xref: /linux/fs/xfs/xfs_inode.c (revision 1e58a8ccf2597c9259a8e71a2bffac5e11e12ea0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_bit.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iunlink_item.h"
25 #include "xfs_ialloc.h"
26 #include "xfs_bmap.h"
27 #include "xfs_bmap_util.h"
28 #include "xfs_errortag.h"
29 #include "xfs_error.h"
30 #include "xfs_quota.h"
31 #include "xfs_filestream.h"
32 #include "xfs_trace.h"
33 #include "xfs_icache.h"
34 #include "xfs_symlink.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_log.h"
37 #include "xfs_bmap_btree.h"
38 #include "xfs_reflink.h"
39 #include "xfs_ag.h"
40 #include "xfs_log_priv.h"
41 #include "xfs_health.h"
42 #include "xfs_pnfs.h"
43 
44 struct kmem_cache *xfs_inode_cache;
45 
46 /*
47  * helper function to extract extent size hint from inode
48  */
49 xfs_extlen_t
50 xfs_get_extsz_hint(
51 	struct xfs_inode	*ip)
52 {
53 	/*
54 	 * No point in aligning allocations if we need to COW to actually
55 	 * write to them.
56 	 */
57 	if (xfs_is_always_cow_inode(ip))
58 		return 0;
59 	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
60 		return ip->i_extsize;
61 	if (XFS_IS_REALTIME_INODE(ip))
62 		return ip->i_mount->m_sb.sb_rextsize;
63 	return 0;
64 }
65 
66 /*
67  * Helper function to extract CoW extent size hint from inode.
68  * Between the extent size hint and the CoW extent size hint, we
69  * return the greater of the two.  If the value is zero (automatic),
70  * use the default size.
71  */
72 xfs_extlen_t
73 xfs_get_cowextsz_hint(
74 	struct xfs_inode	*ip)
75 {
76 	xfs_extlen_t		a, b;
77 
78 	a = 0;
79 	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
80 		a = ip->i_cowextsize;
81 	b = xfs_get_extsz_hint(ip);
82 
83 	a = max(a, b);
84 	if (a == 0)
85 		return XFS_DEFAULT_COWEXTSZ_HINT;
86 	return a;
87 }
88 
89 /*
90  * These two are wrapper routines around the xfs_ilock() routine used to
91  * centralize some grungy code.  They are used in places that wish to lock the
92  * inode solely for reading the extents.  The reason these places can't just
93  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
94  * bringing in of the extents from disk for a file in b-tree format.  If the
95  * inode is in b-tree format, then we need to lock the inode exclusively until
96  * the extents are read in.  Locking it exclusively all the time would limit
97  * our parallelism unnecessarily, though.  What we do instead is check to see
98  * if the extents have been read in yet, and only lock the inode exclusively
99  * if they have not.
100  *
101  * The functions return a value which should be given to the corresponding
102  * xfs_iunlock() call.
103  */
104 uint
105 xfs_ilock_data_map_shared(
106 	struct xfs_inode	*ip)
107 {
108 	uint			lock_mode = XFS_ILOCK_SHARED;
109 
110 	if (xfs_need_iread_extents(&ip->i_df))
111 		lock_mode = XFS_ILOCK_EXCL;
112 	xfs_ilock(ip, lock_mode);
113 	return lock_mode;
114 }
115 
116 uint
117 xfs_ilock_attr_map_shared(
118 	struct xfs_inode	*ip)
119 {
120 	uint			lock_mode = XFS_ILOCK_SHARED;
121 
122 	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
123 		lock_mode = XFS_ILOCK_EXCL;
124 	xfs_ilock(ip, lock_mode);
125 	return lock_mode;
126 }
127 
128 /*
129  * You can't set both SHARED and EXCL for the same lock,
130  * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
131  * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
132  * to set in lock_flags.
133  */
134 static inline void
135 xfs_lock_flags_assert(
136 	uint		lock_flags)
137 {
138 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
139 		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
140 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
141 		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
142 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
143 		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
144 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
145 	ASSERT(lock_flags != 0);
146 }
147 
148 /*
149  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
150  * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
151  * various combinations of the locks to be obtained.
152  *
153  * The 3 locks should always be ordered so that the IO lock is obtained first,
154  * the mmap lock second and the ilock last in order to prevent deadlock.
155  *
156  * Basic locking order:
157  *
158  * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
159  *
160  * mmap_lock locking order:
161  *
162  * i_rwsem -> page lock -> mmap_lock
163  * mmap_lock -> invalidate_lock -> page_lock
164  *
165  * The difference in mmap_lock locking order mean that we cannot hold the
166  * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
167  * can fault in pages during copy in/out (for buffered IO) or require the
168  * mmap_lock in get_user_pages() to map the user pages into the kernel address
169  * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
170  * fault because page faults already hold the mmap_lock.
171  *
172  * Hence to serialise fully against both syscall and mmap based IO, we need to
173  * take both the i_rwsem and the invalidate_lock. These locks should *only* be
174  * both taken in places where we need to invalidate the page cache in a race
175  * free manner (e.g. truncate, hole punch and other extent manipulation
176  * functions).
177  */
178 void
179 xfs_ilock(
180 	xfs_inode_t		*ip,
181 	uint			lock_flags)
182 {
183 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
184 
185 	xfs_lock_flags_assert(lock_flags);
186 
187 	if (lock_flags & XFS_IOLOCK_EXCL) {
188 		down_write_nested(&VFS_I(ip)->i_rwsem,
189 				  XFS_IOLOCK_DEP(lock_flags));
190 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
191 		down_read_nested(&VFS_I(ip)->i_rwsem,
192 				 XFS_IOLOCK_DEP(lock_flags));
193 	}
194 
195 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
196 		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
197 				  XFS_MMAPLOCK_DEP(lock_flags));
198 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
199 		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
200 				 XFS_MMAPLOCK_DEP(lock_flags));
201 	}
202 
203 	if (lock_flags & XFS_ILOCK_EXCL)
204 		down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
205 	else if (lock_flags & XFS_ILOCK_SHARED)
206 		down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
207 }
208 
209 /*
210  * This is just like xfs_ilock(), except that the caller
211  * is guaranteed not to sleep.  It returns 1 if it gets
212  * the requested locks and 0 otherwise.  If the IO lock is
213  * obtained but the inode lock cannot be, then the IO lock
214  * is dropped before returning.
215  *
216  * ip -- the inode being locked
217  * lock_flags -- this parameter indicates the inode's locks to be
218  *       to be locked.  See the comment for xfs_ilock() for a list
219  *	 of valid values.
220  */
221 int
222 xfs_ilock_nowait(
223 	xfs_inode_t		*ip,
224 	uint			lock_flags)
225 {
226 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
227 
228 	xfs_lock_flags_assert(lock_flags);
229 
230 	if (lock_flags & XFS_IOLOCK_EXCL) {
231 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
232 			goto out;
233 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
234 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
235 			goto out;
236 	}
237 
238 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
239 		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
240 			goto out_undo_iolock;
241 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
242 		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
243 			goto out_undo_iolock;
244 	}
245 
246 	if (lock_flags & XFS_ILOCK_EXCL) {
247 		if (!down_write_trylock(&ip->i_lock))
248 			goto out_undo_mmaplock;
249 	} else if (lock_flags & XFS_ILOCK_SHARED) {
250 		if (!down_read_trylock(&ip->i_lock))
251 			goto out_undo_mmaplock;
252 	}
253 	return 1;
254 
255 out_undo_mmaplock:
256 	if (lock_flags & XFS_MMAPLOCK_EXCL)
257 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
258 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
259 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
260 out_undo_iolock:
261 	if (lock_flags & XFS_IOLOCK_EXCL)
262 		up_write(&VFS_I(ip)->i_rwsem);
263 	else if (lock_flags & XFS_IOLOCK_SHARED)
264 		up_read(&VFS_I(ip)->i_rwsem);
265 out:
266 	return 0;
267 }
268 
269 /*
270  * xfs_iunlock() is used to drop the inode locks acquired with
271  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
272  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
273  * that we know which locks to drop.
274  *
275  * ip -- the inode being unlocked
276  * lock_flags -- this parameter indicates the inode's locks to be
277  *       to be unlocked.  See the comment for xfs_ilock() for a list
278  *	 of valid values for this parameter.
279  *
280  */
281 void
282 xfs_iunlock(
283 	xfs_inode_t		*ip,
284 	uint			lock_flags)
285 {
286 	xfs_lock_flags_assert(lock_flags);
287 
288 	if (lock_flags & XFS_IOLOCK_EXCL)
289 		up_write(&VFS_I(ip)->i_rwsem);
290 	else if (lock_flags & XFS_IOLOCK_SHARED)
291 		up_read(&VFS_I(ip)->i_rwsem);
292 
293 	if (lock_flags & XFS_MMAPLOCK_EXCL)
294 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
295 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
296 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
297 
298 	if (lock_flags & XFS_ILOCK_EXCL)
299 		up_write(&ip->i_lock);
300 	else if (lock_flags & XFS_ILOCK_SHARED)
301 		up_read(&ip->i_lock);
302 
303 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
304 }
305 
306 /*
307  * give up write locks.  the i/o lock cannot be held nested
308  * if it is being demoted.
309  */
310 void
311 xfs_ilock_demote(
312 	xfs_inode_t		*ip,
313 	uint			lock_flags)
314 {
315 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
316 	ASSERT((lock_flags &
317 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
318 
319 	if (lock_flags & XFS_ILOCK_EXCL)
320 		downgrade_write(&ip->i_lock);
321 	if (lock_flags & XFS_MMAPLOCK_EXCL)
322 		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
323 	if (lock_flags & XFS_IOLOCK_EXCL)
324 		downgrade_write(&VFS_I(ip)->i_rwsem);
325 
326 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
327 }
328 
329 void
330 xfs_assert_ilocked(
331 	struct xfs_inode	*ip,
332 	uint			lock_flags)
333 {
334 	/*
335 	 * Sometimes we assert the ILOCK is held exclusively, but we're in
336 	 * a workqueue, so lockdep doesn't know we're the owner.
337 	 */
338 	if (lock_flags & XFS_ILOCK_SHARED)
339 		rwsem_assert_held(&ip->i_lock);
340 	else if (lock_flags & XFS_ILOCK_EXCL)
341 		rwsem_assert_held_write_nolockdep(&ip->i_lock);
342 
343 	if (lock_flags & XFS_MMAPLOCK_SHARED)
344 		rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
345 	else if (lock_flags & XFS_MMAPLOCK_EXCL)
346 		rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
347 
348 	if (lock_flags & XFS_IOLOCK_SHARED)
349 		rwsem_assert_held(&VFS_I(ip)->i_rwsem);
350 	else if (lock_flags & XFS_IOLOCK_EXCL)
351 		rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
352 }
353 
354 /*
355  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
356  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
357  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
358  * errors and warnings.
359  */
360 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
361 static bool
362 xfs_lockdep_subclass_ok(
363 	int subclass)
364 {
365 	return subclass < MAX_LOCKDEP_SUBCLASSES;
366 }
367 #else
368 #define xfs_lockdep_subclass_ok(subclass)	(true)
369 #endif
370 
371 /*
372  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
373  * value. This can be called for any type of inode lock combination, including
374  * parent locking. Care must be taken to ensure we don't overrun the subclass
375  * storage fields in the class mask we build.
376  */
377 static inline uint
378 xfs_lock_inumorder(
379 	uint	lock_mode,
380 	uint	subclass)
381 {
382 	uint	class = 0;
383 
384 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
385 			      XFS_ILOCK_RTSUM)));
386 	ASSERT(xfs_lockdep_subclass_ok(subclass));
387 
388 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
389 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
390 		class += subclass << XFS_IOLOCK_SHIFT;
391 	}
392 
393 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
394 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
395 		class += subclass << XFS_MMAPLOCK_SHIFT;
396 	}
397 
398 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
399 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
400 		class += subclass << XFS_ILOCK_SHIFT;
401 	}
402 
403 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
404 }
405 
406 /*
407  * The following routine will lock n inodes in exclusive mode.  We assume the
408  * caller calls us with the inodes in i_ino order.
409  *
410  * We need to detect deadlock where an inode that we lock is in the AIL and we
411  * start waiting for another inode that is locked by a thread in a long running
412  * transaction (such as truncate). This can result in deadlock since the long
413  * running trans might need to wait for the inode we just locked in order to
414  * push the tail and free space in the log.
415  *
416  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
417  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
418  * lock more than one at a time, lockdep will report false positives saying we
419  * have violated locking orders.
420  */
421 static void
422 xfs_lock_inodes(
423 	struct xfs_inode	**ips,
424 	int			inodes,
425 	uint			lock_mode)
426 {
427 	int			attempts = 0;
428 	uint			i;
429 	int			j;
430 	bool			try_lock;
431 	struct xfs_log_item	*lp;
432 
433 	/*
434 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
435 	 * support an arbitrary depth of locking here, but absolute limits on
436 	 * inodes depend on the type of locking and the limits placed by
437 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
438 	 * the asserts.
439 	 */
440 	ASSERT(ips && inodes >= 2 && inodes <= 5);
441 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
442 			    XFS_ILOCK_EXCL));
443 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
444 			      XFS_ILOCK_SHARED)));
445 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
446 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
447 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
448 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
449 
450 	if (lock_mode & XFS_IOLOCK_EXCL) {
451 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
452 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
453 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
454 
455 again:
456 	try_lock = false;
457 	i = 0;
458 	for (; i < inodes; i++) {
459 		ASSERT(ips[i]);
460 
461 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
462 			continue;
463 
464 		/*
465 		 * If try_lock is not set yet, make sure all locked inodes are
466 		 * not in the AIL.  If any are, set try_lock to be used later.
467 		 */
468 		if (!try_lock) {
469 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
470 				lp = &ips[j]->i_itemp->ili_item;
471 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
472 					try_lock = true;
473 			}
474 		}
475 
476 		/*
477 		 * If any of the previous locks we have locked is in the AIL,
478 		 * we must TRY to get the second and subsequent locks. If
479 		 * we can't get any, we must release all we have
480 		 * and try again.
481 		 */
482 		if (!try_lock) {
483 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
484 			continue;
485 		}
486 
487 		/* try_lock means we have an inode locked that is in the AIL. */
488 		ASSERT(i != 0);
489 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
490 			continue;
491 
492 		/*
493 		 * Unlock all previous guys and try again.  xfs_iunlock will try
494 		 * to push the tail if the inode is in the AIL.
495 		 */
496 		attempts++;
497 		for (j = i - 1; j >= 0; j--) {
498 			/*
499 			 * Check to see if we've already unlocked this one.  Not
500 			 * the first one going back, and the inode ptr is the
501 			 * same.
502 			 */
503 			if (j != (i - 1) && ips[j] == ips[j + 1])
504 				continue;
505 
506 			xfs_iunlock(ips[j], lock_mode);
507 		}
508 
509 		if ((attempts % 5) == 0) {
510 			delay(1); /* Don't just spin the CPU */
511 		}
512 		goto again;
513 	}
514 }
515 
516 /*
517  * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
518  * mmaplock must be double-locked separately since we use i_rwsem and
519  * invalidate_lock for that. We now support taking one lock EXCL and the
520  * other SHARED.
521  */
522 void
523 xfs_lock_two_inodes(
524 	struct xfs_inode	*ip0,
525 	uint			ip0_mode,
526 	struct xfs_inode	*ip1,
527 	uint			ip1_mode)
528 {
529 	int			attempts = 0;
530 	struct xfs_log_item	*lp;
531 
532 	ASSERT(hweight32(ip0_mode) == 1);
533 	ASSERT(hweight32(ip1_mode) == 1);
534 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
535 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
536 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
537 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
538 	ASSERT(ip0->i_ino != ip1->i_ino);
539 
540 	if (ip0->i_ino > ip1->i_ino) {
541 		swap(ip0, ip1);
542 		swap(ip0_mode, ip1_mode);
543 	}
544 
545  again:
546 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
547 
548 	/*
549 	 * If the first lock we have locked is in the AIL, we must TRY to get
550 	 * the second lock. If we can't get it, we must release the first one
551 	 * and try again.
552 	 */
553 	lp = &ip0->i_itemp->ili_item;
554 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
555 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
556 			xfs_iunlock(ip0, ip0_mode);
557 			if ((++attempts % 5) == 0)
558 				delay(1); /* Don't just spin the CPU */
559 			goto again;
560 		}
561 	} else {
562 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
563 	}
564 }
565 
566 uint
567 xfs_ip2xflags(
568 	struct xfs_inode	*ip)
569 {
570 	uint			flags = 0;
571 
572 	if (ip->i_diflags & XFS_DIFLAG_ANY) {
573 		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
574 			flags |= FS_XFLAG_REALTIME;
575 		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
576 			flags |= FS_XFLAG_PREALLOC;
577 		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
578 			flags |= FS_XFLAG_IMMUTABLE;
579 		if (ip->i_diflags & XFS_DIFLAG_APPEND)
580 			flags |= FS_XFLAG_APPEND;
581 		if (ip->i_diflags & XFS_DIFLAG_SYNC)
582 			flags |= FS_XFLAG_SYNC;
583 		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
584 			flags |= FS_XFLAG_NOATIME;
585 		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
586 			flags |= FS_XFLAG_NODUMP;
587 		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
588 			flags |= FS_XFLAG_RTINHERIT;
589 		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
590 			flags |= FS_XFLAG_PROJINHERIT;
591 		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
592 			flags |= FS_XFLAG_NOSYMLINKS;
593 		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
594 			flags |= FS_XFLAG_EXTSIZE;
595 		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
596 			flags |= FS_XFLAG_EXTSZINHERIT;
597 		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
598 			flags |= FS_XFLAG_NODEFRAG;
599 		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
600 			flags |= FS_XFLAG_FILESTREAM;
601 	}
602 
603 	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
604 		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
605 			flags |= FS_XFLAG_DAX;
606 		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
607 			flags |= FS_XFLAG_COWEXTSIZE;
608 	}
609 
610 	if (xfs_inode_has_attr_fork(ip))
611 		flags |= FS_XFLAG_HASATTR;
612 	return flags;
613 }
614 
615 /*
616  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
617  * is allowed, otherwise it has to be an exact match. If a CI match is found,
618  * ci_name->name will point to a the actual name (caller must free) or
619  * will be set to NULL if an exact match is found.
620  */
621 int
622 xfs_lookup(
623 	struct xfs_inode	*dp,
624 	const struct xfs_name	*name,
625 	struct xfs_inode	**ipp,
626 	struct xfs_name		*ci_name)
627 {
628 	xfs_ino_t		inum;
629 	int			error;
630 
631 	trace_xfs_lookup(dp, name);
632 
633 	if (xfs_is_shutdown(dp->i_mount))
634 		return -EIO;
635 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
636 		return -EIO;
637 
638 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
639 	if (error)
640 		goto out_unlock;
641 
642 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
643 	if (error)
644 		goto out_free_name;
645 
646 	return 0;
647 
648 out_free_name:
649 	if (ci_name)
650 		kfree(ci_name->name);
651 out_unlock:
652 	*ipp = NULL;
653 	return error;
654 }
655 
656 /* Propagate di_flags from a parent inode to a child inode. */
657 static void
658 xfs_inode_inherit_flags(
659 	struct xfs_inode	*ip,
660 	const struct xfs_inode	*pip)
661 {
662 	unsigned int		di_flags = 0;
663 	xfs_failaddr_t		failaddr;
664 	umode_t			mode = VFS_I(ip)->i_mode;
665 
666 	if (S_ISDIR(mode)) {
667 		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
668 			di_flags |= XFS_DIFLAG_RTINHERIT;
669 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
670 			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
671 			ip->i_extsize = pip->i_extsize;
672 		}
673 		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
674 			di_flags |= XFS_DIFLAG_PROJINHERIT;
675 	} else if (S_ISREG(mode)) {
676 		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
677 		    xfs_has_realtime(ip->i_mount))
678 			di_flags |= XFS_DIFLAG_REALTIME;
679 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
680 			di_flags |= XFS_DIFLAG_EXTSIZE;
681 			ip->i_extsize = pip->i_extsize;
682 		}
683 	}
684 	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
685 	    xfs_inherit_noatime)
686 		di_flags |= XFS_DIFLAG_NOATIME;
687 	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
688 	    xfs_inherit_nodump)
689 		di_flags |= XFS_DIFLAG_NODUMP;
690 	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
691 	    xfs_inherit_sync)
692 		di_flags |= XFS_DIFLAG_SYNC;
693 	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
694 	    xfs_inherit_nosymlinks)
695 		di_flags |= XFS_DIFLAG_NOSYMLINKS;
696 	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
697 	    xfs_inherit_nodefrag)
698 		di_flags |= XFS_DIFLAG_NODEFRAG;
699 	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
700 		di_flags |= XFS_DIFLAG_FILESTREAM;
701 
702 	ip->i_diflags |= di_flags;
703 
704 	/*
705 	 * Inode verifiers on older kernels only check that the extent size
706 	 * hint is an integer multiple of the rt extent size on realtime files.
707 	 * They did not check the hint alignment on a directory with both
708 	 * rtinherit and extszinherit flags set.  If the misaligned hint is
709 	 * propagated from a directory into a new realtime file, new file
710 	 * allocations will fail due to math errors in the rt allocator and/or
711 	 * trip the verifiers.  Validate the hint settings in the new file so
712 	 * that we don't let broken hints propagate.
713 	 */
714 	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
715 			VFS_I(ip)->i_mode, ip->i_diflags);
716 	if (failaddr) {
717 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
718 				   XFS_DIFLAG_EXTSZINHERIT);
719 		ip->i_extsize = 0;
720 	}
721 }
722 
723 /* Propagate di_flags2 from a parent inode to a child inode. */
724 static void
725 xfs_inode_inherit_flags2(
726 	struct xfs_inode	*ip,
727 	const struct xfs_inode	*pip)
728 {
729 	xfs_failaddr_t		failaddr;
730 
731 	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
732 		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
733 		ip->i_cowextsize = pip->i_cowextsize;
734 	}
735 	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
736 		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
737 
738 	/* Don't let invalid cowextsize hints propagate. */
739 	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
740 			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
741 	if (failaddr) {
742 		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
743 		ip->i_cowextsize = 0;
744 	}
745 }
746 
747 /*
748  * Initialise a newly allocated inode and return the in-core inode to the
749  * caller locked exclusively.
750  */
751 int
752 xfs_init_new_inode(
753 	struct mnt_idmap	*idmap,
754 	struct xfs_trans	*tp,
755 	struct xfs_inode	*pip,
756 	xfs_ino_t		ino,
757 	umode_t			mode,
758 	xfs_nlink_t		nlink,
759 	dev_t			rdev,
760 	prid_t			prid,
761 	bool			init_xattrs,
762 	struct xfs_inode	**ipp)
763 {
764 	struct inode		*dir = pip ? VFS_I(pip) : NULL;
765 	struct xfs_mount	*mp = tp->t_mountp;
766 	struct xfs_inode	*ip;
767 	unsigned int		flags;
768 	int			error;
769 	struct timespec64	tv;
770 	struct inode		*inode;
771 
772 	/*
773 	 * Protect against obviously corrupt allocation btree records. Later
774 	 * xfs_iget checks will catch re-allocation of other active in-memory
775 	 * and on-disk inodes. If we don't catch reallocating the parent inode
776 	 * here we will deadlock in xfs_iget() so we have to do these checks
777 	 * first.
778 	 */
779 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
780 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
781 		xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino),
782 				XFS_SICK_AG_INOBT);
783 		return -EFSCORRUPTED;
784 	}
785 
786 	/*
787 	 * Get the in-core inode with the lock held exclusively to prevent
788 	 * others from looking at until we're done.
789 	 */
790 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
791 	if (error)
792 		return error;
793 
794 	ASSERT(ip != NULL);
795 	inode = VFS_I(ip);
796 	set_nlink(inode, nlink);
797 	inode->i_rdev = rdev;
798 	ip->i_projid = prid;
799 
800 	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
801 		inode_fsuid_set(inode, idmap);
802 		inode->i_gid = dir->i_gid;
803 		inode->i_mode = mode;
804 	} else {
805 		inode_init_owner(idmap, inode, dir, mode);
806 	}
807 
808 	/*
809 	 * If the group ID of the new file does not match the effective group
810 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
811 	 * (and only if the irix_sgid_inherit compatibility variable is set).
812 	 */
813 	if (irix_sgid_inherit && (inode->i_mode & S_ISGID) &&
814 	    !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode)))
815 		inode->i_mode &= ~S_ISGID;
816 
817 	ip->i_disk_size = 0;
818 	ip->i_df.if_nextents = 0;
819 	ASSERT(ip->i_nblocks == 0);
820 
821 	tv = inode_set_ctime_current(inode);
822 	inode_set_mtime_to_ts(inode, tv);
823 	inode_set_atime_to_ts(inode, tv);
824 
825 	ip->i_extsize = 0;
826 	ip->i_diflags = 0;
827 
828 	if (xfs_has_v3inodes(mp)) {
829 		inode_set_iversion(inode, 1);
830 		ip->i_cowextsize = 0;
831 		ip->i_crtime = tv;
832 	}
833 
834 	flags = XFS_ILOG_CORE;
835 	switch (mode & S_IFMT) {
836 	case S_IFIFO:
837 	case S_IFCHR:
838 	case S_IFBLK:
839 	case S_IFSOCK:
840 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
841 		flags |= XFS_ILOG_DEV;
842 		break;
843 	case S_IFREG:
844 	case S_IFDIR:
845 		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
846 			xfs_inode_inherit_flags(ip, pip);
847 		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
848 			xfs_inode_inherit_flags2(ip, pip);
849 		fallthrough;
850 	case S_IFLNK:
851 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
852 		ip->i_df.if_bytes = 0;
853 		ip->i_df.if_data = NULL;
854 		break;
855 	default:
856 		ASSERT(0);
857 	}
858 
859 	/*
860 	 * If we need to create attributes immediately after allocating the
861 	 * inode, initialise an empty attribute fork right now. We use the
862 	 * default fork offset for attributes here as we don't know exactly what
863 	 * size or how many attributes we might be adding. We can do this
864 	 * safely here because we know the data fork is completely empty and
865 	 * this saves us from needing to run a separate transaction to set the
866 	 * fork offset in the immediate future.
867 	 */
868 	if (init_xattrs && xfs_has_attr(mp)) {
869 		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
870 		xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
871 	}
872 
873 	/*
874 	 * Log the new values stuffed into the inode.
875 	 */
876 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
877 	xfs_trans_log_inode(tp, ip, flags);
878 
879 	/* now that we have an i_mode we can setup the inode structure */
880 	xfs_setup_inode(ip);
881 
882 	*ipp = ip;
883 	return 0;
884 }
885 
886 /*
887  * Decrement the link count on an inode & log the change.  If this causes the
888  * link count to go to zero, move the inode to AGI unlinked list so that it can
889  * be freed when the last active reference goes away via xfs_inactive().
890  */
891 static int			/* error */
892 xfs_droplink(
893 	xfs_trans_t *tp,
894 	xfs_inode_t *ip)
895 {
896 	if (VFS_I(ip)->i_nlink == 0) {
897 		xfs_alert(ip->i_mount,
898 			  "%s: Attempt to drop inode (%llu) with nlink zero.",
899 			  __func__, ip->i_ino);
900 		return -EFSCORRUPTED;
901 	}
902 
903 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
904 
905 	drop_nlink(VFS_I(ip));
906 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
907 
908 	if (VFS_I(ip)->i_nlink)
909 		return 0;
910 
911 	return xfs_iunlink(tp, ip);
912 }
913 
914 /*
915  * Increment the link count on an inode & log the change.
916  */
917 void
918 xfs_bumplink(
919 	struct xfs_trans	*tp,
920 	struct xfs_inode	*ip)
921 {
922 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
923 
924 	inc_nlink(VFS_I(ip));
925 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
926 }
927 
928 #ifdef CONFIG_XFS_LIVE_HOOKS
929 /*
930  * Use a static key here to reduce the overhead of directory live update hooks.
931  * If the compiler supports jump labels, the static branch will be replaced by
932  * a nop sled when there are no hook users.  Online fsck is currently the only
933  * caller, so this is a reasonable tradeoff.
934  *
935  * Note: Patching the kernel code requires taking the cpu hotplug lock.  Other
936  * parts of the kernel allocate memory with that lock held, which means that
937  * XFS callers cannot hold any locks that might be used by memory reclaim or
938  * writeback when calling the static_branch_{inc,dec} functions.
939  */
940 DEFINE_STATIC_XFS_HOOK_SWITCH(xfs_dir_hooks_switch);
941 
942 void
943 xfs_dir_hook_disable(void)
944 {
945 	xfs_hooks_switch_off(&xfs_dir_hooks_switch);
946 }
947 
948 void
949 xfs_dir_hook_enable(void)
950 {
951 	xfs_hooks_switch_on(&xfs_dir_hooks_switch);
952 }
953 
954 /* Call hooks for a directory update relating to a child dirent update. */
955 inline void
956 xfs_dir_update_hook(
957 	struct xfs_inode		*dp,
958 	struct xfs_inode		*ip,
959 	int				delta,
960 	const struct xfs_name		*name)
961 {
962 	if (xfs_hooks_switched_on(&xfs_dir_hooks_switch)) {
963 		struct xfs_dir_update_params	p = {
964 			.dp		= dp,
965 			.ip		= ip,
966 			.delta		= delta,
967 			.name		= name,
968 		};
969 		struct xfs_mount	*mp = ip->i_mount;
970 
971 		xfs_hooks_call(&mp->m_dir_update_hooks, 0, &p);
972 	}
973 }
974 
975 /* Call the specified function during a directory update. */
976 int
977 xfs_dir_hook_add(
978 	struct xfs_mount	*mp,
979 	struct xfs_dir_hook	*hook)
980 {
981 	return xfs_hooks_add(&mp->m_dir_update_hooks, &hook->dirent_hook);
982 }
983 
984 /* Stop calling the specified function during a directory update. */
985 void
986 xfs_dir_hook_del(
987 	struct xfs_mount	*mp,
988 	struct xfs_dir_hook	*hook)
989 {
990 	xfs_hooks_del(&mp->m_dir_update_hooks, &hook->dirent_hook);
991 }
992 
993 /* Configure directory update hook functions. */
994 void
995 xfs_dir_hook_setup(
996 	struct xfs_dir_hook	*hook,
997 	notifier_fn_t		mod_fn)
998 {
999 	xfs_hook_setup(&hook->dirent_hook, mod_fn);
1000 }
1001 #endif /* CONFIG_XFS_LIVE_HOOKS */
1002 
1003 int
1004 xfs_create(
1005 	struct mnt_idmap	*idmap,
1006 	xfs_inode_t		*dp,
1007 	struct xfs_name		*name,
1008 	umode_t			mode,
1009 	dev_t			rdev,
1010 	bool			init_xattrs,
1011 	xfs_inode_t		**ipp)
1012 {
1013 	int			is_dir = S_ISDIR(mode);
1014 	struct xfs_mount	*mp = dp->i_mount;
1015 	struct xfs_inode	*ip = NULL;
1016 	struct xfs_trans	*tp = NULL;
1017 	int			error;
1018 	bool                    unlock_dp_on_error = false;
1019 	prid_t			prid;
1020 	struct xfs_dquot	*udqp = NULL;
1021 	struct xfs_dquot	*gdqp = NULL;
1022 	struct xfs_dquot	*pdqp = NULL;
1023 	struct xfs_trans_res	*tres;
1024 	uint			resblks;
1025 	xfs_ino_t		ino;
1026 
1027 	trace_xfs_create(dp, name);
1028 
1029 	if (xfs_is_shutdown(mp))
1030 		return -EIO;
1031 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
1032 		return -EIO;
1033 
1034 	prid = xfs_get_initial_prid(dp);
1035 
1036 	/*
1037 	 * Make sure that we have allocated dquot(s) on disk.
1038 	 */
1039 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1040 			mapped_fsgid(idmap, &init_user_ns), prid,
1041 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1042 			&udqp, &gdqp, &pdqp);
1043 	if (error)
1044 		return error;
1045 
1046 	if (is_dir) {
1047 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1048 		tres = &M_RES(mp)->tr_mkdir;
1049 	} else {
1050 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1051 		tres = &M_RES(mp)->tr_create;
1052 	}
1053 
1054 	/*
1055 	 * Initially assume that the file does not exist and
1056 	 * reserve the resources for that case.  If that is not
1057 	 * the case we'll drop the one we have and get a more
1058 	 * appropriate transaction later.
1059 	 */
1060 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1061 			&tp);
1062 	if (error == -ENOSPC) {
1063 		/* flush outstanding delalloc blocks and retry */
1064 		xfs_flush_inodes(mp);
1065 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1066 				resblks, &tp);
1067 	}
1068 	if (error)
1069 		goto out_release_dquots;
1070 
1071 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1072 	unlock_dp_on_error = true;
1073 
1074 	/*
1075 	 * A newly created regular or special file just has one directory
1076 	 * entry pointing to them, but a directory also the "." entry
1077 	 * pointing to itself.
1078 	 */
1079 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1080 	if (!error)
1081 		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1082 				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1083 	if (error)
1084 		goto out_trans_cancel;
1085 
1086 	/*
1087 	 * Now we join the directory inode to the transaction.  We do not do it
1088 	 * earlier because xfs_dialloc might commit the previous transaction
1089 	 * (and release all the locks).  An error from here on will result in
1090 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1091 	 * error path.
1092 	 */
1093 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1094 	unlock_dp_on_error = false;
1095 
1096 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1097 					resblks - XFS_IALLOC_SPACE_RES(mp));
1098 	if (error) {
1099 		ASSERT(error != -ENOSPC);
1100 		goto out_trans_cancel;
1101 	}
1102 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1103 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1104 
1105 	if (is_dir) {
1106 		error = xfs_dir_init(tp, ip, dp);
1107 		if (error)
1108 			goto out_trans_cancel;
1109 
1110 		xfs_bumplink(tp, dp);
1111 	}
1112 
1113 	/*
1114 	 * Create ip with a reference from dp, and add '.' and '..' references
1115 	 * if it's a directory.
1116 	 */
1117 	xfs_dir_update_hook(dp, ip, 1, name);
1118 
1119 	/*
1120 	 * If this is a synchronous mount, make sure that the
1121 	 * create transaction goes to disk before returning to
1122 	 * the user.
1123 	 */
1124 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1125 		xfs_trans_set_sync(tp);
1126 
1127 	/*
1128 	 * Attach the dquot(s) to the inodes and modify them incore.
1129 	 * These ids of the inode couldn't have changed since the new
1130 	 * inode has been locked ever since it was created.
1131 	 */
1132 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1133 
1134 	error = xfs_trans_commit(tp);
1135 	if (error)
1136 		goto out_release_inode;
1137 
1138 	xfs_qm_dqrele(udqp);
1139 	xfs_qm_dqrele(gdqp);
1140 	xfs_qm_dqrele(pdqp);
1141 
1142 	*ipp = ip;
1143 	return 0;
1144 
1145  out_trans_cancel:
1146 	xfs_trans_cancel(tp);
1147  out_release_inode:
1148 	/*
1149 	 * Wait until after the current transaction is aborted to finish the
1150 	 * setup of the inode and release the inode.  This prevents recursive
1151 	 * transactions and deadlocks from xfs_inactive.
1152 	 */
1153 	if (ip) {
1154 		xfs_finish_inode_setup(ip);
1155 		xfs_irele(ip);
1156 	}
1157  out_release_dquots:
1158 	xfs_qm_dqrele(udqp);
1159 	xfs_qm_dqrele(gdqp);
1160 	xfs_qm_dqrele(pdqp);
1161 
1162 	if (unlock_dp_on_error)
1163 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1164 	return error;
1165 }
1166 
1167 int
1168 xfs_create_tmpfile(
1169 	struct mnt_idmap	*idmap,
1170 	struct xfs_inode	*dp,
1171 	umode_t			mode,
1172 	struct xfs_inode	**ipp)
1173 {
1174 	struct xfs_mount	*mp = dp->i_mount;
1175 	struct xfs_inode	*ip = NULL;
1176 	struct xfs_trans	*tp = NULL;
1177 	int			error;
1178 	prid_t                  prid;
1179 	struct xfs_dquot	*udqp = NULL;
1180 	struct xfs_dquot	*gdqp = NULL;
1181 	struct xfs_dquot	*pdqp = NULL;
1182 	struct xfs_trans_res	*tres;
1183 	uint			resblks;
1184 	xfs_ino_t		ino;
1185 
1186 	if (xfs_is_shutdown(mp))
1187 		return -EIO;
1188 
1189 	prid = xfs_get_initial_prid(dp);
1190 
1191 	/*
1192 	 * Make sure that we have allocated dquot(s) on disk.
1193 	 */
1194 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1195 			mapped_fsgid(idmap, &init_user_ns), prid,
1196 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1197 			&udqp, &gdqp, &pdqp);
1198 	if (error)
1199 		return error;
1200 
1201 	resblks = XFS_IALLOC_SPACE_RES(mp);
1202 	tres = &M_RES(mp)->tr_create_tmpfile;
1203 
1204 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1205 			&tp);
1206 	if (error)
1207 		goto out_release_dquots;
1208 
1209 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1210 	if (!error)
1211 		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1212 				0, 0, prid, false, &ip);
1213 	if (error)
1214 		goto out_trans_cancel;
1215 
1216 	if (xfs_has_wsync(mp))
1217 		xfs_trans_set_sync(tp);
1218 
1219 	/*
1220 	 * Attach the dquot(s) to the inodes and modify them incore.
1221 	 * These ids of the inode couldn't have changed since the new
1222 	 * inode has been locked ever since it was created.
1223 	 */
1224 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1225 
1226 	error = xfs_iunlink(tp, ip);
1227 	if (error)
1228 		goto out_trans_cancel;
1229 
1230 	error = xfs_trans_commit(tp);
1231 	if (error)
1232 		goto out_release_inode;
1233 
1234 	xfs_qm_dqrele(udqp);
1235 	xfs_qm_dqrele(gdqp);
1236 	xfs_qm_dqrele(pdqp);
1237 
1238 	*ipp = ip;
1239 	return 0;
1240 
1241  out_trans_cancel:
1242 	xfs_trans_cancel(tp);
1243  out_release_inode:
1244 	/*
1245 	 * Wait until after the current transaction is aborted to finish the
1246 	 * setup of the inode and release the inode.  This prevents recursive
1247 	 * transactions and deadlocks from xfs_inactive.
1248 	 */
1249 	if (ip) {
1250 		xfs_finish_inode_setup(ip);
1251 		xfs_irele(ip);
1252 	}
1253  out_release_dquots:
1254 	xfs_qm_dqrele(udqp);
1255 	xfs_qm_dqrele(gdqp);
1256 	xfs_qm_dqrele(pdqp);
1257 
1258 	return error;
1259 }
1260 
1261 int
1262 xfs_link(
1263 	xfs_inode_t		*tdp,
1264 	xfs_inode_t		*sip,
1265 	struct xfs_name		*target_name)
1266 {
1267 	xfs_mount_t		*mp = tdp->i_mount;
1268 	xfs_trans_t		*tp;
1269 	int			error, nospace_error = 0;
1270 	int			resblks;
1271 
1272 	trace_xfs_link(tdp, target_name);
1273 
1274 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1275 
1276 	if (xfs_is_shutdown(mp))
1277 		return -EIO;
1278 	if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
1279 		return -EIO;
1280 
1281 	error = xfs_qm_dqattach(sip);
1282 	if (error)
1283 		goto std_return;
1284 
1285 	error = xfs_qm_dqattach(tdp);
1286 	if (error)
1287 		goto std_return;
1288 
1289 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1290 	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1291 			&tp, &nospace_error);
1292 	if (error)
1293 		goto std_return;
1294 
1295 	/*
1296 	 * If we are using project inheritance, we only allow hard link
1297 	 * creation in our tree when the project IDs are the same; else
1298 	 * the tree quota mechanism could be circumvented.
1299 	 */
1300 	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1301 		     tdp->i_projid != sip->i_projid)) {
1302 		/*
1303 		 * Project quota setup skips special files which can
1304 		 * leave inodes in a PROJINHERIT directory without a
1305 		 * project ID set. We need to allow links to be made
1306 		 * to these "project-less" inodes because userspace
1307 		 * expects them to succeed after project ID setup,
1308 		 * but everything else should be rejected.
1309 		 */
1310 		if (!special_file(VFS_I(sip)->i_mode) ||
1311 		    sip->i_projid != 0) {
1312 			error = -EXDEV;
1313 			goto error_return;
1314 		}
1315 	}
1316 
1317 	if (!resblks) {
1318 		error = xfs_dir_canenter(tp, tdp, target_name);
1319 		if (error)
1320 			goto error_return;
1321 	}
1322 
1323 	/*
1324 	 * Handle initial link state of O_TMPFILE inode
1325 	 */
1326 	if (VFS_I(sip)->i_nlink == 0) {
1327 		struct xfs_perag	*pag;
1328 
1329 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1330 		error = xfs_iunlink_remove(tp, pag, sip);
1331 		xfs_perag_put(pag);
1332 		if (error)
1333 			goto error_return;
1334 	}
1335 
1336 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1337 				   resblks);
1338 	if (error)
1339 		goto error_return;
1340 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1341 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1342 
1343 	xfs_bumplink(tp, sip);
1344 	xfs_dir_update_hook(tdp, sip, 1, target_name);
1345 
1346 	/*
1347 	 * If this is a synchronous mount, make sure that the
1348 	 * link transaction goes to disk before returning to
1349 	 * the user.
1350 	 */
1351 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1352 		xfs_trans_set_sync(tp);
1353 
1354 	return xfs_trans_commit(tp);
1355 
1356  error_return:
1357 	xfs_trans_cancel(tp);
1358  std_return:
1359 	if (error == -ENOSPC && nospace_error)
1360 		error = nospace_error;
1361 	return error;
1362 }
1363 
1364 /* Clear the reflink flag and the cowblocks tag if possible. */
1365 static void
1366 xfs_itruncate_clear_reflink_flags(
1367 	struct xfs_inode	*ip)
1368 {
1369 	struct xfs_ifork	*dfork;
1370 	struct xfs_ifork	*cfork;
1371 
1372 	if (!xfs_is_reflink_inode(ip))
1373 		return;
1374 	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1375 	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1376 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1377 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1378 	if (cfork->if_bytes == 0)
1379 		xfs_inode_clear_cowblocks_tag(ip);
1380 }
1381 
1382 /*
1383  * Free up the underlying blocks past new_size.  The new size must be smaller
1384  * than the current size.  This routine can be used both for the attribute and
1385  * data fork, and does not modify the inode size, which is left to the caller.
1386  *
1387  * The transaction passed to this routine must have made a permanent log
1388  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1389  * given transaction and start new ones, so make sure everything involved in
1390  * the transaction is tidy before calling here.  Some transaction will be
1391  * returned to the caller to be committed.  The incoming transaction must
1392  * already include the inode, and both inode locks must be held exclusively.
1393  * The inode must also be "held" within the transaction.  On return the inode
1394  * will be "held" within the returned transaction.  This routine does NOT
1395  * require any disk space to be reserved for it within the transaction.
1396  *
1397  * If we get an error, we must return with the inode locked and linked into the
1398  * current transaction. This keeps things simple for the higher level code,
1399  * because it always knows that the inode is locked and held in the transaction
1400  * that returns to it whether errors occur or not.  We don't mark the inode
1401  * dirty on error so that transactions can be easily aborted if possible.
1402  */
1403 int
1404 xfs_itruncate_extents_flags(
1405 	struct xfs_trans	**tpp,
1406 	struct xfs_inode	*ip,
1407 	int			whichfork,
1408 	xfs_fsize_t		new_size,
1409 	int			flags)
1410 {
1411 	struct xfs_mount	*mp = ip->i_mount;
1412 	struct xfs_trans	*tp = *tpp;
1413 	xfs_fileoff_t		first_unmap_block;
1414 	int			error = 0;
1415 
1416 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1417 	if (atomic_read(&VFS_I(ip)->i_count))
1418 		xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
1419 	ASSERT(new_size <= XFS_ISIZE(ip));
1420 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1421 	ASSERT(ip->i_itemp != NULL);
1422 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1423 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1424 
1425 	trace_xfs_itruncate_extents_start(ip, new_size);
1426 
1427 	flags |= xfs_bmapi_aflag(whichfork);
1428 
1429 	/*
1430 	 * Since it is possible for space to become allocated beyond
1431 	 * the end of the file (in a crash where the space is allocated
1432 	 * but the inode size is not yet updated), simply remove any
1433 	 * blocks which show up between the new EOF and the maximum
1434 	 * possible file size.
1435 	 *
1436 	 * We have to free all the blocks to the bmbt maximum offset, even if
1437 	 * the page cache can't scale that far.
1438 	 */
1439 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1440 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1441 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1442 		return 0;
1443 	}
1444 
1445 	error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1446 			XFS_MAX_FILEOFF);
1447 	if (error)
1448 		goto out;
1449 
1450 	if (whichfork == XFS_DATA_FORK) {
1451 		/* Remove all pending CoW reservations. */
1452 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1453 				first_unmap_block, XFS_MAX_FILEOFF, true);
1454 		if (error)
1455 			goto out;
1456 
1457 		xfs_itruncate_clear_reflink_flags(ip);
1458 	}
1459 
1460 	/*
1461 	 * Always re-log the inode so that our permanent transaction can keep
1462 	 * on rolling it forward in the log.
1463 	 */
1464 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1465 
1466 	trace_xfs_itruncate_extents_end(ip, new_size);
1467 
1468 out:
1469 	*tpp = tp;
1470 	return error;
1471 }
1472 
1473 int
1474 xfs_release(
1475 	xfs_inode_t	*ip)
1476 {
1477 	xfs_mount_t	*mp = ip->i_mount;
1478 	int		error = 0;
1479 
1480 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1481 		return 0;
1482 
1483 	/* If this is a read-only mount, don't do this (would generate I/O) */
1484 	if (xfs_is_readonly(mp))
1485 		return 0;
1486 
1487 	if (!xfs_is_shutdown(mp)) {
1488 		int truncated;
1489 
1490 		/*
1491 		 * If we previously truncated this file and removed old data
1492 		 * in the process, we want to initiate "early" writeout on
1493 		 * the last close.  This is an attempt to combat the notorious
1494 		 * NULL files problem which is particularly noticeable from a
1495 		 * truncate down, buffered (re-)write (delalloc), followed by
1496 		 * a crash.  What we are effectively doing here is
1497 		 * significantly reducing the time window where we'd otherwise
1498 		 * be exposed to that problem.
1499 		 */
1500 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1501 		if (truncated) {
1502 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1503 			if (ip->i_delayed_blks > 0) {
1504 				error = filemap_flush(VFS_I(ip)->i_mapping);
1505 				if (error)
1506 					return error;
1507 			}
1508 		}
1509 	}
1510 
1511 	if (VFS_I(ip)->i_nlink == 0)
1512 		return 0;
1513 
1514 	/*
1515 	 * If we can't get the iolock just skip truncating the blocks past EOF
1516 	 * because we could deadlock with the mmap_lock otherwise. We'll get
1517 	 * another chance to drop them once the last reference to the inode is
1518 	 * dropped, so we'll never leak blocks permanently.
1519 	 */
1520 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1521 		return 0;
1522 
1523 	if (xfs_can_free_eofblocks(ip, false)) {
1524 		/*
1525 		 * Check if the inode is being opened, written and closed
1526 		 * frequently and we have delayed allocation blocks outstanding
1527 		 * (e.g. streaming writes from the NFS server), truncating the
1528 		 * blocks past EOF will cause fragmentation to occur.
1529 		 *
1530 		 * In this case don't do the truncation, but we have to be
1531 		 * careful how we detect this case. Blocks beyond EOF show up as
1532 		 * i_delayed_blks even when the inode is clean, so we need to
1533 		 * truncate them away first before checking for a dirty release.
1534 		 * Hence on the first dirty close we will still remove the
1535 		 * speculative allocation, but after that we will leave it in
1536 		 * place.
1537 		 */
1538 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1539 			goto out_unlock;
1540 
1541 		error = xfs_free_eofblocks(ip);
1542 		if (error)
1543 			goto out_unlock;
1544 
1545 		/* delalloc blocks after truncation means it really is dirty */
1546 		if (ip->i_delayed_blks)
1547 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1548 	}
1549 
1550 out_unlock:
1551 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1552 	return error;
1553 }
1554 
1555 /*
1556  * Mark all the buffers attached to this directory stale.  In theory we should
1557  * never be freeing a directory with any blocks at all, but this covers the
1558  * case where we've recovered a directory swap with a "temporary" directory
1559  * created by online repair and now need to dump it.
1560  */
1561 STATIC void
1562 xfs_inactive_dir(
1563 	struct xfs_inode	*dp)
1564 {
1565 	struct xfs_iext_cursor	icur;
1566 	struct xfs_bmbt_irec	got;
1567 	struct xfs_mount	*mp = dp->i_mount;
1568 	struct xfs_da_geometry	*geo = mp->m_dir_geo;
1569 	struct xfs_ifork	*ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK);
1570 	xfs_fileoff_t		off;
1571 
1572 	/*
1573 	 * Invalidate each directory block.  All directory blocks are of
1574 	 * fsbcount length and alignment, so we only need to walk those same
1575 	 * offsets.  We hold the only reference to this inode, so we must wait
1576 	 * for the buffer locks.
1577 	 */
1578 	for_each_xfs_iext(ifp, &icur, &got) {
1579 		for (off = round_up(got.br_startoff, geo->fsbcount);
1580 		     off < got.br_startoff + got.br_blockcount;
1581 		     off += geo->fsbcount) {
1582 			struct xfs_buf	*bp = NULL;
1583 			xfs_fsblock_t	fsbno;
1584 			int		error;
1585 
1586 			fsbno = (off - got.br_startoff) + got.br_startblock;
1587 			error = xfs_buf_incore(mp->m_ddev_targp,
1588 					XFS_FSB_TO_DADDR(mp, fsbno),
1589 					XFS_FSB_TO_BB(mp, geo->fsbcount),
1590 					XBF_LIVESCAN, &bp);
1591 			if (error)
1592 				continue;
1593 
1594 			xfs_buf_stale(bp);
1595 			xfs_buf_relse(bp);
1596 		}
1597 	}
1598 }
1599 
1600 /*
1601  * xfs_inactive_truncate
1602  *
1603  * Called to perform a truncate when an inode becomes unlinked.
1604  */
1605 STATIC int
1606 xfs_inactive_truncate(
1607 	struct xfs_inode *ip)
1608 {
1609 	struct xfs_mount	*mp = ip->i_mount;
1610 	struct xfs_trans	*tp;
1611 	int			error;
1612 
1613 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1614 	if (error) {
1615 		ASSERT(xfs_is_shutdown(mp));
1616 		return error;
1617 	}
1618 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1619 	xfs_trans_ijoin(tp, ip, 0);
1620 
1621 	/*
1622 	 * Log the inode size first to prevent stale data exposure in the event
1623 	 * of a system crash before the truncate completes. See the related
1624 	 * comment in xfs_vn_setattr_size() for details.
1625 	 */
1626 	ip->i_disk_size = 0;
1627 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1628 
1629 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1630 	if (error)
1631 		goto error_trans_cancel;
1632 
1633 	ASSERT(ip->i_df.if_nextents == 0);
1634 
1635 	error = xfs_trans_commit(tp);
1636 	if (error)
1637 		goto error_unlock;
1638 
1639 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1640 	return 0;
1641 
1642 error_trans_cancel:
1643 	xfs_trans_cancel(tp);
1644 error_unlock:
1645 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1646 	return error;
1647 }
1648 
1649 /*
1650  * xfs_inactive_ifree()
1651  *
1652  * Perform the inode free when an inode is unlinked.
1653  */
1654 STATIC int
1655 xfs_inactive_ifree(
1656 	struct xfs_inode *ip)
1657 {
1658 	struct xfs_mount	*mp = ip->i_mount;
1659 	struct xfs_trans	*tp;
1660 	int			error;
1661 
1662 	/*
1663 	 * We try to use a per-AG reservation for any block needed by the finobt
1664 	 * tree, but as the finobt feature predates the per-AG reservation
1665 	 * support a degraded file system might not have enough space for the
1666 	 * reservation at mount time.  In that case try to dip into the reserved
1667 	 * pool and pray.
1668 	 *
1669 	 * Send a warning if the reservation does happen to fail, as the inode
1670 	 * now remains allocated and sits on the unlinked list until the fs is
1671 	 * repaired.
1672 	 */
1673 	if (unlikely(mp->m_finobt_nores)) {
1674 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1675 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1676 				&tp);
1677 	} else {
1678 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1679 	}
1680 	if (error) {
1681 		if (error == -ENOSPC) {
1682 			xfs_warn_ratelimited(mp,
1683 			"Failed to remove inode(s) from unlinked list. "
1684 			"Please free space, unmount and run xfs_repair.");
1685 		} else {
1686 			ASSERT(xfs_is_shutdown(mp));
1687 		}
1688 		return error;
1689 	}
1690 
1691 	/*
1692 	 * We do not hold the inode locked across the entire rolling transaction
1693 	 * here. We only need to hold it for the first transaction that
1694 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1695 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1696 	 * here breaks the relationship between cluster buffer invalidation and
1697 	 * stale inode invalidation on cluster buffer item journal commit
1698 	 * completion, and can result in leaving dirty stale inodes hanging
1699 	 * around in memory.
1700 	 *
1701 	 * We have no need for serialising this inode operation against other
1702 	 * operations - we freed the inode and hence reallocation is required
1703 	 * and that will serialise on reallocating the space the deferops need
1704 	 * to free. Hence we can unlock the inode on the first commit of
1705 	 * the transaction rather than roll it right through the deferops. This
1706 	 * avoids relogging the XFS_ISTALE inode.
1707 	 *
1708 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1709 	 * by asserting that the inode is still locked when it returns.
1710 	 */
1711 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1712 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1713 
1714 	error = xfs_ifree(tp, ip);
1715 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1716 	if (error) {
1717 		/*
1718 		 * If we fail to free the inode, shut down.  The cancel
1719 		 * might do that, we need to make sure.  Otherwise the
1720 		 * inode might be lost for a long time or forever.
1721 		 */
1722 		if (!xfs_is_shutdown(mp)) {
1723 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1724 				__func__, error);
1725 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1726 		}
1727 		xfs_trans_cancel(tp);
1728 		return error;
1729 	}
1730 
1731 	/*
1732 	 * Credit the quota account(s). The inode is gone.
1733 	 */
1734 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1735 
1736 	return xfs_trans_commit(tp);
1737 }
1738 
1739 /*
1740  * Returns true if we need to update the on-disk metadata before we can free
1741  * the memory used by this inode.  Updates include freeing post-eof
1742  * preallocations; freeing COW staging extents; and marking the inode free in
1743  * the inobt if it is on the unlinked list.
1744  */
1745 bool
1746 xfs_inode_needs_inactive(
1747 	struct xfs_inode	*ip)
1748 {
1749 	struct xfs_mount	*mp = ip->i_mount;
1750 	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1751 
1752 	/*
1753 	 * If the inode is already free, then there can be nothing
1754 	 * to clean up here.
1755 	 */
1756 	if (VFS_I(ip)->i_mode == 0)
1757 		return false;
1758 
1759 	/*
1760 	 * If this is a read-only mount, don't do this (would generate I/O)
1761 	 * unless we're in log recovery and cleaning the iunlinked list.
1762 	 */
1763 	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1764 		return false;
1765 
1766 	/* If the log isn't running, push inodes straight to reclaim. */
1767 	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1768 		return false;
1769 
1770 	/* Metadata inodes require explicit resource cleanup. */
1771 	if (xfs_is_metadata_inode(ip))
1772 		return false;
1773 
1774 	/* Want to clean out the cow blocks if there are any. */
1775 	if (cow_ifp && cow_ifp->if_bytes > 0)
1776 		return true;
1777 
1778 	/* Unlinked files must be freed. */
1779 	if (VFS_I(ip)->i_nlink == 0)
1780 		return true;
1781 
1782 	/*
1783 	 * This file isn't being freed, so check if there are post-eof blocks
1784 	 * to free.  @force is true because we are evicting an inode from the
1785 	 * cache.  Post-eof blocks must be freed, lest we end up with broken
1786 	 * free space accounting.
1787 	 *
1788 	 * Note: don't bother with iolock here since lockdep complains about
1789 	 * acquiring it in reclaim context. We have the only reference to the
1790 	 * inode at this point anyways.
1791 	 */
1792 	return xfs_can_free_eofblocks(ip, true);
1793 }
1794 
1795 /*
1796  * Save health status somewhere, if we're dumping an inode with uncorrected
1797  * errors and online repair isn't running.
1798  */
1799 static inline void
1800 xfs_inactive_health(
1801 	struct xfs_inode	*ip)
1802 {
1803 	struct xfs_mount	*mp = ip->i_mount;
1804 	struct xfs_perag	*pag;
1805 	unsigned int		sick;
1806 	unsigned int		checked;
1807 
1808 	xfs_inode_measure_sickness(ip, &sick, &checked);
1809 	if (!sick)
1810 		return;
1811 
1812 	trace_xfs_inode_unfixed_corruption(ip, sick);
1813 
1814 	if (sick & XFS_SICK_INO_FORGET)
1815 		return;
1816 
1817 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1818 	if (!pag) {
1819 		/* There had better still be a perag structure! */
1820 		ASSERT(0);
1821 		return;
1822 	}
1823 
1824 	xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
1825 	xfs_perag_put(pag);
1826 }
1827 
1828 /*
1829  * xfs_inactive
1830  *
1831  * This is called when the vnode reference count for the vnode
1832  * goes to zero.  If the file has been unlinked, then it must
1833  * now be truncated.  Also, we clear all of the read-ahead state
1834  * kept for the inode here since the file is now closed.
1835  */
1836 int
1837 xfs_inactive(
1838 	xfs_inode_t	*ip)
1839 {
1840 	struct xfs_mount	*mp;
1841 	int			error = 0;
1842 	int			truncate = 0;
1843 
1844 	/*
1845 	 * If the inode is already free, then there can be nothing
1846 	 * to clean up here.
1847 	 */
1848 	if (VFS_I(ip)->i_mode == 0) {
1849 		ASSERT(ip->i_df.if_broot_bytes == 0);
1850 		goto out;
1851 	}
1852 
1853 	mp = ip->i_mount;
1854 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1855 
1856 	xfs_inactive_health(ip);
1857 
1858 	/*
1859 	 * If this is a read-only mount, don't do this (would generate I/O)
1860 	 * unless we're in log recovery and cleaning the iunlinked list.
1861 	 */
1862 	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1863 		goto out;
1864 
1865 	/* Metadata inodes require explicit resource cleanup. */
1866 	if (xfs_is_metadata_inode(ip))
1867 		goto out;
1868 
1869 	/* Try to clean out the cow blocks if there are any. */
1870 	if (xfs_inode_has_cow_data(ip))
1871 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1872 
1873 	if (VFS_I(ip)->i_nlink != 0) {
1874 		/*
1875 		 * force is true because we are evicting an inode from the
1876 		 * cache. Post-eof blocks must be freed, lest we end up with
1877 		 * broken free space accounting.
1878 		 *
1879 		 * Note: don't bother with iolock here since lockdep complains
1880 		 * about acquiring it in reclaim context. We have the only
1881 		 * reference to the inode at this point anyways.
1882 		 */
1883 		if (xfs_can_free_eofblocks(ip, true))
1884 			error = xfs_free_eofblocks(ip);
1885 
1886 		goto out;
1887 	}
1888 
1889 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1890 	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1891 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1892 		truncate = 1;
1893 
1894 	if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1895 		/*
1896 		 * If this inode is being inactivated during a quotacheck and
1897 		 * has not yet been scanned by quotacheck, we /must/ remove
1898 		 * the dquots from the inode before inactivation changes the
1899 		 * block and inode counts.  Most probably this is a result of
1900 		 * reloading the incore iunlinked list to purge unrecovered
1901 		 * unlinked inodes.
1902 		 */
1903 		xfs_qm_dqdetach(ip);
1904 	} else {
1905 		error = xfs_qm_dqattach(ip);
1906 		if (error)
1907 			goto out;
1908 	}
1909 
1910 	if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) {
1911 		xfs_inactive_dir(ip);
1912 		truncate = 1;
1913 	}
1914 
1915 	if (S_ISLNK(VFS_I(ip)->i_mode))
1916 		error = xfs_inactive_symlink(ip);
1917 	else if (truncate)
1918 		error = xfs_inactive_truncate(ip);
1919 	if (error)
1920 		goto out;
1921 
1922 	/*
1923 	 * If there are attributes associated with the file then blow them away
1924 	 * now.  The code calls a routine that recursively deconstructs the
1925 	 * attribute fork. If also blows away the in-core attribute fork.
1926 	 */
1927 	if (xfs_inode_has_attr_fork(ip)) {
1928 		error = xfs_attr_inactive(ip);
1929 		if (error)
1930 			goto out;
1931 	}
1932 
1933 	ASSERT(ip->i_forkoff == 0);
1934 
1935 	/*
1936 	 * Free the inode.
1937 	 */
1938 	error = xfs_inactive_ifree(ip);
1939 
1940 out:
1941 	/*
1942 	 * We're done making metadata updates for this inode, so we can release
1943 	 * the attached dquots.
1944 	 */
1945 	xfs_qm_dqdetach(ip);
1946 	return error;
1947 }
1948 
1949 /*
1950  * In-Core Unlinked List Lookups
1951  * =============================
1952  *
1953  * Every inode is supposed to be reachable from some other piece of metadata
1954  * with the exception of the root directory.  Inodes with a connection to a
1955  * file descriptor but not linked from anywhere in the on-disk directory tree
1956  * are collectively known as unlinked inodes, though the filesystem itself
1957  * maintains links to these inodes so that on-disk metadata are consistent.
1958  *
1959  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1960  * header contains a number of buckets that point to an inode, and each inode
1961  * record has a pointer to the next inode in the hash chain.  This
1962  * singly-linked list causes scaling problems in the iunlink remove function
1963  * because we must walk that list to find the inode that points to the inode
1964  * being removed from the unlinked hash bucket list.
1965  *
1966  * Hence we keep an in-memory double linked list to link each inode on an
1967  * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1968  * based lists would require having 64 list heads in the perag, one for each
1969  * list. This is expensive in terms of memory (think millions of AGs) and cache
1970  * misses on lookups. Instead, use the fact that inodes on the unlinked list
1971  * must be referenced at the VFS level to keep them on the list and hence we
1972  * have an existence guarantee for inodes on the unlinked list.
1973  *
1974  * Given we have an existence guarantee, we can use lockless inode cache lookups
1975  * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1976  * for the double linked unlinked list, and we don't need any extra locking to
1977  * keep the list safe as all manipulations are done under the AGI buffer lock.
1978  * Keeping the list up to date does not require memory allocation, just finding
1979  * the XFS inode and updating the next/prev unlinked list aginos.
1980  */
1981 
1982 /*
1983  * Find an inode on the unlinked list. This does not take references to the
1984  * inode as we have existence guarantees by holding the AGI buffer lock and that
1985  * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1986  * don't find the inode in cache, then let the caller handle the situation.
1987  */
1988 static struct xfs_inode *
1989 xfs_iunlink_lookup(
1990 	struct xfs_perag	*pag,
1991 	xfs_agino_t		agino)
1992 {
1993 	struct xfs_inode	*ip;
1994 
1995 	rcu_read_lock();
1996 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1997 	if (!ip) {
1998 		/* Caller can handle inode not being in memory. */
1999 		rcu_read_unlock();
2000 		return NULL;
2001 	}
2002 
2003 	/*
2004 	 * Inode in RCU freeing limbo should not happen.  Warn about this and
2005 	 * let the caller handle the failure.
2006 	 */
2007 	if (WARN_ON_ONCE(!ip->i_ino)) {
2008 		rcu_read_unlock();
2009 		return NULL;
2010 	}
2011 	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
2012 	rcu_read_unlock();
2013 	return ip;
2014 }
2015 
2016 /*
2017  * Update the prev pointer of the next agino.  Returns -ENOLINK if the inode
2018  * is not in cache.
2019  */
2020 static int
2021 xfs_iunlink_update_backref(
2022 	struct xfs_perag	*pag,
2023 	xfs_agino_t		prev_agino,
2024 	xfs_agino_t		next_agino)
2025 {
2026 	struct xfs_inode	*ip;
2027 
2028 	/* No update necessary if we are at the end of the list. */
2029 	if (next_agino == NULLAGINO)
2030 		return 0;
2031 
2032 	ip = xfs_iunlink_lookup(pag, next_agino);
2033 	if (!ip)
2034 		return -ENOLINK;
2035 
2036 	ip->i_prev_unlinked = prev_agino;
2037 	return 0;
2038 }
2039 
2040 /*
2041  * Point the AGI unlinked bucket at an inode and log the results.  The caller
2042  * is responsible for validating the old value.
2043  */
2044 STATIC int
2045 xfs_iunlink_update_bucket(
2046 	struct xfs_trans	*tp,
2047 	struct xfs_perag	*pag,
2048 	struct xfs_buf		*agibp,
2049 	unsigned int		bucket_index,
2050 	xfs_agino_t		new_agino)
2051 {
2052 	struct xfs_agi		*agi = agibp->b_addr;
2053 	xfs_agino_t		old_value;
2054 	int			offset;
2055 
2056 	ASSERT(xfs_verify_agino_or_null(pag, new_agino));
2057 
2058 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2059 	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
2060 			old_value, new_agino);
2061 
2062 	/*
2063 	 * We should never find the head of the list already set to the value
2064 	 * passed in because either we're adding or removing ourselves from the
2065 	 * head of the list.
2066 	 */
2067 	if (old_value == new_agino) {
2068 		xfs_buf_mark_corrupt(agibp);
2069 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2070 		return -EFSCORRUPTED;
2071 	}
2072 
2073 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2074 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2075 			(sizeof(xfs_agino_t) * bucket_index);
2076 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2077 	return 0;
2078 }
2079 
2080 /*
2081  * Load the inode @next_agino into the cache and set its prev_unlinked pointer
2082  * to @prev_agino.  Caller must hold the AGI to synchronize with other changes
2083  * to the unlinked list.
2084  */
2085 STATIC int
2086 xfs_iunlink_reload_next(
2087 	struct xfs_trans	*tp,
2088 	struct xfs_buf		*agibp,
2089 	xfs_agino_t		prev_agino,
2090 	xfs_agino_t		next_agino)
2091 {
2092 	struct xfs_perag	*pag = agibp->b_pag;
2093 	struct xfs_mount	*mp = pag->pag_mount;
2094 	struct xfs_inode	*next_ip = NULL;
2095 	xfs_ino_t		ino;
2096 	int			error;
2097 
2098 	ASSERT(next_agino != NULLAGINO);
2099 
2100 #ifdef DEBUG
2101 	rcu_read_lock();
2102 	next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
2103 	ASSERT(next_ip == NULL);
2104 	rcu_read_unlock();
2105 #endif
2106 
2107 	xfs_info_ratelimited(mp,
2108  "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.",
2109 			next_agino, pag->pag_agno);
2110 
2111 	/*
2112 	 * Use an untrusted lookup just to be cautious in case the AGI has been
2113 	 * corrupted and now points at a free inode.  That shouldn't happen,
2114 	 * but we'd rather shut down now since we're already running in a weird
2115 	 * situation.
2116 	 */
2117 	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino);
2118 	error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip);
2119 	if (error) {
2120 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2121 		return error;
2122 	}
2123 
2124 	/* If this is not an unlinked inode, something is very wrong. */
2125 	if (VFS_I(next_ip)->i_nlink != 0) {
2126 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2127 		error = -EFSCORRUPTED;
2128 		goto rele;
2129 	}
2130 
2131 	next_ip->i_prev_unlinked = prev_agino;
2132 	trace_xfs_iunlink_reload_next(next_ip);
2133 rele:
2134 	ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
2135 	if (xfs_is_quotacheck_running(mp) && next_ip)
2136 		xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
2137 	xfs_irele(next_ip);
2138 	return error;
2139 }
2140 
2141 static int
2142 xfs_iunlink_insert_inode(
2143 	struct xfs_trans	*tp,
2144 	struct xfs_perag	*pag,
2145 	struct xfs_buf		*agibp,
2146 	struct xfs_inode	*ip)
2147 {
2148 	struct xfs_mount	*mp = tp->t_mountp;
2149 	struct xfs_agi		*agi = agibp->b_addr;
2150 	xfs_agino_t		next_agino;
2151 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2152 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2153 	int			error;
2154 
2155 	/*
2156 	 * Get the index into the agi hash table for the list this inode will
2157 	 * go on.  Make sure the pointer isn't garbage and that this inode
2158 	 * isn't already on the list.
2159 	 */
2160 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2161 	if (next_agino == agino ||
2162 	    !xfs_verify_agino_or_null(pag, next_agino)) {
2163 		xfs_buf_mark_corrupt(agibp);
2164 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2165 		return -EFSCORRUPTED;
2166 	}
2167 
2168 	/*
2169 	 * Update the prev pointer in the next inode to point back to this
2170 	 * inode.
2171 	 */
2172 	error = xfs_iunlink_update_backref(pag, agino, next_agino);
2173 	if (error == -ENOLINK)
2174 		error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino);
2175 	if (error)
2176 		return error;
2177 
2178 	if (next_agino != NULLAGINO) {
2179 		/*
2180 		 * There is already another inode in the bucket, so point this
2181 		 * inode to the current head of the list.
2182 		 */
2183 		error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
2184 		if (error)
2185 			return error;
2186 		ip->i_next_unlinked = next_agino;
2187 	}
2188 
2189 	/* Point the head of the list to point to this inode. */
2190 	ip->i_prev_unlinked = NULLAGINO;
2191 	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2192 }
2193 
2194 /*
2195  * This is called when the inode's link count has gone to 0 or we are creating
2196  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2197  *
2198  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2199  * list when the inode is freed.
2200  */
2201 int
2202 xfs_iunlink(
2203 	struct xfs_trans	*tp,
2204 	struct xfs_inode	*ip)
2205 {
2206 	struct xfs_mount	*mp = tp->t_mountp;
2207 	struct xfs_perag	*pag;
2208 	struct xfs_buf		*agibp;
2209 	int			error;
2210 
2211 	ASSERT(VFS_I(ip)->i_nlink == 0);
2212 	ASSERT(VFS_I(ip)->i_mode != 0);
2213 	trace_xfs_iunlink(ip);
2214 
2215 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2216 
2217 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2218 	error = xfs_read_agi(pag, tp, 0, &agibp);
2219 	if (error)
2220 		goto out;
2221 
2222 	error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
2223 out:
2224 	xfs_perag_put(pag);
2225 	return error;
2226 }
2227 
2228 static int
2229 xfs_iunlink_remove_inode(
2230 	struct xfs_trans	*tp,
2231 	struct xfs_perag	*pag,
2232 	struct xfs_buf		*agibp,
2233 	struct xfs_inode	*ip)
2234 {
2235 	struct xfs_mount	*mp = tp->t_mountp;
2236 	struct xfs_agi		*agi = agibp->b_addr;
2237 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2238 	xfs_agino_t		head_agino;
2239 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2240 	int			error;
2241 
2242 	trace_xfs_iunlink_remove(ip);
2243 
2244 	/*
2245 	 * Get the index into the agi hash table for the list this inode will
2246 	 * go on.  Make sure the head pointer isn't garbage.
2247 	 */
2248 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2249 	if (!xfs_verify_agino(pag, head_agino)) {
2250 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2251 				agi, sizeof(*agi));
2252 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2253 		return -EFSCORRUPTED;
2254 	}
2255 
2256 	/*
2257 	 * Set our inode's next_unlinked pointer to NULL and then return
2258 	 * the old pointer value so that we can update whatever was previous
2259 	 * to us in the list to point to whatever was next in the list.
2260 	 */
2261 	error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2262 	if (error)
2263 		return error;
2264 
2265 	/*
2266 	 * Update the prev pointer in the next inode to point back to previous
2267 	 * inode in the chain.
2268 	 */
2269 	error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2270 			ip->i_next_unlinked);
2271 	if (error == -ENOLINK)
2272 		error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked,
2273 				ip->i_next_unlinked);
2274 	if (error)
2275 		return error;
2276 
2277 	if (head_agino != agino) {
2278 		struct xfs_inode	*prev_ip;
2279 
2280 		prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2281 		if (!prev_ip) {
2282 			xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
2283 			return -EFSCORRUPTED;
2284 		}
2285 
2286 		error = xfs_iunlink_log_inode(tp, prev_ip, pag,
2287 				ip->i_next_unlinked);
2288 		prev_ip->i_next_unlinked = ip->i_next_unlinked;
2289 	} else {
2290 		/* Point the head of the list to the next unlinked inode. */
2291 		error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2292 				ip->i_next_unlinked);
2293 	}
2294 
2295 	ip->i_next_unlinked = NULLAGINO;
2296 	ip->i_prev_unlinked = 0;
2297 	return error;
2298 }
2299 
2300 /*
2301  * Pull the on-disk inode from the AGI unlinked list.
2302  */
2303 int
2304 xfs_iunlink_remove(
2305 	struct xfs_trans	*tp,
2306 	struct xfs_perag	*pag,
2307 	struct xfs_inode	*ip)
2308 {
2309 	struct xfs_buf		*agibp;
2310 	int			error;
2311 
2312 	trace_xfs_iunlink_remove(ip);
2313 
2314 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2315 	error = xfs_read_agi(pag, tp, 0, &agibp);
2316 	if (error)
2317 		return error;
2318 
2319 	return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
2320 }
2321 
2322 /*
2323  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2324  * mark it stale. We should only find clean inodes in this lookup that aren't
2325  * already stale.
2326  */
2327 static void
2328 xfs_ifree_mark_inode_stale(
2329 	struct xfs_perag	*pag,
2330 	struct xfs_inode	*free_ip,
2331 	xfs_ino_t		inum)
2332 {
2333 	struct xfs_mount	*mp = pag->pag_mount;
2334 	struct xfs_inode_log_item *iip;
2335 	struct xfs_inode	*ip;
2336 
2337 retry:
2338 	rcu_read_lock();
2339 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2340 
2341 	/* Inode not in memory, nothing to do */
2342 	if (!ip) {
2343 		rcu_read_unlock();
2344 		return;
2345 	}
2346 
2347 	/*
2348 	 * because this is an RCU protected lookup, we could find a recently
2349 	 * freed or even reallocated inode during the lookup. We need to check
2350 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2351 	 * valid, the wrong inode or stale.
2352 	 */
2353 	spin_lock(&ip->i_flags_lock);
2354 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2355 		goto out_iflags_unlock;
2356 
2357 	/*
2358 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2359 	 * other inodes that we did not find in the list attached to the buffer
2360 	 * and are not already marked stale. If we can't lock it, back off and
2361 	 * retry.
2362 	 */
2363 	if (ip != free_ip) {
2364 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2365 			spin_unlock(&ip->i_flags_lock);
2366 			rcu_read_unlock();
2367 			delay(1);
2368 			goto retry;
2369 		}
2370 	}
2371 	ip->i_flags |= XFS_ISTALE;
2372 
2373 	/*
2374 	 * If the inode is flushing, it is already attached to the buffer.  All
2375 	 * we needed to do here is mark the inode stale so buffer IO completion
2376 	 * will remove it from the AIL.
2377 	 */
2378 	iip = ip->i_itemp;
2379 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2380 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2381 		ASSERT(iip->ili_last_fields);
2382 		goto out_iunlock;
2383 	}
2384 
2385 	/*
2386 	 * Inodes not attached to the buffer can be released immediately.
2387 	 * Everything else has to go through xfs_iflush_abort() on journal
2388 	 * commit as the flock synchronises removal of the inode from the
2389 	 * cluster buffer against inode reclaim.
2390 	 */
2391 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2392 		goto out_iunlock;
2393 
2394 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2395 	spin_unlock(&ip->i_flags_lock);
2396 	rcu_read_unlock();
2397 
2398 	/* we have a dirty inode in memory that has not yet been flushed. */
2399 	spin_lock(&iip->ili_lock);
2400 	iip->ili_last_fields = iip->ili_fields;
2401 	iip->ili_fields = 0;
2402 	iip->ili_fsync_fields = 0;
2403 	spin_unlock(&iip->ili_lock);
2404 	ASSERT(iip->ili_last_fields);
2405 
2406 	if (ip != free_ip)
2407 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2408 	return;
2409 
2410 out_iunlock:
2411 	if (ip != free_ip)
2412 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2413 out_iflags_unlock:
2414 	spin_unlock(&ip->i_flags_lock);
2415 	rcu_read_unlock();
2416 }
2417 
2418 /*
2419  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2420  * inodes that are in memory - they all must be marked stale and attached to
2421  * the cluster buffer.
2422  */
2423 static int
2424 xfs_ifree_cluster(
2425 	struct xfs_trans	*tp,
2426 	struct xfs_perag	*pag,
2427 	struct xfs_inode	*free_ip,
2428 	struct xfs_icluster	*xic)
2429 {
2430 	struct xfs_mount	*mp = free_ip->i_mount;
2431 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2432 	struct xfs_buf		*bp;
2433 	xfs_daddr_t		blkno;
2434 	xfs_ino_t		inum = xic->first_ino;
2435 	int			nbufs;
2436 	int			i, j;
2437 	int			ioffset;
2438 	int			error;
2439 
2440 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2441 
2442 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2443 		/*
2444 		 * The allocation bitmap tells us which inodes of the chunk were
2445 		 * physically allocated. Skip the cluster if an inode falls into
2446 		 * a sparse region.
2447 		 */
2448 		ioffset = inum - xic->first_ino;
2449 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2450 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2451 			continue;
2452 		}
2453 
2454 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2455 					 XFS_INO_TO_AGBNO(mp, inum));
2456 
2457 		/*
2458 		 * We obtain and lock the backing buffer first in the process
2459 		 * here to ensure dirty inodes attached to the buffer remain in
2460 		 * the flushing state while we mark them stale.
2461 		 *
2462 		 * If we scan the in-memory inodes first, then buffer IO can
2463 		 * complete before we get a lock on it, and hence we may fail
2464 		 * to mark all the active inodes on the buffer stale.
2465 		 */
2466 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2467 				mp->m_bsize * igeo->blocks_per_cluster,
2468 				XBF_UNMAPPED, &bp);
2469 		if (error)
2470 			return error;
2471 
2472 		/*
2473 		 * This buffer may not have been correctly initialised as we
2474 		 * didn't read it from disk. That's not important because we are
2475 		 * only using to mark the buffer as stale in the log, and to
2476 		 * attach stale cached inodes on it. That means it will never be
2477 		 * dispatched for IO. If it is, we want to know about it, and we
2478 		 * want it to fail. We can acheive this by adding a write
2479 		 * verifier to the buffer.
2480 		 */
2481 		bp->b_ops = &xfs_inode_buf_ops;
2482 
2483 		/*
2484 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2485 		 * too. This requires lookups, and will skip inodes that we've
2486 		 * already marked XFS_ISTALE.
2487 		 */
2488 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2489 			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2490 
2491 		xfs_trans_stale_inode_buf(tp, bp);
2492 		xfs_trans_binval(tp, bp);
2493 	}
2494 	return 0;
2495 }
2496 
2497 /*
2498  * This is called to return an inode to the inode free list.  The inode should
2499  * already be truncated to 0 length and have no pages associated with it.  This
2500  * routine also assumes that the inode is already a part of the transaction.
2501  *
2502  * The on-disk copy of the inode will have been added to the list of unlinked
2503  * inodes in the AGI. We need to remove the inode from that list atomically with
2504  * respect to freeing it here.
2505  */
2506 int
2507 xfs_ifree(
2508 	struct xfs_trans	*tp,
2509 	struct xfs_inode	*ip)
2510 {
2511 	struct xfs_mount	*mp = ip->i_mount;
2512 	struct xfs_perag	*pag;
2513 	struct xfs_icluster	xic = { 0 };
2514 	struct xfs_inode_log_item *iip = ip->i_itemp;
2515 	int			error;
2516 
2517 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
2518 	ASSERT(VFS_I(ip)->i_nlink == 0);
2519 	ASSERT(ip->i_df.if_nextents == 0);
2520 	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2521 	ASSERT(ip->i_nblocks == 0);
2522 
2523 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2524 
2525 	/*
2526 	 * Free the inode first so that we guarantee that the AGI lock is going
2527 	 * to be taken before we remove the inode from the unlinked list. This
2528 	 * makes the AGI lock -> unlinked list modification order the same as
2529 	 * used in O_TMPFILE creation.
2530 	 */
2531 	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2532 	if (error)
2533 		goto out;
2534 
2535 	error = xfs_iunlink_remove(tp, pag, ip);
2536 	if (error)
2537 		goto out;
2538 
2539 	/*
2540 	 * Free any local-format data sitting around before we reset the
2541 	 * data fork to extents format.  Note that the attr fork data has
2542 	 * already been freed by xfs_attr_inactive.
2543 	 */
2544 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2545 		kfree(ip->i_df.if_data);
2546 		ip->i_df.if_data = NULL;
2547 		ip->i_df.if_bytes = 0;
2548 	}
2549 
2550 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2551 	ip->i_diflags = 0;
2552 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2553 	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2554 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2555 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2556 		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2557 
2558 	/* Don't attempt to replay owner changes for a deleted inode */
2559 	spin_lock(&iip->ili_lock);
2560 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2561 	spin_unlock(&iip->ili_lock);
2562 
2563 	/*
2564 	 * Bump the generation count so no one will be confused
2565 	 * by reincarnations of this inode.
2566 	 */
2567 	VFS_I(ip)->i_generation++;
2568 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2569 
2570 	if (xic.deleted)
2571 		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2572 out:
2573 	xfs_perag_put(pag);
2574 	return error;
2575 }
2576 
2577 /*
2578  * This is called to unpin an inode.  The caller must have the inode locked
2579  * in at least shared mode so that the buffer cannot be subsequently pinned
2580  * once someone is waiting for it to be unpinned.
2581  */
2582 static void
2583 xfs_iunpin(
2584 	struct xfs_inode	*ip)
2585 {
2586 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
2587 
2588 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2589 
2590 	/* Give the log a push to start the unpinning I/O */
2591 	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2592 
2593 }
2594 
2595 static void
2596 __xfs_iunpin_wait(
2597 	struct xfs_inode	*ip)
2598 {
2599 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2600 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2601 
2602 	xfs_iunpin(ip);
2603 
2604 	do {
2605 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2606 		if (xfs_ipincount(ip))
2607 			io_schedule();
2608 	} while (xfs_ipincount(ip));
2609 	finish_wait(wq, &wait.wq_entry);
2610 }
2611 
2612 void
2613 xfs_iunpin_wait(
2614 	struct xfs_inode	*ip)
2615 {
2616 	if (xfs_ipincount(ip))
2617 		__xfs_iunpin_wait(ip);
2618 }
2619 
2620 /*
2621  * Removing an inode from the namespace involves removing the directory entry
2622  * and dropping the link count on the inode. Removing the directory entry can
2623  * result in locking an AGF (directory blocks were freed) and removing a link
2624  * count can result in placing the inode on an unlinked list which results in
2625  * locking an AGI.
2626  *
2627  * The big problem here is that we have an ordering constraint on AGF and AGI
2628  * locking - inode allocation locks the AGI, then can allocate a new extent for
2629  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2630  * removes the inode from the unlinked list, requiring that we lock the AGI
2631  * first, and then freeing the inode can result in an inode chunk being freed
2632  * and hence freeing disk space requiring that we lock an AGF.
2633  *
2634  * Hence the ordering that is imposed by other parts of the code is AGI before
2635  * AGF. This means we cannot remove the directory entry before we drop the inode
2636  * reference count and put it on the unlinked list as this results in a lock
2637  * order of AGF then AGI, and this can deadlock against inode allocation and
2638  * freeing. Therefore we must drop the link counts before we remove the
2639  * directory entry.
2640  *
2641  * This is still safe from a transactional point of view - it is not until we
2642  * get to xfs_defer_finish() that we have the possibility of multiple
2643  * transactions in this operation. Hence as long as we remove the directory
2644  * entry and drop the link count in the first transaction of the remove
2645  * operation, there are no transactional constraints on the ordering here.
2646  */
2647 int
2648 xfs_remove(
2649 	xfs_inode_t             *dp,
2650 	struct xfs_name		*name,
2651 	xfs_inode_t		*ip)
2652 {
2653 	xfs_mount_t		*mp = dp->i_mount;
2654 	xfs_trans_t             *tp = NULL;
2655 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2656 	int			dontcare;
2657 	int                     error = 0;
2658 	uint			resblks;
2659 
2660 	trace_xfs_remove(dp, name);
2661 
2662 	if (xfs_is_shutdown(mp))
2663 		return -EIO;
2664 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
2665 		return -EIO;
2666 
2667 	error = xfs_qm_dqattach(dp);
2668 	if (error)
2669 		goto std_return;
2670 
2671 	error = xfs_qm_dqattach(ip);
2672 	if (error)
2673 		goto std_return;
2674 
2675 	/*
2676 	 * We try to get the real space reservation first, allowing for
2677 	 * directory btree deletion(s) implying possible bmap insert(s).  If we
2678 	 * can't get the space reservation then we use 0 instead, and avoid the
2679 	 * bmap btree insert(s) in the directory code by, if the bmap insert
2680 	 * tries to happen, instead trimming the LAST block from the directory.
2681 	 *
2682 	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2683 	 * the directory code can handle a reservationless update and we don't
2684 	 * want to prevent a user from trying to free space by deleting things.
2685 	 */
2686 	resblks = XFS_REMOVE_SPACE_RES(mp);
2687 	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2688 			&tp, &dontcare);
2689 	if (error) {
2690 		ASSERT(error != -ENOSPC);
2691 		goto std_return;
2692 	}
2693 
2694 	/*
2695 	 * If we're removing a directory perform some additional validation.
2696 	 */
2697 	if (is_dir) {
2698 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2699 		if (VFS_I(ip)->i_nlink != 2) {
2700 			error = -ENOTEMPTY;
2701 			goto out_trans_cancel;
2702 		}
2703 		if (!xfs_dir_isempty(ip)) {
2704 			error = -ENOTEMPTY;
2705 			goto out_trans_cancel;
2706 		}
2707 
2708 		/* Drop the link from ip's "..".  */
2709 		error = xfs_droplink(tp, dp);
2710 		if (error)
2711 			goto out_trans_cancel;
2712 
2713 		/* Drop the "." link from ip to self.  */
2714 		error = xfs_droplink(tp, ip);
2715 		if (error)
2716 			goto out_trans_cancel;
2717 
2718 		/*
2719 		 * Point the unlinked child directory's ".." entry to the root
2720 		 * directory to eliminate back-references to inodes that may
2721 		 * get freed before the child directory is closed.  If the fs
2722 		 * gets shrunk, this can lead to dirent inode validation errors.
2723 		 */
2724 		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2725 			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2726 					tp->t_mountp->m_sb.sb_rootino, 0);
2727 			if (error)
2728 				goto out_trans_cancel;
2729 		}
2730 	} else {
2731 		/*
2732 		 * When removing a non-directory we need to log the parent
2733 		 * inode here.  For a directory this is done implicitly
2734 		 * by the xfs_droplink call for the ".." entry.
2735 		 */
2736 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2737 	}
2738 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2739 
2740 	/* Drop the link from dp to ip. */
2741 	error = xfs_droplink(tp, ip);
2742 	if (error)
2743 		goto out_trans_cancel;
2744 
2745 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2746 	if (error) {
2747 		ASSERT(error != -ENOENT);
2748 		goto out_trans_cancel;
2749 	}
2750 
2751 	/*
2752 	 * Drop the link from dp to ip, and if ip was a directory, remove the
2753 	 * '.' and '..' references since we freed the directory.
2754 	 */
2755 	xfs_dir_update_hook(dp, ip, -1, name);
2756 
2757 	/*
2758 	 * If this is a synchronous mount, make sure that the
2759 	 * remove transaction goes to disk before returning to
2760 	 * the user.
2761 	 */
2762 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2763 		xfs_trans_set_sync(tp);
2764 
2765 	error = xfs_trans_commit(tp);
2766 	if (error)
2767 		goto std_return;
2768 
2769 	if (is_dir && xfs_inode_is_filestream(ip))
2770 		xfs_filestream_deassociate(ip);
2771 
2772 	return 0;
2773 
2774  out_trans_cancel:
2775 	xfs_trans_cancel(tp);
2776  std_return:
2777 	return error;
2778 }
2779 
2780 /*
2781  * Enter all inodes for a rename transaction into a sorted array.
2782  */
2783 #define __XFS_SORT_INODES	5
2784 STATIC void
2785 xfs_sort_for_rename(
2786 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2787 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2788 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2789 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2790 	struct xfs_inode	*wip,	/* in: whiteout inode */
2791 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2792 	int			*num_inodes)  /* in/out: inodes in array */
2793 {
2794 	int			i, j;
2795 
2796 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2797 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2798 
2799 	/*
2800 	 * i_tab contains a list of pointers to inodes.  We initialize
2801 	 * the table here & we'll sort it.  We will then use it to
2802 	 * order the acquisition of the inode locks.
2803 	 *
2804 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2805 	 */
2806 	i = 0;
2807 	i_tab[i++] = dp1;
2808 	i_tab[i++] = dp2;
2809 	i_tab[i++] = ip1;
2810 	if (ip2)
2811 		i_tab[i++] = ip2;
2812 	if (wip)
2813 		i_tab[i++] = wip;
2814 	*num_inodes = i;
2815 
2816 	/*
2817 	 * Sort the elements via bubble sort.  (Remember, there are at
2818 	 * most 5 elements to sort, so this is adequate.)
2819 	 */
2820 	for (i = 0; i < *num_inodes; i++) {
2821 		for (j = 1; j < *num_inodes; j++) {
2822 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2823 				struct xfs_inode *temp = i_tab[j];
2824 				i_tab[j] = i_tab[j-1];
2825 				i_tab[j-1] = temp;
2826 			}
2827 		}
2828 	}
2829 }
2830 
2831 static int
2832 xfs_finish_rename(
2833 	struct xfs_trans	*tp)
2834 {
2835 	/*
2836 	 * If this is a synchronous mount, make sure that the rename transaction
2837 	 * goes to disk before returning to the user.
2838 	 */
2839 	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2840 		xfs_trans_set_sync(tp);
2841 
2842 	return xfs_trans_commit(tp);
2843 }
2844 
2845 /*
2846  * xfs_cross_rename()
2847  *
2848  * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2849  */
2850 STATIC int
2851 xfs_cross_rename(
2852 	struct xfs_trans	*tp,
2853 	struct xfs_inode	*dp1,
2854 	struct xfs_name		*name1,
2855 	struct xfs_inode	*ip1,
2856 	struct xfs_inode	*dp2,
2857 	struct xfs_name		*name2,
2858 	struct xfs_inode	*ip2,
2859 	int			spaceres)
2860 {
2861 	int		error = 0;
2862 	int		ip1_flags = 0;
2863 	int		ip2_flags = 0;
2864 	int		dp2_flags = 0;
2865 
2866 	/* Swap inode number for dirent in first parent */
2867 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2868 	if (error)
2869 		goto out_trans_abort;
2870 
2871 	/* Swap inode number for dirent in second parent */
2872 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2873 	if (error)
2874 		goto out_trans_abort;
2875 
2876 	/*
2877 	 * If we're renaming one or more directories across different parents,
2878 	 * update the respective ".." entries (and link counts) to match the new
2879 	 * parents.
2880 	 */
2881 	if (dp1 != dp2) {
2882 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2883 
2884 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2885 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2886 						dp1->i_ino, spaceres);
2887 			if (error)
2888 				goto out_trans_abort;
2889 
2890 			/* transfer ip2 ".." reference to dp1 */
2891 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2892 				error = xfs_droplink(tp, dp2);
2893 				if (error)
2894 					goto out_trans_abort;
2895 				xfs_bumplink(tp, dp1);
2896 			}
2897 
2898 			/*
2899 			 * Although ip1 isn't changed here, userspace needs
2900 			 * to be warned about the change, so that applications
2901 			 * relying on it (like backup ones), will properly
2902 			 * notify the change
2903 			 */
2904 			ip1_flags |= XFS_ICHGTIME_CHG;
2905 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2906 		}
2907 
2908 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2909 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2910 						dp2->i_ino, spaceres);
2911 			if (error)
2912 				goto out_trans_abort;
2913 
2914 			/* transfer ip1 ".." reference to dp2 */
2915 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2916 				error = xfs_droplink(tp, dp1);
2917 				if (error)
2918 					goto out_trans_abort;
2919 				xfs_bumplink(tp, dp2);
2920 			}
2921 
2922 			/*
2923 			 * Although ip2 isn't changed here, userspace needs
2924 			 * to be warned about the change, so that applications
2925 			 * relying on it (like backup ones), will properly
2926 			 * notify the change
2927 			 */
2928 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2929 			ip2_flags |= XFS_ICHGTIME_CHG;
2930 		}
2931 	}
2932 
2933 	if (ip1_flags) {
2934 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2935 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2936 	}
2937 	if (ip2_flags) {
2938 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2939 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2940 	}
2941 	if (dp2_flags) {
2942 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2943 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2944 	}
2945 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2946 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2947 
2948 	/*
2949 	 * Inform our hook clients that we've finished an exchange operation as
2950 	 * follows: removed the source and target files from their directories;
2951 	 * added the target to the source directory; and added the source to
2952 	 * the target directory.  All inodes are locked, so it's ok to model a
2953 	 * rename this way so long as we say we deleted entries before we add
2954 	 * new ones.
2955 	 */
2956 	xfs_dir_update_hook(dp1, ip1, -1, name1);
2957 	xfs_dir_update_hook(dp2, ip2, -1, name2);
2958 	xfs_dir_update_hook(dp1, ip2, 1, name1);
2959 	xfs_dir_update_hook(dp2, ip1, 1, name2);
2960 
2961 	return xfs_finish_rename(tp);
2962 
2963 out_trans_abort:
2964 	xfs_trans_cancel(tp);
2965 	return error;
2966 }
2967 
2968 /*
2969  * xfs_rename_alloc_whiteout()
2970  *
2971  * Return a referenced, unlinked, unlocked inode that can be used as a
2972  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2973  * crash between allocating the inode and linking it into the rename transaction
2974  * recovery will free the inode and we won't leak it.
2975  */
2976 static int
2977 xfs_rename_alloc_whiteout(
2978 	struct mnt_idmap	*idmap,
2979 	struct xfs_name		*src_name,
2980 	struct xfs_inode	*dp,
2981 	struct xfs_inode	**wip)
2982 {
2983 	struct xfs_inode	*tmpfile;
2984 	struct qstr		name;
2985 	int			error;
2986 
2987 	error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE,
2988 				   &tmpfile);
2989 	if (error)
2990 		return error;
2991 
2992 	name.name = src_name->name;
2993 	name.len = src_name->len;
2994 	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2995 	if (error) {
2996 		xfs_finish_inode_setup(tmpfile);
2997 		xfs_irele(tmpfile);
2998 		return error;
2999 	}
3000 
3001 	/*
3002 	 * Prepare the tmpfile inode as if it were created through the VFS.
3003 	 * Complete the inode setup and flag it as linkable.  nlink is already
3004 	 * zero, so we can skip the drop_nlink.
3005 	 */
3006 	xfs_setup_iops(tmpfile);
3007 	xfs_finish_inode_setup(tmpfile);
3008 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3009 
3010 	*wip = tmpfile;
3011 	return 0;
3012 }
3013 
3014 /*
3015  * xfs_rename
3016  */
3017 int
3018 xfs_rename(
3019 	struct mnt_idmap	*idmap,
3020 	struct xfs_inode	*src_dp,
3021 	struct xfs_name		*src_name,
3022 	struct xfs_inode	*src_ip,
3023 	struct xfs_inode	*target_dp,
3024 	struct xfs_name		*target_name,
3025 	struct xfs_inode	*target_ip,
3026 	unsigned int		flags)
3027 {
3028 	struct xfs_mount	*mp = src_dp->i_mount;
3029 	struct xfs_trans	*tp;
3030 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3031 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3032 	int			i;
3033 	int			num_inodes = __XFS_SORT_INODES;
3034 	bool			new_parent = (src_dp != target_dp);
3035 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3036 	int			spaceres;
3037 	bool			retried = false;
3038 	int			error, nospace_error = 0;
3039 
3040 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3041 
3042 	if ((flags & RENAME_EXCHANGE) && !target_ip)
3043 		return -EINVAL;
3044 
3045 	/*
3046 	 * If we are doing a whiteout operation, allocate the whiteout inode
3047 	 * we will be placing at the target and ensure the type is set
3048 	 * appropriately.
3049 	 */
3050 	if (flags & RENAME_WHITEOUT) {
3051 		error = xfs_rename_alloc_whiteout(idmap, src_name,
3052 						  target_dp, &wip);
3053 		if (error)
3054 			return error;
3055 
3056 		/* setup target dirent info as whiteout */
3057 		src_name->type = XFS_DIR3_FT_CHRDEV;
3058 	}
3059 
3060 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3061 				inodes, &num_inodes);
3062 
3063 retry:
3064 	nospace_error = 0;
3065 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3066 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3067 	if (error == -ENOSPC) {
3068 		nospace_error = error;
3069 		spaceres = 0;
3070 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3071 				&tp);
3072 	}
3073 	if (error)
3074 		goto out_release_wip;
3075 
3076 	/*
3077 	 * Attach the dquots to the inodes
3078 	 */
3079 	error = xfs_qm_vop_rename_dqattach(inodes);
3080 	if (error)
3081 		goto out_trans_cancel;
3082 
3083 	/*
3084 	 * Lock all the participating inodes. Depending upon whether
3085 	 * the target_name exists in the target directory, and
3086 	 * whether the target directory is the same as the source
3087 	 * directory, we can lock from 2 to 5 inodes.
3088 	 */
3089 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3090 
3091 	/*
3092 	 * Join all the inodes to the transaction. From this point on,
3093 	 * we can rely on either trans_commit or trans_cancel to unlock
3094 	 * them.
3095 	 */
3096 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3097 	if (new_parent)
3098 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3099 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3100 	if (target_ip)
3101 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3102 	if (wip)
3103 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3104 
3105 	/*
3106 	 * If we are using project inheritance, we only allow renames
3107 	 * into our tree when the project IDs are the same; else the
3108 	 * tree quota mechanism would be circumvented.
3109 	 */
3110 	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3111 		     target_dp->i_projid != src_ip->i_projid)) {
3112 		error = -EXDEV;
3113 		goto out_trans_cancel;
3114 	}
3115 
3116 	/* RENAME_EXCHANGE is unique from here on. */
3117 	if (flags & RENAME_EXCHANGE)
3118 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3119 					target_dp, target_name, target_ip,
3120 					spaceres);
3121 
3122 	/*
3123 	 * Try to reserve quota to handle an expansion of the target directory.
3124 	 * We'll allow the rename to continue in reservationless mode if we hit
3125 	 * a space usage constraint.  If we trigger reservationless mode, save
3126 	 * the errno if there isn't any free space in the target directory.
3127 	 */
3128 	if (spaceres != 0) {
3129 		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
3130 				0, false);
3131 		if (error == -EDQUOT || error == -ENOSPC) {
3132 			if (!retried) {
3133 				xfs_trans_cancel(tp);
3134 				xfs_blockgc_free_quota(target_dp, 0);
3135 				retried = true;
3136 				goto retry;
3137 			}
3138 
3139 			nospace_error = error;
3140 			spaceres = 0;
3141 			error = 0;
3142 		}
3143 		if (error)
3144 			goto out_trans_cancel;
3145 	}
3146 
3147 	/*
3148 	 * Check for expected errors before we dirty the transaction
3149 	 * so we can return an error without a transaction abort.
3150 	 */
3151 	if (target_ip == NULL) {
3152 		/*
3153 		 * If there's no space reservation, check the entry will
3154 		 * fit before actually inserting it.
3155 		 */
3156 		if (!spaceres) {
3157 			error = xfs_dir_canenter(tp, target_dp, target_name);
3158 			if (error)
3159 				goto out_trans_cancel;
3160 		}
3161 	} else {
3162 		/*
3163 		 * If target exists and it's a directory, check that whether
3164 		 * it can be destroyed.
3165 		 */
3166 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3167 		    (!xfs_dir_isempty(target_ip) ||
3168 		     (VFS_I(target_ip)->i_nlink > 2))) {
3169 			error = -EEXIST;
3170 			goto out_trans_cancel;
3171 		}
3172 	}
3173 
3174 	/*
3175 	 * Lock the AGI buffers we need to handle bumping the nlink of the
3176 	 * whiteout inode off the unlinked list and to handle dropping the
3177 	 * nlink of the target inode.  Per locking order rules, do this in
3178 	 * increasing AG order and before directory block allocation tries to
3179 	 * grab AGFs because we grab AGIs before AGFs.
3180 	 *
3181 	 * The (vfs) caller must ensure that if src is a directory then
3182 	 * target_ip is either null or an empty directory.
3183 	 */
3184 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3185 		if (inodes[i] == wip ||
3186 		    (inodes[i] == target_ip &&
3187 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3188 			struct xfs_perag	*pag;
3189 			struct xfs_buf		*bp;
3190 
3191 			pag = xfs_perag_get(mp,
3192 					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
3193 			error = xfs_read_agi(pag, tp, 0, &bp);
3194 			xfs_perag_put(pag);
3195 			if (error)
3196 				goto out_trans_cancel;
3197 		}
3198 	}
3199 
3200 	/*
3201 	 * Directory entry creation below may acquire the AGF. Remove
3202 	 * the whiteout from the unlinked list first to preserve correct
3203 	 * AGI/AGF locking order. This dirties the transaction so failures
3204 	 * after this point will abort and log recovery will clean up the
3205 	 * mess.
3206 	 *
3207 	 * For whiteouts, we need to bump the link count on the whiteout
3208 	 * inode. After this point, we have a real link, clear the tmpfile
3209 	 * state flag from the inode so it doesn't accidentally get misused
3210 	 * in future.
3211 	 */
3212 	if (wip) {
3213 		struct xfs_perag	*pag;
3214 
3215 		ASSERT(VFS_I(wip)->i_nlink == 0);
3216 
3217 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3218 		error = xfs_iunlink_remove(tp, pag, wip);
3219 		xfs_perag_put(pag);
3220 		if (error)
3221 			goto out_trans_cancel;
3222 
3223 		xfs_bumplink(tp, wip);
3224 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3225 	}
3226 
3227 	/*
3228 	 * Set up the target.
3229 	 */
3230 	if (target_ip == NULL) {
3231 		/*
3232 		 * If target does not exist and the rename crosses
3233 		 * directories, adjust the target directory link count
3234 		 * to account for the ".." reference from the new entry.
3235 		 */
3236 		error = xfs_dir_createname(tp, target_dp, target_name,
3237 					   src_ip->i_ino, spaceres);
3238 		if (error)
3239 			goto out_trans_cancel;
3240 
3241 		xfs_trans_ichgtime(tp, target_dp,
3242 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3243 
3244 		if (new_parent && src_is_directory) {
3245 			xfs_bumplink(tp, target_dp);
3246 		}
3247 	} else { /* target_ip != NULL */
3248 		/*
3249 		 * Link the source inode under the target name.
3250 		 * If the source inode is a directory and we are moving
3251 		 * it across directories, its ".." entry will be
3252 		 * inconsistent until we replace that down below.
3253 		 *
3254 		 * In case there is already an entry with the same
3255 		 * name at the destination directory, remove it first.
3256 		 */
3257 		error = xfs_dir_replace(tp, target_dp, target_name,
3258 					src_ip->i_ino, spaceres);
3259 		if (error)
3260 			goto out_trans_cancel;
3261 
3262 		xfs_trans_ichgtime(tp, target_dp,
3263 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3264 
3265 		/*
3266 		 * Decrement the link count on the target since the target
3267 		 * dir no longer points to it.
3268 		 */
3269 		error = xfs_droplink(tp, target_ip);
3270 		if (error)
3271 			goto out_trans_cancel;
3272 
3273 		if (src_is_directory) {
3274 			/*
3275 			 * Drop the link from the old "." entry.
3276 			 */
3277 			error = xfs_droplink(tp, target_ip);
3278 			if (error)
3279 				goto out_trans_cancel;
3280 		}
3281 	} /* target_ip != NULL */
3282 
3283 	/*
3284 	 * Remove the source.
3285 	 */
3286 	if (new_parent && src_is_directory) {
3287 		/*
3288 		 * Rewrite the ".." entry to point to the new
3289 		 * directory.
3290 		 */
3291 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3292 					target_dp->i_ino, spaceres);
3293 		ASSERT(error != -EEXIST);
3294 		if (error)
3295 			goto out_trans_cancel;
3296 	}
3297 
3298 	/*
3299 	 * We always want to hit the ctime on the source inode.
3300 	 *
3301 	 * This isn't strictly required by the standards since the source
3302 	 * inode isn't really being changed, but old unix file systems did
3303 	 * it and some incremental backup programs won't work without it.
3304 	 */
3305 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3306 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3307 
3308 	/*
3309 	 * Adjust the link count on src_dp.  This is necessary when
3310 	 * renaming a directory, either within one parent when
3311 	 * the target existed, or across two parent directories.
3312 	 */
3313 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3314 
3315 		/*
3316 		 * Decrement link count on src_directory since the
3317 		 * entry that's moved no longer points to it.
3318 		 */
3319 		error = xfs_droplink(tp, src_dp);
3320 		if (error)
3321 			goto out_trans_cancel;
3322 	}
3323 
3324 	/*
3325 	 * For whiteouts, we only need to update the source dirent with the
3326 	 * inode number of the whiteout inode rather than removing it
3327 	 * altogether.
3328 	 */
3329 	if (wip)
3330 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3331 					spaceres);
3332 	else
3333 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3334 					   spaceres);
3335 
3336 	if (error)
3337 		goto out_trans_cancel;
3338 
3339 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3340 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3341 	if (new_parent)
3342 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3343 
3344 	/*
3345 	 * Inform our hook clients that we've finished a rename operation as
3346 	 * follows: removed the source and target files from their directories;
3347 	 * that we've added the source to the target directory; and finally
3348 	 * that we've added the whiteout, if there was one.  All inodes are
3349 	 * locked, so it's ok to model a rename this way so long as we say we
3350 	 * deleted entries before we add new ones.
3351 	 */
3352 	if (target_ip)
3353 		xfs_dir_update_hook(target_dp, target_ip, -1, target_name);
3354 	xfs_dir_update_hook(src_dp, src_ip, -1, src_name);
3355 	xfs_dir_update_hook(target_dp, src_ip, 1, target_name);
3356 	if (wip)
3357 		xfs_dir_update_hook(src_dp, wip, 1, src_name);
3358 
3359 	error = xfs_finish_rename(tp);
3360 	if (wip)
3361 		xfs_irele(wip);
3362 	return error;
3363 
3364 out_trans_cancel:
3365 	xfs_trans_cancel(tp);
3366 out_release_wip:
3367 	if (wip)
3368 		xfs_irele(wip);
3369 	if (error == -ENOSPC && nospace_error)
3370 		error = nospace_error;
3371 	return error;
3372 }
3373 
3374 static int
3375 xfs_iflush(
3376 	struct xfs_inode	*ip,
3377 	struct xfs_buf		*bp)
3378 {
3379 	struct xfs_inode_log_item *iip = ip->i_itemp;
3380 	struct xfs_dinode	*dip;
3381 	struct xfs_mount	*mp = ip->i_mount;
3382 	int			error;
3383 
3384 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
3385 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3386 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3387 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3388 	ASSERT(iip->ili_item.li_buf == bp);
3389 
3390 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3391 
3392 	/*
3393 	 * We don't flush the inode if any of the following checks fail, but we
3394 	 * do still update the log item and attach to the backing buffer as if
3395 	 * the flush happened. This is a formality to facilitate predictable
3396 	 * error handling as the caller will shutdown and fail the buffer.
3397 	 */
3398 	error = -EFSCORRUPTED;
3399 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3400 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3401 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3402 			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
3403 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3404 		goto flush_out;
3405 	}
3406 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3407 		if (XFS_TEST_ERROR(
3408 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3409 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3410 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3411 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3412 				"%s: Bad regular inode %llu, ptr "PTR_FMT,
3413 				__func__, ip->i_ino, ip);
3414 			goto flush_out;
3415 		}
3416 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3417 		if (XFS_TEST_ERROR(
3418 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3419 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3420 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3421 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3422 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3423 				"%s: Bad directory inode %llu, ptr "PTR_FMT,
3424 				__func__, ip->i_ino, ip);
3425 			goto flush_out;
3426 		}
3427 	}
3428 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3429 				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3430 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3431 			"%s: detected corrupt incore inode %llu, "
3432 			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3433 			__func__, ip->i_ino,
3434 			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3435 			ip->i_nblocks, ip);
3436 		goto flush_out;
3437 	}
3438 	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3439 				mp, XFS_ERRTAG_IFLUSH_6)) {
3440 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3441 			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
3442 			__func__, ip->i_ino, ip->i_forkoff, ip);
3443 		goto flush_out;
3444 	}
3445 
3446 	/*
3447 	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3448 	 * count for correct sequencing.  We bump the flush iteration count so
3449 	 * we can detect flushes which postdate a log record during recovery.
3450 	 * This is redundant as we now log every change and hence this can't
3451 	 * happen but we need to still do it to ensure backwards compatibility
3452 	 * with old kernels that predate logging all inode changes.
3453 	 */
3454 	if (!xfs_has_v3inodes(mp))
3455 		ip->i_flushiter++;
3456 
3457 	/*
3458 	 * If there are inline format data / attr forks attached to this inode,
3459 	 * make sure they are not corrupt.
3460 	 */
3461 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3462 	    xfs_ifork_verify_local_data(ip))
3463 		goto flush_out;
3464 	if (xfs_inode_has_attr_fork(ip) &&
3465 	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3466 	    xfs_ifork_verify_local_attr(ip))
3467 		goto flush_out;
3468 
3469 	/*
3470 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3471 	 * copy out the core of the inode, because if the inode is dirty at all
3472 	 * the core must be.
3473 	 */
3474 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3475 
3476 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3477 	if (!xfs_has_v3inodes(mp)) {
3478 		if (ip->i_flushiter == DI_MAX_FLUSH)
3479 			ip->i_flushiter = 0;
3480 	}
3481 
3482 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3483 	if (xfs_inode_has_attr_fork(ip))
3484 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3485 
3486 	/*
3487 	 * We've recorded everything logged in the inode, so we'd like to clear
3488 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3489 	 * However, we can't stop logging all this information until the data
3490 	 * we've copied into the disk buffer is written to disk.  If we did we
3491 	 * might overwrite the copy of the inode in the log with all the data
3492 	 * after re-logging only part of it, and in the face of a crash we
3493 	 * wouldn't have all the data we need to recover.
3494 	 *
3495 	 * What we do is move the bits to the ili_last_fields field.  When
3496 	 * logging the inode, these bits are moved back to the ili_fields field.
3497 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3498 	 * we know that the information those bits represent is permanently on
3499 	 * disk.  As long as the flush completes before the inode is logged
3500 	 * again, then both ili_fields and ili_last_fields will be cleared.
3501 	 */
3502 	error = 0;
3503 flush_out:
3504 	spin_lock(&iip->ili_lock);
3505 	iip->ili_last_fields = iip->ili_fields;
3506 	iip->ili_fields = 0;
3507 	iip->ili_fsync_fields = 0;
3508 	spin_unlock(&iip->ili_lock);
3509 
3510 	/*
3511 	 * Store the current LSN of the inode so that we can tell whether the
3512 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3513 	 */
3514 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3515 				&iip->ili_item.li_lsn);
3516 
3517 	/* generate the checksum. */
3518 	xfs_dinode_calc_crc(mp, dip);
3519 	if (error)
3520 		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
3521 	return error;
3522 }
3523 
3524 /*
3525  * Non-blocking flush of dirty inode metadata into the backing buffer.
3526  *
3527  * The caller must have a reference to the inode and hold the cluster buffer
3528  * locked. The function will walk across all the inodes on the cluster buffer it
3529  * can find and lock without blocking, and flush them to the cluster buffer.
3530  *
3531  * On successful flushing of at least one inode, the caller must write out the
3532  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3533  * the caller needs to release the buffer. On failure, the filesystem will be
3534  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3535  * will be returned.
3536  */
3537 int
3538 xfs_iflush_cluster(
3539 	struct xfs_buf		*bp)
3540 {
3541 	struct xfs_mount	*mp = bp->b_mount;
3542 	struct xfs_log_item	*lip, *n;
3543 	struct xfs_inode	*ip;
3544 	struct xfs_inode_log_item *iip;
3545 	int			clcount = 0;
3546 	int			error = 0;
3547 
3548 	/*
3549 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3550 	 * will remove itself from the list.
3551 	 */
3552 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3553 		iip = (struct xfs_inode_log_item *)lip;
3554 		ip = iip->ili_inode;
3555 
3556 		/*
3557 		 * Quick and dirty check to avoid locks if possible.
3558 		 */
3559 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3560 			continue;
3561 		if (xfs_ipincount(ip))
3562 			continue;
3563 
3564 		/*
3565 		 * The inode is still attached to the buffer, which means it is
3566 		 * dirty but reclaim might try to grab it. Check carefully for
3567 		 * that, and grab the ilock while still holding the i_flags_lock
3568 		 * to guarantee reclaim will not be able to reclaim this inode
3569 		 * once we drop the i_flags_lock.
3570 		 */
3571 		spin_lock(&ip->i_flags_lock);
3572 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3573 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3574 			spin_unlock(&ip->i_flags_lock);
3575 			continue;
3576 		}
3577 
3578 		/*
3579 		 * ILOCK will pin the inode against reclaim and prevent
3580 		 * concurrent transactions modifying the inode while we are
3581 		 * flushing the inode. If we get the lock, set the flushing
3582 		 * state before we drop the i_flags_lock.
3583 		 */
3584 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3585 			spin_unlock(&ip->i_flags_lock);
3586 			continue;
3587 		}
3588 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3589 		spin_unlock(&ip->i_flags_lock);
3590 
3591 		/*
3592 		 * Abort flushing this inode if we are shut down because the
3593 		 * inode may not currently be in the AIL. This can occur when
3594 		 * log I/O failure unpins the inode without inserting into the
3595 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3596 		 * that otherwise looks like it should be flushed.
3597 		 */
3598 		if (xlog_is_shutdown(mp->m_log)) {
3599 			xfs_iunpin_wait(ip);
3600 			xfs_iflush_abort(ip);
3601 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3602 			error = -EIO;
3603 			continue;
3604 		}
3605 
3606 		/* don't block waiting on a log force to unpin dirty inodes */
3607 		if (xfs_ipincount(ip)) {
3608 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3609 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3610 			continue;
3611 		}
3612 
3613 		if (!xfs_inode_clean(ip))
3614 			error = xfs_iflush(ip, bp);
3615 		else
3616 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3617 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3618 		if (error)
3619 			break;
3620 		clcount++;
3621 	}
3622 
3623 	if (error) {
3624 		/*
3625 		 * Shutdown first so we kill the log before we release this
3626 		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3627 		 * of the log, failing it before the _log_ is shut down can
3628 		 * result in the log tail being moved forward in the journal
3629 		 * on disk because log writes can still be taking place. Hence
3630 		 * unpinning the tail will allow the ICREATE intent to be
3631 		 * removed from the log an recovery will fail with uninitialised
3632 		 * inode cluster buffers.
3633 		 */
3634 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3635 		bp->b_flags |= XBF_ASYNC;
3636 		xfs_buf_ioend_fail(bp);
3637 		return error;
3638 	}
3639 
3640 	if (!clcount)
3641 		return -EAGAIN;
3642 
3643 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3644 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3645 	return 0;
3646 
3647 }
3648 
3649 /* Release an inode. */
3650 void
3651 xfs_irele(
3652 	struct xfs_inode	*ip)
3653 {
3654 	trace_xfs_irele(ip, _RET_IP_);
3655 	iput(VFS_I(ip));
3656 }
3657 
3658 /*
3659  * Ensure all commited transactions touching the inode are written to the log.
3660  */
3661 int
3662 xfs_log_force_inode(
3663 	struct xfs_inode	*ip)
3664 {
3665 	xfs_csn_t		seq = 0;
3666 
3667 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3668 	if (xfs_ipincount(ip))
3669 		seq = ip->i_itemp->ili_commit_seq;
3670 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3671 
3672 	if (!seq)
3673 		return 0;
3674 	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3675 }
3676 
3677 /*
3678  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3679  * abide vfs locking order (lowest pointer value goes first) and breaking the
3680  * layout leases before proceeding.  The loop is needed because we cannot call
3681  * the blocking break_layout() with the iolocks held, and therefore have to
3682  * back out both locks.
3683  */
3684 static int
3685 xfs_iolock_two_inodes_and_break_layout(
3686 	struct inode		*src,
3687 	struct inode		*dest)
3688 {
3689 	int			error;
3690 
3691 	if (src > dest)
3692 		swap(src, dest);
3693 
3694 retry:
3695 	/* Wait to break both inodes' layouts before we start locking. */
3696 	error = break_layout(src, true);
3697 	if (error)
3698 		return error;
3699 	if (src != dest) {
3700 		error = break_layout(dest, true);
3701 		if (error)
3702 			return error;
3703 	}
3704 
3705 	/* Lock one inode and make sure nobody got in and leased it. */
3706 	inode_lock(src);
3707 	error = break_layout(src, false);
3708 	if (error) {
3709 		inode_unlock(src);
3710 		if (error == -EWOULDBLOCK)
3711 			goto retry;
3712 		return error;
3713 	}
3714 
3715 	if (src == dest)
3716 		return 0;
3717 
3718 	/* Lock the other inode and make sure nobody got in and leased it. */
3719 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3720 	error = break_layout(dest, false);
3721 	if (error) {
3722 		inode_unlock(src);
3723 		inode_unlock(dest);
3724 		if (error == -EWOULDBLOCK)
3725 			goto retry;
3726 		return error;
3727 	}
3728 
3729 	return 0;
3730 }
3731 
3732 static int
3733 xfs_mmaplock_two_inodes_and_break_dax_layout(
3734 	struct xfs_inode	*ip1,
3735 	struct xfs_inode	*ip2)
3736 {
3737 	int			error;
3738 	bool			retry;
3739 	struct page		*page;
3740 
3741 	if (ip1->i_ino > ip2->i_ino)
3742 		swap(ip1, ip2);
3743 
3744 again:
3745 	retry = false;
3746 	/* Lock the first inode */
3747 	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3748 	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3749 	if (error || retry) {
3750 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3751 		if (error == 0 && retry)
3752 			goto again;
3753 		return error;
3754 	}
3755 
3756 	if (ip1 == ip2)
3757 		return 0;
3758 
3759 	/* Nested lock the second inode */
3760 	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3761 	/*
3762 	 * We cannot use xfs_break_dax_layouts() directly here because it may
3763 	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3764 	 * for this nested lock case.
3765 	 */
3766 	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3767 	if (page && page_ref_count(page) != 1) {
3768 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3769 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3770 		goto again;
3771 	}
3772 
3773 	return 0;
3774 }
3775 
3776 /*
3777  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3778  * mmap activity.
3779  */
3780 int
3781 xfs_ilock2_io_mmap(
3782 	struct xfs_inode	*ip1,
3783 	struct xfs_inode	*ip2)
3784 {
3785 	int			ret;
3786 
3787 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3788 	if (ret)
3789 		return ret;
3790 
3791 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3792 		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3793 		if (ret) {
3794 			inode_unlock(VFS_I(ip2));
3795 			if (ip1 != ip2)
3796 				inode_unlock(VFS_I(ip1));
3797 			return ret;
3798 		}
3799 	} else
3800 		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3801 					    VFS_I(ip2)->i_mapping);
3802 
3803 	return 0;
3804 }
3805 
3806 /* Unlock both inodes to allow IO and mmap activity. */
3807 void
3808 xfs_iunlock2_io_mmap(
3809 	struct xfs_inode	*ip1,
3810 	struct xfs_inode	*ip2)
3811 {
3812 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3813 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3814 		if (ip1 != ip2)
3815 			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3816 	} else
3817 		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3818 					      VFS_I(ip2)->i_mapping);
3819 
3820 	inode_unlock(VFS_I(ip2));
3821 	if (ip1 != ip2)
3822 		inode_unlock(VFS_I(ip1));
3823 }
3824 
3825 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
3826 void
3827 xfs_iunlock2_remapping(
3828 	struct xfs_inode	*ip1,
3829 	struct xfs_inode	*ip2)
3830 {
3831 	xfs_iflags_clear(ip1, XFS_IREMAPPING);
3832 
3833 	if (ip1 != ip2)
3834 		xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
3835 	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3836 
3837 	if (ip1 != ip2)
3838 		inode_unlock_shared(VFS_I(ip1));
3839 	inode_unlock(VFS_I(ip2));
3840 }
3841 
3842 /*
3843  * Reload the incore inode list for this inode.  Caller should ensure that
3844  * the link count cannot change, either by taking ILOCK_SHARED or otherwise
3845  * preventing other threads from executing.
3846  */
3847 int
3848 xfs_inode_reload_unlinked_bucket(
3849 	struct xfs_trans	*tp,
3850 	struct xfs_inode	*ip)
3851 {
3852 	struct xfs_mount	*mp = tp->t_mountp;
3853 	struct xfs_buf		*agibp;
3854 	struct xfs_agi		*agi;
3855 	struct xfs_perag	*pag;
3856 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
3857 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
3858 	xfs_agino_t		prev_agino, next_agino;
3859 	unsigned int		bucket;
3860 	bool			foundit = false;
3861 	int			error;
3862 
3863 	/* Grab the first inode in the list */
3864 	pag = xfs_perag_get(mp, agno);
3865 	error = xfs_ialloc_read_agi(pag, tp, 0, &agibp);
3866 	xfs_perag_put(pag);
3867 	if (error)
3868 		return error;
3869 
3870 	/*
3871 	 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
3872 	 * incore unlinked list pointers for this inode.  Check once more to
3873 	 * see if we raced with anyone else to reload the unlinked list.
3874 	 */
3875 	if (!xfs_inode_unlinked_incomplete(ip)) {
3876 		foundit = true;
3877 		goto out_agibp;
3878 	}
3879 
3880 	bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
3881 	agi = agibp->b_addr;
3882 
3883 	trace_xfs_inode_reload_unlinked_bucket(ip);
3884 
3885 	xfs_info_ratelimited(mp,
3886  "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.",
3887 			agino, agno);
3888 
3889 	prev_agino = NULLAGINO;
3890 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3891 	while (next_agino != NULLAGINO) {
3892 		struct xfs_inode	*next_ip = NULL;
3893 
3894 		/* Found this caller's inode, set its backlink. */
3895 		if (next_agino == agino) {
3896 			next_ip = ip;
3897 			next_ip->i_prev_unlinked = prev_agino;
3898 			foundit = true;
3899 			goto next_inode;
3900 		}
3901 
3902 		/* Try in-memory lookup first. */
3903 		next_ip = xfs_iunlink_lookup(pag, next_agino);
3904 		if (next_ip)
3905 			goto next_inode;
3906 
3907 		/* Inode not in memory, try reloading it. */
3908 		error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
3909 				next_agino);
3910 		if (error)
3911 			break;
3912 
3913 		/* Grab the reloaded inode. */
3914 		next_ip = xfs_iunlink_lookup(pag, next_agino);
3915 		if (!next_ip) {
3916 			/* No incore inode at all?  We reloaded it... */
3917 			ASSERT(next_ip != NULL);
3918 			error = -EFSCORRUPTED;
3919 			break;
3920 		}
3921 
3922 next_inode:
3923 		prev_agino = next_agino;
3924 		next_agino = next_ip->i_next_unlinked;
3925 	}
3926 
3927 out_agibp:
3928 	xfs_trans_brelse(tp, agibp);
3929 	/* Should have found this inode somewhere in the iunlinked bucket. */
3930 	if (!error && !foundit)
3931 		error = -EFSCORRUPTED;
3932 	return error;
3933 }
3934 
3935 /* Decide if this inode is missing its unlinked list and reload it. */
3936 int
3937 xfs_inode_reload_unlinked(
3938 	struct xfs_inode	*ip)
3939 {
3940 	struct xfs_trans	*tp;
3941 	int			error;
3942 
3943 	error = xfs_trans_alloc_empty(ip->i_mount, &tp);
3944 	if (error)
3945 		return error;
3946 
3947 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3948 	if (xfs_inode_unlinked_incomplete(ip))
3949 		error = xfs_inode_reload_unlinked_bucket(tp, ip);
3950 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3951 	xfs_trans_cancel(tp);
3952 
3953 	return error;
3954 }
3955 
3956 /* Has this inode fork been zapped by repair? */
3957 bool
3958 xfs_ifork_zapped(
3959 	const struct xfs_inode	*ip,
3960 	int			whichfork)
3961 {
3962 	unsigned int		datamask = 0;
3963 
3964 	switch (whichfork) {
3965 	case XFS_DATA_FORK:
3966 		switch (ip->i_vnode.i_mode & S_IFMT) {
3967 		case S_IFDIR:
3968 			datamask = XFS_SICK_INO_DIR_ZAPPED;
3969 			break;
3970 		case S_IFLNK:
3971 			datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
3972 			break;
3973 		}
3974 		return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
3975 	case XFS_ATTR_FORK:
3976 		return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
3977 	default:
3978 		return false;
3979 	}
3980 }
3981 
3982 /* Compute the number of data and realtime blocks used by a file. */
3983 void
3984 xfs_inode_count_blocks(
3985 	struct xfs_trans	*tp,
3986 	struct xfs_inode	*ip,
3987 	xfs_filblks_t		*dblocks,
3988 	xfs_filblks_t		*rblocks)
3989 {
3990 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
3991 
3992 	*rblocks = 0;
3993 	if (XFS_IS_REALTIME_INODE(ip))
3994 		xfs_bmap_count_leaves(ifp, rblocks);
3995 	*dblocks = ip->i_nblocks - *rblocks;
3996 }
3997 
3998 static void
3999 xfs_wait_dax_page(
4000 	struct inode		*inode)
4001 {
4002 	struct xfs_inode        *ip = XFS_I(inode);
4003 
4004 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
4005 	schedule();
4006 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
4007 }
4008 
4009 int
4010 xfs_break_dax_layouts(
4011 	struct inode		*inode,
4012 	bool			*retry)
4013 {
4014 	struct page		*page;
4015 
4016 	xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL);
4017 
4018 	page = dax_layout_busy_page(inode->i_mapping);
4019 	if (!page)
4020 		return 0;
4021 
4022 	*retry = true;
4023 	return ___wait_var_event(&page->_refcount,
4024 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
4025 			0, 0, xfs_wait_dax_page(inode));
4026 }
4027 
4028 int
4029 xfs_break_layouts(
4030 	struct inode		*inode,
4031 	uint			*iolock,
4032 	enum layout_break_reason reason)
4033 {
4034 	bool			retry;
4035 	int			error;
4036 
4037 	xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL);
4038 
4039 	do {
4040 		retry = false;
4041 		switch (reason) {
4042 		case BREAK_UNMAP:
4043 			error = xfs_break_dax_layouts(inode, &retry);
4044 			if (error || retry)
4045 				break;
4046 			fallthrough;
4047 		case BREAK_WRITE:
4048 			error = xfs_break_leased_layouts(inode, iolock, &retry);
4049 			break;
4050 		default:
4051 			WARN_ON_ONCE(1);
4052 			error = -EINVAL;
4053 		}
4054 	} while (error == 0 && retry);
4055 
4056 	return error;
4057 }
4058 
4059 /* Returns the size of fundamental allocation unit for a file, in bytes. */
4060 unsigned int
4061 xfs_inode_alloc_unitsize(
4062 	struct xfs_inode	*ip)
4063 {
4064 	unsigned int		blocks = 1;
4065 
4066 	if (XFS_IS_REALTIME_INODE(ip))
4067 		blocks = ip->i_mount->m_sb.sb_rextsize;
4068 
4069 	return XFS_FSB_TO_B(ip->i_mount, blocks);
4070 }
4071