xref: /linux/fs/xfs/xfs_inode.c (revision 2624f124b3b5d550ab2fbef7ee3bc0e1fed09722)
1 /*
2  * Copyright (c) 2000-2003 Silicon Graphics, Inc.  All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11  *
12  * Further, this software is distributed without any warranty that it is
13  * free of the rightful claim of any third person regarding infringement
14  * or the like.  Any license provided herein, whether implied or
15  * otherwise, applies only to this software file.  Patent licenses, if
16  * any, provided herein do not apply to combinations of this program with
17  * other software, or any other product whatsoever.
18  *
19  * You should have received a copy of the GNU General Public License along
20  * with this program; if not, write the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22  *
23  * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24  * Mountain View, CA  94043, or:
25  *
26  * http://www.sgi.com
27  *
28  * For further information regarding this notice, see:
29  *
30  * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31  */
32 
33 #include "xfs.h"
34 #include "xfs_macros.h"
35 #include "xfs_types.h"
36 #include "xfs_inum.h"
37 #include "xfs_log.h"
38 #include "xfs_trans.h"
39 #include "xfs_trans_priv.h"
40 #include "xfs_sb.h"
41 #include "xfs_ag.h"
42 #include "xfs_dir.h"
43 #include "xfs_dir2.h"
44 #include "xfs_dmapi.h"
45 #include "xfs_mount.h"
46 #include "xfs_alloc_btree.h"
47 #include "xfs_bmap_btree.h"
48 #include "xfs_ialloc_btree.h"
49 #include "xfs_btree.h"
50 #include "xfs_imap.h"
51 #include "xfs_alloc.h"
52 #include "xfs_ialloc.h"
53 #include "xfs_attr_sf.h"
54 #include "xfs_dir_sf.h"
55 #include "xfs_dir2_sf.h"
56 #include "xfs_dinode.h"
57 #include "xfs_inode_item.h"
58 #include "xfs_inode.h"
59 #include "xfs_bmap.h"
60 #include "xfs_buf_item.h"
61 #include "xfs_rw.h"
62 #include "xfs_error.h"
63 #include "xfs_bit.h"
64 #include "xfs_utils.h"
65 #include "xfs_dir2_trace.h"
66 #include "xfs_quota.h"
67 #include "xfs_mac.h"
68 #include "xfs_acl.h"
69 
70 
71 kmem_zone_t *xfs_ifork_zone;
72 kmem_zone_t *xfs_inode_zone;
73 kmem_zone_t *xfs_chashlist_zone;
74 
75 /*
76  * Used in xfs_itruncate().  This is the maximum number of extents
77  * freed from a file in a single transaction.
78  */
79 #define	XFS_ITRUNC_MAX_EXTENTS	2
80 
81 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
82 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
83 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
84 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
85 
86 
87 #ifdef DEBUG
88 /*
89  * Make sure that the extents in the given memory buffer
90  * are valid.
91  */
92 STATIC void
93 xfs_validate_extents(
94 	xfs_bmbt_rec_t		*ep,
95 	int			nrecs,
96 	int			disk,
97 	xfs_exntfmt_t		fmt)
98 {
99 	xfs_bmbt_irec_t		irec;
100 	xfs_bmbt_rec_t		rec;
101 	int			i;
102 
103 	for (i = 0; i < nrecs; i++) {
104 		rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
105 		rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
106 		if (disk)
107 			xfs_bmbt_disk_get_all(&rec, &irec);
108 		else
109 			xfs_bmbt_get_all(&rec, &irec);
110 		if (fmt == XFS_EXTFMT_NOSTATE)
111 			ASSERT(irec.br_state == XFS_EXT_NORM);
112 		ep++;
113 	}
114 }
115 #else /* DEBUG */
116 #define xfs_validate_extents(ep, nrecs, disk, fmt)
117 #endif /* DEBUG */
118 
119 /*
120  * Check that none of the inode's in the buffer have a next
121  * unlinked field of 0.
122  */
123 #if defined(DEBUG)
124 void
125 xfs_inobp_check(
126 	xfs_mount_t	*mp,
127 	xfs_buf_t	*bp)
128 {
129 	int		i;
130 	int		j;
131 	xfs_dinode_t	*dip;
132 
133 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
134 
135 	for (i = 0; i < j; i++) {
136 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
137 					i * mp->m_sb.sb_inodesize);
138 		if (!dip->di_next_unlinked)  {
139 			xfs_fs_cmn_err(CE_ALERT, mp,
140 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
141 				bp);
142 			ASSERT(dip->di_next_unlinked);
143 		}
144 	}
145 }
146 #endif
147 
148 /*
149  * This routine is called to map an inode number within a file
150  * system to the buffer containing the on-disk version of the
151  * inode.  It returns a pointer to the buffer containing the
152  * on-disk inode in the bpp parameter, and in the dip parameter
153  * it returns a pointer to the on-disk inode within that buffer.
154  *
155  * If a non-zero error is returned, then the contents of bpp and
156  * dipp are undefined.
157  *
158  * Use xfs_imap() to determine the size and location of the
159  * buffer to read from disk.
160  */
161 STATIC int
162 xfs_inotobp(
163 	xfs_mount_t	*mp,
164 	xfs_trans_t	*tp,
165 	xfs_ino_t	ino,
166 	xfs_dinode_t	**dipp,
167 	xfs_buf_t	**bpp,
168 	int		*offset)
169 {
170 	int		di_ok;
171 	xfs_imap_t	imap;
172 	xfs_buf_t	*bp;
173 	int		error;
174 	xfs_dinode_t	*dip;
175 
176 	/*
177 	 * Call the space managment code to find the location of the
178 	 * inode on disk.
179 	 */
180 	imap.im_blkno = 0;
181 	error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
182 	if (error != 0) {
183 		cmn_err(CE_WARN,
184 	"xfs_inotobp: xfs_imap()  returned an "
185 	"error %d on %s.  Returning error.", error, mp->m_fsname);
186 		return error;
187 	}
188 
189 	/*
190 	 * If the inode number maps to a block outside the bounds of the
191 	 * file system then return NULL rather than calling read_buf
192 	 * and panicing when we get an error from the driver.
193 	 */
194 	if ((imap.im_blkno + imap.im_len) >
195 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
196 		cmn_err(CE_WARN,
197 	"xfs_inotobp: inode number (%d + %d) maps to a block outside the bounds "
198 	"of the file system %s.  Returning EINVAL.",
199 			imap.im_blkno, imap.im_len,mp->m_fsname);
200 		return XFS_ERROR(EINVAL);
201 	}
202 
203 	/*
204 	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
205 	 * default to just a read_buf() call.
206 	 */
207 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
208 				   (int)imap.im_len, XFS_BUF_LOCK, &bp);
209 
210 	if (error) {
211 		cmn_err(CE_WARN,
212 	"xfs_inotobp: xfs_trans_read_buf()  returned an "
213 	"error %d on %s.  Returning error.", error, mp->m_fsname);
214 		return error;
215 	}
216 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
217 	di_ok =
218 		INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
219 		XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
220 	if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
221 			XFS_RANDOM_ITOBP_INOTOBP))) {
222 		XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
223 		xfs_trans_brelse(tp, bp);
224 		cmn_err(CE_WARN,
225 	"xfs_inotobp: XFS_TEST_ERROR()  returned an "
226 	"error on %s.  Returning EFSCORRUPTED.",  mp->m_fsname);
227 		return XFS_ERROR(EFSCORRUPTED);
228 	}
229 
230 	xfs_inobp_check(mp, bp);
231 
232 	/*
233 	 * Set *dipp to point to the on-disk inode in the buffer.
234 	 */
235 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
236 	*bpp = bp;
237 	*offset = imap.im_boffset;
238 	return 0;
239 }
240 
241 
242 /*
243  * This routine is called to map an inode to the buffer containing
244  * the on-disk version of the inode.  It returns a pointer to the
245  * buffer containing the on-disk inode in the bpp parameter, and in
246  * the dip parameter it returns a pointer to the on-disk inode within
247  * that buffer.
248  *
249  * If a non-zero error is returned, then the contents of bpp and
250  * dipp are undefined.
251  *
252  * If the inode is new and has not yet been initialized, use xfs_imap()
253  * to determine the size and location of the buffer to read from disk.
254  * If the inode has already been mapped to its buffer and read in once,
255  * then use the mapping information stored in the inode rather than
256  * calling xfs_imap().  This allows us to avoid the overhead of looking
257  * at the inode btree for small block file systems (see xfs_dilocate()).
258  * We can tell whether the inode has been mapped in before by comparing
259  * its disk block address to 0.  Only uninitialized inodes will have
260  * 0 for the disk block address.
261  */
262 int
263 xfs_itobp(
264 	xfs_mount_t	*mp,
265 	xfs_trans_t	*tp,
266 	xfs_inode_t	*ip,
267 	xfs_dinode_t	**dipp,
268 	xfs_buf_t	**bpp,
269 	xfs_daddr_t	bno)
270 {
271 	xfs_buf_t	*bp;
272 	int		error;
273 	xfs_imap_t	imap;
274 #ifdef __KERNEL__
275 	int		i;
276 	int		ni;
277 #endif
278 
279 	if (ip->i_blkno == (xfs_daddr_t)0) {
280 		/*
281 		 * Call the space management code to find the location of the
282 		 * inode on disk.
283 		 */
284 		imap.im_blkno = bno;
285 		error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP);
286 		if (error != 0) {
287 			return error;
288 		}
289 
290 		/*
291 		 * If the inode number maps to a block outside the bounds
292 		 * of the file system then return NULL rather than calling
293 		 * read_buf and panicing when we get an error from the
294 		 * driver.
295 		 */
296 		if ((imap.im_blkno + imap.im_len) >
297 		    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
298 #ifdef DEBUG
299 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
300 					"(imap.im_blkno (0x%llx) "
301 					"+ imap.im_len (0x%llx)) > "
302 					" XFS_FSB_TO_BB(mp, "
303 					"mp->m_sb.sb_dblocks) (0x%llx)",
304 					(unsigned long long) imap.im_blkno,
305 					(unsigned long long) imap.im_len,
306 					XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
307 #endif /* DEBUG */
308 			return XFS_ERROR(EINVAL);
309 		}
310 
311 		/*
312 		 * Fill in the fields in the inode that will be used to
313 		 * map the inode to its buffer from now on.
314 		 */
315 		ip->i_blkno = imap.im_blkno;
316 		ip->i_len = imap.im_len;
317 		ip->i_boffset = imap.im_boffset;
318 	} else {
319 		/*
320 		 * We've already mapped the inode once, so just use the
321 		 * mapping that we saved the first time.
322 		 */
323 		imap.im_blkno = ip->i_blkno;
324 		imap.im_len = ip->i_len;
325 		imap.im_boffset = ip->i_boffset;
326 	}
327 	ASSERT(bno == 0 || bno == imap.im_blkno);
328 
329 	/*
330 	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
331 	 * default to just a read_buf() call.
332 	 */
333 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
334 				   (int)imap.im_len, XFS_BUF_LOCK, &bp);
335 
336 	if (error) {
337 #ifdef DEBUG
338 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
339 				"xfs_trans_read_buf() returned error %d, "
340 				"imap.im_blkno 0x%llx, imap.im_len 0x%llx",
341 				error, (unsigned long long) imap.im_blkno,
342 				(unsigned long long) imap.im_len);
343 #endif /* DEBUG */
344 		return error;
345 	}
346 #ifdef __KERNEL__
347 	/*
348 	 * Validate the magic number and version of every inode in the buffer
349 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
350 	 */
351 #ifdef DEBUG
352 	ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
353 #else
354 	ni = 1;
355 #endif
356 	for (i = 0; i < ni; i++) {
357 		int		di_ok;
358 		xfs_dinode_t	*dip;
359 
360 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
361 					(i << mp->m_sb.sb_inodelog));
362 		di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
363 			    XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
364 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
365 				 XFS_RANDOM_ITOBP_INOTOBP))) {
366 #ifdef DEBUG
367 			prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
368 				mp->m_ddev_targp,
369 				(unsigned long long)imap.im_blkno, i,
370 				INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
371 #endif
372 			XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
373 					     mp, dip);
374 			xfs_trans_brelse(tp, bp);
375 			return XFS_ERROR(EFSCORRUPTED);
376 		}
377 	}
378 #endif	/* __KERNEL__ */
379 
380 	xfs_inobp_check(mp, bp);
381 
382 	/*
383 	 * Mark the buffer as an inode buffer now that it looks good
384 	 */
385 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
386 
387 	/*
388 	 * Set *dipp to point to the on-disk inode in the buffer.
389 	 */
390 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
391 	*bpp = bp;
392 	return 0;
393 }
394 
395 /*
396  * Move inode type and inode format specific information from the
397  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
398  * this means set if_rdev to the proper value.  For files, directories,
399  * and symlinks this means to bring in the in-line data or extent
400  * pointers.  For a file in B-tree format, only the root is immediately
401  * brought in-core.  The rest will be in-lined in if_extents when it
402  * is first referenced (see xfs_iread_extents()).
403  */
404 STATIC int
405 xfs_iformat(
406 	xfs_inode_t		*ip,
407 	xfs_dinode_t		*dip)
408 {
409 	xfs_attr_shortform_t	*atp;
410 	int			size;
411 	int			error;
412 	xfs_fsize_t             di_size;
413 	ip->i_df.if_ext_max =
414 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
415 	error = 0;
416 
417 	if (unlikely(
418 	    INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
419 		INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
420 	    INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
421 		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
422 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu."
423 			"  Unmount and run xfs_repair.",
424 			(unsigned long long)ip->i_ino,
425 			(int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
426 			    + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
427 			(unsigned long long)
428 			INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
429 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
430 				     ip->i_mount, dip);
431 		return XFS_ERROR(EFSCORRUPTED);
432 	}
433 
434 	if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
435 		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
436 			"corrupt dinode %Lu, forkoff = 0x%x."
437 			"  Unmount and run xfs_repair.",
438 			(unsigned long long)ip->i_ino,
439 			(int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
440 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
441 				     ip->i_mount, dip);
442 		return XFS_ERROR(EFSCORRUPTED);
443 	}
444 
445 	switch (ip->i_d.di_mode & S_IFMT) {
446 	case S_IFIFO:
447 	case S_IFCHR:
448 	case S_IFBLK:
449 	case S_IFSOCK:
450 		if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
451 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
452 					      ip->i_mount, dip);
453 			return XFS_ERROR(EFSCORRUPTED);
454 		}
455 		ip->i_d.di_size = 0;
456 		ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
457 		break;
458 
459 	case S_IFREG:
460 	case S_IFLNK:
461 	case S_IFDIR:
462 		switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
463 		case XFS_DINODE_FMT_LOCAL:
464 			/*
465 			 * no local regular files yet
466 			 */
467 			if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
468 				xfs_fs_cmn_err(CE_WARN, ip->i_mount,
469 					"corrupt inode (local format for regular file) %Lu.  Unmount and run xfs_repair.",
470 					(unsigned long long) ip->i_ino);
471 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
472 						     XFS_ERRLEVEL_LOW,
473 						     ip->i_mount, dip);
474 				return XFS_ERROR(EFSCORRUPTED);
475 			}
476 
477 			di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
478 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
479 				xfs_fs_cmn_err(CE_WARN, ip->i_mount,
480 					"corrupt inode %Lu (bad size %Ld for local inode).  Unmount and run xfs_repair.",
481 					(unsigned long long) ip->i_ino,
482 					(long long) di_size);
483 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
484 						     XFS_ERRLEVEL_LOW,
485 						     ip->i_mount, dip);
486 				return XFS_ERROR(EFSCORRUPTED);
487 			}
488 
489 			size = (int)di_size;
490 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
491 			break;
492 		case XFS_DINODE_FMT_EXTENTS:
493 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
494 			break;
495 		case XFS_DINODE_FMT_BTREE:
496 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
497 			break;
498 		default:
499 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
500 					 ip->i_mount);
501 			return XFS_ERROR(EFSCORRUPTED);
502 		}
503 		break;
504 
505 	default:
506 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
507 		return XFS_ERROR(EFSCORRUPTED);
508 	}
509 	if (error) {
510 		return error;
511 	}
512 	if (!XFS_DFORK_Q(dip))
513 		return 0;
514 	ASSERT(ip->i_afp == NULL);
515 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
516 	ip->i_afp->if_ext_max =
517 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
518 	switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
519 	case XFS_DINODE_FMT_LOCAL:
520 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
521 		size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT);
522 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
523 		break;
524 	case XFS_DINODE_FMT_EXTENTS:
525 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
526 		break;
527 	case XFS_DINODE_FMT_BTREE:
528 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
529 		break;
530 	default:
531 		error = XFS_ERROR(EFSCORRUPTED);
532 		break;
533 	}
534 	if (error) {
535 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
536 		ip->i_afp = NULL;
537 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
538 	}
539 	return error;
540 }
541 
542 /*
543  * The file is in-lined in the on-disk inode.
544  * If it fits into if_inline_data, then copy
545  * it there, otherwise allocate a buffer for it
546  * and copy the data there.  Either way, set
547  * if_data to point at the data.
548  * If we allocate a buffer for the data, make
549  * sure that its size is a multiple of 4 and
550  * record the real size in i_real_bytes.
551  */
552 STATIC int
553 xfs_iformat_local(
554 	xfs_inode_t	*ip,
555 	xfs_dinode_t	*dip,
556 	int		whichfork,
557 	int		size)
558 {
559 	xfs_ifork_t	*ifp;
560 	int		real_size;
561 
562 	/*
563 	 * If the size is unreasonable, then something
564 	 * is wrong and we just bail out rather than crash in
565 	 * kmem_alloc() or memcpy() below.
566 	 */
567 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
568 		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
569 			"corrupt inode %Lu (bad size %d for local fork, size = %d).  Unmount and run xfs_repair.",
570 			(unsigned long long) ip->i_ino, size,
571 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
572 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
573 				     ip->i_mount, dip);
574 		return XFS_ERROR(EFSCORRUPTED);
575 	}
576 	ifp = XFS_IFORK_PTR(ip, whichfork);
577 	real_size = 0;
578 	if (size == 0)
579 		ifp->if_u1.if_data = NULL;
580 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
581 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
582 	else {
583 		real_size = roundup(size, 4);
584 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
585 	}
586 	ifp->if_bytes = size;
587 	ifp->if_real_bytes = real_size;
588 	if (size)
589 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
590 	ifp->if_flags &= ~XFS_IFEXTENTS;
591 	ifp->if_flags |= XFS_IFINLINE;
592 	return 0;
593 }
594 
595 /*
596  * The file consists of a set of extents all
597  * of which fit into the on-disk inode.
598  * If there are few enough extents to fit into
599  * the if_inline_ext, then copy them there.
600  * Otherwise allocate a buffer for them and copy
601  * them into it.  Either way, set if_extents
602  * to point at the extents.
603  */
604 STATIC int
605 xfs_iformat_extents(
606 	xfs_inode_t	*ip,
607 	xfs_dinode_t	*dip,
608 	int		whichfork)
609 {
610 	xfs_bmbt_rec_t	*ep, *dp;
611 	xfs_ifork_t	*ifp;
612 	int		nex;
613 	int		real_size;
614 	int		size;
615 	int		i;
616 
617 	ifp = XFS_IFORK_PTR(ip, whichfork);
618 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
619 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
620 
621 	/*
622 	 * If the number of extents is unreasonable, then something
623 	 * is wrong and we just bail out rather than crash in
624 	 * kmem_alloc() or memcpy() below.
625 	 */
626 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
627 		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
628 			"corrupt inode %Lu ((a)extents = %d).  Unmount and run xfs_repair.",
629 			(unsigned long long) ip->i_ino, nex);
630 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
631 				     ip->i_mount, dip);
632 		return XFS_ERROR(EFSCORRUPTED);
633 	}
634 
635 	real_size = 0;
636 	if (nex == 0)
637 		ifp->if_u1.if_extents = NULL;
638 	else if (nex <= XFS_INLINE_EXTS)
639 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
640 	else {
641 		ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
642 		ASSERT(ifp->if_u1.if_extents != NULL);
643 		real_size = size;
644 	}
645 	ifp->if_bytes = size;
646 	ifp->if_real_bytes = real_size;
647 	if (size) {
648 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
649 		xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip));
650 		ep = ifp->if_u1.if_extents;
651 		for (i = 0; i < nex; i++, ep++, dp++) {
652 			ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
653 								ARCH_CONVERT);
654 			ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
655 								ARCH_CONVERT);
656 		}
657 		xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
658 			whichfork);
659 		if (whichfork != XFS_DATA_FORK ||
660 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
661 				if (unlikely(xfs_check_nostate_extents(
662 				    ifp->if_u1.if_extents, nex))) {
663 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
664 							 XFS_ERRLEVEL_LOW,
665 							 ip->i_mount);
666 					return XFS_ERROR(EFSCORRUPTED);
667 				}
668 	}
669 	ifp->if_flags |= XFS_IFEXTENTS;
670 	return 0;
671 }
672 
673 /*
674  * The file has too many extents to fit into
675  * the inode, so they are in B-tree format.
676  * Allocate a buffer for the root of the B-tree
677  * and copy the root into it.  The i_extents
678  * field will remain NULL until all of the
679  * extents are read in (when they are needed).
680  */
681 STATIC int
682 xfs_iformat_btree(
683 	xfs_inode_t		*ip,
684 	xfs_dinode_t		*dip,
685 	int			whichfork)
686 {
687 	xfs_bmdr_block_t	*dfp;
688 	xfs_ifork_t		*ifp;
689 	/* REFERENCED */
690 	int			nrecs;
691 	int			size;
692 
693 	ifp = XFS_IFORK_PTR(ip, whichfork);
694 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
695 	size = XFS_BMAP_BROOT_SPACE(dfp);
696 	nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
697 
698 	/*
699 	 * blow out if -- fork has less extents than can fit in
700 	 * fork (fork shouldn't be a btree format), root btree
701 	 * block has more records than can fit into the fork,
702 	 * or the number of extents is greater than the number of
703 	 * blocks.
704 	 */
705 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
706 	    || XFS_BMDR_SPACE_CALC(nrecs) >
707 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
708 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
709 		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
710 			"corrupt inode %Lu (btree).  Unmount and run xfs_repair.",
711 			(unsigned long long) ip->i_ino);
712 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
713 				 ip->i_mount);
714 		return XFS_ERROR(EFSCORRUPTED);
715 	}
716 
717 	ifp->if_broot_bytes = size;
718 	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
719 	ASSERT(ifp->if_broot != NULL);
720 	/*
721 	 * Copy and convert from the on-disk structure
722 	 * to the in-memory structure.
723 	 */
724 	xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
725 		ifp->if_broot, size);
726 	ifp->if_flags &= ~XFS_IFEXTENTS;
727 	ifp->if_flags |= XFS_IFBROOT;
728 
729 	return 0;
730 }
731 
732 /*
733  * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
734  * and native format
735  *
736  * buf  = on-disk representation
737  * dip  = native representation
738  * dir  = direction - +ve -> disk to native
739  *                    -ve -> native to disk
740  */
741 void
742 xfs_xlate_dinode_core(
743 	xfs_caddr_t		buf,
744 	xfs_dinode_core_t	*dip,
745 	int			dir)
746 {
747 	xfs_dinode_core_t	*buf_core = (xfs_dinode_core_t *)buf;
748 	xfs_dinode_core_t	*mem_core = (xfs_dinode_core_t *)dip;
749 	xfs_arch_t		arch = ARCH_CONVERT;
750 
751 	ASSERT(dir);
752 
753 	INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
754 	INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
755 	INT_XLATE(buf_core->di_version,	mem_core->di_version, dir, arch);
756 	INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
757 	INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
758 	INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
759 	INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
760 	INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
761 	INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
762 
763 	if (dir > 0) {
764 		memcpy(mem_core->di_pad, buf_core->di_pad,
765 			sizeof(buf_core->di_pad));
766 	} else {
767 		memcpy(buf_core->di_pad, mem_core->di_pad,
768 			sizeof(buf_core->di_pad));
769 	}
770 
771 	INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
772 
773 	INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
774 			dir, arch);
775 	INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
776 			dir, arch);
777 	INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
778 			dir, arch);
779 	INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
780 			dir, arch);
781 	INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
782 			dir, arch);
783 	INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
784 			dir, arch);
785 	INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
786 	INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
787 	INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
788 	INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
789 	INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
790 	INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
791 	INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
792 	INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
793 	INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
794 	INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
795 	INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
796 }
797 
798 STATIC uint
799 _xfs_dic2xflags(
800 	xfs_dinode_core_t	*dic,
801 	__uint16_t		di_flags)
802 {
803 	uint			flags = 0;
804 
805 	if (di_flags & XFS_DIFLAG_ANY) {
806 		if (di_flags & XFS_DIFLAG_REALTIME)
807 			flags |= XFS_XFLAG_REALTIME;
808 		if (di_flags & XFS_DIFLAG_PREALLOC)
809 			flags |= XFS_XFLAG_PREALLOC;
810 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
811 			flags |= XFS_XFLAG_IMMUTABLE;
812 		if (di_flags & XFS_DIFLAG_APPEND)
813 			flags |= XFS_XFLAG_APPEND;
814 		if (di_flags & XFS_DIFLAG_SYNC)
815 			flags |= XFS_XFLAG_SYNC;
816 		if (di_flags & XFS_DIFLAG_NOATIME)
817 			flags |= XFS_XFLAG_NOATIME;
818 		if (di_flags & XFS_DIFLAG_NODUMP)
819 			flags |= XFS_XFLAG_NODUMP;
820 		if (di_flags & XFS_DIFLAG_RTINHERIT)
821 			flags |= XFS_XFLAG_RTINHERIT;
822 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
823 			flags |= XFS_XFLAG_PROJINHERIT;
824 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
825 			flags |= XFS_XFLAG_NOSYMLINKS;
826 	}
827 
828 	return flags;
829 }
830 
831 uint
832 xfs_ip2xflags(
833 	xfs_inode_t		*ip)
834 {
835 	xfs_dinode_core_t	*dic = &ip->i_d;
836 
837 	return _xfs_dic2xflags(dic, dic->di_flags) |
838 		(XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
839 }
840 
841 uint
842 xfs_dic2xflags(
843 	xfs_dinode_core_t	*dic)
844 {
845 	return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) |
846 		(XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
847 }
848 
849 /*
850  * Given a mount structure and an inode number, return a pointer
851  * to a newly allocated in-core inode coresponding to the given
852  * inode number.
853  *
854  * Initialize the inode's attributes and extent pointers if it
855  * already has them (it will not if the inode has no links).
856  */
857 int
858 xfs_iread(
859 	xfs_mount_t	*mp,
860 	xfs_trans_t	*tp,
861 	xfs_ino_t	ino,
862 	xfs_inode_t	**ipp,
863 	xfs_daddr_t	bno)
864 {
865 	xfs_buf_t	*bp;
866 	xfs_dinode_t	*dip;
867 	xfs_inode_t	*ip;
868 	int		error;
869 
870 	ASSERT(xfs_inode_zone != NULL);
871 
872 	ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
873 	ip->i_ino = ino;
874 	ip->i_mount = mp;
875 
876 	/*
877 	 * Get pointer's to the on-disk inode and the buffer containing it.
878 	 * If the inode number refers to a block outside the file system
879 	 * then xfs_itobp() will return NULL.  In this case we should
880 	 * return NULL as well.  Set i_blkno to 0 so that xfs_itobp() will
881 	 * know that this is a new incore inode.
882 	 */
883 	error = xfs_itobp(mp, tp, ip, &dip, &bp, bno);
884 
885 	if (error != 0) {
886 		kmem_zone_free(xfs_inode_zone, ip);
887 		return error;
888 	}
889 
890 	/*
891 	 * Initialize inode's trace buffers.
892 	 * Do this before xfs_iformat in case it adds entries.
893 	 */
894 #ifdef XFS_BMAP_TRACE
895 	ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
896 #endif
897 #ifdef XFS_BMBT_TRACE
898 	ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
899 #endif
900 #ifdef XFS_RW_TRACE
901 	ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
902 #endif
903 #ifdef XFS_ILOCK_TRACE
904 	ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
905 #endif
906 #ifdef XFS_DIR2_TRACE
907 	ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
908 #endif
909 
910 	/*
911 	 * If we got something that isn't an inode it means someone
912 	 * (nfs or dmi) has a stale handle.
913 	 */
914 	if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
915 		kmem_zone_free(xfs_inode_zone, ip);
916 		xfs_trans_brelse(tp, bp);
917 #ifdef DEBUG
918 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
919 				"dip->di_core.di_magic (0x%x) != "
920 				"XFS_DINODE_MAGIC (0x%x)",
921 				INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
922 				XFS_DINODE_MAGIC);
923 #endif /* DEBUG */
924 		return XFS_ERROR(EINVAL);
925 	}
926 
927 	/*
928 	 * If the on-disk inode is already linked to a directory
929 	 * entry, copy all of the inode into the in-core inode.
930 	 * xfs_iformat() handles copying in the inode format
931 	 * specific information.
932 	 * Otherwise, just get the truly permanent information.
933 	 */
934 	if (dip->di_core.di_mode) {
935 		xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
936 		     &(ip->i_d), 1);
937 		error = xfs_iformat(ip, dip);
938 		if (error)  {
939 			kmem_zone_free(xfs_inode_zone, ip);
940 			xfs_trans_brelse(tp, bp);
941 #ifdef DEBUG
942 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
943 					"xfs_iformat() returned error %d",
944 					error);
945 #endif /* DEBUG */
946 			return error;
947 		}
948 	} else {
949 		ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
950 		ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
951 		ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
952 		ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
953 		/*
954 		 * Make sure to pull in the mode here as well in
955 		 * case the inode is released without being used.
956 		 * This ensures that xfs_inactive() will see that
957 		 * the inode is already free and not try to mess
958 		 * with the uninitialized part of it.
959 		 */
960 		ip->i_d.di_mode = 0;
961 		/*
962 		 * Initialize the per-fork minima and maxima for a new
963 		 * inode here.  xfs_iformat will do it for old inodes.
964 		 */
965 		ip->i_df.if_ext_max =
966 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
967 	}
968 
969 	INIT_LIST_HEAD(&ip->i_reclaim);
970 
971 	/*
972 	 * The inode format changed when we moved the link count and
973 	 * made it 32 bits long.  If this is an old format inode,
974 	 * convert it in memory to look like a new one.  If it gets
975 	 * flushed to disk we will convert back before flushing or
976 	 * logging it.  We zero out the new projid field and the old link
977 	 * count field.  We'll handle clearing the pad field (the remains
978 	 * of the old uuid field) when we actually convert the inode to
979 	 * the new format. We don't change the version number so that we
980 	 * can distinguish this from a real new format inode.
981 	 */
982 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
983 		ip->i_d.di_nlink = ip->i_d.di_onlink;
984 		ip->i_d.di_onlink = 0;
985 		ip->i_d.di_projid = 0;
986 	}
987 
988 	ip->i_delayed_blks = 0;
989 
990 	/*
991 	 * Mark the buffer containing the inode as something to keep
992 	 * around for a while.  This helps to keep recently accessed
993 	 * meta-data in-core longer.
994 	 */
995 	 XFS_BUF_SET_REF(bp, XFS_INO_REF);
996 
997 	/*
998 	 * Use xfs_trans_brelse() to release the buffer containing the
999 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
1000 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
1001 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
1002 	 * will only release the buffer if it is not dirty within the
1003 	 * transaction.  It will be OK to release the buffer in this case,
1004 	 * because inodes on disk are never destroyed and we will be
1005 	 * locking the new in-core inode before putting it in the hash
1006 	 * table where other processes can find it.  Thus we don't have
1007 	 * to worry about the inode being changed just because we released
1008 	 * the buffer.
1009 	 */
1010 	xfs_trans_brelse(tp, bp);
1011 	*ipp = ip;
1012 	return 0;
1013 }
1014 
1015 /*
1016  * Read in extents from a btree-format inode.
1017  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
1018  */
1019 int
1020 xfs_iread_extents(
1021 	xfs_trans_t	*tp,
1022 	xfs_inode_t	*ip,
1023 	int		whichfork)
1024 {
1025 	int		error;
1026 	xfs_ifork_t	*ifp;
1027 	size_t		size;
1028 
1029 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1030 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1031 				 ip->i_mount);
1032 		return XFS_ERROR(EFSCORRUPTED);
1033 	}
1034 	size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t);
1035 	ifp = XFS_IFORK_PTR(ip, whichfork);
1036 	/*
1037 	 * We know that the size is valid (it's checked in iformat_btree)
1038 	 */
1039 	ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
1040 	ASSERT(ifp->if_u1.if_extents != NULL);
1041 	ifp->if_lastex = NULLEXTNUM;
1042 	ifp->if_bytes = ifp->if_real_bytes = (int)size;
1043 	ifp->if_flags |= XFS_IFEXTENTS;
1044 	error = xfs_bmap_read_extents(tp, ip, whichfork);
1045 	if (error) {
1046 		kmem_free(ifp->if_u1.if_extents, size);
1047 		ifp->if_u1.if_extents = NULL;
1048 		ifp->if_bytes = ifp->if_real_bytes = 0;
1049 		ifp->if_flags &= ~XFS_IFEXTENTS;
1050 		return error;
1051 	}
1052 	xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents,
1053 		XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip));
1054 	return 0;
1055 }
1056 
1057 /*
1058  * Allocate an inode on disk and return a copy of its in-core version.
1059  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
1060  * appropriately within the inode.  The uid and gid for the inode are
1061  * set according to the contents of the given cred structure.
1062  *
1063  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1064  * has a free inode available, call xfs_iget()
1065  * to obtain the in-core version of the allocated inode.  Finally,
1066  * fill in the inode and log its initial contents.  In this case,
1067  * ialloc_context would be set to NULL and call_again set to false.
1068  *
1069  * If xfs_dialloc() does not have an available inode,
1070  * it will replenish its supply by doing an allocation. Since we can
1071  * only do one allocation within a transaction without deadlocks, we
1072  * must commit the current transaction before returning the inode itself.
1073  * In this case, therefore, we will set call_again to true and return.
1074  * The caller should then commit the current transaction, start a new
1075  * transaction, and call xfs_ialloc() again to actually get the inode.
1076  *
1077  * To ensure that some other process does not grab the inode that
1078  * was allocated during the first call to xfs_ialloc(), this routine
1079  * also returns the [locked] bp pointing to the head of the freelist
1080  * as ialloc_context.  The caller should hold this buffer across
1081  * the commit and pass it back into this routine on the second call.
1082  */
1083 int
1084 xfs_ialloc(
1085 	xfs_trans_t	*tp,
1086 	xfs_inode_t	*pip,
1087 	mode_t		mode,
1088 	xfs_nlink_t	nlink,
1089 	xfs_dev_t	rdev,
1090 	cred_t		*cr,
1091 	xfs_prid_t	prid,
1092 	int		okalloc,
1093 	xfs_buf_t	**ialloc_context,
1094 	boolean_t	*call_again,
1095 	xfs_inode_t	**ipp)
1096 {
1097 	xfs_ino_t	ino;
1098 	xfs_inode_t	*ip;
1099 	vnode_t		*vp;
1100 	uint		flags;
1101 	int		error;
1102 
1103 	/*
1104 	 * Call the space management code to pick
1105 	 * the on-disk inode to be allocated.
1106 	 */
1107 	error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1108 			    ialloc_context, call_again, &ino);
1109 	if (error != 0) {
1110 		return error;
1111 	}
1112 	if (*call_again || ino == NULLFSINO) {
1113 		*ipp = NULL;
1114 		return 0;
1115 	}
1116 	ASSERT(*ialloc_context == NULL);
1117 
1118 	/*
1119 	 * Get the in-core inode with the lock held exclusively.
1120 	 * This is because we're setting fields here we need
1121 	 * to prevent others from looking at until we're done.
1122 	 */
1123 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1124 			IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1125 	if (error != 0) {
1126 		return error;
1127 	}
1128 	ASSERT(ip != NULL);
1129 
1130 	vp = XFS_ITOV(ip);
1131 	ip->i_d.di_mode = (__uint16_t)mode;
1132 	ip->i_d.di_onlink = 0;
1133 	ip->i_d.di_nlink = nlink;
1134 	ASSERT(ip->i_d.di_nlink == nlink);
1135 	ip->i_d.di_uid = current_fsuid(cr);
1136 	ip->i_d.di_gid = current_fsgid(cr);
1137 	ip->i_d.di_projid = prid;
1138 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1139 
1140 	/*
1141 	 * If the superblock version is up to where we support new format
1142 	 * inodes and this is currently an old format inode, then change
1143 	 * the inode version number now.  This way we only do the conversion
1144 	 * here rather than here and in the flush/logging code.
1145 	 */
1146 	if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1147 	    ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1148 		ip->i_d.di_version = XFS_DINODE_VERSION_2;
1149 		/*
1150 		 * We've already zeroed the old link count, the projid field,
1151 		 * and the pad field.
1152 		 */
1153 	}
1154 
1155 	/*
1156 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1157 	 */
1158 	if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1159 		xfs_bump_ino_vers2(tp, ip);
1160 
1161 	if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1162 		ip->i_d.di_gid = pip->i_d.di_gid;
1163 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1164 			ip->i_d.di_mode |= S_ISGID;
1165 		}
1166 	}
1167 
1168 	/*
1169 	 * If the group ID of the new file does not match the effective group
1170 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1171 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1172 	 */
1173 	if ((irix_sgid_inherit) &&
1174 	    (ip->i_d.di_mode & S_ISGID) &&
1175 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1176 		ip->i_d.di_mode &= ~S_ISGID;
1177 	}
1178 
1179 	ip->i_d.di_size = 0;
1180 	ip->i_d.di_nextents = 0;
1181 	ASSERT(ip->i_d.di_nblocks == 0);
1182 	xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1183 	/*
1184 	 * di_gen will have been taken care of in xfs_iread.
1185 	 */
1186 	ip->i_d.di_extsize = 0;
1187 	ip->i_d.di_dmevmask = 0;
1188 	ip->i_d.di_dmstate = 0;
1189 	ip->i_d.di_flags = 0;
1190 	flags = XFS_ILOG_CORE;
1191 	switch (mode & S_IFMT) {
1192 	case S_IFIFO:
1193 	case S_IFCHR:
1194 	case S_IFBLK:
1195 	case S_IFSOCK:
1196 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1197 		ip->i_df.if_u2.if_rdev = rdev;
1198 		ip->i_df.if_flags = 0;
1199 		flags |= XFS_ILOG_DEV;
1200 		break;
1201 	case S_IFREG:
1202 	case S_IFDIR:
1203 		if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1204 			uint	di_flags = 0;
1205 
1206 			if ((mode & S_IFMT) == S_IFDIR) {
1207 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1208 					di_flags |= XFS_DIFLAG_RTINHERIT;
1209 			} else {
1210 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1211 					di_flags |= XFS_DIFLAG_REALTIME;
1212 					ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1213 				}
1214 			}
1215 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1216 			    xfs_inherit_noatime)
1217 				di_flags |= XFS_DIFLAG_NOATIME;
1218 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1219 			    xfs_inherit_nodump)
1220 				di_flags |= XFS_DIFLAG_NODUMP;
1221 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1222 			    xfs_inherit_sync)
1223 				di_flags |= XFS_DIFLAG_SYNC;
1224 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1225 			    xfs_inherit_nosymlinks)
1226 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1227 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1228 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1229 			ip->i_d.di_flags |= di_flags;
1230 		}
1231 		/* FALLTHROUGH */
1232 	case S_IFLNK:
1233 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1234 		ip->i_df.if_flags = XFS_IFEXTENTS;
1235 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1236 		ip->i_df.if_u1.if_extents = NULL;
1237 		break;
1238 	default:
1239 		ASSERT(0);
1240 	}
1241 	/*
1242 	 * Attribute fork settings for new inode.
1243 	 */
1244 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1245 	ip->i_d.di_anextents = 0;
1246 
1247 	/*
1248 	 * Log the new values stuffed into the inode.
1249 	 */
1250 	xfs_trans_log_inode(tp, ip, flags);
1251 
1252 	/* now that we have an i_mode  we can set Linux inode ops (& unlock) */
1253 	VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1254 
1255 	*ipp = ip;
1256 	return 0;
1257 }
1258 
1259 /*
1260  * Check to make sure that there are no blocks allocated to the
1261  * file beyond the size of the file.  We don't check this for
1262  * files with fixed size extents or real time extents, but we
1263  * at least do it for regular files.
1264  */
1265 #ifdef DEBUG
1266 void
1267 xfs_isize_check(
1268 	xfs_mount_t	*mp,
1269 	xfs_inode_t	*ip,
1270 	xfs_fsize_t	isize)
1271 {
1272 	xfs_fileoff_t	map_first;
1273 	int		nimaps;
1274 	xfs_bmbt_irec_t	imaps[2];
1275 
1276 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1277 		return;
1278 
1279 	if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME )
1280 		return;
1281 
1282 	nimaps = 2;
1283 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1284 	/*
1285 	 * The filesystem could be shutting down, so bmapi may return
1286 	 * an error.
1287 	 */
1288 	if (xfs_bmapi(NULL, ip, map_first,
1289 			 (XFS_B_TO_FSB(mp,
1290 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1291 			  map_first),
1292 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1293 			 NULL))
1294 	    return;
1295 	ASSERT(nimaps == 1);
1296 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1297 }
1298 #endif	/* DEBUG */
1299 
1300 /*
1301  * Calculate the last possible buffered byte in a file.  This must
1302  * include data that was buffered beyond the EOF by the write code.
1303  * This also needs to deal with overflowing the xfs_fsize_t type
1304  * which can happen for sizes near the limit.
1305  *
1306  * We also need to take into account any blocks beyond the EOF.  It
1307  * may be the case that they were buffered by a write which failed.
1308  * In that case the pages will still be in memory, but the inode size
1309  * will never have been updated.
1310  */
1311 xfs_fsize_t
1312 xfs_file_last_byte(
1313 	xfs_inode_t	*ip)
1314 {
1315 	xfs_mount_t	*mp;
1316 	xfs_fsize_t	last_byte;
1317 	xfs_fileoff_t	last_block;
1318 	xfs_fileoff_t	size_last_block;
1319 	int		error;
1320 
1321 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1322 
1323 	mp = ip->i_mount;
1324 	/*
1325 	 * Only check for blocks beyond the EOF if the extents have
1326 	 * been read in.  This eliminates the need for the inode lock,
1327 	 * and it also saves us from looking when it really isn't
1328 	 * necessary.
1329 	 */
1330 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1331 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1332 			XFS_DATA_FORK);
1333 		if (error) {
1334 			last_block = 0;
1335 		}
1336 	} else {
1337 		last_block = 0;
1338 	}
1339 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1340 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1341 
1342 	last_byte = XFS_FSB_TO_B(mp, last_block);
1343 	if (last_byte < 0) {
1344 		return XFS_MAXIOFFSET(mp);
1345 	}
1346 	last_byte += (1 << mp->m_writeio_log);
1347 	if (last_byte < 0) {
1348 		return XFS_MAXIOFFSET(mp);
1349 	}
1350 	return last_byte;
1351 }
1352 
1353 #if defined(XFS_RW_TRACE)
1354 STATIC void
1355 xfs_itrunc_trace(
1356 	int		tag,
1357 	xfs_inode_t	*ip,
1358 	int		flag,
1359 	xfs_fsize_t	new_size,
1360 	xfs_off_t	toss_start,
1361 	xfs_off_t	toss_finish)
1362 {
1363 	if (ip->i_rwtrace == NULL) {
1364 		return;
1365 	}
1366 
1367 	ktrace_enter(ip->i_rwtrace,
1368 		     (void*)((long)tag),
1369 		     (void*)ip,
1370 		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1371 		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1372 		     (void*)((long)flag),
1373 		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1374 		     (void*)(unsigned long)(new_size & 0xffffffff),
1375 		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1376 		     (void*)(unsigned long)(toss_start & 0xffffffff),
1377 		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1378 		     (void*)(unsigned long)(toss_finish & 0xffffffff),
1379 		     (void*)(unsigned long)current_cpu(),
1380 		     (void*)0,
1381 		     (void*)0,
1382 		     (void*)0,
1383 		     (void*)0);
1384 }
1385 #else
1386 #define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1387 #endif
1388 
1389 /*
1390  * Start the truncation of the file to new_size.  The new size
1391  * must be smaller than the current size.  This routine will
1392  * clear the buffer and page caches of file data in the removed
1393  * range, and xfs_itruncate_finish() will remove the underlying
1394  * disk blocks.
1395  *
1396  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1397  * must NOT have the inode lock held at all.  This is because we're
1398  * calling into the buffer/page cache code and we can't hold the
1399  * inode lock when we do so.
1400  *
1401  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1402  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1403  * in the case that the caller is locking things out of order and
1404  * may not be able to call xfs_itruncate_finish() with the inode lock
1405  * held without dropping the I/O lock.  If the caller must drop the
1406  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1407  * must be called again with all the same restrictions as the initial
1408  * call.
1409  */
1410 void
1411 xfs_itruncate_start(
1412 	xfs_inode_t	*ip,
1413 	uint		flags,
1414 	xfs_fsize_t	new_size)
1415 {
1416 	xfs_fsize_t	last_byte;
1417 	xfs_off_t	toss_start;
1418 	xfs_mount_t	*mp;
1419 	vnode_t		*vp;
1420 
1421 	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1422 	ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1423 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1424 	       (flags == XFS_ITRUNC_MAYBE));
1425 
1426 	mp = ip->i_mount;
1427 	vp = XFS_ITOV(ip);
1428 	/*
1429 	 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
1430 	 * overlapping the region being removed.  We have to use
1431 	 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
1432 	 * caller may not be able to finish the truncate without
1433 	 * dropping the inode's I/O lock.  Make sure
1434 	 * to catch any pages brought in by buffers overlapping
1435 	 * the EOF by searching out beyond the isize by our
1436 	 * block size. We round new_size up to a block boundary
1437 	 * so that we don't toss things on the same block as
1438 	 * new_size but before it.
1439 	 *
1440 	 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
1441 	 * call remapf() over the same region if the file is mapped.
1442 	 * This frees up mapped file references to the pages in the
1443 	 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
1444 	 * that we get the latest mapped changes flushed out.
1445 	 */
1446 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1447 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1448 	if (toss_start < 0) {
1449 		/*
1450 		 * The place to start tossing is beyond our maximum
1451 		 * file size, so there is no way that the data extended
1452 		 * out there.
1453 		 */
1454 		return;
1455 	}
1456 	last_byte = xfs_file_last_byte(ip);
1457 	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1458 			 last_byte);
1459 	if (last_byte > toss_start) {
1460 		if (flags & XFS_ITRUNC_DEFINITE) {
1461 			VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1462 		} else {
1463 			VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1464 		}
1465 	}
1466 
1467 #ifdef DEBUG
1468 	if (new_size == 0) {
1469 		ASSERT(VN_CACHED(vp) == 0);
1470 	}
1471 #endif
1472 }
1473 
1474 /*
1475  * Shrink the file to the given new_size.  The new
1476  * size must be smaller than the current size.
1477  * This will free up the underlying blocks
1478  * in the removed range after a call to xfs_itruncate_start()
1479  * or xfs_atruncate_start().
1480  *
1481  * The transaction passed to this routine must have made
1482  * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1483  * This routine may commit the given transaction and
1484  * start new ones, so make sure everything involved in
1485  * the transaction is tidy before calling here.
1486  * Some transaction will be returned to the caller to be
1487  * committed.  The incoming transaction must already include
1488  * the inode, and both inode locks must be held exclusively.
1489  * The inode must also be "held" within the transaction.  On
1490  * return the inode will be "held" within the returned transaction.
1491  * This routine does NOT require any disk space to be reserved
1492  * for it within the transaction.
1493  *
1494  * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1495  * and it indicates the fork which is to be truncated.  For the
1496  * attribute fork we only support truncation to size 0.
1497  *
1498  * We use the sync parameter to indicate whether or not the first
1499  * transaction we perform might have to be synchronous.  For the attr fork,
1500  * it needs to be so if the unlink of the inode is not yet known to be
1501  * permanent in the log.  This keeps us from freeing and reusing the
1502  * blocks of the attribute fork before the unlink of the inode becomes
1503  * permanent.
1504  *
1505  * For the data fork, we normally have to run synchronously if we're
1506  * being called out of the inactive path or we're being called
1507  * out of the create path where we're truncating an existing file.
1508  * Either way, the truncate needs to be sync so blocks don't reappear
1509  * in the file with altered data in case of a crash.  wsync filesystems
1510  * can run the first case async because anything that shrinks the inode
1511  * has to run sync so by the time we're called here from inactive, the
1512  * inode size is permanently set to 0.
1513  *
1514  * Calls from the truncate path always need to be sync unless we're
1515  * in a wsync filesystem and the file has already been unlinked.
1516  *
1517  * The caller is responsible for correctly setting the sync parameter.
1518  * It gets too hard for us to guess here which path we're being called
1519  * out of just based on inode state.
1520  */
1521 int
1522 xfs_itruncate_finish(
1523 	xfs_trans_t	**tp,
1524 	xfs_inode_t	*ip,
1525 	xfs_fsize_t	new_size,
1526 	int		fork,
1527 	int		sync)
1528 {
1529 	xfs_fsblock_t	first_block;
1530 	xfs_fileoff_t	first_unmap_block;
1531 	xfs_fileoff_t	last_block;
1532 	xfs_filblks_t	unmap_len=0;
1533 	xfs_mount_t	*mp;
1534 	xfs_trans_t	*ntp;
1535 	int		done;
1536 	int		committed;
1537 	xfs_bmap_free_t	free_list;
1538 	int		error;
1539 
1540 	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1541 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1542 	ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1543 	ASSERT(*tp != NULL);
1544 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1545 	ASSERT(ip->i_transp == *tp);
1546 	ASSERT(ip->i_itemp != NULL);
1547 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1548 
1549 
1550 	ntp = *tp;
1551 	mp = (ntp)->t_mountp;
1552 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1553 
1554 	/*
1555 	 * We only support truncating the entire attribute fork.
1556 	 */
1557 	if (fork == XFS_ATTR_FORK) {
1558 		new_size = 0LL;
1559 	}
1560 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1561 	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1562 	/*
1563 	 * The first thing we do is set the size to new_size permanently
1564 	 * on disk.  This way we don't have to worry about anyone ever
1565 	 * being able to look at the data being freed even in the face
1566 	 * of a crash.  What we're getting around here is the case where
1567 	 * we free a block, it is allocated to another file, it is written
1568 	 * to, and then we crash.  If the new data gets written to the
1569 	 * file but the log buffers containing the free and reallocation
1570 	 * don't, then we'd end up with garbage in the blocks being freed.
1571 	 * As long as we make the new_size permanent before actually
1572 	 * freeing any blocks it doesn't matter if they get writtten to.
1573 	 *
1574 	 * The callers must signal into us whether or not the size
1575 	 * setting here must be synchronous.  There are a few cases
1576 	 * where it doesn't have to be synchronous.  Those cases
1577 	 * occur if the file is unlinked and we know the unlink is
1578 	 * permanent or if the blocks being truncated are guaranteed
1579 	 * to be beyond the inode eof (regardless of the link count)
1580 	 * and the eof value is permanent.  Both of these cases occur
1581 	 * only on wsync-mounted filesystems.  In those cases, we're
1582 	 * guaranteed that no user will ever see the data in the blocks
1583 	 * that are being truncated so the truncate can run async.
1584 	 * In the free beyond eof case, the file may wind up with
1585 	 * more blocks allocated to it than it needs if we crash
1586 	 * and that won't get fixed until the next time the file
1587 	 * is re-opened and closed but that's ok as that shouldn't
1588 	 * be too many blocks.
1589 	 *
1590 	 * However, we can't just make all wsync xactions run async
1591 	 * because there's one call out of the create path that needs
1592 	 * to run sync where it's truncating an existing file to size
1593 	 * 0 whose size is > 0.
1594 	 *
1595 	 * It's probably possible to come up with a test in this
1596 	 * routine that would correctly distinguish all the above
1597 	 * cases from the values of the function parameters and the
1598 	 * inode state but for sanity's sake, I've decided to let the
1599 	 * layers above just tell us.  It's simpler to correctly figure
1600 	 * out in the layer above exactly under what conditions we
1601 	 * can run async and I think it's easier for others read and
1602 	 * follow the logic in case something has to be changed.
1603 	 * cscope is your friend -- rcc.
1604 	 *
1605 	 * The attribute fork is much simpler.
1606 	 *
1607 	 * For the attribute fork we allow the caller to tell us whether
1608 	 * the unlink of the inode that led to this call is yet permanent
1609 	 * in the on disk log.  If it is not and we will be freeing extents
1610 	 * in this inode then we make the first transaction synchronous
1611 	 * to make sure that the unlink is permanent by the time we free
1612 	 * the blocks.
1613 	 */
1614 	if (fork == XFS_DATA_FORK) {
1615 		if (ip->i_d.di_nextents > 0) {
1616 			ip->i_d.di_size = new_size;
1617 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1618 		}
1619 	} else if (sync) {
1620 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1621 		if (ip->i_d.di_anextents > 0)
1622 			xfs_trans_set_sync(ntp);
1623 	}
1624 	ASSERT(fork == XFS_DATA_FORK ||
1625 		(fork == XFS_ATTR_FORK &&
1626 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1627 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1628 
1629 	/*
1630 	 * Since it is possible for space to become allocated beyond
1631 	 * the end of the file (in a crash where the space is allocated
1632 	 * but the inode size is not yet updated), simply remove any
1633 	 * blocks which show up between the new EOF and the maximum
1634 	 * possible file size.  If the first block to be removed is
1635 	 * beyond the maximum file size (ie it is the same as last_block),
1636 	 * then there is nothing to do.
1637 	 */
1638 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1639 	ASSERT(first_unmap_block <= last_block);
1640 	done = 0;
1641 	if (last_block == first_unmap_block) {
1642 		done = 1;
1643 	} else {
1644 		unmap_len = last_block - first_unmap_block + 1;
1645 	}
1646 	while (!done) {
1647 		/*
1648 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1649 		 * will tell us whether it freed the entire range or
1650 		 * not.  If this is a synchronous mount (wsync),
1651 		 * then we can tell bunmapi to keep all the
1652 		 * transactions asynchronous since the unlink
1653 		 * transaction that made this inode inactive has
1654 		 * already hit the disk.  There's no danger of
1655 		 * the freed blocks being reused, there being a
1656 		 * crash, and the reused blocks suddenly reappearing
1657 		 * in this file with garbage in them once recovery
1658 		 * runs.
1659 		 */
1660 		XFS_BMAP_INIT(&free_list, &first_block);
1661 		error = xfs_bunmapi(ntp, ip, first_unmap_block,
1662 				    unmap_len,
1663 				    XFS_BMAPI_AFLAG(fork) |
1664 				      (sync ? 0 : XFS_BMAPI_ASYNC),
1665 				    XFS_ITRUNC_MAX_EXTENTS,
1666 				    &first_block, &free_list, &done);
1667 		if (error) {
1668 			/*
1669 			 * If the bunmapi call encounters an error,
1670 			 * return to the caller where the transaction
1671 			 * can be properly aborted.  We just need to
1672 			 * make sure we're not holding any resources
1673 			 * that we were not when we came in.
1674 			 */
1675 			xfs_bmap_cancel(&free_list);
1676 			return error;
1677 		}
1678 
1679 		/*
1680 		 * Duplicate the transaction that has the permanent
1681 		 * reservation and commit the old transaction.
1682 		 */
1683 		error = xfs_bmap_finish(tp, &free_list, first_block,
1684 					&committed);
1685 		ntp = *tp;
1686 		if (error) {
1687 			/*
1688 			 * If the bmap finish call encounters an error,
1689 			 * return to the caller where the transaction
1690 			 * can be properly aborted.  We just need to
1691 			 * make sure we're not holding any resources
1692 			 * that we were not when we came in.
1693 			 *
1694 			 * Aborting from this point might lose some
1695 			 * blocks in the file system, but oh well.
1696 			 */
1697 			xfs_bmap_cancel(&free_list);
1698 			if (committed) {
1699 				/*
1700 				 * If the passed in transaction committed
1701 				 * in xfs_bmap_finish(), then we want to
1702 				 * add the inode to this one before returning.
1703 				 * This keeps things simple for the higher
1704 				 * level code, because it always knows that
1705 				 * the inode is locked and held in the
1706 				 * transaction that returns to it whether
1707 				 * errors occur or not.  We don't mark the
1708 				 * inode dirty so that this transaction can
1709 				 * be easily aborted if possible.
1710 				 */
1711 				xfs_trans_ijoin(ntp, ip,
1712 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1713 				xfs_trans_ihold(ntp, ip);
1714 			}
1715 			return error;
1716 		}
1717 
1718 		if (committed) {
1719 			/*
1720 			 * The first xact was committed,
1721 			 * so add the inode to the new one.
1722 			 * Mark it dirty so it will be logged
1723 			 * and moved forward in the log as
1724 			 * part of every commit.
1725 			 */
1726 			xfs_trans_ijoin(ntp, ip,
1727 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1728 			xfs_trans_ihold(ntp, ip);
1729 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1730 		}
1731 		ntp = xfs_trans_dup(ntp);
1732 		(void) xfs_trans_commit(*tp, 0, NULL);
1733 		*tp = ntp;
1734 		error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1735 					  XFS_TRANS_PERM_LOG_RES,
1736 					  XFS_ITRUNCATE_LOG_COUNT);
1737 		/*
1738 		 * Add the inode being truncated to the next chained
1739 		 * transaction.
1740 		 */
1741 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1742 		xfs_trans_ihold(ntp, ip);
1743 		if (error)
1744 			return (error);
1745 	}
1746 	/*
1747 	 * Only update the size in the case of the data fork, but
1748 	 * always re-log the inode so that our permanent transaction
1749 	 * can keep on rolling it forward in the log.
1750 	 */
1751 	if (fork == XFS_DATA_FORK) {
1752 		xfs_isize_check(mp, ip, new_size);
1753 		ip->i_d.di_size = new_size;
1754 	}
1755 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1756 	ASSERT((new_size != 0) ||
1757 	       (fork == XFS_ATTR_FORK) ||
1758 	       (ip->i_delayed_blks == 0));
1759 	ASSERT((new_size != 0) ||
1760 	       (fork == XFS_ATTR_FORK) ||
1761 	       (ip->i_d.di_nextents == 0));
1762 	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1763 	return 0;
1764 }
1765 
1766 
1767 /*
1768  * xfs_igrow_start
1769  *
1770  * Do the first part of growing a file: zero any data in the last
1771  * block that is beyond the old EOF.  We need to do this before
1772  * the inode is joined to the transaction to modify the i_size.
1773  * That way we can drop the inode lock and call into the buffer
1774  * cache to get the buffer mapping the EOF.
1775  */
1776 int
1777 xfs_igrow_start(
1778 	xfs_inode_t	*ip,
1779 	xfs_fsize_t	new_size,
1780 	cred_t		*credp)
1781 {
1782 	xfs_fsize_t	isize;
1783 	int		error;
1784 
1785 	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1786 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1787 	ASSERT(new_size > ip->i_d.di_size);
1788 
1789 	error = 0;
1790 	isize = ip->i_d.di_size;
1791 	/*
1792 	 * Zero any pages that may have been created by
1793 	 * xfs_write_file() beyond the end of the file
1794 	 * and any blocks between the old and new file sizes.
1795 	 */
1796 	error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize,
1797 				new_size);
1798 	return error;
1799 }
1800 
1801 /*
1802  * xfs_igrow_finish
1803  *
1804  * This routine is called to extend the size of a file.
1805  * The inode must have both the iolock and the ilock locked
1806  * for update and it must be a part of the current transaction.
1807  * The xfs_igrow_start() function must have been called previously.
1808  * If the change_flag is not zero, the inode change timestamp will
1809  * be updated.
1810  */
1811 void
1812 xfs_igrow_finish(
1813 	xfs_trans_t	*tp,
1814 	xfs_inode_t	*ip,
1815 	xfs_fsize_t	new_size,
1816 	int		change_flag)
1817 {
1818 	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1819 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1820 	ASSERT(ip->i_transp == tp);
1821 	ASSERT(new_size > ip->i_d.di_size);
1822 
1823 	/*
1824 	 * Update the file size.  Update the inode change timestamp
1825 	 * if change_flag set.
1826 	 */
1827 	ip->i_d.di_size = new_size;
1828 	if (change_flag)
1829 		xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1830 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1831 
1832 }
1833 
1834 
1835 /*
1836  * This is called when the inode's link count goes to 0.
1837  * We place the on-disk inode on a list in the AGI.  It
1838  * will be pulled from this list when the inode is freed.
1839  */
1840 int
1841 xfs_iunlink(
1842 	xfs_trans_t	*tp,
1843 	xfs_inode_t	*ip)
1844 {
1845 	xfs_mount_t	*mp;
1846 	xfs_agi_t	*agi;
1847 	xfs_dinode_t	*dip;
1848 	xfs_buf_t	*agibp;
1849 	xfs_buf_t	*ibp;
1850 	xfs_agnumber_t	agno;
1851 	xfs_daddr_t	agdaddr;
1852 	xfs_agino_t	agino;
1853 	short		bucket_index;
1854 	int		offset;
1855 	int		error;
1856 	int		agi_ok;
1857 
1858 	ASSERT(ip->i_d.di_nlink == 0);
1859 	ASSERT(ip->i_d.di_mode != 0);
1860 	ASSERT(ip->i_transp == tp);
1861 
1862 	mp = tp->t_mountp;
1863 
1864 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1865 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1866 
1867 	/*
1868 	 * Get the agi buffer first.  It ensures lock ordering
1869 	 * on the list.
1870 	 */
1871 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1872 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1873 	if (error) {
1874 		return error;
1875 	}
1876 	/*
1877 	 * Validate the magic number of the agi block.
1878 	 */
1879 	agi = XFS_BUF_TO_AGI(agibp);
1880 	agi_ok =
1881 		INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
1882 		XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
1883 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1884 			XFS_RANDOM_IUNLINK))) {
1885 		XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1886 		xfs_trans_brelse(tp, agibp);
1887 		return XFS_ERROR(EFSCORRUPTED);
1888 	}
1889 	/*
1890 	 * Get the index into the agi hash table for the
1891 	 * list this inode will go on.
1892 	 */
1893 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1894 	ASSERT(agino != 0);
1895 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1896 	ASSERT(agi->agi_unlinked[bucket_index]);
1897 	ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != agino);
1898 
1899 	if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO) {
1900 		/*
1901 		 * There is already another inode in the bucket we need
1902 		 * to add ourselves to.  Add us at the front of the list.
1903 		 * Here we put the head pointer into our next pointer,
1904 		 * and then we fall through to point the head at us.
1905 		 */
1906 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1907 		if (error) {
1908 			return error;
1909 		}
1910 		ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1911 		ASSERT(dip->di_next_unlinked);
1912 		/* both on-disk, don't endian flip twice */
1913 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1914 		offset = ip->i_boffset +
1915 			offsetof(xfs_dinode_t, di_next_unlinked);
1916 		xfs_trans_inode_buf(tp, ibp);
1917 		xfs_trans_log_buf(tp, ibp, offset,
1918 				  (offset + sizeof(xfs_agino_t) - 1));
1919 		xfs_inobp_check(mp, ibp);
1920 	}
1921 
1922 	/*
1923 	 * Point the bucket head pointer at the inode being inserted.
1924 	 */
1925 	ASSERT(agino != 0);
1926 	INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, agino);
1927 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1928 		(sizeof(xfs_agino_t) * bucket_index);
1929 	xfs_trans_log_buf(tp, agibp, offset,
1930 			  (offset + sizeof(xfs_agino_t) - 1));
1931 	return 0;
1932 }
1933 
1934 /*
1935  * Pull the on-disk inode from the AGI unlinked list.
1936  */
1937 STATIC int
1938 xfs_iunlink_remove(
1939 	xfs_trans_t	*tp,
1940 	xfs_inode_t	*ip)
1941 {
1942 	xfs_ino_t	next_ino;
1943 	xfs_mount_t	*mp;
1944 	xfs_agi_t	*agi;
1945 	xfs_dinode_t	*dip;
1946 	xfs_buf_t	*agibp;
1947 	xfs_buf_t	*ibp;
1948 	xfs_agnumber_t	agno;
1949 	xfs_daddr_t	agdaddr;
1950 	xfs_agino_t	agino;
1951 	xfs_agino_t	next_agino;
1952 	xfs_buf_t	*last_ibp;
1953 	xfs_dinode_t	*last_dip;
1954 	short		bucket_index;
1955 	int		offset, last_offset;
1956 	int		error;
1957 	int		agi_ok;
1958 
1959 	/*
1960 	 * First pull the on-disk inode from the AGI unlinked list.
1961 	 */
1962 	mp = tp->t_mountp;
1963 
1964 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1965 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1966 
1967 	/*
1968 	 * Get the agi buffer first.  It ensures lock ordering
1969 	 * on the list.
1970 	 */
1971 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1972 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1973 	if (error) {
1974 		cmn_err(CE_WARN,
1975 			"xfs_iunlink_remove: xfs_trans_read_buf()  returned an error %d on %s.  Returning error.",
1976 			error, mp->m_fsname);
1977 		return error;
1978 	}
1979 	/*
1980 	 * Validate the magic number of the agi block.
1981 	 */
1982 	agi = XFS_BUF_TO_AGI(agibp);
1983 	agi_ok =
1984 		INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
1985 		XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
1986 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1987 			XFS_RANDOM_IUNLINK_REMOVE))) {
1988 		XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1989 				     mp, agi);
1990 		xfs_trans_brelse(tp, agibp);
1991 		cmn_err(CE_WARN,
1992 			"xfs_iunlink_remove: XFS_TEST_ERROR()  returned an error on %s.  Returning EFSCORRUPTED.",
1993 			 mp->m_fsname);
1994 		return XFS_ERROR(EFSCORRUPTED);
1995 	}
1996 	/*
1997 	 * Get the index into the agi hash table for the
1998 	 * list this inode will go on.
1999 	 */
2000 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2001 	ASSERT(agino != 0);
2002 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2003 	ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO);
2004 	ASSERT(agi->agi_unlinked[bucket_index]);
2005 
2006 	if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) == agino) {
2007 		/*
2008 		 * We're at the head of the list.  Get the inode's
2009 		 * on-disk buffer to see if there is anyone after us
2010 		 * on the list.  Only modify our next pointer if it
2011 		 * is not already NULLAGINO.  This saves us the overhead
2012 		 * of dealing with the buffer when there is no need to
2013 		 * change it.
2014 		 */
2015 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2016 		if (error) {
2017 			cmn_err(CE_WARN,
2018 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2019 				error, mp->m_fsname);
2020 			return error;
2021 		}
2022 		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2023 		ASSERT(next_agino != 0);
2024 		if (next_agino != NULLAGINO) {
2025 			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2026 			offset = ip->i_boffset +
2027 				offsetof(xfs_dinode_t, di_next_unlinked);
2028 			xfs_trans_inode_buf(tp, ibp);
2029 			xfs_trans_log_buf(tp, ibp, offset,
2030 					  (offset + sizeof(xfs_agino_t) - 1));
2031 			xfs_inobp_check(mp, ibp);
2032 		} else {
2033 			xfs_trans_brelse(tp, ibp);
2034 		}
2035 		/*
2036 		 * Point the bucket head pointer at the next inode.
2037 		 */
2038 		ASSERT(next_agino != 0);
2039 		ASSERT(next_agino != agino);
2040 		INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, next_agino);
2041 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2042 			(sizeof(xfs_agino_t) * bucket_index);
2043 		xfs_trans_log_buf(tp, agibp, offset,
2044 				  (offset + sizeof(xfs_agino_t) - 1));
2045 	} else {
2046 		/*
2047 		 * We need to search the list for the inode being freed.
2048 		 */
2049 		next_agino = INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT);
2050 		last_ibp = NULL;
2051 		while (next_agino != agino) {
2052 			/*
2053 			 * If the last inode wasn't the one pointing to
2054 			 * us, then release its buffer since we're not
2055 			 * going to do anything with it.
2056 			 */
2057 			if (last_ibp != NULL) {
2058 				xfs_trans_brelse(tp, last_ibp);
2059 			}
2060 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2061 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2062 					    &last_ibp, &last_offset);
2063 			if (error) {
2064 				cmn_err(CE_WARN,
2065 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
2066 					error, mp->m_fsname);
2067 				return error;
2068 			}
2069 			next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2070 			ASSERT(next_agino != NULLAGINO);
2071 			ASSERT(next_agino != 0);
2072 		}
2073 		/*
2074 		 * Now last_ibp points to the buffer previous to us on
2075 		 * the unlinked list.  Pull us from the list.
2076 		 */
2077 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2078 		if (error) {
2079 			cmn_err(CE_WARN,
2080 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2081 				error, mp->m_fsname);
2082 			return error;
2083 		}
2084 		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2085 		ASSERT(next_agino != 0);
2086 		ASSERT(next_agino != agino);
2087 		if (next_agino != NULLAGINO) {
2088 			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2089 			offset = ip->i_boffset +
2090 				offsetof(xfs_dinode_t, di_next_unlinked);
2091 			xfs_trans_inode_buf(tp, ibp);
2092 			xfs_trans_log_buf(tp, ibp, offset,
2093 					  (offset + sizeof(xfs_agino_t) - 1));
2094 			xfs_inobp_check(mp, ibp);
2095 		} else {
2096 			xfs_trans_brelse(tp, ibp);
2097 		}
2098 		/*
2099 		 * Point the previous inode on the list to the next inode.
2100 		 */
2101 		INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2102 		ASSERT(next_agino != 0);
2103 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2104 		xfs_trans_inode_buf(tp, last_ibp);
2105 		xfs_trans_log_buf(tp, last_ibp, offset,
2106 				  (offset + sizeof(xfs_agino_t) - 1));
2107 		xfs_inobp_check(mp, last_ibp);
2108 	}
2109 	return 0;
2110 }
2111 
2112 static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2113 {
2114 	return (((ip->i_itemp == NULL) ||
2115 		!(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2116 		(ip->i_update_core == 0));
2117 }
2118 
2119 STATIC void
2120 xfs_ifree_cluster(
2121 	xfs_inode_t	*free_ip,
2122 	xfs_trans_t	*tp,
2123 	xfs_ino_t	inum)
2124 {
2125 	xfs_mount_t		*mp = free_ip->i_mount;
2126 	int			blks_per_cluster;
2127 	int			nbufs;
2128 	int			ninodes;
2129 	int			i, j, found, pre_flushed;
2130 	xfs_daddr_t		blkno;
2131 	xfs_buf_t		*bp;
2132 	xfs_ihash_t		*ih;
2133 	xfs_inode_t		*ip, **ip_found;
2134 	xfs_inode_log_item_t	*iip;
2135 	xfs_log_item_t		*lip;
2136 	SPLDECL(s);
2137 
2138 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2139 		blks_per_cluster = 1;
2140 		ninodes = mp->m_sb.sb_inopblock;
2141 		nbufs = XFS_IALLOC_BLOCKS(mp);
2142 	} else {
2143 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2144 					mp->m_sb.sb_blocksize;
2145 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2146 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2147 	}
2148 
2149 	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2150 
2151 	for (j = 0; j < nbufs; j++, inum += ninodes) {
2152 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2153 					 XFS_INO_TO_AGBNO(mp, inum));
2154 
2155 
2156 		/*
2157 		 * Look for each inode in memory and attempt to lock it,
2158 		 * we can be racing with flush and tail pushing here.
2159 		 * any inode we get the locks on, add to an array of
2160 		 * inode items to process later.
2161 		 *
2162 		 * The get the buffer lock, we could beat a flush
2163 		 * or tail pushing thread to the lock here, in which
2164 		 * case they will go looking for the inode buffer
2165 		 * and fail, we need some other form of interlock
2166 		 * here.
2167 		 */
2168 		found = 0;
2169 		for (i = 0; i < ninodes; i++) {
2170 			ih = XFS_IHASH(mp, inum + i);
2171 			read_lock(&ih->ih_lock);
2172 			for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2173 				if (ip->i_ino == inum + i)
2174 					break;
2175 			}
2176 
2177 			/* Inode not in memory or we found it already,
2178 			 * nothing to do
2179 			 */
2180 			if (!ip || (ip->i_flags & XFS_ISTALE)) {
2181 				read_unlock(&ih->ih_lock);
2182 				continue;
2183 			}
2184 
2185 			if (xfs_inode_clean(ip)) {
2186 				read_unlock(&ih->ih_lock);
2187 				continue;
2188 			}
2189 
2190 			/* If we can get the locks then add it to the
2191 			 * list, otherwise by the time we get the bp lock
2192 			 * below it will already be attached to the
2193 			 * inode buffer.
2194 			 */
2195 
2196 			/* This inode will already be locked - by us, lets
2197 			 * keep it that way.
2198 			 */
2199 
2200 			if (ip == free_ip) {
2201 				if (xfs_iflock_nowait(ip)) {
2202 					ip->i_flags |= XFS_ISTALE;
2203 
2204 					if (xfs_inode_clean(ip)) {
2205 						xfs_ifunlock(ip);
2206 					} else {
2207 						ip_found[found++] = ip;
2208 					}
2209 				}
2210 				read_unlock(&ih->ih_lock);
2211 				continue;
2212 			}
2213 
2214 			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2215 				if (xfs_iflock_nowait(ip)) {
2216 					ip->i_flags |= XFS_ISTALE;
2217 
2218 					if (xfs_inode_clean(ip)) {
2219 						xfs_ifunlock(ip);
2220 						xfs_iunlock(ip, XFS_ILOCK_EXCL);
2221 					} else {
2222 						ip_found[found++] = ip;
2223 					}
2224 				} else {
2225 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2226 				}
2227 			}
2228 
2229 			read_unlock(&ih->ih_lock);
2230 		}
2231 
2232 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2233 					mp->m_bsize * blks_per_cluster,
2234 					XFS_BUF_LOCK);
2235 
2236 		pre_flushed = 0;
2237 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2238 		while (lip) {
2239 			if (lip->li_type == XFS_LI_INODE) {
2240 				iip = (xfs_inode_log_item_t *)lip;
2241 				ASSERT(iip->ili_logged == 1);
2242 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2243 				AIL_LOCK(mp,s);
2244 				iip->ili_flush_lsn = iip->ili_item.li_lsn;
2245 				AIL_UNLOCK(mp, s);
2246 				iip->ili_inode->i_flags |= XFS_ISTALE;
2247 				pre_flushed++;
2248 			}
2249 			lip = lip->li_bio_list;
2250 		}
2251 
2252 		for (i = 0; i < found; i++) {
2253 			ip = ip_found[i];
2254 			iip = ip->i_itemp;
2255 
2256 			if (!iip) {
2257 				ip->i_update_core = 0;
2258 				xfs_ifunlock(ip);
2259 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2260 				continue;
2261 			}
2262 
2263 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2264 			iip->ili_format.ilf_fields = 0;
2265 			iip->ili_logged = 1;
2266 			AIL_LOCK(mp,s);
2267 			iip->ili_flush_lsn = iip->ili_item.li_lsn;
2268 			AIL_UNLOCK(mp, s);
2269 
2270 			xfs_buf_attach_iodone(bp,
2271 				(void(*)(xfs_buf_t*,xfs_log_item_t*))
2272 				xfs_istale_done, (xfs_log_item_t *)iip);
2273 			if (ip != free_ip) {
2274 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2275 			}
2276 		}
2277 
2278 		if (found || pre_flushed)
2279 			xfs_trans_stale_inode_buf(tp, bp);
2280 		xfs_trans_binval(tp, bp);
2281 	}
2282 
2283 	kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2284 }
2285 
2286 /*
2287  * This is called to return an inode to the inode free list.
2288  * The inode should already be truncated to 0 length and have
2289  * no pages associated with it.  This routine also assumes that
2290  * the inode is already a part of the transaction.
2291  *
2292  * The on-disk copy of the inode will have been added to the list
2293  * of unlinked inodes in the AGI. We need to remove the inode from
2294  * that list atomically with respect to freeing it here.
2295  */
2296 int
2297 xfs_ifree(
2298 	xfs_trans_t	*tp,
2299 	xfs_inode_t	*ip,
2300 	xfs_bmap_free_t	*flist)
2301 {
2302 	int			error;
2303 	int			delete;
2304 	xfs_ino_t		first_ino;
2305 
2306 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2307 	ASSERT(ip->i_transp == tp);
2308 	ASSERT(ip->i_d.di_nlink == 0);
2309 	ASSERT(ip->i_d.di_nextents == 0);
2310 	ASSERT(ip->i_d.di_anextents == 0);
2311 	ASSERT((ip->i_d.di_size == 0) ||
2312 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2313 	ASSERT(ip->i_d.di_nblocks == 0);
2314 
2315 	/*
2316 	 * Pull the on-disk inode from the AGI unlinked list.
2317 	 */
2318 	error = xfs_iunlink_remove(tp, ip);
2319 	if (error != 0) {
2320 		return error;
2321 	}
2322 
2323 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2324 	if (error != 0) {
2325 		return error;
2326 	}
2327 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2328 	ip->i_d.di_flags = 0;
2329 	ip->i_d.di_dmevmask = 0;
2330 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2331 	ip->i_df.if_ext_max =
2332 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2333 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2334 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2335 	/*
2336 	 * Bump the generation count so no one will be confused
2337 	 * by reincarnations of this inode.
2338 	 */
2339 	ip->i_d.di_gen++;
2340 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2341 
2342 	if (delete) {
2343 		xfs_ifree_cluster(ip, tp, first_ino);
2344 	}
2345 
2346 	return 0;
2347 }
2348 
2349 /*
2350  * Reallocate the space for if_broot based on the number of records
2351  * being added or deleted as indicated in rec_diff.  Move the records
2352  * and pointers in if_broot to fit the new size.  When shrinking this
2353  * will eliminate holes between the records and pointers created by
2354  * the caller.  When growing this will create holes to be filled in
2355  * by the caller.
2356  *
2357  * The caller must not request to add more records than would fit in
2358  * the on-disk inode root.  If the if_broot is currently NULL, then
2359  * if we adding records one will be allocated.  The caller must also
2360  * not request that the number of records go below zero, although
2361  * it can go to zero.
2362  *
2363  * ip -- the inode whose if_broot area is changing
2364  * ext_diff -- the change in the number of records, positive or negative,
2365  *	 requested for the if_broot array.
2366  */
2367 void
2368 xfs_iroot_realloc(
2369 	xfs_inode_t		*ip,
2370 	int			rec_diff,
2371 	int			whichfork)
2372 {
2373 	int			cur_max;
2374 	xfs_ifork_t		*ifp;
2375 	xfs_bmbt_block_t	*new_broot;
2376 	int			new_max;
2377 	size_t			new_size;
2378 	char			*np;
2379 	char			*op;
2380 
2381 	/*
2382 	 * Handle the degenerate case quietly.
2383 	 */
2384 	if (rec_diff == 0) {
2385 		return;
2386 	}
2387 
2388 	ifp = XFS_IFORK_PTR(ip, whichfork);
2389 	if (rec_diff > 0) {
2390 		/*
2391 		 * If there wasn't any memory allocated before, just
2392 		 * allocate it now and get out.
2393 		 */
2394 		if (ifp->if_broot_bytes == 0) {
2395 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2396 			ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2397 								     KM_SLEEP);
2398 			ifp->if_broot_bytes = (int)new_size;
2399 			return;
2400 		}
2401 
2402 		/*
2403 		 * If there is already an existing if_broot, then we need
2404 		 * to realloc() it and shift the pointers to their new
2405 		 * location.  The records don't change location because
2406 		 * they are kept butted up against the btree block header.
2407 		 */
2408 		cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2409 		new_max = cur_max + rec_diff;
2410 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2411 		ifp->if_broot = (xfs_bmbt_block_t *)
2412 		  kmem_realloc(ifp->if_broot,
2413 				new_size,
2414 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2415 				KM_SLEEP);
2416 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2417 						      ifp->if_broot_bytes);
2418 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2419 						      (int)new_size);
2420 		ifp->if_broot_bytes = (int)new_size;
2421 		ASSERT(ifp->if_broot_bytes <=
2422 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2423 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2424 		return;
2425 	}
2426 
2427 	/*
2428 	 * rec_diff is less than 0.  In this case, we are shrinking the
2429 	 * if_broot buffer.  It must already exist.  If we go to zero
2430 	 * records, just get rid of the root and clear the status bit.
2431 	 */
2432 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2433 	cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2434 	new_max = cur_max + rec_diff;
2435 	ASSERT(new_max >= 0);
2436 	if (new_max > 0)
2437 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2438 	else
2439 		new_size = 0;
2440 	if (new_size > 0) {
2441 		new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2442 		/*
2443 		 * First copy over the btree block header.
2444 		 */
2445 		memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2446 	} else {
2447 		new_broot = NULL;
2448 		ifp->if_flags &= ~XFS_IFBROOT;
2449 	}
2450 
2451 	/*
2452 	 * Only copy the records and pointers if there are any.
2453 	 */
2454 	if (new_max > 0) {
2455 		/*
2456 		 * First copy the records.
2457 		 */
2458 		op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2459 						     ifp->if_broot_bytes);
2460 		np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2461 						     (int)new_size);
2462 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2463 
2464 		/*
2465 		 * Then copy the pointers.
2466 		 */
2467 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2468 						     ifp->if_broot_bytes);
2469 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2470 						     (int)new_size);
2471 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2472 	}
2473 	kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2474 	ifp->if_broot = new_broot;
2475 	ifp->if_broot_bytes = (int)new_size;
2476 	ASSERT(ifp->if_broot_bytes <=
2477 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2478 	return;
2479 }
2480 
2481 
2482 /*
2483  * This is called when the amount of space needed for if_extents
2484  * is increased or decreased.  The change in size is indicated by
2485  * the number of extents that need to be added or deleted in the
2486  * ext_diff parameter.
2487  *
2488  * If the amount of space needed has decreased below the size of the
2489  * inline buffer, then switch to using the inline buffer.  Otherwise,
2490  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2491  * to what is needed.
2492  *
2493  * ip -- the inode whose if_extents area is changing
2494  * ext_diff -- the change in the number of extents, positive or negative,
2495  *	 requested for the if_extents array.
2496  */
2497 void
2498 xfs_iext_realloc(
2499 	xfs_inode_t	*ip,
2500 	int		ext_diff,
2501 	int		whichfork)
2502 {
2503 	int		byte_diff;
2504 	xfs_ifork_t	*ifp;
2505 	int		new_size;
2506 	uint		rnew_size;
2507 
2508 	if (ext_diff == 0) {
2509 		return;
2510 	}
2511 
2512 	ifp = XFS_IFORK_PTR(ip, whichfork);
2513 	byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t);
2514 	new_size = (int)ifp->if_bytes + byte_diff;
2515 	ASSERT(new_size >= 0);
2516 
2517 	if (new_size == 0) {
2518 		if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2519 			ASSERT(ifp->if_real_bytes != 0);
2520 			kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2521 		}
2522 		ifp->if_u1.if_extents = NULL;
2523 		rnew_size = 0;
2524 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) {
2525 		/*
2526 		 * If the valid extents can fit in if_inline_ext,
2527 		 * copy them from the malloc'd vector and free it.
2528 		 */
2529 		if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2530 			/*
2531 			 * For now, empty files are format EXTENTS,
2532 			 * so the if_extents pointer is null.
2533 			 */
2534 			if (ifp->if_u1.if_extents) {
2535 				memcpy(ifp->if_u2.if_inline_ext,
2536 					ifp->if_u1.if_extents, new_size);
2537 				kmem_free(ifp->if_u1.if_extents,
2538 					  ifp->if_real_bytes);
2539 			}
2540 			ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2541 		}
2542 		rnew_size = 0;
2543 	} else {
2544 		rnew_size = new_size;
2545 		if ((rnew_size & (rnew_size - 1)) != 0)
2546 			rnew_size = xfs_iroundup(rnew_size);
2547 		/*
2548 		 * Stuck with malloc/realloc.
2549 		 */
2550 		if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) {
2551 			ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2552 				kmem_alloc(rnew_size, KM_SLEEP);
2553 			memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
2554 			      sizeof(ifp->if_u2.if_inline_ext));
2555 		} else if (rnew_size != ifp->if_real_bytes) {
2556 			ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2557 			  kmem_realloc(ifp->if_u1.if_extents,
2558 					rnew_size,
2559 					ifp->if_real_bytes,
2560 					KM_NOFS);
2561 		}
2562 	}
2563 	ifp->if_real_bytes = rnew_size;
2564 	ifp->if_bytes = new_size;
2565 }
2566 
2567 
2568 /*
2569  * This is called when the amount of space needed for if_data
2570  * is increased or decreased.  The change in size is indicated by
2571  * the number of bytes that need to be added or deleted in the
2572  * byte_diff parameter.
2573  *
2574  * If the amount of space needed has decreased below the size of the
2575  * inline buffer, then switch to using the inline buffer.  Otherwise,
2576  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2577  * to what is needed.
2578  *
2579  * ip -- the inode whose if_data area is changing
2580  * byte_diff -- the change in the number of bytes, positive or negative,
2581  *	 requested for the if_data array.
2582  */
2583 void
2584 xfs_idata_realloc(
2585 	xfs_inode_t	*ip,
2586 	int		byte_diff,
2587 	int		whichfork)
2588 {
2589 	xfs_ifork_t	*ifp;
2590 	int		new_size;
2591 	int		real_size;
2592 
2593 	if (byte_diff == 0) {
2594 		return;
2595 	}
2596 
2597 	ifp = XFS_IFORK_PTR(ip, whichfork);
2598 	new_size = (int)ifp->if_bytes + byte_diff;
2599 	ASSERT(new_size >= 0);
2600 
2601 	if (new_size == 0) {
2602 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2603 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2604 		}
2605 		ifp->if_u1.if_data = NULL;
2606 		real_size = 0;
2607 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2608 		/*
2609 		 * If the valid extents/data can fit in if_inline_ext/data,
2610 		 * copy them from the malloc'd vector and free it.
2611 		 */
2612 		if (ifp->if_u1.if_data == NULL) {
2613 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2614 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2615 			ASSERT(ifp->if_real_bytes != 0);
2616 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2617 			      new_size);
2618 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2619 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2620 		}
2621 		real_size = 0;
2622 	} else {
2623 		/*
2624 		 * Stuck with malloc/realloc.
2625 		 * For inline data, the underlying buffer must be
2626 		 * a multiple of 4 bytes in size so that it can be
2627 		 * logged and stay on word boundaries.  We enforce
2628 		 * that here.
2629 		 */
2630 		real_size = roundup(new_size, 4);
2631 		if (ifp->if_u1.if_data == NULL) {
2632 			ASSERT(ifp->if_real_bytes == 0);
2633 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2634 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2635 			/*
2636 			 * Only do the realloc if the underlying size
2637 			 * is really changing.
2638 			 */
2639 			if (ifp->if_real_bytes != real_size) {
2640 				ifp->if_u1.if_data =
2641 					kmem_realloc(ifp->if_u1.if_data,
2642 							real_size,
2643 							ifp->if_real_bytes,
2644 							KM_SLEEP);
2645 			}
2646 		} else {
2647 			ASSERT(ifp->if_real_bytes == 0);
2648 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2649 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2650 				ifp->if_bytes);
2651 		}
2652 	}
2653 	ifp->if_real_bytes = real_size;
2654 	ifp->if_bytes = new_size;
2655 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2656 }
2657 
2658 
2659 
2660 
2661 /*
2662  * Map inode to disk block and offset.
2663  *
2664  * mp -- the mount point structure for the current file system
2665  * tp -- the current transaction
2666  * ino -- the inode number of the inode to be located
2667  * imap -- this structure is filled in with the information necessary
2668  *	 to retrieve the given inode from disk
2669  * flags -- flags to pass to xfs_dilocate indicating whether or not
2670  *	 lookups in the inode btree were OK or not
2671  */
2672 int
2673 xfs_imap(
2674 	xfs_mount_t	*mp,
2675 	xfs_trans_t	*tp,
2676 	xfs_ino_t	ino,
2677 	xfs_imap_t	*imap,
2678 	uint		flags)
2679 {
2680 	xfs_fsblock_t	fsbno;
2681 	int		len;
2682 	int		off;
2683 	int		error;
2684 
2685 	fsbno = imap->im_blkno ?
2686 		XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2687 	error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2688 	if (error != 0) {
2689 		return error;
2690 	}
2691 	imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2692 	imap->im_len = XFS_FSB_TO_BB(mp, len);
2693 	imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2694 	imap->im_ioffset = (ushort)off;
2695 	imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2696 	return 0;
2697 }
2698 
2699 void
2700 xfs_idestroy_fork(
2701 	xfs_inode_t	*ip,
2702 	int		whichfork)
2703 {
2704 	xfs_ifork_t	*ifp;
2705 
2706 	ifp = XFS_IFORK_PTR(ip, whichfork);
2707 	if (ifp->if_broot != NULL) {
2708 		kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2709 		ifp->if_broot = NULL;
2710 	}
2711 
2712 	/*
2713 	 * If the format is local, then we can't have an extents
2714 	 * array so just look for an inline data array.  If we're
2715 	 * not local then we may or may not have an extents list,
2716 	 * so check and free it up if we do.
2717 	 */
2718 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2719 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2720 		    (ifp->if_u1.if_data != NULL)) {
2721 			ASSERT(ifp->if_real_bytes != 0);
2722 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2723 			ifp->if_u1.if_data = NULL;
2724 			ifp->if_real_bytes = 0;
2725 		}
2726 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2727 		   (ifp->if_u1.if_extents != NULL) &&
2728 		   (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) {
2729 		ASSERT(ifp->if_real_bytes != 0);
2730 		kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2731 		ifp->if_u1.if_extents = NULL;
2732 		ifp->if_real_bytes = 0;
2733 	}
2734 	ASSERT(ifp->if_u1.if_extents == NULL ||
2735 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2736 	ASSERT(ifp->if_real_bytes == 0);
2737 	if (whichfork == XFS_ATTR_FORK) {
2738 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2739 		ip->i_afp = NULL;
2740 	}
2741 }
2742 
2743 /*
2744  * This is called free all the memory associated with an inode.
2745  * It must free the inode itself and any buffers allocated for
2746  * if_extents/if_data and if_broot.  It must also free the lock
2747  * associated with the inode.
2748  */
2749 void
2750 xfs_idestroy(
2751 	xfs_inode_t	*ip)
2752 {
2753 
2754 	switch (ip->i_d.di_mode & S_IFMT) {
2755 	case S_IFREG:
2756 	case S_IFDIR:
2757 	case S_IFLNK:
2758 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
2759 		break;
2760 	}
2761 	if (ip->i_afp)
2762 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2763 	mrfree(&ip->i_lock);
2764 	mrfree(&ip->i_iolock);
2765 	freesema(&ip->i_flock);
2766 #ifdef XFS_BMAP_TRACE
2767 	ktrace_free(ip->i_xtrace);
2768 #endif
2769 #ifdef XFS_BMBT_TRACE
2770 	ktrace_free(ip->i_btrace);
2771 #endif
2772 #ifdef XFS_RW_TRACE
2773 	ktrace_free(ip->i_rwtrace);
2774 #endif
2775 #ifdef XFS_ILOCK_TRACE
2776 	ktrace_free(ip->i_lock_trace);
2777 #endif
2778 #ifdef XFS_DIR2_TRACE
2779 	ktrace_free(ip->i_dir_trace);
2780 #endif
2781 	if (ip->i_itemp) {
2782 		/* XXXdpd should be able to assert this but shutdown
2783 		 * is leaving the AIL behind. */
2784 		ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2785 		       XFS_FORCED_SHUTDOWN(ip->i_mount));
2786 		xfs_inode_item_destroy(ip);
2787 	}
2788 	kmem_zone_free(xfs_inode_zone, ip);
2789 }
2790 
2791 
2792 /*
2793  * Increment the pin count of the given buffer.
2794  * This value is protected by ipinlock spinlock in the mount structure.
2795  */
2796 void
2797 xfs_ipin(
2798 	xfs_inode_t	*ip)
2799 {
2800 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2801 
2802 	atomic_inc(&ip->i_pincount);
2803 }
2804 
2805 /*
2806  * Decrement the pin count of the given inode, and wake up
2807  * anyone in xfs_iwait_unpin() if the count goes to 0.  The
2808  * inode must have been previoulsy pinned with a call to xfs_ipin().
2809  */
2810 void
2811 xfs_iunpin(
2812 	xfs_inode_t	*ip)
2813 {
2814 	ASSERT(atomic_read(&ip->i_pincount) > 0);
2815 
2816 	if (atomic_dec_and_test(&ip->i_pincount)) {
2817 		vnode_t	*vp = XFS_ITOV_NULL(ip);
2818 
2819 		/* make sync come back and flush this inode */
2820 		if (vp) {
2821 			struct inode	*inode = LINVFS_GET_IP(vp);
2822 
2823 			if (!(inode->i_state & I_NEW))
2824 				mark_inode_dirty_sync(inode);
2825 		}
2826 
2827 		wake_up(&ip->i_ipin_wait);
2828 	}
2829 }
2830 
2831 /*
2832  * This is called to wait for the given inode to be unpinned.
2833  * It will sleep until this happens.  The caller must have the
2834  * inode locked in at least shared mode so that the buffer cannot
2835  * be subsequently pinned once someone is waiting for it to be
2836  * unpinned.
2837  */
2838 STATIC void
2839 xfs_iunpin_wait(
2840 	xfs_inode_t	*ip)
2841 {
2842 	xfs_inode_log_item_t	*iip;
2843 	xfs_lsn_t	lsn;
2844 
2845 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2846 
2847 	if (atomic_read(&ip->i_pincount) == 0) {
2848 		return;
2849 	}
2850 
2851 	iip = ip->i_itemp;
2852 	if (iip && iip->ili_last_lsn) {
2853 		lsn = iip->ili_last_lsn;
2854 	} else {
2855 		lsn = (xfs_lsn_t)0;
2856 	}
2857 
2858 	/*
2859 	 * Give the log a push so we don't wait here too long.
2860 	 */
2861 	xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2862 
2863 	wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2864 }
2865 
2866 
2867 /*
2868  * xfs_iextents_copy()
2869  *
2870  * This is called to copy the REAL extents (as opposed to the delayed
2871  * allocation extents) from the inode into the given buffer.  It
2872  * returns the number of bytes copied into the buffer.
2873  *
2874  * If there are no delayed allocation extents, then we can just
2875  * memcpy() the extents into the buffer.  Otherwise, we need to
2876  * examine each extent in turn and skip those which are delayed.
2877  */
2878 int
2879 xfs_iextents_copy(
2880 	xfs_inode_t		*ip,
2881 	xfs_bmbt_rec_t		*buffer,
2882 	int			whichfork)
2883 {
2884 	int			copied;
2885 	xfs_bmbt_rec_t		*dest_ep;
2886 	xfs_bmbt_rec_t		*ep;
2887 #ifdef XFS_BMAP_TRACE
2888 	static char		fname[] = "xfs_iextents_copy";
2889 #endif
2890 	int			i;
2891 	xfs_ifork_t		*ifp;
2892 	int			nrecs;
2893 	xfs_fsblock_t		start_block;
2894 
2895 	ifp = XFS_IFORK_PTR(ip, whichfork);
2896 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2897 	ASSERT(ifp->if_bytes > 0);
2898 
2899 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2900 	xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2901 	ASSERT(nrecs > 0);
2902 
2903 	/*
2904 	 * There are some delayed allocation extents in the
2905 	 * inode, so copy the extents one at a time and skip
2906 	 * the delayed ones.  There must be at least one
2907 	 * non-delayed extent.
2908 	 */
2909 	ep = ifp->if_u1.if_extents;
2910 	dest_ep = buffer;
2911 	copied = 0;
2912 	for (i = 0; i < nrecs; i++) {
2913 		start_block = xfs_bmbt_get_startblock(ep);
2914 		if (ISNULLSTARTBLOCK(start_block)) {
2915 			/*
2916 			 * It's a delayed allocation extent, so skip it.
2917 			 */
2918 			ep++;
2919 			continue;
2920 		}
2921 
2922 		/* Translate to on disk format */
2923 		put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2924 			      (__uint64_t*)&dest_ep->l0);
2925 		put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2926 			      (__uint64_t*)&dest_ep->l1);
2927 		dest_ep++;
2928 		ep++;
2929 		copied++;
2930 	}
2931 	ASSERT(copied != 0);
2932 	xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip));
2933 
2934 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2935 }
2936 
2937 /*
2938  * Each of the following cases stores data into the same region
2939  * of the on-disk inode, so only one of them can be valid at
2940  * any given time. While it is possible to have conflicting formats
2941  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2942  * in EXTENTS format, this can only happen when the fork has
2943  * changed formats after being modified but before being flushed.
2944  * In these cases, the format always takes precedence, because the
2945  * format indicates the current state of the fork.
2946  */
2947 /*ARGSUSED*/
2948 STATIC int
2949 xfs_iflush_fork(
2950 	xfs_inode_t		*ip,
2951 	xfs_dinode_t		*dip,
2952 	xfs_inode_log_item_t	*iip,
2953 	int			whichfork,
2954 	xfs_buf_t		*bp)
2955 {
2956 	char			*cp;
2957 	xfs_ifork_t		*ifp;
2958 	xfs_mount_t		*mp;
2959 #ifdef XFS_TRANS_DEBUG
2960 	int			first;
2961 #endif
2962 	static const short	brootflag[2] =
2963 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2964 	static const short	dataflag[2] =
2965 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2966 	static const short	extflag[2] =
2967 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2968 
2969 	if (iip == NULL)
2970 		return 0;
2971 	ifp = XFS_IFORK_PTR(ip, whichfork);
2972 	/*
2973 	 * This can happen if we gave up in iformat in an error path,
2974 	 * for the attribute fork.
2975 	 */
2976 	if (ifp == NULL) {
2977 		ASSERT(whichfork == XFS_ATTR_FORK);
2978 		return 0;
2979 	}
2980 	cp = XFS_DFORK_PTR(dip, whichfork);
2981 	mp = ip->i_mount;
2982 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2983 	case XFS_DINODE_FMT_LOCAL:
2984 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2985 		    (ifp->if_bytes > 0)) {
2986 			ASSERT(ifp->if_u1.if_data != NULL);
2987 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2988 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2989 		}
2990 		if (whichfork == XFS_DATA_FORK) {
2991 			if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
2992 				XFS_ERROR_REPORT("xfs_iflush_fork",
2993 						 XFS_ERRLEVEL_LOW, mp);
2994 				return XFS_ERROR(EFSCORRUPTED);
2995 			}
2996 		}
2997 		break;
2998 
2999 	case XFS_DINODE_FMT_EXTENTS:
3000 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
3001 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
3002 		ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0));
3003 		ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0));
3004 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
3005 		    (ifp->if_bytes > 0)) {
3006 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
3007 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
3008 				whichfork);
3009 		}
3010 		break;
3011 
3012 	case XFS_DINODE_FMT_BTREE:
3013 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3014 		    (ifp->if_broot_bytes > 0)) {
3015 			ASSERT(ifp->if_broot != NULL);
3016 			ASSERT(ifp->if_broot_bytes <=
3017 			       (XFS_IFORK_SIZE(ip, whichfork) +
3018 				XFS_BROOT_SIZE_ADJ));
3019 			xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3020 				(xfs_bmdr_block_t *)cp,
3021 				XFS_DFORK_SIZE(dip, mp, whichfork));
3022 		}
3023 		break;
3024 
3025 	case XFS_DINODE_FMT_DEV:
3026 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3027 			ASSERT(whichfork == XFS_DATA_FORK);
3028 			INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
3029 		}
3030 		break;
3031 
3032 	case XFS_DINODE_FMT_UUID:
3033 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3034 			ASSERT(whichfork == XFS_DATA_FORK);
3035 			memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3036 				sizeof(uuid_t));
3037 		}
3038 		break;
3039 
3040 	default:
3041 		ASSERT(0);
3042 		break;
3043 	}
3044 
3045 	return 0;
3046 }
3047 
3048 /*
3049  * xfs_iflush() will write a modified inode's changes out to the
3050  * inode's on disk home.  The caller must have the inode lock held
3051  * in at least shared mode and the inode flush semaphore must be
3052  * held as well.  The inode lock will still be held upon return from
3053  * the call and the caller is free to unlock it.
3054  * The inode flush lock will be unlocked when the inode reaches the disk.
3055  * The flags indicate how the inode's buffer should be written out.
3056  */
3057 int
3058 xfs_iflush(
3059 	xfs_inode_t		*ip,
3060 	uint			flags)
3061 {
3062 	xfs_inode_log_item_t	*iip;
3063 	xfs_buf_t		*bp;
3064 	xfs_dinode_t		*dip;
3065 	xfs_mount_t		*mp;
3066 	int			error;
3067 	/* REFERENCED */
3068 	xfs_chash_t		*ch;
3069 	xfs_inode_t		*iq;
3070 	int			clcount;	/* count of inodes clustered */
3071 	int			bufwasdelwri;
3072 	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3073 	SPLDECL(s);
3074 
3075 	XFS_STATS_INC(xs_iflush_count);
3076 
3077 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3078 	ASSERT(valusema(&ip->i_flock) <= 0);
3079 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3080 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3081 
3082 	iip = ip->i_itemp;
3083 	mp = ip->i_mount;
3084 
3085 	/*
3086 	 * If the inode isn't dirty, then just release the inode
3087 	 * flush lock and do nothing.
3088 	 */
3089 	if ((ip->i_update_core == 0) &&
3090 	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3091 		ASSERT((iip != NULL) ?
3092 			 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3093 		xfs_ifunlock(ip);
3094 		return 0;
3095 	}
3096 
3097 	/*
3098 	 * We can't flush the inode until it is unpinned, so
3099 	 * wait for it.  We know noone new can pin it, because
3100 	 * we are holding the inode lock shared and you need
3101 	 * to hold it exclusively to pin the inode.
3102 	 */
3103 	xfs_iunpin_wait(ip);
3104 
3105 	/*
3106 	 * This may have been unpinned because the filesystem is shutting
3107 	 * down forcibly. If that's the case we must not write this inode
3108 	 * to disk, because the log record didn't make it to disk!
3109 	 */
3110 	if (XFS_FORCED_SHUTDOWN(mp)) {
3111 		ip->i_update_core = 0;
3112 		if (iip)
3113 			iip->ili_format.ilf_fields = 0;
3114 		xfs_ifunlock(ip);
3115 		return XFS_ERROR(EIO);
3116 	}
3117 
3118 	/*
3119 	 * Get the buffer containing the on-disk inode.
3120 	 */
3121 	error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0);
3122 	if (error != 0) {
3123 		xfs_ifunlock(ip);
3124 		return error;
3125 	}
3126 
3127 	/*
3128 	 * Decide how buffer will be flushed out.  This is done before
3129 	 * the call to xfs_iflush_int because this field is zeroed by it.
3130 	 */
3131 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3132 		/*
3133 		 * Flush out the inode buffer according to the directions
3134 		 * of the caller.  In the cases where the caller has given
3135 		 * us a choice choose the non-delwri case.  This is because
3136 		 * the inode is in the AIL and we need to get it out soon.
3137 		 */
3138 		switch (flags) {
3139 		case XFS_IFLUSH_SYNC:
3140 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3141 			flags = 0;
3142 			break;
3143 		case XFS_IFLUSH_ASYNC:
3144 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3145 			flags = INT_ASYNC;
3146 			break;
3147 		case XFS_IFLUSH_DELWRI:
3148 			flags = INT_DELWRI;
3149 			break;
3150 		default:
3151 			ASSERT(0);
3152 			flags = 0;
3153 			break;
3154 		}
3155 	} else {
3156 		switch (flags) {
3157 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3158 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3159 		case XFS_IFLUSH_DELWRI:
3160 			flags = INT_DELWRI;
3161 			break;
3162 		case XFS_IFLUSH_ASYNC:
3163 			flags = INT_ASYNC;
3164 			break;
3165 		case XFS_IFLUSH_SYNC:
3166 			flags = 0;
3167 			break;
3168 		default:
3169 			ASSERT(0);
3170 			flags = 0;
3171 			break;
3172 		}
3173 	}
3174 
3175 	/*
3176 	 * First flush out the inode that xfs_iflush was called with.
3177 	 */
3178 	error = xfs_iflush_int(ip, bp);
3179 	if (error) {
3180 		goto corrupt_out;
3181 	}
3182 
3183 	/*
3184 	 * inode clustering:
3185 	 * see if other inodes can be gathered into this write
3186 	 */
3187 
3188 	ip->i_chash->chl_buf = bp;
3189 
3190 	ch = XFS_CHASH(mp, ip->i_blkno);
3191 	s = mutex_spinlock(&ch->ch_lock);
3192 
3193 	clcount = 0;
3194 	for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3195 		/*
3196 		 * Do an un-protected check to see if the inode is dirty and
3197 		 * is a candidate for flushing.  These checks will be repeated
3198 		 * later after the appropriate locks are acquired.
3199 		 */
3200 		iip = iq->i_itemp;
3201 		if ((iq->i_update_core == 0) &&
3202 		    ((iip == NULL) ||
3203 		     !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3204 		      xfs_ipincount(iq) == 0) {
3205 			continue;
3206 		}
3207 
3208 		/*
3209 		 * Try to get locks.  If any are unavailable,
3210 		 * then this inode cannot be flushed and is skipped.
3211 		 */
3212 
3213 		/* get inode locks (just i_lock) */
3214 		if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3215 			/* get inode flush lock */
3216 			if (xfs_iflock_nowait(iq)) {
3217 				/* check if pinned */
3218 				if (xfs_ipincount(iq) == 0) {
3219 					/* arriving here means that
3220 					 * this inode can be flushed.
3221 					 * first re-check that it's
3222 					 * dirty
3223 					 */
3224 					iip = iq->i_itemp;
3225 					if ((iq->i_update_core != 0)||
3226 					    ((iip != NULL) &&
3227 					     (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3228 						clcount++;
3229 						error = xfs_iflush_int(iq, bp);
3230 						if (error) {
3231 							xfs_iunlock(iq,
3232 								    XFS_ILOCK_SHARED);
3233 							goto cluster_corrupt_out;
3234 						}
3235 					} else {
3236 						xfs_ifunlock(iq);
3237 					}
3238 				} else {
3239 					xfs_ifunlock(iq);
3240 				}
3241 			}
3242 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3243 		}
3244 	}
3245 	mutex_spinunlock(&ch->ch_lock, s);
3246 
3247 	if (clcount) {
3248 		XFS_STATS_INC(xs_icluster_flushcnt);
3249 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3250 	}
3251 
3252 	/*
3253 	 * If the buffer is pinned then push on the log so we won't
3254 	 * get stuck waiting in the write for too long.
3255 	 */
3256 	if (XFS_BUF_ISPINNED(bp)){
3257 		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3258 	}
3259 
3260 	if (flags & INT_DELWRI) {
3261 		xfs_bdwrite(mp, bp);
3262 	} else if (flags & INT_ASYNC) {
3263 		xfs_bawrite(mp, bp);
3264 	} else {
3265 		error = xfs_bwrite(mp, bp);
3266 	}
3267 	return error;
3268 
3269 corrupt_out:
3270 	xfs_buf_relse(bp);
3271 	xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3272 	xfs_iflush_abort(ip);
3273 	/*
3274 	 * Unlocks the flush lock
3275 	 */
3276 	return XFS_ERROR(EFSCORRUPTED);
3277 
3278 cluster_corrupt_out:
3279 	/* Corruption detected in the clustering loop.  Invalidate the
3280 	 * inode buffer and shut down the filesystem.
3281 	 */
3282 	mutex_spinunlock(&ch->ch_lock, s);
3283 
3284 	/*
3285 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
3286 	 * brelse can handle it with no problems.  If not, shut down the
3287 	 * filesystem before releasing the buffer.
3288 	 */
3289 	if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3290 		xfs_buf_relse(bp);
3291 	}
3292 
3293 	xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3294 
3295 	if(!bufwasdelwri)  {
3296 		/*
3297 		 * Just like incore_relse: if we have b_iodone functions,
3298 		 * mark the buffer as an error and call them.  Otherwise
3299 		 * mark it as stale and brelse.
3300 		 */
3301 		if (XFS_BUF_IODONE_FUNC(bp)) {
3302 			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3303 			XFS_BUF_UNDONE(bp);
3304 			XFS_BUF_STALE(bp);
3305 			XFS_BUF_SHUT(bp);
3306 			XFS_BUF_ERROR(bp,EIO);
3307 			xfs_biodone(bp);
3308 		} else {
3309 			XFS_BUF_STALE(bp);
3310 			xfs_buf_relse(bp);
3311 		}
3312 	}
3313 
3314 	xfs_iflush_abort(iq);
3315 	/*
3316 	 * Unlocks the flush lock
3317 	 */
3318 	return XFS_ERROR(EFSCORRUPTED);
3319 }
3320 
3321 
3322 STATIC int
3323 xfs_iflush_int(
3324 	xfs_inode_t		*ip,
3325 	xfs_buf_t		*bp)
3326 {
3327 	xfs_inode_log_item_t	*iip;
3328 	xfs_dinode_t		*dip;
3329 	xfs_mount_t		*mp;
3330 #ifdef XFS_TRANS_DEBUG
3331 	int			first;
3332 #endif
3333 	SPLDECL(s);
3334 
3335 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3336 	ASSERT(valusema(&ip->i_flock) <= 0);
3337 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3338 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3339 
3340 	iip = ip->i_itemp;
3341 	mp = ip->i_mount;
3342 
3343 
3344 	/*
3345 	 * If the inode isn't dirty, then just release the inode
3346 	 * flush lock and do nothing.
3347 	 */
3348 	if ((ip->i_update_core == 0) &&
3349 	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3350 		xfs_ifunlock(ip);
3351 		return 0;
3352 	}
3353 
3354 	/* set *dip = inode's place in the buffer */
3355 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3356 
3357 	/*
3358 	 * Clear i_update_core before copying out the data.
3359 	 * This is for coordination with our timestamp updates
3360 	 * that don't hold the inode lock. They will always
3361 	 * update the timestamps BEFORE setting i_update_core,
3362 	 * so if we clear i_update_core after they set it we
3363 	 * are guaranteed to see their updates to the timestamps.
3364 	 * I believe that this depends on strongly ordered memory
3365 	 * semantics, but we have that.  We use the SYNCHRONIZE
3366 	 * macro to make sure that the compiler does not reorder
3367 	 * the i_update_core access below the data copy below.
3368 	 */
3369 	ip->i_update_core = 0;
3370 	SYNCHRONIZE();
3371 
3372 	if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3373 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3374 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3375 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3376 			ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3377 		goto corrupt_out;
3378 	}
3379 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3380 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3381 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3382 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3383 			ip->i_ino, ip, ip->i_d.di_magic);
3384 		goto corrupt_out;
3385 	}
3386 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3387 		if (XFS_TEST_ERROR(
3388 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3389 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3390 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3391 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3392 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3393 				ip->i_ino, ip);
3394 			goto corrupt_out;
3395 		}
3396 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3397 		if (XFS_TEST_ERROR(
3398 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3399 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3400 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3401 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3402 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3403 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3404 				ip->i_ino, ip);
3405 			goto corrupt_out;
3406 		}
3407 	}
3408 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3409 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3410 				XFS_RANDOM_IFLUSH_5)) {
3411 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3412 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3413 			ip->i_ino,
3414 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3415 			ip->i_d.di_nblocks,
3416 			ip);
3417 		goto corrupt_out;
3418 	}
3419 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3420 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3421 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3422 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3423 			ip->i_ino, ip->i_d.di_forkoff, ip);
3424 		goto corrupt_out;
3425 	}
3426 	/*
3427 	 * bump the flush iteration count, used to detect flushes which
3428 	 * postdate a log record during recovery.
3429 	 */
3430 
3431 	ip->i_d.di_flushiter++;
3432 
3433 	/*
3434 	 * Copy the dirty parts of the inode into the on-disk
3435 	 * inode.  We always copy out the core of the inode,
3436 	 * because if the inode is dirty at all the core must
3437 	 * be.
3438 	 */
3439 	xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3440 
3441 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3442 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3443 		ip->i_d.di_flushiter = 0;
3444 
3445 	/*
3446 	 * If this is really an old format inode and the superblock version
3447 	 * has not been updated to support only new format inodes, then
3448 	 * convert back to the old inode format.  If the superblock version
3449 	 * has been updated, then make the conversion permanent.
3450 	 */
3451 	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3452 	       XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3453 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3454 		if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3455 			/*
3456 			 * Convert it back.
3457 			 */
3458 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3459 			INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3460 		} else {
3461 			/*
3462 			 * The superblock version has already been bumped,
3463 			 * so just make the conversion to the new inode
3464 			 * format permanent.
3465 			 */
3466 			ip->i_d.di_version = XFS_DINODE_VERSION_2;
3467 			INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3468 			ip->i_d.di_onlink = 0;
3469 			dip->di_core.di_onlink = 0;
3470 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3471 			memset(&(dip->di_core.di_pad[0]), 0,
3472 			      sizeof(dip->di_core.di_pad));
3473 			ASSERT(ip->i_d.di_projid == 0);
3474 		}
3475 	}
3476 
3477 	if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3478 		goto corrupt_out;
3479 	}
3480 
3481 	if (XFS_IFORK_Q(ip)) {
3482 		/*
3483 		 * The only error from xfs_iflush_fork is on the data fork.
3484 		 */
3485 		(void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3486 	}
3487 	xfs_inobp_check(mp, bp);
3488 
3489 	/*
3490 	 * We've recorded everything logged in the inode, so we'd
3491 	 * like to clear the ilf_fields bits so we don't log and
3492 	 * flush things unnecessarily.  However, we can't stop
3493 	 * logging all this information until the data we've copied
3494 	 * into the disk buffer is written to disk.  If we did we might
3495 	 * overwrite the copy of the inode in the log with all the
3496 	 * data after re-logging only part of it, and in the face of
3497 	 * a crash we wouldn't have all the data we need to recover.
3498 	 *
3499 	 * What we do is move the bits to the ili_last_fields field.
3500 	 * When logging the inode, these bits are moved back to the
3501 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3502 	 * clear ili_last_fields, since we know that the information
3503 	 * those bits represent is permanently on disk.  As long as
3504 	 * the flush completes before the inode is logged again, then
3505 	 * both ilf_fields and ili_last_fields will be cleared.
3506 	 *
3507 	 * We can play with the ilf_fields bits here, because the inode
3508 	 * lock must be held exclusively in order to set bits there
3509 	 * and the flush lock protects the ili_last_fields bits.
3510 	 * Set ili_logged so the flush done
3511 	 * routine can tell whether or not to look in the AIL.
3512 	 * Also, store the current LSN of the inode so that we can tell
3513 	 * whether the item has moved in the AIL from xfs_iflush_done().
3514 	 * In order to read the lsn we need the AIL lock, because
3515 	 * it is a 64 bit value that cannot be read atomically.
3516 	 */
3517 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3518 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3519 		iip->ili_format.ilf_fields = 0;
3520 		iip->ili_logged = 1;
3521 
3522 		ASSERT(sizeof(xfs_lsn_t) == 8);	/* don't lock if it shrinks */
3523 		AIL_LOCK(mp,s);
3524 		iip->ili_flush_lsn = iip->ili_item.li_lsn;
3525 		AIL_UNLOCK(mp, s);
3526 
3527 		/*
3528 		 * Attach the function xfs_iflush_done to the inode's
3529 		 * buffer.  This will remove the inode from the AIL
3530 		 * and unlock the inode's flush lock when the inode is
3531 		 * completely written to disk.
3532 		 */
3533 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3534 				      xfs_iflush_done, (xfs_log_item_t *)iip);
3535 
3536 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3537 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3538 	} else {
3539 		/*
3540 		 * We're flushing an inode which is not in the AIL and has
3541 		 * not been logged but has i_update_core set.  For this
3542 		 * case we can use a B_DELWRI flush and immediately drop
3543 		 * the inode flush lock because we can avoid the whole
3544 		 * AIL state thing.  It's OK to drop the flush lock now,
3545 		 * because we've already locked the buffer and to do anything
3546 		 * you really need both.
3547 		 */
3548 		if (iip != NULL) {
3549 			ASSERT(iip->ili_logged == 0);
3550 			ASSERT(iip->ili_last_fields == 0);
3551 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3552 		}
3553 		xfs_ifunlock(ip);
3554 	}
3555 
3556 	return 0;
3557 
3558 corrupt_out:
3559 	return XFS_ERROR(EFSCORRUPTED);
3560 }
3561 
3562 
3563 /*
3564  * Flush all inactive inodes in mp.
3565  */
3566 void
3567 xfs_iflush_all(
3568 	xfs_mount_t	*mp)
3569 {
3570 	xfs_inode_t	*ip;
3571 	vnode_t		*vp;
3572 
3573  again:
3574 	XFS_MOUNT_ILOCK(mp);
3575 	ip = mp->m_inodes;
3576 	if (ip == NULL)
3577 		goto out;
3578 
3579 	do {
3580 		/* Make sure we skip markers inserted by sync */
3581 		if (ip->i_mount == NULL) {
3582 			ip = ip->i_mnext;
3583 			continue;
3584 		}
3585 
3586 		vp = XFS_ITOV_NULL(ip);
3587 		if (!vp) {
3588 			XFS_MOUNT_IUNLOCK(mp);
3589 			xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3590 			goto again;
3591 		}
3592 
3593 		ASSERT(vn_count(vp) == 0);
3594 
3595 		ip = ip->i_mnext;
3596 	} while (ip != mp->m_inodes);
3597  out:
3598 	XFS_MOUNT_IUNLOCK(mp);
3599 }
3600 
3601 /*
3602  * xfs_iaccess: check accessibility of inode for mode.
3603  */
3604 int
3605 xfs_iaccess(
3606 	xfs_inode_t	*ip,
3607 	mode_t		mode,
3608 	cred_t		*cr)
3609 {
3610 	int		error;
3611 	mode_t		orgmode = mode;
3612 	struct inode	*inode = LINVFS_GET_IP(XFS_ITOV(ip));
3613 
3614 	if (mode & S_IWUSR) {
3615 		umode_t		imode = inode->i_mode;
3616 
3617 		if (IS_RDONLY(inode) &&
3618 		    (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3619 			return XFS_ERROR(EROFS);
3620 
3621 		if (IS_IMMUTABLE(inode))
3622 			return XFS_ERROR(EACCES);
3623 	}
3624 
3625 	/*
3626 	 * If there's an Access Control List it's used instead of
3627 	 * the mode bits.
3628 	 */
3629 	if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3630 		return error ? XFS_ERROR(error) : 0;
3631 
3632 	if (current_fsuid(cr) != ip->i_d.di_uid) {
3633 		mode >>= 3;
3634 		if (!in_group_p((gid_t)ip->i_d.di_gid))
3635 			mode >>= 3;
3636 	}
3637 
3638 	/*
3639 	 * If the DACs are ok we don't need any capability check.
3640 	 */
3641 	if ((ip->i_d.di_mode & mode) == mode)
3642 		return 0;
3643 	/*
3644 	 * Read/write DACs are always overridable.
3645 	 * Executable DACs are overridable if at least one exec bit is set.
3646 	 */
3647 	if (!(orgmode & S_IXUSR) ||
3648 	    (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3649 		if (capable_cred(cr, CAP_DAC_OVERRIDE))
3650 			return 0;
3651 
3652 	if ((orgmode == S_IRUSR) ||
3653 	    (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3654 		if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3655 			return 0;
3656 #ifdef	NOISE
3657 		cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3658 #endif	/* NOISE */
3659 		return XFS_ERROR(EACCES);
3660 	}
3661 	return XFS_ERROR(EACCES);
3662 }
3663 
3664 /*
3665  * xfs_iroundup: round up argument to next power of two
3666  */
3667 uint
3668 xfs_iroundup(
3669 	uint	v)
3670 {
3671 	int i;
3672 	uint m;
3673 
3674 	if ((v & (v - 1)) == 0)
3675 		return v;
3676 	ASSERT((v & 0x80000000) == 0);
3677 	if ((v & (v + 1)) == 0)
3678 		return v + 1;
3679 	for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3680 		if (v & m)
3681 			continue;
3682 		v |= m;
3683 		if ((v & (v + 1)) == 0)
3684 			return v + 1;
3685 	}
3686 	ASSERT(0);
3687 	return( 0 );
3688 }
3689 
3690 /*
3691  * Change the requested timestamp in the given inode.
3692  * We don't lock across timestamp updates, and we don't log them but
3693  * we do record the fact that there is dirty information in core.
3694  *
3695  * NOTE -- callers MUST combine XFS_ICHGTIME_MOD or XFS_ICHGTIME_CHG
3696  *		with XFS_ICHGTIME_ACC to be sure that access time
3697  *		update will take.  Calling first with XFS_ICHGTIME_ACC
3698  *		and then XFS_ICHGTIME_MOD may fail to modify the access
3699  *		timestamp if the filesystem is mounted noacctm.
3700  */
3701 void
3702 xfs_ichgtime(xfs_inode_t *ip,
3703 	     int flags)
3704 {
3705 	timespec_t	tv;
3706 	vnode_t		*vp = XFS_ITOV(ip);
3707 	struct inode	*inode = LINVFS_GET_IP(vp);
3708 
3709 	/*
3710 	 * We're not supposed to change timestamps in readonly-mounted
3711 	 * filesystems.  Throw it away if anyone asks us.
3712 	 */
3713 	if (unlikely(vp->v_vfsp->vfs_flag & VFS_RDONLY))
3714 		return;
3715 
3716 	/*
3717 	 * Don't update access timestamps on reads if mounted "noatime"
3718 	 * Throw it away if anyone asks us.
3719 	 */
3720 	if ((ip->i_mount->m_flags & XFS_MOUNT_NOATIME || IS_NOATIME(inode)) &&
3721 	    ((flags & (XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD|XFS_ICHGTIME_CHG))
3722 			== XFS_ICHGTIME_ACC))
3723 		return;
3724 
3725 	nanotime(&tv);
3726 	if (flags & XFS_ICHGTIME_MOD) {
3727 		VN_MTIMESET(vp, &tv);
3728 		ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
3729 		ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
3730 	}
3731 	if (flags & XFS_ICHGTIME_ACC) {
3732 		VN_ATIMESET(vp, &tv);
3733 		ip->i_d.di_atime.t_sec = (__int32_t)tv.tv_sec;
3734 		ip->i_d.di_atime.t_nsec = (__int32_t)tv.tv_nsec;
3735 	}
3736 	if (flags & XFS_ICHGTIME_CHG) {
3737 		VN_CTIMESET(vp, &tv);
3738 		ip->i_d.di_ctime.t_sec = (__int32_t)tv.tv_sec;
3739 		ip->i_d.di_ctime.t_nsec = (__int32_t)tv.tv_nsec;
3740 	}
3741 
3742 	/*
3743 	 * We update the i_update_core field _after_ changing
3744 	 * the timestamps in order to coordinate properly with
3745 	 * xfs_iflush() so that we don't lose timestamp updates.
3746 	 * This keeps us from having to hold the inode lock
3747 	 * while doing this.  We use the SYNCHRONIZE macro to
3748 	 * ensure that the compiler does not reorder the update
3749 	 * of i_update_core above the timestamp updates above.
3750 	 */
3751 	SYNCHRONIZE();
3752 	ip->i_update_core = 1;
3753 	if (!(inode->i_state & I_LOCK))
3754 		mark_inode_dirty_sync(inode);
3755 }
3756 
3757 #ifdef XFS_ILOCK_TRACE
3758 ktrace_t	*xfs_ilock_trace_buf;
3759 
3760 void
3761 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3762 {
3763 	ktrace_enter(ip->i_lock_trace,
3764 		     (void *)ip,
3765 		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3766 		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3767 		     (void *)ra,		/* caller of ilock */
3768 		     (void *)(unsigned long)current_cpu(),
3769 		     (void *)(unsigned long)current_pid(),
3770 		     NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3771 }
3772 #endif
3773