1 /* 2 * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it would be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 11 * 12 * Further, this software is distributed without any warranty that it is 13 * free of the rightful claim of any third person regarding infringement 14 * or the like. Any license provided herein, whether implied or 15 * otherwise, applies only to this software file. Patent licenses, if 16 * any, provided herein do not apply to combinations of this program with 17 * other software, or any other product whatsoever. 18 * 19 * You should have received a copy of the GNU General Public License along 20 * with this program; if not, write the Free Software Foundation, Inc., 59 21 * Temple Place - Suite 330, Boston MA 02111-1307, USA. 22 * 23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, 24 * Mountain View, CA 94043, or: 25 * 26 * http://www.sgi.com 27 * 28 * For further information regarding this notice, see: 29 * 30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ 31 */ 32 33 #include "xfs.h" 34 #include "xfs_macros.h" 35 #include "xfs_types.h" 36 #include "xfs_inum.h" 37 #include "xfs_log.h" 38 #include "xfs_trans.h" 39 #include "xfs_trans_priv.h" 40 #include "xfs_sb.h" 41 #include "xfs_ag.h" 42 #include "xfs_dir.h" 43 #include "xfs_dir2.h" 44 #include "xfs_dmapi.h" 45 #include "xfs_mount.h" 46 #include "xfs_alloc_btree.h" 47 #include "xfs_bmap_btree.h" 48 #include "xfs_ialloc_btree.h" 49 #include "xfs_btree.h" 50 #include "xfs_imap.h" 51 #include "xfs_alloc.h" 52 #include "xfs_ialloc.h" 53 #include "xfs_attr_sf.h" 54 #include "xfs_dir_sf.h" 55 #include "xfs_dir2_sf.h" 56 #include "xfs_dinode.h" 57 #include "xfs_inode_item.h" 58 #include "xfs_inode.h" 59 #include "xfs_bmap.h" 60 #include "xfs_buf_item.h" 61 #include "xfs_rw.h" 62 #include "xfs_error.h" 63 #include "xfs_bit.h" 64 #include "xfs_utils.h" 65 #include "xfs_dir2_trace.h" 66 #include "xfs_quota.h" 67 #include "xfs_mac.h" 68 #include "xfs_acl.h" 69 70 71 kmem_zone_t *xfs_ifork_zone; 72 kmem_zone_t *xfs_inode_zone; 73 kmem_zone_t *xfs_chashlist_zone; 74 75 /* 76 * Used in xfs_itruncate(). This is the maximum number of extents 77 * freed from a file in a single transaction. 78 */ 79 #define XFS_ITRUNC_MAX_EXTENTS 2 80 81 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 82 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 83 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 84 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 85 86 87 #ifdef DEBUG 88 /* 89 * Make sure that the extents in the given memory buffer 90 * are valid. 91 */ 92 STATIC void 93 xfs_validate_extents( 94 xfs_bmbt_rec_t *ep, 95 int nrecs, 96 int disk, 97 xfs_exntfmt_t fmt) 98 { 99 xfs_bmbt_irec_t irec; 100 xfs_bmbt_rec_t rec; 101 int i; 102 103 for (i = 0; i < nrecs; i++) { 104 rec.l0 = get_unaligned((__uint64_t*)&ep->l0); 105 rec.l1 = get_unaligned((__uint64_t*)&ep->l1); 106 if (disk) 107 xfs_bmbt_disk_get_all(&rec, &irec); 108 else 109 xfs_bmbt_get_all(&rec, &irec); 110 if (fmt == XFS_EXTFMT_NOSTATE) 111 ASSERT(irec.br_state == XFS_EXT_NORM); 112 ep++; 113 } 114 } 115 #else /* DEBUG */ 116 #define xfs_validate_extents(ep, nrecs, disk, fmt) 117 #endif /* DEBUG */ 118 119 /* 120 * Check that none of the inode's in the buffer have a next 121 * unlinked field of 0. 122 */ 123 #if defined(DEBUG) 124 void 125 xfs_inobp_check( 126 xfs_mount_t *mp, 127 xfs_buf_t *bp) 128 { 129 int i; 130 int j; 131 xfs_dinode_t *dip; 132 133 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 134 135 for (i = 0; i < j; i++) { 136 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 137 i * mp->m_sb.sb_inodesize); 138 if (!dip->di_next_unlinked) { 139 xfs_fs_cmn_err(CE_ALERT, mp, 140 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", 141 bp); 142 ASSERT(dip->di_next_unlinked); 143 } 144 } 145 } 146 #endif 147 148 /* 149 * This routine is called to map an inode number within a file 150 * system to the buffer containing the on-disk version of the 151 * inode. It returns a pointer to the buffer containing the 152 * on-disk inode in the bpp parameter, and in the dip parameter 153 * it returns a pointer to the on-disk inode within that buffer. 154 * 155 * If a non-zero error is returned, then the contents of bpp and 156 * dipp are undefined. 157 * 158 * Use xfs_imap() to determine the size and location of the 159 * buffer to read from disk. 160 */ 161 STATIC int 162 xfs_inotobp( 163 xfs_mount_t *mp, 164 xfs_trans_t *tp, 165 xfs_ino_t ino, 166 xfs_dinode_t **dipp, 167 xfs_buf_t **bpp, 168 int *offset) 169 { 170 int di_ok; 171 xfs_imap_t imap; 172 xfs_buf_t *bp; 173 int error; 174 xfs_dinode_t *dip; 175 176 /* 177 * Call the space managment code to find the location of the 178 * inode on disk. 179 */ 180 imap.im_blkno = 0; 181 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP); 182 if (error != 0) { 183 cmn_err(CE_WARN, 184 "xfs_inotobp: xfs_imap() returned an " 185 "error %d on %s. Returning error.", error, mp->m_fsname); 186 return error; 187 } 188 189 /* 190 * If the inode number maps to a block outside the bounds of the 191 * file system then return NULL rather than calling read_buf 192 * and panicing when we get an error from the driver. 193 */ 194 if ((imap.im_blkno + imap.im_len) > 195 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 196 cmn_err(CE_WARN, 197 "xfs_inotobp: inode number (%d + %d) maps to a block outside the bounds " 198 "of the file system %s. Returning EINVAL.", 199 imap.im_blkno, imap.im_len,mp->m_fsname); 200 return XFS_ERROR(EINVAL); 201 } 202 203 /* 204 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will 205 * default to just a read_buf() call. 206 */ 207 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, 208 (int)imap.im_len, XFS_BUF_LOCK, &bp); 209 210 if (error) { 211 cmn_err(CE_WARN, 212 "xfs_inotobp: xfs_trans_read_buf() returned an " 213 "error %d on %s. Returning error.", error, mp->m_fsname); 214 return error; 215 } 216 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0); 217 di_ok = 218 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && 219 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); 220 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, 221 XFS_RANDOM_ITOBP_INOTOBP))) { 222 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip); 223 xfs_trans_brelse(tp, bp); 224 cmn_err(CE_WARN, 225 "xfs_inotobp: XFS_TEST_ERROR() returned an " 226 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname); 227 return XFS_ERROR(EFSCORRUPTED); 228 } 229 230 xfs_inobp_check(mp, bp); 231 232 /* 233 * Set *dipp to point to the on-disk inode in the buffer. 234 */ 235 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 236 *bpp = bp; 237 *offset = imap.im_boffset; 238 return 0; 239 } 240 241 242 /* 243 * This routine is called to map an inode to the buffer containing 244 * the on-disk version of the inode. It returns a pointer to the 245 * buffer containing the on-disk inode in the bpp parameter, and in 246 * the dip parameter it returns a pointer to the on-disk inode within 247 * that buffer. 248 * 249 * If a non-zero error is returned, then the contents of bpp and 250 * dipp are undefined. 251 * 252 * If the inode is new and has not yet been initialized, use xfs_imap() 253 * to determine the size and location of the buffer to read from disk. 254 * If the inode has already been mapped to its buffer and read in once, 255 * then use the mapping information stored in the inode rather than 256 * calling xfs_imap(). This allows us to avoid the overhead of looking 257 * at the inode btree for small block file systems (see xfs_dilocate()). 258 * We can tell whether the inode has been mapped in before by comparing 259 * its disk block address to 0. Only uninitialized inodes will have 260 * 0 for the disk block address. 261 */ 262 int 263 xfs_itobp( 264 xfs_mount_t *mp, 265 xfs_trans_t *tp, 266 xfs_inode_t *ip, 267 xfs_dinode_t **dipp, 268 xfs_buf_t **bpp, 269 xfs_daddr_t bno) 270 { 271 xfs_buf_t *bp; 272 int error; 273 xfs_imap_t imap; 274 #ifdef __KERNEL__ 275 int i; 276 int ni; 277 #endif 278 279 if (ip->i_blkno == (xfs_daddr_t)0) { 280 /* 281 * Call the space management code to find the location of the 282 * inode on disk. 283 */ 284 imap.im_blkno = bno; 285 error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP); 286 if (error != 0) { 287 return error; 288 } 289 290 /* 291 * If the inode number maps to a block outside the bounds 292 * of the file system then return NULL rather than calling 293 * read_buf and panicing when we get an error from the 294 * driver. 295 */ 296 if ((imap.im_blkno + imap.im_len) > 297 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 298 #ifdef DEBUG 299 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " 300 "(imap.im_blkno (0x%llx) " 301 "+ imap.im_len (0x%llx)) > " 302 " XFS_FSB_TO_BB(mp, " 303 "mp->m_sb.sb_dblocks) (0x%llx)", 304 (unsigned long long) imap.im_blkno, 305 (unsigned long long) imap.im_len, 306 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 307 #endif /* DEBUG */ 308 return XFS_ERROR(EINVAL); 309 } 310 311 /* 312 * Fill in the fields in the inode that will be used to 313 * map the inode to its buffer from now on. 314 */ 315 ip->i_blkno = imap.im_blkno; 316 ip->i_len = imap.im_len; 317 ip->i_boffset = imap.im_boffset; 318 } else { 319 /* 320 * We've already mapped the inode once, so just use the 321 * mapping that we saved the first time. 322 */ 323 imap.im_blkno = ip->i_blkno; 324 imap.im_len = ip->i_len; 325 imap.im_boffset = ip->i_boffset; 326 } 327 ASSERT(bno == 0 || bno == imap.im_blkno); 328 329 /* 330 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will 331 * default to just a read_buf() call. 332 */ 333 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, 334 (int)imap.im_len, XFS_BUF_LOCK, &bp); 335 336 if (error) { 337 #ifdef DEBUG 338 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " 339 "xfs_trans_read_buf() returned error %d, " 340 "imap.im_blkno 0x%llx, imap.im_len 0x%llx", 341 error, (unsigned long long) imap.im_blkno, 342 (unsigned long long) imap.im_len); 343 #endif /* DEBUG */ 344 return error; 345 } 346 #ifdef __KERNEL__ 347 /* 348 * Validate the magic number and version of every inode in the buffer 349 * (if DEBUG kernel) or the first inode in the buffer, otherwise. 350 */ 351 #ifdef DEBUG 352 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog; 353 #else 354 ni = 1; 355 #endif 356 for (i = 0; i < ni; i++) { 357 int di_ok; 358 xfs_dinode_t *dip; 359 360 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 361 (i << mp->m_sb.sb_inodelog)); 362 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && 363 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); 364 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, 365 XFS_RANDOM_ITOBP_INOTOBP))) { 366 #ifdef DEBUG 367 prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)", 368 mp->m_ddev_targp, 369 (unsigned long long)imap.im_blkno, i, 370 INT_GET(dip->di_core.di_magic, ARCH_CONVERT)); 371 #endif 372 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH, 373 mp, dip); 374 xfs_trans_brelse(tp, bp); 375 return XFS_ERROR(EFSCORRUPTED); 376 } 377 } 378 #endif /* __KERNEL__ */ 379 380 xfs_inobp_check(mp, bp); 381 382 /* 383 * Mark the buffer as an inode buffer now that it looks good 384 */ 385 XFS_BUF_SET_VTYPE(bp, B_FS_INO); 386 387 /* 388 * Set *dipp to point to the on-disk inode in the buffer. 389 */ 390 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 391 *bpp = bp; 392 return 0; 393 } 394 395 /* 396 * Move inode type and inode format specific information from the 397 * on-disk inode to the in-core inode. For fifos, devs, and sockets 398 * this means set if_rdev to the proper value. For files, directories, 399 * and symlinks this means to bring in the in-line data or extent 400 * pointers. For a file in B-tree format, only the root is immediately 401 * brought in-core. The rest will be in-lined in if_extents when it 402 * is first referenced (see xfs_iread_extents()). 403 */ 404 STATIC int 405 xfs_iformat( 406 xfs_inode_t *ip, 407 xfs_dinode_t *dip) 408 { 409 xfs_attr_shortform_t *atp; 410 int size; 411 int error; 412 xfs_fsize_t di_size; 413 ip->i_df.if_ext_max = 414 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 415 error = 0; 416 417 if (unlikely( 418 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) + 419 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) > 420 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) { 421 xfs_fs_cmn_err(CE_WARN, ip->i_mount, 422 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu." 423 " Unmount and run xfs_repair.", 424 (unsigned long long)ip->i_ino, 425 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) 426 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)), 427 (unsigned long long) 428 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT)); 429 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, 430 ip->i_mount, dip); 431 return XFS_ERROR(EFSCORRUPTED); 432 } 433 434 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) { 435 xfs_fs_cmn_err(CE_WARN, ip->i_mount, 436 "corrupt dinode %Lu, forkoff = 0x%x." 437 " Unmount and run xfs_repair.", 438 (unsigned long long)ip->i_ino, 439 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT))); 440 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, 441 ip->i_mount, dip); 442 return XFS_ERROR(EFSCORRUPTED); 443 } 444 445 switch (ip->i_d.di_mode & S_IFMT) { 446 case S_IFIFO: 447 case S_IFCHR: 448 case S_IFBLK: 449 case S_IFSOCK: 450 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) { 451 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, 452 ip->i_mount, dip); 453 return XFS_ERROR(EFSCORRUPTED); 454 } 455 ip->i_d.di_size = 0; 456 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT); 457 break; 458 459 case S_IFREG: 460 case S_IFLNK: 461 case S_IFDIR: 462 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) { 463 case XFS_DINODE_FMT_LOCAL: 464 /* 465 * no local regular files yet 466 */ 467 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) { 468 xfs_fs_cmn_err(CE_WARN, ip->i_mount, 469 "corrupt inode (local format for regular file) %Lu. Unmount and run xfs_repair.", 470 (unsigned long long) ip->i_ino); 471 XFS_CORRUPTION_ERROR("xfs_iformat(4)", 472 XFS_ERRLEVEL_LOW, 473 ip->i_mount, dip); 474 return XFS_ERROR(EFSCORRUPTED); 475 } 476 477 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT); 478 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { 479 xfs_fs_cmn_err(CE_WARN, ip->i_mount, 480 "corrupt inode %Lu (bad size %Ld for local inode). Unmount and run xfs_repair.", 481 (unsigned long long) ip->i_ino, 482 (long long) di_size); 483 XFS_CORRUPTION_ERROR("xfs_iformat(5)", 484 XFS_ERRLEVEL_LOW, 485 ip->i_mount, dip); 486 return XFS_ERROR(EFSCORRUPTED); 487 } 488 489 size = (int)di_size; 490 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 491 break; 492 case XFS_DINODE_FMT_EXTENTS: 493 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 494 break; 495 case XFS_DINODE_FMT_BTREE: 496 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 497 break; 498 default: 499 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, 500 ip->i_mount); 501 return XFS_ERROR(EFSCORRUPTED); 502 } 503 break; 504 505 default: 506 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); 507 return XFS_ERROR(EFSCORRUPTED); 508 } 509 if (error) { 510 return error; 511 } 512 if (!XFS_DFORK_Q(dip)) 513 return 0; 514 ASSERT(ip->i_afp == NULL); 515 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); 516 ip->i_afp->if_ext_max = 517 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 518 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) { 519 case XFS_DINODE_FMT_LOCAL: 520 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 521 size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT); 522 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 523 break; 524 case XFS_DINODE_FMT_EXTENTS: 525 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 526 break; 527 case XFS_DINODE_FMT_BTREE: 528 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 529 break; 530 default: 531 error = XFS_ERROR(EFSCORRUPTED); 532 break; 533 } 534 if (error) { 535 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 536 ip->i_afp = NULL; 537 xfs_idestroy_fork(ip, XFS_DATA_FORK); 538 } 539 return error; 540 } 541 542 /* 543 * The file is in-lined in the on-disk inode. 544 * If it fits into if_inline_data, then copy 545 * it there, otherwise allocate a buffer for it 546 * and copy the data there. Either way, set 547 * if_data to point at the data. 548 * If we allocate a buffer for the data, make 549 * sure that its size is a multiple of 4 and 550 * record the real size in i_real_bytes. 551 */ 552 STATIC int 553 xfs_iformat_local( 554 xfs_inode_t *ip, 555 xfs_dinode_t *dip, 556 int whichfork, 557 int size) 558 { 559 xfs_ifork_t *ifp; 560 int real_size; 561 562 /* 563 * If the size is unreasonable, then something 564 * is wrong and we just bail out rather than crash in 565 * kmem_alloc() or memcpy() below. 566 */ 567 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 568 xfs_fs_cmn_err(CE_WARN, ip->i_mount, 569 "corrupt inode %Lu (bad size %d for local fork, size = %d). Unmount and run xfs_repair.", 570 (unsigned long long) ip->i_ino, size, 571 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 572 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, 573 ip->i_mount, dip); 574 return XFS_ERROR(EFSCORRUPTED); 575 } 576 ifp = XFS_IFORK_PTR(ip, whichfork); 577 real_size = 0; 578 if (size == 0) 579 ifp->if_u1.if_data = NULL; 580 else if (size <= sizeof(ifp->if_u2.if_inline_data)) 581 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 582 else { 583 real_size = roundup(size, 4); 584 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 585 } 586 ifp->if_bytes = size; 587 ifp->if_real_bytes = real_size; 588 if (size) 589 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); 590 ifp->if_flags &= ~XFS_IFEXTENTS; 591 ifp->if_flags |= XFS_IFINLINE; 592 return 0; 593 } 594 595 /* 596 * The file consists of a set of extents all 597 * of which fit into the on-disk inode. 598 * If there are few enough extents to fit into 599 * the if_inline_ext, then copy them there. 600 * Otherwise allocate a buffer for them and copy 601 * them into it. Either way, set if_extents 602 * to point at the extents. 603 */ 604 STATIC int 605 xfs_iformat_extents( 606 xfs_inode_t *ip, 607 xfs_dinode_t *dip, 608 int whichfork) 609 { 610 xfs_bmbt_rec_t *ep, *dp; 611 xfs_ifork_t *ifp; 612 int nex; 613 int real_size; 614 int size; 615 int i; 616 617 ifp = XFS_IFORK_PTR(ip, whichfork); 618 nex = XFS_DFORK_NEXTENTS(dip, whichfork); 619 size = nex * (uint)sizeof(xfs_bmbt_rec_t); 620 621 /* 622 * If the number of extents is unreasonable, then something 623 * is wrong and we just bail out rather than crash in 624 * kmem_alloc() or memcpy() below. 625 */ 626 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 627 xfs_fs_cmn_err(CE_WARN, ip->i_mount, 628 "corrupt inode %Lu ((a)extents = %d). Unmount and run xfs_repair.", 629 (unsigned long long) ip->i_ino, nex); 630 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, 631 ip->i_mount, dip); 632 return XFS_ERROR(EFSCORRUPTED); 633 } 634 635 real_size = 0; 636 if (nex == 0) 637 ifp->if_u1.if_extents = NULL; 638 else if (nex <= XFS_INLINE_EXTS) 639 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 640 else { 641 ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP); 642 ASSERT(ifp->if_u1.if_extents != NULL); 643 real_size = size; 644 } 645 ifp->if_bytes = size; 646 ifp->if_real_bytes = real_size; 647 if (size) { 648 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 649 xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip)); 650 ep = ifp->if_u1.if_extents; 651 for (i = 0; i < nex; i++, ep++, dp++) { 652 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0), 653 ARCH_CONVERT); 654 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1), 655 ARCH_CONVERT); 656 } 657 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex, 658 whichfork); 659 if (whichfork != XFS_DATA_FORK || 660 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) 661 if (unlikely(xfs_check_nostate_extents( 662 ifp->if_u1.if_extents, nex))) { 663 XFS_ERROR_REPORT("xfs_iformat_extents(2)", 664 XFS_ERRLEVEL_LOW, 665 ip->i_mount); 666 return XFS_ERROR(EFSCORRUPTED); 667 } 668 } 669 ifp->if_flags |= XFS_IFEXTENTS; 670 return 0; 671 } 672 673 /* 674 * The file has too many extents to fit into 675 * the inode, so they are in B-tree format. 676 * Allocate a buffer for the root of the B-tree 677 * and copy the root into it. The i_extents 678 * field will remain NULL until all of the 679 * extents are read in (when they are needed). 680 */ 681 STATIC int 682 xfs_iformat_btree( 683 xfs_inode_t *ip, 684 xfs_dinode_t *dip, 685 int whichfork) 686 { 687 xfs_bmdr_block_t *dfp; 688 xfs_ifork_t *ifp; 689 /* REFERENCED */ 690 int nrecs; 691 int size; 692 693 ifp = XFS_IFORK_PTR(ip, whichfork); 694 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 695 size = XFS_BMAP_BROOT_SPACE(dfp); 696 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp); 697 698 /* 699 * blow out if -- fork has less extents than can fit in 700 * fork (fork shouldn't be a btree format), root btree 701 * block has more records than can fit into the fork, 702 * or the number of extents is greater than the number of 703 * blocks. 704 */ 705 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max 706 || XFS_BMDR_SPACE_CALC(nrecs) > 707 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) 708 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { 709 xfs_fs_cmn_err(CE_WARN, ip->i_mount, 710 "corrupt inode %Lu (btree). Unmount and run xfs_repair.", 711 (unsigned long long) ip->i_ino); 712 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, 713 ip->i_mount); 714 return XFS_ERROR(EFSCORRUPTED); 715 } 716 717 ifp->if_broot_bytes = size; 718 ifp->if_broot = kmem_alloc(size, KM_SLEEP); 719 ASSERT(ifp->if_broot != NULL); 720 /* 721 * Copy and convert from the on-disk structure 722 * to the in-memory structure. 723 */ 724 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 725 ifp->if_broot, size); 726 ifp->if_flags &= ~XFS_IFEXTENTS; 727 ifp->if_flags |= XFS_IFBROOT; 728 729 return 0; 730 } 731 732 /* 733 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk 734 * and native format 735 * 736 * buf = on-disk representation 737 * dip = native representation 738 * dir = direction - +ve -> disk to native 739 * -ve -> native to disk 740 */ 741 void 742 xfs_xlate_dinode_core( 743 xfs_caddr_t buf, 744 xfs_dinode_core_t *dip, 745 int dir) 746 { 747 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf; 748 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip; 749 xfs_arch_t arch = ARCH_CONVERT; 750 751 ASSERT(dir); 752 753 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch); 754 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch); 755 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch); 756 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch); 757 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch); 758 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch); 759 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch); 760 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch); 761 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch); 762 763 if (dir > 0) { 764 memcpy(mem_core->di_pad, buf_core->di_pad, 765 sizeof(buf_core->di_pad)); 766 } else { 767 memcpy(buf_core->di_pad, mem_core->di_pad, 768 sizeof(buf_core->di_pad)); 769 } 770 771 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch); 772 773 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec, 774 dir, arch); 775 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec, 776 dir, arch); 777 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec, 778 dir, arch); 779 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec, 780 dir, arch); 781 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec, 782 dir, arch); 783 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec, 784 dir, arch); 785 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch); 786 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch); 787 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch); 788 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch); 789 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch); 790 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch); 791 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch); 792 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch); 793 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch); 794 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch); 795 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch); 796 } 797 798 STATIC uint 799 _xfs_dic2xflags( 800 xfs_dinode_core_t *dic, 801 __uint16_t di_flags) 802 { 803 uint flags = 0; 804 805 if (di_flags & XFS_DIFLAG_ANY) { 806 if (di_flags & XFS_DIFLAG_REALTIME) 807 flags |= XFS_XFLAG_REALTIME; 808 if (di_flags & XFS_DIFLAG_PREALLOC) 809 flags |= XFS_XFLAG_PREALLOC; 810 if (di_flags & XFS_DIFLAG_IMMUTABLE) 811 flags |= XFS_XFLAG_IMMUTABLE; 812 if (di_flags & XFS_DIFLAG_APPEND) 813 flags |= XFS_XFLAG_APPEND; 814 if (di_flags & XFS_DIFLAG_SYNC) 815 flags |= XFS_XFLAG_SYNC; 816 if (di_flags & XFS_DIFLAG_NOATIME) 817 flags |= XFS_XFLAG_NOATIME; 818 if (di_flags & XFS_DIFLAG_NODUMP) 819 flags |= XFS_XFLAG_NODUMP; 820 if (di_flags & XFS_DIFLAG_RTINHERIT) 821 flags |= XFS_XFLAG_RTINHERIT; 822 if (di_flags & XFS_DIFLAG_PROJINHERIT) 823 flags |= XFS_XFLAG_PROJINHERIT; 824 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 825 flags |= XFS_XFLAG_NOSYMLINKS; 826 } 827 828 return flags; 829 } 830 831 uint 832 xfs_ip2xflags( 833 xfs_inode_t *ip) 834 { 835 xfs_dinode_core_t *dic = &ip->i_d; 836 837 return _xfs_dic2xflags(dic, dic->di_flags) | 838 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0); 839 } 840 841 uint 842 xfs_dic2xflags( 843 xfs_dinode_core_t *dic) 844 { 845 return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) | 846 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0); 847 } 848 849 /* 850 * Given a mount structure and an inode number, return a pointer 851 * to a newly allocated in-core inode coresponding to the given 852 * inode number. 853 * 854 * Initialize the inode's attributes and extent pointers if it 855 * already has them (it will not if the inode has no links). 856 */ 857 int 858 xfs_iread( 859 xfs_mount_t *mp, 860 xfs_trans_t *tp, 861 xfs_ino_t ino, 862 xfs_inode_t **ipp, 863 xfs_daddr_t bno) 864 { 865 xfs_buf_t *bp; 866 xfs_dinode_t *dip; 867 xfs_inode_t *ip; 868 int error; 869 870 ASSERT(xfs_inode_zone != NULL); 871 872 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP); 873 ip->i_ino = ino; 874 ip->i_mount = mp; 875 876 /* 877 * Get pointer's to the on-disk inode and the buffer containing it. 878 * If the inode number refers to a block outside the file system 879 * then xfs_itobp() will return NULL. In this case we should 880 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will 881 * know that this is a new incore inode. 882 */ 883 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno); 884 885 if (error != 0) { 886 kmem_zone_free(xfs_inode_zone, ip); 887 return error; 888 } 889 890 /* 891 * Initialize inode's trace buffers. 892 * Do this before xfs_iformat in case it adds entries. 893 */ 894 #ifdef XFS_BMAP_TRACE 895 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP); 896 #endif 897 #ifdef XFS_BMBT_TRACE 898 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP); 899 #endif 900 #ifdef XFS_RW_TRACE 901 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP); 902 #endif 903 #ifdef XFS_ILOCK_TRACE 904 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP); 905 #endif 906 #ifdef XFS_DIR2_TRACE 907 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP); 908 #endif 909 910 /* 911 * If we got something that isn't an inode it means someone 912 * (nfs or dmi) has a stale handle. 913 */ 914 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) { 915 kmem_zone_free(xfs_inode_zone, ip); 916 xfs_trans_brelse(tp, bp); 917 #ifdef DEBUG 918 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 919 "dip->di_core.di_magic (0x%x) != " 920 "XFS_DINODE_MAGIC (0x%x)", 921 INT_GET(dip->di_core.di_magic, ARCH_CONVERT), 922 XFS_DINODE_MAGIC); 923 #endif /* DEBUG */ 924 return XFS_ERROR(EINVAL); 925 } 926 927 /* 928 * If the on-disk inode is already linked to a directory 929 * entry, copy all of the inode into the in-core inode. 930 * xfs_iformat() handles copying in the inode format 931 * specific information. 932 * Otherwise, just get the truly permanent information. 933 */ 934 if (dip->di_core.di_mode) { 935 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, 936 &(ip->i_d), 1); 937 error = xfs_iformat(ip, dip); 938 if (error) { 939 kmem_zone_free(xfs_inode_zone, ip); 940 xfs_trans_brelse(tp, bp); 941 #ifdef DEBUG 942 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 943 "xfs_iformat() returned error %d", 944 error); 945 #endif /* DEBUG */ 946 return error; 947 } 948 } else { 949 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT); 950 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT); 951 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT); 952 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT); 953 /* 954 * Make sure to pull in the mode here as well in 955 * case the inode is released without being used. 956 * This ensures that xfs_inactive() will see that 957 * the inode is already free and not try to mess 958 * with the uninitialized part of it. 959 */ 960 ip->i_d.di_mode = 0; 961 /* 962 * Initialize the per-fork minima and maxima for a new 963 * inode here. xfs_iformat will do it for old inodes. 964 */ 965 ip->i_df.if_ext_max = 966 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 967 } 968 969 INIT_LIST_HEAD(&ip->i_reclaim); 970 971 /* 972 * The inode format changed when we moved the link count and 973 * made it 32 bits long. If this is an old format inode, 974 * convert it in memory to look like a new one. If it gets 975 * flushed to disk we will convert back before flushing or 976 * logging it. We zero out the new projid field and the old link 977 * count field. We'll handle clearing the pad field (the remains 978 * of the old uuid field) when we actually convert the inode to 979 * the new format. We don't change the version number so that we 980 * can distinguish this from a real new format inode. 981 */ 982 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { 983 ip->i_d.di_nlink = ip->i_d.di_onlink; 984 ip->i_d.di_onlink = 0; 985 ip->i_d.di_projid = 0; 986 } 987 988 ip->i_delayed_blks = 0; 989 990 /* 991 * Mark the buffer containing the inode as something to keep 992 * around for a while. This helps to keep recently accessed 993 * meta-data in-core longer. 994 */ 995 XFS_BUF_SET_REF(bp, XFS_INO_REF); 996 997 /* 998 * Use xfs_trans_brelse() to release the buffer containing the 999 * on-disk inode, because it was acquired with xfs_trans_read_buf() 1000 * in xfs_itobp() above. If tp is NULL, this is just a normal 1001 * brelse(). If we're within a transaction, then xfs_trans_brelse() 1002 * will only release the buffer if it is not dirty within the 1003 * transaction. It will be OK to release the buffer in this case, 1004 * because inodes on disk are never destroyed and we will be 1005 * locking the new in-core inode before putting it in the hash 1006 * table where other processes can find it. Thus we don't have 1007 * to worry about the inode being changed just because we released 1008 * the buffer. 1009 */ 1010 xfs_trans_brelse(tp, bp); 1011 *ipp = ip; 1012 return 0; 1013 } 1014 1015 /* 1016 * Read in extents from a btree-format inode. 1017 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. 1018 */ 1019 int 1020 xfs_iread_extents( 1021 xfs_trans_t *tp, 1022 xfs_inode_t *ip, 1023 int whichfork) 1024 { 1025 int error; 1026 xfs_ifork_t *ifp; 1027 size_t size; 1028 1029 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { 1030 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, 1031 ip->i_mount); 1032 return XFS_ERROR(EFSCORRUPTED); 1033 } 1034 size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t); 1035 ifp = XFS_IFORK_PTR(ip, whichfork); 1036 /* 1037 * We know that the size is valid (it's checked in iformat_btree) 1038 */ 1039 ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP); 1040 ASSERT(ifp->if_u1.if_extents != NULL); 1041 ifp->if_lastex = NULLEXTNUM; 1042 ifp->if_bytes = ifp->if_real_bytes = (int)size; 1043 ifp->if_flags |= XFS_IFEXTENTS; 1044 error = xfs_bmap_read_extents(tp, ip, whichfork); 1045 if (error) { 1046 kmem_free(ifp->if_u1.if_extents, size); 1047 ifp->if_u1.if_extents = NULL; 1048 ifp->if_bytes = ifp->if_real_bytes = 0; 1049 ifp->if_flags &= ~XFS_IFEXTENTS; 1050 return error; 1051 } 1052 xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents, 1053 XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip)); 1054 return 0; 1055 } 1056 1057 /* 1058 * Allocate an inode on disk and return a copy of its in-core version. 1059 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 1060 * appropriately within the inode. The uid and gid for the inode are 1061 * set according to the contents of the given cred structure. 1062 * 1063 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 1064 * has a free inode available, call xfs_iget() 1065 * to obtain the in-core version of the allocated inode. Finally, 1066 * fill in the inode and log its initial contents. In this case, 1067 * ialloc_context would be set to NULL and call_again set to false. 1068 * 1069 * If xfs_dialloc() does not have an available inode, 1070 * it will replenish its supply by doing an allocation. Since we can 1071 * only do one allocation within a transaction without deadlocks, we 1072 * must commit the current transaction before returning the inode itself. 1073 * In this case, therefore, we will set call_again to true and return. 1074 * The caller should then commit the current transaction, start a new 1075 * transaction, and call xfs_ialloc() again to actually get the inode. 1076 * 1077 * To ensure that some other process does not grab the inode that 1078 * was allocated during the first call to xfs_ialloc(), this routine 1079 * also returns the [locked] bp pointing to the head of the freelist 1080 * as ialloc_context. The caller should hold this buffer across 1081 * the commit and pass it back into this routine on the second call. 1082 */ 1083 int 1084 xfs_ialloc( 1085 xfs_trans_t *tp, 1086 xfs_inode_t *pip, 1087 mode_t mode, 1088 xfs_nlink_t nlink, 1089 xfs_dev_t rdev, 1090 cred_t *cr, 1091 xfs_prid_t prid, 1092 int okalloc, 1093 xfs_buf_t **ialloc_context, 1094 boolean_t *call_again, 1095 xfs_inode_t **ipp) 1096 { 1097 xfs_ino_t ino; 1098 xfs_inode_t *ip; 1099 vnode_t *vp; 1100 uint flags; 1101 int error; 1102 1103 /* 1104 * Call the space management code to pick 1105 * the on-disk inode to be allocated. 1106 */ 1107 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc, 1108 ialloc_context, call_again, &ino); 1109 if (error != 0) { 1110 return error; 1111 } 1112 if (*call_again || ino == NULLFSINO) { 1113 *ipp = NULL; 1114 return 0; 1115 } 1116 ASSERT(*ialloc_context == NULL); 1117 1118 /* 1119 * Get the in-core inode with the lock held exclusively. 1120 * This is because we're setting fields here we need 1121 * to prevent others from looking at until we're done. 1122 */ 1123 error = xfs_trans_iget(tp->t_mountp, tp, ino, 1124 IGET_CREATE, XFS_ILOCK_EXCL, &ip); 1125 if (error != 0) { 1126 return error; 1127 } 1128 ASSERT(ip != NULL); 1129 1130 vp = XFS_ITOV(ip); 1131 ip->i_d.di_mode = (__uint16_t)mode; 1132 ip->i_d.di_onlink = 0; 1133 ip->i_d.di_nlink = nlink; 1134 ASSERT(ip->i_d.di_nlink == nlink); 1135 ip->i_d.di_uid = current_fsuid(cr); 1136 ip->i_d.di_gid = current_fsgid(cr); 1137 ip->i_d.di_projid = prid; 1138 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1139 1140 /* 1141 * If the superblock version is up to where we support new format 1142 * inodes and this is currently an old format inode, then change 1143 * the inode version number now. This way we only do the conversion 1144 * here rather than here and in the flush/logging code. 1145 */ 1146 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) && 1147 ip->i_d.di_version == XFS_DINODE_VERSION_1) { 1148 ip->i_d.di_version = XFS_DINODE_VERSION_2; 1149 /* 1150 * We've already zeroed the old link count, the projid field, 1151 * and the pad field. 1152 */ 1153 } 1154 1155 /* 1156 * Project ids won't be stored on disk if we are using a version 1 inode. 1157 */ 1158 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1)) 1159 xfs_bump_ino_vers2(tp, ip); 1160 1161 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) { 1162 ip->i_d.di_gid = pip->i_d.di_gid; 1163 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { 1164 ip->i_d.di_mode |= S_ISGID; 1165 } 1166 } 1167 1168 /* 1169 * If the group ID of the new file does not match the effective group 1170 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 1171 * (and only if the irix_sgid_inherit compatibility variable is set). 1172 */ 1173 if ((irix_sgid_inherit) && 1174 (ip->i_d.di_mode & S_ISGID) && 1175 (!in_group_p((gid_t)ip->i_d.di_gid))) { 1176 ip->i_d.di_mode &= ~S_ISGID; 1177 } 1178 1179 ip->i_d.di_size = 0; 1180 ip->i_d.di_nextents = 0; 1181 ASSERT(ip->i_d.di_nblocks == 0); 1182 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD); 1183 /* 1184 * di_gen will have been taken care of in xfs_iread. 1185 */ 1186 ip->i_d.di_extsize = 0; 1187 ip->i_d.di_dmevmask = 0; 1188 ip->i_d.di_dmstate = 0; 1189 ip->i_d.di_flags = 0; 1190 flags = XFS_ILOG_CORE; 1191 switch (mode & S_IFMT) { 1192 case S_IFIFO: 1193 case S_IFCHR: 1194 case S_IFBLK: 1195 case S_IFSOCK: 1196 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 1197 ip->i_df.if_u2.if_rdev = rdev; 1198 ip->i_df.if_flags = 0; 1199 flags |= XFS_ILOG_DEV; 1200 break; 1201 case S_IFREG: 1202 case S_IFDIR: 1203 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 1204 uint di_flags = 0; 1205 1206 if ((mode & S_IFMT) == S_IFDIR) { 1207 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1208 di_flags |= XFS_DIFLAG_RTINHERIT; 1209 } else { 1210 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) { 1211 di_flags |= XFS_DIFLAG_REALTIME; 1212 ip->i_iocore.io_flags |= XFS_IOCORE_RT; 1213 } 1214 } 1215 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 1216 xfs_inherit_noatime) 1217 di_flags |= XFS_DIFLAG_NOATIME; 1218 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 1219 xfs_inherit_nodump) 1220 di_flags |= XFS_DIFLAG_NODUMP; 1221 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 1222 xfs_inherit_sync) 1223 di_flags |= XFS_DIFLAG_SYNC; 1224 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 1225 xfs_inherit_nosymlinks) 1226 di_flags |= XFS_DIFLAG_NOSYMLINKS; 1227 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 1228 di_flags |= XFS_DIFLAG_PROJINHERIT; 1229 ip->i_d.di_flags |= di_flags; 1230 } 1231 /* FALLTHROUGH */ 1232 case S_IFLNK: 1233 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1234 ip->i_df.if_flags = XFS_IFEXTENTS; 1235 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 1236 ip->i_df.if_u1.if_extents = NULL; 1237 break; 1238 default: 1239 ASSERT(0); 1240 } 1241 /* 1242 * Attribute fork settings for new inode. 1243 */ 1244 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1245 ip->i_d.di_anextents = 0; 1246 1247 /* 1248 * Log the new values stuffed into the inode. 1249 */ 1250 xfs_trans_log_inode(tp, ip, flags); 1251 1252 /* now that we have an i_mode we can set Linux inode ops (& unlock) */ 1253 VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1); 1254 1255 *ipp = ip; 1256 return 0; 1257 } 1258 1259 /* 1260 * Check to make sure that there are no blocks allocated to the 1261 * file beyond the size of the file. We don't check this for 1262 * files with fixed size extents or real time extents, but we 1263 * at least do it for regular files. 1264 */ 1265 #ifdef DEBUG 1266 void 1267 xfs_isize_check( 1268 xfs_mount_t *mp, 1269 xfs_inode_t *ip, 1270 xfs_fsize_t isize) 1271 { 1272 xfs_fileoff_t map_first; 1273 int nimaps; 1274 xfs_bmbt_irec_t imaps[2]; 1275 1276 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) 1277 return; 1278 1279 if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME ) 1280 return; 1281 1282 nimaps = 2; 1283 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 1284 /* 1285 * The filesystem could be shutting down, so bmapi may return 1286 * an error. 1287 */ 1288 if (xfs_bmapi(NULL, ip, map_first, 1289 (XFS_B_TO_FSB(mp, 1290 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - 1291 map_first), 1292 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, 1293 NULL)) 1294 return; 1295 ASSERT(nimaps == 1); 1296 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); 1297 } 1298 #endif /* DEBUG */ 1299 1300 /* 1301 * Calculate the last possible buffered byte in a file. This must 1302 * include data that was buffered beyond the EOF by the write code. 1303 * This also needs to deal with overflowing the xfs_fsize_t type 1304 * which can happen for sizes near the limit. 1305 * 1306 * We also need to take into account any blocks beyond the EOF. It 1307 * may be the case that they were buffered by a write which failed. 1308 * In that case the pages will still be in memory, but the inode size 1309 * will never have been updated. 1310 */ 1311 xfs_fsize_t 1312 xfs_file_last_byte( 1313 xfs_inode_t *ip) 1314 { 1315 xfs_mount_t *mp; 1316 xfs_fsize_t last_byte; 1317 xfs_fileoff_t last_block; 1318 xfs_fileoff_t size_last_block; 1319 int error; 1320 1321 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS)); 1322 1323 mp = ip->i_mount; 1324 /* 1325 * Only check for blocks beyond the EOF if the extents have 1326 * been read in. This eliminates the need for the inode lock, 1327 * and it also saves us from looking when it really isn't 1328 * necessary. 1329 */ 1330 if (ip->i_df.if_flags & XFS_IFEXTENTS) { 1331 error = xfs_bmap_last_offset(NULL, ip, &last_block, 1332 XFS_DATA_FORK); 1333 if (error) { 1334 last_block = 0; 1335 } 1336 } else { 1337 last_block = 0; 1338 } 1339 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size); 1340 last_block = XFS_FILEOFF_MAX(last_block, size_last_block); 1341 1342 last_byte = XFS_FSB_TO_B(mp, last_block); 1343 if (last_byte < 0) { 1344 return XFS_MAXIOFFSET(mp); 1345 } 1346 last_byte += (1 << mp->m_writeio_log); 1347 if (last_byte < 0) { 1348 return XFS_MAXIOFFSET(mp); 1349 } 1350 return last_byte; 1351 } 1352 1353 #if defined(XFS_RW_TRACE) 1354 STATIC void 1355 xfs_itrunc_trace( 1356 int tag, 1357 xfs_inode_t *ip, 1358 int flag, 1359 xfs_fsize_t new_size, 1360 xfs_off_t toss_start, 1361 xfs_off_t toss_finish) 1362 { 1363 if (ip->i_rwtrace == NULL) { 1364 return; 1365 } 1366 1367 ktrace_enter(ip->i_rwtrace, 1368 (void*)((long)tag), 1369 (void*)ip, 1370 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff), 1371 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff), 1372 (void*)((long)flag), 1373 (void*)(unsigned long)((new_size >> 32) & 0xffffffff), 1374 (void*)(unsigned long)(new_size & 0xffffffff), 1375 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff), 1376 (void*)(unsigned long)(toss_start & 0xffffffff), 1377 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff), 1378 (void*)(unsigned long)(toss_finish & 0xffffffff), 1379 (void*)(unsigned long)current_cpu(), 1380 (void*)0, 1381 (void*)0, 1382 (void*)0, 1383 (void*)0); 1384 } 1385 #else 1386 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) 1387 #endif 1388 1389 /* 1390 * Start the truncation of the file to new_size. The new size 1391 * must be smaller than the current size. This routine will 1392 * clear the buffer and page caches of file data in the removed 1393 * range, and xfs_itruncate_finish() will remove the underlying 1394 * disk blocks. 1395 * 1396 * The inode must have its I/O lock locked EXCLUSIVELY, and it 1397 * must NOT have the inode lock held at all. This is because we're 1398 * calling into the buffer/page cache code and we can't hold the 1399 * inode lock when we do so. 1400 * 1401 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE 1402 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used 1403 * in the case that the caller is locking things out of order and 1404 * may not be able to call xfs_itruncate_finish() with the inode lock 1405 * held without dropping the I/O lock. If the caller must drop the 1406 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() 1407 * must be called again with all the same restrictions as the initial 1408 * call. 1409 */ 1410 void 1411 xfs_itruncate_start( 1412 xfs_inode_t *ip, 1413 uint flags, 1414 xfs_fsize_t new_size) 1415 { 1416 xfs_fsize_t last_byte; 1417 xfs_off_t toss_start; 1418 xfs_mount_t *mp; 1419 vnode_t *vp; 1420 1421 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); 1422 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); 1423 ASSERT((flags == XFS_ITRUNC_DEFINITE) || 1424 (flags == XFS_ITRUNC_MAYBE)); 1425 1426 mp = ip->i_mount; 1427 vp = XFS_ITOV(ip); 1428 /* 1429 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers 1430 * overlapping the region being removed. We have to use 1431 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the 1432 * caller may not be able to finish the truncate without 1433 * dropping the inode's I/O lock. Make sure 1434 * to catch any pages brought in by buffers overlapping 1435 * the EOF by searching out beyond the isize by our 1436 * block size. We round new_size up to a block boundary 1437 * so that we don't toss things on the same block as 1438 * new_size but before it. 1439 * 1440 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to 1441 * call remapf() over the same region if the file is mapped. 1442 * This frees up mapped file references to the pages in the 1443 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures 1444 * that we get the latest mapped changes flushed out. 1445 */ 1446 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1447 toss_start = XFS_FSB_TO_B(mp, toss_start); 1448 if (toss_start < 0) { 1449 /* 1450 * The place to start tossing is beyond our maximum 1451 * file size, so there is no way that the data extended 1452 * out there. 1453 */ 1454 return; 1455 } 1456 last_byte = xfs_file_last_byte(ip); 1457 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, 1458 last_byte); 1459 if (last_byte > toss_start) { 1460 if (flags & XFS_ITRUNC_DEFINITE) { 1461 VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); 1462 } else { 1463 VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); 1464 } 1465 } 1466 1467 #ifdef DEBUG 1468 if (new_size == 0) { 1469 ASSERT(VN_CACHED(vp) == 0); 1470 } 1471 #endif 1472 } 1473 1474 /* 1475 * Shrink the file to the given new_size. The new 1476 * size must be smaller than the current size. 1477 * This will free up the underlying blocks 1478 * in the removed range after a call to xfs_itruncate_start() 1479 * or xfs_atruncate_start(). 1480 * 1481 * The transaction passed to this routine must have made 1482 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES. 1483 * This routine may commit the given transaction and 1484 * start new ones, so make sure everything involved in 1485 * the transaction is tidy before calling here. 1486 * Some transaction will be returned to the caller to be 1487 * committed. The incoming transaction must already include 1488 * the inode, and both inode locks must be held exclusively. 1489 * The inode must also be "held" within the transaction. On 1490 * return the inode will be "held" within the returned transaction. 1491 * This routine does NOT require any disk space to be reserved 1492 * for it within the transaction. 1493 * 1494 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, 1495 * and it indicates the fork which is to be truncated. For the 1496 * attribute fork we only support truncation to size 0. 1497 * 1498 * We use the sync parameter to indicate whether or not the first 1499 * transaction we perform might have to be synchronous. For the attr fork, 1500 * it needs to be so if the unlink of the inode is not yet known to be 1501 * permanent in the log. This keeps us from freeing and reusing the 1502 * blocks of the attribute fork before the unlink of the inode becomes 1503 * permanent. 1504 * 1505 * For the data fork, we normally have to run synchronously if we're 1506 * being called out of the inactive path or we're being called 1507 * out of the create path where we're truncating an existing file. 1508 * Either way, the truncate needs to be sync so blocks don't reappear 1509 * in the file with altered data in case of a crash. wsync filesystems 1510 * can run the first case async because anything that shrinks the inode 1511 * has to run sync so by the time we're called here from inactive, the 1512 * inode size is permanently set to 0. 1513 * 1514 * Calls from the truncate path always need to be sync unless we're 1515 * in a wsync filesystem and the file has already been unlinked. 1516 * 1517 * The caller is responsible for correctly setting the sync parameter. 1518 * It gets too hard for us to guess here which path we're being called 1519 * out of just based on inode state. 1520 */ 1521 int 1522 xfs_itruncate_finish( 1523 xfs_trans_t **tp, 1524 xfs_inode_t *ip, 1525 xfs_fsize_t new_size, 1526 int fork, 1527 int sync) 1528 { 1529 xfs_fsblock_t first_block; 1530 xfs_fileoff_t first_unmap_block; 1531 xfs_fileoff_t last_block; 1532 xfs_filblks_t unmap_len=0; 1533 xfs_mount_t *mp; 1534 xfs_trans_t *ntp; 1535 int done; 1536 int committed; 1537 xfs_bmap_free_t free_list; 1538 int error; 1539 1540 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); 1541 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0); 1542 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); 1543 ASSERT(*tp != NULL); 1544 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 1545 ASSERT(ip->i_transp == *tp); 1546 ASSERT(ip->i_itemp != NULL); 1547 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); 1548 1549 1550 ntp = *tp; 1551 mp = (ntp)->t_mountp; 1552 ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); 1553 1554 /* 1555 * We only support truncating the entire attribute fork. 1556 */ 1557 if (fork == XFS_ATTR_FORK) { 1558 new_size = 0LL; 1559 } 1560 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1561 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); 1562 /* 1563 * The first thing we do is set the size to new_size permanently 1564 * on disk. This way we don't have to worry about anyone ever 1565 * being able to look at the data being freed even in the face 1566 * of a crash. What we're getting around here is the case where 1567 * we free a block, it is allocated to another file, it is written 1568 * to, and then we crash. If the new data gets written to the 1569 * file but the log buffers containing the free and reallocation 1570 * don't, then we'd end up with garbage in the blocks being freed. 1571 * As long as we make the new_size permanent before actually 1572 * freeing any blocks it doesn't matter if they get writtten to. 1573 * 1574 * The callers must signal into us whether or not the size 1575 * setting here must be synchronous. There are a few cases 1576 * where it doesn't have to be synchronous. Those cases 1577 * occur if the file is unlinked and we know the unlink is 1578 * permanent or if the blocks being truncated are guaranteed 1579 * to be beyond the inode eof (regardless of the link count) 1580 * and the eof value is permanent. Both of these cases occur 1581 * only on wsync-mounted filesystems. In those cases, we're 1582 * guaranteed that no user will ever see the data in the blocks 1583 * that are being truncated so the truncate can run async. 1584 * In the free beyond eof case, the file may wind up with 1585 * more blocks allocated to it than it needs if we crash 1586 * and that won't get fixed until the next time the file 1587 * is re-opened and closed but that's ok as that shouldn't 1588 * be too many blocks. 1589 * 1590 * However, we can't just make all wsync xactions run async 1591 * because there's one call out of the create path that needs 1592 * to run sync where it's truncating an existing file to size 1593 * 0 whose size is > 0. 1594 * 1595 * It's probably possible to come up with a test in this 1596 * routine that would correctly distinguish all the above 1597 * cases from the values of the function parameters and the 1598 * inode state but for sanity's sake, I've decided to let the 1599 * layers above just tell us. It's simpler to correctly figure 1600 * out in the layer above exactly under what conditions we 1601 * can run async and I think it's easier for others read and 1602 * follow the logic in case something has to be changed. 1603 * cscope is your friend -- rcc. 1604 * 1605 * The attribute fork is much simpler. 1606 * 1607 * For the attribute fork we allow the caller to tell us whether 1608 * the unlink of the inode that led to this call is yet permanent 1609 * in the on disk log. If it is not and we will be freeing extents 1610 * in this inode then we make the first transaction synchronous 1611 * to make sure that the unlink is permanent by the time we free 1612 * the blocks. 1613 */ 1614 if (fork == XFS_DATA_FORK) { 1615 if (ip->i_d.di_nextents > 0) { 1616 ip->i_d.di_size = new_size; 1617 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1618 } 1619 } else if (sync) { 1620 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); 1621 if (ip->i_d.di_anextents > 0) 1622 xfs_trans_set_sync(ntp); 1623 } 1624 ASSERT(fork == XFS_DATA_FORK || 1625 (fork == XFS_ATTR_FORK && 1626 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || 1627 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); 1628 1629 /* 1630 * Since it is possible for space to become allocated beyond 1631 * the end of the file (in a crash where the space is allocated 1632 * but the inode size is not yet updated), simply remove any 1633 * blocks which show up between the new EOF and the maximum 1634 * possible file size. If the first block to be removed is 1635 * beyond the maximum file size (ie it is the same as last_block), 1636 * then there is nothing to do. 1637 */ 1638 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); 1639 ASSERT(first_unmap_block <= last_block); 1640 done = 0; 1641 if (last_block == first_unmap_block) { 1642 done = 1; 1643 } else { 1644 unmap_len = last_block - first_unmap_block + 1; 1645 } 1646 while (!done) { 1647 /* 1648 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() 1649 * will tell us whether it freed the entire range or 1650 * not. If this is a synchronous mount (wsync), 1651 * then we can tell bunmapi to keep all the 1652 * transactions asynchronous since the unlink 1653 * transaction that made this inode inactive has 1654 * already hit the disk. There's no danger of 1655 * the freed blocks being reused, there being a 1656 * crash, and the reused blocks suddenly reappearing 1657 * in this file with garbage in them once recovery 1658 * runs. 1659 */ 1660 XFS_BMAP_INIT(&free_list, &first_block); 1661 error = xfs_bunmapi(ntp, ip, first_unmap_block, 1662 unmap_len, 1663 XFS_BMAPI_AFLAG(fork) | 1664 (sync ? 0 : XFS_BMAPI_ASYNC), 1665 XFS_ITRUNC_MAX_EXTENTS, 1666 &first_block, &free_list, &done); 1667 if (error) { 1668 /* 1669 * If the bunmapi call encounters an error, 1670 * return to the caller where the transaction 1671 * can be properly aborted. We just need to 1672 * make sure we're not holding any resources 1673 * that we were not when we came in. 1674 */ 1675 xfs_bmap_cancel(&free_list); 1676 return error; 1677 } 1678 1679 /* 1680 * Duplicate the transaction that has the permanent 1681 * reservation and commit the old transaction. 1682 */ 1683 error = xfs_bmap_finish(tp, &free_list, first_block, 1684 &committed); 1685 ntp = *tp; 1686 if (error) { 1687 /* 1688 * If the bmap finish call encounters an error, 1689 * return to the caller where the transaction 1690 * can be properly aborted. We just need to 1691 * make sure we're not holding any resources 1692 * that we were not when we came in. 1693 * 1694 * Aborting from this point might lose some 1695 * blocks in the file system, but oh well. 1696 */ 1697 xfs_bmap_cancel(&free_list); 1698 if (committed) { 1699 /* 1700 * If the passed in transaction committed 1701 * in xfs_bmap_finish(), then we want to 1702 * add the inode to this one before returning. 1703 * This keeps things simple for the higher 1704 * level code, because it always knows that 1705 * the inode is locked and held in the 1706 * transaction that returns to it whether 1707 * errors occur or not. We don't mark the 1708 * inode dirty so that this transaction can 1709 * be easily aborted if possible. 1710 */ 1711 xfs_trans_ijoin(ntp, ip, 1712 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1713 xfs_trans_ihold(ntp, ip); 1714 } 1715 return error; 1716 } 1717 1718 if (committed) { 1719 /* 1720 * The first xact was committed, 1721 * so add the inode to the new one. 1722 * Mark it dirty so it will be logged 1723 * and moved forward in the log as 1724 * part of every commit. 1725 */ 1726 xfs_trans_ijoin(ntp, ip, 1727 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1728 xfs_trans_ihold(ntp, ip); 1729 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1730 } 1731 ntp = xfs_trans_dup(ntp); 1732 (void) xfs_trans_commit(*tp, 0, NULL); 1733 *tp = ntp; 1734 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 1735 XFS_TRANS_PERM_LOG_RES, 1736 XFS_ITRUNCATE_LOG_COUNT); 1737 /* 1738 * Add the inode being truncated to the next chained 1739 * transaction. 1740 */ 1741 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1742 xfs_trans_ihold(ntp, ip); 1743 if (error) 1744 return (error); 1745 } 1746 /* 1747 * Only update the size in the case of the data fork, but 1748 * always re-log the inode so that our permanent transaction 1749 * can keep on rolling it forward in the log. 1750 */ 1751 if (fork == XFS_DATA_FORK) { 1752 xfs_isize_check(mp, ip, new_size); 1753 ip->i_d.di_size = new_size; 1754 } 1755 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1756 ASSERT((new_size != 0) || 1757 (fork == XFS_ATTR_FORK) || 1758 (ip->i_delayed_blks == 0)); 1759 ASSERT((new_size != 0) || 1760 (fork == XFS_ATTR_FORK) || 1761 (ip->i_d.di_nextents == 0)); 1762 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); 1763 return 0; 1764 } 1765 1766 1767 /* 1768 * xfs_igrow_start 1769 * 1770 * Do the first part of growing a file: zero any data in the last 1771 * block that is beyond the old EOF. We need to do this before 1772 * the inode is joined to the transaction to modify the i_size. 1773 * That way we can drop the inode lock and call into the buffer 1774 * cache to get the buffer mapping the EOF. 1775 */ 1776 int 1777 xfs_igrow_start( 1778 xfs_inode_t *ip, 1779 xfs_fsize_t new_size, 1780 cred_t *credp) 1781 { 1782 xfs_fsize_t isize; 1783 int error; 1784 1785 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); 1786 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); 1787 ASSERT(new_size > ip->i_d.di_size); 1788 1789 error = 0; 1790 isize = ip->i_d.di_size; 1791 /* 1792 * Zero any pages that may have been created by 1793 * xfs_write_file() beyond the end of the file 1794 * and any blocks between the old and new file sizes. 1795 */ 1796 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize, 1797 new_size); 1798 return error; 1799 } 1800 1801 /* 1802 * xfs_igrow_finish 1803 * 1804 * This routine is called to extend the size of a file. 1805 * The inode must have both the iolock and the ilock locked 1806 * for update and it must be a part of the current transaction. 1807 * The xfs_igrow_start() function must have been called previously. 1808 * If the change_flag is not zero, the inode change timestamp will 1809 * be updated. 1810 */ 1811 void 1812 xfs_igrow_finish( 1813 xfs_trans_t *tp, 1814 xfs_inode_t *ip, 1815 xfs_fsize_t new_size, 1816 int change_flag) 1817 { 1818 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); 1819 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); 1820 ASSERT(ip->i_transp == tp); 1821 ASSERT(new_size > ip->i_d.di_size); 1822 1823 /* 1824 * Update the file size. Update the inode change timestamp 1825 * if change_flag set. 1826 */ 1827 ip->i_d.di_size = new_size; 1828 if (change_flag) 1829 xfs_ichgtime(ip, XFS_ICHGTIME_CHG); 1830 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1831 1832 } 1833 1834 1835 /* 1836 * This is called when the inode's link count goes to 0. 1837 * We place the on-disk inode on a list in the AGI. It 1838 * will be pulled from this list when the inode is freed. 1839 */ 1840 int 1841 xfs_iunlink( 1842 xfs_trans_t *tp, 1843 xfs_inode_t *ip) 1844 { 1845 xfs_mount_t *mp; 1846 xfs_agi_t *agi; 1847 xfs_dinode_t *dip; 1848 xfs_buf_t *agibp; 1849 xfs_buf_t *ibp; 1850 xfs_agnumber_t agno; 1851 xfs_daddr_t agdaddr; 1852 xfs_agino_t agino; 1853 short bucket_index; 1854 int offset; 1855 int error; 1856 int agi_ok; 1857 1858 ASSERT(ip->i_d.di_nlink == 0); 1859 ASSERT(ip->i_d.di_mode != 0); 1860 ASSERT(ip->i_transp == tp); 1861 1862 mp = tp->t_mountp; 1863 1864 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1865 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 1866 1867 /* 1868 * Get the agi buffer first. It ensures lock ordering 1869 * on the list. 1870 */ 1871 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, 1872 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 1873 if (error) { 1874 return error; 1875 } 1876 /* 1877 * Validate the magic number of the agi block. 1878 */ 1879 agi = XFS_BUF_TO_AGI(agibp); 1880 agi_ok = 1881 INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC && 1882 XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT)); 1883 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK, 1884 XFS_RANDOM_IUNLINK))) { 1885 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi); 1886 xfs_trans_brelse(tp, agibp); 1887 return XFS_ERROR(EFSCORRUPTED); 1888 } 1889 /* 1890 * Get the index into the agi hash table for the 1891 * list this inode will go on. 1892 */ 1893 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1894 ASSERT(agino != 0); 1895 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1896 ASSERT(agi->agi_unlinked[bucket_index]); 1897 ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != agino); 1898 1899 if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO) { 1900 /* 1901 * There is already another inode in the bucket we need 1902 * to add ourselves to. Add us at the front of the list. 1903 * Here we put the head pointer into our next pointer, 1904 * and then we fall through to point the head at us. 1905 */ 1906 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); 1907 if (error) { 1908 return error; 1909 } 1910 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO); 1911 ASSERT(dip->di_next_unlinked); 1912 /* both on-disk, don't endian flip twice */ 1913 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1914 offset = ip->i_boffset + 1915 offsetof(xfs_dinode_t, di_next_unlinked); 1916 xfs_trans_inode_buf(tp, ibp); 1917 xfs_trans_log_buf(tp, ibp, offset, 1918 (offset + sizeof(xfs_agino_t) - 1)); 1919 xfs_inobp_check(mp, ibp); 1920 } 1921 1922 /* 1923 * Point the bucket head pointer at the inode being inserted. 1924 */ 1925 ASSERT(agino != 0); 1926 INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, agino); 1927 offset = offsetof(xfs_agi_t, agi_unlinked) + 1928 (sizeof(xfs_agino_t) * bucket_index); 1929 xfs_trans_log_buf(tp, agibp, offset, 1930 (offset + sizeof(xfs_agino_t) - 1)); 1931 return 0; 1932 } 1933 1934 /* 1935 * Pull the on-disk inode from the AGI unlinked list. 1936 */ 1937 STATIC int 1938 xfs_iunlink_remove( 1939 xfs_trans_t *tp, 1940 xfs_inode_t *ip) 1941 { 1942 xfs_ino_t next_ino; 1943 xfs_mount_t *mp; 1944 xfs_agi_t *agi; 1945 xfs_dinode_t *dip; 1946 xfs_buf_t *agibp; 1947 xfs_buf_t *ibp; 1948 xfs_agnumber_t agno; 1949 xfs_daddr_t agdaddr; 1950 xfs_agino_t agino; 1951 xfs_agino_t next_agino; 1952 xfs_buf_t *last_ibp; 1953 xfs_dinode_t *last_dip; 1954 short bucket_index; 1955 int offset, last_offset; 1956 int error; 1957 int agi_ok; 1958 1959 /* 1960 * First pull the on-disk inode from the AGI unlinked list. 1961 */ 1962 mp = tp->t_mountp; 1963 1964 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1965 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 1966 1967 /* 1968 * Get the agi buffer first. It ensures lock ordering 1969 * on the list. 1970 */ 1971 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, 1972 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 1973 if (error) { 1974 cmn_err(CE_WARN, 1975 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.", 1976 error, mp->m_fsname); 1977 return error; 1978 } 1979 /* 1980 * Validate the magic number of the agi block. 1981 */ 1982 agi = XFS_BUF_TO_AGI(agibp); 1983 agi_ok = 1984 INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC && 1985 XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT)); 1986 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE, 1987 XFS_RANDOM_IUNLINK_REMOVE))) { 1988 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW, 1989 mp, agi); 1990 xfs_trans_brelse(tp, agibp); 1991 cmn_err(CE_WARN, 1992 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.", 1993 mp->m_fsname); 1994 return XFS_ERROR(EFSCORRUPTED); 1995 } 1996 /* 1997 * Get the index into the agi hash table for the 1998 * list this inode will go on. 1999 */ 2000 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2001 ASSERT(agino != 0); 2002 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2003 ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO); 2004 ASSERT(agi->agi_unlinked[bucket_index]); 2005 2006 if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) == agino) { 2007 /* 2008 * We're at the head of the list. Get the inode's 2009 * on-disk buffer to see if there is anyone after us 2010 * on the list. Only modify our next pointer if it 2011 * is not already NULLAGINO. This saves us the overhead 2012 * of dealing with the buffer when there is no need to 2013 * change it. 2014 */ 2015 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); 2016 if (error) { 2017 cmn_err(CE_WARN, 2018 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 2019 error, mp->m_fsname); 2020 return error; 2021 } 2022 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); 2023 ASSERT(next_agino != 0); 2024 if (next_agino != NULLAGINO) { 2025 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); 2026 offset = ip->i_boffset + 2027 offsetof(xfs_dinode_t, di_next_unlinked); 2028 xfs_trans_inode_buf(tp, ibp); 2029 xfs_trans_log_buf(tp, ibp, offset, 2030 (offset + sizeof(xfs_agino_t) - 1)); 2031 xfs_inobp_check(mp, ibp); 2032 } else { 2033 xfs_trans_brelse(tp, ibp); 2034 } 2035 /* 2036 * Point the bucket head pointer at the next inode. 2037 */ 2038 ASSERT(next_agino != 0); 2039 ASSERT(next_agino != agino); 2040 INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, next_agino); 2041 offset = offsetof(xfs_agi_t, agi_unlinked) + 2042 (sizeof(xfs_agino_t) * bucket_index); 2043 xfs_trans_log_buf(tp, agibp, offset, 2044 (offset + sizeof(xfs_agino_t) - 1)); 2045 } else { 2046 /* 2047 * We need to search the list for the inode being freed. 2048 */ 2049 next_agino = INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT); 2050 last_ibp = NULL; 2051 while (next_agino != agino) { 2052 /* 2053 * If the last inode wasn't the one pointing to 2054 * us, then release its buffer since we're not 2055 * going to do anything with it. 2056 */ 2057 if (last_ibp != NULL) { 2058 xfs_trans_brelse(tp, last_ibp); 2059 } 2060 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2061 error = xfs_inotobp(mp, tp, next_ino, &last_dip, 2062 &last_ibp, &last_offset); 2063 if (error) { 2064 cmn_err(CE_WARN, 2065 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", 2066 error, mp->m_fsname); 2067 return error; 2068 } 2069 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT); 2070 ASSERT(next_agino != NULLAGINO); 2071 ASSERT(next_agino != 0); 2072 } 2073 /* 2074 * Now last_ibp points to the buffer previous to us on 2075 * the unlinked list. Pull us from the list. 2076 */ 2077 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); 2078 if (error) { 2079 cmn_err(CE_WARN, 2080 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 2081 error, mp->m_fsname); 2082 return error; 2083 } 2084 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); 2085 ASSERT(next_agino != 0); 2086 ASSERT(next_agino != agino); 2087 if (next_agino != NULLAGINO) { 2088 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); 2089 offset = ip->i_boffset + 2090 offsetof(xfs_dinode_t, di_next_unlinked); 2091 xfs_trans_inode_buf(tp, ibp); 2092 xfs_trans_log_buf(tp, ibp, offset, 2093 (offset + sizeof(xfs_agino_t) - 1)); 2094 xfs_inobp_check(mp, ibp); 2095 } else { 2096 xfs_trans_brelse(tp, ibp); 2097 } 2098 /* 2099 * Point the previous inode on the list to the next inode. 2100 */ 2101 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino); 2102 ASSERT(next_agino != 0); 2103 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2104 xfs_trans_inode_buf(tp, last_ibp); 2105 xfs_trans_log_buf(tp, last_ibp, offset, 2106 (offset + sizeof(xfs_agino_t) - 1)); 2107 xfs_inobp_check(mp, last_ibp); 2108 } 2109 return 0; 2110 } 2111 2112 static __inline__ int xfs_inode_clean(xfs_inode_t *ip) 2113 { 2114 return (((ip->i_itemp == NULL) || 2115 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) && 2116 (ip->i_update_core == 0)); 2117 } 2118 2119 STATIC void 2120 xfs_ifree_cluster( 2121 xfs_inode_t *free_ip, 2122 xfs_trans_t *tp, 2123 xfs_ino_t inum) 2124 { 2125 xfs_mount_t *mp = free_ip->i_mount; 2126 int blks_per_cluster; 2127 int nbufs; 2128 int ninodes; 2129 int i, j, found, pre_flushed; 2130 xfs_daddr_t blkno; 2131 xfs_buf_t *bp; 2132 xfs_ihash_t *ih; 2133 xfs_inode_t *ip, **ip_found; 2134 xfs_inode_log_item_t *iip; 2135 xfs_log_item_t *lip; 2136 SPLDECL(s); 2137 2138 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { 2139 blks_per_cluster = 1; 2140 ninodes = mp->m_sb.sb_inopblock; 2141 nbufs = XFS_IALLOC_BLOCKS(mp); 2142 } else { 2143 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / 2144 mp->m_sb.sb_blocksize; 2145 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; 2146 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; 2147 } 2148 2149 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS); 2150 2151 for (j = 0; j < nbufs; j++, inum += ninodes) { 2152 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2153 XFS_INO_TO_AGBNO(mp, inum)); 2154 2155 2156 /* 2157 * Look for each inode in memory and attempt to lock it, 2158 * we can be racing with flush and tail pushing here. 2159 * any inode we get the locks on, add to an array of 2160 * inode items to process later. 2161 * 2162 * The get the buffer lock, we could beat a flush 2163 * or tail pushing thread to the lock here, in which 2164 * case they will go looking for the inode buffer 2165 * and fail, we need some other form of interlock 2166 * here. 2167 */ 2168 found = 0; 2169 for (i = 0; i < ninodes; i++) { 2170 ih = XFS_IHASH(mp, inum + i); 2171 read_lock(&ih->ih_lock); 2172 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { 2173 if (ip->i_ino == inum + i) 2174 break; 2175 } 2176 2177 /* Inode not in memory or we found it already, 2178 * nothing to do 2179 */ 2180 if (!ip || (ip->i_flags & XFS_ISTALE)) { 2181 read_unlock(&ih->ih_lock); 2182 continue; 2183 } 2184 2185 if (xfs_inode_clean(ip)) { 2186 read_unlock(&ih->ih_lock); 2187 continue; 2188 } 2189 2190 /* If we can get the locks then add it to the 2191 * list, otherwise by the time we get the bp lock 2192 * below it will already be attached to the 2193 * inode buffer. 2194 */ 2195 2196 /* This inode will already be locked - by us, lets 2197 * keep it that way. 2198 */ 2199 2200 if (ip == free_ip) { 2201 if (xfs_iflock_nowait(ip)) { 2202 ip->i_flags |= XFS_ISTALE; 2203 2204 if (xfs_inode_clean(ip)) { 2205 xfs_ifunlock(ip); 2206 } else { 2207 ip_found[found++] = ip; 2208 } 2209 } 2210 read_unlock(&ih->ih_lock); 2211 continue; 2212 } 2213 2214 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2215 if (xfs_iflock_nowait(ip)) { 2216 ip->i_flags |= XFS_ISTALE; 2217 2218 if (xfs_inode_clean(ip)) { 2219 xfs_ifunlock(ip); 2220 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2221 } else { 2222 ip_found[found++] = ip; 2223 } 2224 } else { 2225 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2226 } 2227 } 2228 2229 read_unlock(&ih->ih_lock); 2230 } 2231 2232 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2233 mp->m_bsize * blks_per_cluster, 2234 XFS_BUF_LOCK); 2235 2236 pre_flushed = 0; 2237 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 2238 while (lip) { 2239 if (lip->li_type == XFS_LI_INODE) { 2240 iip = (xfs_inode_log_item_t *)lip; 2241 ASSERT(iip->ili_logged == 1); 2242 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done; 2243 AIL_LOCK(mp,s); 2244 iip->ili_flush_lsn = iip->ili_item.li_lsn; 2245 AIL_UNLOCK(mp, s); 2246 iip->ili_inode->i_flags |= XFS_ISTALE; 2247 pre_flushed++; 2248 } 2249 lip = lip->li_bio_list; 2250 } 2251 2252 for (i = 0; i < found; i++) { 2253 ip = ip_found[i]; 2254 iip = ip->i_itemp; 2255 2256 if (!iip) { 2257 ip->i_update_core = 0; 2258 xfs_ifunlock(ip); 2259 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2260 continue; 2261 } 2262 2263 iip->ili_last_fields = iip->ili_format.ilf_fields; 2264 iip->ili_format.ilf_fields = 0; 2265 iip->ili_logged = 1; 2266 AIL_LOCK(mp,s); 2267 iip->ili_flush_lsn = iip->ili_item.li_lsn; 2268 AIL_UNLOCK(mp, s); 2269 2270 xfs_buf_attach_iodone(bp, 2271 (void(*)(xfs_buf_t*,xfs_log_item_t*)) 2272 xfs_istale_done, (xfs_log_item_t *)iip); 2273 if (ip != free_ip) { 2274 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2275 } 2276 } 2277 2278 if (found || pre_flushed) 2279 xfs_trans_stale_inode_buf(tp, bp); 2280 xfs_trans_binval(tp, bp); 2281 } 2282 2283 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *)); 2284 } 2285 2286 /* 2287 * This is called to return an inode to the inode free list. 2288 * The inode should already be truncated to 0 length and have 2289 * no pages associated with it. This routine also assumes that 2290 * the inode is already a part of the transaction. 2291 * 2292 * The on-disk copy of the inode will have been added to the list 2293 * of unlinked inodes in the AGI. We need to remove the inode from 2294 * that list atomically with respect to freeing it here. 2295 */ 2296 int 2297 xfs_ifree( 2298 xfs_trans_t *tp, 2299 xfs_inode_t *ip, 2300 xfs_bmap_free_t *flist) 2301 { 2302 int error; 2303 int delete; 2304 xfs_ino_t first_ino; 2305 2306 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); 2307 ASSERT(ip->i_transp == tp); 2308 ASSERT(ip->i_d.di_nlink == 0); 2309 ASSERT(ip->i_d.di_nextents == 0); 2310 ASSERT(ip->i_d.di_anextents == 0); 2311 ASSERT((ip->i_d.di_size == 0) || 2312 ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); 2313 ASSERT(ip->i_d.di_nblocks == 0); 2314 2315 /* 2316 * Pull the on-disk inode from the AGI unlinked list. 2317 */ 2318 error = xfs_iunlink_remove(tp, ip); 2319 if (error != 0) { 2320 return error; 2321 } 2322 2323 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2324 if (error != 0) { 2325 return error; 2326 } 2327 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2328 ip->i_d.di_flags = 0; 2329 ip->i_d.di_dmevmask = 0; 2330 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2331 ip->i_df.if_ext_max = 2332 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 2333 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2334 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2335 /* 2336 * Bump the generation count so no one will be confused 2337 * by reincarnations of this inode. 2338 */ 2339 ip->i_d.di_gen++; 2340 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2341 2342 if (delete) { 2343 xfs_ifree_cluster(ip, tp, first_ino); 2344 } 2345 2346 return 0; 2347 } 2348 2349 /* 2350 * Reallocate the space for if_broot based on the number of records 2351 * being added or deleted as indicated in rec_diff. Move the records 2352 * and pointers in if_broot to fit the new size. When shrinking this 2353 * will eliminate holes between the records and pointers created by 2354 * the caller. When growing this will create holes to be filled in 2355 * by the caller. 2356 * 2357 * The caller must not request to add more records than would fit in 2358 * the on-disk inode root. If the if_broot is currently NULL, then 2359 * if we adding records one will be allocated. The caller must also 2360 * not request that the number of records go below zero, although 2361 * it can go to zero. 2362 * 2363 * ip -- the inode whose if_broot area is changing 2364 * ext_diff -- the change in the number of records, positive or negative, 2365 * requested for the if_broot array. 2366 */ 2367 void 2368 xfs_iroot_realloc( 2369 xfs_inode_t *ip, 2370 int rec_diff, 2371 int whichfork) 2372 { 2373 int cur_max; 2374 xfs_ifork_t *ifp; 2375 xfs_bmbt_block_t *new_broot; 2376 int new_max; 2377 size_t new_size; 2378 char *np; 2379 char *op; 2380 2381 /* 2382 * Handle the degenerate case quietly. 2383 */ 2384 if (rec_diff == 0) { 2385 return; 2386 } 2387 2388 ifp = XFS_IFORK_PTR(ip, whichfork); 2389 if (rec_diff > 0) { 2390 /* 2391 * If there wasn't any memory allocated before, just 2392 * allocate it now and get out. 2393 */ 2394 if (ifp->if_broot_bytes == 0) { 2395 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); 2396 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size, 2397 KM_SLEEP); 2398 ifp->if_broot_bytes = (int)new_size; 2399 return; 2400 } 2401 2402 /* 2403 * If there is already an existing if_broot, then we need 2404 * to realloc() it and shift the pointers to their new 2405 * location. The records don't change location because 2406 * they are kept butted up against the btree block header. 2407 */ 2408 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); 2409 new_max = cur_max + rec_diff; 2410 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2411 ifp->if_broot = (xfs_bmbt_block_t *) 2412 kmem_realloc(ifp->if_broot, 2413 new_size, 2414 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ 2415 KM_SLEEP); 2416 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2417 ifp->if_broot_bytes); 2418 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2419 (int)new_size); 2420 ifp->if_broot_bytes = (int)new_size; 2421 ASSERT(ifp->if_broot_bytes <= 2422 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2423 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); 2424 return; 2425 } 2426 2427 /* 2428 * rec_diff is less than 0. In this case, we are shrinking the 2429 * if_broot buffer. It must already exist. If we go to zero 2430 * records, just get rid of the root and clear the status bit. 2431 */ 2432 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 2433 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); 2434 new_max = cur_max + rec_diff; 2435 ASSERT(new_max >= 0); 2436 if (new_max > 0) 2437 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2438 else 2439 new_size = 0; 2440 if (new_size > 0) { 2441 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP); 2442 /* 2443 * First copy over the btree block header. 2444 */ 2445 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t)); 2446 } else { 2447 new_broot = NULL; 2448 ifp->if_flags &= ~XFS_IFBROOT; 2449 } 2450 2451 /* 2452 * Only copy the records and pointers if there are any. 2453 */ 2454 if (new_max > 0) { 2455 /* 2456 * First copy the records. 2457 */ 2458 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1, 2459 ifp->if_broot_bytes); 2460 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1, 2461 (int)new_size); 2462 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 2463 2464 /* 2465 * Then copy the pointers. 2466 */ 2467 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2468 ifp->if_broot_bytes); 2469 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1, 2470 (int)new_size); 2471 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); 2472 } 2473 kmem_free(ifp->if_broot, ifp->if_broot_bytes); 2474 ifp->if_broot = new_broot; 2475 ifp->if_broot_bytes = (int)new_size; 2476 ASSERT(ifp->if_broot_bytes <= 2477 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2478 return; 2479 } 2480 2481 2482 /* 2483 * This is called when the amount of space needed for if_extents 2484 * is increased or decreased. The change in size is indicated by 2485 * the number of extents that need to be added or deleted in the 2486 * ext_diff parameter. 2487 * 2488 * If the amount of space needed has decreased below the size of the 2489 * inline buffer, then switch to using the inline buffer. Otherwise, 2490 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 2491 * to what is needed. 2492 * 2493 * ip -- the inode whose if_extents area is changing 2494 * ext_diff -- the change in the number of extents, positive or negative, 2495 * requested for the if_extents array. 2496 */ 2497 void 2498 xfs_iext_realloc( 2499 xfs_inode_t *ip, 2500 int ext_diff, 2501 int whichfork) 2502 { 2503 int byte_diff; 2504 xfs_ifork_t *ifp; 2505 int new_size; 2506 uint rnew_size; 2507 2508 if (ext_diff == 0) { 2509 return; 2510 } 2511 2512 ifp = XFS_IFORK_PTR(ip, whichfork); 2513 byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t); 2514 new_size = (int)ifp->if_bytes + byte_diff; 2515 ASSERT(new_size >= 0); 2516 2517 if (new_size == 0) { 2518 if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) { 2519 ASSERT(ifp->if_real_bytes != 0); 2520 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); 2521 } 2522 ifp->if_u1.if_extents = NULL; 2523 rnew_size = 0; 2524 } else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) { 2525 /* 2526 * If the valid extents can fit in if_inline_ext, 2527 * copy them from the malloc'd vector and free it. 2528 */ 2529 if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) { 2530 /* 2531 * For now, empty files are format EXTENTS, 2532 * so the if_extents pointer is null. 2533 */ 2534 if (ifp->if_u1.if_extents) { 2535 memcpy(ifp->if_u2.if_inline_ext, 2536 ifp->if_u1.if_extents, new_size); 2537 kmem_free(ifp->if_u1.if_extents, 2538 ifp->if_real_bytes); 2539 } 2540 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 2541 } 2542 rnew_size = 0; 2543 } else { 2544 rnew_size = new_size; 2545 if ((rnew_size & (rnew_size - 1)) != 0) 2546 rnew_size = xfs_iroundup(rnew_size); 2547 /* 2548 * Stuck with malloc/realloc. 2549 */ 2550 if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) { 2551 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) 2552 kmem_alloc(rnew_size, KM_SLEEP); 2553 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, 2554 sizeof(ifp->if_u2.if_inline_ext)); 2555 } else if (rnew_size != ifp->if_real_bytes) { 2556 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) 2557 kmem_realloc(ifp->if_u1.if_extents, 2558 rnew_size, 2559 ifp->if_real_bytes, 2560 KM_NOFS); 2561 } 2562 } 2563 ifp->if_real_bytes = rnew_size; 2564 ifp->if_bytes = new_size; 2565 } 2566 2567 2568 /* 2569 * This is called when the amount of space needed for if_data 2570 * is increased or decreased. The change in size is indicated by 2571 * the number of bytes that need to be added or deleted in the 2572 * byte_diff parameter. 2573 * 2574 * If the amount of space needed has decreased below the size of the 2575 * inline buffer, then switch to using the inline buffer. Otherwise, 2576 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 2577 * to what is needed. 2578 * 2579 * ip -- the inode whose if_data area is changing 2580 * byte_diff -- the change in the number of bytes, positive or negative, 2581 * requested for the if_data array. 2582 */ 2583 void 2584 xfs_idata_realloc( 2585 xfs_inode_t *ip, 2586 int byte_diff, 2587 int whichfork) 2588 { 2589 xfs_ifork_t *ifp; 2590 int new_size; 2591 int real_size; 2592 2593 if (byte_diff == 0) { 2594 return; 2595 } 2596 2597 ifp = XFS_IFORK_PTR(ip, whichfork); 2598 new_size = (int)ifp->if_bytes + byte_diff; 2599 ASSERT(new_size >= 0); 2600 2601 if (new_size == 0) { 2602 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2603 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2604 } 2605 ifp->if_u1.if_data = NULL; 2606 real_size = 0; 2607 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { 2608 /* 2609 * If the valid extents/data can fit in if_inline_ext/data, 2610 * copy them from the malloc'd vector and free it. 2611 */ 2612 if (ifp->if_u1.if_data == NULL) { 2613 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2614 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2615 ASSERT(ifp->if_real_bytes != 0); 2616 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, 2617 new_size); 2618 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2619 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2620 } 2621 real_size = 0; 2622 } else { 2623 /* 2624 * Stuck with malloc/realloc. 2625 * For inline data, the underlying buffer must be 2626 * a multiple of 4 bytes in size so that it can be 2627 * logged and stay on word boundaries. We enforce 2628 * that here. 2629 */ 2630 real_size = roundup(new_size, 4); 2631 if (ifp->if_u1.if_data == NULL) { 2632 ASSERT(ifp->if_real_bytes == 0); 2633 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2634 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2635 /* 2636 * Only do the realloc if the underlying size 2637 * is really changing. 2638 */ 2639 if (ifp->if_real_bytes != real_size) { 2640 ifp->if_u1.if_data = 2641 kmem_realloc(ifp->if_u1.if_data, 2642 real_size, 2643 ifp->if_real_bytes, 2644 KM_SLEEP); 2645 } 2646 } else { 2647 ASSERT(ifp->if_real_bytes == 0); 2648 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2649 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, 2650 ifp->if_bytes); 2651 } 2652 } 2653 ifp->if_real_bytes = real_size; 2654 ifp->if_bytes = new_size; 2655 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2656 } 2657 2658 2659 2660 2661 /* 2662 * Map inode to disk block and offset. 2663 * 2664 * mp -- the mount point structure for the current file system 2665 * tp -- the current transaction 2666 * ino -- the inode number of the inode to be located 2667 * imap -- this structure is filled in with the information necessary 2668 * to retrieve the given inode from disk 2669 * flags -- flags to pass to xfs_dilocate indicating whether or not 2670 * lookups in the inode btree were OK or not 2671 */ 2672 int 2673 xfs_imap( 2674 xfs_mount_t *mp, 2675 xfs_trans_t *tp, 2676 xfs_ino_t ino, 2677 xfs_imap_t *imap, 2678 uint flags) 2679 { 2680 xfs_fsblock_t fsbno; 2681 int len; 2682 int off; 2683 int error; 2684 2685 fsbno = imap->im_blkno ? 2686 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK; 2687 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags); 2688 if (error != 0) { 2689 return error; 2690 } 2691 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno); 2692 imap->im_len = XFS_FSB_TO_BB(mp, len); 2693 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno); 2694 imap->im_ioffset = (ushort)off; 2695 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog); 2696 return 0; 2697 } 2698 2699 void 2700 xfs_idestroy_fork( 2701 xfs_inode_t *ip, 2702 int whichfork) 2703 { 2704 xfs_ifork_t *ifp; 2705 2706 ifp = XFS_IFORK_PTR(ip, whichfork); 2707 if (ifp->if_broot != NULL) { 2708 kmem_free(ifp->if_broot, ifp->if_broot_bytes); 2709 ifp->if_broot = NULL; 2710 } 2711 2712 /* 2713 * If the format is local, then we can't have an extents 2714 * array so just look for an inline data array. If we're 2715 * not local then we may or may not have an extents list, 2716 * so check and free it up if we do. 2717 */ 2718 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 2719 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && 2720 (ifp->if_u1.if_data != NULL)) { 2721 ASSERT(ifp->if_real_bytes != 0); 2722 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2723 ifp->if_u1.if_data = NULL; 2724 ifp->if_real_bytes = 0; 2725 } 2726 } else if ((ifp->if_flags & XFS_IFEXTENTS) && 2727 (ifp->if_u1.if_extents != NULL) && 2728 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) { 2729 ASSERT(ifp->if_real_bytes != 0); 2730 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); 2731 ifp->if_u1.if_extents = NULL; 2732 ifp->if_real_bytes = 0; 2733 } 2734 ASSERT(ifp->if_u1.if_extents == NULL || 2735 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); 2736 ASSERT(ifp->if_real_bytes == 0); 2737 if (whichfork == XFS_ATTR_FORK) { 2738 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 2739 ip->i_afp = NULL; 2740 } 2741 } 2742 2743 /* 2744 * This is called free all the memory associated with an inode. 2745 * It must free the inode itself and any buffers allocated for 2746 * if_extents/if_data and if_broot. It must also free the lock 2747 * associated with the inode. 2748 */ 2749 void 2750 xfs_idestroy( 2751 xfs_inode_t *ip) 2752 { 2753 2754 switch (ip->i_d.di_mode & S_IFMT) { 2755 case S_IFREG: 2756 case S_IFDIR: 2757 case S_IFLNK: 2758 xfs_idestroy_fork(ip, XFS_DATA_FORK); 2759 break; 2760 } 2761 if (ip->i_afp) 2762 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 2763 mrfree(&ip->i_lock); 2764 mrfree(&ip->i_iolock); 2765 freesema(&ip->i_flock); 2766 #ifdef XFS_BMAP_TRACE 2767 ktrace_free(ip->i_xtrace); 2768 #endif 2769 #ifdef XFS_BMBT_TRACE 2770 ktrace_free(ip->i_btrace); 2771 #endif 2772 #ifdef XFS_RW_TRACE 2773 ktrace_free(ip->i_rwtrace); 2774 #endif 2775 #ifdef XFS_ILOCK_TRACE 2776 ktrace_free(ip->i_lock_trace); 2777 #endif 2778 #ifdef XFS_DIR2_TRACE 2779 ktrace_free(ip->i_dir_trace); 2780 #endif 2781 if (ip->i_itemp) { 2782 /* XXXdpd should be able to assert this but shutdown 2783 * is leaving the AIL behind. */ 2784 ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) || 2785 XFS_FORCED_SHUTDOWN(ip->i_mount)); 2786 xfs_inode_item_destroy(ip); 2787 } 2788 kmem_zone_free(xfs_inode_zone, ip); 2789 } 2790 2791 2792 /* 2793 * Increment the pin count of the given buffer. 2794 * This value is protected by ipinlock spinlock in the mount structure. 2795 */ 2796 void 2797 xfs_ipin( 2798 xfs_inode_t *ip) 2799 { 2800 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); 2801 2802 atomic_inc(&ip->i_pincount); 2803 } 2804 2805 /* 2806 * Decrement the pin count of the given inode, and wake up 2807 * anyone in xfs_iwait_unpin() if the count goes to 0. The 2808 * inode must have been previoulsy pinned with a call to xfs_ipin(). 2809 */ 2810 void 2811 xfs_iunpin( 2812 xfs_inode_t *ip) 2813 { 2814 ASSERT(atomic_read(&ip->i_pincount) > 0); 2815 2816 if (atomic_dec_and_test(&ip->i_pincount)) { 2817 vnode_t *vp = XFS_ITOV_NULL(ip); 2818 2819 /* make sync come back and flush this inode */ 2820 if (vp) { 2821 struct inode *inode = LINVFS_GET_IP(vp); 2822 2823 if (!(inode->i_state & I_NEW)) 2824 mark_inode_dirty_sync(inode); 2825 } 2826 2827 wake_up(&ip->i_ipin_wait); 2828 } 2829 } 2830 2831 /* 2832 * This is called to wait for the given inode to be unpinned. 2833 * It will sleep until this happens. The caller must have the 2834 * inode locked in at least shared mode so that the buffer cannot 2835 * be subsequently pinned once someone is waiting for it to be 2836 * unpinned. 2837 */ 2838 STATIC void 2839 xfs_iunpin_wait( 2840 xfs_inode_t *ip) 2841 { 2842 xfs_inode_log_item_t *iip; 2843 xfs_lsn_t lsn; 2844 2845 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS)); 2846 2847 if (atomic_read(&ip->i_pincount) == 0) { 2848 return; 2849 } 2850 2851 iip = ip->i_itemp; 2852 if (iip && iip->ili_last_lsn) { 2853 lsn = iip->ili_last_lsn; 2854 } else { 2855 lsn = (xfs_lsn_t)0; 2856 } 2857 2858 /* 2859 * Give the log a push so we don't wait here too long. 2860 */ 2861 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE); 2862 2863 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0)); 2864 } 2865 2866 2867 /* 2868 * xfs_iextents_copy() 2869 * 2870 * This is called to copy the REAL extents (as opposed to the delayed 2871 * allocation extents) from the inode into the given buffer. It 2872 * returns the number of bytes copied into the buffer. 2873 * 2874 * If there are no delayed allocation extents, then we can just 2875 * memcpy() the extents into the buffer. Otherwise, we need to 2876 * examine each extent in turn and skip those which are delayed. 2877 */ 2878 int 2879 xfs_iextents_copy( 2880 xfs_inode_t *ip, 2881 xfs_bmbt_rec_t *buffer, 2882 int whichfork) 2883 { 2884 int copied; 2885 xfs_bmbt_rec_t *dest_ep; 2886 xfs_bmbt_rec_t *ep; 2887 #ifdef XFS_BMAP_TRACE 2888 static char fname[] = "xfs_iextents_copy"; 2889 #endif 2890 int i; 2891 xfs_ifork_t *ifp; 2892 int nrecs; 2893 xfs_fsblock_t start_block; 2894 2895 ifp = XFS_IFORK_PTR(ip, whichfork); 2896 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 2897 ASSERT(ifp->if_bytes > 0); 2898 2899 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2900 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork); 2901 ASSERT(nrecs > 0); 2902 2903 /* 2904 * There are some delayed allocation extents in the 2905 * inode, so copy the extents one at a time and skip 2906 * the delayed ones. There must be at least one 2907 * non-delayed extent. 2908 */ 2909 ep = ifp->if_u1.if_extents; 2910 dest_ep = buffer; 2911 copied = 0; 2912 for (i = 0; i < nrecs; i++) { 2913 start_block = xfs_bmbt_get_startblock(ep); 2914 if (ISNULLSTARTBLOCK(start_block)) { 2915 /* 2916 * It's a delayed allocation extent, so skip it. 2917 */ 2918 ep++; 2919 continue; 2920 } 2921 2922 /* Translate to on disk format */ 2923 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT), 2924 (__uint64_t*)&dest_ep->l0); 2925 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT), 2926 (__uint64_t*)&dest_ep->l1); 2927 dest_ep++; 2928 ep++; 2929 copied++; 2930 } 2931 ASSERT(copied != 0); 2932 xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip)); 2933 2934 return (copied * (uint)sizeof(xfs_bmbt_rec_t)); 2935 } 2936 2937 /* 2938 * Each of the following cases stores data into the same region 2939 * of the on-disk inode, so only one of them can be valid at 2940 * any given time. While it is possible to have conflicting formats 2941 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 2942 * in EXTENTS format, this can only happen when the fork has 2943 * changed formats after being modified but before being flushed. 2944 * In these cases, the format always takes precedence, because the 2945 * format indicates the current state of the fork. 2946 */ 2947 /*ARGSUSED*/ 2948 STATIC int 2949 xfs_iflush_fork( 2950 xfs_inode_t *ip, 2951 xfs_dinode_t *dip, 2952 xfs_inode_log_item_t *iip, 2953 int whichfork, 2954 xfs_buf_t *bp) 2955 { 2956 char *cp; 2957 xfs_ifork_t *ifp; 2958 xfs_mount_t *mp; 2959 #ifdef XFS_TRANS_DEBUG 2960 int first; 2961 #endif 2962 static const short brootflag[2] = 2963 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 2964 static const short dataflag[2] = 2965 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 2966 static const short extflag[2] = 2967 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 2968 2969 if (iip == NULL) 2970 return 0; 2971 ifp = XFS_IFORK_PTR(ip, whichfork); 2972 /* 2973 * This can happen if we gave up in iformat in an error path, 2974 * for the attribute fork. 2975 */ 2976 if (ifp == NULL) { 2977 ASSERT(whichfork == XFS_ATTR_FORK); 2978 return 0; 2979 } 2980 cp = XFS_DFORK_PTR(dip, whichfork); 2981 mp = ip->i_mount; 2982 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 2983 case XFS_DINODE_FMT_LOCAL: 2984 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && 2985 (ifp->if_bytes > 0)) { 2986 ASSERT(ifp->if_u1.if_data != NULL); 2987 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2988 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 2989 } 2990 if (whichfork == XFS_DATA_FORK) { 2991 if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) { 2992 XFS_ERROR_REPORT("xfs_iflush_fork", 2993 XFS_ERRLEVEL_LOW, mp); 2994 return XFS_ERROR(EFSCORRUPTED); 2995 } 2996 } 2997 break; 2998 2999 case XFS_DINODE_FMT_EXTENTS: 3000 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 3001 !(iip->ili_format.ilf_fields & extflag[whichfork])); 3002 ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0)); 3003 ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0)); 3004 if ((iip->ili_format.ilf_fields & extflag[whichfork]) && 3005 (ifp->if_bytes > 0)) { 3006 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 3007 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 3008 whichfork); 3009 } 3010 break; 3011 3012 case XFS_DINODE_FMT_BTREE: 3013 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && 3014 (ifp->if_broot_bytes > 0)) { 3015 ASSERT(ifp->if_broot != NULL); 3016 ASSERT(ifp->if_broot_bytes <= 3017 (XFS_IFORK_SIZE(ip, whichfork) + 3018 XFS_BROOT_SIZE_ADJ)); 3019 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes, 3020 (xfs_bmdr_block_t *)cp, 3021 XFS_DFORK_SIZE(dip, mp, whichfork)); 3022 } 3023 break; 3024 3025 case XFS_DINODE_FMT_DEV: 3026 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 3027 ASSERT(whichfork == XFS_DATA_FORK); 3028 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev); 3029 } 3030 break; 3031 3032 case XFS_DINODE_FMT_UUID: 3033 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 3034 ASSERT(whichfork == XFS_DATA_FORK); 3035 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid, 3036 sizeof(uuid_t)); 3037 } 3038 break; 3039 3040 default: 3041 ASSERT(0); 3042 break; 3043 } 3044 3045 return 0; 3046 } 3047 3048 /* 3049 * xfs_iflush() will write a modified inode's changes out to the 3050 * inode's on disk home. The caller must have the inode lock held 3051 * in at least shared mode and the inode flush semaphore must be 3052 * held as well. The inode lock will still be held upon return from 3053 * the call and the caller is free to unlock it. 3054 * The inode flush lock will be unlocked when the inode reaches the disk. 3055 * The flags indicate how the inode's buffer should be written out. 3056 */ 3057 int 3058 xfs_iflush( 3059 xfs_inode_t *ip, 3060 uint flags) 3061 { 3062 xfs_inode_log_item_t *iip; 3063 xfs_buf_t *bp; 3064 xfs_dinode_t *dip; 3065 xfs_mount_t *mp; 3066 int error; 3067 /* REFERENCED */ 3068 xfs_chash_t *ch; 3069 xfs_inode_t *iq; 3070 int clcount; /* count of inodes clustered */ 3071 int bufwasdelwri; 3072 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; 3073 SPLDECL(s); 3074 3075 XFS_STATS_INC(xs_iflush_count); 3076 3077 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 3078 ASSERT(valusema(&ip->i_flock) <= 0); 3079 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3080 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3081 3082 iip = ip->i_itemp; 3083 mp = ip->i_mount; 3084 3085 /* 3086 * If the inode isn't dirty, then just release the inode 3087 * flush lock and do nothing. 3088 */ 3089 if ((ip->i_update_core == 0) && 3090 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3091 ASSERT((iip != NULL) ? 3092 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1); 3093 xfs_ifunlock(ip); 3094 return 0; 3095 } 3096 3097 /* 3098 * We can't flush the inode until it is unpinned, so 3099 * wait for it. We know noone new can pin it, because 3100 * we are holding the inode lock shared and you need 3101 * to hold it exclusively to pin the inode. 3102 */ 3103 xfs_iunpin_wait(ip); 3104 3105 /* 3106 * This may have been unpinned because the filesystem is shutting 3107 * down forcibly. If that's the case we must not write this inode 3108 * to disk, because the log record didn't make it to disk! 3109 */ 3110 if (XFS_FORCED_SHUTDOWN(mp)) { 3111 ip->i_update_core = 0; 3112 if (iip) 3113 iip->ili_format.ilf_fields = 0; 3114 xfs_ifunlock(ip); 3115 return XFS_ERROR(EIO); 3116 } 3117 3118 /* 3119 * Get the buffer containing the on-disk inode. 3120 */ 3121 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0); 3122 if (error != 0) { 3123 xfs_ifunlock(ip); 3124 return error; 3125 } 3126 3127 /* 3128 * Decide how buffer will be flushed out. This is done before 3129 * the call to xfs_iflush_int because this field is zeroed by it. 3130 */ 3131 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3132 /* 3133 * Flush out the inode buffer according to the directions 3134 * of the caller. In the cases where the caller has given 3135 * us a choice choose the non-delwri case. This is because 3136 * the inode is in the AIL and we need to get it out soon. 3137 */ 3138 switch (flags) { 3139 case XFS_IFLUSH_SYNC: 3140 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 3141 flags = 0; 3142 break; 3143 case XFS_IFLUSH_ASYNC: 3144 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 3145 flags = INT_ASYNC; 3146 break; 3147 case XFS_IFLUSH_DELWRI: 3148 flags = INT_DELWRI; 3149 break; 3150 default: 3151 ASSERT(0); 3152 flags = 0; 3153 break; 3154 } 3155 } else { 3156 switch (flags) { 3157 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 3158 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 3159 case XFS_IFLUSH_DELWRI: 3160 flags = INT_DELWRI; 3161 break; 3162 case XFS_IFLUSH_ASYNC: 3163 flags = INT_ASYNC; 3164 break; 3165 case XFS_IFLUSH_SYNC: 3166 flags = 0; 3167 break; 3168 default: 3169 ASSERT(0); 3170 flags = 0; 3171 break; 3172 } 3173 } 3174 3175 /* 3176 * First flush out the inode that xfs_iflush was called with. 3177 */ 3178 error = xfs_iflush_int(ip, bp); 3179 if (error) { 3180 goto corrupt_out; 3181 } 3182 3183 /* 3184 * inode clustering: 3185 * see if other inodes can be gathered into this write 3186 */ 3187 3188 ip->i_chash->chl_buf = bp; 3189 3190 ch = XFS_CHASH(mp, ip->i_blkno); 3191 s = mutex_spinlock(&ch->ch_lock); 3192 3193 clcount = 0; 3194 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) { 3195 /* 3196 * Do an un-protected check to see if the inode is dirty and 3197 * is a candidate for flushing. These checks will be repeated 3198 * later after the appropriate locks are acquired. 3199 */ 3200 iip = iq->i_itemp; 3201 if ((iq->i_update_core == 0) && 3202 ((iip == NULL) || 3203 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) && 3204 xfs_ipincount(iq) == 0) { 3205 continue; 3206 } 3207 3208 /* 3209 * Try to get locks. If any are unavailable, 3210 * then this inode cannot be flushed and is skipped. 3211 */ 3212 3213 /* get inode locks (just i_lock) */ 3214 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) { 3215 /* get inode flush lock */ 3216 if (xfs_iflock_nowait(iq)) { 3217 /* check if pinned */ 3218 if (xfs_ipincount(iq) == 0) { 3219 /* arriving here means that 3220 * this inode can be flushed. 3221 * first re-check that it's 3222 * dirty 3223 */ 3224 iip = iq->i_itemp; 3225 if ((iq->i_update_core != 0)|| 3226 ((iip != NULL) && 3227 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3228 clcount++; 3229 error = xfs_iflush_int(iq, bp); 3230 if (error) { 3231 xfs_iunlock(iq, 3232 XFS_ILOCK_SHARED); 3233 goto cluster_corrupt_out; 3234 } 3235 } else { 3236 xfs_ifunlock(iq); 3237 } 3238 } else { 3239 xfs_ifunlock(iq); 3240 } 3241 } 3242 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3243 } 3244 } 3245 mutex_spinunlock(&ch->ch_lock, s); 3246 3247 if (clcount) { 3248 XFS_STATS_INC(xs_icluster_flushcnt); 3249 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 3250 } 3251 3252 /* 3253 * If the buffer is pinned then push on the log so we won't 3254 * get stuck waiting in the write for too long. 3255 */ 3256 if (XFS_BUF_ISPINNED(bp)){ 3257 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); 3258 } 3259 3260 if (flags & INT_DELWRI) { 3261 xfs_bdwrite(mp, bp); 3262 } else if (flags & INT_ASYNC) { 3263 xfs_bawrite(mp, bp); 3264 } else { 3265 error = xfs_bwrite(mp, bp); 3266 } 3267 return error; 3268 3269 corrupt_out: 3270 xfs_buf_relse(bp); 3271 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); 3272 xfs_iflush_abort(ip); 3273 /* 3274 * Unlocks the flush lock 3275 */ 3276 return XFS_ERROR(EFSCORRUPTED); 3277 3278 cluster_corrupt_out: 3279 /* Corruption detected in the clustering loop. Invalidate the 3280 * inode buffer and shut down the filesystem. 3281 */ 3282 mutex_spinunlock(&ch->ch_lock, s); 3283 3284 /* 3285 * Clean up the buffer. If it was B_DELWRI, just release it -- 3286 * brelse can handle it with no problems. If not, shut down the 3287 * filesystem before releasing the buffer. 3288 */ 3289 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) { 3290 xfs_buf_relse(bp); 3291 } 3292 3293 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); 3294 3295 if(!bufwasdelwri) { 3296 /* 3297 * Just like incore_relse: if we have b_iodone functions, 3298 * mark the buffer as an error and call them. Otherwise 3299 * mark it as stale and brelse. 3300 */ 3301 if (XFS_BUF_IODONE_FUNC(bp)) { 3302 XFS_BUF_CLR_BDSTRAT_FUNC(bp); 3303 XFS_BUF_UNDONE(bp); 3304 XFS_BUF_STALE(bp); 3305 XFS_BUF_SHUT(bp); 3306 XFS_BUF_ERROR(bp,EIO); 3307 xfs_biodone(bp); 3308 } else { 3309 XFS_BUF_STALE(bp); 3310 xfs_buf_relse(bp); 3311 } 3312 } 3313 3314 xfs_iflush_abort(iq); 3315 /* 3316 * Unlocks the flush lock 3317 */ 3318 return XFS_ERROR(EFSCORRUPTED); 3319 } 3320 3321 3322 STATIC int 3323 xfs_iflush_int( 3324 xfs_inode_t *ip, 3325 xfs_buf_t *bp) 3326 { 3327 xfs_inode_log_item_t *iip; 3328 xfs_dinode_t *dip; 3329 xfs_mount_t *mp; 3330 #ifdef XFS_TRANS_DEBUG 3331 int first; 3332 #endif 3333 SPLDECL(s); 3334 3335 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 3336 ASSERT(valusema(&ip->i_flock) <= 0); 3337 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3338 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3339 3340 iip = ip->i_itemp; 3341 mp = ip->i_mount; 3342 3343 3344 /* 3345 * If the inode isn't dirty, then just release the inode 3346 * flush lock and do nothing. 3347 */ 3348 if ((ip->i_update_core == 0) && 3349 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3350 xfs_ifunlock(ip); 3351 return 0; 3352 } 3353 3354 /* set *dip = inode's place in the buffer */ 3355 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset); 3356 3357 /* 3358 * Clear i_update_core before copying out the data. 3359 * This is for coordination with our timestamp updates 3360 * that don't hold the inode lock. They will always 3361 * update the timestamps BEFORE setting i_update_core, 3362 * so if we clear i_update_core after they set it we 3363 * are guaranteed to see their updates to the timestamps. 3364 * I believe that this depends on strongly ordered memory 3365 * semantics, but we have that. We use the SYNCHRONIZE 3366 * macro to make sure that the compiler does not reorder 3367 * the i_update_core access below the data copy below. 3368 */ 3369 ip->i_update_core = 0; 3370 SYNCHRONIZE(); 3371 3372 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC, 3373 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3374 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3375 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3376 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip); 3377 goto corrupt_out; 3378 } 3379 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3380 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3381 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3382 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3383 ip->i_ino, ip, ip->i_d.di_magic); 3384 goto corrupt_out; 3385 } 3386 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { 3387 if (XFS_TEST_ERROR( 3388 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3389 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3390 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3391 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3392 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", 3393 ip->i_ino, ip); 3394 goto corrupt_out; 3395 } 3396 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { 3397 if (XFS_TEST_ERROR( 3398 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3399 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3400 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3401 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3402 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3403 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", 3404 ip->i_ino, ip); 3405 goto corrupt_out; 3406 } 3407 } 3408 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3409 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3410 XFS_RANDOM_IFLUSH_5)) { 3411 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3412 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", 3413 ip->i_ino, 3414 ip->i_d.di_nextents + ip->i_d.di_anextents, 3415 ip->i_d.di_nblocks, 3416 ip); 3417 goto corrupt_out; 3418 } 3419 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3420 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3421 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3422 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3423 ip->i_ino, ip->i_d.di_forkoff, ip); 3424 goto corrupt_out; 3425 } 3426 /* 3427 * bump the flush iteration count, used to detect flushes which 3428 * postdate a log record during recovery. 3429 */ 3430 3431 ip->i_d.di_flushiter++; 3432 3433 /* 3434 * Copy the dirty parts of the inode into the on-disk 3435 * inode. We always copy out the core of the inode, 3436 * because if the inode is dirty at all the core must 3437 * be. 3438 */ 3439 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1); 3440 3441 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3442 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3443 ip->i_d.di_flushiter = 0; 3444 3445 /* 3446 * If this is really an old format inode and the superblock version 3447 * has not been updated to support only new format inodes, then 3448 * convert back to the old inode format. If the superblock version 3449 * has been updated, then make the conversion permanent. 3450 */ 3451 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || 3452 XFS_SB_VERSION_HASNLINK(&mp->m_sb)); 3453 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { 3454 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { 3455 /* 3456 * Convert it back. 3457 */ 3458 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 3459 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink); 3460 } else { 3461 /* 3462 * The superblock version has already been bumped, 3463 * so just make the conversion to the new inode 3464 * format permanent. 3465 */ 3466 ip->i_d.di_version = XFS_DINODE_VERSION_2; 3467 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2); 3468 ip->i_d.di_onlink = 0; 3469 dip->di_core.di_onlink = 0; 3470 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 3471 memset(&(dip->di_core.di_pad[0]), 0, 3472 sizeof(dip->di_core.di_pad)); 3473 ASSERT(ip->i_d.di_projid == 0); 3474 } 3475 } 3476 3477 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) { 3478 goto corrupt_out; 3479 } 3480 3481 if (XFS_IFORK_Q(ip)) { 3482 /* 3483 * The only error from xfs_iflush_fork is on the data fork. 3484 */ 3485 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 3486 } 3487 xfs_inobp_check(mp, bp); 3488 3489 /* 3490 * We've recorded everything logged in the inode, so we'd 3491 * like to clear the ilf_fields bits so we don't log and 3492 * flush things unnecessarily. However, we can't stop 3493 * logging all this information until the data we've copied 3494 * into the disk buffer is written to disk. If we did we might 3495 * overwrite the copy of the inode in the log with all the 3496 * data after re-logging only part of it, and in the face of 3497 * a crash we wouldn't have all the data we need to recover. 3498 * 3499 * What we do is move the bits to the ili_last_fields field. 3500 * When logging the inode, these bits are moved back to the 3501 * ilf_fields field. In the xfs_iflush_done() routine we 3502 * clear ili_last_fields, since we know that the information 3503 * those bits represent is permanently on disk. As long as 3504 * the flush completes before the inode is logged again, then 3505 * both ilf_fields and ili_last_fields will be cleared. 3506 * 3507 * We can play with the ilf_fields bits here, because the inode 3508 * lock must be held exclusively in order to set bits there 3509 * and the flush lock protects the ili_last_fields bits. 3510 * Set ili_logged so the flush done 3511 * routine can tell whether or not to look in the AIL. 3512 * Also, store the current LSN of the inode so that we can tell 3513 * whether the item has moved in the AIL from xfs_iflush_done(). 3514 * In order to read the lsn we need the AIL lock, because 3515 * it is a 64 bit value that cannot be read atomically. 3516 */ 3517 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3518 iip->ili_last_fields = iip->ili_format.ilf_fields; 3519 iip->ili_format.ilf_fields = 0; 3520 iip->ili_logged = 1; 3521 3522 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */ 3523 AIL_LOCK(mp,s); 3524 iip->ili_flush_lsn = iip->ili_item.li_lsn; 3525 AIL_UNLOCK(mp, s); 3526 3527 /* 3528 * Attach the function xfs_iflush_done to the inode's 3529 * buffer. This will remove the inode from the AIL 3530 * and unlock the inode's flush lock when the inode is 3531 * completely written to disk. 3532 */ 3533 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) 3534 xfs_iflush_done, (xfs_log_item_t *)iip); 3535 3536 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 3537 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); 3538 } else { 3539 /* 3540 * We're flushing an inode which is not in the AIL and has 3541 * not been logged but has i_update_core set. For this 3542 * case we can use a B_DELWRI flush and immediately drop 3543 * the inode flush lock because we can avoid the whole 3544 * AIL state thing. It's OK to drop the flush lock now, 3545 * because we've already locked the buffer and to do anything 3546 * you really need both. 3547 */ 3548 if (iip != NULL) { 3549 ASSERT(iip->ili_logged == 0); 3550 ASSERT(iip->ili_last_fields == 0); 3551 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); 3552 } 3553 xfs_ifunlock(ip); 3554 } 3555 3556 return 0; 3557 3558 corrupt_out: 3559 return XFS_ERROR(EFSCORRUPTED); 3560 } 3561 3562 3563 /* 3564 * Flush all inactive inodes in mp. 3565 */ 3566 void 3567 xfs_iflush_all( 3568 xfs_mount_t *mp) 3569 { 3570 xfs_inode_t *ip; 3571 vnode_t *vp; 3572 3573 again: 3574 XFS_MOUNT_ILOCK(mp); 3575 ip = mp->m_inodes; 3576 if (ip == NULL) 3577 goto out; 3578 3579 do { 3580 /* Make sure we skip markers inserted by sync */ 3581 if (ip->i_mount == NULL) { 3582 ip = ip->i_mnext; 3583 continue; 3584 } 3585 3586 vp = XFS_ITOV_NULL(ip); 3587 if (!vp) { 3588 XFS_MOUNT_IUNLOCK(mp); 3589 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC); 3590 goto again; 3591 } 3592 3593 ASSERT(vn_count(vp) == 0); 3594 3595 ip = ip->i_mnext; 3596 } while (ip != mp->m_inodes); 3597 out: 3598 XFS_MOUNT_IUNLOCK(mp); 3599 } 3600 3601 /* 3602 * xfs_iaccess: check accessibility of inode for mode. 3603 */ 3604 int 3605 xfs_iaccess( 3606 xfs_inode_t *ip, 3607 mode_t mode, 3608 cred_t *cr) 3609 { 3610 int error; 3611 mode_t orgmode = mode; 3612 struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip)); 3613 3614 if (mode & S_IWUSR) { 3615 umode_t imode = inode->i_mode; 3616 3617 if (IS_RDONLY(inode) && 3618 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode))) 3619 return XFS_ERROR(EROFS); 3620 3621 if (IS_IMMUTABLE(inode)) 3622 return XFS_ERROR(EACCES); 3623 } 3624 3625 /* 3626 * If there's an Access Control List it's used instead of 3627 * the mode bits. 3628 */ 3629 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1) 3630 return error ? XFS_ERROR(error) : 0; 3631 3632 if (current_fsuid(cr) != ip->i_d.di_uid) { 3633 mode >>= 3; 3634 if (!in_group_p((gid_t)ip->i_d.di_gid)) 3635 mode >>= 3; 3636 } 3637 3638 /* 3639 * If the DACs are ok we don't need any capability check. 3640 */ 3641 if ((ip->i_d.di_mode & mode) == mode) 3642 return 0; 3643 /* 3644 * Read/write DACs are always overridable. 3645 * Executable DACs are overridable if at least one exec bit is set. 3646 */ 3647 if (!(orgmode & S_IXUSR) || 3648 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) 3649 if (capable_cred(cr, CAP_DAC_OVERRIDE)) 3650 return 0; 3651 3652 if ((orgmode == S_IRUSR) || 3653 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) { 3654 if (capable_cred(cr, CAP_DAC_READ_SEARCH)) 3655 return 0; 3656 #ifdef NOISE 3657 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode); 3658 #endif /* NOISE */ 3659 return XFS_ERROR(EACCES); 3660 } 3661 return XFS_ERROR(EACCES); 3662 } 3663 3664 /* 3665 * xfs_iroundup: round up argument to next power of two 3666 */ 3667 uint 3668 xfs_iroundup( 3669 uint v) 3670 { 3671 int i; 3672 uint m; 3673 3674 if ((v & (v - 1)) == 0) 3675 return v; 3676 ASSERT((v & 0x80000000) == 0); 3677 if ((v & (v + 1)) == 0) 3678 return v + 1; 3679 for (i = 0, m = 1; i < 31; i++, m <<= 1) { 3680 if (v & m) 3681 continue; 3682 v |= m; 3683 if ((v & (v + 1)) == 0) 3684 return v + 1; 3685 } 3686 ASSERT(0); 3687 return( 0 ); 3688 } 3689 3690 /* 3691 * Change the requested timestamp in the given inode. 3692 * We don't lock across timestamp updates, and we don't log them but 3693 * we do record the fact that there is dirty information in core. 3694 * 3695 * NOTE -- callers MUST combine XFS_ICHGTIME_MOD or XFS_ICHGTIME_CHG 3696 * with XFS_ICHGTIME_ACC to be sure that access time 3697 * update will take. Calling first with XFS_ICHGTIME_ACC 3698 * and then XFS_ICHGTIME_MOD may fail to modify the access 3699 * timestamp if the filesystem is mounted noacctm. 3700 */ 3701 void 3702 xfs_ichgtime(xfs_inode_t *ip, 3703 int flags) 3704 { 3705 timespec_t tv; 3706 vnode_t *vp = XFS_ITOV(ip); 3707 struct inode *inode = LINVFS_GET_IP(vp); 3708 3709 /* 3710 * We're not supposed to change timestamps in readonly-mounted 3711 * filesystems. Throw it away if anyone asks us. 3712 */ 3713 if (unlikely(vp->v_vfsp->vfs_flag & VFS_RDONLY)) 3714 return; 3715 3716 /* 3717 * Don't update access timestamps on reads if mounted "noatime" 3718 * Throw it away if anyone asks us. 3719 */ 3720 if ((ip->i_mount->m_flags & XFS_MOUNT_NOATIME || IS_NOATIME(inode)) && 3721 ((flags & (XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD|XFS_ICHGTIME_CHG)) 3722 == XFS_ICHGTIME_ACC)) 3723 return; 3724 3725 nanotime(&tv); 3726 if (flags & XFS_ICHGTIME_MOD) { 3727 VN_MTIMESET(vp, &tv); 3728 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 3729 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 3730 } 3731 if (flags & XFS_ICHGTIME_ACC) { 3732 VN_ATIMESET(vp, &tv); 3733 ip->i_d.di_atime.t_sec = (__int32_t)tv.tv_sec; 3734 ip->i_d.di_atime.t_nsec = (__int32_t)tv.tv_nsec; 3735 } 3736 if (flags & XFS_ICHGTIME_CHG) { 3737 VN_CTIMESET(vp, &tv); 3738 ip->i_d.di_ctime.t_sec = (__int32_t)tv.tv_sec; 3739 ip->i_d.di_ctime.t_nsec = (__int32_t)tv.tv_nsec; 3740 } 3741 3742 /* 3743 * We update the i_update_core field _after_ changing 3744 * the timestamps in order to coordinate properly with 3745 * xfs_iflush() so that we don't lose timestamp updates. 3746 * This keeps us from having to hold the inode lock 3747 * while doing this. We use the SYNCHRONIZE macro to 3748 * ensure that the compiler does not reorder the update 3749 * of i_update_core above the timestamp updates above. 3750 */ 3751 SYNCHRONIZE(); 3752 ip->i_update_core = 1; 3753 if (!(inode->i_state & I_LOCK)) 3754 mark_inode_dirty_sync(inode); 3755 } 3756 3757 #ifdef XFS_ILOCK_TRACE 3758 ktrace_t *xfs_ilock_trace_buf; 3759 3760 void 3761 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) 3762 { 3763 ktrace_enter(ip->i_lock_trace, 3764 (void *)ip, 3765 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */ 3766 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */ 3767 (void *)ra, /* caller of ilock */ 3768 (void *)(unsigned long)current_cpu(), 3769 (void *)(unsigned long)current_pid(), 3770 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); 3771 } 3772 #endif 3773