xref: /linux/fs/xfs/xfs_inode.c (revision 17b121ad0c43342bc894632f6710b894849ca372)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans_space.h"
20 #include "xfs_trans.h"
21 #include "xfs_buf_item.h"
22 #include "xfs_inode_item.h"
23 #include "xfs_ialloc.h"
24 #include "xfs_bmap.h"
25 #include "xfs_bmap_util.h"
26 #include "xfs_errortag.h"
27 #include "xfs_error.h"
28 #include "xfs_quota.h"
29 #include "xfs_filestream.h"
30 #include "xfs_trace.h"
31 #include "xfs_icache.h"
32 #include "xfs_symlink.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_log.h"
35 #include "xfs_bmap_btree.h"
36 #include "xfs_reflink.h"
37 #include "xfs_ag.h"
38 
39 kmem_zone_t *xfs_inode_zone;
40 
41 /*
42  * Used in xfs_itruncate_extents().  This is the maximum number of extents
43  * freed from a file in a single transaction.
44  */
45 #define	XFS_ITRUNC_MAX_EXTENTS	2
46 
47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
48 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
49 	struct xfs_inode *);
50 
51 /*
52  * helper function to extract extent size hint from inode
53  */
54 xfs_extlen_t
55 xfs_get_extsz_hint(
56 	struct xfs_inode	*ip)
57 {
58 	/*
59 	 * No point in aligning allocations if we need to COW to actually
60 	 * write to them.
61 	 */
62 	if (xfs_is_always_cow_inode(ip))
63 		return 0;
64 	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
65 		return ip->i_extsize;
66 	if (XFS_IS_REALTIME_INODE(ip))
67 		return ip->i_mount->m_sb.sb_rextsize;
68 	return 0;
69 }
70 
71 /*
72  * Helper function to extract CoW extent size hint from inode.
73  * Between the extent size hint and the CoW extent size hint, we
74  * return the greater of the two.  If the value is zero (automatic),
75  * use the default size.
76  */
77 xfs_extlen_t
78 xfs_get_cowextsz_hint(
79 	struct xfs_inode	*ip)
80 {
81 	xfs_extlen_t		a, b;
82 
83 	a = 0;
84 	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
85 		a = ip->i_cowextsize;
86 	b = xfs_get_extsz_hint(ip);
87 
88 	a = max(a, b);
89 	if (a == 0)
90 		return XFS_DEFAULT_COWEXTSZ_HINT;
91 	return a;
92 }
93 
94 /*
95  * These two are wrapper routines around the xfs_ilock() routine used to
96  * centralize some grungy code.  They are used in places that wish to lock the
97  * inode solely for reading the extents.  The reason these places can't just
98  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99  * bringing in of the extents from disk for a file in b-tree format.  If the
100  * inode is in b-tree format, then we need to lock the inode exclusively until
101  * the extents are read in.  Locking it exclusively all the time would limit
102  * our parallelism unnecessarily, though.  What we do instead is check to see
103  * if the extents have been read in yet, and only lock the inode exclusively
104  * if they have not.
105  *
106  * The functions return a value which should be given to the corresponding
107  * xfs_iunlock() call.
108  */
109 uint
110 xfs_ilock_data_map_shared(
111 	struct xfs_inode	*ip)
112 {
113 	uint			lock_mode = XFS_ILOCK_SHARED;
114 
115 	if (xfs_need_iread_extents(&ip->i_df))
116 		lock_mode = XFS_ILOCK_EXCL;
117 	xfs_ilock(ip, lock_mode);
118 	return lock_mode;
119 }
120 
121 uint
122 xfs_ilock_attr_map_shared(
123 	struct xfs_inode	*ip)
124 {
125 	uint			lock_mode = XFS_ILOCK_SHARED;
126 
127 	if (ip->i_afp && xfs_need_iread_extents(ip->i_afp))
128 		lock_mode = XFS_ILOCK_EXCL;
129 	xfs_ilock(ip, lock_mode);
130 	return lock_mode;
131 }
132 
133 /*
134  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
135  * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
136  * various combinations of the locks to be obtained.
137  *
138  * The 3 locks should always be ordered so that the IO lock is obtained first,
139  * the mmap lock second and the ilock last in order to prevent deadlock.
140  *
141  * Basic locking order:
142  *
143  * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
144  *
145  * mmap_lock locking order:
146  *
147  * i_rwsem -> page lock -> mmap_lock
148  * mmap_lock -> invalidate_lock -> page_lock
149  *
150  * The difference in mmap_lock locking order mean that we cannot hold the
151  * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
152  * can fault in pages during copy in/out (for buffered IO) or require the
153  * mmap_lock in get_user_pages() to map the user pages into the kernel address
154  * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
155  * fault because page faults already hold the mmap_lock.
156  *
157  * Hence to serialise fully against both syscall and mmap based IO, we need to
158  * take both the i_rwsem and the invalidate_lock. These locks should *only* be
159  * both taken in places where we need to invalidate the page cache in a race
160  * free manner (e.g. truncate, hole punch and other extent manipulation
161  * functions).
162  */
163 void
164 xfs_ilock(
165 	xfs_inode_t		*ip,
166 	uint			lock_flags)
167 {
168 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
169 
170 	/*
171 	 * You can't set both SHARED and EXCL for the same lock,
172 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
173 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
174 	 */
175 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
176 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
177 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
178 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
179 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
180 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
181 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
182 
183 	if (lock_flags & XFS_IOLOCK_EXCL) {
184 		down_write_nested(&VFS_I(ip)->i_rwsem,
185 				  XFS_IOLOCK_DEP(lock_flags));
186 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
187 		down_read_nested(&VFS_I(ip)->i_rwsem,
188 				 XFS_IOLOCK_DEP(lock_flags));
189 	}
190 
191 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
192 		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
193 				  XFS_MMAPLOCK_DEP(lock_flags));
194 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
195 		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
196 				 XFS_MMAPLOCK_DEP(lock_flags));
197 	}
198 
199 	if (lock_flags & XFS_ILOCK_EXCL)
200 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
201 	else if (lock_flags & XFS_ILOCK_SHARED)
202 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
203 }
204 
205 /*
206  * This is just like xfs_ilock(), except that the caller
207  * is guaranteed not to sleep.  It returns 1 if it gets
208  * the requested locks and 0 otherwise.  If the IO lock is
209  * obtained but the inode lock cannot be, then the IO lock
210  * is dropped before returning.
211  *
212  * ip -- the inode being locked
213  * lock_flags -- this parameter indicates the inode's locks to be
214  *       to be locked.  See the comment for xfs_ilock() for a list
215  *	 of valid values.
216  */
217 int
218 xfs_ilock_nowait(
219 	xfs_inode_t		*ip,
220 	uint			lock_flags)
221 {
222 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
223 
224 	/*
225 	 * You can't set both SHARED and EXCL for the same lock,
226 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
227 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
228 	 */
229 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
230 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
231 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
232 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
233 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
234 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
235 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
236 
237 	if (lock_flags & XFS_IOLOCK_EXCL) {
238 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
239 			goto out;
240 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
241 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
242 			goto out;
243 	}
244 
245 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
246 		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
247 			goto out_undo_iolock;
248 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
249 		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
250 			goto out_undo_iolock;
251 	}
252 
253 	if (lock_flags & XFS_ILOCK_EXCL) {
254 		if (!mrtryupdate(&ip->i_lock))
255 			goto out_undo_mmaplock;
256 	} else if (lock_flags & XFS_ILOCK_SHARED) {
257 		if (!mrtryaccess(&ip->i_lock))
258 			goto out_undo_mmaplock;
259 	}
260 	return 1;
261 
262 out_undo_mmaplock:
263 	if (lock_flags & XFS_MMAPLOCK_EXCL)
264 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
265 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
266 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
267 out_undo_iolock:
268 	if (lock_flags & XFS_IOLOCK_EXCL)
269 		up_write(&VFS_I(ip)->i_rwsem);
270 	else if (lock_flags & XFS_IOLOCK_SHARED)
271 		up_read(&VFS_I(ip)->i_rwsem);
272 out:
273 	return 0;
274 }
275 
276 /*
277  * xfs_iunlock() is used to drop the inode locks acquired with
278  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
279  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
280  * that we know which locks to drop.
281  *
282  * ip -- the inode being unlocked
283  * lock_flags -- this parameter indicates the inode's locks to be
284  *       to be unlocked.  See the comment for xfs_ilock() for a list
285  *	 of valid values for this parameter.
286  *
287  */
288 void
289 xfs_iunlock(
290 	xfs_inode_t		*ip,
291 	uint			lock_flags)
292 {
293 	/*
294 	 * You can't set both SHARED and EXCL for the same lock,
295 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
296 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
297 	 */
298 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
299 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
300 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
301 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
302 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
303 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
304 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
305 	ASSERT(lock_flags != 0);
306 
307 	if (lock_flags & XFS_IOLOCK_EXCL)
308 		up_write(&VFS_I(ip)->i_rwsem);
309 	else if (lock_flags & XFS_IOLOCK_SHARED)
310 		up_read(&VFS_I(ip)->i_rwsem);
311 
312 	if (lock_flags & XFS_MMAPLOCK_EXCL)
313 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
314 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
315 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
316 
317 	if (lock_flags & XFS_ILOCK_EXCL)
318 		mrunlock_excl(&ip->i_lock);
319 	else if (lock_flags & XFS_ILOCK_SHARED)
320 		mrunlock_shared(&ip->i_lock);
321 
322 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
323 }
324 
325 /*
326  * give up write locks.  the i/o lock cannot be held nested
327  * if it is being demoted.
328  */
329 void
330 xfs_ilock_demote(
331 	xfs_inode_t		*ip,
332 	uint			lock_flags)
333 {
334 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
335 	ASSERT((lock_flags &
336 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
337 
338 	if (lock_flags & XFS_ILOCK_EXCL)
339 		mrdemote(&ip->i_lock);
340 	if (lock_flags & XFS_MMAPLOCK_EXCL)
341 		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
342 	if (lock_flags & XFS_IOLOCK_EXCL)
343 		downgrade_write(&VFS_I(ip)->i_rwsem);
344 
345 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
346 }
347 
348 #if defined(DEBUG) || defined(XFS_WARN)
349 static inline bool
350 __xfs_rwsem_islocked(
351 	struct rw_semaphore	*rwsem,
352 	bool			shared)
353 {
354 	if (!debug_locks)
355 		return rwsem_is_locked(rwsem);
356 
357 	if (!shared)
358 		return lockdep_is_held_type(rwsem, 0);
359 
360 	/*
361 	 * We are checking that the lock is held at least in shared
362 	 * mode but don't care that it might be held exclusively
363 	 * (i.e. shared | excl). Hence we check if the lock is held
364 	 * in any mode rather than an explicit shared mode.
365 	 */
366 	return lockdep_is_held_type(rwsem, -1);
367 }
368 
369 bool
370 xfs_isilocked(
371 	struct xfs_inode	*ip,
372 	uint			lock_flags)
373 {
374 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
375 		if (!(lock_flags & XFS_ILOCK_SHARED))
376 			return !!ip->i_lock.mr_writer;
377 		return rwsem_is_locked(&ip->i_lock.mr_lock);
378 	}
379 
380 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
381 		return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
382 				(lock_flags & XFS_IOLOCK_SHARED));
383 	}
384 
385 	if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
386 		return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
387 				(lock_flags & XFS_IOLOCK_SHARED));
388 	}
389 
390 	ASSERT(0);
391 	return false;
392 }
393 #endif
394 
395 /*
396  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
397  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
398  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
399  * errors and warnings.
400  */
401 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
402 static bool
403 xfs_lockdep_subclass_ok(
404 	int subclass)
405 {
406 	return subclass < MAX_LOCKDEP_SUBCLASSES;
407 }
408 #else
409 #define xfs_lockdep_subclass_ok(subclass)	(true)
410 #endif
411 
412 /*
413  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
414  * value. This can be called for any type of inode lock combination, including
415  * parent locking. Care must be taken to ensure we don't overrun the subclass
416  * storage fields in the class mask we build.
417  */
418 static inline int
419 xfs_lock_inumorder(int lock_mode, int subclass)
420 {
421 	int	class = 0;
422 
423 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
424 			      XFS_ILOCK_RTSUM)));
425 	ASSERT(xfs_lockdep_subclass_ok(subclass));
426 
427 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
428 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
429 		class += subclass << XFS_IOLOCK_SHIFT;
430 	}
431 
432 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
433 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
434 		class += subclass << XFS_MMAPLOCK_SHIFT;
435 	}
436 
437 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
438 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
439 		class += subclass << XFS_ILOCK_SHIFT;
440 	}
441 
442 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
443 }
444 
445 /*
446  * The following routine will lock n inodes in exclusive mode.  We assume the
447  * caller calls us with the inodes in i_ino order.
448  *
449  * We need to detect deadlock where an inode that we lock is in the AIL and we
450  * start waiting for another inode that is locked by a thread in a long running
451  * transaction (such as truncate). This can result in deadlock since the long
452  * running trans might need to wait for the inode we just locked in order to
453  * push the tail and free space in the log.
454  *
455  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
456  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
457  * lock more than one at a time, lockdep will report false positives saying we
458  * have violated locking orders.
459  */
460 static void
461 xfs_lock_inodes(
462 	struct xfs_inode	**ips,
463 	int			inodes,
464 	uint			lock_mode)
465 {
466 	int			attempts = 0, i, j, try_lock;
467 	struct xfs_log_item	*lp;
468 
469 	/*
470 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
471 	 * support an arbitrary depth of locking here, but absolute limits on
472 	 * inodes depend on the type of locking and the limits placed by
473 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
474 	 * the asserts.
475 	 */
476 	ASSERT(ips && inodes >= 2 && inodes <= 5);
477 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
478 			    XFS_ILOCK_EXCL));
479 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
480 			      XFS_ILOCK_SHARED)));
481 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
482 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
483 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
484 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
485 
486 	if (lock_mode & XFS_IOLOCK_EXCL) {
487 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
488 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
489 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
490 
491 	try_lock = 0;
492 	i = 0;
493 again:
494 	for (; i < inodes; i++) {
495 		ASSERT(ips[i]);
496 
497 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
498 			continue;
499 
500 		/*
501 		 * If try_lock is not set yet, make sure all locked inodes are
502 		 * not in the AIL.  If any are, set try_lock to be used later.
503 		 */
504 		if (!try_lock) {
505 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
506 				lp = &ips[j]->i_itemp->ili_item;
507 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
508 					try_lock++;
509 			}
510 		}
511 
512 		/*
513 		 * If any of the previous locks we have locked is in the AIL,
514 		 * we must TRY to get the second and subsequent locks. If
515 		 * we can't get any, we must release all we have
516 		 * and try again.
517 		 */
518 		if (!try_lock) {
519 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
520 			continue;
521 		}
522 
523 		/* try_lock means we have an inode locked that is in the AIL. */
524 		ASSERT(i != 0);
525 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
526 			continue;
527 
528 		/*
529 		 * Unlock all previous guys and try again.  xfs_iunlock will try
530 		 * to push the tail if the inode is in the AIL.
531 		 */
532 		attempts++;
533 		for (j = i - 1; j >= 0; j--) {
534 			/*
535 			 * Check to see if we've already unlocked this one.  Not
536 			 * the first one going back, and the inode ptr is the
537 			 * same.
538 			 */
539 			if (j != (i - 1) && ips[j] == ips[j + 1])
540 				continue;
541 
542 			xfs_iunlock(ips[j], lock_mode);
543 		}
544 
545 		if ((attempts % 5) == 0) {
546 			delay(1); /* Don't just spin the CPU */
547 		}
548 		i = 0;
549 		try_lock = 0;
550 		goto again;
551 	}
552 }
553 
554 /*
555  * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
556  * mmaplock must be double-locked separately since we use i_rwsem and
557  * invalidate_lock for that. We now support taking one lock EXCL and the
558  * other SHARED.
559  */
560 void
561 xfs_lock_two_inodes(
562 	struct xfs_inode	*ip0,
563 	uint			ip0_mode,
564 	struct xfs_inode	*ip1,
565 	uint			ip1_mode)
566 {
567 	struct xfs_inode	*temp;
568 	uint			mode_temp;
569 	int			attempts = 0;
570 	struct xfs_log_item	*lp;
571 
572 	ASSERT(hweight32(ip0_mode) == 1);
573 	ASSERT(hweight32(ip1_mode) == 1);
574 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
575 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
576 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
577 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
578 	ASSERT(ip0->i_ino != ip1->i_ino);
579 
580 	if (ip0->i_ino > ip1->i_ino) {
581 		temp = ip0;
582 		ip0 = ip1;
583 		ip1 = temp;
584 		mode_temp = ip0_mode;
585 		ip0_mode = ip1_mode;
586 		ip1_mode = mode_temp;
587 	}
588 
589  again:
590 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
591 
592 	/*
593 	 * If the first lock we have locked is in the AIL, we must TRY to get
594 	 * the second lock. If we can't get it, we must release the first one
595 	 * and try again.
596 	 */
597 	lp = &ip0->i_itemp->ili_item;
598 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
599 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
600 			xfs_iunlock(ip0, ip0_mode);
601 			if ((++attempts % 5) == 0)
602 				delay(1); /* Don't just spin the CPU */
603 			goto again;
604 		}
605 	} else {
606 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
607 	}
608 }
609 
610 uint
611 xfs_ip2xflags(
612 	struct xfs_inode	*ip)
613 {
614 	uint			flags = 0;
615 
616 	if (ip->i_diflags & XFS_DIFLAG_ANY) {
617 		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
618 			flags |= FS_XFLAG_REALTIME;
619 		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
620 			flags |= FS_XFLAG_PREALLOC;
621 		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
622 			flags |= FS_XFLAG_IMMUTABLE;
623 		if (ip->i_diflags & XFS_DIFLAG_APPEND)
624 			flags |= FS_XFLAG_APPEND;
625 		if (ip->i_diflags & XFS_DIFLAG_SYNC)
626 			flags |= FS_XFLAG_SYNC;
627 		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
628 			flags |= FS_XFLAG_NOATIME;
629 		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
630 			flags |= FS_XFLAG_NODUMP;
631 		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
632 			flags |= FS_XFLAG_RTINHERIT;
633 		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
634 			flags |= FS_XFLAG_PROJINHERIT;
635 		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
636 			flags |= FS_XFLAG_NOSYMLINKS;
637 		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
638 			flags |= FS_XFLAG_EXTSIZE;
639 		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
640 			flags |= FS_XFLAG_EXTSZINHERIT;
641 		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
642 			flags |= FS_XFLAG_NODEFRAG;
643 		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
644 			flags |= FS_XFLAG_FILESTREAM;
645 	}
646 
647 	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
648 		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
649 			flags |= FS_XFLAG_DAX;
650 		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
651 			flags |= FS_XFLAG_COWEXTSIZE;
652 	}
653 
654 	if (XFS_IFORK_Q(ip))
655 		flags |= FS_XFLAG_HASATTR;
656 	return flags;
657 }
658 
659 /*
660  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
661  * is allowed, otherwise it has to be an exact match. If a CI match is found,
662  * ci_name->name will point to a the actual name (caller must free) or
663  * will be set to NULL if an exact match is found.
664  */
665 int
666 xfs_lookup(
667 	xfs_inode_t		*dp,
668 	struct xfs_name		*name,
669 	xfs_inode_t		**ipp,
670 	struct xfs_name		*ci_name)
671 {
672 	xfs_ino_t		inum;
673 	int			error;
674 
675 	trace_xfs_lookup(dp, name);
676 
677 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
678 		return -EIO;
679 
680 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
681 	if (error)
682 		goto out_unlock;
683 
684 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
685 	if (error)
686 		goto out_free_name;
687 
688 	return 0;
689 
690 out_free_name:
691 	if (ci_name)
692 		kmem_free(ci_name->name);
693 out_unlock:
694 	*ipp = NULL;
695 	return error;
696 }
697 
698 /* Propagate di_flags from a parent inode to a child inode. */
699 static void
700 xfs_inode_inherit_flags(
701 	struct xfs_inode	*ip,
702 	const struct xfs_inode	*pip)
703 {
704 	unsigned int		di_flags = 0;
705 	xfs_failaddr_t		failaddr;
706 	umode_t			mode = VFS_I(ip)->i_mode;
707 
708 	if (S_ISDIR(mode)) {
709 		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
710 			di_flags |= XFS_DIFLAG_RTINHERIT;
711 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
712 			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
713 			ip->i_extsize = pip->i_extsize;
714 		}
715 		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
716 			di_flags |= XFS_DIFLAG_PROJINHERIT;
717 	} else if (S_ISREG(mode)) {
718 		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
719 		    xfs_sb_version_hasrealtime(&ip->i_mount->m_sb))
720 			di_flags |= XFS_DIFLAG_REALTIME;
721 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
722 			di_flags |= XFS_DIFLAG_EXTSIZE;
723 			ip->i_extsize = pip->i_extsize;
724 		}
725 	}
726 	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
727 	    xfs_inherit_noatime)
728 		di_flags |= XFS_DIFLAG_NOATIME;
729 	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
730 	    xfs_inherit_nodump)
731 		di_flags |= XFS_DIFLAG_NODUMP;
732 	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
733 	    xfs_inherit_sync)
734 		di_flags |= XFS_DIFLAG_SYNC;
735 	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
736 	    xfs_inherit_nosymlinks)
737 		di_flags |= XFS_DIFLAG_NOSYMLINKS;
738 	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
739 	    xfs_inherit_nodefrag)
740 		di_flags |= XFS_DIFLAG_NODEFRAG;
741 	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
742 		di_flags |= XFS_DIFLAG_FILESTREAM;
743 
744 	ip->i_diflags |= di_flags;
745 
746 	/*
747 	 * Inode verifiers on older kernels only check that the extent size
748 	 * hint is an integer multiple of the rt extent size on realtime files.
749 	 * They did not check the hint alignment on a directory with both
750 	 * rtinherit and extszinherit flags set.  If the misaligned hint is
751 	 * propagated from a directory into a new realtime file, new file
752 	 * allocations will fail due to math errors in the rt allocator and/or
753 	 * trip the verifiers.  Validate the hint settings in the new file so
754 	 * that we don't let broken hints propagate.
755 	 */
756 	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
757 			VFS_I(ip)->i_mode, ip->i_diflags);
758 	if (failaddr) {
759 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
760 				   XFS_DIFLAG_EXTSZINHERIT);
761 		ip->i_extsize = 0;
762 	}
763 }
764 
765 /* Propagate di_flags2 from a parent inode to a child inode. */
766 static void
767 xfs_inode_inherit_flags2(
768 	struct xfs_inode	*ip,
769 	const struct xfs_inode	*pip)
770 {
771 	xfs_failaddr_t		failaddr;
772 
773 	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
774 		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
775 		ip->i_cowextsize = pip->i_cowextsize;
776 	}
777 	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
778 		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
779 
780 	/* Don't let invalid cowextsize hints propagate. */
781 	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
782 			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
783 	if (failaddr) {
784 		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
785 		ip->i_cowextsize = 0;
786 	}
787 }
788 
789 /*
790  * Initialise a newly allocated inode and return the in-core inode to the
791  * caller locked exclusively.
792  */
793 int
794 xfs_init_new_inode(
795 	struct user_namespace	*mnt_userns,
796 	struct xfs_trans	*tp,
797 	struct xfs_inode	*pip,
798 	xfs_ino_t		ino,
799 	umode_t			mode,
800 	xfs_nlink_t		nlink,
801 	dev_t			rdev,
802 	prid_t			prid,
803 	bool			init_xattrs,
804 	struct xfs_inode	**ipp)
805 {
806 	struct inode		*dir = pip ? VFS_I(pip) : NULL;
807 	struct xfs_mount	*mp = tp->t_mountp;
808 	struct xfs_inode	*ip;
809 	unsigned int		flags;
810 	int			error;
811 	struct timespec64	tv;
812 	struct inode		*inode;
813 
814 	/*
815 	 * Protect against obviously corrupt allocation btree records. Later
816 	 * xfs_iget checks will catch re-allocation of other active in-memory
817 	 * and on-disk inodes. If we don't catch reallocating the parent inode
818 	 * here we will deadlock in xfs_iget() so we have to do these checks
819 	 * first.
820 	 */
821 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
822 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
823 		return -EFSCORRUPTED;
824 	}
825 
826 	/*
827 	 * Get the in-core inode with the lock held exclusively to prevent
828 	 * others from looking at until we're done.
829 	 */
830 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
831 	if (error)
832 		return error;
833 
834 	ASSERT(ip != NULL);
835 	inode = VFS_I(ip);
836 	set_nlink(inode, nlink);
837 	inode->i_rdev = rdev;
838 	ip->i_projid = prid;
839 
840 	if (dir && !(dir->i_mode & S_ISGID) &&
841 	    (mp->m_flags & XFS_MOUNT_GRPID)) {
842 		inode_fsuid_set(inode, mnt_userns);
843 		inode->i_gid = dir->i_gid;
844 		inode->i_mode = mode;
845 	} else {
846 		inode_init_owner(mnt_userns, inode, dir, mode);
847 	}
848 
849 	/*
850 	 * If the group ID of the new file does not match the effective group
851 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
852 	 * (and only if the irix_sgid_inherit compatibility variable is set).
853 	 */
854 	if (irix_sgid_inherit &&
855 	    (inode->i_mode & S_ISGID) &&
856 	    !in_group_p(i_gid_into_mnt(mnt_userns, inode)))
857 		inode->i_mode &= ~S_ISGID;
858 
859 	ip->i_disk_size = 0;
860 	ip->i_df.if_nextents = 0;
861 	ASSERT(ip->i_nblocks == 0);
862 
863 	tv = current_time(inode);
864 	inode->i_mtime = tv;
865 	inode->i_atime = tv;
866 	inode->i_ctime = tv;
867 
868 	ip->i_extsize = 0;
869 	ip->i_diflags = 0;
870 
871 	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
872 		inode_set_iversion(inode, 1);
873 		ip->i_cowextsize = 0;
874 		ip->i_crtime = tv;
875 	}
876 
877 	flags = XFS_ILOG_CORE;
878 	switch (mode & S_IFMT) {
879 	case S_IFIFO:
880 	case S_IFCHR:
881 	case S_IFBLK:
882 	case S_IFSOCK:
883 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
884 		flags |= XFS_ILOG_DEV;
885 		break;
886 	case S_IFREG:
887 	case S_IFDIR:
888 		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
889 			xfs_inode_inherit_flags(ip, pip);
890 		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
891 			xfs_inode_inherit_flags2(ip, pip);
892 		fallthrough;
893 	case S_IFLNK:
894 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
895 		ip->i_df.if_bytes = 0;
896 		ip->i_df.if_u1.if_root = NULL;
897 		break;
898 	default:
899 		ASSERT(0);
900 	}
901 
902 	/*
903 	 * If we need to create attributes immediately after allocating the
904 	 * inode, initialise an empty attribute fork right now. We use the
905 	 * default fork offset for attributes here as we don't know exactly what
906 	 * size or how many attributes we might be adding. We can do this
907 	 * safely here because we know the data fork is completely empty and
908 	 * this saves us from needing to run a separate transaction to set the
909 	 * fork offset in the immediate future.
910 	 */
911 	if (init_xattrs && xfs_sb_version_hasattr(&mp->m_sb)) {
912 		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
913 		ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0);
914 	}
915 
916 	/*
917 	 * Log the new values stuffed into the inode.
918 	 */
919 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
920 	xfs_trans_log_inode(tp, ip, flags);
921 
922 	/* now that we have an i_mode we can setup the inode structure */
923 	xfs_setup_inode(ip);
924 
925 	*ipp = ip;
926 	return 0;
927 }
928 
929 /*
930  * Decrement the link count on an inode & log the change.  If this causes the
931  * link count to go to zero, move the inode to AGI unlinked list so that it can
932  * be freed when the last active reference goes away via xfs_inactive().
933  */
934 static int			/* error */
935 xfs_droplink(
936 	xfs_trans_t *tp,
937 	xfs_inode_t *ip)
938 {
939 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
940 
941 	drop_nlink(VFS_I(ip));
942 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
943 
944 	if (VFS_I(ip)->i_nlink)
945 		return 0;
946 
947 	return xfs_iunlink(tp, ip);
948 }
949 
950 /*
951  * Increment the link count on an inode & log the change.
952  */
953 static void
954 xfs_bumplink(
955 	xfs_trans_t *tp,
956 	xfs_inode_t *ip)
957 {
958 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
959 
960 	inc_nlink(VFS_I(ip));
961 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
962 }
963 
964 int
965 xfs_create(
966 	struct user_namespace	*mnt_userns,
967 	xfs_inode_t		*dp,
968 	struct xfs_name		*name,
969 	umode_t			mode,
970 	dev_t			rdev,
971 	bool			init_xattrs,
972 	xfs_inode_t		**ipp)
973 {
974 	int			is_dir = S_ISDIR(mode);
975 	struct xfs_mount	*mp = dp->i_mount;
976 	struct xfs_inode	*ip = NULL;
977 	struct xfs_trans	*tp = NULL;
978 	int			error;
979 	bool                    unlock_dp_on_error = false;
980 	prid_t			prid;
981 	struct xfs_dquot	*udqp = NULL;
982 	struct xfs_dquot	*gdqp = NULL;
983 	struct xfs_dquot	*pdqp = NULL;
984 	struct xfs_trans_res	*tres;
985 	uint			resblks;
986 	xfs_ino_t		ino;
987 
988 	trace_xfs_create(dp, name);
989 
990 	if (XFS_FORCED_SHUTDOWN(mp))
991 		return -EIO;
992 
993 	prid = xfs_get_initial_prid(dp);
994 
995 	/*
996 	 * Make sure that we have allocated dquot(s) on disk.
997 	 */
998 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
999 			mapped_fsgid(mnt_userns), prid,
1000 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1001 			&udqp, &gdqp, &pdqp);
1002 	if (error)
1003 		return error;
1004 
1005 	if (is_dir) {
1006 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1007 		tres = &M_RES(mp)->tr_mkdir;
1008 	} else {
1009 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1010 		tres = &M_RES(mp)->tr_create;
1011 	}
1012 
1013 	/*
1014 	 * Initially assume that the file does not exist and
1015 	 * reserve the resources for that case.  If that is not
1016 	 * the case we'll drop the one we have and get a more
1017 	 * appropriate transaction later.
1018 	 */
1019 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1020 			&tp);
1021 	if (error == -ENOSPC) {
1022 		/* flush outstanding delalloc blocks and retry */
1023 		xfs_flush_inodes(mp);
1024 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1025 				resblks, &tp);
1026 	}
1027 	if (error)
1028 		goto out_release_dquots;
1029 
1030 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1031 	unlock_dp_on_error = true;
1032 
1033 	error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK,
1034 			XFS_IEXT_DIR_MANIP_CNT(mp));
1035 	if (error)
1036 		goto out_trans_cancel;
1037 
1038 	/*
1039 	 * A newly created regular or special file just has one directory
1040 	 * entry pointing to them, but a directory also the "." entry
1041 	 * pointing to itself.
1042 	 */
1043 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1044 	if (!error)
1045 		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1046 				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1047 	if (error)
1048 		goto out_trans_cancel;
1049 
1050 	/*
1051 	 * Now we join the directory inode to the transaction.  We do not do it
1052 	 * earlier because xfs_dialloc might commit the previous transaction
1053 	 * (and release all the locks).  An error from here on will result in
1054 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1055 	 * error path.
1056 	 */
1057 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1058 	unlock_dp_on_error = false;
1059 
1060 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1061 					resblks - XFS_IALLOC_SPACE_RES(mp));
1062 	if (error) {
1063 		ASSERT(error != -ENOSPC);
1064 		goto out_trans_cancel;
1065 	}
1066 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1067 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1068 
1069 	if (is_dir) {
1070 		error = xfs_dir_init(tp, ip, dp);
1071 		if (error)
1072 			goto out_trans_cancel;
1073 
1074 		xfs_bumplink(tp, dp);
1075 	}
1076 
1077 	/*
1078 	 * If this is a synchronous mount, make sure that the
1079 	 * create transaction goes to disk before returning to
1080 	 * the user.
1081 	 */
1082 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1083 		xfs_trans_set_sync(tp);
1084 
1085 	/*
1086 	 * Attach the dquot(s) to the inodes and modify them incore.
1087 	 * These ids of the inode couldn't have changed since the new
1088 	 * inode has been locked ever since it was created.
1089 	 */
1090 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1091 
1092 	error = xfs_trans_commit(tp);
1093 	if (error)
1094 		goto out_release_inode;
1095 
1096 	xfs_qm_dqrele(udqp);
1097 	xfs_qm_dqrele(gdqp);
1098 	xfs_qm_dqrele(pdqp);
1099 
1100 	*ipp = ip;
1101 	return 0;
1102 
1103  out_trans_cancel:
1104 	xfs_trans_cancel(tp);
1105  out_release_inode:
1106 	/*
1107 	 * Wait until after the current transaction is aborted to finish the
1108 	 * setup of the inode and release the inode.  This prevents recursive
1109 	 * transactions and deadlocks from xfs_inactive.
1110 	 */
1111 	if (ip) {
1112 		xfs_finish_inode_setup(ip);
1113 		xfs_irele(ip);
1114 	}
1115  out_release_dquots:
1116 	xfs_qm_dqrele(udqp);
1117 	xfs_qm_dqrele(gdqp);
1118 	xfs_qm_dqrele(pdqp);
1119 
1120 	if (unlock_dp_on_error)
1121 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1122 	return error;
1123 }
1124 
1125 int
1126 xfs_create_tmpfile(
1127 	struct user_namespace	*mnt_userns,
1128 	struct xfs_inode	*dp,
1129 	umode_t			mode,
1130 	struct xfs_inode	**ipp)
1131 {
1132 	struct xfs_mount	*mp = dp->i_mount;
1133 	struct xfs_inode	*ip = NULL;
1134 	struct xfs_trans	*tp = NULL;
1135 	int			error;
1136 	prid_t                  prid;
1137 	struct xfs_dquot	*udqp = NULL;
1138 	struct xfs_dquot	*gdqp = NULL;
1139 	struct xfs_dquot	*pdqp = NULL;
1140 	struct xfs_trans_res	*tres;
1141 	uint			resblks;
1142 	xfs_ino_t		ino;
1143 
1144 	if (XFS_FORCED_SHUTDOWN(mp))
1145 		return -EIO;
1146 
1147 	prid = xfs_get_initial_prid(dp);
1148 
1149 	/*
1150 	 * Make sure that we have allocated dquot(s) on disk.
1151 	 */
1152 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
1153 			mapped_fsgid(mnt_userns), prid,
1154 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1155 			&udqp, &gdqp, &pdqp);
1156 	if (error)
1157 		return error;
1158 
1159 	resblks = XFS_IALLOC_SPACE_RES(mp);
1160 	tres = &M_RES(mp)->tr_create_tmpfile;
1161 
1162 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1163 			&tp);
1164 	if (error)
1165 		goto out_release_dquots;
1166 
1167 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1168 	if (!error)
1169 		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1170 				0, 0, prid, false, &ip);
1171 	if (error)
1172 		goto out_trans_cancel;
1173 
1174 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1175 		xfs_trans_set_sync(tp);
1176 
1177 	/*
1178 	 * Attach the dquot(s) to the inodes and modify them incore.
1179 	 * These ids of the inode couldn't have changed since the new
1180 	 * inode has been locked ever since it was created.
1181 	 */
1182 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1183 
1184 	error = xfs_iunlink(tp, ip);
1185 	if (error)
1186 		goto out_trans_cancel;
1187 
1188 	error = xfs_trans_commit(tp);
1189 	if (error)
1190 		goto out_release_inode;
1191 
1192 	xfs_qm_dqrele(udqp);
1193 	xfs_qm_dqrele(gdqp);
1194 	xfs_qm_dqrele(pdqp);
1195 
1196 	*ipp = ip;
1197 	return 0;
1198 
1199  out_trans_cancel:
1200 	xfs_trans_cancel(tp);
1201  out_release_inode:
1202 	/*
1203 	 * Wait until after the current transaction is aborted to finish the
1204 	 * setup of the inode and release the inode.  This prevents recursive
1205 	 * transactions and deadlocks from xfs_inactive.
1206 	 */
1207 	if (ip) {
1208 		xfs_finish_inode_setup(ip);
1209 		xfs_irele(ip);
1210 	}
1211  out_release_dquots:
1212 	xfs_qm_dqrele(udqp);
1213 	xfs_qm_dqrele(gdqp);
1214 	xfs_qm_dqrele(pdqp);
1215 
1216 	return error;
1217 }
1218 
1219 int
1220 xfs_link(
1221 	xfs_inode_t		*tdp,
1222 	xfs_inode_t		*sip,
1223 	struct xfs_name		*target_name)
1224 {
1225 	xfs_mount_t		*mp = tdp->i_mount;
1226 	xfs_trans_t		*tp;
1227 	int			error;
1228 	int			resblks;
1229 
1230 	trace_xfs_link(tdp, target_name);
1231 
1232 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1233 
1234 	if (XFS_FORCED_SHUTDOWN(mp))
1235 		return -EIO;
1236 
1237 	error = xfs_qm_dqattach(sip);
1238 	if (error)
1239 		goto std_return;
1240 
1241 	error = xfs_qm_dqattach(tdp);
1242 	if (error)
1243 		goto std_return;
1244 
1245 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1246 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1247 	if (error == -ENOSPC) {
1248 		resblks = 0;
1249 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1250 	}
1251 	if (error)
1252 		goto std_return;
1253 
1254 	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1255 
1256 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1257 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1258 
1259 	error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK,
1260 			XFS_IEXT_DIR_MANIP_CNT(mp));
1261 	if (error)
1262 		goto error_return;
1263 
1264 	/*
1265 	 * If we are using project inheritance, we only allow hard link
1266 	 * creation in our tree when the project IDs are the same; else
1267 	 * the tree quota mechanism could be circumvented.
1268 	 */
1269 	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1270 		     tdp->i_projid != sip->i_projid)) {
1271 		error = -EXDEV;
1272 		goto error_return;
1273 	}
1274 
1275 	if (!resblks) {
1276 		error = xfs_dir_canenter(tp, tdp, target_name);
1277 		if (error)
1278 			goto error_return;
1279 	}
1280 
1281 	/*
1282 	 * Handle initial link state of O_TMPFILE inode
1283 	 */
1284 	if (VFS_I(sip)->i_nlink == 0) {
1285 		struct xfs_perag	*pag;
1286 
1287 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1288 		error = xfs_iunlink_remove(tp, pag, sip);
1289 		xfs_perag_put(pag);
1290 		if (error)
1291 			goto error_return;
1292 	}
1293 
1294 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1295 				   resblks);
1296 	if (error)
1297 		goto error_return;
1298 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1299 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1300 
1301 	xfs_bumplink(tp, sip);
1302 
1303 	/*
1304 	 * If this is a synchronous mount, make sure that the
1305 	 * link transaction goes to disk before returning to
1306 	 * the user.
1307 	 */
1308 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1309 		xfs_trans_set_sync(tp);
1310 
1311 	return xfs_trans_commit(tp);
1312 
1313  error_return:
1314 	xfs_trans_cancel(tp);
1315  std_return:
1316 	return error;
1317 }
1318 
1319 /* Clear the reflink flag and the cowblocks tag if possible. */
1320 static void
1321 xfs_itruncate_clear_reflink_flags(
1322 	struct xfs_inode	*ip)
1323 {
1324 	struct xfs_ifork	*dfork;
1325 	struct xfs_ifork	*cfork;
1326 
1327 	if (!xfs_is_reflink_inode(ip))
1328 		return;
1329 	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1330 	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1331 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1332 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1333 	if (cfork->if_bytes == 0)
1334 		xfs_inode_clear_cowblocks_tag(ip);
1335 }
1336 
1337 /*
1338  * Free up the underlying blocks past new_size.  The new size must be smaller
1339  * than the current size.  This routine can be used both for the attribute and
1340  * data fork, and does not modify the inode size, which is left to the caller.
1341  *
1342  * The transaction passed to this routine must have made a permanent log
1343  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1344  * given transaction and start new ones, so make sure everything involved in
1345  * the transaction is tidy before calling here.  Some transaction will be
1346  * returned to the caller to be committed.  The incoming transaction must
1347  * already include the inode, and both inode locks must be held exclusively.
1348  * The inode must also be "held" within the transaction.  On return the inode
1349  * will be "held" within the returned transaction.  This routine does NOT
1350  * require any disk space to be reserved for it within the transaction.
1351  *
1352  * If we get an error, we must return with the inode locked and linked into the
1353  * current transaction. This keeps things simple for the higher level code,
1354  * because it always knows that the inode is locked and held in the transaction
1355  * that returns to it whether errors occur or not.  We don't mark the inode
1356  * dirty on error so that transactions can be easily aborted if possible.
1357  */
1358 int
1359 xfs_itruncate_extents_flags(
1360 	struct xfs_trans	**tpp,
1361 	struct xfs_inode	*ip,
1362 	int			whichfork,
1363 	xfs_fsize_t		new_size,
1364 	int			flags)
1365 {
1366 	struct xfs_mount	*mp = ip->i_mount;
1367 	struct xfs_trans	*tp = *tpp;
1368 	xfs_fileoff_t		first_unmap_block;
1369 	xfs_filblks_t		unmap_len;
1370 	int			error = 0;
1371 
1372 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1373 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1374 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1375 	ASSERT(new_size <= XFS_ISIZE(ip));
1376 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1377 	ASSERT(ip->i_itemp != NULL);
1378 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1379 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1380 
1381 	trace_xfs_itruncate_extents_start(ip, new_size);
1382 
1383 	flags |= xfs_bmapi_aflag(whichfork);
1384 
1385 	/*
1386 	 * Since it is possible for space to become allocated beyond
1387 	 * the end of the file (in a crash where the space is allocated
1388 	 * but the inode size is not yet updated), simply remove any
1389 	 * blocks which show up between the new EOF and the maximum
1390 	 * possible file size.
1391 	 *
1392 	 * We have to free all the blocks to the bmbt maximum offset, even if
1393 	 * the page cache can't scale that far.
1394 	 */
1395 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1396 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1397 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1398 		return 0;
1399 	}
1400 
1401 	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1402 	while (unmap_len > 0) {
1403 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1404 		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1405 				flags, XFS_ITRUNC_MAX_EXTENTS);
1406 		if (error)
1407 			goto out;
1408 
1409 		/* free the just unmapped extents */
1410 		error = xfs_defer_finish(&tp);
1411 		if (error)
1412 			goto out;
1413 	}
1414 
1415 	if (whichfork == XFS_DATA_FORK) {
1416 		/* Remove all pending CoW reservations. */
1417 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1418 				first_unmap_block, XFS_MAX_FILEOFF, true);
1419 		if (error)
1420 			goto out;
1421 
1422 		xfs_itruncate_clear_reflink_flags(ip);
1423 	}
1424 
1425 	/*
1426 	 * Always re-log the inode so that our permanent transaction can keep
1427 	 * on rolling it forward in the log.
1428 	 */
1429 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1430 
1431 	trace_xfs_itruncate_extents_end(ip, new_size);
1432 
1433 out:
1434 	*tpp = tp;
1435 	return error;
1436 }
1437 
1438 int
1439 xfs_release(
1440 	xfs_inode_t	*ip)
1441 {
1442 	xfs_mount_t	*mp = ip->i_mount;
1443 	int		error = 0;
1444 
1445 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1446 		return 0;
1447 
1448 	/* If this is a read-only mount, don't do this (would generate I/O) */
1449 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1450 		return 0;
1451 
1452 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1453 		int truncated;
1454 
1455 		/*
1456 		 * If we previously truncated this file and removed old data
1457 		 * in the process, we want to initiate "early" writeout on
1458 		 * the last close.  This is an attempt to combat the notorious
1459 		 * NULL files problem which is particularly noticeable from a
1460 		 * truncate down, buffered (re-)write (delalloc), followed by
1461 		 * a crash.  What we are effectively doing here is
1462 		 * significantly reducing the time window where we'd otherwise
1463 		 * be exposed to that problem.
1464 		 */
1465 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1466 		if (truncated) {
1467 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1468 			if (ip->i_delayed_blks > 0) {
1469 				error = filemap_flush(VFS_I(ip)->i_mapping);
1470 				if (error)
1471 					return error;
1472 			}
1473 		}
1474 	}
1475 
1476 	if (VFS_I(ip)->i_nlink == 0)
1477 		return 0;
1478 
1479 	/*
1480 	 * If we can't get the iolock just skip truncating the blocks past EOF
1481 	 * because we could deadlock with the mmap_lock otherwise. We'll get
1482 	 * another chance to drop them once the last reference to the inode is
1483 	 * dropped, so we'll never leak blocks permanently.
1484 	 */
1485 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1486 		return 0;
1487 
1488 	if (xfs_can_free_eofblocks(ip, false)) {
1489 		/*
1490 		 * Check if the inode is being opened, written and closed
1491 		 * frequently and we have delayed allocation blocks outstanding
1492 		 * (e.g. streaming writes from the NFS server), truncating the
1493 		 * blocks past EOF will cause fragmentation to occur.
1494 		 *
1495 		 * In this case don't do the truncation, but we have to be
1496 		 * careful how we detect this case. Blocks beyond EOF show up as
1497 		 * i_delayed_blks even when the inode is clean, so we need to
1498 		 * truncate them away first before checking for a dirty release.
1499 		 * Hence on the first dirty close we will still remove the
1500 		 * speculative allocation, but after that we will leave it in
1501 		 * place.
1502 		 */
1503 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1504 			goto out_unlock;
1505 
1506 		error = xfs_free_eofblocks(ip);
1507 		if (error)
1508 			goto out_unlock;
1509 
1510 		/* delalloc blocks after truncation means it really is dirty */
1511 		if (ip->i_delayed_blks)
1512 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1513 	}
1514 
1515 out_unlock:
1516 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1517 	return error;
1518 }
1519 
1520 /*
1521  * xfs_inactive_truncate
1522  *
1523  * Called to perform a truncate when an inode becomes unlinked.
1524  */
1525 STATIC int
1526 xfs_inactive_truncate(
1527 	struct xfs_inode *ip)
1528 {
1529 	struct xfs_mount	*mp = ip->i_mount;
1530 	struct xfs_trans	*tp;
1531 	int			error;
1532 
1533 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1534 	if (error) {
1535 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1536 		return error;
1537 	}
1538 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1539 	xfs_trans_ijoin(tp, ip, 0);
1540 
1541 	/*
1542 	 * Log the inode size first to prevent stale data exposure in the event
1543 	 * of a system crash before the truncate completes. See the related
1544 	 * comment in xfs_vn_setattr_size() for details.
1545 	 */
1546 	ip->i_disk_size = 0;
1547 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1548 
1549 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1550 	if (error)
1551 		goto error_trans_cancel;
1552 
1553 	ASSERT(ip->i_df.if_nextents == 0);
1554 
1555 	error = xfs_trans_commit(tp);
1556 	if (error)
1557 		goto error_unlock;
1558 
1559 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1560 	return 0;
1561 
1562 error_trans_cancel:
1563 	xfs_trans_cancel(tp);
1564 error_unlock:
1565 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1566 	return error;
1567 }
1568 
1569 /*
1570  * xfs_inactive_ifree()
1571  *
1572  * Perform the inode free when an inode is unlinked.
1573  */
1574 STATIC int
1575 xfs_inactive_ifree(
1576 	struct xfs_inode *ip)
1577 {
1578 	struct xfs_mount	*mp = ip->i_mount;
1579 	struct xfs_trans	*tp;
1580 	int			error;
1581 
1582 	/*
1583 	 * We try to use a per-AG reservation for any block needed by the finobt
1584 	 * tree, but as the finobt feature predates the per-AG reservation
1585 	 * support a degraded file system might not have enough space for the
1586 	 * reservation at mount time.  In that case try to dip into the reserved
1587 	 * pool and pray.
1588 	 *
1589 	 * Send a warning if the reservation does happen to fail, as the inode
1590 	 * now remains allocated and sits on the unlinked list until the fs is
1591 	 * repaired.
1592 	 */
1593 	if (unlikely(mp->m_finobt_nores)) {
1594 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1595 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1596 				&tp);
1597 	} else {
1598 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1599 	}
1600 	if (error) {
1601 		if (error == -ENOSPC) {
1602 			xfs_warn_ratelimited(mp,
1603 			"Failed to remove inode(s) from unlinked list. "
1604 			"Please free space, unmount and run xfs_repair.");
1605 		} else {
1606 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1607 		}
1608 		return error;
1609 	}
1610 
1611 	/*
1612 	 * We do not hold the inode locked across the entire rolling transaction
1613 	 * here. We only need to hold it for the first transaction that
1614 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1615 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1616 	 * here breaks the relationship between cluster buffer invalidation and
1617 	 * stale inode invalidation on cluster buffer item journal commit
1618 	 * completion, and can result in leaving dirty stale inodes hanging
1619 	 * around in memory.
1620 	 *
1621 	 * We have no need for serialising this inode operation against other
1622 	 * operations - we freed the inode and hence reallocation is required
1623 	 * and that will serialise on reallocating the space the deferops need
1624 	 * to free. Hence we can unlock the inode on the first commit of
1625 	 * the transaction rather than roll it right through the deferops. This
1626 	 * avoids relogging the XFS_ISTALE inode.
1627 	 *
1628 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1629 	 * by asserting that the inode is still locked when it returns.
1630 	 */
1631 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1632 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1633 
1634 	error = xfs_ifree(tp, ip);
1635 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1636 	if (error) {
1637 		/*
1638 		 * If we fail to free the inode, shut down.  The cancel
1639 		 * might do that, we need to make sure.  Otherwise the
1640 		 * inode might be lost for a long time or forever.
1641 		 */
1642 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1643 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1644 				__func__, error);
1645 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1646 		}
1647 		xfs_trans_cancel(tp);
1648 		return error;
1649 	}
1650 
1651 	/*
1652 	 * Credit the quota account(s). The inode is gone.
1653 	 */
1654 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1655 
1656 	/*
1657 	 * Just ignore errors at this point.  There is nothing we can do except
1658 	 * to try to keep going. Make sure it's not a silent error.
1659 	 */
1660 	error = xfs_trans_commit(tp);
1661 	if (error)
1662 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1663 			__func__, error);
1664 
1665 	return 0;
1666 }
1667 
1668 /*
1669  * xfs_inactive
1670  *
1671  * This is called when the vnode reference count for the vnode
1672  * goes to zero.  If the file has been unlinked, then it must
1673  * now be truncated.  Also, we clear all of the read-ahead state
1674  * kept for the inode here since the file is now closed.
1675  */
1676 void
1677 xfs_inactive(
1678 	xfs_inode_t	*ip)
1679 {
1680 	struct xfs_mount	*mp;
1681 	int			error;
1682 	int			truncate = 0;
1683 
1684 	/*
1685 	 * If the inode is already free, then there can be nothing
1686 	 * to clean up here.
1687 	 */
1688 	if (VFS_I(ip)->i_mode == 0) {
1689 		ASSERT(ip->i_df.if_broot_bytes == 0);
1690 		goto out;
1691 	}
1692 
1693 	mp = ip->i_mount;
1694 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1695 
1696 	/* If this is a read-only mount, don't do this (would generate I/O) */
1697 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1698 		goto out;
1699 
1700 	/* Metadata inodes require explicit resource cleanup. */
1701 	if (xfs_is_metadata_inode(ip))
1702 		goto out;
1703 
1704 	/* Try to clean out the cow blocks if there are any. */
1705 	if (xfs_inode_has_cow_data(ip))
1706 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1707 
1708 	if (VFS_I(ip)->i_nlink != 0) {
1709 		/*
1710 		 * force is true because we are evicting an inode from the
1711 		 * cache. Post-eof blocks must be freed, lest we end up with
1712 		 * broken free space accounting.
1713 		 *
1714 		 * Note: don't bother with iolock here since lockdep complains
1715 		 * about acquiring it in reclaim context. We have the only
1716 		 * reference to the inode at this point anyways.
1717 		 */
1718 		if (xfs_can_free_eofblocks(ip, true))
1719 			xfs_free_eofblocks(ip);
1720 
1721 		goto out;
1722 	}
1723 
1724 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1725 	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1726 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1727 		truncate = 1;
1728 
1729 	error = xfs_qm_dqattach(ip);
1730 	if (error)
1731 		goto out;
1732 
1733 	if (S_ISLNK(VFS_I(ip)->i_mode))
1734 		error = xfs_inactive_symlink(ip);
1735 	else if (truncate)
1736 		error = xfs_inactive_truncate(ip);
1737 	if (error)
1738 		goto out;
1739 
1740 	/*
1741 	 * If there are attributes associated with the file then blow them away
1742 	 * now.  The code calls a routine that recursively deconstructs the
1743 	 * attribute fork. If also blows away the in-core attribute fork.
1744 	 */
1745 	if (XFS_IFORK_Q(ip)) {
1746 		error = xfs_attr_inactive(ip);
1747 		if (error)
1748 			goto out;
1749 	}
1750 
1751 	ASSERT(!ip->i_afp);
1752 	ASSERT(ip->i_forkoff == 0);
1753 
1754 	/*
1755 	 * Free the inode.
1756 	 */
1757 	xfs_inactive_ifree(ip);
1758 
1759 out:
1760 	/*
1761 	 * We're done making metadata updates for this inode, so we can release
1762 	 * the attached dquots.
1763 	 */
1764 	xfs_qm_dqdetach(ip);
1765 }
1766 
1767 /*
1768  * In-Core Unlinked List Lookups
1769  * =============================
1770  *
1771  * Every inode is supposed to be reachable from some other piece of metadata
1772  * with the exception of the root directory.  Inodes with a connection to a
1773  * file descriptor but not linked from anywhere in the on-disk directory tree
1774  * are collectively known as unlinked inodes, though the filesystem itself
1775  * maintains links to these inodes so that on-disk metadata are consistent.
1776  *
1777  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1778  * header contains a number of buckets that point to an inode, and each inode
1779  * record has a pointer to the next inode in the hash chain.  This
1780  * singly-linked list causes scaling problems in the iunlink remove function
1781  * because we must walk that list to find the inode that points to the inode
1782  * being removed from the unlinked hash bucket list.
1783  *
1784  * What if we modelled the unlinked list as a collection of records capturing
1785  * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1786  * have a fast way to look up unlinked list predecessors, which avoids the
1787  * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1788  * rhashtable.
1789  *
1790  * Because this is a backref cache, we ignore operational failures since the
1791  * iunlink code can fall back to the slow bucket walk.  The only errors that
1792  * should bubble out are for obviously incorrect situations.
1793  *
1794  * All users of the backref cache MUST hold the AGI buffer lock to serialize
1795  * access or have otherwise provided for concurrency control.
1796  */
1797 
1798 /* Capture a "X.next_unlinked = Y" relationship. */
1799 struct xfs_iunlink {
1800 	struct rhash_head	iu_rhash_head;
1801 	xfs_agino_t		iu_agino;		/* X */
1802 	xfs_agino_t		iu_next_unlinked;	/* Y */
1803 };
1804 
1805 /* Unlinked list predecessor lookup hashtable construction */
1806 static int
1807 xfs_iunlink_obj_cmpfn(
1808 	struct rhashtable_compare_arg	*arg,
1809 	const void			*obj)
1810 {
1811 	const xfs_agino_t		*key = arg->key;
1812 	const struct xfs_iunlink	*iu = obj;
1813 
1814 	if (iu->iu_next_unlinked != *key)
1815 		return 1;
1816 	return 0;
1817 }
1818 
1819 static const struct rhashtable_params xfs_iunlink_hash_params = {
1820 	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1821 	.key_len		= sizeof(xfs_agino_t),
1822 	.key_offset		= offsetof(struct xfs_iunlink,
1823 					   iu_next_unlinked),
1824 	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1825 	.automatic_shrinking	= true,
1826 	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1827 };
1828 
1829 /*
1830  * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1831  * relation is found.
1832  */
1833 static xfs_agino_t
1834 xfs_iunlink_lookup_backref(
1835 	struct xfs_perag	*pag,
1836 	xfs_agino_t		agino)
1837 {
1838 	struct xfs_iunlink	*iu;
1839 
1840 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1841 			xfs_iunlink_hash_params);
1842 	return iu ? iu->iu_agino : NULLAGINO;
1843 }
1844 
1845 /*
1846  * Take ownership of an iunlink cache entry and insert it into the hash table.
1847  * If successful, the entry will be owned by the cache; if not, it is freed.
1848  * Either way, the caller does not own @iu after this call.
1849  */
1850 static int
1851 xfs_iunlink_insert_backref(
1852 	struct xfs_perag	*pag,
1853 	struct xfs_iunlink	*iu)
1854 {
1855 	int			error;
1856 
1857 	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1858 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1859 	/*
1860 	 * Fail loudly if there already was an entry because that's a sign of
1861 	 * corruption of in-memory data.  Also fail loudly if we see an error
1862 	 * code we didn't anticipate from the rhashtable code.  Currently we
1863 	 * only anticipate ENOMEM.
1864 	 */
1865 	if (error) {
1866 		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1867 		kmem_free(iu);
1868 	}
1869 	/*
1870 	 * Absorb any runtime errors that aren't a result of corruption because
1871 	 * this is a cache and we can always fall back to bucket list scanning.
1872 	 */
1873 	if (error != 0 && error != -EEXIST)
1874 		error = 0;
1875 	return error;
1876 }
1877 
1878 /* Remember that @prev_agino.next_unlinked = @this_agino. */
1879 static int
1880 xfs_iunlink_add_backref(
1881 	struct xfs_perag	*pag,
1882 	xfs_agino_t		prev_agino,
1883 	xfs_agino_t		this_agino)
1884 {
1885 	struct xfs_iunlink	*iu;
1886 
1887 	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
1888 		return 0;
1889 
1890 	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
1891 	iu->iu_agino = prev_agino;
1892 	iu->iu_next_unlinked = this_agino;
1893 
1894 	return xfs_iunlink_insert_backref(pag, iu);
1895 }
1896 
1897 /*
1898  * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
1899  * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
1900  * wasn't any such entry then we don't bother.
1901  */
1902 static int
1903 xfs_iunlink_change_backref(
1904 	struct xfs_perag	*pag,
1905 	xfs_agino_t		agino,
1906 	xfs_agino_t		next_unlinked)
1907 {
1908 	struct xfs_iunlink	*iu;
1909 	int			error;
1910 
1911 	/* Look up the old entry; if there wasn't one then exit. */
1912 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1913 			xfs_iunlink_hash_params);
1914 	if (!iu)
1915 		return 0;
1916 
1917 	/*
1918 	 * Remove the entry.  This shouldn't ever return an error, but if we
1919 	 * couldn't remove the old entry we don't want to add it again to the
1920 	 * hash table, and if the entry disappeared on us then someone's
1921 	 * violated the locking rules and we need to fail loudly.  Either way
1922 	 * we cannot remove the inode because internal state is or would have
1923 	 * been corrupt.
1924 	 */
1925 	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
1926 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1927 	if (error)
1928 		return error;
1929 
1930 	/* If there is no new next entry just free our item and return. */
1931 	if (next_unlinked == NULLAGINO) {
1932 		kmem_free(iu);
1933 		return 0;
1934 	}
1935 
1936 	/* Update the entry and re-add it to the hash table. */
1937 	iu->iu_next_unlinked = next_unlinked;
1938 	return xfs_iunlink_insert_backref(pag, iu);
1939 }
1940 
1941 /* Set up the in-core predecessor structures. */
1942 int
1943 xfs_iunlink_init(
1944 	struct xfs_perag	*pag)
1945 {
1946 	return rhashtable_init(&pag->pagi_unlinked_hash,
1947 			&xfs_iunlink_hash_params);
1948 }
1949 
1950 /* Free the in-core predecessor structures. */
1951 static void
1952 xfs_iunlink_free_item(
1953 	void			*ptr,
1954 	void			*arg)
1955 {
1956 	struct xfs_iunlink	*iu = ptr;
1957 	bool			*freed_anything = arg;
1958 
1959 	*freed_anything = true;
1960 	kmem_free(iu);
1961 }
1962 
1963 void
1964 xfs_iunlink_destroy(
1965 	struct xfs_perag	*pag)
1966 {
1967 	bool			freed_anything = false;
1968 
1969 	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
1970 			xfs_iunlink_free_item, &freed_anything);
1971 
1972 	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
1973 }
1974 
1975 /*
1976  * Point the AGI unlinked bucket at an inode and log the results.  The caller
1977  * is responsible for validating the old value.
1978  */
1979 STATIC int
1980 xfs_iunlink_update_bucket(
1981 	struct xfs_trans	*tp,
1982 	struct xfs_perag	*pag,
1983 	struct xfs_buf		*agibp,
1984 	unsigned int		bucket_index,
1985 	xfs_agino_t		new_agino)
1986 {
1987 	struct xfs_agi		*agi = agibp->b_addr;
1988 	xfs_agino_t		old_value;
1989 	int			offset;
1990 
1991 	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, pag->pag_agno, new_agino));
1992 
1993 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1994 	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1995 			old_value, new_agino);
1996 
1997 	/*
1998 	 * We should never find the head of the list already set to the value
1999 	 * passed in because either we're adding or removing ourselves from the
2000 	 * head of the list.
2001 	 */
2002 	if (old_value == new_agino) {
2003 		xfs_buf_mark_corrupt(agibp);
2004 		return -EFSCORRUPTED;
2005 	}
2006 
2007 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2008 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2009 			(sizeof(xfs_agino_t) * bucket_index);
2010 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2011 	return 0;
2012 }
2013 
2014 /* Set an on-disk inode's next_unlinked pointer. */
2015 STATIC void
2016 xfs_iunlink_update_dinode(
2017 	struct xfs_trans	*tp,
2018 	struct xfs_perag	*pag,
2019 	xfs_agino_t		agino,
2020 	struct xfs_buf		*ibp,
2021 	struct xfs_dinode	*dip,
2022 	struct xfs_imap		*imap,
2023 	xfs_agino_t		next_agino)
2024 {
2025 	struct xfs_mount	*mp = tp->t_mountp;
2026 	int			offset;
2027 
2028 	ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2029 
2030 	trace_xfs_iunlink_update_dinode(mp, pag->pag_agno, agino,
2031 			be32_to_cpu(dip->di_next_unlinked), next_agino);
2032 
2033 	dip->di_next_unlinked = cpu_to_be32(next_agino);
2034 	offset = imap->im_boffset +
2035 			offsetof(struct xfs_dinode, di_next_unlinked);
2036 
2037 	/* need to recalc the inode CRC if appropriate */
2038 	xfs_dinode_calc_crc(mp, dip);
2039 	xfs_trans_inode_buf(tp, ibp);
2040 	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2041 }
2042 
2043 /* Set an in-core inode's unlinked pointer and return the old value. */
2044 STATIC int
2045 xfs_iunlink_update_inode(
2046 	struct xfs_trans	*tp,
2047 	struct xfs_inode	*ip,
2048 	struct xfs_perag	*pag,
2049 	xfs_agino_t		next_agino,
2050 	xfs_agino_t		*old_next_agino)
2051 {
2052 	struct xfs_mount	*mp = tp->t_mountp;
2053 	struct xfs_dinode	*dip;
2054 	struct xfs_buf		*ibp;
2055 	xfs_agino_t		old_value;
2056 	int			error;
2057 
2058 	ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2059 
2060 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp);
2061 	if (error)
2062 		return error;
2063 	dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2064 
2065 	/* Make sure the old pointer isn't garbage. */
2066 	old_value = be32_to_cpu(dip->di_next_unlinked);
2067 	if (!xfs_verify_agino_or_null(mp, pag->pag_agno, old_value)) {
2068 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2069 				sizeof(*dip), __this_address);
2070 		error = -EFSCORRUPTED;
2071 		goto out;
2072 	}
2073 
2074 	/*
2075 	 * Since we're updating a linked list, we should never find that the
2076 	 * current pointer is the same as the new value, unless we're
2077 	 * terminating the list.
2078 	 */
2079 	*old_next_agino = old_value;
2080 	if (old_value == next_agino) {
2081 		if (next_agino != NULLAGINO) {
2082 			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2083 					dip, sizeof(*dip), __this_address);
2084 			error = -EFSCORRUPTED;
2085 		}
2086 		goto out;
2087 	}
2088 
2089 	/* Ok, update the new pointer. */
2090 	xfs_iunlink_update_dinode(tp, pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
2091 			ibp, dip, &ip->i_imap, next_agino);
2092 	return 0;
2093 out:
2094 	xfs_trans_brelse(tp, ibp);
2095 	return error;
2096 }
2097 
2098 /*
2099  * This is called when the inode's link count has gone to 0 or we are creating
2100  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2101  *
2102  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2103  * list when the inode is freed.
2104  */
2105 STATIC int
2106 xfs_iunlink(
2107 	struct xfs_trans	*tp,
2108 	struct xfs_inode	*ip)
2109 {
2110 	struct xfs_mount	*mp = tp->t_mountp;
2111 	struct xfs_perag	*pag;
2112 	struct xfs_agi		*agi;
2113 	struct xfs_buf		*agibp;
2114 	xfs_agino_t		next_agino;
2115 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2116 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2117 	int			error;
2118 
2119 	ASSERT(VFS_I(ip)->i_nlink == 0);
2120 	ASSERT(VFS_I(ip)->i_mode != 0);
2121 	trace_xfs_iunlink(ip);
2122 
2123 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2124 
2125 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2126 	error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2127 	if (error)
2128 		goto out;
2129 	agi = agibp->b_addr;
2130 
2131 	/*
2132 	 * Get the index into the agi hash table for the list this inode will
2133 	 * go on.  Make sure the pointer isn't garbage and that this inode
2134 	 * isn't already on the list.
2135 	 */
2136 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2137 	if (next_agino == agino ||
2138 	    !xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)) {
2139 		xfs_buf_mark_corrupt(agibp);
2140 		error = -EFSCORRUPTED;
2141 		goto out;
2142 	}
2143 
2144 	if (next_agino != NULLAGINO) {
2145 		xfs_agino_t		old_agino;
2146 
2147 		/*
2148 		 * There is already another inode in the bucket, so point this
2149 		 * inode to the current head of the list.
2150 		 */
2151 		error = xfs_iunlink_update_inode(tp, ip, pag, next_agino,
2152 				&old_agino);
2153 		if (error)
2154 			goto out;
2155 		ASSERT(old_agino == NULLAGINO);
2156 
2157 		/*
2158 		 * agino has been unlinked, add a backref from the next inode
2159 		 * back to agino.
2160 		 */
2161 		error = xfs_iunlink_add_backref(pag, agino, next_agino);
2162 		if (error)
2163 			goto out;
2164 	}
2165 
2166 	/* Point the head of the list to point to this inode. */
2167 	error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2168 out:
2169 	xfs_perag_put(pag);
2170 	return error;
2171 }
2172 
2173 /* Return the imap, dinode pointer, and buffer for an inode. */
2174 STATIC int
2175 xfs_iunlink_map_ino(
2176 	struct xfs_trans	*tp,
2177 	xfs_agnumber_t		agno,
2178 	xfs_agino_t		agino,
2179 	struct xfs_imap		*imap,
2180 	struct xfs_dinode	**dipp,
2181 	struct xfs_buf		**bpp)
2182 {
2183 	struct xfs_mount	*mp = tp->t_mountp;
2184 	int			error;
2185 
2186 	imap->im_blkno = 0;
2187 	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2188 	if (error) {
2189 		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2190 				__func__, error);
2191 		return error;
2192 	}
2193 
2194 	error = xfs_imap_to_bp(mp, tp, imap, bpp);
2195 	if (error) {
2196 		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2197 				__func__, error);
2198 		return error;
2199 	}
2200 
2201 	*dipp = xfs_buf_offset(*bpp, imap->im_boffset);
2202 	return 0;
2203 }
2204 
2205 /*
2206  * Walk the unlinked chain from @head_agino until we find the inode that
2207  * points to @target_agino.  Return the inode number, map, dinode pointer,
2208  * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2209  *
2210  * @tp, @pag, @head_agino, and @target_agino are input parameters.
2211  * @agino, @imap, @dipp, and @bpp are all output parameters.
2212  *
2213  * Do not call this function if @target_agino is the head of the list.
2214  */
2215 STATIC int
2216 xfs_iunlink_map_prev(
2217 	struct xfs_trans	*tp,
2218 	struct xfs_perag	*pag,
2219 	xfs_agino_t		head_agino,
2220 	xfs_agino_t		target_agino,
2221 	xfs_agino_t		*agino,
2222 	struct xfs_imap		*imap,
2223 	struct xfs_dinode	**dipp,
2224 	struct xfs_buf		**bpp)
2225 {
2226 	struct xfs_mount	*mp = tp->t_mountp;
2227 	xfs_agino_t		next_agino;
2228 	int			error;
2229 
2230 	ASSERT(head_agino != target_agino);
2231 	*bpp = NULL;
2232 
2233 	/* See if our backref cache can find it faster. */
2234 	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2235 	if (*agino != NULLAGINO) {
2236 		error = xfs_iunlink_map_ino(tp, pag->pag_agno, *agino, imap,
2237 				dipp, bpp);
2238 		if (error)
2239 			return error;
2240 
2241 		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2242 			return 0;
2243 
2244 		/*
2245 		 * If we get here the cache contents were corrupt, so drop the
2246 		 * buffer and fall back to walking the bucket list.
2247 		 */
2248 		xfs_trans_brelse(tp, *bpp);
2249 		*bpp = NULL;
2250 		WARN_ON_ONCE(1);
2251 	}
2252 
2253 	trace_xfs_iunlink_map_prev_fallback(mp, pag->pag_agno);
2254 
2255 	/* Otherwise, walk the entire bucket until we find it. */
2256 	next_agino = head_agino;
2257 	while (next_agino != target_agino) {
2258 		xfs_agino_t	unlinked_agino;
2259 
2260 		if (*bpp)
2261 			xfs_trans_brelse(tp, *bpp);
2262 
2263 		*agino = next_agino;
2264 		error = xfs_iunlink_map_ino(tp, pag->pag_agno, next_agino, imap,
2265 				dipp, bpp);
2266 		if (error)
2267 			return error;
2268 
2269 		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2270 		/*
2271 		 * Make sure this pointer is valid and isn't an obvious
2272 		 * infinite loop.
2273 		 */
2274 		if (!xfs_verify_agino(mp, pag->pag_agno, unlinked_agino) ||
2275 		    next_agino == unlinked_agino) {
2276 			XFS_CORRUPTION_ERROR(__func__,
2277 					XFS_ERRLEVEL_LOW, mp,
2278 					*dipp, sizeof(**dipp));
2279 			error = -EFSCORRUPTED;
2280 			return error;
2281 		}
2282 		next_agino = unlinked_agino;
2283 	}
2284 
2285 	return 0;
2286 }
2287 
2288 /*
2289  * Pull the on-disk inode from the AGI unlinked list.
2290  */
2291 STATIC int
2292 xfs_iunlink_remove(
2293 	struct xfs_trans	*tp,
2294 	struct xfs_perag	*pag,
2295 	struct xfs_inode	*ip)
2296 {
2297 	struct xfs_mount	*mp = tp->t_mountp;
2298 	struct xfs_agi		*agi;
2299 	struct xfs_buf		*agibp;
2300 	struct xfs_buf		*last_ibp;
2301 	struct xfs_dinode	*last_dip = NULL;
2302 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2303 	xfs_agino_t		next_agino;
2304 	xfs_agino_t		head_agino;
2305 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2306 	int			error;
2307 
2308 	trace_xfs_iunlink_remove(ip);
2309 
2310 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2311 	error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2312 	if (error)
2313 		return error;
2314 	agi = agibp->b_addr;
2315 
2316 	/*
2317 	 * Get the index into the agi hash table for the list this inode will
2318 	 * go on.  Make sure the head pointer isn't garbage.
2319 	 */
2320 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2321 	if (!xfs_verify_agino(mp, pag->pag_agno, head_agino)) {
2322 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2323 				agi, sizeof(*agi));
2324 		return -EFSCORRUPTED;
2325 	}
2326 
2327 	/*
2328 	 * Set our inode's next_unlinked pointer to NULL and then return
2329 	 * the old pointer value so that we can update whatever was previous
2330 	 * to us in the list to point to whatever was next in the list.
2331 	 */
2332 	error = xfs_iunlink_update_inode(tp, ip, pag, NULLAGINO, &next_agino);
2333 	if (error)
2334 		return error;
2335 
2336 	/*
2337 	 * If there was a backref pointing from the next inode back to this
2338 	 * one, remove it because we've removed this inode from the list.
2339 	 *
2340 	 * Later, if this inode was in the middle of the list we'll update
2341 	 * this inode's backref to point from the next inode.
2342 	 */
2343 	if (next_agino != NULLAGINO) {
2344 		error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO);
2345 		if (error)
2346 			return error;
2347 	}
2348 
2349 	if (head_agino != agino) {
2350 		struct xfs_imap	imap;
2351 		xfs_agino_t	prev_agino;
2352 
2353 		/* We need to search the list for the inode being freed. */
2354 		error = xfs_iunlink_map_prev(tp, pag, head_agino, agino,
2355 				&prev_agino, &imap, &last_dip, &last_ibp);
2356 		if (error)
2357 			return error;
2358 
2359 		/* Point the previous inode on the list to the next inode. */
2360 		xfs_iunlink_update_dinode(tp, pag, prev_agino, last_ibp,
2361 				last_dip, &imap, next_agino);
2362 
2363 		/*
2364 		 * Now we deal with the backref for this inode.  If this inode
2365 		 * pointed at a real inode, change the backref that pointed to
2366 		 * us to point to our old next.  If this inode was the end of
2367 		 * the list, delete the backref that pointed to us.  Note that
2368 		 * change_backref takes care of deleting the backref if
2369 		 * next_agino is NULLAGINO.
2370 		 */
2371 		return xfs_iunlink_change_backref(agibp->b_pag, agino,
2372 				next_agino);
2373 	}
2374 
2375 	/* Point the head of the list to the next unlinked inode. */
2376 	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2377 			next_agino);
2378 }
2379 
2380 /*
2381  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2382  * mark it stale. We should only find clean inodes in this lookup that aren't
2383  * already stale.
2384  */
2385 static void
2386 xfs_ifree_mark_inode_stale(
2387 	struct xfs_perag	*pag,
2388 	struct xfs_inode	*free_ip,
2389 	xfs_ino_t		inum)
2390 {
2391 	struct xfs_mount	*mp = pag->pag_mount;
2392 	struct xfs_inode_log_item *iip;
2393 	struct xfs_inode	*ip;
2394 
2395 retry:
2396 	rcu_read_lock();
2397 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2398 
2399 	/* Inode not in memory, nothing to do */
2400 	if (!ip) {
2401 		rcu_read_unlock();
2402 		return;
2403 	}
2404 
2405 	/*
2406 	 * because this is an RCU protected lookup, we could find a recently
2407 	 * freed or even reallocated inode during the lookup. We need to check
2408 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2409 	 * valid, the wrong inode or stale.
2410 	 */
2411 	spin_lock(&ip->i_flags_lock);
2412 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2413 		goto out_iflags_unlock;
2414 
2415 	/*
2416 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2417 	 * other inodes that we did not find in the list attached to the buffer
2418 	 * and are not already marked stale. If we can't lock it, back off and
2419 	 * retry.
2420 	 */
2421 	if (ip != free_ip) {
2422 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2423 			spin_unlock(&ip->i_flags_lock);
2424 			rcu_read_unlock();
2425 			delay(1);
2426 			goto retry;
2427 		}
2428 	}
2429 	ip->i_flags |= XFS_ISTALE;
2430 
2431 	/*
2432 	 * If the inode is flushing, it is already attached to the buffer.  All
2433 	 * we needed to do here is mark the inode stale so buffer IO completion
2434 	 * will remove it from the AIL.
2435 	 */
2436 	iip = ip->i_itemp;
2437 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2438 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2439 		ASSERT(iip->ili_last_fields);
2440 		goto out_iunlock;
2441 	}
2442 
2443 	/*
2444 	 * Inodes not attached to the buffer can be released immediately.
2445 	 * Everything else has to go through xfs_iflush_abort() on journal
2446 	 * commit as the flock synchronises removal of the inode from the
2447 	 * cluster buffer against inode reclaim.
2448 	 */
2449 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2450 		goto out_iunlock;
2451 
2452 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2453 	spin_unlock(&ip->i_flags_lock);
2454 	rcu_read_unlock();
2455 
2456 	/* we have a dirty inode in memory that has not yet been flushed. */
2457 	spin_lock(&iip->ili_lock);
2458 	iip->ili_last_fields = iip->ili_fields;
2459 	iip->ili_fields = 0;
2460 	iip->ili_fsync_fields = 0;
2461 	spin_unlock(&iip->ili_lock);
2462 	ASSERT(iip->ili_last_fields);
2463 
2464 	if (ip != free_ip)
2465 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2466 	return;
2467 
2468 out_iunlock:
2469 	if (ip != free_ip)
2470 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2471 out_iflags_unlock:
2472 	spin_unlock(&ip->i_flags_lock);
2473 	rcu_read_unlock();
2474 }
2475 
2476 /*
2477  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2478  * inodes that are in memory - they all must be marked stale and attached to
2479  * the cluster buffer.
2480  */
2481 static int
2482 xfs_ifree_cluster(
2483 	struct xfs_trans	*tp,
2484 	struct xfs_perag	*pag,
2485 	struct xfs_inode	*free_ip,
2486 	struct xfs_icluster	*xic)
2487 {
2488 	struct xfs_mount	*mp = free_ip->i_mount;
2489 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2490 	struct xfs_buf		*bp;
2491 	xfs_daddr_t		blkno;
2492 	xfs_ino_t		inum = xic->first_ino;
2493 	int			nbufs;
2494 	int			i, j;
2495 	int			ioffset;
2496 	int			error;
2497 
2498 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2499 
2500 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2501 		/*
2502 		 * The allocation bitmap tells us which inodes of the chunk were
2503 		 * physically allocated. Skip the cluster if an inode falls into
2504 		 * a sparse region.
2505 		 */
2506 		ioffset = inum - xic->first_ino;
2507 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2508 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2509 			continue;
2510 		}
2511 
2512 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2513 					 XFS_INO_TO_AGBNO(mp, inum));
2514 
2515 		/*
2516 		 * We obtain and lock the backing buffer first in the process
2517 		 * here to ensure dirty inodes attached to the buffer remain in
2518 		 * the flushing state while we mark them stale.
2519 		 *
2520 		 * If we scan the in-memory inodes first, then buffer IO can
2521 		 * complete before we get a lock on it, and hence we may fail
2522 		 * to mark all the active inodes on the buffer stale.
2523 		 */
2524 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2525 				mp->m_bsize * igeo->blocks_per_cluster,
2526 				XBF_UNMAPPED, &bp);
2527 		if (error)
2528 			return error;
2529 
2530 		/*
2531 		 * This buffer may not have been correctly initialised as we
2532 		 * didn't read it from disk. That's not important because we are
2533 		 * only using to mark the buffer as stale in the log, and to
2534 		 * attach stale cached inodes on it. That means it will never be
2535 		 * dispatched for IO. If it is, we want to know about it, and we
2536 		 * want it to fail. We can acheive this by adding a write
2537 		 * verifier to the buffer.
2538 		 */
2539 		bp->b_ops = &xfs_inode_buf_ops;
2540 
2541 		/*
2542 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2543 		 * too. This requires lookups, and will skip inodes that we've
2544 		 * already marked XFS_ISTALE.
2545 		 */
2546 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2547 			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2548 
2549 		xfs_trans_stale_inode_buf(tp, bp);
2550 		xfs_trans_binval(tp, bp);
2551 	}
2552 	return 0;
2553 }
2554 
2555 /*
2556  * This is called to return an inode to the inode free list.
2557  * The inode should already be truncated to 0 length and have
2558  * no pages associated with it.  This routine also assumes that
2559  * the inode is already a part of the transaction.
2560  *
2561  * The on-disk copy of the inode will have been added to the list
2562  * of unlinked inodes in the AGI. We need to remove the inode from
2563  * that list atomically with respect to freeing it here.
2564  */
2565 int
2566 xfs_ifree(
2567 	struct xfs_trans	*tp,
2568 	struct xfs_inode	*ip)
2569 {
2570 	struct xfs_mount	*mp = ip->i_mount;
2571 	struct xfs_perag	*pag;
2572 	struct xfs_icluster	xic = { 0 };
2573 	struct xfs_inode_log_item *iip = ip->i_itemp;
2574 	int			error;
2575 
2576 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2577 	ASSERT(VFS_I(ip)->i_nlink == 0);
2578 	ASSERT(ip->i_df.if_nextents == 0);
2579 	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2580 	ASSERT(ip->i_nblocks == 0);
2581 
2582 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2583 
2584 	/*
2585 	 * Pull the on-disk inode from the AGI unlinked list.
2586 	 */
2587 	error = xfs_iunlink_remove(tp, pag, ip);
2588 	if (error)
2589 		goto out;
2590 
2591 	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2592 	if (error)
2593 		goto out;
2594 
2595 	/*
2596 	 * Free any local-format data sitting around before we reset the
2597 	 * data fork to extents format.  Note that the attr fork data has
2598 	 * already been freed by xfs_attr_inactive.
2599 	 */
2600 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2601 		kmem_free(ip->i_df.if_u1.if_data);
2602 		ip->i_df.if_u1.if_data = NULL;
2603 		ip->i_df.if_bytes = 0;
2604 	}
2605 
2606 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2607 	ip->i_diflags = 0;
2608 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2609 	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2610 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2611 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2612 		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2613 
2614 	/* Don't attempt to replay owner changes for a deleted inode */
2615 	spin_lock(&iip->ili_lock);
2616 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2617 	spin_unlock(&iip->ili_lock);
2618 
2619 	/*
2620 	 * Bump the generation count so no one will be confused
2621 	 * by reincarnations of this inode.
2622 	 */
2623 	VFS_I(ip)->i_generation++;
2624 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2625 
2626 	if (xic.deleted)
2627 		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2628 out:
2629 	xfs_perag_put(pag);
2630 	return error;
2631 }
2632 
2633 /*
2634  * This is called to unpin an inode.  The caller must have the inode locked
2635  * in at least shared mode so that the buffer cannot be subsequently pinned
2636  * once someone is waiting for it to be unpinned.
2637  */
2638 static void
2639 xfs_iunpin(
2640 	struct xfs_inode	*ip)
2641 {
2642 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2643 
2644 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2645 
2646 	/* Give the log a push to start the unpinning I/O */
2647 	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2648 
2649 }
2650 
2651 static void
2652 __xfs_iunpin_wait(
2653 	struct xfs_inode	*ip)
2654 {
2655 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2656 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2657 
2658 	xfs_iunpin(ip);
2659 
2660 	do {
2661 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2662 		if (xfs_ipincount(ip))
2663 			io_schedule();
2664 	} while (xfs_ipincount(ip));
2665 	finish_wait(wq, &wait.wq_entry);
2666 }
2667 
2668 void
2669 xfs_iunpin_wait(
2670 	struct xfs_inode	*ip)
2671 {
2672 	if (xfs_ipincount(ip))
2673 		__xfs_iunpin_wait(ip);
2674 }
2675 
2676 /*
2677  * Removing an inode from the namespace involves removing the directory entry
2678  * and dropping the link count on the inode. Removing the directory entry can
2679  * result in locking an AGF (directory blocks were freed) and removing a link
2680  * count can result in placing the inode on an unlinked list which results in
2681  * locking an AGI.
2682  *
2683  * The big problem here is that we have an ordering constraint on AGF and AGI
2684  * locking - inode allocation locks the AGI, then can allocate a new extent for
2685  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2686  * removes the inode from the unlinked list, requiring that we lock the AGI
2687  * first, and then freeing the inode can result in an inode chunk being freed
2688  * and hence freeing disk space requiring that we lock an AGF.
2689  *
2690  * Hence the ordering that is imposed by other parts of the code is AGI before
2691  * AGF. This means we cannot remove the directory entry before we drop the inode
2692  * reference count and put it on the unlinked list as this results in a lock
2693  * order of AGF then AGI, and this can deadlock against inode allocation and
2694  * freeing. Therefore we must drop the link counts before we remove the
2695  * directory entry.
2696  *
2697  * This is still safe from a transactional point of view - it is not until we
2698  * get to xfs_defer_finish() that we have the possibility of multiple
2699  * transactions in this operation. Hence as long as we remove the directory
2700  * entry and drop the link count in the first transaction of the remove
2701  * operation, there are no transactional constraints on the ordering here.
2702  */
2703 int
2704 xfs_remove(
2705 	xfs_inode_t             *dp,
2706 	struct xfs_name		*name,
2707 	xfs_inode_t		*ip)
2708 {
2709 	xfs_mount_t		*mp = dp->i_mount;
2710 	xfs_trans_t             *tp = NULL;
2711 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2712 	int                     error = 0;
2713 	uint			resblks;
2714 
2715 	trace_xfs_remove(dp, name);
2716 
2717 	if (XFS_FORCED_SHUTDOWN(mp))
2718 		return -EIO;
2719 
2720 	error = xfs_qm_dqattach(dp);
2721 	if (error)
2722 		goto std_return;
2723 
2724 	error = xfs_qm_dqattach(ip);
2725 	if (error)
2726 		goto std_return;
2727 
2728 	/*
2729 	 * We try to get the real space reservation first,
2730 	 * allowing for directory btree deletion(s) implying
2731 	 * possible bmap insert(s).  If we can't get the space
2732 	 * reservation then we use 0 instead, and avoid the bmap
2733 	 * btree insert(s) in the directory code by, if the bmap
2734 	 * insert tries to happen, instead trimming the LAST
2735 	 * block from the directory.
2736 	 */
2737 	resblks = XFS_REMOVE_SPACE_RES(mp);
2738 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2739 	if (error == -ENOSPC) {
2740 		resblks = 0;
2741 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2742 				&tp);
2743 	}
2744 	if (error) {
2745 		ASSERT(error != -ENOSPC);
2746 		goto std_return;
2747 	}
2748 
2749 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2750 
2751 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2752 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2753 
2754 	/*
2755 	 * If we're removing a directory perform some additional validation.
2756 	 */
2757 	if (is_dir) {
2758 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2759 		if (VFS_I(ip)->i_nlink != 2) {
2760 			error = -ENOTEMPTY;
2761 			goto out_trans_cancel;
2762 		}
2763 		if (!xfs_dir_isempty(ip)) {
2764 			error = -ENOTEMPTY;
2765 			goto out_trans_cancel;
2766 		}
2767 
2768 		/* Drop the link from ip's "..".  */
2769 		error = xfs_droplink(tp, dp);
2770 		if (error)
2771 			goto out_trans_cancel;
2772 
2773 		/* Drop the "." link from ip to self.  */
2774 		error = xfs_droplink(tp, ip);
2775 		if (error)
2776 			goto out_trans_cancel;
2777 
2778 		/*
2779 		 * Point the unlinked child directory's ".." entry to the root
2780 		 * directory to eliminate back-references to inodes that may
2781 		 * get freed before the child directory is closed.  If the fs
2782 		 * gets shrunk, this can lead to dirent inode validation errors.
2783 		 */
2784 		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2785 			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2786 					tp->t_mountp->m_sb.sb_rootino, 0);
2787 			if (error)
2788 				return error;
2789 		}
2790 	} else {
2791 		/*
2792 		 * When removing a non-directory we need to log the parent
2793 		 * inode here.  For a directory this is done implicitly
2794 		 * by the xfs_droplink call for the ".." entry.
2795 		 */
2796 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2797 	}
2798 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2799 
2800 	/* Drop the link from dp to ip. */
2801 	error = xfs_droplink(tp, ip);
2802 	if (error)
2803 		goto out_trans_cancel;
2804 
2805 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2806 	if (error) {
2807 		ASSERT(error != -ENOENT);
2808 		goto out_trans_cancel;
2809 	}
2810 
2811 	/*
2812 	 * If this is a synchronous mount, make sure that the
2813 	 * remove transaction goes to disk before returning to
2814 	 * the user.
2815 	 */
2816 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2817 		xfs_trans_set_sync(tp);
2818 
2819 	error = xfs_trans_commit(tp);
2820 	if (error)
2821 		goto std_return;
2822 
2823 	if (is_dir && xfs_inode_is_filestream(ip))
2824 		xfs_filestream_deassociate(ip);
2825 
2826 	return 0;
2827 
2828  out_trans_cancel:
2829 	xfs_trans_cancel(tp);
2830  std_return:
2831 	return error;
2832 }
2833 
2834 /*
2835  * Enter all inodes for a rename transaction into a sorted array.
2836  */
2837 #define __XFS_SORT_INODES	5
2838 STATIC void
2839 xfs_sort_for_rename(
2840 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2841 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2842 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2843 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2844 	struct xfs_inode	*wip,	/* in: whiteout inode */
2845 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2846 	int			*num_inodes)  /* in/out: inodes in array */
2847 {
2848 	int			i, j;
2849 
2850 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2851 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2852 
2853 	/*
2854 	 * i_tab contains a list of pointers to inodes.  We initialize
2855 	 * the table here & we'll sort it.  We will then use it to
2856 	 * order the acquisition of the inode locks.
2857 	 *
2858 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2859 	 */
2860 	i = 0;
2861 	i_tab[i++] = dp1;
2862 	i_tab[i++] = dp2;
2863 	i_tab[i++] = ip1;
2864 	if (ip2)
2865 		i_tab[i++] = ip2;
2866 	if (wip)
2867 		i_tab[i++] = wip;
2868 	*num_inodes = i;
2869 
2870 	/*
2871 	 * Sort the elements via bubble sort.  (Remember, there are at
2872 	 * most 5 elements to sort, so this is adequate.)
2873 	 */
2874 	for (i = 0; i < *num_inodes; i++) {
2875 		for (j = 1; j < *num_inodes; j++) {
2876 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2877 				struct xfs_inode *temp = i_tab[j];
2878 				i_tab[j] = i_tab[j-1];
2879 				i_tab[j-1] = temp;
2880 			}
2881 		}
2882 	}
2883 }
2884 
2885 static int
2886 xfs_finish_rename(
2887 	struct xfs_trans	*tp)
2888 {
2889 	/*
2890 	 * If this is a synchronous mount, make sure that the rename transaction
2891 	 * goes to disk before returning to the user.
2892 	 */
2893 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2894 		xfs_trans_set_sync(tp);
2895 
2896 	return xfs_trans_commit(tp);
2897 }
2898 
2899 /*
2900  * xfs_cross_rename()
2901  *
2902  * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2903  */
2904 STATIC int
2905 xfs_cross_rename(
2906 	struct xfs_trans	*tp,
2907 	struct xfs_inode	*dp1,
2908 	struct xfs_name		*name1,
2909 	struct xfs_inode	*ip1,
2910 	struct xfs_inode	*dp2,
2911 	struct xfs_name		*name2,
2912 	struct xfs_inode	*ip2,
2913 	int			spaceres)
2914 {
2915 	int		error = 0;
2916 	int		ip1_flags = 0;
2917 	int		ip2_flags = 0;
2918 	int		dp2_flags = 0;
2919 
2920 	/* Swap inode number for dirent in first parent */
2921 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2922 	if (error)
2923 		goto out_trans_abort;
2924 
2925 	/* Swap inode number for dirent in second parent */
2926 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2927 	if (error)
2928 		goto out_trans_abort;
2929 
2930 	/*
2931 	 * If we're renaming one or more directories across different parents,
2932 	 * update the respective ".." entries (and link counts) to match the new
2933 	 * parents.
2934 	 */
2935 	if (dp1 != dp2) {
2936 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2937 
2938 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2939 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2940 						dp1->i_ino, spaceres);
2941 			if (error)
2942 				goto out_trans_abort;
2943 
2944 			/* transfer ip2 ".." reference to dp1 */
2945 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2946 				error = xfs_droplink(tp, dp2);
2947 				if (error)
2948 					goto out_trans_abort;
2949 				xfs_bumplink(tp, dp1);
2950 			}
2951 
2952 			/*
2953 			 * Although ip1 isn't changed here, userspace needs
2954 			 * to be warned about the change, so that applications
2955 			 * relying on it (like backup ones), will properly
2956 			 * notify the change
2957 			 */
2958 			ip1_flags |= XFS_ICHGTIME_CHG;
2959 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2960 		}
2961 
2962 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2963 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2964 						dp2->i_ino, spaceres);
2965 			if (error)
2966 				goto out_trans_abort;
2967 
2968 			/* transfer ip1 ".." reference to dp2 */
2969 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2970 				error = xfs_droplink(tp, dp1);
2971 				if (error)
2972 					goto out_trans_abort;
2973 				xfs_bumplink(tp, dp2);
2974 			}
2975 
2976 			/*
2977 			 * Although ip2 isn't changed here, userspace needs
2978 			 * to be warned about the change, so that applications
2979 			 * relying on it (like backup ones), will properly
2980 			 * notify the change
2981 			 */
2982 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2983 			ip2_flags |= XFS_ICHGTIME_CHG;
2984 		}
2985 	}
2986 
2987 	if (ip1_flags) {
2988 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2989 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2990 	}
2991 	if (ip2_flags) {
2992 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2993 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2994 	}
2995 	if (dp2_flags) {
2996 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2997 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2998 	}
2999 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3000 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3001 	return xfs_finish_rename(tp);
3002 
3003 out_trans_abort:
3004 	xfs_trans_cancel(tp);
3005 	return error;
3006 }
3007 
3008 /*
3009  * xfs_rename_alloc_whiteout()
3010  *
3011  * Return a referenced, unlinked, unlocked inode that can be used as a
3012  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3013  * crash between allocating the inode and linking it into the rename transaction
3014  * recovery will free the inode and we won't leak it.
3015  */
3016 static int
3017 xfs_rename_alloc_whiteout(
3018 	struct user_namespace	*mnt_userns,
3019 	struct xfs_inode	*dp,
3020 	struct xfs_inode	**wip)
3021 {
3022 	struct xfs_inode	*tmpfile;
3023 	int			error;
3024 
3025 	error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
3026 				   &tmpfile);
3027 	if (error)
3028 		return error;
3029 
3030 	/*
3031 	 * Prepare the tmpfile inode as if it were created through the VFS.
3032 	 * Complete the inode setup and flag it as linkable.  nlink is already
3033 	 * zero, so we can skip the drop_nlink.
3034 	 */
3035 	xfs_setup_iops(tmpfile);
3036 	xfs_finish_inode_setup(tmpfile);
3037 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3038 
3039 	*wip = tmpfile;
3040 	return 0;
3041 }
3042 
3043 /*
3044  * xfs_rename
3045  */
3046 int
3047 xfs_rename(
3048 	struct user_namespace	*mnt_userns,
3049 	struct xfs_inode	*src_dp,
3050 	struct xfs_name		*src_name,
3051 	struct xfs_inode	*src_ip,
3052 	struct xfs_inode	*target_dp,
3053 	struct xfs_name		*target_name,
3054 	struct xfs_inode	*target_ip,
3055 	unsigned int		flags)
3056 {
3057 	struct xfs_mount	*mp = src_dp->i_mount;
3058 	struct xfs_trans	*tp;
3059 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3060 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3061 	int			i;
3062 	int			num_inodes = __XFS_SORT_INODES;
3063 	bool			new_parent = (src_dp != target_dp);
3064 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3065 	int			spaceres;
3066 	int			error;
3067 
3068 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3069 
3070 	if ((flags & RENAME_EXCHANGE) && !target_ip)
3071 		return -EINVAL;
3072 
3073 	/*
3074 	 * If we are doing a whiteout operation, allocate the whiteout inode
3075 	 * we will be placing at the target and ensure the type is set
3076 	 * appropriately.
3077 	 */
3078 	if (flags & RENAME_WHITEOUT) {
3079 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3080 		error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip);
3081 		if (error)
3082 			return error;
3083 
3084 		/* setup target dirent info as whiteout */
3085 		src_name->type = XFS_DIR3_FT_CHRDEV;
3086 	}
3087 
3088 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3089 				inodes, &num_inodes);
3090 
3091 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3092 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3093 	if (error == -ENOSPC) {
3094 		spaceres = 0;
3095 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3096 				&tp);
3097 	}
3098 	if (error)
3099 		goto out_release_wip;
3100 
3101 	/*
3102 	 * Attach the dquots to the inodes
3103 	 */
3104 	error = xfs_qm_vop_rename_dqattach(inodes);
3105 	if (error)
3106 		goto out_trans_cancel;
3107 
3108 	/*
3109 	 * Lock all the participating inodes. Depending upon whether
3110 	 * the target_name exists in the target directory, and
3111 	 * whether the target directory is the same as the source
3112 	 * directory, we can lock from 2 to 4 inodes.
3113 	 */
3114 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3115 
3116 	/*
3117 	 * Join all the inodes to the transaction. From this point on,
3118 	 * we can rely on either trans_commit or trans_cancel to unlock
3119 	 * them.
3120 	 */
3121 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3122 	if (new_parent)
3123 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3124 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3125 	if (target_ip)
3126 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3127 	if (wip)
3128 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3129 
3130 	/*
3131 	 * If we are using project inheritance, we only allow renames
3132 	 * into our tree when the project IDs are the same; else the
3133 	 * tree quota mechanism would be circumvented.
3134 	 */
3135 	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3136 		     target_dp->i_projid != src_ip->i_projid)) {
3137 		error = -EXDEV;
3138 		goto out_trans_cancel;
3139 	}
3140 
3141 	/* RENAME_EXCHANGE is unique from here on. */
3142 	if (flags & RENAME_EXCHANGE)
3143 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3144 					target_dp, target_name, target_ip,
3145 					spaceres);
3146 
3147 	/*
3148 	 * Check for expected errors before we dirty the transaction
3149 	 * so we can return an error without a transaction abort.
3150 	 *
3151 	 * Extent count overflow check:
3152 	 *
3153 	 * From the perspective of src_dp, a rename operation is essentially a
3154 	 * directory entry remove operation. Hence the only place where we check
3155 	 * for extent count overflow for src_dp is in
3156 	 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns
3157 	 * -ENOSPC when it detects a possible extent count overflow and in
3158 	 * response, the higher layers of directory handling code do the
3159 	 * following:
3160 	 * 1. Data/Free blocks: XFS lets these blocks linger until a
3161 	 *    future remove operation removes them.
3162 	 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the
3163 	 *    Leaf space and unmaps the last block.
3164 	 *
3165 	 * For target_dp, there are two cases depending on whether the
3166 	 * destination directory entry exists or not.
3167 	 *
3168 	 * When destination directory entry does not exist (i.e. target_ip ==
3169 	 * NULL), extent count overflow check is performed only when transaction
3170 	 * has a non-zero sized space reservation associated with it.  With a
3171 	 * zero-sized space reservation, XFS allows a rename operation to
3172 	 * continue only when the directory has sufficient free space in its
3173 	 * data/leaf/free space blocks to hold the new entry.
3174 	 *
3175 	 * When destination directory entry exists (i.e. target_ip != NULL), all
3176 	 * we need to do is change the inode number associated with the already
3177 	 * existing entry. Hence there is no need to perform an extent count
3178 	 * overflow check.
3179 	 */
3180 	if (target_ip == NULL) {
3181 		/*
3182 		 * If there's no space reservation, check the entry will
3183 		 * fit before actually inserting it.
3184 		 */
3185 		if (!spaceres) {
3186 			error = xfs_dir_canenter(tp, target_dp, target_name);
3187 			if (error)
3188 				goto out_trans_cancel;
3189 		} else {
3190 			error = xfs_iext_count_may_overflow(target_dp,
3191 					XFS_DATA_FORK,
3192 					XFS_IEXT_DIR_MANIP_CNT(mp));
3193 			if (error)
3194 				goto out_trans_cancel;
3195 		}
3196 	} else {
3197 		/*
3198 		 * If target exists and it's a directory, check that whether
3199 		 * it can be destroyed.
3200 		 */
3201 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3202 		    (!xfs_dir_isempty(target_ip) ||
3203 		     (VFS_I(target_ip)->i_nlink > 2))) {
3204 			error = -EEXIST;
3205 			goto out_trans_cancel;
3206 		}
3207 	}
3208 
3209 	/*
3210 	 * Lock the AGI buffers we need to handle bumping the nlink of the
3211 	 * whiteout inode off the unlinked list and to handle dropping the
3212 	 * nlink of the target inode.  Per locking order rules, do this in
3213 	 * increasing AG order and before directory block allocation tries to
3214 	 * grab AGFs because we grab AGIs before AGFs.
3215 	 *
3216 	 * The (vfs) caller must ensure that if src is a directory then
3217 	 * target_ip is either null or an empty directory.
3218 	 */
3219 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3220 		if (inodes[i] == wip ||
3221 		    (inodes[i] == target_ip &&
3222 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3223 			struct xfs_buf	*bp;
3224 			xfs_agnumber_t	agno;
3225 
3226 			agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3227 			error = xfs_read_agi(mp, tp, agno, &bp);
3228 			if (error)
3229 				goto out_trans_cancel;
3230 		}
3231 	}
3232 
3233 	/*
3234 	 * Directory entry creation below may acquire the AGF. Remove
3235 	 * the whiteout from the unlinked list first to preserve correct
3236 	 * AGI/AGF locking order. This dirties the transaction so failures
3237 	 * after this point will abort and log recovery will clean up the
3238 	 * mess.
3239 	 *
3240 	 * For whiteouts, we need to bump the link count on the whiteout
3241 	 * inode. After this point, we have a real link, clear the tmpfile
3242 	 * state flag from the inode so it doesn't accidentally get misused
3243 	 * in future.
3244 	 */
3245 	if (wip) {
3246 		struct xfs_perag	*pag;
3247 
3248 		ASSERT(VFS_I(wip)->i_nlink == 0);
3249 
3250 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3251 		error = xfs_iunlink_remove(tp, pag, wip);
3252 		xfs_perag_put(pag);
3253 		if (error)
3254 			goto out_trans_cancel;
3255 
3256 		xfs_bumplink(tp, wip);
3257 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3258 	}
3259 
3260 	/*
3261 	 * Set up the target.
3262 	 */
3263 	if (target_ip == NULL) {
3264 		/*
3265 		 * If target does not exist and the rename crosses
3266 		 * directories, adjust the target directory link count
3267 		 * to account for the ".." reference from the new entry.
3268 		 */
3269 		error = xfs_dir_createname(tp, target_dp, target_name,
3270 					   src_ip->i_ino, spaceres);
3271 		if (error)
3272 			goto out_trans_cancel;
3273 
3274 		xfs_trans_ichgtime(tp, target_dp,
3275 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3276 
3277 		if (new_parent && src_is_directory) {
3278 			xfs_bumplink(tp, target_dp);
3279 		}
3280 	} else { /* target_ip != NULL */
3281 		/*
3282 		 * Link the source inode under the target name.
3283 		 * If the source inode is a directory and we are moving
3284 		 * it across directories, its ".." entry will be
3285 		 * inconsistent until we replace that down below.
3286 		 *
3287 		 * In case there is already an entry with the same
3288 		 * name at the destination directory, remove it first.
3289 		 */
3290 		error = xfs_dir_replace(tp, target_dp, target_name,
3291 					src_ip->i_ino, spaceres);
3292 		if (error)
3293 			goto out_trans_cancel;
3294 
3295 		xfs_trans_ichgtime(tp, target_dp,
3296 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3297 
3298 		/*
3299 		 * Decrement the link count on the target since the target
3300 		 * dir no longer points to it.
3301 		 */
3302 		error = xfs_droplink(tp, target_ip);
3303 		if (error)
3304 			goto out_trans_cancel;
3305 
3306 		if (src_is_directory) {
3307 			/*
3308 			 * Drop the link from the old "." entry.
3309 			 */
3310 			error = xfs_droplink(tp, target_ip);
3311 			if (error)
3312 				goto out_trans_cancel;
3313 		}
3314 	} /* target_ip != NULL */
3315 
3316 	/*
3317 	 * Remove the source.
3318 	 */
3319 	if (new_parent && src_is_directory) {
3320 		/*
3321 		 * Rewrite the ".." entry to point to the new
3322 		 * directory.
3323 		 */
3324 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3325 					target_dp->i_ino, spaceres);
3326 		ASSERT(error != -EEXIST);
3327 		if (error)
3328 			goto out_trans_cancel;
3329 	}
3330 
3331 	/*
3332 	 * We always want to hit the ctime on the source inode.
3333 	 *
3334 	 * This isn't strictly required by the standards since the source
3335 	 * inode isn't really being changed, but old unix file systems did
3336 	 * it and some incremental backup programs won't work without it.
3337 	 */
3338 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3339 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3340 
3341 	/*
3342 	 * Adjust the link count on src_dp.  This is necessary when
3343 	 * renaming a directory, either within one parent when
3344 	 * the target existed, or across two parent directories.
3345 	 */
3346 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3347 
3348 		/*
3349 		 * Decrement link count on src_directory since the
3350 		 * entry that's moved no longer points to it.
3351 		 */
3352 		error = xfs_droplink(tp, src_dp);
3353 		if (error)
3354 			goto out_trans_cancel;
3355 	}
3356 
3357 	/*
3358 	 * For whiteouts, we only need to update the source dirent with the
3359 	 * inode number of the whiteout inode rather than removing it
3360 	 * altogether.
3361 	 */
3362 	if (wip) {
3363 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3364 					spaceres);
3365 	} else {
3366 		/*
3367 		 * NOTE: We don't need to check for extent count overflow here
3368 		 * because the dir remove name code will leave the dir block in
3369 		 * place if the extent count would overflow.
3370 		 */
3371 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3372 					   spaceres);
3373 	}
3374 
3375 	if (error)
3376 		goto out_trans_cancel;
3377 
3378 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3379 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3380 	if (new_parent)
3381 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3382 
3383 	error = xfs_finish_rename(tp);
3384 	if (wip)
3385 		xfs_irele(wip);
3386 	return error;
3387 
3388 out_trans_cancel:
3389 	xfs_trans_cancel(tp);
3390 out_release_wip:
3391 	if (wip)
3392 		xfs_irele(wip);
3393 	return error;
3394 }
3395 
3396 static int
3397 xfs_iflush(
3398 	struct xfs_inode	*ip,
3399 	struct xfs_buf		*bp)
3400 {
3401 	struct xfs_inode_log_item *iip = ip->i_itemp;
3402 	struct xfs_dinode	*dip;
3403 	struct xfs_mount	*mp = ip->i_mount;
3404 	int			error;
3405 
3406 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3407 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3408 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3409 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3410 	ASSERT(iip->ili_item.li_buf == bp);
3411 
3412 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3413 
3414 	/*
3415 	 * We don't flush the inode if any of the following checks fail, but we
3416 	 * do still update the log item and attach to the backing buffer as if
3417 	 * the flush happened. This is a formality to facilitate predictable
3418 	 * error handling as the caller will shutdown and fail the buffer.
3419 	 */
3420 	error = -EFSCORRUPTED;
3421 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3422 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3423 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3424 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3425 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3426 		goto flush_out;
3427 	}
3428 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3429 		if (XFS_TEST_ERROR(
3430 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3431 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3432 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3433 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3434 				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3435 				__func__, ip->i_ino, ip);
3436 			goto flush_out;
3437 		}
3438 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3439 		if (XFS_TEST_ERROR(
3440 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3441 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3442 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3443 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3444 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3445 				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3446 				__func__, ip->i_ino, ip);
3447 			goto flush_out;
3448 		}
3449 	}
3450 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3451 				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3452 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3453 			"%s: detected corrupt incore inode %Lu, "
3454 			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3455 			__func__, ip->i_ino,
3456 			ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3457 			ip->i_nblocks, ip);
3458 		goto flush_out;
3459 	}
3460 	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3461 				mp, XFS_ERRTAG_IFLUSH_6)) {
3462 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3463 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3464 			__func__, ip->i_ino, ip->i_forkoff, ip);
3465 		goto flush_out;
3466 	}
3467 
3468 	/*
3469 	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3470 	 * count for correct sequencing.  We bump the flush iteration count so
3471 	 * we can detect flushes which postdate a log record during recovery.
3472 	 * This is redundant as we now log every change and hence this can't
3473 	 * happen but we need to still do it to ensure backwards compatibility
3474 	 * with old kernels that predate logging all inode changes.
3475 	 */
3476 	if (!xfs_sb_version_has_v3inode(&mp->m_sb))
3477 		ip->i_flushiter++;
3478 
3479 	/*
3480 	 * If there are inline format data / attr forks attached to this inode,
3481 	 * make sure they are not corrupt.
3482 	 */
3483 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3484 	    xfs_ifork_verify_local_data(ip))
3485 		goto flush_out;
3486 	if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3487 	    xfs_ifork_verify_local_attr(ip))
3488 		goto flush_out;
3489 
3490 	/*
3491 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3492 	 * copy out the core of the inode, because if the inode is dirty at all
3493 	 * the core must be.
3494 	 */
3495 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3496 
3497 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3498 	if (!xfs_sb_version_has_v3inode(&mp->m_sb)) {
3499 		if (ip->i_flushiter == DI_MAX_FLUSH)
3500 			ip->i_flushiter = 0;
3501 	}
3502 
3503 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3504 	if (XFS_IFORK_Q(ip))
3505 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3506 
3507 	/*
3508 	 * We've recorded everything logged in the inode, so we'd like to clear
3509 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3510 	 * However, we can't stop logging all this information until the data
3511 	 * we've copied into the disk buffer is written to disk.  If we did we
3512 	 * might overwrite the copy of the inode in the log with all the data
3513 	 * after re-logging only part of it, and in the face of a crash we
3514 	 * wouldn't have all the data we need to recover.
3515 	 *
3516 	 * What we do is move the bits to the ili_last_fields field.  When
3517 	 * logging the inode, these bits are moved back to the ili_fields field.
3518 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3519 	 * we know that the information those bits represent is permanently on
3520 	 * disk.  As long as the flush completes before the inode is logged
3521 	 * again, then both ili_fields and ili_last_fields will be cleared.
3522 	 */
3523 	error = 0;
3524 flush_out:
3525 	spin_lock(&iip->ili_lock);
3526 	iip->ili_last_fields = iip->ili_fields;
3527 	iip->ili_fields = 0;
3528 	iip->ili_fsync_fields = 0;
3529 	spin_unlock(&iip->ili_lock);
3530 
3531 	/*
3532 	 * Store the current LSN of the inode so that we can tell whether the
3533 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3534 	 */
3535 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3536 				&iip->ili_item.li_lsn);
3537 
3538 	/* generate the checksum. */
3539 	xfs_dinode_calc_crc(mp, dip);
3540 	return error;
3541 }
3542 
3543 /*
3544  * Non-blocking flush of dirty inode metadata into the backing buffer.
3545  *
3546  * The caller must have a reference to the inode and hold the cluster buffer
3547  * locked. The function will walk across all the inodes on the cluster buffer it
3548  * can find and lock without blocking, and flush them to the cluster buffer.
3549  *
3550  * On successful flushing of at least one inode, the caller must write out the
3551  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3552  * the caller needs to release the buffer. On failure, the filesystem will be
3553  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3554  * will be returned.
3555  */
3556 int
3557 xfs_iflush_cluster(
3558 	struct xfs_buf		*bp)
3559 {
3560 	struct xfs_mount	*mp = bp->b_mount;
3561 	struct xfs_log_item	*lip, *n;
3562 	struct xfs_inode	*ip;
3563 	struct xfs_inode_log_item *iip;
3564 	int			clcount = 0;
3565 	int			error = 0;
3566 
3567 	/*
3568 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3569 	 * can remove itself from the list.
3570 	 */
3571 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3572 		iip = (struct xfs_inode_log_item *)lip;
3573 		ip = iip->ili_inode;
3574 
3575 		/*
3576 		 * Quick and dirty check to avoid locks if possible.
3577 		 */
3578 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3579 			continue;
3580 		if (xfs_ipincount(ip))
3581 			continue;
3582 
3583 		/*
3584 		 * The inode is still attached to the buffer, which means it is
3585 		 * dirty but reclaim might try to grab it. Check carefully for
3586 		 * that, and grab the ilock while still holding the i_flags_lock
3587 		 * to guarantee reclaim will not be able to reclaim this inode
3588 		 * once we drop the i_flags_lock.
3589 		 */
3590 		spin_lock(&ip->i_flags_lock);
3591 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3592 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3593 			spin_unlock(&ip->i_flags_lock);
3594 			continue;
3595 		}
3596 
3597 		/*
3598 		 * ILOCK will pin the inode against reclaim and prevent
3599 		 * concurrent transactions modifying the inode while we are
3600 		 * flushing the inode. If we get the lock, set the flushing
3601 		 * state before we drop the i_flags_lock.
3602 		 */
3603 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3604 			spin_unlock(&ip->i_flags_lock);
3605 			continue;
3606 		}
3607 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3608 		spin_unlock(&ip->i_flags_lock);
3609 
3610 		/*
3611 		 * Abort flushing this inode if we are shut down because the
3612 		 * inode may not currently be in the AIL. This can occur when
3613 		 * log I/O failure unpins the inode without inserting into the
3614 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3615 		 * that otherwise looks like it should be flushed.
3616 		 */
3617 		if (XFS_FORCED_SHUTDOWN(mp)) {
3618 			xfs_iunpin_wait(ip);
3619 			xfs_iflush_abort(ip);
3620 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3621 			error = -EIO;
3622 			continue;
3623 		}
3624 
3625 		/* don't block waiting on a log force to unpin dirty inodes */
3626 		if (xfs_ipincount(ip)) {
3627 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3628 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3629 			continue;
3630 		}
3631 
3632 		if (!xfs_inode_clean(ip))
3633 			error = xfs_iflush(ip, bp);
3634 		else
3635 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3636 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3637 		if (error)
3638 			break;
3639 		clcount++;
3640 	}
3641 
3642 	if (error) {
3643 		bp->b_flags |= XBF_ASYNC;
3644 		xfs_buf_ioend_fail(bp);
3645 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3646 		return error;
3647 	}
3648 
3649 	if (!clcount)
3650 		return -EAGAIN;
3651 
3652 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3653 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3654 	return 0;
3655 
3656 }
3657 
3658 /* Release an inode. */
3659 void
3660 xfs_irele(
3661 	struct xfs_inode	*ip)
3662 {
3663 	trace_xfs_irele(ip, _RET_IP_);
3664 	iput(VFS_I(ip));
3665 }
3666 
3667 /*
3668  * Ensure all commited transactions touching the inode are written to the log.
3669  */
3670 int
3671 xfs_log_force_inode(
3672 	struct xfs_inode	*ip)
3673 {
3674 	xfs_csn_t		seq = 0;
3675 
3676 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3677 	if (xfs_ipincount(ip))
3678 		seq = ip->i_itemp->ili_commit_seq;
3679 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3680 
3681 	if (!seq)
3682 		return 0;
3683 	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3684 }
3685 
3686 /*
3687  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3688  * abide vfs locking order (lowest pointer value goes first) and breaking the
3689  * layout leases before proceeding.  The loop is needed because we cannot call
3690  * the blocking break_layout() with the iolocks held, and therefore have to
3691  * back out both locks.
3692  */
3693 static int
3694 xfs_iolock_two_inodes_and_break_layout(
3695 	struct inode		*src,
3696 	struct inode		*dest)
3697 {
3698 	int			error;
3699 
3700 	if (src > dest)
3701 		swap(src, dest);
3702 
3703 retry:
3704 	/* Wait to break both inodes' layouts before we start locking. */
3705 	error = break_layout(src, true);
3706 	if (error)
3707 		return error;
3708 	if (src != dest) {
3709 		error = break_layout(dest, true);
3710 		if (error)
3711 			return error;
3712 	}
3713 
3714 	/* Lock one inode and make sure nobody got in and leased it. */
3715 	inode_lock(src);
3716 	error = break_layout(src, false);
3717 	if (error) {
3718 		inode_unlock(src);
3719 		if (error == -EWOULDBLOCK)
3720 			goto retry;
3721 		return error;
3722 	}
3723 
3724 	if (src == dest)
3725 		return 0;
3726 
3727 	/* Lock the other inode and make sure nobody got in and leased it. */
3728 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3729 	error = break_layout(dest, false);
3730 	if (error) {
3731 		inode_unlock(src);
3732 		inode_unlock(dest);
3733 		if (error == -EWOULDBLOCK)
3734 			goto retry;
3735 		return error;
3736 	}
3737 
3738 	return 0;
3739 }
3740 
3741 /*
3742  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3743  * mmap activity.
3744  */
3745 int
3746 xfs_ilock2_io_mmap(
3747 	struct xfs_inode	*ip1,
3748 	struct xfs_inode	*ip2)
3749 {
3750 	int			ret;
3751 
3752 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3753 	if (ret)
3754 		return ret;
3755 	filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3756 				    VFS_I(ip2)->i_mapping);
3757 	return 0;
3758 }
3759 
3760 /* Unlock both inodes to allow IO and mmap activity. */
3761 void
3762 xfs_iunlock2_io_mmap(
3763 	struct xfs_inode	*ip1,
3764 	struct xfs_inode	*ip2)
3765 {
3766 	filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3767 				      VFS_I(ip2)->i_mapping);
3768 	inode_unlock(VFS_I(ip2));
3769 	if (ip1 != ip2)
3770 		inode_unlock(VFS_I(ip1));
3771 }
3772