1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_dir2.h" 18 #include "xfs_attr.h" 19 #include "xfs_trans_space.h" 20 #include "xfs_trans.h" 21 #include "xfs_buf_item.h" 22 #include "xfs_inode_item.h" 23 #include "xfs_ialloc.h" 24 #include "xfs_bmap.h" 25 #include "xfs_bmap_util.h" 26 #include "xfs_errortag.h" 27 #include "xfs_error.h" 28 #include "xfs_quota.h" 29 #include "xfs_filestream.h" 30 #include "xfs_trace.h" 31 #include "xfs_icache.h" 32 #include "xfs_symlink.h" 33 #include "xfs_trans_priv.h" 34 #include "xfs_log.h" 35 #include "xfs_bmap_btree.h" 36 #include "xfs_reflink.h" 37 #include "xfs_ag.h" 38 39 kmem_zone_t *xfs_inode_zone; 40 41 /* 42 * Used in xfs_itruncate_extents(). This is the maximum number of extents 43 * freed from a file in a single transaction. 44 */ 45 #define XFS_ITRUNC_MAX_EXTENTS 2 46 47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 48 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag, 49 struct xfs_inode *); 50 51 /* 52 * helper function to extract extent size hint from inode 53 */ 54 xfs_extlen_t 55 xfs_get_extsz_hint( 56 struct xfs_inode *ip) 57 { 58 /* 59 * No point in aligning allocations if we need to COW to actually 60 * write to them. 61 */ 62 if (xfs_is_always_cow_inode(ip)) 63 return 0; 64 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize) 65 return ip->i_extsize; 66 if (XFS_IS_REALTIME_INODE(ip)) 67 return ip->i_mount->m_sb.sb_rextsize; 68 return 0; 69 } 70 71 /* 72 * Helper function to extract CoW extent size hint from inode. 73 * Between the extent size hint and the CoW extent size hint, we 74 * return the greater of the two. If the value is zero (automatic), 75 * use the default size. 76 */ 77 xfs_extlen_t 78 xfs_get_cowextsz_hint( 79 struct xfs_inode *ip) 80 { 81 xfs_extlen_t a, b; 82 83 a = 0; 84 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 85 a = ip->i_cowextsize; 86 b = xfs_get_extsz_hint(ip); 87 88 a = max(a, b); 89 if (a == 0) 90 return XFS_DEFAULT_COWEXTSZ_HINT; 91 return a; 92 } 93 94 /* 95 * These two are wrapper routines around the xfs_ilock() routine used to 96 * centralize some grungy code. They are used in places that wish to lock the 97 * inode solely for reading the extents. The reason these places can't just 98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 99 * bringing in of the extents from disk for a file in b-tree format. If the 100 * inode is in b-tree format, then we need to lock the inode exclusively until 101 * the extents are read in. Locking it exclusively all the time would limit 102 * our parallelism unnecessarily, though. What we do instead is check to see 103 * if the extents have been read in yet, and only lock the inode exclusively 104 * if they have not. 105 * 106 * The functions return a value which should be given to the corresponding 107 * xfs_iunlock() call. 108 */ 109 uint 110 xfs_ilock_data_map_shared( 111 struct xfs_inode *ip) 112 { 113 uint lock_mode = XFS_ILOCK_SHARED; 114 115 if (xfs_need_iread_extents(&ip->i_df)) 116 lock_mode = XFS_ILOCK_EXCL; 117 xfs_ilock(ip, lock_mode); 118 return lock_mode; 119 } 120 121 uint 122 xfs_ilock_attr_map_shared( 123 struct xfs_inode *ip) 124 { 125 uint lock_mode = XFS_ILOCK_SHARED; 126 127 if (ip->i_afp && xfs_need_iread_extents(ip->i_afp)) 128 lock_mode = XFS_ILOCK_EXCL; 129 xfs_ilock(ip, lock_mode); 130 return lock_mode; 131 } 132 133 /* 134 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 135 * multi-reader locks: invalidate_lock and the i_lock. This routine allows 136 * various combinations of the locks to be obtained. 137 * 138 * The 3 locks should always be ordered so that the IO lock is obtained first, 139 * the mmap lock second and the ilock last in order to prevent deadlock. 140 * 141 * Basic locking order: 142 * 143 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock 144 * 145 * mmap_lock locking order: 146 * 147 * i_rwsem -> page lock -> mmap_lock 148 * mmap_lock -> invalidate_lock -> page_lock 149 * 150 * The difference in mmap_lock locking order mean that we cannot hold the 151 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths 152 * can fault in pages during copy in/out (for buffered IO) or require the 153 * mmap_lock in get_user_pages() to map the user pages into the kernel address 154 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page 155 * fault because page faults already hold the mmap_lock. 156 * 157 * Hence to serialise fully against both syscall and mmap based IO, we need to 158 * take both the i_rwsem and the invalidate_lock. These locks should *only* be 159 * both taken in places where we need to invalidate the page cache in a race 160 * free manner (e.g. truncate, hole punch and other extent manipulation 161 * functions). 162 */ 163 void 164 xfs_ilock( 165 xfs_inode_t *ip, 166 uint lock_flags) 167 { 168 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 169 170 /* 171 * You can't set both SHARED and EXCL for the same lock, 172 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 173 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 174 */ 175 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 176 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 177 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 178 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 179 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 180 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 181 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 182 183 if (lock_flags & XFS_IOLOCK_EXCL) { 184 down_write_nested(&VFS_I(ip)->i_rwsem, 185 XFS_IOLOCK_DEP(lock_flags)); 186 } else if (lock_flags & XFS_IOLOCK_SHARED) { 187 down_read_nested(&VFS_I(ip)->i_rwsem, 188 XFS_IOLOCK_DEP(lock_flags)); 189 } 190 191 if (lock_flags & XFS_MMAPLOCK_EXCL) { 192 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 193 XFS_MMAPLOCK_DEP(lock_flags)); 194 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 195 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 196 XFS_MMAPLOCK_DEP(lock_flags)); 197 } 198 199 if (lock_flags & XFS_ILOCK_EXCL) 200 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 201 else if (lock_flags & XFS_ILOCK_SHARED) 202 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 203 } 204 205 /* 206 * This is just like xfs_ilock(), except that the caller 207 * is guaranteed not to sleep. It returns 1 if it gets 208 * the requested locks and 0 otherwise. If the IO lock is 209 * obtained but the inode lock cannot be, then the IO lock 210 * is dropped before returning. 211 * 212 * ip -- the inode being locked 213 * lock_flags -- this parameter indicates the inode's locks to be 214 * to be locked. See the comment for xfs_ilock() for a list 215 * of valid values. 216 */ 217 int 218 xfs_ilock_nowait( 219 xfs_inode_t *ip, 220 uint lock_flags) 221 { 222 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 223 224 /* 225 * You can't set both SHARED and EXCL for the same lock, 226 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 227 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 228 */ 229 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 230 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 231 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 232 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 233 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 234 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 235 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 236 237 if (lock_flags & XFS_IOLOCK_EXCL) { 238 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 239 goto out; 240 } else if (lock_flags & XFS_IOLOCK_SHARED) { 241 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 242 goto out; 243 } 244 245 if (lock_flags & XFS_MMAPLOCK_EXCL) { 246 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 247 goto out_undo_iolock; 248 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 249 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 250 goto out_undo_iolock; 251 } 252 253 if (lock_flags & XFS_ILOCK_EXCL) { 254 if (!mrtryupdate(&ip->i_lock)) 255 goto out_undo_mmaplock; 256 } else if (lock_flags & XFS_ILOCK_SHARED) { 257 if (!mrtryaccess(&ip->i_lock)) 258 goto out_undo_mmaplock; 259 } 260 return 1; 261 262 out_undo_mmaplock: 263 if (lock_flags & XFS_MMAPLOCK_EXCL) 264 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 265 else if (lock_flags & XFS_MMAPLOCK_SHARED) 266 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 267 out_undo_iolock: 268 if (lock_flags & XFS_IOLOCK_EXCL) 269 up_write(&VFS_I(ip)->i_rwsem); 270 else if (lock_flags & XFS_IOLOCK_SHARED) 271 up_read(&VFS_I(ip)->i_rwsem); 272 out: 273 return 0; 274 } 275 276 /* 277 * xfs_iunlock() is used to drop the inode locks acquired with 278 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 279 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 280 * that we know which locks to drop. 281 * 282 * ip -- the inode being unlocked 283 * lock_flags -- this parameter indicates the inode's locks to be 284 * to be unlocked. See the comment for xfs_ilock() for a list 285 * of valid values for this parameter. 286 * 287 */ 288 void 289 xfs_iunlock( 290 xfs_inode_t *ip, 291 uint lock_flags) 292 { 293 /* 294 * You can't set both SHARED and EXCL for the same lock, 295 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 296 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 297 */ 298 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 299 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 300 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 301 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 302 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 303 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 304 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 305 ASSERT(lock_flags != 0); 306 307 if (lock_flags & XFS_IOLOCK_EXCL) 308 up_write(&VFS_I(ip)->i_rwsem); 309 else if (lock_flags & XFS_IOLOCK_SHARED) 310 up_read(&VFS_I(ip)->i_rwsem); 311 312 if (lock_flags & XFS_MMAPLOCK_EXCL) 313 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 314 else if (lock_flags & XFS_MMAPLOCK_SHARED) 315 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 316 317 if (lock_flags & XFS_ILOCK_EXCL) 318 mrunlock_excl(&ip->i_lock); 319 else if (lock_flags & XFS_ILOCK_SHARED) 320 mrunlock_shared(&ip->i_lock); 321 322 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 323 } 324 325 /* 326 * give up write locks. the i/o lock cannot be held nested 327 * if it is being demoted. 328 */ 329 void 330 xfs_ilock_demote( 331 xfs_inode_t *ip, 332 uint lock_flags) 333 { 334 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 335 ASSERT((lock_flags & 336 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 337 338 if (lock_flags & XFS_ILOCK_EXCL) 339 mrdemote(&ip->i_lock); 340 if (lock_flags & XFS_MMAPLOCK_EXCL) 341 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); 342 if (lock_flags & XFS_IOLOCK_EXCL) 343 downgrade_write(&VFS_I(ip)->i_rwsem); 344 345 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 346 } 347 348 #if defined(DEBUG) || defined(XFS_WARN) 349 static inline bool 350 __xfs_rwsem_islocked( 351 struct rw_semaphore *rwsem, 352 bool shared) 353 { 354 if (!debug_locks) 355 return rwsem_is_locked(rwsem); 356 357 if (!shared) 358 return lockdep_is_held_type(rwsem, 0); 359 360 /* 361 * We are checking that the lock is held at least in shared 362 * mode but don't care that it might be held exclusively 363 * (i.e. shared | excl). Hence we check if the lock is held 364 * in any mode rather than an explicit shared mode. 365 */ 366 return lockdep_is_held_type(rwsem, -1); 367 } 368 369 bool 370 xfs_isilocked( 371 struct xfs_inode *ip, 372 uint lock_flags) 373 { 374 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 375 if (!(lock_flags & XFS_ILOCK_SHARED)) 376 return !!ip->i_lock.mr_writer; 377 return rwsem_is_locked(&ip->i_lock.mr_lock); 378 } 379 380 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 381 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem, 382 (lock_flags & XFS_IOLOCK_SHARED)); 383 } 384 385 if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) { 386 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem, 387 (lock_flags & XFS_IOLOCK_SHARED)); 388 } 389 390 ASSERT(0); 391 return false; 392 } 393 #endif 394 395 /* 396 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 397 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 398 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 399 * errors and warnings. 400 */ 401 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 402 static bool 403 xfs_lockdep_subclass_ok( 404 int subclass) 405 { 406 return subclass < MAX_LOCKDEP_SUBCLASSES; 407 } 408 #else 409 #define xfs_lockdep_subclass_ok(subclass) (true) 410 #endif 411 412 /* 413 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 414 * value. This can be called for any type of inode lock combination, including 415 * parent locking. Care must be taken to ensure we don't overrun the subclass 416 * storage fields in the class mask we build. 417 */ 418 static inline int 419 xfs_lock_inumorder(int lock_mode, int subclass) 420 { 421 int class = 0; 422 423 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 424 XFS_ILOCK_RTSUM))); 425 ASSERT(xfs_lockdep_subclass_ok(subclass)); 426 427 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 428 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 429 class += subclass << XFS_IOLOCK_SHIFT; 430 } 431 432 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 433 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 434 class += subclass << XFS_MMAPLOCK_SHIFT; 435 } 436 437 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 438 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 439 class += subclass << XFS_ILOCK_SHIFT; 440 } 441 442 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 443 } 444 445 /* 446 * The following routine will lock n inodes in exclusive mode. We assume the 447 * caller calls us with the inodes in i_ino order. 448 * 449 * We need to detect deadlock where an inode that we lock is in the AIL and we 450 * start waiting for another inode that is locked by a thread in a long running 451 * transaction (such as truncate). This can result in deadlock since the long 452 * running trans might need to wait for the inode we just locked in order to 453 * push the tail and free space in the log. 454 * 455 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 456 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 457 * lock more than one at a time, lockdep will report false positives saying we 458 * have violated locking orders. 459 */ 460 static void 461 xfs_lock_inodes( 462 struct xfs_inode **ips, 463 int inodes, 464 uint lock_mode) 465 { 466 int attempts = 0, i, j, try_lock; 467 struct xfs_log_item *lp; 468 469 /* 470 * Currently supports between 2 and 5 inodes with exclusive locking. We 471 * support an arbitrary depth of locking here, but absolute limits on 472 * inodes depend on the type of locking and the limits placed by 473 * lockdep annotations in xfs_lock_inumorder. These are all checked by 474 * the asserts. 475 */ 476 ASSERT(ips && inodes >= 2 && inodes <= 5); 477 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 478 XFS_ILOCK_EXCL)); 479 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 480 XFS_ILOCK_SHARED))); 481 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 482 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 483 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 484 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 485 486 if (lock_mode & XFS_IOLOCK_EXCL) { 487 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 488 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 489 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 490 491 try_lock = 0; 492 i = 0; 493 again: 494 for (; i < inodes; i++) { 495 ASSERT(ips[i]); 496 497 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 498 continue; 499 500 /* 501 * If try_lock is not set yet, make sure all locked inodes are 502 * not in the AIL. If any are, set try_lock to be used later. 503 */ 504 if (!try_lock) { 505 for (j = (i - 1); j >= 0 && !try_lock; j--) { 506 lp = &ips[j]->i_itemp->ili_item; 507 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 508 try_lock++; 509 } 510 } 511 512 /* 513 * If any of the previous locks we have locked is in the AIL, 514 * we must TRY to get the second and subsequent locks. If 515 * we can't get any, we must release all we have 516 * and try again. 517 */ 518 if (!try_lock) { 519 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 520 continue; 521 } 522 523 /* try_lock means we have an inode locked that is in the AIL. */ 524 ASSERT(i != 0); 525 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 526 continue; 527 528 /* 529 * Unlock all previous guys and try again. xfs_iunlock will try 530 * to push the tail if the inode is in the AIL. 531 */ 532 attempts++; 533 for (j = i - 1; j >= 0; j--) { 534 /* 535 * Check to see if we've already unlocked this one. Not 536 * the first one going back, and the inode ptr is the 537 * same. 538 */ 539 if (j != (i - 1) && ips[j] == ips[j + 1]) 540 continue; 541 542 xfs_iunlock(ips[j], lock_mode); 543 } 544 545 if ((attempts % 5) == 0) { 546 delay(1); /* Don't just spin the CPU */ 547 } 548 i = 0; 549 try_lock = 0; 550 goto again; 551 } 552 } 553 554 /* 555 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and 556 * mmaplock must be double-locked separately since we use i_rwsem and 557 * invalidate_lock for that. We now support taking one lock EXCL and the 558 * other SHARED. 559 */ 560 void 561 xfs_lock_two_inodes( 562 struct xfs_inode *ip0, 563 uint ip0_mode, 564 struct xfs_inode *ip1, 565 uint ip1_mode) 566 { 567 struct xfs_inode *temp; 568 uint mode_temp; 569 int attempts = 0; 570 struct xfs_log_item *lp; 571 572 ASSERT(hweight32(ip0_mode) == 1); 573 ASSERT(hweight32(ip1_mode) == 1); 574 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 575 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 576 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 577 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 578 ASSERT(ip0->i_ino != ip1->i_ino); 579 580 if (ip0->i_ino > ip1->i_ino) { 581 temp = ip0; 582 ip0 = ip1; 583 ip1 = temp; 584 mode_temp = ip0_mode; 585 ip0_mode = ip1_mode; 586 ip1_mode = mode_temp; 587 } 588 589 again: 590 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 591 592 /* 593 * If the first lock we have locked is in the AIL, we must TRY to get 594 * the second lock. If we can't get it, we must release the first one 595 * and try again. 596 */ 597 lp = &ip0->i_itemp->ili_item; 598 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 599 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 600 xfs_iunlock(ip0, ip0_mode); 601 if ((++attempts % 5) == 0) 602 delay(1); /* Don't just spin the CPU */ 603 goto again; 604 } 605 } else { 606 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 607 } 608 } 609 610 uint 611 xfs_ip2xflags( 612 struct xfs_inode *ip) 613 { 614 uint flags = 0; 615 616 if (ip->i_diflags & XFS_DIFLAG_ANY) { 617 if (ip->i_diflags & XFS_DIFLAG_REALTIME) 618 flags |= FS_XFLAG_REALTIME; 619 if (ip->i_diflags & XFS_DIFLAG_PREALLOC) 620 flags |= FS_XFLAG_PREALLOC; 621 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 622 flags |= FS_XFLAG_IMMUTABLE; 623 if (ip->i_diflags & XFS_DIFLAG_APPEND) 624 flags |= FS_XFLAG_APPEND; 625 if (ip->i_diflags & XFS_DIFLAG_SYNC) 626 flags |= FS_XFLAG_SYNC; 627 if (ip->i_diflags & XFS_DIFLAG_NOATIME) 628 flags |= FS_XFLAG_NOATIME; 629 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 630 flags |= FS_XFLAG_NODUMP; 631 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT) 632 flags |= FS_XFLAG_RTINHERIT; 633 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT) 634 flags |= FS_XFLAG_PROJINHERIT; 635 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS) 636 flags |= FS_XFLAG_NOSYMLINKS; 637 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE) 638 flags |= FS_XFLAG_EXTSIZE; 639 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) 640 flags |= FS_XFLAG_EXTSZINHERIT; 641 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG) 642 flags |= FS_XFLAG_NODEFRAG; 643 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM) 644 flags |= FS_XFLAG_FILESTREAM; 645 } 646 647 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) { 648 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 649 flags |= FS_XFLAG_DAX; 650 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 651 flags |= FS_XFLAG_COWEXTSIZE; 652 } 653 654 if (XFS_IFORK_Q(ip)) 655 flags |= FS_XFLAG_HASATTR; 656 return flags; 657 } 658 659 /* 660 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 661 * is allowed, otherwise it has to be an exact match. If a CI match is found, 662 * ci_name->name will point to a the actual name (caller must free) or 663 * will be set to NULL if an exact match is found. 664 */ 665 int 666 xfs_lookup( 667 xfs_inode_t *dp, 668 struct xfs_name *name, 669 xfs_inode_t **ipp, 670 struct xfs_name *ci_name) 671 { 672 xfs_ino_t inum; 673 int error; 674 675 trace_xfs_lookup(dp, name); 676 677 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 678 return -EIO; 679 680 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 681 if (error) 682 goto out_unlock; 683 684 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 685 if (error) 686 goto out_free_name; 687 688 return 0; 689 690 out_free_name: 691 if (ci_name) 692 kmem_free(ci_name->name); 693 out_unlock: 694 *ipp = NULL; 695 return error; 696 } 697 698 /* Propagate di_flags from a parent inode to a child inode. */ 699 static void 700 xfs_inode_inherit_flags( 701 struct xfs_inode *ip, 702 const struct xfs_inode *pip) 703 { 704 unsigned int di_flags = 0; 705 xfs_failaddr_t failaddr; 706 umode_t mode = VFS_I(ip)->i_mode; 707 708 if (S_ISDIR(mode)) { 709 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT) 710 di_flags |= XFS_DIFLAG_RTINHERIT; 711 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 712 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 713 ip->i_extsize = pip->i_extsize; 714 } 715 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT) 716 di_flags |= XFS_DIFLAG_PROJINHERIT; 717 } else if (S_ISREG(mode)) { 718 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) && 719 xfs_sb_version_hasrealtime(&ip->i_mount->m_sb)) 720 di_flags |= XFS_DIFLAG_REALTIME; 721 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 722 di_flags |= XFS_DIFLAG_EXTSIZE; 723 ip->i_extsize = pip->i_extsize; 724 } 725 } 726 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) && 727 xfs_inherit_noatime) 728 di_flags |= XFS_DIFLAG_NOATIME; 729 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) && 730 xfs_inherit_nodump) 731 di_flags |= XFS_DIFLAG_NODUMP; 732 if ((pip->i_diflags & XFS_DIFLAG_SYNC) && 733 xfs_inherit_sync) 734 di_flags |= XFS_DIFLAG_SYNC; 735 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) && 736 xfs_inherit_nosymlinks) 737 di_flags |= XFS_DIFLAG_NOSYMLINKS; 738 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) && 739 xfs_inherit_nodefrag) 740 di_flags |= XFS_DIFLAG_NODEFRAG; 741 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM) 742 di_flags |= XFS_DIFLAG_FILESTREAM; 743 744 ip->i_diflags |= di_flags; 745 746 /* 747 * Inode verifiers on older kernels only check that the extent size 748 * hint is an integer multiple of the rt extent size on realtime files. 749 * They did not check the hint alignment on a directory with both 750 * rtinherit and extszinherit flags set. If the misaligned hint is 751 * propagated from a directory into a new realtime file, new file 752 * allocations will fail due to math errors in the rt allocator and/or 753 * trip the verifiers. Validate the hint settings in the new file so 754 * that we don't let broken hints propagate. 755 */ 756 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize, 757 VFS_I(ip)->i_mode, ip->i_diflags); 758 if (failaddr) { 759 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | 760 XFS_DIFLAG_EXTSZINHERIT); 761 ip->i_extsize = 0; 762 } 763 } 764 765 /* Propagate di_flags2 from a parent inode to a child inode. */ 766 static void 767 xfs_inode_inherit_flags2( 768 struct xfs_inode *ip, 769 const struct xfs_inode *pip) 770 { 771 xfs_failaddr_t failaddr; 772 773 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) { 774 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 775 ip->i_cowextsize = pip->i_cowextsize; 776 } 777 if (pip->i_diflags2 & XFS_DIFLAG2_DAX) 778 ip->i_diflags2 |= XFS_DIFLAG2_DAX; 779 780 /* Don't let invalid cowextsize hints propagate. */ 781 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize, 782 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2); 783 if (failaddr) { 784 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE; 785 ip->i_cowextsize = 0; 786 } 787 } 788 789 /* 790 * Initialise a newly allocated inode and return the in-core inode to the 791 * caller locked exclusively. 792 */ 793 int 794 xfs_init_new_inode( 795 struct user_namespace *mnt_userns, 796 struct xfs_trans *tp, 797 struct xfs_inode *pip, 798 xfs_ino_t ino, 799 umode_t mode, 800 xfs_nlink_t nlink, 801 dev_t rdev, 802 prid_t prid, 803 bool init_xattrs, 804 struct xfs_inode **ipp) 805 { 806 struct inode *dir = pip ? VFS_I(pip) : NULL; 807 struct xfs_mount *mp = tp->t_mountp; 808 struct xfs_inode *ip; 809 unsigned int flags; 810 int error; 811 struct timespec64 tv; 812 struct inode *inode; 813 814 /* 815 * Protect against obviously corrupt allocation btree records. Later 816 * xfs_iget checks will catch re-allocation of other active in-memory 817 * and on-disk inodes. If we don't catch reallocating the parent inode 818 * here we will deadlock in xfs_iget() so we have to do these checks 819 * first. 820 */ 821 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 822 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 823 return -EFSCORRUPTED; 824 } 825 826 /* 827 * Get the in-core inode with the lock held exclusively to prevent 828 * others from looking at until we're done. 829 */ 830 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 831 if (error) 832 return error; 833 834 ASSERT(ip != NULL); 835 inode = VFS_I(ip); 836 set_nlink(inode, nlink); 837 inode->i_rdev = rdev; 838 ip->i_projid = prid; 839 840 if (dir && !(dir->i_mode & S_ISGID) && 841 (mp->m_flags & XFS_MOUNT_GRPID)) { 842 inode_fsuid_set(inode, mnt_userns); 843 inode->i_gid = dir->i_gid; 844 inode->i_mode = mode; 845 } else { 846 inode_init_owner(mnt_userns, inode, dir, mode); 847 } 848 849 /* 850 * If the group ID of the new file does not match the effective group 851 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 852 * (and only if the irix_sgid_inherit compatibility variable is set). 853 */ 854 if (irix_sgid_inherit && 855 (inode->i_mode & S_ISGID) && 856 !in_group_p(i_gid_into_mnt(mnt_userns, inode))) 857 inode->i_mode &= ~S_ISGID; 858 859 ip->i_disk_size = 0; 860 ip->i_df.if_nextents = 0; 861 ASSERT(ip->i_nblocks == 0); 862 863 tv = current_time(inode); 864 inode->i_mtime = tv; 865 inode->i_atime = tv; 866 inode->i_ctime = tv; 867 868 ip->i_extsize = 0; 869 ip->i_diflags = 0; 870 871 if (xfs_sb_version_has_v3inode(&mp->m_sb)) { 872 inode_set_iversion(inode, 1); 873 ip->i_cowextsize = 0; 874 ip->i_crtime = tv; 875 } 876 877 flags = XFS_ILOG_CORE; 878 switch (mode & S_IFMT) { 879 case S_IFIFO: 880 case S_IFCHR: 881 case S_IFBLK: 882 case S_IFSOCK: 883 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 884 flags |= XFS_ILOG_DEV; 885 break; 886 case S_IFREG: 887 case S_IFDIR: 888 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY)) 889 xfs_inode_inherit_flags(ip, pip); 890 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY)) 891 xfs_inode_inherit_flags2(ip, pip); 892 fallthrough; 893 case S_IFLNK: 894 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 895 ip->i_df.if_bytes = 0; 896 ip->i_df.if_u1.if_root = NULL; 897 break; 898 default: 899 ASSERT(0); 900 } 901 902 /* 903 * If we need to create attributes immediately after allocating the 904 * inode, initialise an empty attribute fork right now. We use the 905 * default fork offset for attributes here as we don't know exactly what 906 * size or how many attributes we might be adding. We can do this 907 * safely here because we know the data fork is completely empty and 908 * this saves us from needing to run a separate transaction to set the 909 * fork offset in the immediate future. 910 */ 911 if (init_xattrs && xfs_sb_version_hasattr(&mp->m_sb)) { 912 ip->i_forkoff = xfs_default_attroffset(ip) >> 3; 913 ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0); 914 } 915 916 /* 917 * Log the new values stuffed into the inode. 918 */ 919 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 920 xfs_trans_log_inode(tp, ip, flags); 921 922 /* now that we have an i_mode we can setup the inode structure */ 923 xfs_setup_inode(ip); 924 925 *ipp = ip; 926 return 0; 927 } 928 929 /* 930 * Decrement the link count on an inode & log the change. If this causes the 931 * link count to go to zero, move the inode to AGI unlinked list so that it can 932 * be freed when the last active reference goes away via xfs_inactive(). 933 */ 934 static int /* error */ 935 xfs_droplink( 936 xfs_trans_t *tp, 937 xfs_inode_t *ip) 938 { 939 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 940 941 drop_nlink(VFS_I(ip)); 942 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 943 944 if (VFS_I(ip)->i_nlink) 945 return 0; 946 947 return xfs_iunlink(tp, ip); 948 } 949 950 /* 951 * Increment the link count on an inode & log the change. 952 */ 953 static void 954 xfs_bumplink( 955 xfs_trans_t *tp, 956 xfs_inode_t *ip) 957 { 958 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 959 960 inc_nlink(VFS_I(ip)); 961 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 962 } 963 964 int 965 xfs_create( 966 struct user_namespace *mnt_userns, 967 xfs_inode_t *dp, 968 struct xfs_name *name, 969 umode_t mode, 970 dev_t rdev, 971 bool init_xattrs, 972 xfs_inode_t **ipp) 973 { 974 int is_dir = S_ISDIR(mode); 975 struct xfs_mount *mp = dp->i_mount; 976 struct xfs_inode *ip = NULL; 977 struct xfs_trans *tp = NULL; 978 int error; 979 bool unlock_dp_on_error = false; 980 prid_t prid; 981 struct xfs_dquot *udqp = NULL; 982 struct xfs_dquot *gdqp = NULL; 983 struct xfs_dquot *pdqp = NULL; 984 struct xfs_trans_res *tres; 985 uint resblks; 986 xfs_ino_t ino; 987 988 trace_xfs_create(dp, name); 989 990 if (XFS_FORCED_SHUTDOWN(mp)) 991 return -EIO; 992 993 prid = xfs_get_initial_prid(dp); 994 995 /* 996 * Make sure that we have allocated dquot(s) on disk. 997 */ 998 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns), 999 mapped_fsgid(mnt_userns), prid, 1000 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1001 &udqp, &gdqp, &pdqp); 1002 if (error) 1003 return error; 1004 1005 if (is_dir) { 1006 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1007 tres = &M_RES(mp)->tr_mkdir; 1008 } else { 1009 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1010 tres = &M_RES(mp)->tr_create; 1011 } 1012 1013 /* 1014 * Initially assume that the file does not exist and 1015 * reserve the resources for that case. If that is not 1016 * the case we'll drop the one we have and get a more 1017 * appropriate transaction later. 1018 */ 1019 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1020 &tp); 1021 if (error == -ENOSPC) { 1022 /* flush outstanding delalloc blocks and retry */ 1023 xfs_flush_inodes(mp); 1024 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, 1025 resblks, &tp); 1026 } 1027 if (error) 1028 goto out_release_dquots; 1029 1030 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1031 unlock_dp_on_error = true; 1032 1033 error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK, 1034 XFS_IEXT_DIR_MANIP_CNT(mp)); 1035 if (error) 1036 goto out_trans_cancel; 1037 1038 /* 1039 * A newly created regular or special file just has one directory 1040 * entry pointing to them, but a directory also the "." entry 1041 * pointing to itself. 1042 */ 1043 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1044 if (!error) 1045 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode, 1046 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip); 1047 if (error) 1048 goto out_trans_cancel; 1049 1050 /* 1051 * Now we join the directory inode to the transaction. We do not do it 1052 * earlier because xfs_dialloc might commit the previous transaction 1053 * (and release all the locks). An error from here on will result in 1054 * the transaction cancel unlocking dp so don't do it explicitly in the 1055 * error path. 1056 */ 1057 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1058 unlock_dp_on_error = false; 1059 1060 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1061 resblks - XFS_IALLOC_SPACE_RES(mp)); 1062 if (error) { 1063 ASSERT(error != -ENOSPC); 1064 goto out_trans_cancel; 1065 } 1066 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1067 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1068 1069 if (is_dir) { 1070 error = xfs_dir_init(tp, ip, dp); 1071 if (error) 1072 goto out_trans_cancel; 1073 1074 xfs_bumplink(tp, dp); 1075 } 1076 1077 /* 1078 * If this is a synchronous mount, make sure that the 1079 * create transaction goes to disk before returning to 1080 * the user. 1081 */ 1082 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1083 xfs_trans_set_sync(tp); 1084 1085 /* 1086 * Attach the dquot(s) to the inodes and modify them incore. 1087 * These ids of the inode couldn't have changed since the new 1088 * inode has been locked ever since it was created. 1089 */ 1090 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1091 1092 error = xfs_trans_commit(tp); 1093 if (error) 1094 goto out_release_inode; 1095 1096 xfs_qm_dqrele(udqp); 1097 xfs_qm_dqrele(gdqp); 1098 xfs_qm_dqrele(pdqp); 1099 1100 *ipp = ip; 1101 return 0; 1102 1103 out_trans_cancel: 1104 xfs_trans_cancel(tp); 1105 out_release_inode: 1106 /* 1107 * Wait until after the current transaction is aborted to finish the 1108 * setup of the inode and release the inode. This prevents recursive 1109 * transactions and deadlocks from xfs_inactive. 1110 */ 1111 if (ip) { 1112 xfs_finish_inode_setup(ip); 1113 xfs_irele(ip); 1114 } 1115 out_release_dquots: 1116 xfs_qm_dqrele(udqp); 1117 xfs_qm_dqrele(gdqp); 1118 xfs_qm_dqrele(pdqp); 1119 1120 if (unlock_dp_on_error) 1121 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1122 return error; 1123 } 1124 1125 int 1126 xfs_create_tmpfile( 1127 struct user_namespace *mnt_userns, 1128 struct xfs_inode *dp, 1129 umode_t mode, 1130 struct xfs_inode **ipp) 1131 { 1132 struct xfs_mount *mp = dp->i_mount; 1133 struct xfs_inode *ip = NULL; 1134 struct xfs_trans *tp = NULL; 1135 int error; 1136 prid_t prid; 1137 struct xfs_dquot *udqp = NULL; 1138 struct xfs_dquot *gdqp = NULL; 1139 struct xfs_dquot *pdqp = NULL; 1140 struct xfs_trans_res *tres; 1141 uint resblks; 1142 xfs_ino_t ino; 1143 1144 if (XFS_FORCED_SHUTDOWN(mp)) 1145 return -EIO; 1146 1147 prid = xfs_get_initial_prid(dp); 1148 1149 /* 1150 * Make sure that we have allocated dquot(s) on disk. 1151 */ 1152 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns), 1153 mapped_fsgid(mnt_userns), prid, 1154 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1155 &udqp, &gdqp, &pdqp); 1156 if (error) 1157 return error; 1158 1159 resblks = XFS_IALLOC_SPACE_RES(mp); 1160 tres = &M_RES(mp)->tr_create_tmpfile; 1161 1162 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1163 &tp); 1164 if (error) 1165 goto out_release_dquots; 1166 1167 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1168 if (!error) 1169 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode, 1170 0, 0, prid, false, &ip); 1171 if (error) 1172 goto out_trans_cancel; 1173 1174 if (mp->m_flags & XFS_MOUNT_WSYNC) 1175 xfs_trans_set_sync(tp); 1176 1177 /* 1178 * Attach the dquot(s) to the inodes and modify them incore. 1179 * These ids of the inode couldn't have changed since the new 1180 * inode has been locked ever since it was created. 1181 */ 1182 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1183 1184 error = xfs_iunlink(tp, ip); 1185 if (error) 1186 goto out_trans_cancel; 1187 1188 error = xfs_trans_commit(tp); 1189 if (error) 1190 goto out_release_inode; 1191 1192 xfs_qm_dqrele(udqp); 1193 xfs_qm_dqrele(gdqp); 1194 xfs_qm_dqrele(pdqp); 1195 1196 *ipp = ip; 1197 return 0; 1198 1199 out_trans_cancel: 1200 xfs_trans_cancel(tp); 1201 out_release_inode: 1202 /* 1203 * Wait until after the current transaction is aborted to finish the 1204 * setup of the inode and release the inode. This prevents recursive 1205 * transactions and deadlocks from xfs_inactive. 1206 */ 1207 if (ip) { 1208 xfs_finish_inode_setup(ip); 1209 xfs_irele(ip); 1210 } 1211 out_release_dquots: 1212 xfs_qm_dqrele(udqp); 1213 xfs_qm_dqrele(gdqp); 1214 xfs_qm_dqrele(pdqp); 1215 1216 return error; 1217 } 1218 1219 int 1220 xfs_link( 1221 xfs_inode_t *tdp, 1222 xfs_inode_t *sip, 1223 struct xfs_name *target_name) 1224 { 1225 xfs_mount_t *mp = tdp->i_mount; 1226 xfs_trans_t *tp; 1227 int error; 1228 int resblks; 1229 1230 trace_xfs_link(tdp, target_name); 1231 1232 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1233 1234 if (XFS_FORCED_SHUTDOWN(mp)) 1235 return -EIO; 1236 1237 error = xfs_qm_dqattach(sip); 1238 if (error) 1239 goto std_return; 1240 1241 error = xfs_qm_dqattach(tdp); 1242 if (error) 1243 goto std_return; 1244 1245 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1246 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1247 if (error == -ENOSPC) { 1248 resblks = 0; 1249 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1250 } 1251 if (error) 1252 goto std_return; 1253 1254 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); 1255 1256 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1257 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1258 1259 error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK, 1260 XFS_IEXT_DIR_MANIP_CNT(mp)); 1261 if (error) 1262 goto error_return; 1263 1264 /* 1265 * If we are using project inheritance, we only allow hard link 1266 * creation in our tree when the project IDs are the same; else 1267 * the tree quota mechanism could be circumvented. 1268 */ 1269 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 1270 tdp->i_projid != sip->i_projid)) { 1271 error = -EXDEV; 1272 goto error_return; 1273 } 1274 1275 if (!resblks) { 1276 error = xfs_dir_canenter(tp, tdp, target_name); 1277 if (error) 1278 goto error_return; 1279 } 1280 1281 /* 1282 * Handle initial link state of O_TMPFILE inode 1283 */ 1284 if (VFS_I(sip)->i_nlink == 0) { 1285 struct xfs_perag *pag; 1286 1287 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino)); 1288 error = xfs_iunlink_remove(tp, pag, sip); 1289 xfs_perag_put(pag); 1290 if (error) 1291 goto error_return; 1292 } 1293 1294 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1295 resblks); 1296 if (error) 1297 goto error_return; 1298 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1299 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1300 1301 xfs_bumplink(tp, sip); 1302 1303 /* 1304 * If this is a synchronous mount, make sure that the 1305 * link transaction goes to disk before returning to 1306 * the user. 1307 */ 1308 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1309 xfs_trans_set_sync(tp); 1310 1311 return xfs_trans_commit(tp); 1312 1313 error_return: 1314 xfs_trans_cancel(tp); 1315 std_return: 1316 return error; 1317 } 1318 1319 /* Clear the reflink flag and the cowblocks tag if possible. */ 1320 static void 1321 xfs_itruncate_clear_reflink_flags( 1322 struct xfs_inode *ip) 1323 { 1324 struct xfs_ifork *dfork; 1325 struct xfs_ifork *cfork; 1326 1327 if (!xfs_is_reflink_inode(ip)) 1328 return; 1329 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1330 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1331 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1332 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1333 if (cfork->if_bytes == 0) 1334 xfs_inode_clear_cowblocks_tag(ip); 1335 } 1336 1337 /* 1338 * Free up the underlying blocks past new_size. The new size must be smaller 1339 * than the current size. This routine can be used both for the attribute and 1340 * data fork, and does not modify the inode size, which is left to the caller. 1341 * 1342 * The transaction passed to this routine must have made a permanent log 1343 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1344 * given transaction and start new ones, so make sure everything involved in 1345 * the transaction is tidy before calling here. Some transaction will be 1346 * returned to the caller to be committed. The incoming transaction must 1347 * already include the inode, and both inode locks must be held exclusively. 1348 * The inode must also be "held" within the transaction. On return the inode 1349 * will be "held" within the returned transaction. This routine does NOT 1350 * require any disk space to be reserved for it within the transaction. 1351 * 1352 * If we get an error, we must return with the inode locked and linked into the 1353 * current transaction. This keeps things simple for the higher level code, 1354 * because it always knows that the inode is locked and held in the transaction 1355 * that returns to it whether errors occur or not. We don't mark the inode 1356 * dirty on error so that transactions can be easily aborted if possible. 1357 */ 1358 int 1359 xfs_itruncate_extents_flags( 1360 struct xfs_trans **tpp, 1361 struct xfs_inode *ip, 1362 int whichfork, 1363 xfs_fsize_t new_size, 1364 int flags) 1365 { 1366 struct xfs_mount *mp = ip->i_mount; 1367 struct xfs_trans *tp = *tpp; 1368 xfs_fileoff_t first_unmap_block; 1369 xfs_filblks_t unmap_len; 1370 int error = 0; 1371 1372 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1373 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1374 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1375 ASSERT(new_size <= XFS_ISIZE(ip)); 1376 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1377 ASSERT(ip->i_itemp != NULL); 1378 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1379 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1380 1381 trace_xfs_itruncate_extents_start(ip, new_size); 1382 1383 flags |= xfs_bmapi_aflag(whichfork); 1384 1385 /* 1386 * Since it is possible for space to become allocated beyond 1387 * the end of the file (in a crash where the space is allocated 1388 * but the inode size is not yet updated), simply remove any 1389 * blocks which show up between the new EOF and the maximum 1390 * possible file size. 1391 * 1392 * We have to free all the blocks to the bmbt maximum offset, even if 1393 * the page cache can't scale that far. 1394 */ 1395 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1396 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1397 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1398 return 0; 1399 } 1400 1401 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; 1402 while (unmap_len > 0) { 1403 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1404 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, 1405 flags, XFS_ITRUNC_MAX_EXTENTS); 1406 if (error) 1407 goto out; 1408 1409 /* free the just unmapped extents */ 1410 error = xfs_defer_finish(&tp); 1411 if (error) 1412 goto out; 1413 } 1414 1415 if (whichfork == XFS_DATA_FORK) { 1416 /* Remove all pending CoW reservations. */ 1417 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1418 first_unmap_block, XFS_MAX_FILEOFF, true); 1419 if (error) 1420 goto out; 1421 1422 xfs_itruncate_clear_reflink_flags(ip); 1423 } 1424 1425 /* 1426 * Always re-log the inode so that our permanent transaction can keep 1427 * on rolling it forward in the log. 1428 */ 1429 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1430 1431 trace_xfs_itruncate_extents_end(ip, new_size); 1432 1433 out: 1434 *tpp = tp; 1435 return error; 1436 } 1437 1438 int 1439 xfs_release( 1440 xfs_inode_t *ip) 1441 { 1442 xfs_mount_t *mp = ip->i_mount; 1443 int error = 0; 1444 1445 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1446 return 0; 1447 1448 /* If this is a read-only mount, don't do this (would generate I/O) */ 1449 if (mp->m_flags & XFS_MOUNT_RDONLY) 1450 return 0; 1451 1452 if (!XFS_FORCED_SHUTDOWN(mp)) { 1453 int truncated; 1454 1455 /* 1456 * If we previously truncated this file and removed old data 1457 * in the process, we want to initiate "early" writeout on 1458 * the last close. This is an attempt to combat the notorious 1459 * NULL files problem which is particularly noticeable from a 1460 * truncate down, buffered (re-)write (delalloc), followed by 1461 * a crash. What we are effectively doing here is 1462 * significantly reducing the time window where we'd otherwise 1463 * be exposed to that problem. 1464 */ 1465 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1466 if (truncated) { 1467 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1468 if (ip->i_delayed_blks > 0) { 1469 error = filemap_flush(VFS_I(ip)->i_mapping); 1470 if (error) 1471 return error; 1472 } 1473 } 1474 } 1475 1476 if (VFS_I(ip)->i_nlink == 0) 1477 return 0; 1478 1479 /* 1480 * If we can't get the iolock just skip truncating the blocks past EOF 1481 * because we could deadlock with the mmap_lock otherwise. We'll get 1482 * another chance to drop them once the last reference to the inode is 1483 * dropped, so we'll never leak blocks permanently. 1484 */ 1485 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) 1486 return 0; 1487 1488 if (xfs_can_free_eofblocks(ip, false)) { 1489 /* 1490 * Check if the inode is being opened, written and closed 1491 * frequently and we have delayed allocation blocks outstanding 1492 * (e.g. streaming writes from the NFS server), truncating the 1493 * blocks past EOF will cause fragmentation to occur. 1494 * 1495 * In this case don't do the truncation, but we have to be 1496 * careful how we detect this case. Blocks beyond EOF show up as 1497 * i_delayed_blks even when the inode is clean, so we need to 1498 * truncate them away first before checking for a dirty release. 1499 * Hence on the first dirty close we will still remove the 1500 * speculative allocation, but after that we will leave it in 1501 * place. 1502 */ 1503 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1504 goto out_unlock; 1505 1506 error = xfs_free_eofblocks(ip); 1507 if (error) 1508 goto out_unlock; 1509 1510 /* delalloc blocks after truncation means it really is dirty */ 1511 if (ip->i_delayed_blks) 1512 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1513 } 1514 1515 out_unlock: 1516 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1517 return error; 1518 } 1519 1520 /* 1521 * xfs_inactive_truncate 1522 * 1523 * Called to perform a truncate when an inode becomes unlinked. 1524 */ 1525 STATIC int 1526 xfs_inactive_truncate( 1527 struct xfs_inode *ip) 1528 { 1529 struct xfs_mount *mp = ip->i_mount; 1530 struct xfs_trans *tp; 1531 int error; 1532 1533 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1534 if (error) { 1535 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1536 return error; 1537 } 1538 xfs_ilock(ip, XFS_ILOCK_EXCL); 1539 xfs_trans_ijoin(tp, ip, 0); 1540 1541 /* 1542 * Log the inode size first to prevent stale data exposure in the event 1543 * of a system crash before the truncate completes. See the related 1544 * comment in xfs_vn_setattr_size() for details. 1545 */ 1546 ip->i_disk_size = 0; 1547 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1548 1549 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1550 if (error) 1551 goto error_trans_cancel; 1552 1553 ASSERT(ip->i_df.if_nextents == 0); 1554 1555 error = xfs_trans_commit(tp); 1556 if (error) 1557 goto error_unlock; 1558 1559 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1560 return 0; 1561 1562 error_trans_cancel: 1563 xfs_trans_cancel(tp); 1564 error_unlock: 1565 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1566 return error; 1567 } 1568 1569 /* 1570 * xfs_inactive_ifree() 1571 * 1572 * Perform the inode free when an inode is unlinked. 1573 */ 1574 STATIC int 1575 xfs_inactive_ifree( 1576 struct xfs_inode *ip) 1577 { 1578 struct xfs_mount *mp = ip->i_mount; 1579 struct xfs_trans *tp; 1580 int error; 1581 1582 /* 1583 * We try to use a per-AG reservation for any block needed by the finobt 1584 * tree, but as the finobt feature predates the per-AG reservation 1585 * support a degraded file system might not have enough space for the 1586 * reservation at mount time. In that case try to dip into the reserved 1587 * pool and pray. 1588 * 1589 * Send a warning if the reservation does happen to fail, as the inode 1590 * now remains allocated and sits on the unlinked list until the fs is 1591 * repaired. 1592 */ 1593 if (unlikely(mp->m_finobt_nores)) { 1594 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1595 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1596 &tp); 1597 } else { 1598 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1599 } 1600 if (error) { 1601 if (error == -ENOSPC) { 1602 xfs_warn_ratelimited(mp, 1603 "Failed to remove inode(s) from unlinked list. " 1604 "Please free space, unmount and run xfs_repair."); 1605 } else { 1606 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1607 } 1608 return error; 1609 } 1610 1611 /* 1612 * We do not hold the inode locked across the entire rolling transaction 1613 * here. We only need to hold it for the first transaction that 1614 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1615 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1616 * here breaks the relationship between cluster buffer invalidation and 1617 * stale inode invalidation on cluster buffer item journal commit 1618 * completion, and can result in leaving dirty stale inodes hanging 1619 * around in memory. 1620 * 1621 * We have no need for serialising this inode operation against other 1622 * operations - we freed the inode and hence reallocation is required 1623 * and that will serialise on reallocating the space the deferops need 1624 * to free. Hence we can unlock the inode on the first commit of 1625 * the transaction rather than roll it right through the deferops. This 1626 * avoids relogging the XFS_ISTALE inode. 1627 * 1628 * We check that xfs_ifree() hasn't grown an internal transaction roll 1629 * by asserting that the inode is still locked when it returns. 1630 */ 1631 xfs_ilock(ip, XFS_ILOCK_EXCL); 1632 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1633 1634 error = xfs_ifree(tp, ip); 1635 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1636 if (error) { 1637 /* 1638 * If we fail to free the inode, shut down. The cancel 1639 * might do that, we need to make sure. Otherwise the 1640 * inode might be lost for a long time or forever. 1641 */ 1642 if (!XFS_FORCED_SHUTDOWN(mp)) { 1643 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1644 __func__, error); 1645 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1646 } 1647 xfs_trans_cancel(tp); 1648 return error; 1649 } 1650 1651 /* 1652 * Credit the quota account(s). The inode is gone. 1653 */ 1654 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1655 1656 /* 1657 * Just ignore errors at this point. There is nothing we can do except 1658 * to try to keep going. Make sure it's not a silent error. 1659 */ 1660 error = xfs_trans_commit(tp); 1661 if (error) 1662 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1663 __func__, error); 1664 1665 return 0; 1666 } 1667 1668 /* 1669 * xfs_inactive 1670 * 1671 * This is called when the vnode reference count for the vnode 1672 * goes to zero. If the file has been unlinked, then it must 1673 * now be truncated. Also, we clear all of the read-ahead state 1674 * kept for the inode here since the file is now closed. 1675 */ 1676 void 1677 xfs_inactive( 1678 xfs_inode_t *ip) 1679 { 1680 struct xfs_mount *mp; 1681 int error; 1682 int truncate = 0; 1683 1684 /* 1685 * If the inode is already free, then there can be nothing 1686 * to clean up here. 1687 */ 1688 if (VFS_I(ip)->i_mode == 0) { 1689 ASSERT(ip->i_df.if_broot_bytes == 0); 1690 goto out; 1691 } 1692 1693 mp = ip->i_mount; 1694 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1695 1696 /* If this is a read-only mount, don't do this (would generate I/O) */ 1697 if (mp->m_flags & XFS_MOUNT_RDONLY) 1698 goto out; 1699 1700 /* Metadata inodes require explicit resource cleanup. */ 1701 if (xfs_is_metadata_inode(ip)) 1702 goto out; 1703 1704 /* Try to clean out the cow blocks if there are any. */ 1705 if (xfs_inode_has_cow_data(ip)) 1706 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1707 1708 if (VFS_I(ip)->i_nlink != 0) { 1709 /* 1710 * force is true because we are evicting an inode from the 1711 * cache. Post-eof blocks must be freed, lest we end up with 1712 * broken free space accounting. 1713 * 1714 * Note: don't bother with iolock here since lockdep complains 1715 * about acquiring it in reclaim context. We have the only 1716 * reference to the inode at this point anyways. 1717 */ 1718 if (xfs_can_free_eofblocks(ip, true)) 1719 xfs_free_eofblocks(ip); 1720 1721 goto out; 1722 } 1723 1724 if (S_ISREG(VFS_I(ip)->i_mode) && 1725 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || 1726 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1727 truncate = 1; 1728 1729 error = xfs_qm_dqattach(ip); 1730 if (error) 1731 goto out; 1732 1733 if (S_ISLNK(VFS_I(ip)->i_mode)) 1734 error = xfs_inactive_symlink(ip); 1735 else if (truncate) 1736 error = xfs_inactive_truncate(ip); 1737 if (error) 1738 goto out; 1739 1740 /* 1741 * If there are attributes associated with the file then blow them away 1742 * now. The code calls a routine that recursively deconstructs the 1743 * attribute fork. If also blows away the in-core attribute fork. 1744 */ 1745 if (XFS_IFORK_Q(ip)) { 1746 error = xfs_attr_inactive(ip); 1747 if (error) 1748 goto out; 1749 } 1750 1751 ASSERT(!ip->i_afp); 1752 ASSERT(ip->i_forkoff == 0); 1753 1754 /* 1755 * Free the inode. 1756 */ 1757 xfs_inactive_ifree(ip); 1758 1759 out: 1760 /* 1761 * We're done making metadata updates for this inode, so we can release 1762 * the attached dquots. 1763 */ 1764 xfs_qm_dqdetach(ip); 1765 } 1766 1767 /* 1768 * In-Core Unlinked List Lookups 1769 * ============================= 1770 * 1771 * Every inode is supposed to be reachable from some other piece of metadata 1772 * with the exception of the root directory. Inodes with a connection to a 1773 * file descriptor but not linked from anywhere in the on-disk directory tree 1774 * are collectively known as unlinked inodes, though the filesystem itself 1775 * maintains links to these inodes so that on-disk metadata are consistent. 1776 * 1777 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1778 * header contains a number of buckets that point to an inode, and each inode 1779 * record has a pointer to the next inode in the hash chain. This 1780 * singly-linked list causes scaling problems in the iunlink remove function 1781 * because we must walk that list to find the inode that points to the inode 1782 * being removed from the unlinked hash bucket list. 1783 * 1784 * What if we modelled the unlinked list as a collection of records capturing 1785 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd 1786 * have a fast way to look up unlinked list predecessors, which avoids the 1787 * slow list walk. That's exactly what we do here (in-core) with a per-AG 1788 * rhashtable. 1789 * 1790 * Because this is a backref cache, we ignore operational failures since the 1791 * iunlink code can fall back to the slow bucket walk. The only errors that 1792 * should bubble out are for obviously incorrect situations. 1793 * 1794 * All users of the backref cache MUST hold the AGI buffer lock to serialize 1795 * access or have otherwise provided for concurrency control. 1796 */ 1797 1798 /* Capture a "X.next_unlinked = Y" relationship. */ 1799 struct xfs_iunlink { 1800 struct rhash_head iu_rhash_head; 1801 xfs_agino_t iu_agino; /* X */ 1802 xfs_agino_t iu_next_unlinked; /* Y */ 1803 }; 1804 1805 /* Unlinked list predecessor lookup hashtable construction */ 1806 static int 1807 xfs_iunlink_obj_cmpfn( 1808 struct rhashtable_compare_arg *arg, 1809 const void *obj) 1810 { 1811 const xfs_agino_t *key = arg->key; 1812 const struct xfs_iunlink *iu = obj; 1813 1814 if (iu->iu_next_unlinked != *key) 1815 return 1; 1816 return 0; 1817 } 1818 1819 static const struct rhashtable_params xfs_iunlink_hash_params = { 1820 .min_size = XFS_AGI_UNLINKED_BUCKETS, 1821 .key_len = sizeof(xfs_agino_t), 1822 .key_offset = offsetof(struct xfs_iunlink, 1823 iu_next_unlinked), 1824 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), 1825 .automatic_shrinking = true, 1826 .obj_cmpfn = xfs_iunlink_obj_cmpfn, 1827 }; 1828 1829 /* 1830 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such 1831 * relation is found. 1832 */ 1833 static xfs_agino_t 1834 xfs_iunlink_lookup_backref( 1835 struct xfs_perag *pag, 1836 xfs_agino_t agino) 1837 { 1838 struct xfs_iunlink *iu; 1839 1840 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1841 xfs_iunlink_hash_params); 1842 return iu ? iu->iu_agino : NULLAGINO; 1843 } 1844 1845 /* 1846 * Take ownership of an iunlink cache entry and insert it into the hash table. 1847 * If successful, the entry will be owned by the cache; if not, it is freed. 1848 * Either way, the caller does not own @iu after this call. 1849 */ 1850 static int 1851 xfs_iunlink_insert_backref( 1852 struct xfs_perag *pag, 1853 struct xfs_iunlink *iu) 1854 { 1855 int error; 1856 1857 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, 1858 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1859 /* 1860 * Fail loudly if there already was an entry because that's a sign of 1861 * corruption of in-memory data. Also fail loudly if we see an error 1862 * code we didn't anticipate from the rhashtable code. Currently we 1863 * only anticipate ENOMEM. 1864 */ 1865 if (error) { 1866 WARN(error != -ENOMEM, "iunlink cache insert error %d", error); 1867 kmem_free(iu); 1868 } 1869 /* 1870 * Absorb any runtime errors that aren't a result of corruption because 1871 * this is a cache and we can always fall back to bucket list scanning. 1872 */ 1873 if (error != 0 && error != -EEXIST) 1874 error = 0; 1875 return error; 1876 } 1877 1878 /* Remember that @prev_agino.next_unlinked = @this_agino. */ 1879 static int 1880 xfs_iunlink_add_backref( 1881 struct xfs_perag *pag, 1882 xfs_agino_t prev_agino, 1883 xfs_agino_t this_agino) 1884 { 1885 struct xfs_iunlink *iu; 1886 1887 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) 1888 return 0; 1889 1890 iu = kmem_zalloc(sizeof(*iu), KM_NOFS); 1891 iu->iu_agino = prev_agino; 1892 iu->iu_next_unlinked = this_agino; 1893 1894 return xfs_iunlink_insert_backref(pag, iu); 1895 } 1896 1897 /* 1898 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. 1899 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there 1900 * wasn't any such entry then we don't bother. 1901 */ 1902 static int 1903 xfs_iunlink_change_backref( 1904 struct xfs_perag *pag, 1905 xfs_agino_t agino, 1906 xfs_agino_t next_unlinked) 1907 { 1908 struct xfs_iunlink *iu; 1909 int error; 1910 1911 /* Look up the old entry; if there wasn't one then exit. */ 1912 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1913 xfs_iunlink_hash_params); 1914 if (!iu) 1915 return 0; 1916 1917 /* 1918 * Remove the entry. This shouldn't ever return an error, but if we 1919 * couldn't remove the old entry we don't want to add it again to the 1920 * hash table, and if the entry disappeared on us then someone's 1921 * violated the locking rules and we need to fail loudly. Either way 1922 * we cannot remove the inode because internal state is or would have 1923 * been corrupt. 1924 */ 1925 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, 1926 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1927 if (error) 1928 return error; 1929 1930 /* If there is no new next entry just free our item and return. */ 1931 if (next_unlinked == NULLAGINO) { 1932 kmem_free(iu); 1933 return 0; 1934 } 1935 1936 /* Update the entry and re-add it to the hash table. */ 1937 iu->iu_next_unlinked = next_unlinked; 1938 return xfs_iunlink_insert_backref(pag, iu); 1939 } 1940 1941 /* Set up the in-core predecessor structures. */ 1942 int 1943 xfs_iunlink_init( 1944 struct xfs_perag *pag) 1945 { 1946 return rhashtable_init(&pag->pagi_unlinked_hash, 1947 &xfs_iunlink_hash_params); 1948 } 1949 1950 /* Free the in-core predecessor structures. */ 1951 static void 1952 xfs_iunlink_free_item( 1953 void *ptr, 1954 void *arg) 1955 { 1956 struct xfs_iunlink *iu = ptr; 1957 bool *freed_anything = arg; 1958 1959 *freed_anything = true; 1960 kmem_free(iu); 1961 } 1962 1963 void 1964 xfs_iunlink_destroy( 1965 struct xfs_perag *pag) 1966 { 1967 bool freed_anything = false; 1968 1969 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, 1970 xfs_iunlink_free_item, &freed_anything); 1971 1972 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount)); 1973 } 1974 1975 /* 1976 * Point the AGI unlinked bucket at an inode and log the results. The caller 1977 * is responsible for validating the old value. 1978 */ 1979 STATIC int 1980 xfs_iunlink_update_bucket( 1981 struct xfs_trans *tp, 1982 struct xfs_perag *pag, 1983 struct xfs_buf *agibp, 1984 unsigned int bucket_index, 1985 xfs_agino_t new_agino) 1986 { 1987 struct xfs_agi *agi = agibp->b_addr; 1988 xfs_agino_t old_value; 1989 int offset; 1990 1991 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, pag->pag_agno, new_agino)); 1992 1993 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1994 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index, 1995 old_value, new_agino); 1996 1997 /* 1998 * We should never find the head of the list already set to the value 1999 * passed in because either we're adding or removing ourselves from the 2000 * head of the list. 2001 */ 2002 if (old_value == new_agino) { 2003 xfs_buf_mark_corrupt(agibp); 2004 return -EFSCORRUPTED; 2005 } 2006 2007 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 2008 offset = offsetof(struct xfs_agi, agi_unlinked) + 2009 (sizeof(xfs_agino_t) * bucket_index); 2010 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 2011 return 0; 2012 } 2013 2014 /* Set an on-disk inode's next_unlinked pointer. */ 2015 STATIC void 2016 xfs_iunlink_update_dinode( 2017 struct xfs_trans *tp, 2018 struct xfs_perag *pag, 2019 xfs_agino_t agino, 2020 struct xfs_buf *ibp, 2021 struct xfs_dinode *dip, 2022 struct xfs_imap *imap, 2023 xfs_agino_t next_agino) 2024 { 2025 struct xfs_mount *mp = tp->t_mountp; 2026 int offset; 2027 2028 ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)); 2029 2030 trace_xfs_iunlink_update_dinode(mp, pag->pag_agno, agino, 2031 be32_to_cpu(dip->di_next_unlinked), next_agino); 2032 2033 dip->di_next_unlinked = cpu_to_be32(next_agino); 2034 offset = imap->im_boffset + 2035 offsetof(struct xfs_dinode, di_next_unlinked); 2036 2037 /* need to recalc the inode CRC if appropriate */ 2038 xfs_dinode_calc_crc(mp, dip); 2039 xfs_trans_inode_buf(tp, ibp); 2040 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); 2041 } 2042 2043 /* Set an in-core inode's unlinked pointer and return the old value. */ 2044 STATIC int 2045 xfs_iunlink_update_inode( 2046 struct xfs_trans *tp, 2047 struct xfs_inode *ip, 2048 struct xfs_perag *pag, 2049 xfs_agino_t next_agino, 2050 xfs_agino_t *old_next_agino) 2051 { 2052 struct xfs_mount *mp = tp->t_mountp; 2053 struct xfs_dinode *dip; 2054 struct xfs_buf *ibp; 2055 xfs_agino_t old_value; 2056 int error; 2057 2058 ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)); 2059 2060 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp); 2061 if (error) 2062 return error; 2063 dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset); 2064 2065 /* Make sure the old pointer isn't garbage. */ 2066 old_value = be32_to_cpu(dip->di_next_unlinked); 2067 if (!xfs_verify_agino_or_null(mp, pag->pag_agno, old_value)) { 2068 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 2069 sizeof(*dip), __this_address); 2070 error = -EFSCORRUPTED; 2071 goto out; 2072 } 2073 2074 /* 2075 * Since we're updating a linked list, we should never find that the 2076 * current pointer is the same as the new value, unless we're 2077 * terminating the list. 2078 */ 2079 *old_next_agino = old_value; 2080 if (old_value == next_agino) { 2081 if (next_agino != NULLAGINO) { 2082 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, 2083 dip, sizeof(*dip), __this_address); 2084 error = -EFSCORRUPTED; 2085 } 2086 goto out; 2087 } 2088 2089 /* Ok, update the new pointer. */ 2090 xfs_iunlink_update_dinode(tp, pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 2091 ibp, dip, &ip->i_imap, next_agino); 2092 return 0; 2093 out: 2094 xfs_trans_brelse(tp, ibp); 2095 return error; 2096 } 2097 2098 /* 2099 * This is called when the inode's link count has gone to 0 or we are creating 2100 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2101 * 2102 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2103 * list when the inode is freed. 2104 */ 2105 STATIC int 2106 xfs_iunlink( 2107 struct xfs_trans *tp, 2108 struct xfs_inode *ip) 2109 { 2110 struct xfs_mount *mp = tp->t_mountp; 2111 struct xfs_perag *pag; 2112 struct xfs_agi *agi; 2113 struct xfs_buf *agibp; 2114 xfs_agino_t next_agino; 2115 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2116 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2117 int error; 2118 2119 ASSERT(VFS_I(ip)->i_nlink == 0); 2120 ASSERT(VFS_I(ip)->i_mode != 0); 2121 trace_xfs_iunlink(ip); 2122 2123 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2124 2125 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2126 error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp); 2127 if (error) 2128 goto out; 2129 agi = agibp->b_addr; 2130 2131 /* 2132 * Get the index into the agi hash table for the list this inode will 2133 * go on. Make sure the pointer isn't garbage and that this inode 2134 * isn't already on the list. 2135 */ 2136 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2137 if (next_agino == agino || 2138 !xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)) { 2139 xfs_buf_mark_corrupt(agibp); 2140 error = -EFSCORRUPTED; 2141 goto out; 2142 } 2143 2144 if (next_agino != NULLAGINO) { 2145 xfs_agino_t old_agino; 2146 2147 /* 2148 * There is already another inode in the bucket, so point this 2149 * inode to the current head of the list. 2150 */ 2151 error = xfs_iunlink_update_inode(tp, ip, pag, next_agino, 2152 &old_agino); 2153 if (error) 2154 goto out; 2155 ASSERT(old_agino == NULLAGINO); 2156 2157 /* 2158 * agino has been unlinked, add a backref from the next inode 2159 * back to agino. 2160 */ 2161 error = xfs_iunlink_add_backref(pag, agino, next_agino); 2162 if (error) 2163 goto out; 2164 } 2165 2166 /* Point the head of the list to point to this inode. */ 2167 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino); 2168 out: 2169 xfs_perag_put(pag); 2170 return error; 2171 } 2172 2173 /* Return the imap, dinode pointer, and buffer for an inode. */ 2174 STATIC int 2175 xfs_iunlink_map_ino( 2176 struct xfs_trans *tp, 2177 xfs_agnumber_t agno, 2178 xfs_agino_t agino, 2179 struct xfs_imap *imap, 2180 struct xfs_dinode **dipp, 2181 struct xfs_buf **bpp) 2182 { 2183 struct xfs_mount *mp = tp->t_mountp; 2184 int error; 2185 2186 imap->im_blkno = 0; 2187 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); 2188 if (error) { 2189 xfs_warn(mp, "%s: xfs_imap returned error %d.", 2190 __func__, error); 2191 return error; 2192 } 2193 2194 error = xfs_imap_to_bp(mp, tp, imap, bpp); 2195 if (error) { 2196 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2197 __func__, error); 2198 return error; 2199 } 2200 2201 *dipp = xfs_buf_offset(*bpp, imap->im_boffset); 2202 return 0; 2203 } 2204 2205 /* 2206 * Walk the unlinked chain from @head_agino until we find the inode that 2207 * points to @target_agino. Return the inode number, map, dinode pointer, 2208 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. 2209 * 2210 * @tp, @pag, @head_agino, and @target_agino are input parameters. 2211 * @agino, @imap, @dipp, and @bpp are all output parameters. 2212 * 2213 * Do not call this function if @target_agino is the head of the list. 2214 */ 2215 STATIC int 2216 xfs_iunlink_map_prev( 2217 struct xfs_trans *tp, 2218 struct xfs_perag *pag, 2219 xfs_agino_t head_agino, 2220 xfs_agino_t target_agino, 2221 xfs_agino_t *agino, 2222 struct xfs_imap *imap, 2223 struct xfs_dinode **dipp, 2224 struct xfs_buf **bpp) 2225 { 2226 struct xfs_mount *mp = tp->t_mountp; 2227 xfs_agino_t next_agino; 2228 int error; 2229 2230 ASSERT(head_agino != target_agino); 2231 *bpp = NULL; 2232 2233 /* See if our backref cache can find it faster. */ 2234 *agino = xfs_iunlink_lookup_backref(pag, target_agino); 2235 if (*agino != NULLAGINO) { 2236 error = xfs_iunlink_map_ino(tp, pag->pag_agno, *agino, imap, 2237 dipp, bpp); 2238 if (error) 2239 return error; 2240 2241 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) 2242 return 0; 2243 2244 /* 2245 * If we get here the cache contents were corrupt, so drop the 2246 * buffer and fall back to walking the bucket list. 2247 */ 2248 xfs_trans_brelse(tp, *bpp); 2249 *bpp = NULL; 2250 WARN_ON_ONCE(1); 2251 } 2252 2253 trace_xfs_iunlink_map_prev_fallback(mp, pag->pag_agno); 2254 2255 /* Otherwise, walk the entire bucket until we find it. */ 2256 next_agino = head_agino; 2257 while (next_agino != target_agino) { 2258 xfs_agino_t unlinked_agino; 2259 2260 if (*bpp) 2261 xfs_trans_brelse(tp, *bpp); 2262 2263 *agino = next_agino; 2264 error = xfs_iunlink_map_ino(tp, pag->pag_agno, next_agino, imap, 2265 dipp, bpp); 2266 if (error) 2267 return error; 2268 2269 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); 2270 /* 2271 * Make sure this pointer is valid and isn't an obvious 2272 * infinite loop. 2273 */ 2274 if (!xfs_verify_agino(mp, pag->pag_agno, unlinked_agino) || 2275 next_agino == unlinked_agino) { 2276 XFS_CORRUPTION_ERROR(__func__, 2277 XFS_ERRLEVEL_LOW, mp, 2278 *dipp, sizeof(**dipp)); 2279 error = -EFSCORRUPTED; 2280 return error; 2281 } 2282 next_agino = unlinked_agino; 2283 } 2284 2285 return 0; 2286 } 2287 2288 /* 2289 * Pull the on-disk inode from the AGI unlinked list. 2290 */ 2291 STATIC int 2292 xfs_iunlink_remove( 2293 struct xfs_trans *tp, 2294 struct xfs_perag *pag, 2295 struct xfs_inode *ip) 2296 { 2297 struct xfs_mount *mp = tp->t_mountp; 2298 struct xfs_agi *agi; 2299 struct xfs_buf *agibp; 2300 struct xfs_buf *last_ibp; 2301 struct xfs_dinode *last_dip = NULL; 2302 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2303 xfs_agino_t next_agino; 2304 xfs_agino_t head_agino; 2305 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2306 int error; 2307 2308 trace_xfs_iunlink_remove(ip); 2309 2310 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2311 error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp); 2312 if (error) 2313 return error; 2314 agi = agibp->b_addr; 2315 2316 /* 2317 * Get the index into the agi hash table for the list this inode will 2318 * go on. Make sure the head pointer isn't garbage. 2319 */ 2320 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2321 if (!xfs_verify_agino(mp, pag->pag_agno, head_agino)) { 2322 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2323 agi, sizeof(*agi)); 2324 return -EFSCORRUPTED; 2325 } 2326 2327 /* 2328 * Set our inode's next_unlinked pointer to NULL and then return 2329 * the old pointer value so that we can update whatever was previous 2330 * to us in the list to point to whatever was next in the list. 2331 */ 2332 error = xfs_iunlink_update_inode(tp, ip, pag, NULLAGINO, &next_agino); 2333 if (error) 2334 return error; 2335 2336 /* 2337 * If there was a backref pointing from the next inode back to this 2338 * one, remove it because we've removed this inode from the list. 2339 * 2340 * Later, if this inode was in the middle of the list we'll update 2341 * this inode's backref to point from the next inode. 2342 */ 2343 if (next_agino != NULLAGINO) { 2344 error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO); 2345 if (error) 2346 return error; 2347 } 2348 2349 if (head_agino != agino) { 2350 struct xfs_imap imap; 2351 xfs_agino_t prev_agino; 2352 2353 /* We need to search the list for the inode being freed. */ 2354 error = xfs_iunlink_map_prev(tp, pag, head_agino, agino, 2355 &prev_agino, &imap, &last_dip, &last_ibp); 2356 if (error) 2357 return error; 2358 2359 /* Point the previous inode on the list to the next inode. */ 2360 xfs_iunlink_update_dinode(tp, pag, prev_agino, last_ibp, 2361 last_dip, &imap, next_agino); 2362 2363 /* 2364 * Now we deal with the backref for this inode. If this inode 2365 * pointed at a real inode, change the backref that pointed to 2366 * us to point to our old next. If this inode was the end of 2367 * the list, delete the backref that pointed to us. Note that 2368 * change_backref takes care of deleting the backref if 2369 * next_agino is NULLAGINO. 2370 */ 2371 return xfs_iunlink_change_backref(agibp->b_pag, agino, 2372 next_agino); 2373 } 2374 2375 /* Point the head of the list to the next unlinked inode. */ 2376 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, 2377 next_agino); 2378 } 2379 2380 /* 2381 * Look up the inode number specified and if it is not already marked XFS_ISTALE 2382 * mark it stale. We should only find clean inodes in this lookup that aren't 2383 * already stale. 2384 */ 2385 static void 2386 xfs_ifree_mark_inode_stale( 2387 struct xfs_perag *pag, 2388 struct xfs_inode *free_ip, 2389 xfs_ino_t inum) 2390 { 2391 struct xfs_mount *mp = pag->pag_mount; 2392 struct xfs_inode_log_item *iip; 2393 struct xfs_inode *ip; 2394 2395 retry: 2396 rcu_read_lock(); 2397 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2398 2399 /* Inode not in memory, nothing to do */ 2400 if (!ip) { 2401 rcu_read_unlock(); 2402 return; 2403 } 2404 2405 /* 2406 * because this is an RCU protected lookup, we could find a recently 2407 * freed or even reallocated inode during the lookup. We need to check 2408 * under the i_flags_lock for a valid inode here. Skip it if it is not 2409 * valid, the wrong inode or stale. 2410 */ 2411 spin_lock(&ip->i_flags_lock); 2412 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 2413 goto out_iflags_unlock; 2414 2415 /* 2416 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2417 * other inodes that we did not find in the list attached to the buffer 2418 * and are not already marked stale. If we can't lock it, back off and 2419 * retry. 2420 */ 2421 if (ip != free_ip) { 2422 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2423 spin_unlock(&ip->i_flags_lock); 2424 rcu_read_unlock(); 2425 delay(1); 2426 goto retry; 2427 } 2428 } 2429 ip->i_flags |= XFS_ISTALE; 2430 2431 /* 2432 * If the inode is flushing, it is already attached to the buffer. All 2433 * we needed to do here is mark the inode stale so buffer IO completion 2434 * will remove it from the AIL. 2435 */ 2436 iip = ip->i_itemp; 2437 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 2438 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 2439 ASSERT(iip->ili_last_fields); 2440 goto out_iunlock; 2441 } 2442 2443 /* 2444 * Inodes not attached to the buffer can be released immediately. 2445 * Everything else has to go through xfs_iflush_abort() on journal 2446 * commit as the flock synchronises removal of the inode from the 2447 * cluster buffer against inode reclaim. 2448 */ 2449 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 2450 goto out_iunlock; 2451 2452 __xfs_iflags_set(ip, XFS_IFLUSHING); 2453 spin_unlock(&ip->i_flags_lock); 2454 rcu_read_unlock(); 2455 2456 /* we have a dirty inode in memory that has not yet been flushed. */ 2457 spin_lock(&iip->ili_lock); 2458 iip->ili_last_fields = iip->ili_fields; 2459 iip->ili_fields = 0; 2460 iip->ili_fsync_fields = 0; 2461 spin_unlock(&iip->ili_lock); 2462 ASSERT(iip->ili_last_fields); 2463 2464 if (ip != free_ip) 2465 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2466 return; 2467 2468 out_iunlock: 2469 if (ip != free_ip) 2470 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2471 out_iflags_unlock: 2472 spin_unlock(&ip->i_flags_lock); 2473 rcu_read_unlock(); 2474 } 2475 2476 /* 2477 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2478 * inodes that are in memory - they all must be marked stale and attached to 2479 * the cluster buffer. 2480 */ 2481 static int 2482 xfs_ifree_cluster( 2483 struct xfs_trans *tp, 2484 struct xfs_perag *pag, 2485 struct xfs_inode *free_ip, 2486 struct xfs_icluster *xic) 2487 { 2488 struct xfs_mount *mp = free_ip->i_mount; 2489 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2490 struct xfs_buf *bp; 2491 xfs_daddr_t blkno; 2492 xfs_ino_t inum = xic->first_ino; 2493 int nbufs; 2494 int i, j; 2495 int ioffset; 2496 int error; 2497 2498 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2499 2500 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2501 /* 2502 * The allocation bitmap tells us which inodes of the chunk were 2503 * physically allocated. Skip the cluster if an inode falls into 2504 * a sparse region. 2505 */ 2506 ioffset = inum - xic->first_ino; 2507 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2508 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2509 continue; 2510 } 2511 2512 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2513 XFS_INO_TO_AGBNO(mp, inum)); 2514 2515 /* 2516 * We obtain and lock the backing buffer first in the process 2517 * here to ensure dirty inodes attached to the buffer remain in 2518 * the flushing state while we mark them stale. 2519 * 2520 * If we scan the in-memory inodes first, then buffer IO can 2521 * complete before we get a lock on it, and hence we may fail 2522 * to mark all the active inodes on the buffer stale. 2523 */ 2524 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2525 mp->m_bsize * igeo->blocks_per_cluster, 2526 XBF_UNMAPPED, &bp); 2527 if (error) 2528 return error; 2529 2530 /* 2531 * This buffer may not have been correctly initialised as we 2532 * didn't read it from disk. That's not important because we are 2533 * only using to mark the buffer as stale in the log, and to 2534 * attach stale cached inodes on it. That means it will never be 2535 * dispatched for IO. If it is, we want to know about it, and we 2536 * want it to fail. We can acheive this by adding a write 2537 * verifier to the buffer. 2538 */ 2539 bp->b_ops = &xfs_inode_buf_ops; 2540 2541 /* 2542 * Now we need to set all the cached clean inodes as XFS_ISTALE, 2543 * too. This requires lookups, and will skip inodes that we've 2544 * already marked XFS_ISTALE. 2545 */ 2546 for (i = 0; i < igeo->inodes_per_cluster; i++) 2547 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); 2548 2549 xfs_trans_stale_inode_buf(tp, bp); 2550 xfs_trans_binval(tp, bp); 2551 } 2552 return 0; 2553 } 2554 2555 /* 2556 * This is called to return an inode to the inode free list. 2557 * The inode should already be truncated to 0 length and have 2558 * no pages associated with it. This routine also assumes that 2559 * the inode is already a part of the transaction. 2560 * 2561 * The on-disk copy of the inode will have been added to the list 2562 * of unlinked inodes in the AGI. We need to remove the inode from 2563 * that list atomically with respect to freeing it here. 2564 */ 2565 int 2566 xfs_ifree( 2567 struct xfs_trans *tp, 2568 struct xfs_inode *ip) 2569 { 2570 struct xfs_mount *mp = ip->i_mount; 2571 struct xfs_perag *pag; 2572 struct xfs_icluster xic = { 0 }; 2573 struct xfs_inode_log_item *iip = ip->i_itemp; 2574 int error; 2575 2576 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2577 ASSERT(VFS_I(ip)->i_nlink == 0); 2578 ASSERT(ip->i_df.if_nextents == 0); 2579 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2580 ASSERT(ip->i_nblocks == 0); 2581 2582 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2583 2584 /* 2585 * Pull the on-disk inode from the AGI unlinked list. 2586 */ 2587 error = xfs_iunlink_remove(tp, pag, ip); 2588 if (error) 2589 goto out; 2590 2591 error = xfs_difree(tp, pag, ip->i_ino, &xic); 2592 if (error) 2593 goto out; 2594 2595 /* 2596 * Free any local-format data sitting around before we reset the 2597 * data fork to extents format. Note that the attr fork data has 2598 * already been freed by xfs_attr_inactive. 2599 */ 2600 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2601 kmem_free(ip->i_df.if_u1.if_data); 2602 ip->i_df.if_u1.if_data = NULL; 2603 ip->i_df.if_bytes = 0; 2604 } 2605 2606 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2607 ip->i_diflags = 0; 2608 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 2609 ip->i_forkoff = 0; /* mark the attr fork not in use */ 2610 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2611 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) 2612 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); 2613 2614 /* Don't attempt to replay owner changes for a deleted inode */ 2615 spin_lock(&iip->ili_lock); 2616 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 2617 spin_unlock(&iip->ili_lock); 2618 2619 /* 2620 * Bump the generation count so no one will be confused 2621 * by reincarnations of this inode. 2622 */ 2623 VFS_I(ip)->i_generation++; 2624 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2625 2626 if (xic.deleted) 2627 error = xfs_ifree_cluster(tp, pag, ip, &xic); 2628 out: 2629 xfs_perag_put(pag); 2630 return error; 2631 } 2632 2633 /* 2634 * This is called to unpin an inode. The caller must have the inode locked 2635 * in at least shared mode so that the buffer cannot be subsequently pinned 2636 * once someone is waiting for it to be unpinned. 2637 */ 2638 static void 2639 xfs_iunpin( 2640 struct xfs_inode *ip) 2641 { 2642 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2643 2644 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2645 2646 /* Give the log a push to start the unpinning I/O */ 2647 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); 2648 2649 } 2650 2651 static void 2652 __xfs_iunpin_wait( 2653 struct xfs_inode *ip) 2654 { 2655 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2656 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2657 2658 xfs_iunpin(ip); 2659 2660 do { 2661 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2662 if (xfs_ipincount(ip)) 2663 io_schedule(); 2664 } while (xfs_ipincount(ip)); 2665 finish_wait(wq, &wait.wq_entry); 2666 } 2667 2668 void 2669 xfs_iunpin_wait( 2670 struct xfs_inode *ip) 2671 { 2672 if (xfs_ipincount(ip)) 2673 __xfs_iunpin_wait(ip); 2674 } 2675 2676 /* 2677 * Removing an inode from the namespace involves removing the directory entry 2678 * and dropping the link count on the inode. Removing the directory entry can 2679 * result in locking an AGF (directory blocks were freed) and removing a link 2680 * count can result in placing the inode on an unlinked list which results in 2681 * locking an AGI. 2682 * 2683 * The big problem here is that we have an ordering constraint on AGF and AGI 2684 * locking - inode allocation locks the AGI, then can allocate a new extent for 2685 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2686 * removes the inode from the unlinked list, requiring that we lock the AGI 2687 * first, and then freeing the inode can result in an inode chunk being freed 2688 * and hence freeing disk space requiring that we lock an AGF. 2689 * 2690 * Hence the ordering that is imposed by other parts of the code is AGI before 2691 * AGF. This means we cannot remove the directory entry before we drop the inode 2692 * reference count and put it on the unlinked list as this results in a lock 2693 * order of AGF then AGI, and this can deadlock against inode allocation and 2694 * freeing. Therefore we must drop the link counts before we remove the 2695 * directory entry. 2696 * 2697 * This is still safe from a transactional point of view - it is not until we 2698 * get to xfs_defer_finish() that we have the possibility of multiple 2699 * transactions in this operation. Hence as long as we remove the directory 2700 * entry and drop the link count in the first transaction of the remove 2701 * operation, there are no transactional constraints on the ordering here. 2702 */ 2703 int 2704 xfs_remove( 2705 xfs_inode_t *dp, 2706 struct xfs_name *name, 2707 xfs_inode_t *ip) 2708 { 2709 xfs_mount_t *mp = dp->i_mount; 2710 xfs_trans_t *tp = NULL; 2711 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2712 int error = 0; 2713 uint resblks; 2714 2715 trace_xfs_remove(dp, name); 2716 2717 if (XFS_FORCED_SHUTDOWN(mp)) 2718 return -EIO; 2719 2720 error = xfs_qm_dqattach(dp); 2721 if (error) 2722 goto std_return; 2723 2724 error = xfs_qm_dqattach(ip); 2725 if (error) 2726 goto std_return; 2727 2728 /* 2729 * We try to get the real space reservation first, 2730 * allowing for directory btree deletion(s) implying 2731 * possible bmap insert(s). If we can't get the space 2732 * reservation then we use 0 instead, and avoid the bmap 2733 * btree insert(s) in the directory code by, if the bmap 2734 * insert tries to happen, instead trimming the LAST 2735 * block from the directory. 2736 */ 2737 resblks = XFS_REMOVE_SPACE_RES(mp); 2738 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2739 if (error == -ENOSPC) { 2740 resblks = 0; 2741 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2742 &tp); 2743 } 2744 if (error) { 2745 ASSERT(error != -ENOSPC); 2746 goto std_return; 2747 } 2748 2749 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 2750 2751 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2752 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2753 2754 /* 2755 * If we're removing a directory perform some additional validation. 2756 */ 2757 if (is_dir) { 2758 ASSERT(VFS_I(ip)->i_nlink >= 2); 2759 if (VFS_I(ip)->i_nlink != 2) { 2760 error = -ENOTEMPTY; 2761 goto out_trans_cancel; 2762 } 2763 if (!xfs_dir_isempty(ip)) { 2764 error = -ENOTEMPTY; 2765 goto out_trans_cancel; 2766 } 2767 2768 /* Drop the link from ip's "..". */ 2769 error = xfs_droplink(tp, dp); 2770 if (error) 2771 goto out_trans_cancel; 2772 2773 /* Drop the "." link from ip to self. */ 2774 error = xfs_droplink(tp, ip); 2775 if (error) 2776 goto out_trans_cancel; 2777 2778 /* 2779 * Point the unlinked child directory's ".." entry to the root 2780 * directory to eliminate back-references to inodes that may 2781 * get freed before the child directory is closed. If the fs 2782 * gets shrunk, this can lead to dirent inode validation errors. 2783 */ 2784 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) { 2785 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot, 2786 tp->t_mountp->m_sb.sb_rootino, 0); 2787 if (error) 2788 return error; 2789 } 2790 } else { 2791 /* 2792 * When removing a non-directory we need to log the parent 2793 * inode here. For a directory this is done implicitly 2794 * by the xfs_droplink call for the ".." entry. 2795 */ 2796 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2797 } 2798 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2799 2800 /* Drop the link from dp to ip. */ 2801 error = xfs_droplink(tp, ip); 2802 if (error) 2803 goto out_trans_cancel; 2804 2805 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2806 if (error) { 2807 ASSERT(error != -ENOENT); 2808 goto out_trans_cancel; 2809 } 2810 2811 /* 2812 * If this is a synchronous mount, make sure that the 2813 * remove transaction goes to disk before returning to 2814 * the user. 2815 */ 2816 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2817 xfs_trans_set_sync(tp); 2818 2819 error = xfs_trans_commit(tp); 2820 if (error) 2821 goto std_return; 2822 2823 if (is_dir && xfs_inode_is_filestream(ip)) 2824 xfs_filestream_deassociate(ip); 2825 2826 return 0; 2827 2828 out_trans_cancel: 2829 xfs_trans_cancel(tp); 2830 std_return: 2831 return error; 2832 } 2833 2834 /* 2835 * Enter all inodes for a rename transaction into a sorted array. 2836 */ 2837 #define __XFS_SORT_INODES 5 2838 STATIC void 2839 xfs_sort_for_rename( 2840 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2841 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2842 struct xfs_inode *ip1, /* in: inode of old entry */ 2843 struct xfs_inode *ip2, /* in: inode of new entry */ 2844 struct xfs_inode *wip, /* in: whiteout inode */ 2845 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2846 int *num_inodes) /* in/out: inodes in array */ 2847 { 2848 int i, j; 2849 2850 ASSERT(*num_inodes == __XFS_SORT_INODES); 2851 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2852 2853 /* 2854 * i_tab contains a list of pointers to inodes. We initialize 2855 * the table here & we'll sort it. We will then use it to 2856 * order the acquisition of the inode locks. 2857 * 2858 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2859 */ 2860 i = 0; 2861 i_tab[i++] = dp1; 2862 i_tab[i++] = dp2; 2863 i_tab[i++] = ip1; 2864 if (ip2) 2865 i_tab[i++] = ip2; 2866 if (wip) 2867 i_tab[i++] = wip; 2868 *num_inodes = i; 2869 2870 /* 2871 * Sort the elements via bubble sort. (Remember, there are at 2872 * most 5 elements to sort, so this is adequate.) 2873 */ 2874 for (i = 0; i < *num_inodes; i++) { 2875 for (j = 1; j < *num_inodes; j++) { 2876 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2877 struct xfs_inode *temp = i_tab[j]; 2878 i_tab[j] = i_tab[j-1]; 2879 i_tab[j-1] = temp; 2880 } 2881 } 2882 } 2883 } 2884 2885 static int 2886 xfs_finish_rename( 2887 struct xfs_trans *tp) 2888 { 2889 /* 2890 * If this is a synchronous mount, make sure that the rename transaction 2891 * goes to disk before returning to the user. 2892 */ 2893 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2894 xfs_trans_set_sync(tp); 2895 2896 return xfs_trans_commit(tp); 2897 } 2898 2899 /* 2900 * xfs_cross_rename() 2901 * 2902 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall 2903 */ 2904 STATIC int 2905 xfs_cross_rename( 2906 struct xfs_trans *tp, 2907 struct xfs_inode *dp1, 2908 struct xfs_name *name1, 2909 struct xfs_inode *ip1, 2910 struct xfs_inode *dp2, 2911 struct xfs_name *name2, 2912 struct xfs_inode *ip2, 2913 int spaceres) 2914 { 2915 int error = 0; 2916 int ip1_flags = 0; 2917 int ip2_flags = 0; 2918 int dp2_flags = 0; 2919 2920 /* Swap inode number for dirent in first parent */ 2921 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 2922 if (error) 2923 goto out_trans_abort; 2924 2925 /* Swap inode number for dirent in second parent */ 2926 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 2927 if (error) 2928 goto out_trans_abort; 2929 2930 /* 2931 * If we're renaming one or more directories across different parents, 2932 * update the respective ".." entries (and link counts) to match the new 2933 * parents. 2934 */ 2935 if (dp1 != dp2) { 2936 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2937 2938 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2939 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2940 dp1->i_ino, spaceres); 2941 if (error) 2942 goto out_trans_abort; 2943 2944 /* transfer ip2 ".." reference to dp1 */ 2945 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2946 error = xfs_droplink(tp, dp2); 2947 if (error) 2948 goto out_trans_abort; 2949 xfs_bumplink(tp, dp1); 2950 } 2951 2952 /* 2953 * Although ip1 isn't changed here, userspace needs 2954 * to be warned about the change, so that applications 2955 * relying on it (like backup ones), will properly 2956 * notify the change 2957 */ 2958 ip1_flags |= XFS_ICHGTIME_CHG; 2959 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2960 } 2961 2962 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2963 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2964 dp2->i_ino, spaceres); 2965 if (error) 2966 goto out_trans_abort; 2967 2968 /* transfer ip1 ".." reference to dp2 */ 2969 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2970 error = xfs_droplink(tp, dp1); 2971 if (error) 2972 goto out_trans_abort; 2973 xfs_bumplink(tp, dp2); 2974 } 2975 2976 /* 2977 * Although ip2 isn't changed here, userspace needs 2978 * to be warned about the change, so that applications 2979 * relying on it (like backup ones), will properly 2980 * notify the change 2981 */ 2982 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2983 ip2_flags |= XFS_ICHGTIME_CHG; 2984 } 2985 } 2986 2987 if (ip1_flags) { 2988 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2989 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2990 } 2991 if (ip2_flags) { 2992 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2993 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2994 } 2995 if (dp2_flags) { 2996 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2997 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2998 } 2999 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3000 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 3001 return xfs_finish_rename(tp); 3002 3003 out_trans_abort: 3004 xfs_trans_cancel(tp); 3005 return error; 3006 } 3007 3008 /* 3009 * xfs_rename_alloc_whiteout() 3010 * 3011 * Return a referenced, unlinked, unlocked inode that can be used as a 3012 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 3013 * crash between allocating the inode and linking it into the rename transaction 3014 * recovery will free the inode and we won't leak it. 3015 */ 3016 static int 3017 xfs_rename_alloc_whiteout( 3018 struct user_namespace *mnt_userns, 3019 struct xfs_inode *dp, 3020 struct xfs_inode **wip) 3021 { 3022 struct xfs_inode *tmpfile; 3023 int error; 3024 3025 error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE, 3026 &tmpfile); 3027 if (error) 3028 return error; 3029 3030 /* 3031 * Prepare the tmpfile inode as if it were created through the VFS. 3032 * Complete the inode setup and flag it as linkable. nlink is already 3033 * zero, so we can skip the drop_nlink. 3034 */ 3035 xfs_setup_iops(tmpfile); 3036 xfs_finish_inode_setup(tmpfile); 3037 VFS_I(tmpfile)->i_state |= I_LINKABLE; 3038 3039 *wip = tmpfile; 3040 return 0; 3041 } 3042 3043 /* 3044 * xfs_rename 3045 */ 3046 int 3047 xfs_rename( 3048 struct user_namespace *mnt_userns, 3049 struct xfs_inode *src_dp, 3050 struct xfs_name *src_name, 3051 struct xfs_inode *src_ip, 3052 struct xfs_inode *target_dp, 3053 struct xfs_name *target_name, 3054 struct xfs_inode *target_ip, 3055 unsigned int flags) 3056 { 3057 struct xfs_mount *mp = src_dp->i_mount; 3058 struct xfs_trans *tp; 3059 struct xfs_inode *wip = NULL; /* whiteout inode */ 3060 struct xfs_inode *inodes[__XFS_SORT_INODES]; 3061 int i; 3062 int num_inodes = __XFS_SORT_INODES; 3063 bool new_parent = (src_dp != target_dp); 3064 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 3065 int spaceres; 3066 int error; 3067 3068 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 3069 3070 if ((flags & RENAME_EXCHANGE) && !target_ip) 3071 return -EINVAL; 3072 3073 /* 3074 * If we are doing a whiteout operation, allocate the whiteout inode 3075 * we will be placing at the target and ensure the type is set 3076 * appropriately. 3077 */ 3078 if (flags & RENAME_WHITEOUT) { 3079 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 3080 error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip); 3081 if (error) 3082 return error; 3083 3084 /* setup target dirent info as whiteout */ 3085 src_name->type = XFS_DIR3_FT_CHRDEV; 3086 } 3087 3088 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3089 inodes, &num_inodes); 3090 3091 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 3092 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3093 if (error == -ENOSPC) { 3094 spaceres = 0; 3095 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3096 &tp); 3097 } 3098 if (error) 3099 goto out_release_wip; 3100 3101 /* 3102 * Attach the dquots to the inodes 3103 */ 3104 error = xfs_qm_vop_rename_dqattach(inodes); 3105 if (error) 3106 goto out_trans_cancel; 3107 3108 /* 3109 * Lock all the participating inodes. Depending upon whether 3110 * the target_name exists in the target directory, and 3111 * whether the target directory is the same as the source 3112 * directory, we can lock from 2 to 4 inodes. 3113 */ 3114 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3115 3116 /* 3117 * Join all the inodes to the transaction. From this point on, 3118 * we can rely on either trans_commit or trans_cancel to unlock 3119 * them. 3120 */ 3121 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 3122 if (new_parent) 3123 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 3124 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3125 if (target_ip) 3126 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3127 if (wip) 3128 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3129 3130 /* 3131 * If we are using project inheritance, we only allow renames 3132 * into our tree when the project IDs are the same; else the 3133 * tree quota mechanism would be circumvented. 3134 */ 3135 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 3136 target_dp->i_projid != src_ip->i_projid)) { 3137 error = -EXDEV; 3138 goto out_trans_cancel; 3139 } 3140 3141 /* RENAME_EXCHANGE is unique from here on. */ 3142 if (flags & RENAME_EXCHANGE) 3143 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3144 target_dp, target_name, target_ip, 3145 spaceres); 3146 3147 /* 3148 * Check for expected errors before we dirty the transaction 3149 * so we can return an error without a transaction abort. 3150 * 3151 * Extent count overflow check: 3152 * 3153 * From the perspective of src_dp, a rename operation is essentially a 3154 * directory entry remove operation. Hence the only place where we check 3155 * for extent count overflow for src_dp is in 3156 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns 3157 * -ENOSPC when it detects a possible extent count overflow and in 3158 * response, the higher layers of directory handling code do the 3159 * following: 3160 * 1. Data/Free blocks: XFS lets these blocks linger until a 3161 * future remove operation removes them. 3162 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the 3163 * Leaf space and unmaps the last block. 3164 * 3165 * For target_dp, there are two cases depending on whether the 3166 * destination directory entry exists or not. 3167 * 3168 * When destination directory entry does not exist (i.e. target_ip == 3169 * NULL), extent count overflow check is performed only when transaction 3170 * has a non-zero sized space reservation associated with it. With a 3171 * zero-sized space reservation, XFS allows a rename operation to 3172 * continue only when the directory has sufficient free space in its 3173 * data/leaf/free space blocks to hold the new entry. 3174 * 3175 * When destination directory entry exists (i.e. target_ip != NULL), all 3176 * we need to do is change the inode number associated with the already 3177 * existing entry. Hence there is no need to perform an extent count 3178 * overflow check. 3179 */ 3180 if (target_ip == NULL) { 3181 /* 3182 * If there's no space reservation, check the entry will 3183 * fit before actually inserting it. 3184 */ 3185 if (!spaceres) { 3186 error = xfs_dir_canenter(tp, target_dp, target_name); 3187 if (error) 3188 goto out_trans_cancel; 3189 } else { 3190 error = xfs_iext_count_may_overflow(target_dp, 3191 XFS_DATA_FORK, 3192 XFS_IEXT_DIR_MANIP_CNT(mp)); 3193 if (error) 3194 goto out_trans_cancel; 3195 } 3196 } else { 3197 /* 3198 * If target exists and it's a directory, check that whether 3199 * it can be destroyed. 3200 */ 3201 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 3202 (!xfs_dir_isempty(target_ip) || 3203 (VFS_I(target_ip)->i_nlink > 2))) { 3204 error = -EEXIST; 3205 goto out_trans_cancel; 3206 } 3207 } 3208 3209 /* 3210 * Lock the AGI buffers we need to handle bumping the nlink of the 3211 * whiteout inode off the unlinked list and to handle dropping the 3212 * nlink of the target inode. Per locking order rules, do this in 3213 * increasing AG order and before directory block allocation tries to 3214 * grab AGFs because we grab AGIs before AGFs. 3215 * 3216 * The (vfs) caller must ensure that if src is a directory then 3217 * target_ip is either null or an empty directory. 3218 */ 3219 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 3220 if (inodes[i] == wip || 3221 (inodes[i] == target_ip && 3222 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 3223 struct xfs_buf *bp; 3224 xfs_agnumber_t agno; 3225 3226 agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino); 3227 error = xfs_read_agi(mp, tp, agno, &bp); 3228 if (error) 3229 goto out_trans_cancel; 3230 } 3231 } 3232 3233 /* 3234 * Directory entry creation below may acquire the AGF. Remove 3235 * the whiteout from the unlinked list first to preserve correct 3236 * AGI/AGF locking order. This dirties the transaction so failures 3237 * after this point will abort and log recovery will clean up the 3238 * mess. 3239 * 3240 * For whiteouts, we need to bump the link count on the whiteout 3241 * inode. After this point, we have a real link, clear the tmpfile 3242 * state flag from the inode so it doesn't accidentally get misused 3243 * in future. 3244 */ 3245 if (wip) { 3246 struct xfs_perag *pag; 3247 3248 ASSERT(VFS_I(wip)->i_nlink == 0); 3249 3250 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino)); 3251 error = xfs_iunlink_remove(tp, pag, wip); 3252 xfs_perag_put(pag); 3253 if (error) 3254 goto out_trans_cancel; 3255 3256 xfs_bumplink(tp, wip); 3257 VFS_I(wip)->i_state &= ~I_LINKABLE; 3258 } 3259 3260 /* 3261 * Set up the target. 3262 */ 3263 if (target_ip == NULL) { 3264 /* 3265 * If target does not exist and the rename crosses 3266 * directories, adjust the target directory link count 3267 * to account for the ".." reference from the new entry. 3268 */ 3269 error = xfs_dir_createname(tp, target_dp, target_name, 3270 src_ip->i_ino, spaceres); 3271 if (error) 3272 goto out_trans_cancel; 3273 3274 xfs_trans_ichgtime(tp, target_dp, 3275 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3276 3277 if (new_parent && src_is_directory) { 3278 xfs_bumplink(tp, target_dp); 3279 } 3280 } else { /* target_ip != NULL */ 3281 /* 3282 * Link the source inode under the target name. 3283 * If the source inode is a directory and we are moving 3284 * it across directories, its ".." entry will be 3285 * inconsistent until we replace that down below. 3286 * 3287 * In case there is already an entry with the same 3288 * name at the destination directory, remove it first. 3289 */ 3290 error = xfs_dir_replace(tp, target_dp, target_name, 3291 src_ip->i_ino, spaceres); 3292 if (error) 3293 goto out_trans_cancel; 3294 3295 xfs_trans_ichgtime(tp, target_dp, 3296 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3297 3298 /* 3299 * Decrement the link count on the target since the target 3300 * dir no longer points to it. 3301 */ 3302 error = xfs_droplink(tp, target_ip); 3303 if (error) 3304 goto out_trans_cancel; 3305 3306 if (src_is_directory) { 3307 /* 3308 * Drop the link from the old "." entry. 3309 */ 3310 error = xfs_droplink(tp, target_ip); 3311 if (error) 3312 goto out_trans_cancel; 3313 } 3314 } /* target_ip != NULL */ 3315 3316 /* 3317 * Remove the source. 3318 */ 3319 if (new_parent && src_is_directory) { 3320 /* 3321 * Rewrite the ".." entry to point to the new 3322 * directory. 3323 */ 3324 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3325 target_dp->i_ino, spaceres); 3326 ASSERT(error != -EEXIST); 3327 if (error) 3328 goto out_trans_cancel; 3329 } 3330 3331 /* 3332 * We always want to hit the ctime on the source inode. 3333 * 3334 * This isn't strictly required by the standards since the source 3335 * inode isn't really being changed, but old unix file systems did 3336 * it and some incremental backup programs won't work without it. 3337 */ 3338 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3339 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3340 3341 /* 3342 * Adjust the link count on src_dp. This is necessary when 3343 * renaming a directory, either within one parent when 3344 * the target existed, or across two parent directories. 3345 */ 3346 if (src_is_directory && (new_parent || target_ip != NULL)) { 3347 3348 /* 3349 * Decrement link count on src_directory since the 3350 * entry that's moved no longer points to it. 3351 */ 3352 error = xfs_droplink(tp, src_dp); 3353 if (error) 3354 goto out_trans_cancel; 3355 } 3356 3357 /* 3358 * For whiteouts, we only need to update the source dirent with the 3359 * inode number of the whiteout inode rather than removing it 3360 * altogether. 3361 */ 3362 if (wip) { 3363 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3364 spaceres); 3365 } else { 3366 /* 3367 * NOTE: We don't need to check for extent count overflow here 3368 * because the dir remove name code will leave the dir block in 3369 * place if the extent count would overflow. 3370 */ 3371 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3372 spaceres); 3373 } 3374 3375 if (error) 3376 goto out_trans_cancel; 3377 3378 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3379 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3380 if (new_parent) 3381 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3382 3383 error = xfs_finish_rename(tp); 3384 if (wip) 3385 xfs_irele(wip); 3386 return error; 3387 3388 out_trans_cancel: 3389 xfs_trans_cancel(tp); 3390 out_release_wip: 3391 if (wip) 3392 xfs_irele(wip); 3393 return error; 3394 } 3395 3396 static int 3397 xfs_iflush( 3398 struct xfs_inode *ip, 3399 struct xfs_buf *bp) 3400 { 3401 struct xfs_inode_log_item *iip = ip->i_itemp; 3402 struct xfs_dinode *dip; 3403 struct xfs_mount *mp = ip->i_mount; 3404 int error; 3405 3406 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3407 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 3408 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3409 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3410 ASSERT(iip->ili_item.li_buf == bp); 3411 3412 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3413 3414 /* 3415 * We don't flush the inode if any of the following checks fail, but we 3416 * do still update the log item and attach to the backing buffer as if 3417 * the flush happened. This is a formality to facilitate predictable 3418 * error handling as the caller will shutdown and fail the buffer. 3419 */ 3420 error = -EFSCORRUPTED; 3421 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3422 mp, XFS_ERRTAG_IFLUSH_1)) { 3423 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3424 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3425 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3426 goto flush_out; 3427 } 3428 if (S_ISREG(VFS_I(ip)->i_mode)) { 3429 if (XFS_TEST_ERROR( 3430 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3431 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3432 mp, XFS_ERRTAG_IFLUSH_3)) { 3433 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3434 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3435 __func__, ip->i_ino, ip); 3436 goto flush_out; 3437 } 3438 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3439 if (XFS_TEST_ERROR( 3440 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3441 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3442 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3443 mp, XFS_ERRTAG_IFLUSH_4)) { 3444 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3445 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3446 __func__, ip->i_ino, ip); 3447 goto flush_out; 3448 } 3449 } 3450 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) > 3451 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3452 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3453 "%s: detected corrupt incore inode %Lu, " 3454 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, 3455 __func__, ip->i_ino, 3456 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp), 3457 ip->i_nblocks, ip); 3458 goto flush_out; 3459 } 3460 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, 3461 mp, XFS_ERRTAG_IFLUSH_6)) { 3462 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3463 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3464 __func__, ip->i_ino, ip->i_forkoff, ip); 3465 goto flush_out; 3466 } 3467 3468 /* 3469 * Inode item log recovery for v2 inodes are dependent on the flushiter 3470 * count for correct sequencing. We bump the flush iteration count so 3471 * we can detect flushes which postdate a log record during recovery. 3472 * This is redundant as we now log every change and hence this can't 3473 * happen but we need to still do it to ensure backwards compatibility 3474 * with old kernels that predate logging all inode changes. 3475 */ 3476 if (!xfs_sb_version_has_v3inode(&mp->m_sb)) 3477 ip->i_flushiter++; 3478 3479 /* 3480 * If there are inline format data / attr forks attached to this inode, 3481 * make sure they are not corrupt. 3482 */ 3483 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3484 xfs_ifork_verify_local_data(ip)) 3485 goto flush_out; 3486 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL && 3487 xfs_ifork_verify_local_attr(ip)) 3488 goto flush_out; 3489 3490 /* 3491 * Copy the dirty parts of the inode into the on-disk inode. We always 3492 * copy out the core of the inode, because if the inode is dirty at all 3493 * the core must be. 3494 */ 3495 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3496 3497 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3498 if (!xfs_sb_version_has_v3inode(&mp->m_sb)) { 3499 if (ip->i_flushiter == DI_MAX_FLUSH) 3500 ip->i_flushiter = 0; 3501 } 3502 3503 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3504 if (XFS_IFORK_Q(ip)) 3505 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3506 3507 /* 3508 * We've recorded everything logged in the inode, so we'd like to clear 3509 * the ili_fields bits so we don't log and flush things unnecessarily. 3510 * However, we can't stop logging all this information until the data 3511 * we've copied into the disk buffer is written to disk. If we did we 3512 * might overwrite the copy of the inode in the log with all the data 3513 * after re-logging only part of it, and in the face of a crash we 3514 * wouldn't have all the data we need to recover. 3515 * 3516 * What we do is move the bits to the ili_last_fields field. When 3517 * logging the inode, these bits are moved back to the ili_fields field. 3518 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 3519 * we know that the information those bits represent is permanently on 3520 * disk. As long as the flush completes before the inode is logged 3521 * again, then both ili_fields and ili_last_fields will be cleared. 3522 */ 3523 error = 0; 3524 flush_out: 3525 spin_lock(&iip->ili_lock); 3526 iip->ili_last_fields = iip->ili_fields; 3527 iip->ili_fields = 0; 3528 iip->ili_fsync_fields = 0; 3529 spin_unlock(&iip->ili_lock); 3530 3531 /* 3532 * Store the current LSN of the inode so that we can tell whether the 3533 * item has moved in the AIL from xfs_buf_inode_iodone(). 3534 */ 3535 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3536 &iip->ili_item.li_lsn); 3537 3538 /* generate the checksum. */ 3539 xfs_dinode_calc_crc(mp, dip); 3540 return error; 3541 } 3542 3543 /* 3544 * Non-blocking flush of dirty inode metadata into the backing buffer. 3545 * 3546 * The caller must have a reference to the inode and hold the cluster buffer 3547 * locked. The function will walk across all the inodes on the cluster buffer it 3548 * can find and lock without blocking, and flush them to the cluster buffer. 3549 * 3550 * On successful flushing of at least one inode, the caller must write out the 3551 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 3552 * the caller needs to release the buffer. On failure, the filesystem will be 3553 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 3554 * will be returned. 3555 */ 3556 int 3557 xfs_iflush_cluster( 3558 struct xfs_buf *bp) 3559 { 3560 struct xfs_mount *mp = bp->b_mount; 3561 struct xfs_log_item *lip, *n; 3562 struct xfs_inode *ip; 3563 struct xfs_inode_log_item *iip; 3564 int clcount = 0; 3565 int error = 0; 3566 3567 /* 3568 * We must use the safe variant here as on shutdown xfs_iflush_abort() 3569 * can remove itself from the list. 3570 */ 3571 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 3572 iip = (struct xfs_inode_log_item *)lip; 3573 ip = iip->ili_inode; 3574 3575 /* 3576 * Quick and dirty check to avoid locks if possible. 3577 */ 3578 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 3579 continue; 3580 if (xfs_ipincount(ip)) 3581 continue; 3582 3583 /* 3584 * The inode is still attached to the buffer, which means it is 3585 * dirty but reclaim might try to grab it. Check carefully for 3586 * that, and grab the ilock while still holding the i_flags_lock 3587 * to guarantee reclaim will not be able to reclaim this inode 3588 * once we drop the i_flags_lock. 3589 */ 3590 spin_lock(&ip->i_flags_lock); 3591 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 3592 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 3593 spin_unlock(&ip->i_flags_lock); 3594 continue; 3595 } 3596 3597 /* 3598 * ILOCK will pin the inode against reclaim and prevent 3599 * concurrent transactions modifying the inode while we are 3600 * flushing the inode. If we get the lock, set the flushing 3601 * state before we drop the i_flags_lock. 3602 */ 3603 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 3604 spin_unlock(&ip->i_flags_lock); 3605 continue; 3606 } 3607 __xfs_iflags_set(ip, XFS_IFLUSHING); 3608 spin_unlock(&ip->i_flags_lock); 3609 3610 /* 3611 * Abort flushing this inode if we are shut down because the 3612 * inode may not currently be in the AIL. This can occur when 3613 * log I/O failure unpins the inode without inserting into the 3614 * AIL, leaving a dirty/unpinned inode attached to the buffer 3615 * that otherwise looks like it should be flushed. 3616 */ 3617 if (XFS_FORCED_SHUTDOWN(mp)) { 3618 xfs_iunpin_wait(ip); 3619 xfs_iflush_abort(ip); 3620 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3621 error = -EIO; 3622 continue; 3623 } 3624 3625 /* don't block waiting on a log force to unpin dirty inodes */ 3626 if (xfs_ipincount(ip)) { 3627 xfs_iflags_clear(ip, XFS_IFLUSHING); 3628 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3629 continue; 3630 } 3631 3632 if (!xfs_inode_clean(ip)) 3633 error = xfs_iflush(ip, bp); 3634 else 3635 xfs_iflags_clear(ip, XFS_IFLUSHING); 3636 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3637 if (error) 3638 break; 3639 clcount++; 3640 } 3641 3642 if (error) { 3643 bp->b_flags |= XBF_ASYNC; 3644 xfs_buf_ioend_fail(bp); 3645 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3646 return error; 3647 } 3648 3649 if (!clcount) 3650 return -EAGAIN; 3651 3652 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3653 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3654 return 0; 3655 3656 } 3657 3658 /* Release an inode. */ 3659 void 3660 xfs_irele( 3661 struct xfs_inode *ip) 3662 { 3663 trace_xfs_irele(ip, _RET_IP_); 3664 iput(VFS_I(ip)); 3665 } 3666 3667 /* 3668 * Ensure all commited transactions touching the inode are written to the log. 3669 */ 3670 int 3671 xfs_log_force_inode( 3672 struct xfs_inode *ip) 3673 { 3674 xfs_csn_t seq = 0; 3675 3676 xfs_ilock(ip, XFS_ILOCK_SHARED); 3677 if (xfs_ipincount(ip)) 3678 seq = ip->i_itemp->ili_commit_seq; 3679 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3680 3681 if (!seq) 3682 return 0; 3683 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); 3684 } 3685 3686 /* 3687 * Grab the exclusive iolock for a data copy from src to dest, making sure to 3688 * abide vfs locking order (lowest pointer value goes first) and breaking the 3689 * layout leases before proceeding. The loop is needed because we cannot call 3690 * the blocking break_layout() with the iolocks held, and therefore have to 3691 * back out both locks. 3692 */ 3693 static int 3694 xfs_iolock_two_inodes_and_break_layout( 3695 struct inode *src, 3696 struct inode *dest) 3697 { 3698 int error; 3699 3700 if (src > dest) 3701 swap(src, dest); 3702 3703 retry: 3704 /* Wait to break both inodes' layouts before we start locking. */ 3705 error = break_layout(src, true); 3706 if (error) 3707 return error; 3708 if (src != dest) { 3709 error = break_layout(dest, true); 3710 if (error) 3711 return error; 3712 } 3713 3714 /* Lock one inode and make sure nobody got in and leased it. */ 3715 inode_lock(src); 3716 error = break_layout(src, false); 3717 if (error) { 3718 inode_unlock(src); 3719 if (error == -EWOULDBLOCK) 3720 goto retry; 3721 return error; 3722 } 3723 3724 if (src == dest) 3725 return 0; 3726 3727 /* Lock the other inode and make sure nobody got in and leased it. */ 3728 inode_lock_nested(dest, I_MUTEX_NONDIR2); 3729 error = break_layout(dest, false); 3730 if (error) { 3731 inode_unlock(src); 3732 inode_unlock(dest); 3733 if (error == -EWOULDBLOCK) 3734 goto retry; 3735 return error; 3736 } 3737 3738 return 0; 3739 } 3740 3741 /* 3742 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 3743 * mmap activity. 3744 */ 3745 int 3746 xfs_ilock2_io_mmap( 3747 struct xfs_inode *ip1, 3748 struct xfs_inode *ip2) 3749 { 3750 int ret; 3751 3752 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 3753 if (ret) 3754 return ret; 3755 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, 3756 VFS_I(ip2)->i_mapping); 3757 return 0; 3758 } 3759 3760 /* Unlock both inodes to allow IO and mmap activity. */ 3761 void 3762 xfs_iunlock2_io_mmap( 3763 struct xfs_inode *ip1, 3764 struct xfs_inode *ip2) 3765 { 3766 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, 3767 VFS_I(ip2)->i_mapping); 3768 inode_unlock(VFS_I(ip2)); 3769 if (ip1 != ip2) 3770 inode_unlock(VFS_I(ip1)); 3771 } 3772