1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_shared.h" 23 #include "xfs_format.h" 24 #include "xfs_log_format.h" 25 #include "xfs_trans_resv.h" 26 #include "xfs_sb.h" 27 #include "xfs_mount.h" 28 #include "xfs_inode.h" 29 #include "xfs_da_format.h" 30 #include "xfs_da_btree.h" 31 #include "xfs_dir2.h" 32 #include "xfs_attr_sf.h" 33 #include "xfs_attr.h" 34 #include "xfs_trans_space.h" 35 #include "xfs_trans.h" 36 #include "xfs_buf_item.h" 37 #include "xfs_inode_item.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_bmap.h" 40 #include "xfs_bmap_util.h" 41 #include "xfs_error.h" 42 #include "xfs_quota.h" 43 #include "xfs_filestream.h" 44 #include "xfs_cksum.h" 45 #include "xfs_trace.h" 46 #include "xfs_icache.h" 47 #include "xfs_symlink.h" 48 #include "xfs_trans_priv.h" 49 #include "xfs_log.h" 50 #include "xfs_bmap_btree.h" 51 52 kmem_zone_t *xfs_inode_zone; 53 54 /* 55 * Used in xfs_itruncate_extents(). This is the maximum number of extents 56 * freed from a file in a single transaction. 57 */ 58 #define XFS_ITRUNC_MAX_EXTENTS 2 59 60 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); 61 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 62 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 63 64 /* 65 * helper function to extract extent size hint from inode 66 */ 67 xfs_extlen_t 68 xfs_get_extsz_hint( 69 struct xfs_inode *ip) 70 { 71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 72 return ip->i_d.di_extsize; 73 if (XFS_IS_REALTIME_INODE(ip)) 74 return ip->i_mount->m_sb.sb_rextsize; 75 return 0; 76 } 77 78 /* 79 * These two are wrapper routines around the xfs_ilock() routine used to 80 * centralize some grungy code. They are used in places that wish to lock the 81 * inode solely for reading the extents. The reason these places can't just 82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 83 * bringing in of the extents from disk for a file in b-tree format. If the 84 * inode is in b-tree format, then we need to lock the inode exclusively until 85 * the extents are read in. Locking it exclusively all the time would limit 86 * our parallelism unnecessarily, though. What we do instead is check to see 87 * if the extents have been read in yet, and only lock the inode exclusively 88 * if they have not. 89 * 90 * The functions return a value which should be given to the corresponding 91 * xfs_iunlock() call. 92 */ 93 uint 94 xfs_ilock_data_map_shared( 95 struct xfs_inode *ip) 96 { 97 uint lock_mode = XFS_ILOCK_SHARED; 98 99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 101 lock_mode = XFS_ILOCK_EXCL; 102 xfs_ilock(ip, lock_mode); 103 return lock_mode; 104 } 105 106 uint 107 xfs_ilock_attr_map_shared( 108 struct xfs_inode *ip) 109 { 110 uint lock_mode = XFS_ILOCK_SHARED; 111 112 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 113 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 114 lock_mode = XFS_ILOCK_EXCL; 115 xfs_ilock(ip, lock_mode); 116 return lock_mode; 117 } 118 119 /* 120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and 121 * the i_lock. This routine allows various combinations of the locks to be 122 * obtained. 123 * 124 * The 3 locks should always be ordered so that the IO lock is obtained first, 125 * the mmap lock second and the ilock last in order to prevent deadlock. 126 * 127 * Basic locking order: 128 * 129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock 130 * 131 * mmap_sem locking order: 132 * 133 * i_iolock -> page lock -> mmap_sem 134 * mmap_sem -> i_mmap_lock -> page_lock 135 * 136 * The difference in mmap_sem locking order mean that we cannot hold the 137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem 139 * in get_user_pages() to map the user pages into the kernel address space for 140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because 141 * page faults already hold the mmap_sem. 142 * 143 * Hence to serialise fully against both syscall and mmap based IO, we need to 144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both 145 * taken in places where we need to invalidate the page cache in a race 146 * free manner (e.g. truncate, hole punch and other extent manipulation 147 * functions). 148 */ 149 void 150 xfs_ilock( 151 xfs_inode_t *ip, 152 uint lock_flags) 153 { 154 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 155 156 /* 157 * You can't set both SHARED and EXCL for the same lock, 158 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 159 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 160 */ 161 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 162 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 163 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 164 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 165 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 166 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 167 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 168 169 if (lock_flags & XFS_IOLOCK_EXCL) 170 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 171 else if (lock_flags & XFS_IOLOCK_SHARED) 172 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 173 174 if (lock_flags & XFS_MMAPLOCK_EXCL) 175 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 176 else if (lock_flags & XFS_MMAPLOCK_SHARED) 177 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 178 179 if (lock_flags & XFS_ILOCK_EXCL) 180 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 181 else if (lock_flags & XFS_ILOCK_SHARED) 182 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 183 } 184 185 /* 186 * This is just like xfs_ilock(), except that the caller 187 * is guaranteed not to sleep. It returns 1 if it gets 188 * the requested locks and 0 otherwise. If the IO lock is 189 * obtained but the inode lock cannot be, then the IO lock 190 * is dropped before returning. 191 * 192 * ip -- the inode being locked 193 * lock_flags -- this parameter indicates the inode's locks to be 194 * to be locked. See the comment for xfs_ilock() for a list 195 * of valid values. 196 */ 197 int 198 xfs_ilock_nowait( 199 xfs_inode_t *ip, 200 uint lock_flags) 201 { 202 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 203 204 /* 205 * You can't set both SHARED and EXCL for the same lock, 206 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 207 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 208 */ 209 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 210 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 211 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 212 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 213 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 214 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 215 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 216 217 if (lock_flags & XFS_IOLOCK_EXCL) { 218 if (!mrtryupdate(&ip->i_iolock)) 219 goto out; 220 } else if (lock_flags & XFS_IOLOCK_SHARED) { 221 if (!mrtryaccess(&ip->i_iolock)) 222 goto out; 223 } 224 225 if (lock_flags & XFS_MMAPLOCK_EXCL) { 226 if (!mrtryupdate(&ip->i_mmaplock)) 227 goto out_undo_iolock; 228 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 229 if (!mrtryaccess(&ip->i_mmaplock)) 230 goto out_undo_iolock; 231 } 232 233 if (lock_flags & XFS_ILOCK_EXCL) { 234 if (!mrtryupdate(&ip->i_lock)) 235 goto out_undo_mmaplock; 236 } else if (lock_flags & XFS_ILOCK_SHARED) { 237 if (!mrtryaccess(&ip->i_lock)) 238 goto out_undo_mmaplock; 239 } 240 return 1; 241 242 out_undo_mmaplock: 243 if (lock_flags & XFS_MMAPLOCK_EXCL) 244 mrunlock_excl(&ip->i_mmaplock); 245 else if (lock_flags & XFS_MMAPLOCK_SHARED) 246 mrunlock_shared(&ip->i_mmaplock); 247 out_undo_iolock: 248 if (lock_flags & XFS_IOLOCK_EXCL) 249 mrunlock_excl(&ip->i_iolock); 250 else if (lock_flags & XFS_IOLOCK_SHARED) 251 mrunlock_shared(&ip->i_iolock); 252 out: 253 return 0; 254 } 255 256 /* 257 * xfs_iunlock() is used to drop the inode locks acquired with 258 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 260 * that we know which locks to drop. 261 * 262 * ip -- the inode being unlocked 263 * lock_flags -- this parameter indicates the inode's locks to be 264 * to be unlocked. See the comment for xfs_ilock() for a list 265 * of valid values for this parameter. 266 * 267 */ 268 void 269 xfs_iunlock( 270 xfs_inode_t *ip, 271 uint lock_flags) 272 { 273 /* 274 * You can't set both SHARED and EXCL for the same lock, 275 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 276 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 277 */ 278 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 279 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 280 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 281 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 282 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 283 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 284 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 285 ASSERT(lock_flags != 0); 286 287 if (lock_flags & XFS_IOLOCK_EXCL) 288 mrunlock_excl(&ip->i_iolock); 289 else if (lock_flags & XFS_IOLOCK_SHARED) 290 mrunlock_shared(&ip->i_iolock); 291 292 if (lock_flags & XFS_MMAPLOCK_EXCL) 293 mrunlock_excl(&ip->i_mmaplock); 294 else if (lock_flags & XFS_MMAPLOCK_SHARED) 295 mrunlock_shared(&ip->i_mmaplock); 296 297 if (lock_flags & XFS_ILOCK_EXCL) 298 mrunlock_excl(&ip->i_lock); 299 else if (lock_flags & XFS_ILOCK_SHARED) 300 mrunlock_shared(&ip->i_lock); 301 302 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 303 } 304 305 /* 306 * give up write locks. the i/o lock cannot be held nested 307 * if it is being demoted. 308 */ 309 void 310 xfs_ilock_demote( 311 xfs_inode_t *ip, 312 uint lock_flags) 313 { 314 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 315 ASSERT((lock_flags & 316 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 317 318 if (lock_flags & XFS_ILOCK_EXCL) 319 mrdemote(&ip->i_lock); 320 if (lock_flags & XFS_MMAPLOCK_EXCL) 321 mrdemote(&ip->i_mmaplock); 322 if (lock_flags & XFS_IOLOCK_EXCL) 323 mrdemote(&ip->i_iolock); 324 325 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 326 } 327 328 #if defined(DEBUG) || defined(XFS_WARN) 329 int 330 xfs_isilocked( 331 xfs_inode_t *ip, 332 uint lock_flags) 333 { 334 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 335 if (!(lock_flags & XFS_ILOCK_SHARED)) 336 return !!ip->i_lock.mr_writer; 337 return rwsem_is_locked(&ip->i_lock.mr_lock); 338 } 339 340 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 341 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 342 return !!ip->i_mmaplock.mr_writer; 343 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 344 } 345 346 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 347 if (!(lock_flags & XFS_IOLOCK_SHARED)) 348 return !!ip->i_iolock.mr_writer; 349 return rwsem_is_locked(&ip->i_iolock.mr_lock); 350 } 351 352 ASSERT(0); 353 return 0; 354 } 355 #endif 356 357 #ifdef DEBUG 358 int xfs_locked_n; 359 int xfs_small_retries; 360 int xfs_middle_retries; 361 int xfs_lots_retries; 362 int xfs_lock_delays; 363 #endif 364 365 /* 366 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 367 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 368 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 369 * errors and warnings. 370 */ 371 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 372 static bool 373 xfs_lockdep_subclass_ok( 374 int subclass) 375 { 376 return subclass < MAX_LOCKDEP_SUBCLASSES; 377 } 378 #else 379 #define xfs_lockdep_subclass_ok(subclass) (true) 380 #endif 381 382 /* 383 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 384 * value. This can be called for any type of inode lock combination, including 385 * parent locking. Care must be taken to ensure we don't overrun the subclass 386 * storage fields in the class mask we build. 387 */ 388 static inline int 389 xfs_lock_inumorder(int lock_mode, int subclass) 390 { 391 int class = 0; 392 393 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 394 XFS_ILOCK_RTSUM))); 395 ASSERT(xfs_lockdep_subclass_ok(subclass)); 396 397 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 398 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 399 ASSERT(xfs_lockdep_subclass_ok(subclass + 400 XFS_IOLOCK_PARENT_VAL)); 401 class += subclass << XFS_IOLOCK_SHIFT; 402 if (lock_mode & XFS_IOLOCK_PARENT) 403 class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT; 404 } 405 406 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 407 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 408 class += subclass << XFS_MMAPLOCK_SHIFT; 409 } 410 411 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 412 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 413 class += subclass << XFS_ILOCK_SHIFT; 414 } 415 416 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 417 } 418 419 /* 420 * The following routine will lock n inodes in exclusive mode. We assume the 421 * caller calls us with the inodes in i_ino order. 422 * 423 * We need to detect deadlock where an inode that we lock is in the AIL and we 424 * start waiting for another inode that is locked by a thread in a long running 425 * transaction (such as truncate). This can result in deadlock since the long 426 * running trans might need to wait for the inode we just locked in order to 427 * push the tail and free space in the log. 428 * 429 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 430 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 431 * lock more than one at a time, lockdep will report false positives saying we 432 * have violated locking orders. 433 */ 434 void 435 xfs_lock_inodes( 436 xfs_inode_t **ips, 437 int inodes, 438 uint lock_mode) 439 { 440 int attempts = 0, i, j, try_lock; 441 xfs_log_item_t *lp; 442 443 /* 444 * Currently supports between 2 and 5 inodes with exclusive locking. We 445 * support an arbitrary depth of locking here, but absolute limits on 446 * inodes depend on the the type of locking and the limits placed by 447 * lockdep annotations in xfs_lock_inumorder. These are all checked by 448 * the asserts. 449 */ 450 ASSERT(ips && inodes >= 2 && inodes <= 5); 451 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 452 XFS_ILOCK_EXCL)); 453 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 454 XFS_ILOCK_SHARED))); 455 ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) || 456 inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1); 457 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 458 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 459 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 460 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 461 462 if (lock_mode & XFS_IOLOCK_EXCL) { 463 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 464 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 466 467 try_lock = 0; 468 i = 0; 469 again: 470 for (; i < inodes; i++) { 471 ASSERT(ips[i]); 472 473 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 474 continue; 475 476 /* 477 * If try_lock is not set yet, make sure all locked inodes are 478 * not in the AIL. If any are, set try_lock to be used later. 479 */ 480 if (!try_lock) { 481 for (j = (i - 1); j >= 0 && !try_lock; j--) { 482 lp = (xfs_log_item_t *)ips[j]->i_itemp; 483 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) 484 try_lock++; 485 } 486 } 487 488 /* 489 * If any of the previous locks we have locked is in the AIL, 490 * we must TRY to get the second and subsequent locks. If 491 * we can't get any, we must release all we have 492 * and try again. 493 */ 494 if (!try_lock) { 495 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 496 continue; 497 } 498 499 /* try_lock means we have an inode locked that is in the AIL. */ 500 ASSERT(i != 0); 501 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 502 continue; 503 504 /* 505 * Unlock all previous guys and try again. xfs_iunlock will try 506 * to push the tail if the inode is in the AIL. 507 */ 508 attempts++; 509 for (j = i - 1; j >= 0; j--) { 510 /* 511 * Check to see if we've already unlocked this one. Not 512 * the first one going back, and the inode ptr is the 513 * same. 514 */ 515 if (j != (i - 1) && ips[j] == ips[j + 1]) 516 continue; 517 518 xfs_iunlock(ips[j], lock_mode); 519 } 520 521 if ((attempts % 5) == 0) { 522 delay(1); /* Don't just spin the CPU */ 523 #ifdef DEBUG 524 xfs_lock_delays++; 525 #endif 526 } 527 i = 0; 528 try_lock = 0; 529 goto again; 530 } 531 532 #ifdef DEBUG 533 if (attempts) { 534 if (attempts < 5) xfs_small_retries++; 535 else if (attempts < 100) xfs_middle_retries++; 536 else xfs_lots_retries++; 537 } else { 538 xfs_locked_n++; 539 } 540 #endif 541 } 542 543 /* 544 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 545 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 546 * lock more than one at a time, lockdep will report false positives saying we 547 * have violated locking orders. 548 */ 549 void 550 xfs_lock_two_inodes( 551 xfs_inode_t *ip0, 552 xfs_inode_t *ip1, 553 uint lock_mode) 554 { 555 xfs_inode_t *temp; 556 int attempts = 0; 557 xfs_log_item_t *lp; 558 559 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 560 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 561 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 562 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) 563 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 564 565 ASSERT(ip0->i_ino != ip1->i_ino); 566 567 if (ip0->i_ino > ip1->i_ino) { 568 temp = ip0; 569 ip0 = ip1; 570 ip1 = temp; 571 } 572 573 again: 574 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0)); 575 576 /* 577 * If the first lock we have locked is in the AIL, we must TRY to get 578 * the second lock. If we can't get it, we must release the first one 579 * and try again. 580 */ 581 lp = (xfs_log_item_t *)ip0->i_itemp; 582 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 583 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) { 584 xfs_iunlock(ip0, lock_mode); 585 if ((++attempts % 5) == 0) 586 delay(1); /* Don't just spin the CPU */ 587 goto again; 588 } 589 } else { 590 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1)); 591 } 592 } 593 594 595 void 596 __xfs_iflock( 597 struct xfs_inode *ip) 598 { 599 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 600 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 601 602 do { 603 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 604 if (xfs_isiflocked(ip)) 605 io_schedule(); 606 } while (!xfs_iflock_nowait(ip)); 607 608 finish_wait(wq, &wait.wait); 609 } 610 611 STATIC uint 612 _xfs_dic2xflags( 613 __uint16_t di_flags, 614 uint64_t di_flags2, 615 bool has_attr) 616 { 617 uint flags = 0; 618 619 if (di_flags & XFS_DIFLAG_ANY) { 620 if (di_flags & XFS_DIFLAG_REALTIME) 621 flags |= FS_XFLAG_REALTIME; 622 if (di_flags & XFS_DIFLAG_PREALLOC) 623 flags |= FS_XFLAG_PREALLOC; 624 if (di_flags & XFS_DIFLAG_IMMUTABLE) 625 flags |= FS_XFLAG_IMMUTABLE; 626 if (di_flags & XFS_DIFLAG_APPEND) 627 flags |= FS_XFLAG_APPEND; 628 if (di_flags & XFS_DIFLAG_SYNC) 629 flags |= FS_XFLAG_SYNC; 630 if (di_flags & XFS_DIFLAG_NOATIME) 631 flags |= FS_XFLAG_NOATIME; 632 if (di_flags & XFS_DIFLAG_NODUMP) 633 flags |= FS_XFLAG_NODUMP; 634 if (di_flags & XFS_DIFLAG_RTINHERIT) 635 flags |= FS_XFLAG_RTINHERIT; 636 if (di_flags & XFS_DIFLAG_PROJINHERIT) 637 flags |= FS_XFLAG_PROJINHERIT; 638 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 639 flags |= FS_XFLAG_NOSYMLINKS; 640 if (di_flags & XFS_DIFLAG_EXTSIZE) 641 flags |= FS_XFLAG_EXTSIZE; 642 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 643 flags |= FS_XFLAG_EXTSZINHERIT; 644 if (di_flags & XFS_DIFLAG_NODEFRAG) 645 flags |= FS_XFLAG_NODEFRAG; 646 if (di_flags & XFS_DIFLAG_FILESTREAM) 647 flags |= FS_XFLAG_FILESTREAM; 648 } 649 650 if (di_flags2 & XFS_DIFLAG2_ANY) { 651 if (di_flags2 & XFS_DIFLAG2_DAX) 652 flags |= FS_XFLAG_DAX; 653 } 654 655 if (has_attr) 656 flags |= FS_XFLAG_HASATTR; 657 658 return flags; 659 } 660 661 uint 662 xfs_ip2xflags( 663 struct xfs_inode *ip) 664 { 665 struct xfs_icdinode *dic = &ip->i_d; 666 667 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 668 } 669 670 uint 671 xfs_dic2xflags( 672 struct xfs_dinode *dip) 673 { 674 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags), 675 be64_to_cpu(dip->di_flags2), XFS_DFORK_Q(dip)); 676 } 677 678 /* 679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 680 * is allowed, otherwise it has to be an exact match. If a CI match is found, 681 * ci_name->name will point to a the actual name (caller must free) or 682 * will be set to NULL if an exact match is found. 683 */ 684 int 685 xfs_lookup( 686 xfs_inode_t *dp, 687 struct xfs_name *name, 688 xfs_inode_t **ipp, 689 struct xfs_name *ci_name) 690 { 691 xfs_ino_t inum; 692 int error; 693 694 trace_xfs_lookup(dp, name); 695 696 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 697 return -EIO; 698 699 xfs_ilock(dp, XFS_IOLOCK_SHARED); 700 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 701 if (error) 702 goto out_unlock; 703 704 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 705 if (error) 706 goto out_free_name; 707 708 xfs_iunlock(dp, XFS_IOLOCK_SHARED); 709 return 0; 710 711 out_free_name: 712 if (ci_name) 713 kmem_free(ci_name->name); 714 out_unlock: 715 xfs_iunlock(dp, XFS_IOLOCK_SHARED); 716 *ipp = NULL; 717 return error; 718 } 719 720 /* 721 * Allocate an inode on disk and return a copy of its in-core version. 722 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 723 * appropriately within the inode. The uid and gid for the inode are 724 * set according to the contents of the given cred structure. 725 * 726 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 727 * has a free inode available, call xfs_iget() to obtain the in-core 728 * version of the allocated inode. Finally, fill in the inode and 729 * log its initial contents. In this case, ialloc_context would be 730 * set to NULL. 731 * 732 * If xfs_dialloc() does not have an available inode, it will replenish 733 * its supply by doing an allocation. Since we can only do one 734 * allocation within a transaction without deadlocks, we must commit 735 * the current transaction before returning the inode itself. 736 * In this case, therefore, we will set ialloc_context and return. 737 * The caller should then commit the current transaction, start a new 738 * transaction, and call xfs_ialloc() again to actually get the inode. 739 * 740 * To ensure that some other process does not grab the inode that 741 * was allocated during the first call to xfs_ialloc(), this routine 742 * also returns the [locked] bp pointing to the head of the freelist 743 * as ialloc_context. The caller should hold this buffer across 744 * the commit and pass it back into this routine on the second call. 745 * 746 * If we are allocating quota inodes, we do not have a parent inode 747 * to attach to or associate with (i.e. pip == NULL) because they 748 * are not linked into the directory structure - they are attached 749 * directly to the superblock - and so have no parent. 750 */ 751 int 752 xfs_ialloc( 753 xfs_trans_t *tp, 754 xfs_inode_t *pip, 755 umode_t mode, 756 xfs_nlink_t nlink, 757 xfs_dev_t rdev, 758 prid_t prid, 759 int okalloc, 760 xfs_buf_t **ialloc_context, 761 xfs_inode_t **ipp) 762 { 763 struct xfs_mount *mp = tp->t_mountp; 764 xfs_ino_t ino; 765 xfs_inode_t *ip; 766 uint flags; 767 int error; 768 struct timespec tv; 769 struct inode *inode; 770 771 /* 772 * Call the space management code to pick 773 * the on-disk inode to be allocated. 774 */ 775 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 776 ialloc_context, &ino); 777 if (error) 778 return error; 779 if (*ialloc_context || ino == NULLFSINO) { 780 *ipp = NULL; 781 return 0; 782 } 783 ASSERT(*ialloc_context == NULL); 784 785 /* 786 * Get the in-core inode with the lock held exclusively. 787 * This is because we're setting fields here we need 788 * to prevent others from looking at until we're done. 789 */ 790 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 791 XFS_ILOCK_EXCL, &ip); 792 if (error) 793 return error; 794 ASSERT(ip != NULL); 795 inode = VFS_I(ip); 796 797 /* 798 * We always convert v1 inodes to v2 now - we only support filesystems 799 * with >= v2 inode capability, so there is no reason for ever leaving 800 * an inode in v1 format. 801 */ 802 if (ip->i_d.di_version == 1) 803 ip->i_d.di_version = 2; 804 805 inode->i_mode = mode; 806 set_nlink(inode, nlink); 807 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 808 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 809 xfs_set_projid(ip, prid); 810 811 if (pip && XFS_INHERIT_GID(pip)) { 812 ip->i_d.di_gid = pip->i_d.di_gid; 813 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) 814 inode->i_mode |= S_ISGID; 815 } 816 817 /* 818 * If the group ID of the new file does not match the effective group 819 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 820 * (and only if the irix_sgid_inherit compatibility variable is set). 821 */ 822 if ((irix_sgid_inherit) && 823 (inode->i_mode & S_ISGID) && 824 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) 825 inode->i_mode &= ~S_ISGID; 826 827 ip->i_d.di_size = 0; 828 ip->i_d.di_nextents = 0; 829 ASSERT(ip->i_d.di_nblocks == 0); 830 831 tv = current_fs_time(mp->m_super); 832 inode->i_mtime = tv; 833 inode->i_atime = tv; 834 inode->i_ctime = tv; 835 836 ip->i_d.di_extsize = 0; 837 ip->i_d.di_dmevmask = 0; 838 ip->i_d.di_dmstate = 0; 839 ip->i_d.di_flags = 0; 840 841 if (ip->i_d.di_version == 3) { 842 inode->i_version = 1; 843 ip->i_d.di_flags2 = 0; 844 ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec; 845 ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec; 846 } 847 848 849 flags = XFS_ILOG_CORE; 850 switch (mode & S_IFMT) { 851 case S_IFIFO: 852 case S_IFCHR: 853 case S_IFBLK: 854 case S_IFSOCK: 855 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 856 ip->i_df.if_u2.if_rdev = rdev; 857 ip->i_df.if_flags = 0; 858 flags |= XFS_ILOG_DEV; 859 break; 860 case S_IFREG: 861 case S_IFDIR: 862 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 863 uint64_t di_flags2 = 0; 864 uint di_flags = 0; 865 866 if (S_ISDIR(mode)) { 867 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 868 di_flags |= XFS_DIFLAG_RTINHERIT; 869 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 870 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 871 ip->i_d.di_extsize = pip->i_d.di_extsize; 872 } 873 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 874 di_flags |= XFS_DIFLAG_PROJINHERIT; 875 } else if (S_ISREG(mode)) { 876 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 877 di_flags |= XFS_DIFLAG_REALTIME; 878 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 879 di_flags |= XFS_DIFLAG_EXTSIZE; 880 ip->i_d.di_extsize = pip->i_d.di_extsize; 881 } 882 } 883 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 884 xfs_inherit_noatime) 885 di_flags |= XFS_DIFLAG_NOATIME; 886 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 887 xfs_inherit_nodump) 888 di_flags |= XFS_DIFLAG_NODUMP; 889 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 890 xfs_inherit_sync) 891 di_flags |= XFS_DIFLAG_SYNC; 892 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 893 xfs_inherit_nosymlinks) 894 di_flags |= XFS_DIFLAG_NOSYMLINKS; 895 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 896 xfs_inherit_nodefrag) 897 di_flags |= XFS_DIFLAG_NODEFRAG; 898 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 899 di_flags |= XFS_DIFLAG_FILESTREAM; 900 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 901 di_flags2 |= XFS_DIFLAG2_DAX; 902 903 ip->i_d.di_flags |= di_flags; 904 ip->i_d.di_flags2 |= di_flags2; 905 } 906 /* FALLTHROUGH */ 907 case S_IFLNK: 908 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 909 ip->i_df.if_flags = XFS_IFEXTENTS; 910 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 911 ip->i_df.if_u1.if_extents = NULL; 912 break; 913 default: 914 ASSERT(0); 915 } 916 /* 917 * Attribute fork settings for new inode. 918 */ 919 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 920 ip->i_d.di_anextents = 0; 921 922 /* 923 * Log the new values stuffed into the inode. 924 */ 925 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 926 xfs_trans_log_inode(tp, ip, flags); 927 928 /* now that we have an i_mode we can setup the inode structure */ 929 xfs_setup_inode(ip); 930 931 *ipp = ip; 932 return 0; 933 } 934 935 /* 936 * Allocates a new inode from disk and return a pointer to the 937 * incore copy. This routine will internally commit the current 938 * transaction and allocate a new one if the Space Manager needed 939 * to do an allocation to replenish the inode free-list. 940 * 941 * This routine is designed to be called from xfs_create and 942 * xfs_create_dir. 943 * 944 */ 945 int 946 xfs_dir_ialloc( 947 xfs_trans_t **tpp, /* input: current transaction; 948 output: may be a new transaction. */ 949 xfs_inode_t *dp, /* directory within whose allocate 950 the inode. */ 951 umode_t mode, 952 xfs_nlink_t nlink, 953 xfs_dev_t rdev, 954 prid_t prid, /* project id */ 955 int okalloc, /* ok to allocate new space */ 956 xfs_inode_t **ipp, /* pointer to inode; it will be 957 locked. */ 958 int *committed) 959 960 { 961 xfs_trans_t *tp; 962 xfs_inode_t *ip; 963 xfs_buf_t *ialloc_context = NULL; 964 int code; 965 void *dqinfo; 966 uint tflags; 967 968 tp = *tpp; 969 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 970 971 /* 972 * xfs_ialloc will return a pointer to an incore inode if 973 * the Space Manager has an available inode on the free 974 * list. Otherwise, it will do an allocation and replenish 975 * the freelist. Since we can only do one allocation per 976 * transaction without deadlocks, we will need to commit the 977 * current transaction and start a new one. We will then 978 * need to call xfs_ialloc again to get the inode. 979 * 980 * If xfs_ialloc did an allocation to replenish the freelist, 981 * it returns the bp containing the head of the freelist as 982 * ialloc_context. We will hold a lock on it across the 983 * transaction commit so that no other process can steal 984 * the inode(s) that we've just allocated. 985 */ 986 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc, 987 &ialloc_context, &ip); 988 989 /* 990 * Return an error if we were unable to allocate a new inode. 991 * This should only happen if we run out of space on disk or 992 * encounter a disk error. 993 */ 994 if (code) { 995 *ipp = NULL; 996 return code; 997 } 998 if (!ialloc_context && !ip) { 999 *ipp = NULL; 1000 return -ENOSPC; 1001 } 1002 1003 /* 1004 * If the AGI buffer is non-NULL, then we were unable to get an 1005 * inode in one operation. We need to commit the current 1006 * transaction and call xfs_ialloc() again. It is guaranteed 1007 * to succeed the second time. 1008 */ 1009 if (ialloc_context) { 1010 /* 1011 * Normally, xfs_trans_commit releases all the locks. 1012 * We call bhold to hang on to the ialloc_context across 1013 * the commit. Holding this buffer prevents any other 1014 * processes from doing any allocations in this 1015 * allocation group. 1016 */ 1017 xfs_trans_bhold(tp, ialloc_context); 1018 1019 /* 1020 * We want the quota changes to be associated with the next 1021 * transaction, NOT this one. So, detach the dqinfo from this 1022 * and attach it to the next transaction. 1023 */ 1024 dqinfo = NULL; 1025 tflags = 0; 1026 if (tp->t_dqinfo) { 1027 dqinfo = (void *)tp->t_dqinfo; 1028 tp->t_dqinfo = NULL; 1029 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1030 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1031 } 1032 1033 code = xfs_trans_roll(&tp, 0); 1034 if (committed != NULL) 1035 *committed = 1; 1036 1037 /* 1038 * Re-attach the quota info that we detached from prev trx. 1039 */ 1040 if (dqinfo) { 1041 tp->t_dqinfo = dqinfo; 1042 tp->t_flags |= tflags; 1043 } 1044 1045 if (code) { 1046 xfs_buf_relse(ialloc_context); 1047 *tpp = tp; 1048 *ipp = NULL; 1049 return code; 1050 } 1051 xfs_trans_bjoin(tp, ialloc_context); 1052 1053 /* 1054 * Call ialloc again. Since we've locked out all 1055 * other allocations in this allocation group, 1056 * this call should always succeed. 1057 */ 1058 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1059 okalloc, &ialloc_context, &ip); 1060 1061 /* 1062 * If we get an error at this point, return to the caller 1063 * so that the current transaction can be aborted. 1064 */ 1065 if (code) { 1066 *tpp = tp; 1067 *ipp = NULL; 1068 return code; 1069 } 1070 ASSERT(!ialloc_context && ip); 1071 1072 } else { 1073 if (committed != NULL) 1074 *committed = 0; 1075 } 1076 1077 *ipp = ip; 1078 *tpp = tp; 1079 1080 return 0; 1081 } 1082 1083 /* 1084 * Decrement the link count on an inode & log the change. If this causes the 1085 * link count to go to zero, move the inode to AGI unlinked list so that it can 1086 * be freed when the last active reference goes away via xfs_inactive(). 1087 */ 1088 int /* error */ 1089 xfs_droplink( 1090 xfs_trans_t *tp, 1091 xfs_inode_t *ip) 1092 { 1093 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1094 1095 drop_nlink(VFS_I(ip)); 1096 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1097 1098 if (VFS_I(ip)->i_nlink) 1099 return 0; 1100 1101 return xfs_iunlink(tp, ip); 1102 } 1103 1104 /* 1105 * Increment the link count on an inode & log the change. 1106 */ 1107 int 1108 xfs_bumplink( 1109 xfs_trans_t *tp, 1110 xfs_inode_t *ip) 1111 { 1112 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1113 1114 ASSERT(ip->i_d.di_version > 1); 1115 inc_nlink(VFS_I(ip)); 1116 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1117 return 0; 1118 } 1119 1120 int 1121 xfs_create( 1122 xfs_inode_t *dp, 1123 struct xfs_name *name, 1124 umode_t mode, 1125 xfs_dev_t rdev, 1126 xfs_inode_t **ipp) 1127 { 1128 int is_dir = S_ISDIR(mode); 1129 struct xfs_mount *mp = dp->i_mount; 1130 struct xfs_inode *ip = NULL; 1131 struct xfs_trans *tp = NULL; 1132 int error; 1133 xfs_bmap_free_t free_list; 1134 xfs_fsblock_t first_block; 1135 bool unlock_dp_on_error = false; 1136 prid_t prid; 1137 struct xfs_dquot *udqp = NULL; 1138 struct xfs_dquot *gdqp = NULL; 1139 struct xfs_dquot *pdqp = NULL; 1140 struct xfs_trans_res *tres; 1141 uint resblks; 1142 1143 trace_xfs_create(dp, name); 1144 1145 if (XFS_FORCED_SHUTDOWN(mp)) 1146 return -EIO; 1147 1148 prid = xfs_get_initial_prid(dp); 1149 1150 /* 1151 * Make sure that we have allocated dquot(s) on disk. 1152 */ 1153 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1154 xfs_kgid_to_gid(current_fsgid()), prid, 1155 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1156 &udqp, &gdqp, &pdqp); 1157 if (error) 1158 return error; 1159 1160 if (is_dir) { 1161 rdev = 0; 1162 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1163 tres = &M_RES(mp)->tr_mkdir; 1164 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR); 1165 } else { 1166 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1167 tres = &M_RES(mp)->tr_create; 1168 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE); 1169 } 1170 1171 /* 1172 * Initially assume that the file does not exist and 1173 * reserve the resources for that case. If that is not 1174 * the case we'll drop the one we have and get a more 1175 * appropriate transaction later. 1176 */ 1177 error = xfs_trans_reserve(tp, tres, resblks, 0); 1178 if (error == -ENOSPC) { 1179 /* flush outstanding delalloc blocks and retry */ 1180 xfs_flush_inodes(mp); 1181 error = xfs_trans_reserve(tp, tres, resblks, 0); 1182 } 1183 if (error == -ENOSPC) { 1184 /* No space at all so try a "no-allocation" reservation */ 1185 resblks = 0; 1186 error = xfs_trans_reserve(tp, tres, 0, 0); 1187 } 1188 if (error) 1189 goto out_trans_cancel; 1190 1191 1192 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL | 1193 XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT); 1194 unlock_dp_on_error = true; 1195 1196 xfs_bmap_init(&free_list, &first_block); 1197 1198 /* 1199 * Reserve disk quota and the inode. 1200 */ 1201 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1202 pdqp, resblks, 1, 0); 1203 if (error) 1204 goto out_trans_cancel; 1205 1206 if (!resblks) { 1207 error = xfs_dir_canenter(tp, dp, name); 1208 if (error) 1209 goto out_trans_cancel; 1210 } 1211 1212 /* 1213 * A newly created regular or special file just has one directory 1214 * entry pointing to them, but a directory also the "." entry 1215 * pointing to itself. 1216 */ 1217 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, 1218 prid, resblks > 0, &ip, NULL); 1219 if (error) 1220 goto out_trans_cancel; 1221 1222 /* 1223 * Now we join the directory inode to the transaction. We do not do it 1224 * earlier because xfs_dir_ialloc might commit the previous transaction 1225 * (and release all the locks). An error from here on will result in 1226 * the transaction cancel unlocking dp so don't do it explicitly in the 1227 * error path. 1228 */ 1229 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 1230 unlock_dp_on_error = false; 1231 1232 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1233 &first_block, &free_list, resblks ? 1234 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1235 if (error) { 1236 ASSERT(error != -ENOSPC); 1237 goto out_trans_cancel; 1238 } 1239 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1240 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1241 1242 if (is_dir) { 1243 error = xfs_dir_init(tp, ip, dp); 1244 if (error) 1245 goto out_bmap_cancel; 1246 1247 error = xfs_bumplink(tp, dp); 1248 if (error) 1249 goto out_bmap_cancel; 1250 } 1251 1252 /* 1253 * If this is a synchronous mount, make sure that the 1254 * create transaction goes to disk before returning to 1255 * the user. 1256 */ 1257 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1258 xfs_trans_set_sync(tp); 1259 1260 /* 1261 * Attach the dquot(s) to the inodes and modify them incore. 1262 * These ids of the inode couldn't have changed since the new 1263 * inode has been locked ever since it was created. 1264 */ 1265 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1266 1267 error = xfs_bmap_finish(&tp, &free_list, NULL); 1268 if (error) 1269 goto out_bmap_cancel; 1270 1271 error = xfs_trans_commit(tp); 1272 if (error) 1273 goto out_release_inode; 1274 1275 xfs_qm_dqrele(udqp); 1276 xfs_qm_dqrele(gdqp); 1277 xfs_qm_dqrele(pdqp); 1278 1279 *ipp = ip; 1280 return 0; 1281 1282 out_bmap_cancel: 1283 xfs_bmap_cancel(&free_list); 1284 out_trans_cancel: 1285 xfs_trans_cancel(tp); 1286 out_release_inode: 1287 /* 1288 * Wait until after the current transaction is aborted to finish the 1289 * setup of the inode and release the inode. This prevents recursive 1290 * transactions and deadlocks from xfs_inactive. 1291 */ 1292 if (ip) { 1293 xfs_finish_inode_setup(ip); 1294 IRELE(ip); 1295 } 1296 1297 xfs_qm_dqrele(udqp); 1298 xfs_qm_dqrele(gdqp); 1299 xfs_qm_dqrele(pdqp); 1300 1301 if (unlock_dp_on_error) 1302 xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 1303 return error; 1304 } 1305 1306 int 1307 xfs_create_tmpfile( 1308 struct xfs_inode *dp, 1309 struct dentry *dentry, 1310 umode_t mode, 1311 struct xfs_inode **ipp) 1312 { 1313 struct xfs_mount *mp = dp->i_mount; 1314 struct xfs_inode *ip = NULL; 1315 struct xfs_trans *tp = NULL; 1316 int error; 1317 prid_t prid; 1318 struct xfs_dquot *udqp = NULL; 1319 struct xfs_dquot *gdqp = NULL; 1320 struct xfs_dquot *pdqp = NULL; 1321 struct xfs_trans_res *tres; 1322 uint resblks; 1323 1324 if (XFS_FORCED_SHUTDOWN(mp)) 1325 return -EIO; 1326 1327 prid = xfs_get_initial_prid(dp); 1328 1329 /* 1330 * Make sure that we have allocated dquot(s) on disk. 1331 */ 1332 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1333 xfs_kgid_to_gid(current_fsgid()), prid, 1334 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1335 &udqp, &gdqp, &pdqp); 1336 if (error) 1337 return error; 1338 1339 resblks = XFS_IALLOC_SPACE_RES(mp); 1340 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE); 1341 1342 tres = &M_RES(mp)->tr_create_tmpfile; 1343 error = xfs_trans_reserve(tp, tres, resblks, 0); 1344 if (error == -ENOSPC) { 1345 /* No space at all so try a "no-allocation" reservation */ 1346 resblks = 0; 1347 error = xfs_trans_reserve(tp, tres, 0, 0); 1348 } 1349 if (error) 1350 goto out_trans_cancel; 1351 1352 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1353 pdqp, resblks, 1, 0); 1354 if (error) 1355 goto out_trans_cancel; 1356 1357 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, 1358 prid, resblks > 0, &ip, NULL); 1359 if (error) 1360 goto out_trans_cancel; 1361 1362 if (mp->m_flags & XFS_MOUNT_WSYNC) 1363 xfs_trans_set_sync(tp); 1364 1365 /* 1366 * Attach the dquot(s) to the inodes and modify them incore. 1367 * These ids of the inode couldn't have changed since the new 1368 * inode has been locked ever since it was created. 1369 */ 1370 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1371 1372 error = xfs_iunlink(tp, ip); 1373 if (error) 1374 goto out_trans_cancel; 1375 1376 error = xfs_trans_commit(tp); 1377 if (error) 1378 goto out_release_inode; 1379 1380 xfs_qm_dqrele(udqp); 1381 xfs_qm_dqrele(gdqp); 1382 xfs_qm_dqrele(pdqp); 1383 1384 *ipp = ip; 1385 return 0; 1386 1387 out_trans_cancel: 1388 xfs_trans_cancel(tp); 1389 out_release_inode: 1390 /* 1391 * Wait until after the current transaction is aborted to finish the 1392 * setup of the inode and release the inode. This prevents recursive 1393 * transactions and deadlocks from xfs_inactive. 1394 */ 1395 if (ip) { 1396 xfs_finish_inode_setup(ip); 1397 IRELE(ip); 1398 } 1399 1400 xfs_qm_dqrele(udqp); 1401 xfs_qm_dqrele(gdqp); 1402 xfs_qm_dqrele(pdqp); 1403 1404 return error; 1405 } 1406 1407 int 1408 xfs_link( 1409 xfs_inode_t *tdp, 1410 xfs_inode_t *sip, 1411 struct xfs_name *target_name) 1412 { 1413 xfs_mount_t *mp = tdp->i_mount; 1414 xfs_trans_t *tp; 1415 int error; 1416 xfs_bmap_free_t free_list; 1417 xfs_fsblock_t first_block; 1418 int resblks; 1419 1420 trace_xfs_link(tdp, target_name); 1421 1422 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1423 1424 if (XFS_FORCED_SHUTDOWN(mp)) 1425 return -EIO; 1426 1427 error = xfs_qm_dqattach(sip, 0); 1428 if (error) 1429 goto std_return; 1430 1431 error = xfs_qm_dqattach(tdp, 0); 1432 if (error) 1433 goto std_return; 1434 1435 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK); 1436 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1437 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0); 1438 if (error == -ENOSPC) { 1439 resblks = 0; 1440 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0); 1441 } 1442 if (error) 1443 goto error_return; 1444 1445 xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT); 1446 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL); 1447 1448 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1449 xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 1450 1451 /* 1452 * If we are using project inheritance, we only allow hard link 1453 * creation in our tree when the project IDs are the same; else 1454 * the tree quota mechanism could be circumvented. 1455 */ 1456 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1457 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1458 error = -EXDEV; 1459 goto error_return; 1460 } 1461 1462 if (!resblks) { 1463 error = xfs_dir_canenter(tp, tdp, target_name); 1464 if (error) 1465 goto error_return; 1466 } 1467 1468 xfs_bmap_init(&free_list, &first_block); 1469 1470 /* 1471 * Handle initial link state of O_TMPFILE inode 1472 */ 1473 if (VFS_I(sip)->i_nlink == 0) { 1474 error = xfs_iunlink_remove(tp, sip); 1475 if (error) 1476 goto error_return; 1477 } 1478 1479 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1480 &first_block, &free_list, resblks); 1481 if (error) 1482 goto error_return; 1483 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1484 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1485 1486 error = xfs_bumplink(tp, sip); 1487 if (error) 1488 goto error_return; 1489 1490 /* 1491 * If this is a synchronous mount, make sure that the 1492 * link transaction goes to disk before returning to 1493 * the user. 1494 */ 1495 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1496 xfs_trans_set_sync(tp); 1497 1498 error = xfs_bmap_finish(&tp, &free_list, NULL); 1499 if (error) { 1500 xfs_bmap_cancel(&free_list); 1501 goto error_return; 1502 } 1503 1504 return xfs_trans_commit(tp); 1505 1506 error_return: 1507 xfs_trans_cancel(tp); 1508 std_return: 1509 return error; 1510 } 1511 1512 /* 1513 * Free up the underlying blocks past new_size. The new size must be smaller 1514 * than the current size. This routine can be used both for the attribute and 1515 * data fork, and does not modify the inode size, which is left to the caller. 1516 * 1517 * The transaction passed to this routine must have made a permanent log 1518 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1519 * given transaction and start new ones, so make sure everything involved in 1520 * the transaction is tidy before calling here. Some transaction will be 1521 * returned to the caller to be committed. The incoming transaction must 1522 * already include the inode, and both inode locks must be held exclusively. 1523 * The inode must also be "held" within the transaction. On return the inode 1524 * will be "held" within the returned transaction. This routine does NOT 1525 * require any disk space to be reserved for it within the transaction. 1526 * 1527 * If we get an error, we must return with the inode locked and linked into the 1528 * current transaction. This keeps things simple for the higher level code, 1529 * because it always knows that the inode is locked and held in the transaction 1530 * that returns to it whether errors occur or not. We don't mark the inode 1531 * dirty on error so that transactions can be easily aborted if possible. 1532 */ 1533 int 1534 xfs_itruncate_extents( 1535 struct xfs_trans **tpp, 1536 struct xfs_inode *ip, 1537 int whichfork, 1538 xfs_fsize_t new_size) 1539 { 1540 struct xfs_mount *mp = ip->i_mount; 1541 struct xfs_trans *tp = *tpp; 1542 xfs_bmap_free_t free_list; 1543 xfs_fsblock_t first_block; 1544 xfs_fileoff_t first_unmap_block; 1545 xfs_fileoff_t last_block; 1546 xfs_filblks_t unmap_len; 1547 int error = 0; 1548 int done = 0; 1549 1550 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1551 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1552 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1553 ASSERT(new_size <= XFS_ISIZE(ip)); 1554 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1555 ASSERT(ip->i_itemp != NULL); 1556 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1557 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1558 1559 trace_xfs_itruncate_extents_start(ip, new_size); 1560 1561 /* 1562 * Since it is possible for space to become allocated beyond 1563 * the end of the file (in a crash where the space is allocated 1564 * but the inode size is not yet updated), simply remove any 1565 * blocks which show up between the new EOF and the maximum 1566 * possible file size. If the first block to be removed is 1567 * beyond the maximum file size (ie it is the same as last_block), 1568 * then there is nothing to do. 1569 */ 1570 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1571 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1572 if (first_unmap_block == last_block) 1573 return 0; 1574 1575 ASSERT(first_unmap_block < last_block); 1576 unmap_len = last_block - first_unmap_block + 1; 1577 while (!done) { 1578 xfs_bmap_init(&free_list, &first_block); 1579 error = xfs_bunmapi(tp, ip, 1580 first_unmap_block, unmap_len, 1581 xfs_bmapi_aflag(whichfork), 1582 XFS_ITRUNC_MAX_EXTENTS, 1583 &first_block, &free_list, 1584 &done); 1585 if (error) 1586 goto out_bmap_cancel; 1587 1588 /* 1589 * Duplicate the transaction that has the permanent 1590 * reservation and commit the old transaction. 1591 */ 1592 error = xfs_bmap_finish(&tp, &free_list, ip); 1593 if (error) 1594 goto out_bmap_cancel; 1595 1596 error = xfs_trans_roll(&tp, ip); 1597 if (error) 1598 goto out; 1599 } 1600 1601 /* 1602 * Always re-log the inode so that our permanent transaction can keep 1603 * on rolling it forward in the log. 1604 */ 1605 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1606 1607 trace_xfs_itruncate_extents_end(ip, new_size); 1608 1609 out: 1610 *tpp = tp; 1611 return error; 1612 out_bmap_cancel: 1613 /* 1614 * If the bunmapi call encounters an error, return to the caller where 1615 * the transaction can be properly aborted. We just need to make sure 1616 * we're not holding any resources that we were not when we came in. 1617 */ 1618 xfs_bmap_cancel(&free_list); 1619 goto out; 1620 } 1621 1622 int 1623 xfs_release( 1624 xfs_inode_t *ip) 1625 { 1626 xfs_mount_t *mp = ip->i_mount; 1627 int error; 1628 1629 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1630 return 0; 1631 1632 /* If this is a read-only mount, don't do this (would generate I/O) */ 1633 if (mp->m_flags & XFS_MOUNT_RDONLY) 1634 return 0; 1635 1636 if (!XFS_FORCED_SHUTDOWN(mp)) { 1637 int truncated; 1638 1639 /* 1640 * If we previously truncated this file and removed old data 1641 * in the process, we want to initiate "early" writeout on 1642 * the last close. This is an attempt to combat the notorious 1643 * NULL files problem which is particularly noticeable from a 1644 * truncate down, buffered (re-)write (delalloc), followed by 1645 * a crash. What we are effectively doing here is 1646 * significantly reducing the time window where we'd otherwise 1647 * be exposed to that problem. 1648 */ 1649 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1650 if (truncated) { 1651 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1652 if (ip->i_delayed_blks > 0) { 1653 error = filemap_flush(VFS_I(ip)->i_mapping); 1654 if (error) 1655 return error; 1656 } 1657 } 1658 } 1659 1660 if (VFS_I(ip)->i_nlink == 0) 1661 return 0; 1662 1663 if (xfs_can_free_eofblocks(ip, false)) { 1664 1665 /* 1666 * If we can't get the iolock just skip truncating the blocks 1667 * past EOF because we could deadlock with the mmap_sem 1668 * otherwise. We'll get another chance to drop them once the 1669 * last reference to the inode is dropped, so we'll never leak 1670 * blocks permanently. 1671 * 1672 * Further, check if the inode is being opened, written and 1673 * closed frequently and we have delayed allocation blocks 1674 * outstanding (e.g. streaming writes from the NFS server), 1675 * truncating the blocks past EOF will cause fragmentation to 1676 * occur. 1677 * 1678 * In this case don't do the truncation, either, but we have to 1679 * be careful how we detect this case. Blocks beyond EOF show 1680 * up as i_delayed_blks even when the inode is clean, so we 1681 * need to truncate them away first before checking for a dirty 1682 * release. Hence on the first dirty close we will still remove 1683 * the speculative allocation, but after that we will leave it 1684 * in place. 1685 */ 1686 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1687 return 0; 1688 1689 error = xfs_free_eofblocks(mp, ip, true); 1690 if (error && error != -EAGAIN) 1691 return error; 1692 1693 /* delalloc blocks after truncation means it really is dirty */ 1694 if (ip->i_delayed_blks) 1695 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1696 } 1697 return 0; 1698 } 1699 1700 /* 1701 * xfs_inactive_truncate 1702 * 1703 * Called to perform a truncate when an inode becomes unlinked. 1704 */ 1705 STATIC int 1706 xfs_inactive_truncate( 1707 struct xfs_inode *ip) 1708 { 1709 struct xfs_mount *mp = ip->i_mount; 1710 struct xfs_trans *tp; 1711 int error; 1712 1713 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 1714 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 1715 if (error) { 1716 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1717 xfs_trans_cancel(tp); 1718 return error; 1719 } 1720 1721 xfs_ilock(ip, XFS_ILOCK_EXCL); 1722 xfs_trans_ijoin(tp, ip, 0); 1723 1724 /* 1725 * Log the inode size first to prevent stale data exposure in the event 1726 * of a system crash before the truncate completes. See the related 1727 * comment in xfs_setattr_size() for details. 1728 */ 1729 ip->i_d.di_size = 0; 1730 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1731 1732 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1733 if (error) 1734 goto error_trans_cancel; 1735 1736 ASSERT(ip->i_d.di_nextents == 0); 1737 1738 error = xfs_trans_commit(tp); 1739 if (error) 1740 goto error_unlock; 1741 1742 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1743 return 0; 1744 1745 error_trans_cancel: 1746 xfs_trans_cancel(tp); 1747 error_unlock: 1748 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1749 return error; 1750 } 1751 1752 /* 1753 * xfs_inactive_ifree() 1754 * 1755 * Perform the inode free when an inode is unlinked. 1756 */ 1757 STATIC int 1758 xfs_inactive_ifree( 1759 struct xfs_inode *ip) 1760 { 1761 xfs_bmap_free_t free_list; 1762 xfs_fsblock_t first_block; 1763 struct xfs_mount *mp = ip->i_mount; 1764 struct xfs_trans *tp; 1765 int error; 1766 1767 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 1768 1769 /* 1770 * The ifree transaction might need to allocate blocks for record 1771 * insertion to the finobt. We don't want to fail here at ENOSPC, so 1772 * allow ifree to dip into the reserved block pool if necessary. 1773 * 1774 * Freeing large sets of inodes generally means freeing inode chunks, 1775 * directory and file data blocks, so this should be relatively safe. 1776 * Only under severe circumstances should it be possible to free enough 1777 * inodes to exhaust the reserve block pool via finobt expansion while 1778 * at the same time not creating free space in the filesystem. 1779 * 1780 * Send a warning if the reservation does happen to fail, as the inode 1781 * now remains allocated and sits on the unlinked list until the fs is 1782 * repaired. 1783 */ 1784 tp->t_flags |= XFS_TRANS_RESERVE; 1785 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 1786 XFS_IFREE_SPACE_RES(mp), 0); 1787 if (error) { 1788 if (error == -ENOSPC) { 1789 xfs_warn_ratelimited(mp, 1790 "Failed to remove inode(s) from unlinked list. " 1791 "Please free space, unmount and run xfs_repair."); 1792 } else { 1793 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1794 } 1795 xfs_trans_cancel(tp); 1796 return error; 1797 } 1798 1799 xfs_ilock(ip, XFS_ILOCK_EXCL); 1800 xfs_trans_ijoin(tp, ip, 0); 1801 1802 xfs_bmap_init(&free_list, &first_block); 1803 error = xfs_ifree(tp, ip, &free_list); 1804 if (error) { 1805 /* 1806 * If we fail to free the inode, shut down. The cancel 1807 * might do that, we need to make sure. Otherwise the 1808 * inode might be lost for a long time or forever. 1809 */ 1810 if (!XFS_FORCED_SHUTDOWN(mp)) { 1811 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1812 __func__, error); 1813 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1814 } 1815 xfs_trans_cancel(tp); 1816 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1817 return error; 1818 } 1819 1820 /* 1821 * Credit the quota account(s). The inode is gone. 1822 */ 1823 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1824 1825 /* 1826 * Just ignore errors at this point. There is nothing we can do except 1827 * to try to keep going. Make sure it's not a silent error. 1828 */ 1829 error = xfs_bmap_finish(&tp, &free_list, NULL); 1830 if (error) { 1831 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d", 1832 __func__, error); 1833 xfs_bmap_cancel(&free_list); 1834 } 1835 error = xfs_trans_commit(tp); 1836 if (error) 1837 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1838 __func__, error); 1839 1840 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1841 return 0; 1842 } 1843 1844 /* 1845 * xfs_inactive 1846 * 1847 * This is called when the vnode reference count for the vnode 1848 * goes to zero. If the file has been unlinked, then it must 1849 * now be truncated. Also, we clear all of the read-ahead state 1850 * kept for the inode here since the file is now closed. 1851 */ 1852 void 1853 xfs_inactive( 1854 xfs_inode_t *ip) 1855 { 1856 struct xfs_mount *mp; 1857 int error; 1858 int truncate = 0; 1859 1860 /* 1861 * If the inode is already free, then there can be nothing 1862 * to clean up here. 1863 */ 1864 if (VFS_I(ip)->i_mode == 0) { 1865 ASSERT(ip->i_df.if_real_bytes == 0); 1866 ASSERT(ip->i_df.if_broot_bytes == 0); 1867 return; 1868 } 1869 1870 mp = ip->i_mount; 1871 1872 /* If this is a read-only mount, don't do this (would generate I/O) */ 1873 if (mp->m_flags & XFS_MOUNT_RDONLY) 1874 return; 1875 1876 if (VFS_I(ip)->i_nlink != 0) { 1877 /* 1878 * force is true because we are evicting an inode from the 1879 * cache. Post-eof blocks must be freed, lest we end up with 1880 * broken free space accounting. 1881 */ 1882 if (xfs_can_free_eofblocks(ip, true)) 1883 xfs_free_eofblocks(mp, ip, false); 1884 1885 return; 1886 } 1887 1888 if (S_ISREG(VFS_I(ip)->i_mode) && 1889 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1890 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1891 truncate = 1; 1892 1893 error = xfs_qm_dqattach(ip, 0); 1894 if (error) 1895 return; 1896 1897 if (S_ISLNK(VFS_I(ip)->i_mode)) 1898 error = xfs_inactive_symlink(ip); 1899 else if (truncate) 1900 error = xfs_inactive_truncate(ip); 1901 if (error) 1902 return; 1903 1904 /* 1905 * If there are attributes associated with the file then blow them away 1906 * now. The code calls a routine that recursively deconstructs the 1907 * attribute fork. If also blows away the in-core attribute fork. 1908 */ 1909 if (XFS_IFORK_Q(ip)) { 1910 error = xfs_attr_inactive(ip); 1911 if (error) 1912 return; 1913 } 1914 1915 ASSERT(!ip->i_afp); 1916 ASSERT(ip->i_d.di_anextents == 0); 1917 ASSERT(ip->i_d.di_forkoff == 0); 1918 1919 /* 1920 * Free the inode. 1921 */ 1922 error = xfs_inactive_ifree(ip); 1923 if (error) 1924 return; 1925 1926 /* 1927 * Release the dquots held by inode, if any. 1928 */ 1929 xfs_qm_dqdetach(ip); 1930 } 1931 1932 /* 1933 * This is called when the inode's link count goes to 0 or we are creating a 1934 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be 1935 * set to true as the link count is dropped to zero by the VFS after we've 1936 * created the file successfully, so we have to add it to the unlinked list 1937 * while the link count is non-zero. 1938 * 1939 * We place the on-disk inode on a list in the AGI. It will be pulled from this 1940 * list when the inode is freed. 1941 */ 1942 STATIC int 1943 xfs_iunlink( 1944 struct xfs_trans *tp, 1945 struct xfs_inode *ip) 1946 { 1947 xfs_mount_t *mp = tp->t_mountp; 1948 xfs_agi_t *agi; 1949 xfs_dinode_t *dip; 1950 xfs_buf_t *agibp; 1951 xfs_buf_t *ibp; 1952 xfs_agino_t agino; 1953 short bucket_index; 1954 int offset; 1955 int error; 1956 1957 ASSERT(VFS_I(ip)->i_mode != 0); 1958 1959 /* 1960 * Get the agi buffer first. It ensures lock ordering 1961 * on the list. 1962 */ 1963 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1964 if (error) 1965 return error; 1966 agi = XFS_BUF_TO_AGI(agibp); 1967 1968 /* 1969 * Get the index into the agi hash table for the 1970 * list this inode will go on. 1971 */ 1972 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1973 ASSERT(agino != 0); 1974 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1975 ASSERT(agi->agi_unlinked[bucket_index]); 1976 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1977 1978 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 1979 /* 1980 * There is already another inode in the bucket we need 1981 * to add ourselves to. Add us at the front of the list. 1982 * Here we put the head pointer into our next pointer, 1983 * and then we fall through to point the head at us. 1984 */ 1985 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 1986 0, 0); 1987 if (error) 1988 return error; 1989 1990 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 1991 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1992 offset = ip->i_imap.im_boffset + 1993 offsetof(xfs_dinode_t, di_next_unlinked); 1994 1995 /* need to recalc the inode CRC if appropriate */ 1996 xfs_dinode_calc_crc(mp, dip); 1997 1998 xfs_trans_inode_buf(tp, ibp); 1999 xfs_trans_log_buf(tp, ibp, offset, 2000 (offset + sizeof(xfs_agino_t) - 1)); 2001 xfs_inobp_check(mp, ibp); 2002 } 2003 2004 /* 2005 * Point the bucket head pointer at the inode being inserted. 2006 */ 2007 ASSERT(agino != 0); 2008 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 2009 offset = offsetof(xfs_agi_t, agi_unlinked) + 2010 (sizeof(xfs_agino_t) * bucket_index); 2011 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF); 2012 xfs_trans_log_buf(tp, agibp, offset, 2013 (offset + sizeof(xfs_agino_t) - 1)); 2014 return 0; 2015 } 2016 2017 /* 2018 * Pull the on-disk inode from the AGI unlinked list. 2019 */ 2020 STATIC int 2021 xfs_iunlink_remove( 2022 xfs_trans_t *tp, 2023 xfs_inode_t *ip) 2024 { 2025 xfs_ino_t next_ino; 2026 xfs_mount_t *mp; 2027 xfs_agi_t *agi; 2028 xfs_dinode_t *dip; 2029 xfs_buf_t *agibp; 2030 xfs_buf_t *ibp; 2031 xfs_agnumber_t agno; 2032 xfs_agino_t agino; 2033 xfs_agino_t next_agino; 2034 xfs_buf_t *last_ibp; 2035 xfs_dinode_t *last_dip = NULL; 2036 short bucket_index; 2037 int offset, last_offset = 0; 2038 int error; 2039 2040 mp = tp->t_mountp; 2041 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2042 2043 /* 2044 * Get the agi buffer first. It ensures lock ordering 2045 * on the list. 2046 */ 2047 error = xfs_read_agi(mp, tp, agno, &agibp); 2048 if (error) 2049 return error; 2050 2051 agi = XFS_BUF_TO_AGI(agibp); 2052 2053 /* 2054 * Get the index into the agi hash table for the 2055 * list this inode will go on. 2056 */ 2057 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2058 ASSERT(agino != 0); 2059 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2060 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 2061 ASSERT(agi->agi_unlinked[bucket_index]); 2062 2063 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2064 /* 2065 * We're at the head of the list. Get the inode's on-disk 2066 * buffer to see if there is anyone after us on the list. 2067 * Only modify our next pointer if it is not already NULLAGINO. 2068 * This saves us the overhead of dealing with the buffer when 2069 * there is no need to change it. 2070 */ 2071 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2072 0, 0); 2073 if (error) { 2074 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2075 __func__, error); 2076 return error; 2077 } 2078 next_agino = be32_to_cpu(dip->di_next_unlinked); 2079 ASSERT(next_agino != 0); 2080 if (next_agino != NULLAGINO) { 2081 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2082 offset = ip->i_imap.im_boffset + 2083 offsetof(xfs_dinode_t, di_next_unlinked); 2084 2085 /* need to recalc the inode CRC if appropriate */ 2086 xfs_dinode_calc_crc(mp, dip); 2087 2088 xfs_trans_inode_buf(tp, ibp); 2089 xfs_trans_log_buf(tp, ibp, offset, 2090 (offset + sizeof(xfs_agino_t) - 1)); 2091 xfs_inobp_check(mp, ibp); 2092 } else { 2093 xfs_trans_brelse(tp, ibp); 2094 } 2095 /* 2096 * Point the bucket head pointer at the next inode. 2097 */ 2098 ASSERT(next_agino != 0); 2099 ASSERT(next_agino != agino); 2100 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2101 offset = offsetof(xfs_agi_t, agi_unlinked) + 2102 (sizeof(xfs_agino_t) * bucket_index); 2103 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF); 2104 xfs_trans_log_buf(tp, agibp, offset, 2105 (offset + sizeof(xfs_agino_t) - 1)); 2106 } else { 2107 /* 2108 * We need to search the list for the inode being freed. 2109 */ 2110 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2111 last_ibp = NULL; 2112 while (next_agino != agino) { 2113 struct xfs_imap imap; 2114 2115 if (last_ibp) 2116 xfs_trans_brelse(tp, last_ibp); 2117 2118 imap.im_blkno = 0; 2119 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2120 2121 error = xfs_imap(mp, tp, next_ino, &imap, 0); 2122 if (error) { 2123 xfs_warn(mp, 2124 "%s: xfs_imap returned error %d.", 2125 __func__, error); 2126 return error; 2127 } 2128 2129 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 2130 &last_ibp, 0, 0); 2131 if (error) { 2132 xfs_warn(mp, 2133 "%s: xfs_imap_to_bp returned error %d.", 2134 __func__, error); 2135 return error; 2136 } 2137 2138 last_offset = imap.im_boffset; 2139 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2140 ASSERT(next_agino != NULLAGINO); 2141 ASSERT(next_agino != 0); 2142 } 2143 2144 /* 2145 * Now last_ibp points to the buffer previous to us on the 2146 * unlinked list. Pull us from the list. 2147 */ 2148 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2149 0, 0); 2150 if (error) { 2151 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 2152 __func__, error); 2153 return error; 2154 } 2155 next_agino = be32_to_cpu(dip->di_next_unlinked); 2156 ASSERT(next_agino != 0); 2157 ASSERT(next_agino != agino); 2158 if (next_agino != NULLAGINO) { 2159 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2160 offset = ip->i_imap.im_boffset + 2161 offsetof(xfs_dinode_t, di_next_unlinked); 2162 2163 /* need to recalc the inode CRC if appropriate */ 2164 xfs_dinode_calc_crc(mp, dip); 2165 2166 xfs_trans_inode_buf(tp, ibp); 2167 xfs_trans_log_buf(tp, ibp, offset, 2168 (offset + sizeof(xfs_agino_t) - 1)); 2169 xfs_inobp_check(mp, ibp); 2170 } else { 2171 xfs_trans_brelse(tp, ibp); 2172 } 2173 /* 2174 * Point the previous inode on the list to the next inode. 2175 */ 2176 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2177 ASSERT(next_agino != 0); 2178 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2179 2180 /* need to recalc the inode CRC if appropriate */ 2181 xfs_dinode_calc_crc(mp, last_dip); 2182 2183 xfs_trans_inode_buf(tp, last_ibp); 2184 xfs_trans_log_buf(tp, last_ibp, offset, 2185 (offset + sizeof(xfs_agino_t) - 1)); 2186 xfs_inobp_check(mp, last_ibp); 2187 } 2188 return 0; 2189 } 2190 2191 /* 2192 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2193 * inodes that are in memory - they all must be marked stale and attached to 2194 * the cluster buffer. 2195 */ 2196 STATIC int 2197 xfs_ifree_cluster( 2198 xfs_inode_t *free_ip, 2199 xfs_trans_t *tp, 2200 struct xfs_icluster *xic) 2201 { 2202 xfs_mount_t *mp = free_ip->i_mount; 2203 int blks_per_cluster; 2204 int inodes_per_cluster; 2205 int nbufs; 2206 int i, j; 2207 int ioffset; 2208 xfs_daddr_t blkno; 2209 xfs_buf_t *bp; 2210 xfs_inode_t *ip; 2211 xfs_inode_log_item_t *iip; 2212 xfs_log_item_t *lip; 2213 struct xfs_perag *pag; 2214 xfs_ino_t inum; 2215 2216 inum = xic->first_ino; 2217 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2218 blks_per_cluster = xfs_icluster_size_fsb(mp); 2219 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 2220 nbufs = mp->m_ialloc_blks / blks_per_cluster; 2221 2222 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { 2223 /* 2224 * The allocation bitmap tells us which inodes of the chunk were 2225 * physically allocated. Skip the cluster if an inode falls into 2226 * a sparse region. 2227 */ 2228 ioffset = inum - xic->first_ino; 2229 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2230 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0); 2231 continue; 2232 } 2233 2234 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2235 XFS_INO_TO_AGBNO(mp, inum)); 2236 2237 /* 2238 * We obtain and lock the backing buffer first in the process 2239 * here, as we have to ensure that any dirty inode that we 2240 * can't get the flush lock on is attached to the buffer. 2241 * If we scan the in-memory inodes first, then buffer IO can 2242 * complete before we get a lock on it, and hence we may fail 2243 * to mark all the active inodes on the buffer stale. 2244 */ 2245 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2246 mp->m_bsize * blks_per_cluster, 2247 XBF_UNMAPPED); 2248 2249 if (!bp) 2250 return -ENOMEM; 2251 2252 /* 2253 * This buffer may not have been correctly initialised as we 2254 * didn't read it from disk. That's not important because we are 2255 * only using to mark the buffer as stale in the log, and to 2256 * attach stale cached inodes on it. That means it will never be 2257 * dispatched for IO. If it is, we want to know about it, and we 2258 * want it to fail. We can acheive this by adding a write 2259 * verifier to the buffer. 2260 */ 2261 bp->b_ops = &xfs_inode_buf_ops; 2262 2263 /* 2264 * Walk the inodes already attached to the buffer and mark them 2265 * stale. These will all have the flush locks held, so an 2266 * in-memory inode walk can't lock them. By marking them all 2267 * stale first, we will not attempt to lock them in the loop 2268 * below as the XFS_ISTALE flag will be set. 2269 */ 2270 lip = bp->b_fspriv; 2271 while (lip) { 2272 if (lip->li_type == XFS_LI_INODE) { 2273 iip = (xfs_inode_log_item_t *)lip; 2274 ASSERT(iip->ili_logged == 1); 2275 lip->li_cb = xfs_istale_done; 2276 xfs_trans_ail_copy_lsn(mp->m_ail, 2277 &iip->ili_flush_lsn, 2278 &iip->ili_item.li_lsn); 2279 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2280 } 2281 lip = lip->li_bio_list; 2282 } 2283 2284 2285 /* 2286 * For each inode in memory attempt to add it to the inode 2287 * buffer and set it up for being staled on buffer IO 2288 * completion. This is safe as we've locked out tail pushing 2289 * and flushing by locking the buffer. 2290 * 2291 * We have already marked every inode that was part of a 2292 * transaction stale above, which means there is no point in 2293 * even trying to lock them. 2294 */ 2295 for (i = 0; i < inodes_per_cluster; i++) { 2296 retry: 2297 rcu_read_lock(); 2298 ip = radix_tree_lookup(&pag->pag_ici_root, 2299 XFS_INO_TO_AGINO(mp, (inum + i))); 2300 2301 /* Inode not in memory, nothing to do */ 2302 if (!ip) { 2303 rcu_read_unlock(); 2304 continue; 2305 } 2306 2307 /* 2308 * because this is an RCU protected lookup, we could 2309 * find a recently freed or even reallocated inode 2310 * during the lookup. We need to check under the 2311 * i_flags_lock for a valid inode here. Skip it if it 2312 * is not valid, the wrong inode or stale. 2313 */ 2314 spin_lock(&ip->i_flags_lock); 2315 if (ip->i_ino != inum + i || 2316 __xfs_iflags_test(ip, XFS_ISTALE)) { 2317 spin_unlock(&ip->i_flags_lock); 2318 rcu_read_unlock(); 2319 continue; 2320 } 2321 spin_unlock(&ip->i_flags_lock); 2322 2323 /* 2324 * Don't try to lock/unlock the current inode, but we 2325 * _cannot_ skip the other inodes that we did not find 2326 * in the list attached to the buffer and are not 2327 * already marked stale. If we can't lock it, back off 2328 * and retry. 2329 */ 2330 if (ip != free_ip && 2331 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2332 rcu_read_unlock(); 2333 delay(1); 2334 goto retry; 2335 } 2336 rcu_read_unlock(); 2337 2338 xfs_iflock(ip); 2339 xfs_iflags_set(ip, XFS_ISTALE); 2340 2341 /* 2342 * we don't need to attach clean inodes or those only 2343 * with unlogged changes (which we throw away, anyway). 2344 */ 2345 iip = ip->i_itemp; 2346 if (!iip || xfs_inode_clean(ip)) { 2347 ASSERT(ip != free_ip); 2348 xfs_ifunlock(ip); 2349 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2350 continue; 2351 } 2352 2353 iip->ili_last_fields = iip->ili_fields; 2354 iip->ili_fields = 0; 2355 iip->ili_fsync_fields = 0; 2356 iip->ili_logged = 1; 2357 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2358 &iip->ili_item.li_lsn); 2359 2360 xfs_buf_attach_iodone(bp, xfs_istale_done, 2361 &iip->ili_item); 2362 2363 if (ip != free_ip) 2364 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2365 } 2366 2367 xfs_trans_stale_inode_buf(tp, bp); 2368 xfs_trans_binval(tp, bp); 2369 } 2370 2371 xfs_perag_put(pag); 2372 return 0; 2373 } 2374 2375 /* 2376 * This is called to return an inode to the inode free list. 2377 * The inode should already be truncated to 0 length and have 2378 * no pages associated with it. This routine also assumes that 2379 * the inode is already a part of the transaction. 2380 * 2381 * The on-disk copy of the inode will have been added to the list 2382 * of unlinked inodes in the AGI. We need to remove the inode from 2383 * that list atomically with respect to freeing it here. 2384 */ 2385 int 2386 xfs_ifree( 2387 xfs_trans_t *tp, 2388 xfs_inode_t *ip, 2389 xfs_bmap_free_t *flist) 2390 { 2391 int error; 2392 struct xfs_icluster xic = { 0 }; 2393 2394 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2395 ASSERT(VFS_I(ip)->i_nlink == 0); 2396 ASSERT(ip->i_d.di_nextents == 0); 2397 ASSERT(ip->i_d.di_anextents == 0); 2398 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2399 ASSERT(ip->i_d.di_nblocks == 0); 2400 2401 /* 2402 * Pull the on-disk inode from the AGI unlinked list. 2403 */ 2404 error = xfs_iunlink_remove(tp, ip); 2405 if (error) 2406 return error; 2407 2408 error = xfs_difree(tp, ip->i_ino, flist, &xic); 2409 if (error) 2410 return error; 2411 2412 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2413 ip->i_d.di_flags = 0; 2414 ip->i_d.di_dmevmask = 0; 2415 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2416 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2417 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2418 /* 2419 * Bump the generation count so no one will be confused 2420 * by reincarnations of this inode. 2421 */ 2422 VFS_I(ip)->i_generation++; 2423 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2424 2425 if (xic.deleted) 2426 error = xfs_ifree_cluster(ip, tp, &xic); 2427 2428 return error; 2429 } 2430 2431 /* 2432 * This is called to unpin an inode. The caller must have the inode locked 2433 * in at least shared mode so that the buffer cannot be subsequently pinned 2434 * once someone is waiting for it to be unpinned. 2435 */ 2436 static void 2437 xfs_iunpin( 2438 struct xfs_inode *ip) 2439 { 2440 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2441 2442 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2443 2444 /* Give the log a push to start the unpinning I/O */ 2445 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2446 2447 } 2448 2449 static void 2450 __xfs_iunpin_wait( 2451 struct xfs_inode *ip) 2452 { 2453 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2454 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2455 2456 xfs_iunpin(ip); 2457 2458 do { 2459 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2460 if (xfs_ipincount(ip)) 2461 io_schedule(); 2462 } while (xfs_ipincount(ip)); 2463 finish_wait(wq, &wait.wait); 2464 } 2465 2466 void 2467 xfs_iunpin_wait( 2468 struct xfs_inode *ip) 2469 { 2470 if (xfs_ipincount(ip)) 2471 __xfs_iunpin_wait(ip); 2472 } 2473 2474 /* 2475 * Removing an inode from the namespace involves removing the directory entry 2476 * and dropping the link count on the inode. Removing the directory entry can 2477 * result in locking an AGF (directory blocks were freed) and removing a link 2478 * count can result in placing the inode on an unlinked list which results in 2479 * locking an AGI. 2480 * 2481 * The big problem here is that we have an ordering constraint on AGF and AGI 2482 * locking - inode allocation locks the AGI, then can allocate a new extent for 2483 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2484 * removes the inode from the unlinked list, requiring that we lock the AGI 2485 * first, and then freeing the inode can result in an inode chunk being freed 2486 * and hence freeing disk space requiring that we lock an AGF. 2487 * 2488 * Hence the ordering that is imposed by other parts of the code is AGI before 2489 * AGF. This means we cannot remove the directory entry before we drop the inode 2490 * reference count and put it on the unlinked list as this results in a lock 2491 * order of AGF then AGI, and this can deadlock against inode allocation and 2492 * freeing. Therefore we must drop the link counts before we remove the 2493 * directory entry. 2494 * 2495 * This is still safe from a transactional point of view - it is not until we 2496 * get to xfs_bmap_finish() that we have the possibility of multiple 2497 * transactions in this operation. Hence as long as we remove the directory 2498 * entry and drop the link count in the first transaction of the remove 2499 * operation, there are no transactional constraints on the ordering here. 2500 */ 2501 int 2502 xfs_remove( 2503 xfs_inode_t *dp, 2504 struct xfs_name *name, 2505 xfs_inode_t *ip) 2506 { 2507 xfs_mount_t *mp = dp->i_mount; 2508 xfs_trans_t *tp = NULL; 2509 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2510 int error = 0; 2511 xfs_bmap_free_t free_list; 2512 xfs_fsblock_t first_block; 2513 uint resblks; 2514 2515 trace_xfs_remove(dp, name); 2516 2517 if (XFS_FORCED_SHUTDOWN(mp)) 2518 return -EIO; 2519 2520 error = xfs_qm_dqattach(dp, 0); 2521 if (error) 2522 goto std_return; 2523 2524 error = xfs_qm_dqattach(ip, 0); 2525 if (error) 2526 goto std_return; 2527 2528 if (is_dir) 2529 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR); 2530 else 2531 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE); 2532 2533 /* 2534 * We try to get the real space reservation first, 2535 * allowing for directory btree deletion(s) implying 2536 * possible bmap insert(s). If we can't get the space 2537 * reservation then we use 0 instead, and avoid the bmap 2538 * btree insert(s) in the directory code by, if the bmap 2539 * insert tries to happen, instead trimming the LAST 2540 * block from the directory. 2541 */ 2542 resblks = XFS_REMOVE_SPACE_RES(mp); 2543 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0); 2544 if (error == -ENOSPC) { 2545 resblks = 0; 2546 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0); 2547 } 2548 if (error) { 2549 ASSERT(error != -ENOSPC); 2550 goto out_trans_cancel; 2551 } 2552 2553 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT); 2554 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL); 2555 2556 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 2557 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2558 2559 /* 2560 * If we're removing a directory perform some additional validation. 2561 */ 2562 if (is_dir) { 2563 ASSERT(VFS_I(ip)->i_nlink >= 2); 2564 if (VFS_I(ip)->i_nlink != 2) { 2565 error = -ENOTEMPTY; 2566 goto out_trans_cancel; 2567 } 2568 if (!xfs_dir_isempty(ip)) { 2569 error = -ENOTEMPTY; 2570 goto out_trans_cancel; 2571 } 2572 2573 /* Drop the link from ip's "..". */ 2574 error = xfs_droplink(tp, dp); 2575 if (error) 2576 goto out_trans_cancel; 2577 2578 /* Drop the "." link from ip to self. */ 2579 error = xfs_droplink(tp, ip); 2580 if (error) 2581 goto out_trans_cancel; 2582 } else { 2583 /* 2584 * When removing a non-directory we need to log the parent 2585 * inode here. For a directory this is done implicitly 2586 * by the xfs_droplink call for the ".." entry. 2587 */ 2588 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2589 } 2590 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2591 2592 /* Drop the link from dp to ip. */ 2593 error = xfs_droplink(tp, ip); 2594 if (error) 2595 goto out_trans_cancel; 2596 2597 xfs_bmap_init(&free_list, &first_block); 2598 error = xfs_dir_removename(tp, dp, name, ip->i_ino, 2599 &first_block, &free_list, resblks); 2600 if (error) { 2601 ASSERT(error != -ENOENT); 2602 goto out_bmap_cancel; 2603 } 2604 2605 /* 2606 * If this is a synchronous mount, make sure that the 2607 * remove transaction goes to disk before returning to 2608 * the user. 2609 */ 2610 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2611 xfs_trans_set_sync(tp); 2612 2613 error = xfs_bmap_finish(&tp, &free_list, NULL); 2614 if (error) 2615 goto out_bmap_cancel; 2616 2617 error = xfs_trans_commit(tp); 2618 if (error) 2619 goto std_return; 2620 2621 if (is_dir && xfs_inode_is_filestream(ip)) 2622 xfs_filestream_deassociate(ip); 2623 2624 return 0; 2625 2626 out_bmap_cancel: 2627 xfs_bmap_cancel(&free_list); 2628 out_trans_cancel: 2629 xfs_trans_cancel(tp); 2630 std_return: 2631 return error; 2632 } 2633 2634 /* 2635 * Enter all inodes for a rename transaction into a sorted array. 2636 */ 2637 #define __XFS_SORT_INODES 5 2638 STATIC void 2639 xfs_sort_for_rename( 2640 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2641 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2642 struct xfs_inode *ip1, /* in: inode of old entry */ 2643 struct xfs_inode *ip2, /* in: inode of new entry */ 2644 struct xfs_inode *wip, /* in: whiteout inode */ 2645 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2646 int *num_inodes) /* in/out: inodes in array */ 2647 { 2648 int i, j; 2649 2650 ASSERT(*num_inodes == __XFS_SORT_INODES); 2651 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2652 2653 /* 2654 * i_tab contains a list of pointers to inodes. We initialize 2655 * the table here & we'll sort it. We will then use it to 2656 * order the acquisition of the inode locks. 2657 * 2658 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2659 */ 2660 i = 0; 2661 i_tab[i++] = dp1; 2662 i_tab[i++] = dp2; 2663 i_tab[i++] = ip1; 2664 if (ip2) 2665 i_tab[i++] = ip2; 2666 if (wip) 2667 i_tab[i++] = wip; 2668 *num_inodes = i; 2669 2670 /* 2671 * Sort the elements via bubble sort. (Remember, there are at 2672 * most 5 elements to sort, so this is adequate.) 2673 */ 2674 for (i = 0; i < *num_inodes; i++) { 2675 for (j = 1; j < *num_inodes; j++) { 2676 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2677 struct xfs_inode *temp = i_tab[j]; 2678 i_tab[j] = i_tab[j-1]; 2679 i_tab[j-1] = temp; 2680 } 2681 } 2682 } 2683 } 2684 2685 static int 2686 xfs_finish_rename( 2687 struct xfs_trans *tp, 2688 struct xfs_bmap_free *free_list) 2689 { 2690 int error; 2691 2692 /* 2693 * If this is a synchronous mount, make sure that the rename transaction 2694 * goes to disk before returning to the user. 2695 */ 2696 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2697 xfs_trans_set_sync(tp); 2698 2699 error = xfs_bmap_finish(&tp, free_list, NULL); 2700 if (error) { 2701 xfs_bmap_cancel(free_list); 2702 xfs_trans_cancel(tp); 2703 return error; 2704 } 2705 2706 return xfs_trans_commit(tp); 2707 } 2708 2709 /* 2710 * xfs_cross_rename() 2711 * 2712 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 2713 */ 2714 STATIC int 2715 xfs_cross_rename( 2716 struct xfs_trans *tp, 2717 struct xfs_inode *dp1, 2718 struct xfs_name *name1, 2719 struct xfs_inode *ip1, 2720 struct xfs_inode *dp2, 2721 struct xfs_name *name2, 2722 struct xfs_inode *ip2, 2723 struct xfs_bmap_free *free_list, 2724 xfs_fsblock_t *first_block, 2725 int spaceres) 2726 { 2727 int error = 0; 2728 int ip1_flags = 0; 2729 int ip2_flags = 0; 2730 int dp2_flags = 0; 2731 2732 /* Swap inode number for dirent in first parent */ 2733 error = xfs_dir_replace(tp, dp1, name1, 2734 ip2->i_ino, 2735 first_block, free_list, spaceres); 2736 if (error) 2737 goto out_trans_abort; 2738 2739 /* Swap inode number for dirent in second parent */ 2740 error = xfs_dir_replace(tp, dp2, name2, 2741 ip1->i_ino, 2742 first_block, free_list, spaceres); 2743 if (error) 2744 goto out_trans_abort; 2745 2746 /* 2747 * If we're renaming one or more directories across different parents, 2748 * update the respective ".." entries (and link counts) to match the new 2749 * parents. 2750 */ 2751 if (dp1 != dp2) { 2752 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2753 2754 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2755 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2756 dp1->i_ino, first_block, 2757 free_list, spaceres); 2758 if (error) 2759 goto out_trans_abort; 2760 2761 /* transfer ip2 ".." reference to dp1 */ 2762 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2763 error = xfs_droplink(tp, dp2); 2764 if (error) 2765 goto out_trans_abort; 2766 error = xfs_bumplink(tp, dp1); 2767 if (error) 2768 goto out_trans_abort; 2769 } 2770 2771 /* 2772 * Although ip1 isn't changed here, userspace needs 2773 * to be warned about the change, so that applications 2774 * relying on it (like backup ones), will properly 2775 * notify the change 2776 */ 2777 ip1_flags |= XFS_ICHGTIME_CHG; 2778 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2779 } 2780 2781 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2782 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2783 dp2->i_ino, first_block, 2784 free_list, spaceres); 2785 if (error) 2786 goto out_trans_abort; 2787 2788 /* transfer ip1 ".." reference to dp2 */ 2789 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2790 error = xfs_droplink(tp, dp1); 2791 if (error) 2792 goto out_trans_abort; 2793 error = xfs_bumplink(tp, dp2); 2794 if (error) 2795 goto out_trans_abort; 2796 } 2797 2798 /* 2799 * Although ip2 isn't changed here, userspace needs 2800 * to be warned about the change, so that applications 2801 * relying on it (like backup ones), will properly 2802 * notify the change 2803 */ 2804 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2805 ip2_flags |= XFS_ICHGTIME_CHG; 2806 } 2807 } 2808 2809 if (ip1_flags) { 2810 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2811 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2812 } 2813 if (ip2_flags) { 2814 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2815 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2816 } 2817 if (dp2_flags) { 2818 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2819 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2820 } 2821 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2822 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2823 return xfs_finish_rename(tp, free_list); 2824 2825 out_trans_abort: 2826 xfs_bmap_cancel(free_list); 2827 xfs_trans_cancel(tp); 2828 return error; 2829 } 2830 2831 /* 2832 * xfs_rename_alloc_whiteout() 2833 * 2834 * Return a referenced, unlinked, unlocked inode that that can be used as a 2835 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2836 * crash between allocating the inode and linking it into the rename transaction 2837 * recovery will free the inode and we won't leak it. 2838 */ 2839 static int 2840 xfs_rename_alloc_whiteout( 2841 struct xfs_inode *dp, 2842 struct xfs_inode **wip) 2843 { 2844 struct xfs_inode *tmpfile; 2845 int error; 2846 2847 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile); 2848 if (error) 2849 return error; 2850 2851 /* 2852 * Prepare the tmpfile inode as if it were created through the VFS. 2853 * Otherwise, the link increment paths will complain about nlink 0->1. 2854 * Drop the link count as done by d_tmpfile(), complete the inode setup 2855 * and flag it as linkable. 2856 */ 2857 drop_nlink(VFS_I(tmpfile)); 2858 xfs_finish_inode_setup(tmpfile); 2859 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2860 2861 *wip = tmpfile; 2862 return 0; 2863 } 2864 2865 /* 2866 * xfs_rename 2867 */ 2868 int 2869 xfs_rename( 2870 struct xfs_inode *src_dp, 2871 struct xfs_name *src_name, 2872 struct xfs_inode *src_ip, 2873 struct xfs_inode *target_dp, 2874 struct xfs_name *target_name, 2875 struct xfs_inode *target_ip, 2876 unsigned int flags) 2877 { 2878 struct xfs_mount *mp = src_dp->i_mount; 2879 struct xfs_trans *tp; 2880 struct xfs_bmap_free free_list; 2881 xfs_fsblock_t first_block; 2882 struct xfs_inode *wip = NULL; /* whiteout inode */ 2883 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2884 int num_inodes = __XFS_SORT_INODES; 2885 bool new_parent = (src_dp != target_dp); 2886 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 2887 int spaceres; 2888 int error; 2889 2890 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2891 2892 if ((flags & RENAME_EXCHANGE) && !target_ip) 2893 return -EINVAL; 2894 2895 /* 2896 * If we are doing a whiteout operation, allocate the whiteout inode 2897 * we will be placing at the target and ensure the type is set 2898 * appropriately. 2899 */ 2900 if (flags & RENAME_WHITEOUT) { 2901 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 2902 error = xfs_rename_alloc_whiteout(target_dp, &wip); 2903 if (error) 2904 return error; 2905 2906 /* setup target dirent info as whiteout */ 2907 src_name->type = XFS_DIR3_FT_CHRDEV; 2908 } 2909 2910 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 2911 inodes, &num_inodes); 2912 2913 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME); 2914 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2915 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0); 2916 if (error == -ENOSPC) { 2917 spaceres = 0; 2918 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0); 2919 } 2920 if (error) 2921 goto out_trans_cancel; 2922 2923 /* 2924 * Attach the dquots to the inodes 2925 */ 2926 error = xfs_qm_vop_rename_dqattach(inodes); 2927 if (error) 2928 goto out_trans_cancel; 2929 2930 /* 2931 * Lock all the participating inodes. Depending upon whether 2932 * the target_name exists in the target directory, and 2933 * whether the target directory is the same as the source 2934 * directory, we can lock from 2 to 4 inodes. 2935 */ 2936 if (!new_parent) 2937 xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT); 2938 else 2939 xfs_lock_two_inodes(src_dp, target_dp, 2940 XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT); 2941 2942 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2943 2944 /* 2945 * Join all the inodes to the transaction. From this point on, 2946 * we can rely on either trans_commit or trans_cancel to unlock 2947 * them. 2948 */ 2949 xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 2950 if (new_parent) 2951 xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 2952 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2953 if (target_ip) 2954 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2955 if (wip) 2956 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 2957 2958 /* 2959 * If we are using project inheritance, we only allow renames 2960 * into our tree when the project IDs are the same; else the 2961 * tree quota mechanism would be circumvented. 2962 */ 2963 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 2964 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 2965 error = -EXDEV; 2966 goto out_trans_cancel; 2967 } 2968 2969 xfs_bmap_init(&free_list, &first_block); 2970 2971 /* RENAME_EXCHANGE is unique from here on. */ 2972 if (flags & RENAME_EXCHANGE) 2973 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 2974 target_dp, target_name, target_ip, 2975 &free_list, &first_block, spaceres); 2976 2977 /* 2978 * Set up the target. 2979 */ 2980 if (target_ip == NULL) { 2981 /* 2982 * If there's no space reservation, check the entry will 2983 * fit before actually inserting it. 2984 */ 2985 if (!spaceres) { 2986 error = xfs_dir_canenter(tp, target_dp, target_name); 2987 if (error) 2988 goto out_trans_cancel; 2989 } 2990 /* 2991 * If target does not exist and the rename crosses 2992 * directories, adjust the target directory link count 2993 * to account for the ".." reference from the new entry. 2994 */ 2995 error = xfs_dir_createname(tp, target_dp, target_name, 2996 src_ip->i_ino, &first_block, 2997 &free_list, spaceres); 2998 if (error) 2999 goto out_bmap_cancel; 3000 3001 xfs_trans_ichgtime(tp, target_dp, 3002 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3003 3004 if (new_parent && src_is_directory) { 3005 error = xfs_bumplink(tp, target_dp); 3006 if (error) 3007 goto out_bmap_cancel; 3008 } 3009 } else { /* target_ip != NULL */ 3010 /* 3011 * If target exists and it's a directory, check that both 3012 * target and source are directories and that target can be 3013 * destroyed, or that neither is a directory. 3014 */ 3015 if (S_ISDIR(VFS_I(target_ip)->i_mode)) { 3016 /* 3017 * Make sure target dir is empty. 3018 */ 3019 if (!(xfs_dir_isempty(target_ip)) || 3020 (VFS_I(target_ip)->i_nlink > 2)) { 3021 error = -EEXIST; 3022 goto out_trans_cancel; 3023 } 3024 } 3025 3026 /* 3027 * Link the source inode under the target name. 3028 * If the source inode is a directory and we are moving 3029 * it across directories, its ".." entry will be 3030 * inconsistent until we replace that down below. 3031 * 3032 * In case there is already an entry with the same 3033 * name at the destination directory, remove it first. 3034 */ 3035 error = xfs_dir_replace(tp, target_dp, target_name, 3036 src_ip->i_ino, 3037 &first_block, &free_list, spaceres); 3038 if (error) 3039 goto out_bmap_cancel; 3040 3041 xfs_trans_ichgtime(tp, target_dp, 3042 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3043 3044 /* 3045 * Decrement the link count on the target since the target 3046 * dir no longer points to it. 3047 */ 3048 error = xfs_droplink(tp, target_ip); 3049 if (error) 3050 goto out_bmap_cancel; 3051 3052 if (src_is_directory) { 3053 /* 3054 * Drop the link from the old "." entry. 3055 */ 3056 error = xfs_droplink(tp, target_ip); 3057 if (error) 3058 goto out_bmap_cancel; 3059 } 3060 } /* target_ip != NULL */ 3061 3062 /* 3063 * Remove the source. 3064 */ 3065 if (new_parent && src_is_directory) { 3066 /* 3067 * Rewrite the ".." entry to point to the new 3068 * directory. 3069 */ 3070 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3071 target_dp->i_ino, 3072 &first_block, &free_list, spaceres); 3073 ASSERT(error != -EEXIST); 3074 if (error) 3075 goto out_bmap_cancel; 3076 } 3077 3078 /* 3079 * We always want to hit the ctime on the source inode. 3080 * 3081 * This isn't strictly required by the standards since the source 3082 * inode isn't really being changed, but old unix file systems did 3083 * it and some incremental backup programs won't work without it. 3084 */ 3085 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3086 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3087 3088 /* 3089 * Adjust the link count on src_dp. This is necessary when 3090 * renaming a directory, either within one parent when 3091 * the target existed, or across two parent directories. 3092 */ 3093 if (src_is_directory && (new_parent || target_ip != NULL)) { 3094 3095 /* 3096 * Decrement link count on src_directory since the 3097 * entry that's moved no longer points to it. 3098 */ 3099 error = xfs_droplink(tp, src_dp); 3100 if (error) 3101 goto out_bmap_cancel; 3102 } 3103 3104 /* 3105 * For whiteouts, we only need to update the source dirent with the 3106 * inode number of the whiteout inode rather than removing it 3107 * altogether. 3108 */ 3109 if (wip) { 3110 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3111 &first_block, &free_list, spaceres); 3112 } else 3113 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3114 &first_block, &free_list, spaceres); 3115 if (error) 3116 goto out_bmap_cancel; 3117 3118 /* 3119 * For whiteouts, we need to bump the link count on the whiteout inode. 3120 * This means that failures all the way up to this point leave the inode 3121 * on the unlinked list and so cleanup is a simple matter of dropping 3122 * the remaining reference to it. If we fail here after bumping the link 3123 * count, we're shutting down the filesystem so we'll never see the 3124 * intermediate state on disk. 3125 */ 3126 if (wip) { 3127 ASSERT(VFS_I(wip)->i_nlink == 0); 3128 error = xfs_bumplink(tp, wip); 3129 if (error) 3130 goto out_bmap_cancel; 3131 error = xfs_iunlink_remove(tp, wip); 3132 if (error) 3133 goto out_bmap_cancel; 3134 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); 3135 3136 /* 3137 * Now we have a real link, clear the "I'm a tmpfile" state 3138 * flag from the inode so it doesn't accidentally get misused in 3139 * future. 3140 */ 3141 VFS_I(wip)->i_state &= ~I_LINKABLE; 3142 } 3143 3144 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3145 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3146 if (new_parent) 3147 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3148 3149 error = xfs_finish_rename(tp, &free_list); 3150 if (wip) 3151 IRELE(wip); 3152 return error; 3153 3154 out_bmap_cancel: 3155 xfs_bmap_cancel(&free_list); 3156 out_trans_cancel: 3157 xfs_trans_cancel(tp); 3158 if (wip) 3159 IRELE(wip); 3160 return error; 3161 } 3162 3163 STATIC int 3164 xfs_iflush_cluster( 3165 xfs_inode_t *ip, 3166 xfs_buf_t *bp) 3167 { 3168 xfs_mount_t *mp = ip->i_mount; 3169 struct xfs_perag *pag; 3170 unsigned long first_index, mask; 3171 unsigned long inodes_per_cluster; 3172 int ilist_size; 3173 xfs_inode_t **ilist; 3174 xfs_inode_t *iq; 3175 int nr_found; 3176 int clcount = 0; 3177 int bufwasdelwri; 3178 int i; 3179 3180 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3181 3182 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 3183 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 3184 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 3185 if (!ilist) 3186 goto out_put; 3187 3188 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); 3189 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3190 rcu_read_lock(); 3191 /* really need a gang lookup range call here */ 3192 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 3193 first_index, inodes_per_cluster); 3194 if (nr_found == 0) 3195 goto out_free; 3196 3197 for (i = 0; i < nr_found; i++) { 3198 iq = ilist[i]; 3199 if (iq == ip) 3200 continue; 3201 3202 /* 3203 * because this is an RCU protected lookup, we could find a 3204 * recently freed or even reallocated inode during the lookup. 3205 * We need to check under the i_flags_lock for a valid inode 3206 * here. Skip it if it is not valid or the wrong inode. 3207 */ 3208 spin_lock(&ip->i_flags_lock); 3209 if (!ip->i_ino || 3210 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) { 3211 spin_unlock(&ip->i_flags_lock); 3212 continue; 3213 } 3214 spin_unlock(&ip->i_flags_lock); 3215 3216 /* 3217 * Do an un-protected check to see if the inode is dirty and 3218 * is a candidate for flushing. These checks will be repeated 3219 * later after the appropriate locks are acquired. 3220 */ 3221 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 3222 continue; 3223 3224 /* 3225 * Try to get locks. If any are unavailable or it is pinned, 3226 * then this inode cannot be flushed and is skipped. 3227 */ 3228 3229 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 3230 continue; 3231 if (!xfs_iflock_nowait(iq)) { 3232 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3233 continue; 3234 } 3235 if (xfs_ipincount(iq)) { 3236 xfs_ifunlock(iq); 3237 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3238 continue; 3239 } 3240 3241 /* 3242 * arriving here means that this inode can be flushed. First 3243 * re-check that it's dirty before flushing. 3244 */ 3245 if (!xfs_inode_clean(iq)) { 3246 int error; 3247 error = xfs_iflush_int(iq, bp); 3248 if (error) { 3249 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3250 goto cluster_corrupt_out; 3251 } 3252 clcount++; 3253 } else { 3254 xfs_ifunlock(iq); 3255 } 3256 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3257 } 3258 3259 if (clcount) { 3260 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3261 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3262 } 3263 3264 out_free: 3265 rcu_read_unlock(); 3266 kmem_free(ilist); 3267 out_put: 3268 xfs_perag_put(pag); 3269 return 0; 3270 3271 3272 cluster_corrupt_out: 3273 /* 3274 * Corruption detected in the clustering loop. Invalidate the 3275 * inode buffer and shut down the filesystem. 3276 */ 3277 rcu_read_unlock(); 3278 /* 3279 * Clean up the buffer. If it was delwri, just release it -- 3280 * brelse can handle it with no problems. If not, shut down the 3281 * filesystem before releasing the buffer. 3282 */ 3283 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); 3284 if (bufwasdelwri) 3285 xfs_buf_relse(bp); 3286 3287 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3288 3289 if (!bufwasdelwri) { 3290 /* 3291 * Just like incore_relse: if we have b_iodone functions, 3292 * mark the buffer as an error and call them. Otherwise 3293 * mark it as stale and brelse. 3294 */ 3295 if (bp->b_iodone) { 3296 bp->b_flags &= ~XBF_DONE; 3297 xfs_buf_stale(bp); 3298 xfs_buf_ioerror(bp, -EIO); 3299 xfs_buf_ioend(bp); 3300 } else { 3301 xfs_buf_stale(bp); 3302 xfs_buf_relse(bp); 3303 } 3304 } 3305 3306 /* 3307 * Unlocks the flush lock 3308 */ 3309 xfs_iflush_abort(iq, false); 3310 kmem_free(ilist); 3311 xfs_perag_put(pag); 3312 return -EFSCORRUPTED; 3313 } 3314 3315 /* 3316 * Flush dirty inode metadata into the backing buffer. 3317 * 3318 * The caller must have the inode lock and the inode flush lock held. The 3319 * inode lock will still be held upon return to the caller, and the inode 3320 * flush lock will be released after the inode has reached the disk. 3321 * 3322 * The caller must write out the buffer returned in *bpp and release it. 3323 */ 3324 int 3325 xfs_iflush( 3326 struct xfs_inode *ip, 3327 struct xfs_buf **bpp) 3328 { 3329 struct xfs_mount *mp = ip->i_mount; 3330 struct xfs_buf *bp; 3331 struct xfs_dinode *dip; 3332 int error; 3333 3334 XFS_STATS_INC(mp, xs_iflush_count); 3335 3336 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3337 ASSERT(xfs_isiflocked(ip)); 3338 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3339 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3340 3341 *bpp = NULL; 3342 3343 xfs_iunpin_wait(ip); 3344 3345 /* 3346 * For stale inodes we cannot rely on the backing buffer remaining 3347 * stale in cache for the remaining life of the stale inode and so 3348 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3349 * inodes below. We have to check this after ensuring the inode is 3350 * unpinned so that it is safe to reclaim the stale inode after the 3351 * flush call. 3352 */ 3353 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3354 xfs_ifunlock(ip); 3355 return 0; 3356 } 3357 3358 /* 3359 * This may have been unpinned because the filesystem is shutting 3360 * down forcibly. If that's the case we must not write this inode 3361 * to disk, because the log record didn't make it to disk. 3362 * 3363 * We also have to remove the log item from the AIL in this case, 3364 * as we wait for an empty AIL as part of the unmount process. 3365 */ 3366 if (XFS_FORCED_SHUTDOWN(mp)) { 3367 error = -EIO; 3368 goto abort_out; 3369 } 3370 3371 /* 3372 * Get the buffer containing the on-disk inode. 3373 */ 3374 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3375 0); 3376 if (error || !bp) { 3377 xfs_ifunlock(ip); 3378 return error; 3379 } 3380 3381 /* 3382 * First flush out the inode that xfs_iflush was called with. 3383 */ 3384 error = xfs_iflush_int(ip, bp); 3385 if (error) 3386 goto corrupt_out; 3387 3388 /* 3389 * If the buffer is pinned then push on the log now so we won't 3390 * get stuck waiting in the write for too long. 3391 */ 3392 if (xfs_buf_ispinned(bp)) 3393 xfs_log_force(mp, 0); 3394 3395 /* 3396 * inode clustering: 3397 * see if other inodes can be gathered into this write 3398 */ 3399 error = xfs_iflush_cluster(ip, bp); 3400 if (error) 3401 goto cluster_corrupt_out; 3402 3403 *bpp = bp; 3404 return 0; 3405 3406 corrupt_out: 3407 xfs_buf_relse(bp); 3408 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3409 cluster_corrupt_out: 3410 error = -EFSCORRUPTED; 3411 abort_out: 3412 /* 3413 * Unlocks the flush lock 3414 */ 3415 xfs_iflush_abort(ip, false); 3416 return error; 3417 } 3418 3419 STATIC int 3420 xfs_iflush_int( 3421 struct xfs_inode *ip, 3422 struct xfs_buf *bp) 3423 { 3424 struct xfs_inode_log_item *iip = ip->i_itemp; 3425 struct xfs_dinode *dip; 3426 struct xfs_mount *mp = ip->i_mount; 3427 3428 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3429 ASSERT(xfs_isiflocked(ip)); 3430 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3431 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3432 ASSERT(iip != NULL && iip->ili_fields != 0); 3433 ASSERT(ip->i_d.di_version > 1); 3434 3435 /* set *dip = inode's place in the buffer */ 3436 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3437 3438 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3439 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3440 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3441 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3442 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3443 goto corrupt_out; 3444 } 3445 if (S_ISREG(VFS_I(ip)->i_mode)) { 3446 if (XFS_TEST_ERROR( 3447 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3448 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3449 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3450 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3451 "%s: Bad regular inode %Lu, ptr 0x%p", 3452 __func__, ip->i_ino, ip); 3453 goto corrupt_out; 3454 } 3455 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3456 if (XFS_TEST_ERROR( 3457 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3458 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3459 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3460 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3461 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3462 "%s: Bad directory inode %Lu, ptr 0x%p", 3463 __func__, ip->i_ino, ip); 3464 goto corrupt_out; 3465 } 3466 } 3467 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3468 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3469 XFS_RANDOM_IFLUSH_5)) { 3470 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3471 "%s: detected corrupt incore inode %Lu, " 3472 "total extents = %d, nblocks = %Ld, ptr 0x%p", 3473 __func__, ip->i_ino, 3474 ip->i_d.di_nextents + ip->i_d.di_anextents, 3475 ip->i_d.di_nblocks, ip); 3476 goto corrupt_out; 3477 } 3478 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3479 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3480 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3481 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3482 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3483 goto corrupt_out; 3484 } 3485 3486 /* 3487 * Inode item log recovery for v2 inodes are dependent on the 3488 * di_flushiter count for correct sequencing. We bump the flush 3489 * iteration count so we can detect flushes which postdate a log record 3490 * during recovery. This is redundant as we now log every change and 3491 * hence this can't happen but we need to still do it to ensure 3492 * backwards compatibility with old kernels that predate logging all 3493 * inode changes. 3494 */ 3495 if (ip->i_d.di_version < 3) 3496 ip->i_d.di_flushiter++; 3497 3498 /* 3499 * Copy the dirty parts of the inode into the on-disk inode. We always 3500 * copy out the core of the inode, because if the inode is dirty at all 3501 * the core must be. 3502 */ 3503 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3504 3505 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3506 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3507 ip->i_d.di_flushiter = 0; 3508 3509 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3510 if (XFS_IFORK_Q(ip)) 3511 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3512 xfs_inobp_check(mp, bp); 3513 3514 /* 3515 * We've recorded everything logged in the inode, so we'd like to clear 3516 * the ili_fields bits so we don't log and flush things unnecessarily. 3517 * However, we can't stop logging all this information until the data 3518 * we've copied into the disk buffer is written to disk. If we did we 3519 * might overwrite the copy of the inode in the log with all the data 3520 * after re-logging only part of it, and in the face of a crash we 3521 * wouldn't have all the data we need to recover. 3522 * 3523 * What we do is move the bits to the ili_last_fields field. When 3524 * logging the inode, these bits are moved back to the ili_fields field. 3525 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3526 * know that the information those bits represent is permanently on 3527 * disk. As long as the flush completes before the inode is logged 3528 * again, then both ili_fields and ili_last_fields will be cleared. 3529 * 3530 * We can play with the ili_fields bits here, because the inode lock 3531 * must be held exclusively in order to set bits there and the flush 3532 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3533 * done routine can tell whether or not to look in the AIL. Also, store 3534 * the current LSN of the inode so that we can tell whether the item has 3535 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3536 * need the AIL lock, because it is a 64 bit value that cannot be read 3537 * atomically. 3538 */ 3539 iip->ili_last_fields = iip->ili_fields; 3540 iip->ili_fields = 0; 3541 iip->ili_fsync_fields = 0; 3542 iip->ili_logged = 1; 3543 3544 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3545 &iip->ili_item.li_lsn); 3546 3547 /* 3548 * Attach the function xfs_iflush_done to the inode's 3549 * buffer. This will remove the inode from the AIL 3550 * and unlock the inode's flush lock when the inode is 3551 * completely written to disk. 3552 */ 3553 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3554 3555 /* generate the checksum. */ 3556 xfs_dinode_calc_crc(mp, dip); 3557 3558 ASSERT(bp->b_fspriv != NULL); 3559 ASSERT(bp->b_iodone != NULL); 3560 return 0; 3561 3562 corrupt_out: 3563 return -EFSCORRUPTED; 3564 } 3565