unique from here on. */ 3283 if (flags & RENAME_EXCHANGE) { 3284 error = xfs_cross_rename(tp, src_dp, src_name, src_ip, 3285 src_ppargs, target_dp, target_name, target_ip, 3286 tgt_ppargs, spaceres); 3287 nospace_error = 0; 3288 goto out_unlock; 3289 } 3290 3291 /* 3292 * Try to reserve quota to handle an expansion of the target directory. 3293 * We'll allow the rename to continue in reservationless mode if we hit 3294 * a space usage constraint. If we trigger reservationless mode, save 3295 * the errno if there isn't any free space in the target directory. 3296 */ 3297 if (spaceres != 0) { 3298 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres, 3299 0, false); 3300 if (error == -EDQUOT || error == -ENOSPC) { 3301 if (!retried) { 3302 xfs_trans_cancel(tp); 3303 xfs_iunlock_rename(inodes, num_inodes); 3304 xfs_blockgc_free_quota(target_dp, 0); 3305 retried = true; 3306 goto retry; 3307 } 3308 3309 nospace_error = error; 3310 spaceres = 0; 3311 error = 0; 3312 } 3313 if (error) 3314 goto out_trans_cancel; 3315 } 3316 3317 /* 3318 * We don't allow quotaless renaming when parent pointers are enabled 3319 * because we can't back out if the xattrs must grow. 3320 */ 3321 if (src_ppargs && nospace_error) { 3322 error = nospace_error; 3323 goto out_trans_cancel; 3324 } 3325 3326 /* 3327 * Check for expected errors before we dirty the transaction 3328 * so we can return an error without a transaction abort. 3329 */ 3330 if (target_ip == NULL) { 3331 /* 3332 * If there's no space reservation, check the entry will 3333 * fit before actually inserting it. 3334 */ 3335 if (!spaceres) { 3336 error = xfs_dir_canenter(tp, target_dp, target_name); 3337 if (error) 3338 goto out_trans_cancel; 3339 } 3340 } else { 3341 /* 3342 * If target exists and it's a directory, check that whether 3343 * it can be destroyed. 3344 */ 3345 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 3346 (!xfs_dir_isempty(target_ip) || 3347 (VFS_I(target_ip)->i_nlink > 2))) { 3348 error = -EEXIST; 3349 goto out_trans_cancel; 3350 } 3351 } 3352 3353 /* 3354 * Lock the AGI buffers we need to handle bumping the nlink of the 3355 * whiteout inode off the unlinked list and to handle dropping the 3356 * nlink of the target inode. Per locking order rules, do this in 3357 * increasing AG order and before directory block allocation tries to 3358 * grab AGFs because we grab AGIs before AGFs. 3359 * 3360 * The (vfs) caller must ensure that if src is a directory then 3361 * target_ip is either null or an empty directory. 3362 */ 3363 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 3364 if (inodes[i] == wip || 3365 (inodes[i] == target_ip && 3366 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 3367 struct xfs_perag *pag; 3368 struct xfs_buf *bp; 3369 3370 pag = xfs_perag_get(mp, 3371 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino)); 3372 error = xfs_read_agi(pag, tp, 0, &bp); 3373 xfs_perag_put(pag); 3374 if (error) 3375 goto out_trans_cancel; 3376 } 3377 } 3378 3379 /* 3380 * Directory entry creation below may acquire the AGF. Remove 3381 * the whiteout from the unlinked list first to preserve correct 3382 * AGI/AGF locking order. This dirties the transaction so failures 3383 * after this point will abort and log recovery will clean up the 3384 * mess. 3385 * 3386 * For whiteouts, we need to bump the link count on the whiteout 3387 * inode. After this point, we have a real link, clear the tmpfile 3388 * state flag from the inode so it doesn't accidentally get misused 3389 * in future. 3390 */ 3391 if (wip) { 3392 struct xfs_perag *pag; 3393 3394 ASSERT(VFS_I(wip)->i_nlink == 0); 3395 3396 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino)); 3397 error = xfs_iunlink_remove(tp, pag, wip); 3398 xfs_perag_put(pag); 3399 if (error) 3400 goto out_trans_cancel; 3401 3402 xfs_bumplink(tp, wip); 3403 VFS_I(wip)->i_state &= ~I_LINKABLE; 3404 } 3405 3406 /* 3407 * Set up the target. 3408 */ 3409 if (target_ip == NULL) { 3410 /* 3411 * If target does not exist and the rename crosses 3412 * directories, adjust the target directory link count 3413 * to account for the ".." reference from the new entry. 3414 */ 3415 error = xfs_dir_createname(tp, target_dp, target_name, 3416 src_ip->i_ino, spaceres); 3417 if (error) 3418 goto out_trans_cancel; 3419 3420 xfs_trans_ichgtime(tp, target_dp, 3421 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3422 3423 if (new_parent && src_is_directory) { 3424 xfs_bumplink(tp, target_dp); 3425 } 3426 } else { /* target_ip != NULL */ 3427 /* 3428 * Link the source inode under the target name. 3429 * If the source inode is a directory and we are moving 3430 * it across directories, its ".." entry will be 3431 * inconsistent until we replace that down below. 3432 * 3433 * In case there is already an entry with the same 3434 * name at the destination directory, remove it first. 3435 */ 3436 error = xfs_dir_replace(tp, target_dp, target_name, 3437 src_ip->i_ino, spaceres); 3438 if (error) 3439 goto out_trans_cancel; 3440 3441 xfs_trans_ichgtime(tp, target_dp, 3442 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3443 3444 /* 3445 * Decrement the link count on the target since the target 3446 * dir no longer points to it. 3447 */ 3448 error = xfs_droplink(tp, target_ip); 3449 if (error) 3450 goto out_trans_cancel; 3451 3452 if (src_is_directory) { 3453 /* 3454 * Drop the link from the old "." entry. 3455 */ 3456 error = xfs_droplink(tp, target_ip); 3457 if (error) 3458 goto out_trans_cancel; 3459 } 3460 } /* target_ip != NULL */ 3461 3462 /* 3463 * Remove the source. 3464 */ 3465 if (new_parent && src_is_directory) { 3466 /* 3467 * Rewrite the ".." entry to point to the new 3468 * directory. 3469 */ 3470 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3471 target_dp->i_ino, spaceres); 3472 ASSERT(error != -EEXIST); 3473 if (error) 3474 goto out_trans_cancel; 3475 } 3476 3477 /* 3478 * We always want to hit the ctime on the source inode. 3479 * 3480 * This isn't strictly required by the standards since the source 3481 * inode isn't really being changed, but old unix file systems did 3482 * it and some incremental backup programs won't work without it. 3483 */ 3484 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3485 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3486 3487 /* 3488 * Adjust the link count on src_dp. This is necessary when 3489 * renaming a directory, either within one parent when 3490 * the target existed, or across two parent directories. 3491 */ 3492 if (src_is_directory && (new_parent || target_ip != NULL)) { 3493 3494 /* 3495 * Decrement link count on src_directory since the 3496 * entry that's moved no longer points to it. 3497 */ 3498 error = xfs_droplink(tp, src_dp); 3499 if (error) 3500 goto out_trans_cancel; 3501 } 3502 3503 /* 3504 * For whiteouts, we only need to update the source dirent with the 3505 * inode number of the whiteout inode rather than removing it 3506 * altogether. 3507 */ 3508 if (wip) 3509 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3510 spaceres); 3511 else 3512 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3513 spaceres); 3514 3515 if (error) 3516 goto out_trans_cancel; 3517 3518 /* Schedule parent pointer updates. */ 3519 if (wip_ppargs) { 3520 error = xfs_parent_addname(tp, wip_ppargs, src_dp, src_name, 3521 wip); 3522 if (error) 3523 goto out_trans_cancel; 3524 } 3525 3526 if (src_ppargs) { 3527 error = xfs_parent_replacename(tp, src_ppargs, src_dp, 3528 src_name, target_dp, target_name, src_ip); 3529 if (error) 3530 goto out_trans_cancel; 3531 } 3532 3533 if (tgt_ppargs) { 3534 error = xfs_parent_removename(tp, tgt_ppargs, target_dp, 3535 target_name, target_ip); 3536 if (error) 3537 goto out_trans_cancel; 3538 } 3539 3540 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3541 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3542 if (new_parent) 3543 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3544 3545 /* 3546 * Inform our hook clients that we've finished a rename operation as 3547 * follows: removed the source and target files from their directories; 3548 * that we've added the source to the target directory; and finally 3549 * that we've added the whiteout, if there was one. All inodes are 3550 * locked, so it's ok to model a rename this way so long as we say we 3551 * deleted entries before we add new ones. 3552 */ 3553 if (target_ip) 3554 xfs_dir_update_hook(target_dp, target_ip, -1, target_name); 3555 xfs_dir_update_hook(src_dp, src_ip, -1, src_name); 3556 xfs_dir_update_hook(target_dp, src_ip, 1, target_name); 3557 if (wip) 3558 xfs_dir_update_hook(src_dp, wip, 1, src_name); 3559 3560 error = xfs_finish_rename(tp); 3561 nospace_error = 0; 3562 goto out_unlock; 3563 3564 out_trans_cancel: 3565 xfs_trans_cancel(tp); 3566 out_unlock: 3567 xfs_iunlock_rename(inodes, num_inodes); 3568 out_tgt_ppargs: 3569 xfs_parent_finish(mp, tgt_ppargs); 3570 out_wip_ppargs: 3571 xfs_parent_finish(mp, wip_ppargs); 3572 out_src_ppargs: 3573 xfs_parent_finish(mp, src_ppargs); 3574 out_release_wip: 3575 if (wip) 3576 xfs_irele(wip); 3577 if (error == -ENOSPC && nospace_error) 3578 error = nospace_error; 3579 return error; 3580 } 3581 3582 static int 3583 xfs_iflush( 3584 struct xfs_inode *ip, 3585 struct xfs_buf *bp) 3586 { 3587 struct xfs_inode_log_item *iip = ip->i_itemp; 3588 struct xfs_dinode *dip; 3589 struct xfs_mount *mp = ip->i_mount; 3590 int error; 3591 3592 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); 3593 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 3594 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3595 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3596 ASSERT(iip->ili_item.li_buf == bp); 3597 3598 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3599 3600 /* 3601 * We don't flush the inode if any of the following checks fail, but we 3602 * do still update the log item and attach to the backing buffer as if 3603 * the flush happened. This is a formality to facilitate predictable 3604 * error handling as the caller will shutdown and fail the buffer. 3605 */ 3606 error = -EFSCORRUPTED; 3607 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3608 mp, XFS_ERRTAG_IFLUSH_1)) { 3609 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3610 "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT, 3611 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3612 goto flush_out; 3613 } 3614 if (S_ISREG(VFS_I(ip)->i_mode)) { 3615 if (XFS_TEST_ERROR( 3616 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3617 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3618 mp, XFS_ERRTAG_IFLUSH_3)) { 3619 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3620 "%s: Bad regular inode %llu, ptr "PTR_FMT, 3621 __func__, ip->i_ino, ip); 3622 goto flush_out; 3623 } 3624 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3625 if (XFS_TEST_ERROR( 3626 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3627 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3628 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3629 mp, XFS_ERRTAG_IFLUSH_4)) { 3630 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3631 "%s: Bad directory inode %llu, ptr "PTR_FMT, 3632 __func__, ip->i_ino, ip); 3633 goto flush_out; 3634 } 3635 } 3636 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) > 3637 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3638 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3639 "%s: detected corrupt incore inode %llu, " 3640 "total extents = %llu nblocks = %lld, ptr "PTR_FMT, 3641 __func__, ip->i_ino, 3642 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af), 3643 ip->i_nblocks, ip); 3644 goto flush_out; 3645 } 3646 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, 3647 mp, XFS_ERRTAG_IFLUSH_6)) { 3648 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3649 "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT, 3650 __func__, ip->i_ino, ip->i_forkoff, ip); 3651 goto flush_out; 3652 } 3653 3654 /* 3655 * Inode item log recovery for v2 inodes are dependent on the flushiter 3656 * count for correct sequencing. We bump the flush iteration count so 3657 * we can detect flushes which postdate a log record during recovery. 3658 * This is redundant as we now log every change and hence this can't 3659 * happen but we need to still do it to ensure backwards compatibility 3660 * with old kernels that predate logging all inode changes. 3661 */ 3662 if (!xfs_has_v3inodes(mp)) 3663 ip->i_flushiter++; 3664 3665 /* 3666 * If there are inline format data / attr forks attached to this inode, 3667 * make sure they are not corrupt. 3668 */ 3669 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3670 xfs_ifork_verify_local_data(ip)) 3671 goto flush_out; 3672 if (xfs_inode_has_attr_fork(ip) && 3673 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL && 3674 xfs_ifork_verify_local_attr(ip)) 3675 goto flush_out; 3676 3677 /* 3678 * Copy the dirty parts of the inode into the on-disk inode. We always 3679 * copy out the core of the inode, because if the inode is dirty at all 3680 * the core must be. 3681 */ 3682 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3683 3684 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3685 if (!xfs_has_v3inodes(mp)) { 3686 if (ip->i_flushiter == DI_MAX_FLUSH) 3687 ip->i_flushiter = 0; 3688 } 3689 3690 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3691 if (xfs_inode_has_attr_fork(ip)) 3692 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3693 3694 /* 3695 * We've recorded everything logged in the inode, so we'd like to clear 3696 * the ili_fields bits so we don't log and flush things unnecessarily. 3697 * However, we can't stop logging all this information until the data 3698 * we've copied into the disk buffer is written to disk. If we did we 3699 * might overwrite the copy of the inode in the log with all the data 3700 * after re-logging only part of it, and in the face of a crash we 3701 * wouldn't have all the data we need to recover. 3702 * 3703 * What we do is move the bits to the ili_last_fields field. When 3704 * logging the inode, these bits are moved back to the ili_fields field. 3705 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 3706 * we know that the information those bits represent is permanently on 3707 * disk. As long as the flush completes before the inode is logged 3708 * again, then both ili_fields and ili_last_fields will be cleared. 3709 */ 3710 error = 0; 3711 flush_out: 3712 spin_lock(&iip->ili_lock); 3713 iip->ili_last_fields = iip->ili_fields; 3714 iip->ili_fields = 0; 3715 iip->ili_fsync_fields = 0; 3716 spin_unlock(&iip->ili_lock); 3717 3718 /* 3719 * Store the current LSN of the inode so that we can tell whether the 3720 * item has moved in the AIL from xfs_buf_inode_iodone(). 3721 */ 3722 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3723 &iip->ili_item.li_lsn); 3724 3725 /* generate the checksum. */ 3726 xfs_dinode_calc_crc(mp, dip); 3727 if (error) 3728 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 3729 return error; 3730 } 3731 3732 /* 3733 * Non-blocking flush of dirty inode metadata into the backing buffer. 3734 * 3735 * The caller must have a reference to the inode and hold the cluster buffer 3736 * locked. The function will walk across all the inodes on the cluster buffer it 3737 * can find and lock without blocking, and flush them to the cluster buffer. 3738 * 3739 * On successful flushing of at least one inode, the caller must write out the 3740 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 3741 * the caller needs to release the buffer. On failure, the filesystem will be 3742 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 3743 * will be returned. 3744 */ 3745 int 3746 xfs_iflush_cluster( 3747 struct xfs_buf *bp) 3748 { 3749 struct xfs_mount *mp = bp->b_mount; 3750 struct xfs_log_item *lip, *n; 3751 struct xfs_inode *ip; 3752 struct xfs_inode_log_item *iip; 3753 int clcount = 0; 3754 int error = 0; 3755 3756 /* 3757 * We must use the safe variant here as on shutdown xfs_iflush_abort() 3758 * will remove itself from the list. 3759 */ 3760 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 3761 iip = (struct xfs_inode_log_item *)lip; 3762 ip = iip->ili_inode; 3763 3764 /* 3765 * Quick and dirty check to avoid locks if possible. 3766 */ 3767 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 3768 continue; 3769 if (xfs_ipincount(ip)) 3770 continue; 3771 3772 /* 3773 * The inode is still attached to the buffer, which means it is 3774 * dirty but reclaim might try to grab it. Check carefully for 3775 * that, and grab the ilock while still holding the i_flags_lock 3776 * to guarantee reclaim will not be able to reclaim this inode 3777 * once we drop the i_flags_lock. 3778 */ 3779 spin_lock(&ip->i_flags_lock); 3780 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 3781 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 3782 spin_unlock(&ip->i_flags_lock); 3783 continue; 3784 } 3785 3786 /* 3787 * ILOCK will pin the inode against reclaim and prevent 3788 * concurrent transactions modifying the inode while we are 3789 * flushing the inode. If we get the lock, set the flushing 3790 * state before we drop the i_flags_lock. 3791 */ 3792 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 3793 spin_unlock(&ip->i_flags_lock); 3794 continue; 3795 } 3796 __xfs_iflags_set(ip, XFS_IFLUSHING); 3797 spin_unlock(&ip->i_flags_lock); 3798 3799 /* 3800 * Abort flushing this inode if we are shut down because the 3801 * inode may not currently be in the AIL. This can occur when 3802 * log I/O failure unpins the inode without inserting into the 3803 * AIL, leaving a dirty/unpinned inode attached to the buffer 3804 * that otherwise looks like it should be flushed. 3805 */ 3806 if (xlog_is_shutdown(mp->m_log)) { 3807 xfs_iunpin_wait(ip); 3808 xfs_iflush_abort(ip); 3809 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3810 error = -EIO; 3811 continue; 3812 } 3813 3814 /* don't block waiting on a log force to unpin dirty inodes */ 3815 if (xfs_ipincount(ip)) { 3816 xfs_iflags_clear(ip, XFS_IFLUSHING); 3817 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3818 continue; 3819 } 3820 3821 if (!xfs_inode_clean(ip)) 3822 error = xfs_iflush(ip, bp); 3823 else 3824 xfs_iflags_clear(ip, XFS_IFLUSHING); 3825 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3826 if (error) 3827 break; 3828 clcount++; 3829 } 3830 3831 if (error) { 3832 /* 3833 * Shutdown first so we kill the log before we release this 3834 * buffer. If it is an INODE_ALLOC buffer and pins the tail 3835 * of the log, failing it before the _log_ is shut down can 3836 * result in the log tail being moved forward in the journal 3837 * on disk because log writes can still be taking place. Hence 3838 * unpinning the tail will allow the ICREATE intent to be 3839 * removed from the log an recovery will fail with uninitialised 3840 * inode cluster buffers. 3841 */ 3842 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3843 bp->b_flags |= XBF_ASYNC; 3844 xfs_buf_ioend_fail(bp); 3845 return error; 3846 } 3847 3848 if (!clcount) 3849 return -EAGAIN; 3850 3851 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3852 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3853 return 0; 3854 3855 } 3856 3857 /* Release an inode. */ 3858 void 3859 xfs_irele( 3860 struct xfs_inode *ip) 3861 { 3862 trace_xfs_irele(ip, _RET_IP_); 3863 iput(VFS_I(ip)); 3864 } 3865 3866 /* 3867 * Ensure all commited transactions touching the inode are written to the log. 3868 */ 3869 int 3870 xfs_log_force_inode( 3871 struct xfs_inode *ip) 3872 { 3873 xfs_csn_t seq = 0; 3874 3875 xfs_ilock(ip, XFS_ILOCK_SHARED); 3876 if (xfs_ipincount(ip)) 3877 seq = ip->i_itemp->ili_commit_seq; 3878 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3879 3880 if (!seq) 3881 return 0; 3882 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); 3883 } 3884 3885 /* 3886 * Grab the exclusive iolock for a data copy from src to dest, making sure to 3887 * abide vfs locking order (lowest pointer value goes first) and breaking the 3888 * layout leases before proceeding. The loop is needed because we cannot call 3889 * the blocking break_layout() with the iolocks held, and therefore have to 3890 * back out both locks. 3891 */ 3892 static int 3893 xfs_iolock_two_inodes_and_break_layout( 3894 struct inode *src, 3895 struct inode *dest) 3896 { 3897 int error; 3898 3899 if (src > dest) 3900 swap(src, dest); 3901 3902 retry: 3903 /* Wait to break both inodes' layouts before we start locking. */ 3904 error = break_layout(src, true); 3905 if (error) 3906 return error; 3907 if (src != dest) { 3908 error = break_layout(dest, true); 3909 if (error) 3910 return error; 3911 } 3912 3913 /* Lock one inode and make sure nobody got in and leased it. */ 3914 inode_lock(src); 3915 error = break_layout(src, false); 3916 if (error) { 3917 inode_unlock(src); 3918 if (error == -EWOULDBLOCK) 3919 goto retry; 3920 return error; 3921 } 3922 3923 if (src == dest) 3924 return 0; 3925 3926 /* Lock the other inode and make sure nobody got in and leased it. */ 3927 inode_lock_nested(dest, I_MUTEX_NONDIR2); 3928 error = break_layout(dest, false); 3929 if (error) { 3930 inode_unlock(src); 3931 inode_unlock(dest); 3932 if (error == -EWOULDBLOCK) 3933 goto retry; 3934 return error; 3935 } 3936 3937 return 0; 3938 } 3939 3940 static int 3941 xfs_mmaplock_two_inodes_and_break_dax_layout( 3942 struct xfs_inode *ip1, 3943 struct xfs_inode *ip2) 3944 { 3945 int error; 3946 bool retry; 3947 struct page *page; 3948 3949 if (ip1->i_ino > ip2->i_ino) 3950 swap(ip1, ip2); 3951 3952 again: 3953 retry = false; 3954 /* Lock the first inode */ 3955 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); 3956 error = xfs_break_dax_layouts(VFS_I(ip1), &retry); 3957 if (error || retry) { 3958 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3959 if (error == 0 && retry) 3960 goto again; 3961 return error; 3962 } 3963 3964 if (ip1 == ip2) 3965 return 0; 3966 3967 /* Nested lock the second inode */ 3968 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1)); 3969 /* 3970 * We cannot use xfs_break_dax_layouts() directly here because it may 3971 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable 3972 * for this nested lock case. 3973 */ 3974 page = dax_layout_busy_page(VFS_I(ip2)->i_mapping); 3975 if (page && page_ref_count(page) != 1) { 3976 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3977 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3978 goto again; 3979 } 3980 3981 return 0; 3982 } 3983 3984 /* 3985 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 3986 * mmap activity. 3987 */ 3988 int 3989 xfs_ilock2_io_mmap( 3990 struct xfs_inode *ip1, 3991 struct xfs_inode *ip2) 3992 { 3993 int ret; 3994 3995 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 3996 if (ret) 3997 return ret; 3998 3999 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 4000 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2); 4001 if (ret) { 4002 inode_unlock(VFS_I(ip2)); 4003 if (ip1 != ip2) 4004 inode_unlock(VFS_I(ip1)); 4005 return ret; 4006 } 4007 } else 4008 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, 4009 VFS_I(ip2)->i_mapping); 4010 4011 return 0; 4012 } 4013 4014 /* Unlock both inodes to allow IO and mmap activity. */ 4015 void 4016 xfs_iunlock2_io_mmap( 4017 struct xfs_inode *ip1, 4018 struct xfs_inode *ip2) 4019 { 4020 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 4021 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 4022 if (ip1 != ip2) 4023 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 4024 } else 4025 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, 4026 VFS_I(ip2)->i_mapping); 4027 4028 inode_unlock(VFS_I(ip2)); 4029 if (ip1 != ip2) 4030 inode_unlock(VFS_I(ip1)); 4031 } 4032 4033 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */ 4034 void 4035 xfs_iunlock2_remapping( 4036 struct xfs_inode *ip1, 4037 struct xfs_inode *ip2) 4038 { 4039 xfs_iflags_clear(ip1, XFS_IREMAPPING); 4040 4041 if (ip1 != ip2) 4042 xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED); 4043 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 4044 4045 if (ip1 != ip2) 4046 inode_unlock_shared(VFS_I(ip1)); 4047 inode_unlock(VFS_I(ip2)); 4048 } 4049 4050 /* 4051 * Reload the incore inode list for this inode. Caller should ensure that 4052 * the link count cannot change, either by taking ILOCK_SHARED or otherwise 4053 * preventing other threads from executing. 4054 */ 4055 int 4056 xfs_inode_reload_unlinked_bucket( 4057 struct xfs_trans *tp, 4058 struct xfs_inode *ip) 4059 { 4060 struct xfs_mount *mp = tp->t_mountp; 4061 struct xfs_buf *agibp; 4062 struct xfs_agi *agi; 4063 struct xfs_perag *pag; 4064 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 4065 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 4066 xfs_agino_t prev_agino, next_agino; 4067 unsigned int bucket; 4068 bool foundit = false; 4069 int error; 4070 4071 /* Grab the first inode in the list */ 4072 pag = xfs_perag_get(mp, agno); 4073 error = xfs_ialloc_read_agi(pag, tp, 0, &agibp); 4074 xfs_perag_put(pag); 4075 if (error) 4076 return error; 4077 4078 /* 4079 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the 4080 * incore unlinked list pointers for this inode. Check once more to 4081 * see if we raced with anyone else to reload the unlinked list. 4082 */ 4083 if (!xfs_inode_unlinked_incomplete(ip)) { 4084 foundit = true; 4085 goto out_agibp; 4086 } 4087 4088 bucket = agino % XFS_AGI_UNLINKED_BUCKETS; 4089 agi = agibp->b_addr; 4090 4091 trace_xfs_inode_reload_unlinked_bucket(ip); 4092 4093 xfs_info_ratelimited(mp, 4094 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.", 4095 agino, agno); 4096 4097 prev_agino = NULLAGINO; 4098 next_agino = be32_to_cpu(agi->agi_unlinked[bucket]); 4099 while (next_agino != NULLAGINO) { 4100 struct xfs_inode *next_ip = NULL; 4101 4102 /* Found this caller's inode, set its backlink. */ 4103 if (next_agino == agino) { 4104 next_ip = ip; 4105 next_ip->i_prev_unlinked = prev_agino; 4106 foundit = true; 4107 goto next_inode; 4108 } 4109 4110 /* Try in-memory lookup first. */ 4111 next_ip = xfs_iunlink_lookup(pag, next_agino); 4112 if (next_ip) 4113 goto next_inode; 4114 4115 /* Inode not in memory, try reloading it. */ 4116 error = xfs_iunlink_reload_next(tp, agibp, prev_agino, 4117 next_agino); 4118 if (error) 4119 break; 4120 4121 /* Grab the reloaded inode. */ 4122 next_ip = xfs_iunlink_lookup(pag, next_agino); 4123 if (!next_ip) { 4124 /* No incore inode at all? We reloaded it... */ 4125 ASSERT(next_ip != NULL); 4126 error = -EFSCORRUPTED; 4127 break; 4128 } 4129 4130 next_inode: 4131 prev_agino = next_agino; 4132 next_agino = next_ip->i_next_unlinked; 4133 } 4134 4135 out_agibp: 4136 xfs_trans_brelse(tp, agibp); 4137 /* Should have found this inode somewhere in the iunlinked bucket. */ 4138 if (!error && !foundit) 4139 error = -EFSCORRUPTED; 4140 return error; 4141 } 4142 4143 /* Decide if this inode is missing its unlinked list and reload it. */ 4144 int 4145 xfs_inode_reload_unlinked( 4146 struct xfs_inode *ip) 4147 { 4148 struct xfs_trans *tp; 4149 int error; 4150 4151 error = xfs_trans_alloc_empty(ip->i_mount, &tp); 4152 if (error) 4153 return error; 4154 4155 xfs_ilock(ip, XFS_ILOCK_SHARED); 4156 if (xfs_inode_unlinked_incomplete(ip)) 4157 error = xfs_inode_reload_unlinked_bucket(tp, ip); 4158 xfs_iunlock(ip, XFS_ILOCK_SHARED); 4159 xfs_trans_cancel(tp); 4160 4161 return error; 4162 } 4163 4164 /* Has this inode fork been zapped by repair? */ 4165 bool 4166 xfs_ifork_zapped( 4167 const struct xfs_inode *ip, 4168 int whichfork) 4169 { 4170 unsigned int datamask = 0; 4171 4172 switch (whichfork) { 4173 case XFS_DATA_FORK: 4174 switch (ip->i_vnode.i_mode & S_IFMT) { 4175 case S_IFDIR: 4176 datamask = XFS_SICK_INO_DIR_ZAPPED; 4177 break; 4178 case S_IFLNK: 4179 datamask = XFS_SICK_INO_SYMLINK_ZAPPED; 4180 break; 4181 } 4182 return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask); 4183 case XFS_ATTR_FORK: 4184 return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED; 4185 default: 4186 return false; 4187 } 4188 } 4189 4190 /* Compute the number of data and realtime blocks used by a file. */ 4191 void 4192 xfs_inode_count_blocks( 4193 struct xfs_trans *tp, 4194 struct xfs_inode *ip, 4195 xfs_filblks_t *dblocks, 4196 xfs_filblks_t *rblocks) 4197 { 4198 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 4199 4200 *rblocks = 0; 4201 if (XFS_IS_REALTIME_INODE(ip)) 4202 xfs_bmap_count_leaves(ifp, rblocks); 4203 *dblocks = ip->i_nblocks - *rblocks; 4204 } 4205 4206 static void 4207 xfs_wait_dax_page( 4208 struct inode *inode) 4209 { 4210 struct xfs_inode *ip = XFS_I(inode); 4211 4212 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 4213 schedule(); 4214 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 4215 } 4216 4217 int 4218 xfs_break_dax_layouts( 4219 struct inode *inode, 4220 bool *retry) 4221 { 4222 struct page *page; 4223 4224 xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL); 4225 4226 page = dax_layout_busy_page(inode->i_mapping); 4227 if (!page) 4228 return 0; 4229 4230 *retry = true; 4231 return ___wait_var_event(&page->_refcount, 4232 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 4233 0, 0, xfs_wait_dax_page(inode)); 4234 } 4235 4236 int 4237 xfs_break_layouts( 4238 struct inode *inode, 4239 uint *iolock, 4240 enum layout_break_reason reason) 4241 { 4242 bool retry; 4243 int error; 4244 4245 xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL); 4246 4247 do { 4248 retry = false; 4249 switch (reason) { 4250 case BREAK_UNMAP: 4251 error = xfs_break_dax_layouts(inode, &retry); 4252 if (error || retry) 4253 break; 4254 fallthrough; 4255 case BREAK_WRITE: 4256 error = xfs_break_leased_layouts(inode, iolock, &retry); 4257 break; 4258 default: 4259 WARN_ON_ONCE(1); 4260 error = -EINVAL; 4261 } 4262 } while (error == 0 && retry); 4263 4264 return error; 4265 } 4266 4267 /* Returns the size of fundamental allocation unit for a file, in bytes. */ 4268 unsigned int 4269 xfs_inode_alloc_unitsize( 4270 struct xfs_inode *ip) 4271 { 4272 unsigned int blocks = 1; 4273 4274 if (XFS_IS_REALTIME_INODE(ip)) 4275 blocks = ip->i_mount->m_sb.sb_rextsize; 4276 4277 return XFS_FSB_TO_B(ip->i_mount, blocks); 4278 } 4279