xref: /linux/fs/xfs/xfs_inode.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_inode.h"
29 #include "xfs_da_format.h"
30 #include "xfs_da_btree.h"
31 #include "xfs_dir2.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_attr.h"
34 #include "xfs_trans_space.h"
35 #include "xfs_trans.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_bmap_util.h"
41 #include "xfs_error.h"
42 #include "xfs_quota.h"
43 #include "xfs_filestream.h"
44 #include "xfs_cksum.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_symlink.h"
48 #include "xfs_trans_priv.h"
49 #include "xfs_log.h"
50 #include "xfs_bmap_btree.h"
51 
52 kmem_zone_t *xfs_inode_zone;
53 
54 /*
55  * Used in xfs_itruncate_extents().  This is the maximum number of extents
56  * freed from a file in a single transaction.
57  */
58 #define	XFS_ITRUNC_MAX_EXTENTS	2
59 
60 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
61 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
62 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
63 
64 /*
65  * helper function to extract extent size hint from inode
66  */
67 xfs_extlen_t
68 xfs_get_extsz_hint(
69 	struct xfs_inode	*ip)
70 {
71 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 		return ip->i_d.di_extsize;
73 	if (XFS_IS_REALTIME_INODE(ip))
74 		return ip->i_mount->m_sb.sb_rextsize;
75 	return 0;
76 }
77 
78 /*
79  * These two are wrapper routines around the xfs_ilock() routine used to
80  * centralize some grungy code.  They are used in places that wish to lock the
81  * inode solely for reading the extents.  The reason these places can't just
82  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83  * bringing in of the extents from disk for a file in b-tree format.  If the
84  * inode is in b-tree format, then we need to lock the inode exclusively until
85  * the extents are read in.  Locking it exclusively all the time would limit
86  * our parallelism unnecessarily, though.  What we do instead is check to see
87  * if the extents have been read in yet, and only lock the inode exclusively
88  * if they have not.
89  *
90  * The functions return a value which should be given to the corresponding
91  * xfs_iunlock() call.
92  */
93 uint
94 xfs_ilock_data_map_shared(
95 	struct xfs_inode	*ip)
96 {
97 	uint			lock_mode = XFS_ILOCK_SHARED;
98 
99 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
101 		lock_mode = XFS_ILOCK_EXCL;
102 	xfs_ilock(ip, lock_mode);
103 	return lock_mode;
104 }
105 
106 uint
107 xfs_ilock_attr_map_shared(
108 	struct xfs_inode	*ip)
109 {
110 	uint			lock_mode = XFS_ILOCK_SHARED;
111 
112 	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114 		lock_mode = XFS_ILOCK_EXCL;
115 	xfs_ilock(ip, lock_mode);
116 	return lock_mode;
117 }
118 
119 /*
120  * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
121  * the i_lock.  This routine allows various combinations of the locks to be
122  * obtained.
123  *
124  * The 3 locks should always be ordered so that the IO lock is obtained first,
125  * the mmap lock second and the ilock last in order to prevent deadlock.
126  *
127  * Basic locking order:
128  *
129  * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
130  *
131  * mmap_sem locking order:
132  *
133  * i_iolock -> page lock -> mmap_sem
134  * mmap_sem -> i_mmap_lock -> page_lock
135  *
136  * The difference in mmap_sem locking order mean that we cannot hold the
137  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
138  * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
139  * in get_user_pages() to map the user pages into the kernel address space for
140  * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
141  * page faults already hold the mmap_sem.
142  *
143  * Hence to serialise fully against both syscall and mmap based IO, we need to
144  * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
145  * taken in places where we need to invalidate the page cache in a race
146  * free manner (e.g. truncate, hole punch and other extent manipulation
147  * functions).
148  */
149 void
150 xfs_ilock(
151 	xfs_inode_t		*ip,
152 	uint			lock_flags)
153 {
154 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
155 
156 	/*
157 	 * You can't set both SHARED and EXCL for the same lock,
158 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
159 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
160 	 */
161 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
162 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
163 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
164 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
165 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
166 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
167 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
168 
169 	if (lock_flags & XFS_IOLOCK_EXCL)
170 		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
171 	else if (lock_flags & XFS_IOLOCK_SHARED)
172 		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
173 
174 	if (lock_flags & XFS_MMAPLOCK_EXCL)
175 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
176 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
177 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
178 
179 	if (lock_flags & XFS_ILOCK_EXCL)
180 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
181 	else if (lock_flags & XFS_ILOCK_SHARED)
182 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
183 }
184 
185 /*
186  * This is just like xfs_ilock(), except that the caller
187  * is guaranteed not to sleep.  It returns 1 if it gets
188  * the requested locks and 0 otherwise.  If the IO lock is
189  * obtained but the inode lock cannot be, then the IO lock
190  * is dropped before returning.
191  *
192  * ip -- the inode being locked
193  * lock_flags -- this parameter indicates the inode's locks to be
194  *       to be locked.  See the comment for xfs_ilock() for a list
195  *	 of valid values.
196  */
197 int
198 xfs_ilock_nowait(
199 	xfs_inode_t		*ip,
200 	uint			lock_flags)
201 {
202 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
203 
204 	/*
205 	 * You can't set both SHARED and EXCL for the same lock,
206 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
207 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
208 	 */
209 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
210 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
211 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
212 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
213 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
214 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
215 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
216 
217 	if (lock_flags & XFS_IOLOCK_EXCL) {
218 		if (!mrtryupdate(&ip->i_iolock))
219 			goto out;
220 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
221 		if (!mrtryaccess(&ip->i_iolock))
222 			goto out;
223 	}
224 
225 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
226 		if (!mrtryupdate(&ip->i_mmaplock))
227 			goto out_undo_iolock;
228 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
229 		if (!mrtryaccess(&ip->i_mmaplock))
230 			goto out_undo_iolock;
231 	}
232 
233 	if (lock_flags & XFS_ILOCK_EXCL) {
234 		if (!mrtryupdate(&ip->i_lock))
235 			goto out_undo_mmaplock;
236 	} else if (lock_flags & XFS_ILOCK_SHARED) {
237 		if (!mrtryaccess(&ip->i_lock))
238 			goto out_undo_mmaplock;
239 	}
240 	return 1;
241 
242 out_undo_mmaplock:
243 	if (lock_flags & XFS_MMAPLOCK_EXCL)
244 		mrunlock_excl(&ip->i_mmaplock);
245 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
246 		mrunlock_shared(&ip->i_mmaplock);
247 out_undo_iolock:
248 	if (lock_flags & XFS_IOLOCK_EXCL)
249 		mrunlock_excl(&ip->i_iolock);
250 	else if (lock_flags & XFS_IOLOCK_SHARED)
251 		mrunlock_shared(&ip->i_iolock);
252 out:
253 	return 0;
254 }
255 
256 /*
257  * xfs_iunlock() is used to drop the inode locks acquired with
258  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
259  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
260  * that we know which locks to drop.
261  *
262  * ip -- the inode being unlocked
263  * lock_flags -- this parameter indicates the inode's locks to be
264  *       to be unlocked.  See the comment for xfs_ilock() for a list
265  *	 of valid values for this parameter.
266  *
267  */
268 void
269 xfs_iunlock(
270 	xfs_inode_t		*ip,
271 	uint			lock_flags)
272 {
273 	/*
274 	 * You can't set both SHARED and EXCL for the same lock,
275 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
276 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
277 	 */
278 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
279 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
280 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
281 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
282 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
283 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
284 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
285 	ASSERT(lock_flags != 0);
286 
287 	if (lock_flags & XFS_IOLOCK_EXCL)
288 		mrunlock_excl(&ip->i_iolock);
289 	else if (lock_flags & XFS_IOLOCK_SHARED)
290 		mrunlock_shared(&ip->i_iolock);
291 
292 	if (lock_flags & XFS_MMAPLOCK_EXCL)
293 		mrunlock_excl(&ip->i_mmaplock);
294 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
295 		mrunlock_shared(&ip->i_mmaplock);
296 
297 	if (lock_flags & XFS_ILOCK_EXCL)
298 		mrunlock_excl(&ip->i_lock);
299 	else if (lock_flags & XFS_ILOCK_SHARED)
300 		mrunlock_shared(&ip->i_lock);
301 
302 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
303 }
304 
305 /*
306  * give up write locks.  the i/o lock cannot be held nested
307  * if it is being demoted.
308  */
309 void
310 xfs_ilock_demote(
311 	xfs_inode_t		*ip,
312 	uint			lock_flags)
313 {
314 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
315 	ASSERT((lock_flags &
316 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
317 
318 	if (lock_flags & XFS_ILOCK_EXCL)
319 		mrdemote(&ip->i_lock);
320 	if (lock_flags & XFS_MMAPLOCK_EXCL)
321 		mrdemote(&ip->i_mmaplock);
322 	if (lock_flags & XFS_IOLOCK_EXCL)
323 		mrdemote(&ip->i_iolock);
324 
325 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
326 }
327 
328 #if defined(DEBUG) || defined(XFS_WARN)
329 int
330 xfs_isilocked(
331 	xfs_inode_t		*ip,
332 	uint			lock_flags)
333 {
334 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
335 		if (!(lock_flags & XFS_ILOCK_SHARED))
336 			return !!ip->i_lock.mr_writer;
337 		return rwsem_is_locked(&ip->i_lock.mr_lock);
338 	}
339 
340 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
341 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
342 			return !!ip->i_mmaplock.mr_writer;
343 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
344 	}
345 
346 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
347 		if (!(lock_flags & XFS_IOLOCK_SHARED))
348 			return !!ip->i_iolock.mr_writer;
349 		return rwsem_is_locked(&ip->i_iolock.mr_lock);
350 	}
351 
352 	ASSERT(0);
353 	return 0;
354 }
355 #endif
356 
357 #ifdef DEBUG
358 int xfs_locked_n;
359 int xfs_small_retries;
360 int xfs_middle_retries;
361 int xfs_lots_retries;
362 int xfs_lock_delays;
363 #endif
364 
365 /*
366  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
367  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
368  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
369  * errors and warnings.
370  */
371 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
372 static bool
373 xfs_lockdep_subclass_ok(
374 	int subclass)
375 {
376 	return subclass < MAX_LOCKDEP_SUBCLASSES;
377 }
378 #else
379 #define xfs_lockdep_subclass_ok(subclass)	(true)
380 #endif
381 
382 /*
383  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
384  * value. This can be called for any type of inode lock combination, including
385  * parent locking. Care must be taken to ensure we don't overrun the subclass
386  * storage fields in the class mask we build.
387  */
388 static inline int
389 xfs_lock_inumorder(int lock_mode, int subclass)
390 {
391 	int	class = 0;
392 
393 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
394 			      XFS_ILOCK_RTSUM)));
395 	ASSERT(xfs_lockdep_subclass_ok(subclass));
396 
397 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
398 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
399 		ASSERT(xfs_lockdep_subclass_ok(subclass +
400 						XFS_IOLOCK_PARENT_VAL));
401 		class += subclass << XFS_IOLOCK_SHIFT;
402 		if (lock_mode & XFS_IOLOCK_PARENT)
403 			class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
404 	}
405 
406 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
407 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
408 		class += subclass << XFS_MMAPLOCK_SHIFT;
409 	}
410 
411 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
412 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
413 		class += subclass << XFS_ILOCK_SHIFT;
414 	}
415 
416 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
417 }
418 
419 /*
420  * The following routine will lock n inodes in exclusive mode.  We assume the
421  * caller calls us with the inodes in i_ino order.
422  *
423  * We need to detect deadlock where an inode that we lock is in the AIL and we
424  * start waiting for another inode that is locked by a thread in a long running
425  * transaction (such as truncate). This can result in deadlock since the long
426  * running trans might need to wait for the inode we just locked in order to
427  * push the tail and free space in the log.
428  *
429  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
430  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
431  * lock more than one at a time, lockdep will report false positives saying we
432  * have violated locking orders.
433  */
434 void
435 xfs_lock_inodes(
436 	xfs_inode_t	**ips,
437 	int		inodes,
438 	uint		lock_mode)
439 {
440 	int		attempts = 0, i, j, try_lock;
441 	xfs_log_item_t	*lp;
442 
443 	/*
444 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
445 	 * support an arbitrary depth of locking here, but absolute limits on
446 	 * inodes depend on the the type of locking and the limits placed by
447 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
448 	 * the asserts.
449 	 */
450 	ASSERT(ips && inodes >= 2 && inodes <= 5);
451 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
452 			    XFS_ILOCK_EXCL));
453 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
454 			      XFS_ILOCK_SHARED)));
455 	ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
456 		inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
457 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
458 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
459 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
460 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
461 
462 	if (lock_mode & XFS_IOLOCK_EXCL) {
463 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
464 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
465 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
466 
467 	try_lock = 0;
468 	i = 0;
469 again:
470 	for (; i < inodes; i++) {
471 		ASSERT(ips[i]);
472 
473 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
474 			continue;
475 
476 		/*
477 		 * If try_lock is not set yet, make sure all locked inodes are
478 		 * not in the AIL.  If any are, set try_lock to be used later.
479 		 */
480 		if (!try_lock) {
481 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
482 				lp = (xfs_log_item_t *)ips[j]->i_itemp;
483 				if (lp && (lp->li_flags & XFS_LI_IN_AIL))
484 					try_lock++;
485 			}
486 		}
487 
488 		/*
489 		 * If any of the previous locks we have locked is in the AIL,
490 		 * we must TRY to get the second and subsequent locks. If
491 		 * we can't get any, we must release all we have
492 		 * and try again.
493 		 */
494 		if (!try_lock) {
495 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
496 			continue;
497 		}
498 
499 		/* try_lock means we have an inode locked that is in the AIL. */
500 		ASSERT(i != 0);
501 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
502 			continue;
503 
504 		/*
505 		 * Unlock all previous guys and try again.  xfs_iunlock will try
506 		 * to push the tail if the inode is in the AIL.
507 		 */
508 		attempts++;
509 		for (j = i - 1; j >= 0; j--) {
510 			/*
511 			 * Check to see if we've already unlocked this one.  Not
512 			 * the first one going back, and the inode ptr is the
513 			 * same.
514 			 */
515 			if (j != (i - 1) && ips[j] == ips[j + 1])
516 				continue;
517 
518 			xfs_iunlock(ips[j], lock_mode);
519 		}
520 
521 		if ((attempts % 5) == 0) {
522 			delay(1); /* Don't just spin the CPU */
523 #ifdef DEBUG
524 			xfs_lock_delays++;
525 #endif
526 		}
527 		i = 0;
528 		try_lock = 0;
529 		goto again;
530 	}
531 
532 #ifdef DEBUG
533 	if (attempts) {
534 		if (attempts < 5) xfs_small_retries++;
535 		else if (attempts < 100) xfs_middle_retries++;
536 		else xfs_lots_retries++;
537 	} else {
538 		xfs_locked_n++;
539 	}
540 #endif
541 }
542 
543 /*
544  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
545  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
546  * lock more than one at a time, lockdep will report false positives saying we
547  * have violated locking orders.
548  */
549 void
550 xfs_lock_two_inodes(
551 	xfs_inode_t		*ip0,
552 	xfs_inode_t		*ip1,
553 	uint			lock_mode)
554 {
555 	xfs_inode_t		*temp;
556 	int			attempts = 0;
557 	xfs_log_item_t		*lp;
558 
559 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
560 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
561 		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 	} else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
563 		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 
565 	ASSERT(ip0->i_ino != ip1->i_ino);
566 
567 	if (ip0->i_ino > ip1->i_ino) {
568 		temp = ip0;
569 		ip0 = ip1;
570 		ip1 = temp;
571 	}
572 
573  again:
574 	xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
575 
576 	/*
577 	 * If the first lock we have locked is in the AIL, we must TRY to get
578 	 * the second lock. If we can't get it, we must release the first one
579 	 * and try again.
580 	 */
581 	lp = (xfs_log_item_t *)ip0->i_itemp;
582 	if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
583 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
584 			xfs_iunlock(ip0, lock_mode);
585 			if ((++attempts % 5) == 0)
586 				delay(1); /* Don't just spin the CPU */
587 			goto again;
588 		}
589 	} else {
590 		xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
591 	}
592 }
593 
594 
595 void
596 __xfs_iflock(
597 	struct xfs_inode	*ip)
598 {
599 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
600 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
601 
602 	do {
603 		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
604 		if (xfs_isiflocked(ip))
605 			io_schedule();
606 	} while (!xfs_iflock_nowait(ip));
607 
608 	finish_wait(wq, &wait.wait);
609 }
610 
611 STATIC uint
612 _xfs_dic2xflags(
613 	__uint16_t		di_flags,
614 	uint64_t		di_flags2,
615 	bool			has_attr)
616 {
617 	uint			flags = 0;
618 
619 	if (di_flags & XFS_DIFLAG_ANY) {
620 		if (di_flags & XFS_DIFLAG_REALTIME)
621 			flags |= FS_XFLAG_REALTIME;
622 		if (di_flags & XFS_DIFLAG_PREALLOC)
623 			flags |= FS_XFLAG_PREALLOC;
624 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
625 			flags |= FS_XFLAG_IMMUTABLE;
626 		if (di_flags & XFS_DIFLAG_APPEND)
627 			flags |= FS_XFLAG_APPEND;
628 		if (di_flags & XFS_DIFLAG_SYNC)
629 			flags |= FS_XFLAG_SYNC;
630 		if (di_flags & XFS_DIFLAG_NOATIME)
631 			flags |= FS_XFLAG_NOATIME;
632 		if (di_flags & XFS_DIFLAG_NODUMP)
633 			flags |= FS_XFLAG_NODUMP;
634 		if (di_flags & XFS_DIFLAG_RTINHERIT)
635 			flags |= FS_XFLAG_RTINHERIT;
636 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
637 			flags |= FS_XFLAG_PROJINHERIT;
638 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
639 			flags |= FS_XFLAG_NOSYMLINKS;
640 		if (di_flags & XFS_DIFLAG_EXTSIZE)
641 			flags |= FS_XFLAG_EXTSIZE;
642 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
643 			flags |= FS_XFLAG_EXTSZINHERIT;
644 		if (di_flags & XFS_DIFLAG_NODEFRAG)
645 			flags |= FS_XFLAG_NODEFRAG;
646 		if (di_flags & XFS_DIFLAG_FILESTREAM)
647 			flags |= FS_XFLAG_FILESTREAM;
648 	}
649 
650 	if (di_flags2 & XFS_DIFLAG2_ANY) {
651 		if (di_flags2 & XFS_DIFLAG2_DAX)
652 			flags |= FS_XFLAG_DAX;
653 	}
654 
655 	if (has_attr)
656 		flags |= FS_XFLAG_HASATTR;
657 
658 	return flags;
659 }
660 
661 uint
662 xfs_ip2xflags(
663 	struct xfs_inode	*ip)
664 {
665 	struct xfs_icdinode	*dic = &ip->i_d;
666 
667 	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
668 }
669 
670 uint
671 xfs_dic2xflags(
672 	struct xfs_dinode	*dip)
673 {
674 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags),
675 				be64_to_cpu(dip->di_flags2), XFS_DFORK_Q(dip));
676 }
677 
678 /*
679  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680  * is allowed, otherwise it has to be an exact match. If a CI match is found,
681  * ci_name->name will point to a the actual name (caller must free) or
682  * will be set to NULL if an exact match is found.
683  */
684 int
685 xfs_lookup(
686 	xfs_inode_t		*dp,
687 	struct xfs_name		*name,
688 	xfs_inode_t		**ipp,
689 	struct xfs_name		*ci_name)
690 {
691 	xfs_ino_t		inum;
692 	int			error;
693 
694 	trace_xfs_lookup(dp, name);
695 
696 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
697 		return -EIO;
698 
699 	xfs_ilock(dp, XFS_IOLOCK_SHARED);
700 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
701 	if (error)
702 		goto out_unlock;
703 
704 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
705 	if (error)
706 		goto out_free_name;
707 
708 	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
709 	return 0;
710 
711 out_free_name:
712 	if (ci_name)
713 		kmem_free(ci_name->name);
714 out_unlock:
715 	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
716 	*ipp = NULL;
717 	return error;
718 }
719 
720 /*
721  * Allocate an inode on disk and return a copy of its in-core version.
722  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
723  * appropriately within the inode.  The uid and gid for the inode are
724  * set according to the contents of the given cred structure.
725  *
726  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
727  * has a free inode available, call xfs_iget() to obtain the in-core
728  * version of the allocated inode.  Finally, fill in the inode and
729  * log its initial contents.  In this case, ialloc_context would be
730  * set to NULL.
731  *
732  * If xfs_dialloc() does not have an available inode, it will replenish
733  * its supply by doing an allocation. Since we can only do one
734  * allocation within a transaction without deadlocks, we must commit
735  * the current transaction before returning the inode itself.
736  * In this case, therefore, we will set ialloc_context and return.
737  * The caller should then commit the current transaction, start a new
738  * transaction, and call xfs_ialloc() again to actually get the inode.
739  *
740  * To ensure that some other process does not grab the inode that
741  * was allocated during the first call to xfs_ialloc(), this routine
742  * also returns the [locked] bp pointing to the head of the freelist
743  * as ialloc_context.  The caller should hold this buffer across
744  * the commit and pass it back into this routine on the second call.
745  *
746  * If we are allocating quota inodes, we do not have a parent inode
747  * to attach to or associate with (i.e. pip == NULL) because they
748  * are not linked into the directory structure - they are attached
749  * directly to the superblock - and so have no parent.
750  */
751 int
752 xfs_ialloc(
753 	xfs_trans_t	*tp,
754 	xfs_inode_t	*pip,
755 	umode_t		mode,
756 	xfs_nlink_t	nlink,
757 	xfs_dev_t	rdev,
758 	prid_t		prid,
759 	int		okalloc,
760 	xfs_buf_t	**ialloc_context,
761 	xfs_inode_t	**ipp)
762 {
763 	struct xfs_mount *mp = tp->t_mountp;
764 	xfs_ino_t	ino;
765 	xfs_inode_t	*ip;
766 	uint		flags;
767 	int		error;
768 	struct timespec	tv;
769 	struct inode	*inode;
770 
771 	/*
772 	 * Call the space management code to pick
773 	 * the on-disk inode to be allocated.
774 	 */
775 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
776 			    ialloc_context, &ino);
777 	if (error)
778 		return error;
779 	if (*ialloc_context || ino == NULLFSINO) {
780 		*ipp = NULL;
781 		return 0;
782 	}
783 	ASSERT(*ialloc_context == NULL);
784 
785 	/*
786 	 * Get the in-core inode with the lock held exclusively.
787 	 * This is because we're setting fields here we need
788 	 * to prevent others from looking at until we're done.
789 	 */
790 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
791 			 XFS_ILOCK_EXCL, &ip);
792 	if (error)
793 		return error;
794 	ASSERT(ip != NULL);
795 	inode = VFS_I(ip);
796 
797 	/*
798 	 * We always convert v1 inodes to v2 now - we only support filesystems
799 	 * with >= v2 inode capability, so there is no reason for ever leaving
800 	 * an inode in v1 format.
801 	 */
802 	if (ip->i_d.di_version == 1)
803 		ip->i_d.di_version = 2;
804 
805 	inode->i_mode = mode;
806 	set_nlink(inode, nlink);
807 	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
808 	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
809 	xfs_set_projid(ip, prid);
810 
811 	if (pip && XFS_INHERIT_GID(pip)) {
812 		ip->i_d.di_gid = pip->i_d.di_gid;
813 		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
814 			inode->i_mode |= S_ISGID;
815 	}
816 
817 	/*
818 	 * If the group ID of the new file does not match the effective group
819 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
820 	 * (and only if the irix_sgid_inherit compatibility variable is set).
821 	 */
822 	if ((irix_sgid_inherit) &&
823 	    (inode->i_mode & S_ISGID) &&
824 	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
825 		inode->i_mode &= ~S_ISGID;
826 
827 	ip->i_d.di_size = 0;
828 	ip->i_d.di_nextents = 0;
829 	ASSERT(ip->i_d.di_nblocks == 0);
830 
831 	tv = current_fs_time(mp->m_super);
832 	inode->i_mtime = tv;
833 	inode->i_atime = tv;
834 	inode->i_ctime = tv;
835 
836 	ip->i_d.di_extsize = 0;
837 	ip->i_d.di_dmevmask = 0;
838 	ip->i_d.di_dmstate = 0;
839 	ip->i_d.di_flags = 0;
840 
841 	if (ip->i_d.di_version == 3) {
842 		inode->i_version = 1;
843 		ip->i_d.di_flags2 = 0;
844 		ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
845 		ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
846 	}
847 
848 
849 	flags = XFS_ILOG_CORE;
850 	switch (mode & S_IFMT) {
851 	case S_IFIFO:
852 	case S_IFCHR:
853 	case S_IFBLK:
854 	case S_IFSOCK:
855 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
856 		ip->i_df.if_u2.if_rdev = rdev;
857 		ip->i_df.if_flags = 0;
858 		flags |= XFS_ILOG_DEV;
859 		break;
860 	case S_IFREG:
861 	case S_IFDIR:
862 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
863 			uint64_t	di_flags2 = 0;
864 			uint		di_flags = 0;
865 
866 			if (S_ISDIR(mode)) {
867 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
868 					di_flags |= XFS_DIFLAG_RTINHERIT;
869 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
870 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
871 					ip->i_d.di_extsize = pip->i_d.di_extsize;
872 				}
873 				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
874 					di_flags |= XFS_DIFLAG_PROJINHERIT;
875 			} else if (S_ISREG(mode)) {
876 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
877 					di_flags |= XFS_DIFLAG_REALTIME;
878 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
879 					di_flags |= XFS_DIFLAG_EXTSIZE;
880 					ip->i_d.di_extsize = pip->i_d.di_extsize;
881 				}
882 			}
883 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
884 			    xfs_inherit_noatime)
885 				di_flags |= XFS_DIFLAG_NOATIME;
886 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
887 			    xfs_inherit_nodump)
888 				di_flags |= XFS_DIFLAG_NODUMP;
889 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
890 			    xfs_inherit_sync)
891 				di_flags |= XFS_DIFLAG_SYNC;
892 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
893 			    xfs_inherit_nosymlinks)
894 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
895 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
896 			    xfs_inherit_nodefrag)
897 				di_flags |= XFS_DIFLAG_NODEFRAG;
898 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
899 				di_flags |= XFS_DIFLAG_FILESTREAM;
900 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
901 				di_flags2 |= XFS_DIFLAG2_DAX;
902 
903 			ip->i_d.di_flags |= di_flags;
904 			ip->i_d.di_flags2 |= di_flags2;
905 		}
906 		/* FALLTHROUGH */
907 	case S_IFLNK:
908 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
909 		ip->i_df.if_flags = XFS_IFEXTENTS;
910 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
911 		ip->i_df.if_u1.if_extents = NULL;
912 		break;
913 	default:
914 		ASSERT(0);
915 	}
916 	/*
917 	 * Attribute fork settings for new inode.
918 	 */
919 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
920 	ip->i_d.di_anextents = 0;
921 
922 	/*
923 	 * Log the new values stuffed into the inode.
924 	 */
925 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
926 	xfs_trans_log_inode(tp, ip, flags);
927 
928 	/* now that we have an i_mode we can setup the inode structure */
929 	xfs_setup_inode(ip);
930 
931 	*ipp = ip;
932 	return 0;
933 }
934 
935 /*
936  * Allocates a new inode from disk and return a pointer to the
937  * incore copy. This routine will internally commit the current
938  * transaction and allocate a new one if the Space Manager needed
939  * to do an allocation to replenish the inode free-list.
940  *
941  * This routine is designed to be called from xfs_create and
942  * xfs_create_dir.
943  *
944  */
945 int
946 xfs_dir_ialloc(
947 	xfs_trans_t	**tpp,		/* input: current transaction;
948 					   output: may be a new transaction. */
949 	xfs_inode_t	*dp,		/* directory within whose allocate
950 					   the inode. */
951 	umode_t		mode,
952 	xfs_nlink_t	nlink,
953 	xfs_dev_t	rdev,
954 	prid_t		prid,		/* project id */
955 	int		okalloc,	/* ok to allocate new space */
956 	xfs_inode_t	**ipp,		/* pointer to inode; it will be
957 					   locked. */
958 	int		*committed)
959 
960 {
961 	xfs_trans_t	*tp;
962 	xfs_inode_t	*ip;
963 	xfs_buf_t	*ialloc_context = NULL;
964 	int		code;
965 	void		*dqinfo;
966 	uint		tflags;
967 
968 	tp = *tpp;
969 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
970 
971 	/*
972 	 * xfs_ialloc will return a pointer to an incore inode if
973 	 * the Space Manager has an available inode on the free
974 	 * list. Otherwise, it will do an allocation and replenish
975 	 * the freelist.  Since we can only do one allocation per
976 	 * transaction without deadlocks, we will need to commit the
977 	 * current transaction and start a new one.  We will then
978 	 * need to call xfs_ialloc again to get the inode.
979 	 *
980 	 * If xfs_ialloc did an allocation to replenish the freelist,
981 	 * it returns the bp containing the head of the freelist as
982 	 * ialloc_context. We will hold a lock on it across the
983 	 * transaction commit so that no other process can steal
984 	 * the inode(s) that we've just allocated.
985 	 */
986 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
987 			  &ialloc_context, &ip);
988 
989 	/*
990 	 * Return an error if we were unable to allocate a new inode.
991 	 * This should only happen if we run out of space on disk or
992 	 * encounter a disk error.
993 	 */
994 	if (code) {
995 		*ipp = NULL;
996 		return code;
997 	}
998 	if (!ialloc_context && !ip) {
999 		*ipp = NULL;
1000 		return -ENOSPC;
1001 	}
1002 
1003 	/*
1004 	 * If the AGI buffer is non-NULL, then we were unable to get an
1005 	 * inode in one operation.  We need to commit the current
1006 	 * transaction and call xfs_ialloc() again.  It is guaranteed
1007 	 * to succeed the second time.
1008 	 */
1009 	if (ialloc_context) {
1010 		/*
1011 		 * Normally, xfs_trans_commit releases all the locks.
1012 		 * We call bhold to hang on to the ialloc_context across
1013 		 * the commit.  Holding this buffer prevents any other
1014 		 * processes from doing any allocations in this
1015 		 * allocation group.
1016 		 */
1017 		xfs_trans_bhold(tp, ialloc_context);
1018 
1019 		/*
1020 		 * We want the quota changes to be associated with the next
1021 		 * transaction, NOT this one. So, detach the dqinfo from this
1022 		 * and attach it to the next transaction.
1023 		 */
1024 		dqinfo = NULL;
1025 		tflags = 0;
1026 		if (tp->t_dqinfo) {
1027 			dqinfo = (void *)tp->t_dqinfo;
1028 			tp->t_dqinfo = NULL;
1029 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1030 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1031 		}
1032 
1033 		code = xfs_trans_roll(&tp, 0);
1034 		if (committed != NULL)
1035 			*committed = 1;
1036 
1037 		/*
1038 		 * Re-attach the quota info that we detached from prev trx.
1039 		 */
1040 		if (dqinfo) {
1041 			tp->t_dqinfo = dqinfo;
1042 			tp->t_flags |= tflags;
1043 		}
1044 
1045 		if (code) {
1046 			xfs_buf_relse(ialloc_context);
1047 			*tpp = tp;
1048 			*ipp = NULL;
1049 			return code;
1050 		}
1051 		xfs_trans_bjoin(tp, ialloc_context);
1052 
1053 		/*
1054 		 * Call ialloc again. Since we've locked out all
1055 		 * other allocations in this allocation group,
1056 		 * this call should always succeed.
1057 		 */
1058 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1059 				  okalloc, &ialloc_context, &ip);
1060 
1061 		/*
1062 		 * If we get an error at this point, return to the caller
1063 		 * so that the current transaction can be aborted.
1064 		 */
1065 		if (code) {
1066 			*tpp = tp;
1067 			*ipp = NULL;
1068 			return code;
1069 		}
1070 		ASSERT(!ialloc_context && ip);
1071 
1072 	} else {
1073 		if (committed != NULL)
1074 			*committed = 0;
1075 	}
1076 
1077 	*ipp = ip;
1078 	*tpp = tp;
1079 
1080 	return 0;
1081 }
1082 
1083 /*
1084  * Decrement the link count on an inode & log the change.  If this causes the
1085  * link count to go to zero, move the inode to AGI unlinked list so that it can
1086  * be freed when the last active reference goes away via xfs_inactive().
1087  */
1088 int				/* error */
1089 xfs_droplink(
1090 	xfs_trans_t *tp,
1091 	xfs_inode_t *ip)
1092 {
1093 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1094 
1095 	drop_nlink(VFS_I(ip));
1096 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1097 
1098 	if (VFS_I(ip)->i_nlink)
1099 		return 0;
1100 
1101 	return xfs_iunlink(tp, ip);
1102 }
1103 
1104 /*
1105  * Increment the link count on an inode & log the change.
1106  */
1107 int
1108 xfs_bumplink(
1109 	xfs_trans_t *tp,
1110 	xfs_inode_t *ip)
1111 {
1112 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1113 
1114 	ASSERT(ip->i_d.di_version > 1);
1115 	inc_nlink(VFS_I(ip));
1116 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1117 	return 0;
1118 }
1119 
1120 int
1121 xfs_create(
1122 	xfs_inode_t		*dp,
1123 	struct xfs_name		*name,
1124 	umode_t			mode,
1125 	xfs_dev_t		rdev,
1126 	xfs_inode_t		**ipp)
1127 {
1128 	int			is_dir = S_ISDIR(mode);
1129 	struct xfs_mount	*mp = dp->i_mount;
1130 	struct xfs_inode	*ip = NULL;
1131 	struct xfs_trans	*tp = NULL;
1132 	int			error;
1133 	xfs_bmap_free_t		free_list;
1134 	xfs_fsblock_t		first_block;
1135 	bool                    unlock_dp_on_error = false;
1136 	prid_t			prid;
1137 	struct xfs_dquot	*udqp = NULL;
1138 	struct xfs_dquot	*gdqp = NULL;
1139 	struct xfs_dquot	*pdqp = NULL;
1140 	struct xfs_trans_res	*tres;
1141 	uint			resblks;
1142 
1143 	trace_xfs_create(dp, name);
1144 
1145 	if (XFS_FORCED_SHUTDOWN(mp))
1146 		return -EIO;
1147 
1148 	prid = xfs_get_initial_prid(dp);
1149 
1150 	/*
1151 	 * Make sure that we have allocated dquot(s) on disk.
1152 	 */
1153 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1154 					xfs_kgid_to_gid(current_fsgid()), prid,
1155 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1156 					&udqp, &gdqp, &pdqp);
1157 	if (error)
1158 		return error;
1159 
1160 	if (is_dir) {
1161 		rdev = 0;
1162 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1163 		tres = &M_RES(mp)->tr_mkdir;
1164 		tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1165 	} else {
1166 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1167 		tres = &M_RES(mp)->tr_create;
1168 		tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1169 	}
1170 
1171 	/*
1172 	 * Initially assume that the file does not exist and
1173 	 * reserve the resources for that case.  If that is not
1174 	 * the case we'll drop the one we have and get a more
1175 	 * appropriate transaction later.
1176 	 */
1177 	error = xfs_trans_reserve(tp, tres, resblks, 0);
1178 	if (error == -ENOSPC) {
1179 		/* flush outstanding delalloc blocks and retry */
1180 		xfs_flush_inodes(mp);
1181 		error = xfs_trans_reserve(tp, tres, resblks, 0);
1182 	}
1183 	if (error == -ENOSPC) {
1184 		/* No space at all so try a "no-allocation" reservation */
1185 		resblks = 0;
1186 		error = xfs_trans_reserve(tp, tres, 0, 0);
1187 	}
1188 	if (error)
1189 		goto out_trans_cancel;
1190 
1191 
1192 	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1193 		      XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1194 	unlock_dp_on_error = true;
1195 
1196 	xfs_bmap_init(&free_list, &first_block);
1197 
1198 	/*
1199 	 * Reserve disk quota and the inode.
1200 	 */
1201 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1202 						pdqp, resblks, 1, 0);
1203 	if (error)
1204 		goto out_trans_cancel;
1205 
1206 	if (!resblks) {
1207 		error = xfs_dir_canenter(tp, dp, name);
1208 		if (error)
1209 			goto out_trans_cancel;
1210 	}
1211 
1212 	/*
1213 	 * A newly created regular or special file just has one directory
1214 	 * entry pointing to them, but a directory also the "." entry
1215 	 * pointing to itself.
1216 	 */
1217 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1218 			       prid, resblks > 0, &ip, NULL);
1219 	if (error)
1220 		goto out_trans_cancel;
1221 
1222 	/*
1223 	 * Now we join the directory inode to the transaction.  We do not do it
1224 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1225 	 * (and release all the locks).  An error from here on will result in
1226 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1227 	 * error path.
1228 	 */
1229 	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1230 	unlock_dp_on_error = false;
1231 
1232 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1233 					&first_block, &free_list, resblks ?
1234 					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1235 	if (error) {
1236 		ASSERT(error != -ENOSPC);
1237 		goto out_trans_cancel;
1238 	}
1239 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1240 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1241 
1242 	if (is_dir) {
1243 		error = xfs_dir_init(tp, ip, dp);
1244 		if (error)
1245 			goto out_bmap_cancel;
1246 
1247 		error = xfs_bumplink(tp, dp);
1248 		if (error)
1249 			goto out_bmap_cancel;
1250 	}
1251 
1252 	/*
1253 	 * If this is a synchronous mount, make sure that the
1254 	 * create transaction goes to disk before returning to
1255 	 * the user.
1256 	 */
1257 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1258 		xfs_trans_set_sync(tp);
1259 
1260 	/*
1261 	 * Attach the dquot(s) to the inodes and modify them incore.
1262 	 * These ids of the inode couldn't have changed since the new
1263 	 * inode has been locked ever since it was created.
1264 	 */
1265 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1266 
1267 	error = xfs_bmap_finish(&tp, &free_list, NULL);
1268 	if (error)
1269 		goto out_bmap_cancel;
1270 
1271 	error = xfs_trans_commit(tp);
1272 	if (error)
1273 		goto out_release_inode;
1274 
1275 	xfs_qm_dqrele(udqp);
1276 	xfs_qm_dqrele(gdqp);
1277 	xfs_qm_dqrele(pdqp);
1278 
1279 	*ipp = ip;
1280 	return 0;
1281 
1282  out_bmap_cancel:
1283 	xfs_bmap_cancel(&free_list);
1284  out_trans_cancel:
1285 	xfs_trans_cancel(tp);
1286  out_release_inode:
1287 	/*
1288 	 * Wait until after the current transaction is aborted to finish the
1289 	 * setup of the inode and release the inode.  This prevents recursive
1290 	 * transactions and deadlocks from xfs_inactive.
1291 	 */
1292 	if (ip) {
1293 		xfs_finish_inode_setup(ip);
1294 		IRELE(ip);
1295 	}
1296 
1297 	xfs_qm_dqrele(udqp);
1298 	xfs_qm_dqrele(gdqp);
1299 	xfs_qm_dqrele(pdqp);
1300 
1301 	if (unlock_dp_on_error)
1302 		xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1303 	return error;
1304 }
1305 
1306 int
1307 xfs_create_tmpfile(
1308 	struct xfs_inode	*dp,
1309 	struct dentry		*dentry,
1310 	umode_t			mode,
1311 	struct xfs_inode	**ipp)
1312 {
1313 	struct xfs_mount	*mp = dp->i_mount;
1314 	struct xfs_inode	*ip = NULL;
1315 	struct xfs_trans	*tp = NULL;
1316 	int			error;
1317 	prid_t                  prid;
1318 	struct xfs_dquot	*udqp = NULL;
1319 	struct xfs_dquot	*gdqp = NULL;
1320 	struct xfs_dquot	*pdqp = NULL;
1321 	struct xfs_trans_res	*tres;
1322 	uint			resblks;
1323 
1324 	if (XFS_FORCED_SHUTDOWN(mp))
1325 		return -EIO;
1326 
1327 	prid = xfs_get_initial_prid(dp);
1328 
1329 	/*
1330 	 * Make sure that we have allocated dquot(s) on disk.
1331 	 */
1332 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1333 				xfs_kgid_to_gid(current_fsgid()), prid,
1334 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1335 				&udqp, &gdqp, &pdqp);
1336 	if (error)
1337 		return error;
1338 
1339 	resblks = XFS_IALLOC_SPACE_RES(mp);
1340 	tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1341 
1342 	tres = &M_RES(mp)->tr_create_tmpfile;
1343 	error = xfs_trans_reserve(tp, tres, resblks, 0);
1344 	if (error == -ENOSPC) {
1345 		/* No space at all so try a "no-allocation" reservation */
1346 		resblks = 0;
1347 		error = xfs_trans_reserve(tp, tres, 0, 0);
1348 	}
1349 	if (error)
1350 		goto out_trans_cancel;
1351 
1352 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1353 						pdqp, resblks, 1, 0);
1354 	if (error)
1355 		goto out_trans_cancel;
1356 
1357 	error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1358 				prid, resblks > 0, &ip, NULL);
1359 	if (error)
1360 		goto out_trans_cancel;
1361 
1362 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1363 		xfs_trans_set_sync(tp);
1364 
1365 	/*
1366 	 * Attach the dquot(s) to the inodes and modify them incore.
1367 	 * These ids of the inode couldn't have changed since the new
1368 	 * inode has been locked ever since it was created.
1369 	 */
1370 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1371 
1372 	error = xfs_iunlink(tp, ip);
1373 	if (error)
1374 		goto out_trans_cancel;
1375 
1376 	error = xfs_trans_commit(tp);
1377 	if (error)
1378 		goto out_release_inode;
1379 
1380 	xfs_qm_dqrele(udqp);
1381 	xfs_qm_dqrele(gdqp);
1382 	xfs_qm_dqrele(pdqp);
1383 
1384 	*ipp = ip;
1385 	return 0;
1386 
1387  out_trans_cancel:
1388 	xfs_trans_cancel(tp);
1389  out_release_inode:
1390 	/*
1391 	 * Wait until after the current transaction is aborted to finish the
1392 	 * setup of the inode and release the inode.  This prevents recursive
1393 	 * transactions and deadlocks from xfs_inactive.
1394 	 */
1395 	if (ip) {
1396 		xfs_finish_inode_setup(ip);
1397 		IRELE(ip);
1398 	}
1399 
1400 	xfs_qm_dqrele(udqp);
1401 	xfs_qm_dqrele(gdqp);
1402 	xfs_qm_dqrele(pdqp);
1403 
1404 	return error;
1405 }
1406 
1407 int
1408 xfs_link(
1409 	xfs_inode_t		*tdp,
1410 	xfs_inode_t		*sip,
1411 	struct xfs_name		*target_name)
1412 {
1413 	xfs_mount_t		*mp = tdp->i_mount;
1414 	xfs_trans_t		*tp;
1415 	int			error;
1416 	xfs_bmap_free_t         free_list;
1417 	xfs_fsblock_t           first_block;
1418 	int			resblks;
1419 
1420 	trace_xfs_link(tdp, target_name);
1421 
1422 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1423 
1424 	if (XFS_FORCED_SHUTDOWN(mp))
1425 		return -EIO;
1426 
1427 	error = xfs_qm_dqattach(sip, 0);
1428 	if (error)
1429 		goto std_return;
1430 
1431 	error = xfs_qm_dqattach(tdp, 0);
1432 	if (error)
1433 		goto std_return;
1434 
1435 	tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1436 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1437 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1438 	if (error == -ENOSPC) {
1439 		resblks = 0;
1440 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1441 	}
1442 	if (error)
1443 		goto error_return;
1444 
1445 	xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1446 	xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1447 
1448 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1449 	xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1450 
1451 	/*
1452 	 * If we are using project inheritance, we only allow hard link
1453 	 * creation in our tree when the project IDs are the same; else
1454 	 * the tree quota mechanism could be circumvented.
1455 	 */
1456 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1457 		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1458 		error = -EXDEV;
1459 		goto error_return;
1460 	}
1461 
1462 	if (!resblks) {
1463 		error = xfs_dir_canenter(tp, tdp, target_name);
1464 		if (error)
1465 			goto error_return;
1466 	}
1467 
1468 	xfs_bmap_init(&free_list, &first_block);
1469 
1470 	/*
1471 	 * Handle initial link state of O_TMPFILE inode
1472 	 */
1473 	if (VFS_I(sip)->i_nlink == 0) {
1474 		error = xfs_iunlink_remove(tp, sip);
1475 		if (error)
1476 			goto error_return;
1477 	}
1478 
1479 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1480 					&first_block, &free_list, resblks);
1481 	if (error)
1482 		goto error_return;
1483 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1484 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1485 
1486 	error = xfs_bumplink(tp, sip);
1487 	if (error)
1488 		goto error_return;
1489 
1490 	/*
1491 	 * If this is a synchronous mount, make sure that the
1492 	 * link transaction goes to disk before returning to
1493 	 * the user.
1494 	 */
1495 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1496 		xfs_trans_set_sync(tp);
1497 
1498 	error = xfs_bmap_finish(&tp, &free_list, NULL);
1499 	if (error) {
1500 		xfs_bmap_cancel(&free_list);
1501 		goto error_return;
1502 	}
1503 
1504 	return xfs_trans_commit(tp);
1505 
1506  error_return:
1507 	xfs_trans_cancel(tp);
1508  std_return:
1509 	return error;
1510 }
1511 
1512 /*
1513  * Free up the underlying blocks past new_size.  The new size must be smaller
1514  * than the current size.  This routine can be used both for the attribute and
1515  * data fork, and does not modify the inode size, which is left to the caller.
1516  *
1517  * The transaction passed to this routine must have made a permanent log
1518  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1519  * given transaction and start new ones, so make sure everything involved in
1520  * the transaction is tidy before calling here.  Some transaction will be
1521  * returned to the caller to be committed.  The incoming transaction must
1522  * already include the inode, and both inode locks must be held exclusively.
1523  * The inode must also be "held" within the transaction.  On return the inode
1524  * will be "held" within the returned transaction.  This routine does NOT
1525  * require any disk space to be reserved for it within the transaction.
1526  *
1527  * If we get an error, we must return with the inode locked and linked into the
1528  * current transaction. This keeps things simple for the higher level code,
1529  * because it always knows that the inode is locked and held in the transaction
1530  * that returns to it whether errors occur or not.  We don't mark the inode
1531  * dirty on error so that transactions can be easily aborted if possible.
1532  */
1533 int
1534 xfs_itruncate_extents(
1535 	struct xfs_trans	**tpp,
1536 	struct xfs_inode	*ip,
1537 	int			whichfork,
1538 	xfs_fsize_t		new_size)
1539 {
1540 	struct xfs_mount	*mp = ip->i_mount;
1541 	struct xfs_trans	*tp = *tpp;
1542 	xfs_bmap_free_t		free_list;
1543 	xfs_fsblock_t		first_block;
1544 	xfs_fileoff_t		first_unmap_block;
1545 	xfs_fileoff_t		last_block;
1546 	xfs_filblks_t		unmap_len;
1547 	int			error = 0;
1548 	int			done = 0;
1549 
1550 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1551 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1552 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1553 	ASSERT(new_size <= XFS_ISIZE(ip));
1554 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1555 	ASSERT(ip->i_itemp != NULL);
1556 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1557 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1558 
1559 	trace_xfs_itruncate_extents_start(ip, new_size);
1560 
1561 	/*
1562 	 * Since it is possible for space to become allocated beyond
1563 	 * the end of the file (in a crash where the space is allocated
1564 	 * but the inode size is not yet updated), simply remove any
1565 	 * blocks which show up between the new EOF and the maximum
1566 	 * possible file size.  If the first block to be removed is
1567 	 * beyond the maximum file size (ie it is the same as last_block),
1568 	 * then there is nothing to do.
1569 	 */
1570 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1571 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1572 	if (first_unmap_block == last_block)
1573 		return 0;
1574 
1575 	ASSERT(first_unmap_block < last_block);
1576 	unmap_len = last_block - first_unmap_block + 1;
1577 	while (!done) {
1578 		xfs_bmap_init(&free_list, &first_block);
1579 		error = xfs_bunmapi(tp, ip,
1580 				    first_unmap_block, unmap_len,
1581 				    xfs_bmapi_aflag(whichfork),
1582 				    XFS_ITRUNC_MAX_EXTENTS,
1583 				    &first_block, &free_list,
1584 				    &done);
1585 		if (error)
1586 			goto out_bmap_cancel;
1587 
1588 		/*
1589 		 * Duplicate the transaction that has the permanent
1590 		 * reservation and commit the old transaction.
1591 		 */
1592 		error = xfs_bmap_finish(&tp, &free_list, ip);
1593 		if (error)
1594 			goto out_bmap_cancel;
1595 
1596 		error = xfs_trans_roll(&tp, ip);
1597 		if (error)
1598 			goto out;
1599 	}
1600 
1601 	/*
1602 	 * Always re-log the inode so that our permanent transaction can keep
1603 	 * on rolling it forward in the log.
1604 	 */
1605 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1606 
1607 	trace_xfs_itruncate_extents_end(ip, new_size);
1608 
1609 out:
1610 	*tpp = tp;
1611 	return error;
1612 out_bmap_cancel:
1613 	/*
1614 	 * If the bunmapi call encounters an error, return to the caller where
1615 	 * the transaction can be properly aborted.  We just need to make sure
1616 	 * we're not holding any resources that we were not when we came in.
1617 	 */
1618 	xfs_bmap_cancel(&free_list);
1619 	goto out;
1620 }
1621 
1622 int
1623 xfs_release(
1624 	xfs_inode_t	*ip)
1625 {
1626 	xfs_mount_t	*mp = ip->i_mount;
1627 	int		error;
1628 
1629 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1630 		return 0;
1631 
1632 	/* If this is a read-only mount, don't do this (would generate I/O) */
1633 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1634 		return 0;
1635 
1636 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1637 		int truncated;
1638 
1639 		/*
1640 		 * If we previously truncated this file and removed old data
1641 		 * in the process, we want to initiate "early" writeout on
1642 		 * the last close.  This is an attempt to combat the notorious
1643 		 * NULL files problem which is particularly noticeable from a
1644 		 * truncate down, buffered (re-)write (delalloc), followed by
1645 		 * a crash.  What we are effectively doing here is
1646 		 * significantly reducing the time window where we'd otherwise
1647 		 * be exposed to that problem.
1648 		 */
1649 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1650 		if (truncated) {
1651 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1652 			if (ip->i_delayed_blks > 0) {
1653 				error = filemap_flush(VFS_I(ip)->i_mapping);
1654 				if (error)
1655 					return error;
1656 			}
1657 		}
1658 	}
1659 
1660 	if (VFS_I(ip)->i_nlink == 0)
1661 		return 0;
1662 
1663 	if (xfs_can_free_eofblocks(ip, false)) {
1664 
1665 		/*
1666 		 * If we can't get the iolock just skip truncating the blocks
1667 		 * past EOF because we could deadlock with the mmap_sem
1668 		 * otherwise.  We'll get another chance to drop them once the
1669 		 * last reference to the inode is dropped, so we'll never leak
1670 		 * blocks permanently.
1671 		 *
1672 		 * Further, check if the inode is being opened, written and
1673 		 * closed frequently and we have delayed allocation blocks
1674 		 * outstanding (e.g. streaming writes from the NFS server),
1675 		 * truncating the blocks past EOF will cause fragmentation to
1676 		 * occur.
1677 		 *
1678 		 * In this case don't do the truncation, either, but we have to
1679 		 * be careful how we detect this case. Blocks beyond EOF show
1680 		 * up as i_delayed_blks even when the inode is clean, so we
1681 		 * need to truncate them away first before checking for a dirty
1682 		 * release. Hence on the first dirty close we will still remove
1683 		 * the speculative allocation, but after that we will leave it
1684 		 * in place.
1685 		 */
1686 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1687 			return 0;
1688 
1689 		error = xfs_free_eofblocks(mp, ip, true);
1690 		if (error && error != -EAGAIN)
1691 			return error;
1692 
1693 		/* delalloc blocks after truncation means it really is dirty */
1694 		if (ip->i_delayed_blks)
1695 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1696 	}
1697 	return 0;
1698 }
1699 
1700 /*
1701  * xfs_inactive_truncate
1702  *
1703  * Called to perform a truncate when an inode becomes unlinked.
1704  */
1705 STATIC int
1706 xfs_inactive_truncate(
1707 	struct xfs_inode *ip)
1708 {
1709 	struct xfs_mount	*mp = ip->i_mount;
1710 	struct xfs_trans	*tp;
1711 	int			error;
1712 
1713 	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1714 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1715 	if (error) {
1716 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1717 		xfs_trans_cancel(tp);
1718 		return error;
1719 	}
1720 
1721 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1722 	xfs_trans_ijoin(tp, ip, 0);
1723 
1724 	/*
1725 	 * Log the inode size first to prevent stale data exposure in the event
1726 	 * of a system crash before the truncate completes. See the related
1727 	 * comment in xfs_setattr_size() for details.
1728 	 */
1729 	ip->i_d.di_size = 0;
1730 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1731 
1732 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1733 	if (error)
1734 		goto error_trans_cancel;
1735 
1736 	ASSERT(ip->i_d.di_nextents == 0);
1737 
1738 	error = xfs_trans_commit(tp);
1739 	if (error)
1740 		goto error_unlock;
1741 
1742 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1743 	return 0;
1744 
1745 error_trans_cancel:
1746 	xfs_trans_cancel(tp);
1747 error_unlock:
1748 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1749 	return error;
1750 }
1751 
1752 /*
1753  * xfs_inactive_ifree()
1754  *
1755  * Perform the inode free when an inode is unlinked.
1756  */
1757 STATIC int
1758 xfs_inactive_ifree(
1759 	struct xfs_inode *ip)
1760 {
1761 	xfs_bmap_free_t		free_list;
1762 	xfs_fsblock_t		first_block;
1763 	struct xfs_mount	*mp = ip->i_mount;
1764 	struct xfs_trans	*tp;
1765 	int			error;
1766 
1767 	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1768 
1769 	/*
1770 	 * The ifree transaction might need to allocate blocks for record
1771 	 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1772 	 * allow ifree to dip into the reserved block pool if necessary.
1773 	 *
1774 	 * Freeing large sets of inodes generally means freeing inode chunks,
1775 	 * directory and file data blocks, so this should be relatively safe.
1776 	 * Only under severe circumstances should it be possible to free enough
1777 	 * inodes to exhaust the reserve block pool via finobt expansion while
1778 	 * at the same time not creating free space in the filesystem.
1779 	 *
1780 	 * Send a warning if the reservation does happen to fail, as the inode
1781 	 * now remains allocated and sits on the unlinked list until the fs is
1782 	 * repaired.
1783 	 */
1784 	tp->t_flags |= XFS_TRANS_RESERVE;
1785 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1786 				  XFS_IFREE_SPACE_RES(mp), 0);
1787 	if (error) {
1788 		if (error == -ENOSPC) {
1789 			xfs_warn_ratelimited(mp,
1790 			"Failed to remove inode(s) from unlinked list. "
1791 			"Please free space, unmount and run xfs_repair.");
1792 		} else {
1793 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1794 		}
1795 		xfs_trans_cancel(tp);
1796 		return error;
1797 	}
1798 
1799 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1800 	xfs_trans_ijoin(tp, ip, 0);
1801 
1802 	xfs_bmap_init(&free_list, &first_block);
1803 	error = xfs_ifree(tp, ip, &free_list);
1804 	if (error) {
1805 		/*
1806 		 * If we fail to free the inode, shut down.  The cancel
1807 		 * might do that, we need to make sure.  Otherwise the
1808 		 * inode might be lost for a long time or forever.
1809 		 */
1810 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1811 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1812 				__func__, error);
1813 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1814 		}
1815 		xfs_trans_cancel(tp);
1816 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1817 		return error;
1818 	}
1819 
1820 	/*
1821 	 * Credit the quota account(s). The inode is gone.
1822 	 */
1823 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1824 
1825 	/*
1826 	 * Just ignore errors at this point.  There is nothing we can do except
1827 	 * to try to keep going. Make sure it's not a silent error.
1828 	 */
1829 	error = xfs_bmap_finish(&tp, &free_list, NULL);
1830 	if (error) {
1831 		xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1832 			__func__, error);
1833 		xfs_bmap_cancel(&free_list);
1834 	}
1835 	error = xfs_trans_commit(tp);
1836 	if (error)
1837 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1838 			__func__, error);
1839 
1840 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1841 	return 0;
1842 }
1843 
1844 /*
1845  * xfs_inactive
1846  *
1847  * This is called when the vnode reference count for the vnode
1848  * goes to zero.  If the file has been unlinked, then it must
1849  * now be truncated.  Also, we clear all of the read-ahead state
1850  * kept for the inode here since the file is now closed.
1851  */
1852 void
1853 xfs_inactive(
1854 	xfs_inode_t	*ip)
1855 {
1856 	struct xfs_mount	*mp;
1857 	int			error;
1858 	int			truncate = 0;
1859 
1860 	/*
1861 	 * If the inode is already free, then there can be nothing
1862 	 * to clean up here.
1863 	 */
1864 	if (VFS_I(ip)->i_mode == 0) {
1865 		ASSERT(ip->i_df.if_real_bytes == 0);
1866 		ASSERT(ip->i_df.if_broot_bytes == 0);
1867 		return;
1868 	}
1869 
1870 	mp = ip->i_mount;
1871 
1872 	/* If this is a read-only mount, don't do this (would generate I/O) */
1873 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1874 		return;
1875 
1876 	if (VFS_I(ip)->i_nlink != 0) {
1877 		/*
1878 		 * force is true because we are evicting an inode from the
1879 		 * cache. Post-eof blocks must be freed, lest we end up with
1880 		 * broken free space accounting.
1881 		 */
1882 		if (xfs_can_free_eofblocks(ip, true))
1883 			xfs_free_eofblocks(mp, ip, false);
1884 
1885 		return;
1886 	}
1887 
1888 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1889 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1890 	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1891 		truncate = 1;
1892 
1893 	error = xfs_qm_dqattach(ip, 0);
1894 	if (error)
1895 		return;
1896 
1897 	if (S_ISLNK(VFS_I(ip)->i_mode))
1898 		error = xfs_inactive_symlink(ip);
1899 	else if (truncate)
1900 		error = xfs_inactive_truncate(ip);
1901 	if (error)
1902 		return;
1903 
1904 	/*
1905 	 * If there are attributes associated with the file then blow them away
1906 	 * now.  The code calls a routine that recursively deconstructs the
1907 	 * attribute fork. If also blows away the in-core attribute fork.
1908 	 */
1909 	if (XFS_IFORK_Q(ip)) {
1910 		error = xfs_attr_inactive(ip);
1911 		if (error)
1912 			return;
1913 	}
1914 
1915 	ASSERT(!ip->i_afp);
1916 	ASSERT(ip->i_d.di_anextents == 0);
1917 	ASSERT(ip->i_d.di_forkoff == 0);
1918 
1919 	/*
1920 	 * Free the inode.
1921 	 */
1922 	error = xfs_inactive_ifree(ip);
1923 	if (error)
1924 		return;
1925 
1926 	/*
1927 	 * Release the dquots held by inode, if any.
1928 	 */
1929 	xfs_qm_dqdetach(ip);
1930 }
1931 
1932 /*
1933  * This is called when the inode's link count goes to 0 or we are creating a
1934  * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1935  * set to true as the link count is dropped to zero by the VFS after we've
1936  * created the file successfully, so we have to add it to the unlinked list
1937  * while the link count is non-zero.
1938  *
1939  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1940  * list when the inode is freed.
1941  */
1942 STATIC int
1943 xfs_iunlink(
1944 	struct xfs_trans *tp,
1945 	struct xfs_inode *ip)
1946 {
1947 	xfs_mount_t	*mp = tp->t_mountp;
1948 	xfs_agi_t	*agi;
1949 	xfs_dinode_t	*dip;
1950 	xfs_buf_t	*agibp;
1951 	xfs_buf_t	*ibp;
1952 	xfs_agino_t	agino;
1953 	short		bucket_index;
1954 	int		offset;
1955 	int		error;
1956 
1957 	ASSERT(VFS_I(ip)->i_mode != 0);
1958 
1959 	/*
1960 	 * Get the agi buffer first.  It ensures lock ordering
1961 	 * on the list.
1962 	 */
1963 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1964 	if (error)
1965 		return error;
1966 	agi = XFS_BUF_TO_AGI(agibp);
1967 
1968 	/*
1969 	 * Get the index into the agi hash table for the
1970 	 * list this inode will go on.
1971 	 */
1972 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1973 	ASSERT(agino != 0);
1974 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1975 	ASSERT(agi->agi_unlinked[bucket_index]);
1976 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1977 
1978 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1979 		/*
1980 		 * There is already another inode in the bucket we need
1981 		 * to add ourselves to.  Add us at the front of the list.
1982 		 * Here we put the head pointer into our next pointer,
1983 		 * and then we fall through to point the head at us.
1984 		 */
1985 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1986 				       0, 0);
1987 		if (error)
1988 			return error;
1989 
1990 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1991 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1992 		offset = ip->i_imap.im_boffset +
1993 			offsetof(xfs_dinode_t, di_next_unlinked);
1994 
1995 		/* need to recalc the inode CRC if appropriate */
1996 		xfs_dinode_calc_crc(mp, dip);
1997 
1998 		xfs_trans_inode_buf(tp, ibp);
1999 		xfs_trans_log_buf(tp, ibp, offset,
2000 				  (offset + sizeof(xfs_agino_t) - 1));
2001 		xfs_inobp_check(mp, ibp);
2002 	}
2003 
2004 	/*
2005 	 * Point the bucket head pointer at the inode being inserted.
2006 	 */
2007 	ASSERT(agino != 0);
2008 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2009 	offset = offsetof(xfs_agi_t, agi_unlinked) +
2010 		(sizeof(xfs_agino_t) * bucket_index);
2011 	xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2012 	xfs_trans_log_buf(tp, agibp, offset,
2013 			  (offset + sizeof(xfs_agino_t) - 1));
2014 	return 0;
2015 }
2016 
2017 /*
2018  * Pull the on-disk inode from the AGI unlinked list.
2019  */
2020 STATIC int
2021 xfs_iunlink_remove(
2022 	xfs_trans_t	*tp,
2023 	xfs_inode_t	*ip)
2024 {
2025 	xfs_ino_t	next_ino;
2026 	xfs_mount_t	*mp;
2027 	xfs_agi_t	*agi;
2028 	xfs_dinode_t	*dip;
2029 	xfs_buf_t	*agibp;
2030 	xfs_buf_t	*ibp;
2031 	xfs_agnumber_t	agno;
2032 	xfs_agino_t	agino;
2033 	xfs_agino_t	next_agino;
2034 	xfs_buf_t	*last_ibp;
2035 	xfs_dinode_t	*last_dip = NULL;
2036 	short		bucket_index;
2037 	int		offset, last_offset = 0;
2038 	int		error;
2039 
2040 	mp = tp->t_mountp;
2041 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2042 
2043 	/*
2044 	 * Get the agi buffer first.  It ensures lock ordering
2045 	 * on the list.
2046 	 */
2047 	error = xfs_read_agi(mp, tp, agno, &agibp);
2048 	if (error)
2049 		return error;
2050 
2051 	agi = XFS_BUF_TO_AGI(agibp);
2052 
2053 	/*
2054 	 * Get the index into the agi hash table for the
2055 	 * list this inode will go on.
2056 	 */
2057 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2058 	ASSERT(agino != 0);
2059 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2060 	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2061 	ASSERT(agi->agi_unlinked[bucket_index]);
2062 
2063 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2064 		/*
2065 		 * We're at the head of the list.  Get the inode's on-disk
2066 		 * buffer to see if there is anyone after us on the list.
2067 		 * Only modify our next pointer if it is not already NULLAGINO.
2068 		 * This saves us the overhead of dealing with the buffer when
2069 		 * there is no need to change it.
2070 		 */
2071 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2072 				       0, 0);
2073 		if (error) {
2074 			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2075 				__func__, error);
2076 			return error;
2077 		}
2078 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2079 		ASSERT(next_agino != 0);
2080 		if (next_agino != NULLAGINO) {
2081 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2082 			offset = ip->i_imap.im_boffset +
2083 				offsetof(xfs_dinode_t, di_next_unlinked);
2084 
2085 			/* need to recalc the inode CRC if appropriate */
2086 			xfs_dinode_calc_crc(mp, dip);
2087 
2088 			xfs_trans_inode_buf(tp, ibp);
2089 			xfs_trans_log_buf(tp, ibp, offset,
2090 					  (offset + sizeof(xfs_agino_t) - 1));
2091 			xfs_inobp_check(mp, ibp);
2092 		} else {
2093 			xfs_trans_brelse(tp, ibp);
2094 		}
2095 		/*
2096 		 * Point the bucket head pointer at the next inode.
2097 		 */
2098 		ASSERT(next_agino != 0);
2099 		ASSERT(next_agino != agino);
2100 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2101 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2102 			(sizeof(xfs_agino_t) * bucket_index);
2103 		xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2104 		xfs_trans_log_buf(tp, agibp, offset,
2105 				  (offset + sizeof(xfs_agino_t) - 1));
2106 	} else {
2107 		/*
2108 		 * We need to search the list for the inode being freed.
2109 		 */
2110 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2111 		last_ibp = NULL;
2112 		while (next_agino != agino) {
2113 			struct xfs_imap	imap;
2114 
2115 			if (last_ibp)
2116 				xfs_trans_brelse(tp, last_ibp);
2117 
2118 			imap.im_blkno = 0;
2119 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2120 
2121 			error = xfs_imap(mp, tp, next_ino, &imap, 0);
2122 			if (error) {
2123 				xfs_warn(mp,
2124 	"%s: xfs_imap returned error %d.",
2125 					 __func__, error);
2126 				return error;
2127 			}
2128 
2129 			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2130 					       &last_ibp, 0, 0);
2131 			if (error) {
2132 				xfs_warn(mp,
2133 	"%s: xfs_imap_to_bp returned error %d.",
2134 					__func__, error);
2135 				return error;
2136 			}
2137 
2138 			last_offset = imap.im_boffset;
2139 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2140 			ASSERT(next_agino != NULLAGINO);
2141 			ASSERT(next_agino != 0);
2142 		}
2143 
2144 		/*
2145 		 * Now last_ibp points to the buffer previous to us on the
2146 		 * unlinked list.  Pull us from the list.
2147 		 */
2148 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2149 				       0, 0);
2150 		if (error) {
2151 			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2152 				__func__, error);
2153 			return error;
2154 		}
2155 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2156 		ASSERT(next_agino != 0);
2157 		ASSERT(next_agino != agino);
2158 		if (next_agino != NULLAGINO) {
2159 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2160 			offset = ip->i_imap.im_boffset +
2161 				offsetof(xfs_dinode_t, di_next_unlinked);
2162 
2163 			/* need to recalc the inode CRC if appropriate */
2164 			xfs_dinode_calc_crc(mp, dip);
2165 
2166 			xfs_trans_inode_buf(tp, ibp);
2167 			xfs_trans_log_buf(tp, ibp, offset,
2168 					  (offset + sizeof(xfs_agino_t) - 1));
2169 			xfs_inobp_check(mp, ibp);
2170 		} else {
2171 			xfs_trans_brelse(tp, ibp);
2172 		}
2173 		/*
2174 		 * Point the previous inode on the list to the next inode.
2175 		 */
2176 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2177 		ASSERT(next_agino != 0);
2178 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2179 
2180 		/* need to recalc the inode CRC if appropriate */
2181 		xfs_dinode_calc_crc(mp, last_dip);
2182 
2183 		xfs_trans_inode_buf(tp, last_ibp);
2184 		xfs_trans_log_buf(tp, last_ibp, offset,
2185 				  (offset + sizeof(xfs_agino_t) - 1));
2186 		xfs_inobp_check(mp, last_ibp);
2187 	}
2188 	return 0;
2189 }
2190 
2191 /*
2192  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2193  * inodes that are in memory - they all must be marked stale and attached to
2194  * the cluster buffer.
2195  */
2196 STATIC int
2197 xfs_ifree_cluster(
2198 	xfs_inode_t		*free_ip,
2199 	xfs_trans_t		*tp,
2200 	struct xfs_icluster	*xic)
2201 {
2202 	xfs_mount_t		*mp = free_ip->i_mount;
2203 	int			blks_per_cluster;
2204 	int			inodes_per_cluster;
2205 	int			nbufs;
2206 	int			i, j;
2207 	int			ioffset;
2208 	xfs_daddr_t		blkno;
2209 	xfs_buf_t		*bp;
2210 	xfs_inode_t		*ip;
2211 	xfs_inode_log_item_t	*iip;
2212 	xfs_log_item_t		*lip;
2213 	struct xfs_perag	*pag;
2214 	xfs_ino_t		inum;
2215 
2216 	inum = xic->first_ino;
2217 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2218 	blks_per_cluster = xfs_icluster_size_fsb(mp);
2219 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2220 	nbufs = mp->m_ialloc_blks / blks_per_cluster;
2221 
2222 	for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2223 		/*
2224 		 * The allocation bitmap tells us which inodes of the chunk were
2225 		 * physically allocated. Skip the cluster if an inode falls into
2226 		 * a sparse region.
2227 		 */
2228 		ioffset = inum - xic->first_ino;
2229 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2230 			ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2231 			continue;
2232 		}
2233 
2234 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2235 					 XFS_INO_TO_AGBNO(mp, inum));
2236 
2237 		/*
2238 		 * We obtain and lock the backing buffer first in the process
2239 		 * here, as we have to ensure that any dirty inode that we
2240 		 * can't get the flush lock on is attached to the buffer.
2241 		 * If we scan the in-memory inodes first, then buffer IO can
2242 		 * complete before we get a lock on it, and hence we may fail
2243 		 * to mark all the active inodes on the buffer stale.
2244 		 */
2245 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2246 					mp->m_bsize * blks_per_cluster,
2247 					XBF_UNMAPPED);
2248 
2249 		if (!bp)
2250 			return -ENOMEM;
2251 
2252 		/*
2253 		 * This buffer may not have been correctly initialised as we
2254 		 * didn't read it from disk. That's not important because we are
2255 		 * only using to mark the buffer as stale in the log, and to
2256 		 * attach stale cached inodes on it. That means it will never be
2257 		 * dispatched for IO. If it is, we want to know about it, and we
2258 		 * want it to fail. We can acheive this by adding a write
2259 		 * verifier to the buffer.
2260 		 */
2261 		 bp->b_ops = &xfs_inode_buf_ops;
2262 
2263 		/*
2264 		 * Walk the inodes already attached to the buffer and mark them
2265 		 * stale. These will all have the flush locks held, so an
2266 		 * in-memory inode walk can't lock them. By marking them all
2267 		 * stale first, we will not attempt to lock them in the loop
2268 		 * below as the XFS_ISTALE flag will be set.
2269 		 */
2270 		lip = bp->b_fspriv;
2271 		while (lip) {
2272 			if (lip->li_type == XFS_LI_INODE) {
2273 				iip = (xfs_inode_log_item_t *)lip;
2274 				ASSERT(iip->ili_logged == 1);
2275 				lip->li_cb = xfs_istale_done;
2276 				xfs_trans_ail_copy_lsn(mp->m_ail,
2277 							&iip->ili_flush_lsn,
2278 							&iip->ili_item.li_lsn);
2279 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2280 			}
2281 			lip = lip->li_bio_list;
2282 		}
2283 
2284 
2285 		/*
2286 		 * For each inode in memory attempt to add it to the inode
2287 		 * buffer and set it up for being staled on buffer IO
2288 		 * completion.  This is safe as we've locked out tail pushing
2289 		 * and flushing by locking the buffer.
2290 		 *
2291 		 * We have already marked every inode that was part of a
2292 		 * transaction stale above, which means there is no point in
2293 		 * even trying to lock them.
2294 		 */
2295 		for (i = 0; i < inodes_per_cluster; i++) {
2296 retry:
2297 			rcu_read_lock();
2298 			ip = radix_tree_lookup(&pag->pag_ici_root,
2299 					XFS_INO_TO_AGINO(mp, (inum + i)));
2300 
2301 			/* Inode not in memory, nothing to do */
2302 			if (!ip) {
2303 				rcu_read_unlock();
2304 				continue;
2305 			}
2306 
2307 			/*
2308 			 * because this is an RCU protected lookup, we could
2309 			 * find a recently freed or even reallocated inode
2310 			 * during the lookup. We need to check under the
2311 			 * i_flags_lock for a valid inode here. Skip it if it
2312 			 * is not valid, the wrong inode or stale.
2313 			 */
2314 			spin_lock(&ip->i_flags_lock);
2315 			if (ip->i_ino != inum + i ||
2316 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2317 				spin_unlock(&ip->i_flags_lock);
2318 				rcu_read_unlock();
2319 				continue;
2320 			}
2321 			spin_unlock(&ip->i_flags_lock);
2322 
2323 			/*
2324 			 * Don't try to lock/unlock the current inode, but we
2325 			 * _cannot_ skip the other inodes that we did not find
2326 			 * in the list attached to the buffer and are not
2327 			 * already marked stale. If we can't lock it, back off
2328 			 * and retry.
2329 			 */
2330 			if (ip != free_ip &&
2331 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2332 				rcu_read_unlock();
2333 				delay(1);
2334 				goto retry;
2335 			}
2336 			rcu_read_unlock();
2337 
2338 			xfs_iflock(ip);
2339 			xfs_iflags_set(ip, XFS_ISTALE);
2340 
2341 			/*
2342 			 * we don't need to attach clean inodes or those only
2343 			 * with unlogged changes (which we throw away, anyway).
2344 			 */
2345 			iip = ip->i_itemp;
2346 			if (!iip || xfs_inode_clean(ip)) {
2347 				ASSERT(ip != free_ip);
2348 				xfs_ifunlock(ip);
2349 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2350 				continue;
2351 			}
2352 
2353 			iip->ili_last_fields = iip->ili_fields;
2354 			iip->ili_fields = 0;
2355 			iip->ili_fsync_fields = 0;
2356 			iip->ili_logged = 1;
2357 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2358 						&iip->ili_item.li_lsn);
2359 
2360 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2361 						  &iip->ili_item);
2362 
2363 			if (ip != free_ip)
2364 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2365 		}
2366 
2367 		xfs_trans_stale_inode_buf(tp, bp);
2368 		xfs_trans_binval(tp, bp);
2369 	}
2370 
2371 	xfs_perag_put(pag);
2372 	return 0;
2373 }
2374 
2375 /*
2376  * This is called to return an inode to the inode free list.
2377  * The inode should already be truncated to 0 length and have
2378  * no pages associated with it.  This routine also assumes that
2379  * the inode is already a part of the transaction.
2380  *
2381  * The on-disk copy of the inode will have been added to the list
2382  * of unlinked inodes in the AGI. We need to remove the inode from
2383  * that list atomically with respect to freeing it here.
2384  */
2385 int
2386 xfs_ifree(
2387 	xfs_trans_t	*tp,
2388 	xfs_inode_t	*ip,
2389 	xfs_bmap_free_t	*flist)
2390 {
2391 	int			error;
2392 	struct xfs_icluster	xic = { 0 };
2393 
2394 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2395 	ASSERT(VFS_I(ip)->i_nlink == 0);
2396 	ASSERT(ip->i_d.di_nextents == 0);
2397 	ASSERT(ip->i_d.di_anextents == 0);
2398 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2399 	ASSERT(ip->i_d.di_nblocks == 0);
2400 
2401 	/*
2402 	 * Pull the on-disk inode from the AGI unlinked list.
2403 	 */
2404 	error = xfs_iunlink_remove(tp, ip);
2405 	if (error)
2406 		return error;
2407 
2408 	error = xfs_difree(tp, ip->i_ino, flist, &xic);
2409 	if (error)
2410 		return error;
2411 
2412 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2413 	ip->i_d.di_flags = 0;
2414 	ip->i_d.di_dmevmask = 0;
2415 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2416 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2417 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2418 	/*
2419 	 * Bump the generation count so no one will be confused
2420 	 * by reincarnations of this inode.
2421 	 */
2422 	VFS_I(ip)->i_generation++;
2423 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2424 
2425 	if (xic.deleted)
2426 		error = xfs_ifree_cluster(ip, tp, &xic);
2427 
2428 	return error;
2429 }
2430 
2431 /*
2432  * This is called to unpin an inode.  The caller must have the inode locked
2433  * in at least shared mode so that the buffer cannot be subsequently pinned
2434  * once someone is waiting for it to be unpinned.
2435  */
2436 static void
2437 xfs_iunpin(
2438 	struct xfs_inode	*ip)
2439 {
2440 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2441 
2442 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2443 
2444 	/* Give the log a push to start the unpinning I/O */
2445 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2446 
2447 }
2448 
2449 static void
2450 __xfs_iunpin_wait(
2451 	struct xfs_inode	*ip)
2452 {
2453 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2454 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2455 
2456 	xfs_iunpin(ip);
2457 
2458 	do {
2459 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2460 		if (xfs_ipincount(ip))
2461 			io_schedule();
2462 	} while (xfs_ipincount(ip));
2463 	finish_wait(wq, &wait.wait);
2464 }
2465 
2466 void
2467 xfs_iunpin_wait(
2468 	struct xfs_inode	*ip)
2469 {
2470 	if (xfs_ipincount(ip))
2471 		__xfs_iunpin_wait(ip);
2472 }
2473 
2474 /*
2475  * Removing an inode from the namespace involves removing the directory entry
2476  * and dropping the link count on the inode. Removing the directory entry can
2477  * result in locking an AGF (directory blocks were freed) and removing a link
2478  * count can result in placing the inode on an unlinked list which results in
2479  * locking an AGI.
2480  *
2481  * The big problem here is that we have an ordering constraint on AGF and AGI
2482  * locking - inode allocation locks the AGI, then can allocate a new extent for
2483  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2484  * removes the inode from the unlinked list, requiring that we lock the AGI
2485  * first, and then freeing the inode can result in an inode chunk being freed
2486  * and hence freeing disk space requiring that we lock an AGF.
2487  *
2488  * Hence the ordering that is imposed by other parts of the code is AGI before
2489  * AGF. This means we cannot remove the directory entry before we drop the inode
2490  * reference count and put it on the unlinked list as this results in a lock
2491  * order of AGF then AGI, and this can deadlock against inode allocation and
2492  * freeing. Therefore we must drop the link counts before we remove the
2493  * directory entry.
2494  *
2495  * This is still safe from a transactional point of view - it is not until we
2496  * get to xfs_bmap_finish() that we have the possibility of multiple
2497  * transactions in this operation. Hence as long as we remove the directory
2498  * entry and drop the link count in the first transaction of the remove
2499  * operation, there are no transactional constraints on the ordering here.
2500  */
2501 int
2502 xfs_remove(
2503 	xfs_inode_t             *dp,
2504 	struct xfs_name		*name,
2505 	xfs_inode_t		*ip)
2506 {
2507 	xfs_mount_t		*mp = dp->i_mount;
2508 	xfs_trans_t             *tp = NULL;
2509 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2510 	int                     error = 0;
2511 	xfs_bmap_free_t         free_list;
2512 	xfs_fsblock_t           first_block;
2513 	uint			resblks;
2514 
2515 	trace_xfs_remove(dp, name);
2516 
2517 	if (XFS_FORCED_SHUTDOWN(mp))
2518 		return -EIO;
2519 
2520 	error = xfs_qm_dqattach(dp, 0);
2521 	if (error)
2522 		goto std_return;
2523 
2524 	error = xfs_qm_dqattach(ip, 0);
2525 	if (error)
2526 		goto std_return;
2527 
2528 	if (is_dir)
2529 		tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2530 	else
2531 		tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2532 
2533 	/*
2534 	 * We try to get the real space reservation first,
2535 	 * allowing for directory btree deletion(s) implying
2536 	 * possible bmap insert(s).  If we can't get the space
2537 	 * reservation then we use 0 instead, and avoid the bmap
2538 	 * btree insert(s) in the directory code by, if the bmap
2539 	 * insert tries to happen, instead trimming the LAST
2540 	 * block from the directory.
2541 	 */
2542 	resblks = XFS_REMOVE_SPACE_RES(mp);
2543 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2544 	if (error == -ENOSPC) {
2545 		resblks = 0;
2546 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2547 	}
2548 	if (error) {
2549 		ASSERT(error != -ENOSPC);
2550 		goto out_trans_cancel;
2551 	}
2552 
2553 	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2554 	xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2555 
2556 	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2557 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2558 
2559 	/*
2560 	 * If we're removing a directory perform some additional validation.
2561 	 */
2562 	if (is_dir) {
2563 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2564 		if (VFS_I(ip)->i_nlink != 2) {
2565 			error = -ENOTEMPTY;
2566 			goto out_trans_cancel;
2567 		}
2568 		if (!xfs_dir_isempty(ip)) {
2569 			error = -ENOTEMPTY;
2570 			goto out_trans_cancel;
2571 		}
2572 
2573 		/* Drop the link from ip's "..".  */
2574 		error = xfs_droplink(tp, dp);
2575 		if (error)
2576 			goto out_trans_cancel;
2577 
2578 		/* Drop the "." link from ip to self.  */
2579 		error = xfs_droplink(tp, ip);
2580 		if (error)
2581 			goto out_trans_cancel;
2582 	} else {
2583 		/*
2584 		 * When removing a non-directory we need to log the parent
2585 		 * inode here.  For a directory this is done implicitly
2586 		 * by the xfs_droplink call for the ".." entry.
2587 		 */
2588 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2589 	}
2590 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2591 
2592 	/* Drop the link from dp to ip. */
2593 	error = xfs_droplink(tp, ip);
2594 	if (error)
2595 		goto out_trans_cancel;
2596 
2597 	xfs_bmap_init(&free_list, &first_block);
2598 	error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2599 					&first_block, &free_list, resblks);
2600 	if (error) {
2601 		ASSERT(error != -ENOENT);
2602 		goto out_bmap_cancel;
2603 	}
2604 
2605 	/*
2606 	 * If this is a synchronous mount, make sure that the
2607 	 * remove transaction goes to disk before returning to
2608 	 * the user.
2609 	 */
2610 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2611 		xfs_trans_set_sync(tp);
2612 
2613 	error = xfs_bmap_finish(&tp, &free_list, NULL);
2614 	if (error)
2615 		goto out_bmap_cancel;
2616 
2617 	error = xfs_trans_commit(tp);
2618 	if (error)
2619 		goto std_return;
2620 
2621 	if (is_dir && xfs_inode_is_filestream(ip))
2622 		xfs_filestream_deassociate(ip);
2623 
2624 	return 0;
2625 
2626  out_bmap_cancel:
2627 	xfs_bmap_cancel(&free_list);
2628  out_trans_cancel:
2629 	xfs_trans_cancel(tp);
2630  std_return:
2631 	return error;
2632 }
2633 
2634 /*
2635  * Enter all inodes for a rename transaction into a sorted array.
2636  */
2637 #define __XFS_SORT_INODES	5
2638 STATIC void
2639 xfs_sort_for_rename(
2640 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2641 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2642 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2643 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2644 	struct xfs_inode	*wip,	/* in: whiteout inode */
2645 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2646 	int			*num_inodes)  /* in/out: inodes in array */
2647 {
2648 	int			i, j;
2649 
2650 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2651 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2652 
2653 	/*
2654 	 * i_tab contains a list of pointers to inodes.  We initialize
2655 	 * the table here & we'll sort it.  We will then use it to
2656 	 * order the acquisition of the inode locks.
2657 	 *
2658 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2659 	 */
2660 	i = 0;
2661 	i_tab[i++] = dp1;
2662 	i_tab[i++] = dp2;
2663 	i_tab[i++] = ip1;
2664 	if (ip2)
2665 		i_tab[i++] = ip2;
2666 	if (wip)
2667 		i_tab[i++] = wip;
2668 	*num_inodes = i;
2669 
2670 	/*
2671 	 * Sort the elements via bubble sort.  (Remember, there are at
2672 	 * most 5 elements to sort, so this is adequate.)
2673 	 */
2674 	for (i = 0; i < *num_inodes; i++) {
2675 		for (j = 1; j < *num_inodes; j++) {
2676 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2677 				struct xfs_inode *temp = i_tab[j];
2678 				i_tab[j] = i_tab[j-1];
2679 				i_tab[j-1] = temp;
2680 			}
2681 		}
2682 	}
2683 }
2684 
2685 static int
2686 xfs_finish_rename(
2687 	struct xfs_trans	*tp,
2688 	struct xfs_bmap_free	*free_list)
2689 {
2690 	int			error;
2691 
2692 	/*
2693 	 * If this is a synchronous mount, make sure that the rename transaction
2694 	 * goes to disk before returning to the user.
2695 	 */
2696 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2697 		xfs_trans_set_sync(tp);
2698 
2699 	error = xfs_bmap_finish(&tp, free_list, NULL);
2700 	if (error) {
2701 		xfs_bmap_cancel(free_list);
2702 		xfs_trans_cancel(tp);
2703 		return error;
2704 	}
2705 
2706 	return xfs_trans_commit(tp);
2707 }
2708 
2709 /*
2710  * xfs_cross_rename()
2711  *
2712  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2713  */
2714 STATIC int
2715 xfs_cross_rename(
2716 	struct xfs_trans	*tp,
2717 	struct xfs_inode	*dp1,
2718 	struct xfs_name		*name1,
2719 	struct xfs_inode	*ip1,
2720 	struct xfs_inode	*dp2,
2721 	struct xfs_name		*name2,
2722 	struct xfs_inode	*ip2,
2723 	struct xfs_bmap_free	*free_list,
2724 	xfs_fsblock_t		*first_block,
2725 	int			spaceres)
2726 {
2727 	int		error = 0;
2728 	int		ip1_flags = 0;
2729 	int		ip2_flags = 0;
2730 	int		dp2_flags = 0;
2731 
2732 	/* Swap inode number for dirent in first parent */
2733 	error = xfs_dir_replace(tp, dp1, name1,
2734 				ip2->i_ino,
2735 				first_block, free_list, spaceres);
2736 	if (error)
2737 		goto out_trans_abort;
2738 
2739 	/* Swap inode number for dirent in second parent */
2740 	error = xfs_dir_replace(tp, dp2, name2,
2741 				ip1->i_ino,
2742 				first_block, free_list, spaceres);
2743 	if (error)
2744 		goto out_trans_abort;
2745 
2746 	/*
2747 	 * If we're renaming one or more directories across different parents,
2748 	 * update the respective ".." entries (and link counts) to match the new
2749 	 * parents.
2750 	 */
2751 	if (dp1 != dp2) {
2752 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2753 
2754 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2755 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2756 						dp1->i_ino, first_block,
2757 						free_list, spaceres);
2758 			if (error)
2759 				goto out_trans_abort;
2760 
2761 			/* transfer ip2 ".." reference to dp1 */
2762 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2763 				error = xfs_droplink(tp, dp2);
2764 				if (error)
2765 					goto out_trans_abort;
2766 				error = xfs_bumplink(tp, dp1);
2767 				if (error)
2768 					goto out_trans_abort;
2769 			}
2770 
2771 			/*
2772 			 * Although ip1 isn't changed here, userspace needs
2773 			 * to be warned about the change, so that applications
2774 			 * relying on it (like backup ones), will properly
2775 			 * notify the change
2776 			 */
2777 			ip1_flags |= XFS_ICHGTIME_CHG;
2778 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2779 		}
2780 
2781 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2782 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2783 						dp2->i_ino, first_block,
2784 						free_list, spaceres);
2785 			if (error)
2786 				goto out_trans_abort;
2787 
2788 			/* transfer ip1 ".." reference to dp2 */
2789 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2790 				error = xfs_droplink(tp, dp1);
2791 				if (error)
2792 					goto out_trans_abort;
2793 				error = xfs_bumplink(tp, dp2);
2794 				if (error)
2795 					goto out_trans_abort;
2796 			}
2797 
2798 			/*
2799 			 * Although ip2 isn't changed here, userspace needs
2800 			 * to be warned about the change, so that applications
2801 			 * relying on it (like backup ones), will properly
2802 			 * notify the change
2803 			 */
2804 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2805 			ip2_flags |= XFS_ICHGTIME_CHG;
2806 		}
2807 	}
2808 
2809 	if (ip1_flags) {
2810 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2811 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2812 	}
2813 	if (ip2_flags) {
2814 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2815 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2816 	}
2817 	if (dp2_flags) {
2818 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2819 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2820 	}
2821 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2822 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2823 	return xfs_finish_rename(tp, free_list);
2824 
2825 out_trans_abort:
2826 	xfs_bmap_cancel(free_list);
2827 	xfs_trans_cancel(tp);
2828 	return error;
2829 }
2830 
2831 /*
2832  * xfs_rename_alloc_whiteout()
2833  *
2834  * Return a referenced, unlinked, unlocked inode that that can be used as a
2835  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2836  * crash between allocating the inode and linking it into the rename transaction
2837  * recovery will free the inode and we won't leak it.
2838  */
2839 static int
2840 xfs_rename_alloc_whiteout(
2841 	struct xfs_inode	*dp,
2842 	struct xfs_inode	**wip)
2843 {
2844 	struct xfs_inode	*tmpfile;
2845 	int			error;
2846 
2847 	error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2848 	if (error)
2849 		return error;
2850 
2851 	/*
2852 	 * Prepare the tmpfile inode as if it were created through the VFS.
2853 	 * Otherwise, the link increment paths will complain about nlink 0->1.
2854 	 * Drop the link count as done by d_tmpfile(), complete the inode setup
2855 	 * and flag it as linkable.
2856 	 */
2857 	drop_nlink(VFS_I(tmpfile));
2858 	xfs_finish_inode_setup(tmpfile);
2859 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2860 
2861 	*wip = tmpfile;
2862 	return 0;
2863 }
2864 
2865 /*
2866  * xfs_rename
2867  */
2868 int
2869 xfs_rename(
2870 	struct xfs_inode	*src_dp,
2871 	struct xfs_name		*src_name,
2872 	struct xfs_inode	*src_ip,
2873 	struct xfs_inode	*target_dp,
2874 	struct xfs_name		*target_name,
2875 	struct xfs_inode	*target_ip,
2876 	unsigned int		flags)
2877 {
2878 	struct xfs_mount	*mp = src_dp->i_mount;
2879 	struct xfs_trans	*tp;
2880 	struct xfs_bmap_free	free_list;
2881 	xfs_fsblock_t		first_block;
2882 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2883 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2884 	int			num_inodes = __XFS_SORT_INODES;
2885 	bool			new_parent = (src_dp != target_dp);
2886 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2887 	int			spaceres;
2888 	int			error;
2889 
2890 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2891 
2892 	if ((flags & RENAME_EXCHANGE) && !target_ip)
2893 		return -EINVAL;
2894 
2895 	/*
2896 	 * If we are doing a whiteout operation, allocate the whiteout inode
2897 	 * we will be placing at the target and ensure the type is set
2898 	 * appropriately.
2899 	 */
2900 	if (flags & RENAME_WHITEOUT) {
2901 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2902 		error = xfs_rename_alloc_whiteout(target_dp, &wip);
2903 		if (error)
2904 			return error;
2905 
2906 		/* setup target dirent info as whiteout */
2907 		src_name->type = XFS_DIR3_FT_CHRDEV;
2908 	}
2909 
2910 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2911 				inodes, &num_inodes);
2912 
2913 	tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2914 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2915 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2916 	if (error == -ENOSPC) {
2917 		spaceres = 0;
2918 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2919 	}
2920 	if (error)
2921 		goto out_trans_cancel;
2922 
2923 	/*
2924 	 * Attach the dquots to the inodes
2925 	 */
2926 	error = xfs_qm_vop_rename_dqattach(inodes);
2927 	if (error)
2928 		goto out_trans_cancel;
2929 
2930 	/*
2931 	 * Lock all the participating inodes. Depending upon whether
2932 	 * the target_name exists in the target directory, and
2933 	 * whether the target directory is the same as the source
2934 	 * directory, we can lock from 2 to 4 inodes.
2935 	 */
2936 	if (!new_parent)
2937 		xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2938 	else
2939 		xfs_lock_two_inodes(src_dp, target_dp,
2940 				    XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2941 
2942 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2943 
2944 	/*
2945 	 * Join all the inodes to the transaction. From this point on,
2946 	 * we can rely on either trans_commit or trans_cancel to unlock
2947 	 * them.
2948 	 */
2949 	xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2950 	if (new_parent)
2951 		xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2952 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2953 	if (target_ip)
2954 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2955 	if (wip)
2956 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2957 
2958 	/*
2959 	 * If we are using project inheritance, we only allow renames
2960 	 * into our tree when the project IDs are the same; else the
2961 	 * tree quota mechanism would be circumvented.
2962 	 */
2963 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2964 		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2965 		error = -EXDEV;
2966 		goto out_trans_cancel;
2967 	}
2968 
2969 	xfs_bmap_init(&free_list, &first_block);
2970 
2971 	/* RENAME_EXCHANGE is unique from here on. */
2972 	if (flags & RENAME_EXCHANGE)
2973 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2974 					target_dp, target_name, target_ip,
2975 					&free_list, &first_block, spaceres);
2976 
2977 	/*
2978 	 * Set up the target.
2979 	 */
2980 	if (target_ip == NULL) {
2981 		/*
2982 		 * If there's no space reservation, check the entry will
2983 		 * fit before actually inserting it.
2984 		 */
2985 		if (!spaceres) {
2986 			error = xfs_dir_canenter(tp, target_dp, target_name);
2987 			if (error)
2988 				goto out_trans_cancel;
2989 		}
2990 		/*
2991 		 * If target does not exist and the rename crosses
2992 		 * directories, adjust the target directory link count
2993 		 * to account for the ".." reference from the new entry.
2994 		 */
2995 		error = xfs_dir_createname(tp, target_dp, target_name,
2996 						src_ip->i_ino, &first_block,
2997 						&free_list, spaceres);
2998 		if (error)
2999 			goto out_bmap_cancel;
3000 
3001 		xfs_trans_ichgtime(tp, target_dp,
3002 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3003 
3004 		if (new_parent && src_is_directory) {
3005 			error = xfs_bumplink(tp, target_dp);
3006 			if (error)
3007 				goto out_bmap_cancel;
3008 		}
3009 	} else { /* target_ip != NULL */
3010 		/*
3011 		 * If target exists and it's a directory, check that both
3012 		 * target and source are directories and that target can be
3013 		 * destroyed, or that neither is a directory.
3014 		 */
3015 		if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3016 			/*
3017 			 * Make sure target dir is empty.
3018 			 */
3019 			if (!(xfs_dir_isempty(target_ip)) ||
3020 			    (VFS_I(target_ip)->i_nlink > 2)) {
3021 				error = -EEXIST;
3022 				goto out_trans_cancel;
3023 			}
3024 		}
3025 
3026 		/*
3027 		 * Link the source inode under the target name.
3028 		 * If the source inode is a directory and we are moving
3029 		 * it across directories, its ".." entry will be
3030 		 * inconsistent until we replace that down below.
3031 		 *
3032 		 * In case there is already an entry with the same
3033 		 * name at the destination directory, remove it first.
3034 		 */
3035 		error = xfs_dir_replace(tp, target_dp, target_name,
3036 					src_ip->i_ino,
3037 					&first_block, &free_list, spaceres);
3038 		if (error)
3039 			goto out_bmap_cancel;
3040 
3041 		xfs_trans_ichgtime(tp, target_dp,
3042 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3043 
3044 		/*
3045 		 * Decrement the link count on the target since the target
3046 		 * dir no longer points to it.
3047 		 */
3048 		error = xfs_droplink(tp, target_ip);
3049 		if (error)
3050 			goto out_bmap_cancel;
3051 
3052 		if (src_is_directory) {
3053 			/*
3054 			 * Drop the link from the old "." entry.
3055 			 */
3056 			error = xfs_droplink(tp, target_ip);
3057 			if (error)
3058 				goto out_bmap_cancel;
3059 		}
3060 	} /* target_ip != NULL */
3061 
3062 	/*
3063 	 * Remove the source.
3064 	 */
3065 	if (new_parent && src_is_directory) {
3066 		/*
3067 		 * Rewrite the ".." entry to point to the new
3068 		 * directory.
3069 		 */
3070 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3071 					target_dp->i_ino,
3072 					&first_block, &free_list, spaceres);
3073 		ASSERT(error != -EEXIST);
3074 		if (error)
3075 			goto out_bmap_cancel;
3076 	}
3077 
3078 	/*
3079 	 * We always want to hit the ctime on the source inode.
3080 	 *
3081 	 * This isn't strictly required by the standards since the source
3082 	 * inode isn't really being changed, but old unix file systems did
3083 	 * it and some incremental backup programs won't work without it.
3084 	 */
3085 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3086 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3087 
3088 	/*
3089 	 * Adjust the link count on src_dp.  This is necessary when
3090 	 * renaming a directory, either within one parent when
3091 	 * the target existed, or across two parent directories.
3092 	 */
3093 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3094 
3095 		/*
3096 		 * Decrement link count on src_directory since the
3097 		 * entry that's moved no longer points to it.
3098 		 */
3099 		error = xfs_droplink(tp, src_dp);
3100 		if (error)
3101 			goto out_bmap_cancel;
3102 	}
3103 
3104 	/*
3105 	 * For whiteouts, we only need to update the source dirent with the
3106 	 * inode number of the whiteout inode rather than removing it
3107 	 * altogether.
3108 	 */
3109 	if (wip) {
3110 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3111 					&first_block, &free_list, spaceres);
3112 	} else
3113 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3114 					   &first_block, &free_list, spaceres);
3115 	if (error)
3116 		goto out_bmap_cancel;
3117 
3118 	/*
3119 	 * For whiteouts, we need to bump the link count on the whiteout inode.
3120 	 * This means that failures all the way up to this point leave the inode
3121 	 * on the unlinked list and so cleanup is a simple matter of dropping
3122 	 * the remaining reference to it. If we fail here after bumping the link
3123 	 * count, we're shutting down the filesystem so we'll never see the
3124 	 * intermediate state on disk.
3125 	 */
3126 	if (wip) {
3127 		ASSERT(VFS_I(wip)->i_nlink == 0);
3128 		error = xfs_bumplink(tp, wip);
3129 		if (error)
3130 			goto out_bmap_cancel;
3131 		error = xfs_iunlink_remove(tp, wip);
3132 		if (error)
3133 			goto out_bmap_cancel;
3134 		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3135 
3136 		/*
3137 		 * Now we have a real link, clear the "I'm a tmpfile" state
3138 		 * flag from the inode so it doesn't accidentally get misused in
3139 		 * future.
3140 		 */
3141 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3142 	}
3143 
3144 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3145 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3146 	if (new_parent)
3147 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3148 
3149 	error = xfs_finish_rename(tp, &free_list);
3150 	if (wip)
3151 		IRELE(wip);
3152 	return error;
3153 
3154 out_bmap_cancel:
3155 	xfs_bmap_cancel(&free_list);
3156 out_trans_cancel:
3157 	xfs_trans_cancel(tp);
3158 	if (wip)
3159 		IRELE(wip);
3160 	return error;
3161 }
3162 
3163 STATIC int
3164 xfs_iflush_cluster(
3165 	xfs_inode_t	*ip,
3166 	xfs_buf_t	*bp)
3167 {
3168 	xfs_mount_t		*mp = ip->i_mount;
3169 	struct xfs_perag	*pag;
3170 	unsigned long		first_index, mask;
3171 	unsigned long		inodes_per_cluster;
3172 	int			ilist_size;
3173 	xfs_inode_t		**ilist;
3174 	xfs_inode_t		*iq;
3175 	int			nr_found;
3176 	int			clcount = 0;
3177 	int			bufwasdelwri;
3178 	int			i;
3179 
3180 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3181 
3182 	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3183 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3184 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3185 	if (!ilist)
3186 		goto out_put;
3187 
3188 	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3189 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3190 	rcu_read_lock();
3191 	/* really need a gang lookup range call here */
3192 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3193 					first_index, inodes_per_cluster);
3194 	if (nr_found == 0)
3195 		goto out_free;
3196 
3197 	for (i = 0; i < nr_found; i++) {
3198 		iq = ilist[i];
3199 		if (iq == ip)
3200 			continue;
3201 
3202 		/*
3203 		 * because this is an RCU protected lookup, we could find a
3204 		 * recently freed or even reallocated inode during the lookup.
3205 		 * We need to check under the i_flags_lock for a valid inode
3206 		 * here. Skip it if it is not valid or the wrong inode.
3207 		 */
3208 		spin_lock(&ip->i_flags_lock);
3209 		if (!ip->i_ino ||
3210 		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3211 			spin_unlock(&ip->i_flags_lock);
3212 			continue;
3213 		}
3214 		spin_unlock(&ip->i_flags_lock);
3215 
3216 		/*
3217 		 * Do an un-protected check to see if the inode is dirty and
3218 		 * is a candidate for flushing.  These checks will be repeated
3219 		 * later after the appropriate locks are acquired.
3220 		 */
3221 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
3222 			continue;
3223 
3224 		/*
3225 		 * Try to get locks.  If any are unavailable or it is pinned,
3226 		 * then this inode cannot be flushed and is skipped.
3227 		 */
3228 
3229 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3230 			continue;
3231 		if (!xfs_iflock_nowait(iq)) {
3232 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3233 			continue;
3234 		}
3235 		if (xfs_ipincount(iq)) {
3236 			xfs_ifunlock(iq);
3237 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3238 			continue;
3239 		}
3240 
3241 		/*
3242 		 * arriving here means that this inode can be flushed.  First
3243 		 * re-check that it's dirty before flushing.
3244 		 */
3245 		if (!xfs_inode_clean(iq)) {
3246 			int	error;
3247 			error = xfs_iflush_int(iq, bp);
3248 			if (error) {
3249 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
3250 				goto cluster_corrupt_out;
3251 			}
3252 			clcount++;
3253 		} else {
3254 			xfs_ifunlock(iq);
3255 		}
3256 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
3257 	}
3258 
3259 	if (clcount) {
3260 		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3261 		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3262 	}
3263 
3264 out_free:
3265 	rcu_read_unlock();
3266 	kmem_free(ilist);
3267 out_put:
3268 	xfs_perag_put(pag);
3269 	return 0;
3270 
3271 
3272 cluster_corrupt_out:
3273 	/*
3274 	 * Corruption detected in the clustering loop.  Invalidate the
3275 	 * inode buffer and shut down the filesystem.
3276 	 */
3277 	rcu_read_unlock();
3278 	/*
3279 	 * Clean up the buffer.  If it was delwri, just release it --
3280 	 * brelse can handle it with no problems.  If not, shut down the
3281 	 * filesystem before releasing the buffer.
3282 	 */
3283 	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3284 	if (bufwasdelwri)
3285 		xfs_buf_relse(bp);
3286 
3287 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3288 
3289 	if (!bufwasdelwri) {
3290 		/*
3291 		 * Just like incore_relse: if we have b_iodone functions,
3292 		 * mark the buffer as an error and call them.  Otherwise
3293 		 * mark it as stale and brelse.
3294 		 */
3295 		if (bp->b_iodone) {
3296 			bp->b_flags &= ~XBF_DONE;
3297 			xfs_buf_stale(bp);
3298 			xfs_buf_ioerror(bp, -EIO);
3299 			xfs_buf_ioend(bp);
3300 		} else {
3301 			xfs_buf_stale(bp);
3302 			xfs_buf_relse(bp);
3303 		}
3304 	}
3305 
3306 	/*
3307 	 * Unlocks the flush lock
3308 	 */
3309 	xfs_iflush_abort(iq, false);
3310 	kmem_free(ilist);
3311 	xfs_perag_put(pag);
3312 	return -EFSCORRUPTED;
3313 }
3314 
3315 /*
3316  * Flush dirty inode metadata into the backing buffer.
3317  *
3318  * The caller must have the inode lock and the inode flush lock held.  The
3319  * inode lock will still be held upon return to the caller, and the inode
3320  * flush lock will be released after the inode has reached the disk.
3321  *
3322  * The caller must write out the buffer returned in *bpp and release it.
3323  */
3324 int
3325 xfs_iflush(
3326 	struct xfs_inode	*ip,
3327 	struct xfs_buf		**bpp)
3328 {
3329 	struct xfs_mount	*mp = ip->i_mount;
3330 	struct xfs_buf		*bp;
3331 	struct xfs_dinode	*dip;
3332 	int			error;
3333 
3334 	XFS_STATS_INC(mp, xs_iflush_count);
3335 
3336 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3337 	ASSERT(xfs_isiflocked(ip));
3338 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3339 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3340 
3341 	*bpp = NULL;
3342 
3343 	xfs_iunpin_wait(ip);
3344 
3345 	/*
3346 	 * For stale inodes we cannot rely on the backing buffer remaining
3347 	 * stale in cache for the remaining life of the stale inode and so
3348 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3349 	 * inodes below. We have to check this after ensuring the inode is
3350 	 * unpinned so that it is safe to reclaim the stale inode after the
3351 	 * flush call.
3352 	 */
3353 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3354 		xfs_ifunlock(ip);
3355 		return 0;
3356 	}
3357 
3358 	/*
3359 	 * This may have been unpinned because the filesystem is shutting
3360 	 * down forcibly. If that's the case we must not write this inode
3361 	 * to disk, because the log record didn't make it to disk.
3362 	 *
3363 	 * We also have to remove the log item from the AIL in this case,
3364 	 * as we wait for an empty AIL as part of the unmount process.
3365 	 */
3366 	if (XFS_FORCED_SHUTDOWN(mp)) {
3367 		error = -EIO;
3368 		goto abort_out;
3369 	}
3370 
3371 	/*
3372 	 * Get the buffer containing the on-disk inode.
3373 	 */
3374 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3375 			       0);
3376 	if (error || !bp) {
3377 		xfs_ifunlock(ip);
3378 		return error;
3379 	}
3380 
3381 	/*
3382 	 * First flush out the inode that xfs_iflush was called with.
3383 	 */
3384 	error = xfs_iflush_int(ip, bp);
3385 	if (error)
3386 		goto corrupt_out;
3387 
3388 	/*
3389 	 * If the buffer is pinned then push on the log now so we won't
3390 	 * get stuck waiting in the write for too long.
3391 	 */
3392 	if (xfs_buf_ispinned(bp))
3393 		xfs_log_force(mp, 0);
3394 
3395 	/*
3396 	 * inode clustering:
3397 	 * see if other inodes can be gathered into this write
3398 	 */
3399 	error = xfs_iflush_cluster(ip, bp);
3400 	if (error)
3401 		goto cluster_corrupt_out;
3402 
3403 	*bpp = bp;
3404 	return 0;
3405 
3406 corrupt_out:
3407 	xfs_buf_relse(bp);
3408 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3409 cluster_corrupt_out:
3410 	error = -EFSCORRUPTED;
3411 abort_out:
3412 	/*
3413 	 * Unlocks the flush lock
3414 	 */
3415 	xfs_iflush_abort(ip, false);
3416 	return error;
3417 }
3418 
3419 STATIC int
3420 xfs_iflush_int(
3421 	struct xfs_inode	*ip,
3422 	struct xfs_buf		*bp)
3423 {
3424 	struct xfs_inode_log_item *iip = ip->i_itemp;
3425 	struct xfs_dinode	*dip;
3426 	struct xfs_mount	*mp = ip->i_mount;
3427 
3428 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3429 	ASSERT(xfs_isiflocked(ip));
3430 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3431 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3432 	ASSERT(iip != NULL && iip->ili_fields != 0);
3433 	ASSERT(ip->i_d.di_version > 1);
3434 
3435 	/* set *dip = inode's place in the buffer */
3436 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3437 
3438 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3439 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3440 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3441 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3442 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3443 		goto corrupt_out;
3444 	}
3445 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3446 		if (XFS_TEST_ERROR(
3447 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3448 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3449 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3450 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3451 				"%s: Bad regular inode %Lu, ptr 0x%p",
3452 				__func__, ip->i_ino, ip);
3453 			goto corrupt_out;
3454 		}
3455 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3456 		if (XFS_TEST_ERROR(
3457 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3458 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3459 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3460 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3461 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3462 				"%s: Bad directory inode %Lu, ptr 0x%p",
3463 				__func__, ip->i_ino, ip);
3464 			goto corrupt_out;
3465 		}
3466 	}
3467 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3468 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3469 				XFS_RANDOM_IFLUSH_5)) {
3470 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3471 			"%s: detected corrupt incore inode %Lu, "
3472 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
3473 			__func__, ip->i_ino,
3474 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3475 			ip->i_d.di_nblocks, ip);
3476 		goto corrupt_out;
3477 	}
3478 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3479 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3480 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3481 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3482 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3483 		goto corrupt_out;
3484 	}
3485 
3486 	/*
3487 	 * Inode item log recovery for v2 inodes are dependent on the
3488 	 * di_flushiter count for correct sequencing. We bump the flush
3489 	 * iteration count so we can detect flushes which postdate a log record
3490 	 * during recovery. This is redundant as we now log every change and
3491 	 * hence this can't happen but we need to still do it to ensure
3492 	 * backwards compatibility with old kernels that predate logging all
3493 	 * inode changes.
3494 	 */
3495 	if (ip->i_d.di_version < 3)
3496 		ip->i_d.di_flushiter++;
3497 
3498 	/*
3499 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3500 	 * copy out the core of the inode, because if the inode is dirty at all
3501 	 * the core must be.
3502 	 */
3503 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3504 
3505 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3506 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3507 		ip->i_d.di_flushiter = 0;
3508 
3509 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3510 	if (XFS_IFORK_Q(ip))
3511 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3512 	xfs_inobp_check(mp, bp);
3513 
3514 	/*
3515 	 * We've recorded everything logged in the inode, so we'd like to clear
3516 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3517 	 * However, we can't stop logging all this information until the data
3518 	 * we've copied into the disk buffer is written to disk.  If we did we
3519 	 * might overwrite the copy of the inode in the log with all the data
3520 	 * after re-logging only part of it, and in the face of a crash we
3521 	 * wouldn't have all the data we need to recover.
3522 	 *
3523 	 * What we do is move the bits to the ili_last_fields field.  When
3524 	 * logging the inode, these bits are moved back to the ili_fields field.
3525 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3526 	 * know that the information those bits represent is permanently on
3527 	 * disk.  As long as the flush completes before the inode is logged
3528 	 * again, then both ili_fields and ili_last_fields will be cleared.
3529 	 *
3530 	 * We can play with the ili_fields bits here, because the inode lock
3531 	 * must be held exclusively in order to set bits there and the flush
3532 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3533 	 * done routine can tell whether or not to look in the AIL.  Also, store
3534 	 * the current LSN of the inode so that we can tell whether the item has
3535 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3536 	 * need the AIL lock, because it is a 64 bit value that cannot be read
3537 	 * atomically.
3538 	 */
3539 	iip->ili_last_fields = iip->ili_fields;
3540 	iip->ili_fields = 0;
3541 	iip->ili_fsync_fields = 0;
3542 	iip->ili_logged = 1;
3543 
3544 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3545 				&iip->ili_item.li_lsn);
3546 
3547 	/*
3548 	 * Attach the function xfs_iflush_done to the inode's
3549 	 * buffer.  This will remove the inode from the AIL
3550 	 * and unlock the inode's flush lock when the inode is
3551 	 * completely written to disk.
3552 	 */
3553 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3554 
3555 	/* generate the checksum. */
3556 	xfs_dinode_calc_crc(mp, dip);
3557 
3558 	ASSERT(bp->b_fspriv != NULL);
3559 	ASSERT(bp->b_iodone != NULL);
3560 	return 0;
3561 
3562 corrupt_out:
3563 	return -EFSCORRUPTED;
3564 }
3565