xref: /linux/fs/xfs/xfs_inode.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_log.h"
24 #include "xfs_inum.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_attr_sf.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_btree.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_utils.h"
44 #include "xfs_quota.h"
45 #include "xfs_filestream.h"
46 #include "xfs_vnodeops.h"
47 #include "xfs_trace.h"
48 
49 kmem_zone_t *xfs_ifork_zone;
50 kmem_zone_t *xfs_inode_zone;
51 
52 /*
53  * Used in xfs_itruncate_extents().  This is the maximum number of extents
54  * freed from a file in a single transaction.
55  */
56 #define	XFS_ITRUNC_MAX_EXTENTS	2
57 
58 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
59 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
60 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
61 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
62 
63 /*
64  * helper function to extract extent size hint from inode
65  */
66 xfs_extlen_t
67 xfs_get_extsz_hint(
68 	struct xfs_inode	*ip)
69 {
70 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
71 		return ip->i_d.di_extsize;
72 	if (XFS_IS_REALTIME_INODE(ip))
73 		return ip->i_mount->m_sb.sb_rextsize;
74 	return 0;
75 }
76 
77 #ifdef DEBUG
78 /*
79  * Make sure that the extents in the given memory buffer
80  * are valid.
81  */
82 STATIC void
83 xfs_validate_extents(
84 	xfs_ifork_t		*ifp,
85 	int			nrecs,
86 	xfs_exntfmt_t		fmt)
87 {
88 	xfs_bmbt_irec_t		irec;
89 	xfs_bmbt_rec_host_t	rec;
90 	int			i;
91 
92 	for (i = 0; i < nrecs; i++) {
93 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
94 		rec.l0 = get_unaligned(&ep->l0);
95 		rec.l1 = get_unaligned(&ep->l1);
96 		xfs_bmbt_get_all(&rec, &irec);
97 		if (fmt == XFS_EXTFMT_NOSTATE)
98 			ASSERT(irec.br_state == XFS_EXT_NORM);
99 	}
100 }
101 #else /* DEBUG */
102 #define xfs_validate_extents(ifp, nrecs, fmt)
103 #endif /* DEBUG */
104 
105 /*
106  * Check that none of the inode's in the buffer have a next
107  * unlinked field of 0.
108  */
109 #if defined(DEBUG)
110 void
111 xfs_inobp_check(
112 	xfs_mount_t	*mp,
113 	xfs_buf_t	*bp)
114 {
115 	int		i;
116 	int		j;
117 	xfs_dinode_t	*dip;
118 
119 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
120 
121 	for (i = 0; i < j; i++) {
122 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
123 					i * mp->m_sb.sb_inodesize);
124 		if (!dip->di_next_unlinked)  {
125 			xfs_alert(mp,
126 	"Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
127 				bp);
128 			ASSERT(dip->di_next_unlinked);
129 		}
130 	}
131 }
132 #endif
133 
134 /*
135  * This routine is called to map an inode to the buffer containing the on-disk
136  * version of the inode.  It returns a pointer to the buffer containing the
137  * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
138  * pointer to the on-disk inode within that buffer.
139  *
140  * If a non-zero error is returned, then the contents of bpp and dipp are
141  * undefined.
142  */
143 int
144 xfs_imap_to_bp(
145 	struct xfs_mount	*mp,
146 	struct xfs_trans	*tp,
147 	struct xfs_imap		*imap,
148 	struct xfs_dinode	**dipp,
149 	struct xfs_buf		**bpp,
150 	uint			buf_flags,
151 	uint			iget_flags)
152 {
153 	struct xfs_buf		*bp;
154 	int			error;
155 	int			i;
156 	int			ni;
157 
158 	buf_flags |= XBF_UNMAPPED;
159 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
160 				   (int)imap->im_len, buf_flags, &bp);
161 	if (error) {
162 		if (error != EAGAIN) {
163 			xfs_warn(mp,
164 				"%s: xfs_trans_read_buf() returned error %d.",
165 				__func__, error);
166 		} else {
167 			ASSERT(buf_flags & XBF_TRYLOCK);
168 		}
169 		return error;
170 	}
171 
172 	/*
173 	 * Validate the magic number and version of every inode in the buffer
174 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
175 	 */
176 #ifdef DEBUG
177 	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
178 #else	/* usual case */
179 	ni = 1;
180 #endif
181 
182 	for (i = 0; i < ni; i++) {
183 		int		di_ok;
184 		xfs_dinode_t	*dip;
185 
186 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
187 					(i << mp->m_sb.sb_inodelog));
188 		di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
189 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
190 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
191 						XFS_ERRTAG_ITOBP_INOTOBP,
192 						XFS_RANDOM_ITOBP_INOTOBP))) {
193 			if (iget_flags & XFS_IGET_UNTRUSTED) {
194 				xfs_trans_brelse(tp, bp);
195 				return XFS_ERROR(EINVAL);
196 			}
197 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_HIGH,
198 					     mp, dip);
199 #ifdef DEBUG
200 			xfs_emerg(mp,
201 				"bad inode magic/vsn daddr %lld #%d (magic=%x)",
202 				(unsigned long long)imap->im_blkno, i,
203 				be16_to_cpu(dip->di_magic));
204 			ASSERT(0);
205 #endif
206 			xfs_trans_brelse(tp, bp);
207 			return XFS_ERROR(EFSCORRUPTED);
208 		}
209 	}
210 
211 	xfs_inobp_check(mp, bp);
212 
213 	*bpp = bp;
214 	*dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset);
215 	return 0;
216 }
217 
218 /*
219  * Move inode type and inode format specific information from the
220  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
221  * this means set if_rdev to the proper value.  For files, directories,
222  * and symlinks this means to bring in the in-line data or extent
223  * pointers.  For a file in B-tree format, only the root is immediately
224  * brought in-core.  The rest will be in-lined in if_extents when it
225  * is first referenced (see xfs_iread_extents()).
226  */
227 STATIC int
228 xfs_iformat(
229 	xfs_inode_t		*ip,
230 	xfs_dinode_t		*dip)
231 {
232 	xfs_attr_shortform_t	*atp;
233 	int			size;
234 	int			error = 0;
235 	xfs_fsize_t             di_size;
236 
237 	if (unlikely(be32_to_cpu(dip->di_nextents) +
238 		     be16_to_cpu(dip->di_anextents) >
239 		     be64_to_cpu(dip->di_nblocks))) {
240 		xfs_warn(ip->i_mount,
241 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
242 			(unsigned long long)ip->i_ino,
243 			(int)(be32_to_cpu(dip->di_nextents) +
244 			      be16_to_cpu(dip->di_anextents)),
245 			(unsigned long long)
246 				be64_to_cpu(dip->di_nblocks));
247 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
248 				     ip->i_mount, dip);
249 		return XFS_ERROR(EFSCORRUPTED);
250 	}
251 
252 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
253 		xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
254 			(unsigned long long)ip->i_ino,
255 			dip->di_forkoff);
256 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
257 				     ip->i_mount, dip);
258 		return XFS_ERROR(EFSCORRUPTED);
259 	}
260 
261 	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
262 		     !ip->i_mount->m_rtdev_targp)) {
263 		xfs_warn(ip->i_mount,
264 			"corrupt dinode %Lu, has realtime flag set.",
265 			ip->i_ino);
266 		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
267 				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
268 		return XFS_ERROR(EFSCORRUPTED);
269 	}
270 
271 	switch (ip->i_d.di_mode & S_IFMT) {
272 	case S_IFIFO:
273 	case S_IFCHR:
274 	case S_IFBLK:
275 	case S_IFSOCK:
276 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
277 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
278 					      ip->i_mount, dip);
279 			return XFS_ERROR(EFSCORRUPTED);
280 		}
281 		ip->i_d.di_size = 0;
282 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
283 		break;
284 
285 	case S_IFREG:
286 	case S_IFLNK:
287 	case S_IFDIR:
288 		switch (dip->di_format) {
289 		case XFS_DINODE_FMT_LOCAL:
290 			/*
291 			 * no local regular files yet
292 			 */
293 			if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
294 				xfs_warn(ip->i_mount,
295 			"corrupt inode %Lu (local format for regular file).",
296 					(unsigned long long) ip->i_ino);
297 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
298 						     XFS_ERRLEVEL_LOW,
299 						     ip->i_mount, dip);
300 				return XFS_ERROR(EFSCORRUPTED);
301 			}
302 
303 			di_size = be64_to_cpu(dip->di_size);
304 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
305 				xfs_warn(ip->i_mount,
306 			"corrupt inode %Lu (bad size %Ld for local inode).",
307 					(unsigned long long) ip->i_ino,
308 					(long long) di_size);
309 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
310 						     XFS_ERRLEVEL_LOW,
311 						     ip->i_mount, dip);
312 				return XFS_ERROR(EFSCORRUPTED);
313 			}
314 
315 			size = (int)di_size;
316 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
317 			break;
318 		case XFS_DINODE_FMT_EXTENTS:
319 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
320 			break;
321 		case XFS_DINODE_FMT_BTREE:
322 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
323 			break;
324 		default:
325 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
326 					 ip->i_mount);
327 			return XFS_ERROR(EFSCORRUPTED);
328 		}
329 		break;
330 
331 	default:
332 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
333 		return XFS_ERROR(EFSCORRUPTED);
334 	}
335 	if (error) {
336 		return error;
337 	}
338 	if (!XFS_DFORK_Q(dip))
339 		return 0;
340 
341 	ASSERT(ip->i_afp == NULL);
342 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
343 
344 	switch (dip->di_aformat) {
345 	case XFS_DINODE_FMT_LOCAL:
346 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
347 		size = be16_to_cpu(atp->hdr.totsize);
348 
349 		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
350 			xfs_warn(ip->i_mount,
351 				"corrupt inode %Lu (bad attr fork size %Ld).",
352 				(unsigned long long) ip->i_ino,
353 				(long long) size);
354 			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
355 					     XFS_ERRLEVEL_LOW,
356 					     ip->i_mount, dip);
357 			return XFS_ERROR(EFSCORRUPTED);
358 		}
359 
360 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
361 		break;
362 	case XFS_DINODE_FMT_EXTENTS:
363 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
364 		break;
365 	case XFS_DINODE_FMT_BTREE:
366 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
367 		break;
368 	default:
369 		error = XFS_ERROR(EFSCORRUPTED);
370 		break;
371 	}
372 	if (error) {
373 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
374 		ip->i_afp = NULL;
375 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
376 	}
377 	return error;
378 }
379 
380 /*
381  * The file is in-lined in the on-disk inode.
382  * If it fits into if_inline_data, then copy
383  * it there, otherwise allocate a buffer for it
384  * and copy the data there.  Either way, set
385  * if_data to point at the data.
386  * If we allocate a buffer for the data, make
387  * sure that its size is a multiple of 4 and
388  * record the real size in i_real_bytes.
389  */
390 STATIC int
391 xfs_iformat_local(
392 	xfs_inode_t	*ip,
393 	xfs_dinode_t	*dip,
394 	int		whichfork,
395 	int		size)
396 {
397 	xfs_ifork_t	*ifp;
398 	int		real_size;
399 
400 	/*
401 	 * If the size is unreasonable, then something
402 	 * is wrong and we just bail out rather than crash in
403 	 * kmem_alloc() or memcpy() below.
404 	 */
405 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
406 		xfs_warn(ip->i_mount,
407 	"corrupt inode %Lu (bad size %d for local fork, size = %d).",
408 			(unsigned long long) ip->i_ino, size,
409 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
410 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
411 				     ip->i_mount, dip);
412 		return XFS_ERROR(EFSCORRUPTED);
413 	}
414 	ifp = XFS_IFORK_PTR(ip, whichfork);
415 	real_size = 0;
416 	if (size == 0)
417 		ifp->if_u1.if_data = NULL;
418 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
419 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
420 	else {
421 		real_size = roundup(size, 4);
422 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
423 	}
424 	ifp->if_bytes = size;
425 	ifp->if_real_bytes = real_size;
426 	if (size)
427 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
428 	ifp->if_flags &= ~XFS_IFEXTENTS;
429 	ifp->if_flags |= XFS_IFINLINE;
430 	return 0;
431 }
432 
433 /*
434  * The file consists of a set of extents all
435  * of which fit into the on-disk inode.
436  * If there are few enough extents to fit into
437  * the if_inline_ext, then copy them there.
438  * Otherwise allocate a buffer for them and copy
439  * them into it.  Either way, set if_extents
440  * to point at the extents.
441  */
442 STATIC int
443 xfs_iformat_extents(
444 	xfs_inode_t	*ip,
445 	xfs_dinode_t	*dip,
446 	int		whichfork)
447 {
448 	xfs_bmbt_rec_t	*dp;
449 	xfs_ifork_t	*ifp;
450 	int		nex;
451 	int		size;
452 	int		i;
453 
454 	ifp = XFS_IFORK_PTR(ip, whichfork);
455 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
456 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
457 
458 	/*
459 	 * If the number of extents is unreasonable, then something
460 	 * is wrong and we just bail out rather than crash in
461 	 * kmem_alloc() or memcpy() below.
462 	 */
463 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
464 		xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
465 			(unsigned long long) ip->i_ino, nex);
466 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
467 				     ip->i_mount, dip);
468 		return XFS_ERROR(EFSCORRUPTED);
469 	}
470 
471 	ifp->if_real_bytes = 0;
472 	if (nex == 0)
473 		ifp->if_u1.if_extents = NULL;
474 	else if (nex <= XFS_INLINE_EXTS)
475 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
476 	else
477 		xfs_iext_add(ifp, 0, nex);
478 
479 	ifp->if_bytes = size;
480 	if (size) {
481 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
482 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
483 		for (i = 0; i < nex; i++, dp++) {
484 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
485 			ep->l0 = get_unaligned_be64(&dp->l0);
486 			ep->l1 = get_unaligned_be64(&dp->l1);
487 		}
488 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
489 		if (whichfork != XFS_DATA_FORK ||
490 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
491 				if (unlikely(xfs_check_nostate_extents(
492 				    ifp, 0, nex))) {
493 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
494 							 XFS_ERRLEVEL_LOW,
495 							 ip->i_mount);
496 					return XFS_ERROR(EFSCORRUPTED);
497 				}
498 	}
499 	ifp->if_flags |= XFS_IFEXTENTS;
500 	return 0;
501 }
502 
503 /*
504  * The file has too many extents to fit into
505  * the inode, so they are in B-tree format.
506  * Allocate a buffer for the root of the B-tree
507  * and copy the root into it.  The i_extents
508  * field will remain NULL until all of the
509  * extents are read in (when they are needed).
510  */
511 STATIC int
512 xfs_iformat_btree(
513 	xfs_inode_t		*ip,
514 	xfs_dinode_t		*dip,
515 	int			whichfork)
516 {
517 	xfs_bmdr_block_t	*dfp;
518 	xfs_ifork_t		*ifp;
519 	/* REFERENCED */
520 	int			nrecs;
521 	int			size;
522 
523 	ifp = XFS_IFORK_PTR(ip, whichfork);
524 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
525 	size = XFS_BMAP_BROOT_SPACE(dfp);
526 	nrecs = be16_to_cpu(dfp->bb_numrecs);
527 
528 	/*
529 	 * blow out if -- fork has less extents than can fit in
530 	 * fork (fork shouldn't be a btree format), root btree
531 	 * block has more records than can fit into the fork,
532 	 * or the number of extents is greater than the number of
533 	 * blocks.
534 	 */
535 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
536 			XFS_IFORK_MAXEXT(ip, whichfork) ||
537 		     XFS_BMDR_SPACE_CALC(nrecs) >
538 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) ||
539 		     XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
540 		xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
541 			(unsigned long long) ip->i_ino);
542 		XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
543 				 ip->i_mount, dip);
544 		return XFS_ERROR(EFSCORRUPTED);
545 	}
546 
547 	ifp->if_broot_bytes = size;
548 	ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
549 	ASSERT(ifp->if_broot != NULL);
550 	/*
551 	 * Copy and convert from the on-disk structure
552 	 * to the in-memory structure.
553 	 */
554 	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
555 			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
556 			 ifp->if_broot, size);
557 	ifp->if_flags &= ~XFS_IFEXTENTS;
558 	ifp->if_flags |= XFS_IFBROOT;
559 
560 	return 0;
561 }
562 
563 STATIC void
564 xfs_dinode_from_disk(
565 	xfs_icdinode_t		*to,
566 	xfs_dinode_t		*from)
567 {
568 	to->di_magic = be16_to_cpu(from->di_magic);
569 	to->di_mode = be16_to_cpu(from->di_mode);
570 	to->di_version = from ->di_version;
571 	to->di_format = from->di_format;
572 	to->di_onlink = be16_to_cpu(from->di_onlink);
573 	to->di_uid = be32_to_cpu(from->di_uid);
574 	to->di_gid = be32_to_cpu(from->di_gid);
575 	to->di_nlink = be32_to_cpu(from->di_nlink);
576 	to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
577 	to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
578 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
579 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
580 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
581 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
582 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
583 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
584 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
585 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
586 	to->di_size = be64_to_cpu(from->di_size);
587 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
588 	to->di_extsize = be32_to_cpu(from->di_extsize);
589 	to->di_nextents = be32_to_cpu(from->di_nextents);
590 	to->di_anextents = be16_to_cpu(from->di_anextents);
591 	to->di_forkoff = from->di_forkoff;
592 	to->di_aformat	= from->di_aformat;
593 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
594 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
595 	to->di_flags	= be16_to_cpu(from->di_flags);
596 	to->di_gen	= be32_to_cpu(from->di_gen);
597 }
598 
599 void
600 xfs_dinode_to_disk(
601 	xfs_dinode_t		*to,
602 	xfs_icdinode_t		*from)
603 {
604 	to->di_magic = cpu_to_be16(from->di_magic);
605 	to->di_mode = cpu_to_be16(from->di_mode);
606 	to->di_version = from ->di_version;
607 	to->di_format = from->di_format;
608 	to->di_onlink = cpu_to_be16(from->di_onlink);
609 	to->di_uid = cpu_to_be32(from->di_uid);
610 	to->di_gid = cpu_to_be32(from->di_gid);
611 	to->di_nlink = cpu_to_be32(from->di_nlink);
612 	to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
613 	to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
614 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
615 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
616 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
617 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
618 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
619 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
620 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
621 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
622 	to->di_size = cpu_to_be64(from->di_size);
623 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
624 	to->di_extsize = cpu_to_be32(from->di_extsize);
625 	to->di_nextents = cpu_to_be32(from->di_nextents);
626 	to->di_anextents = cpu_to_be16(from->di_anextents);
627 	to->di_forkoff = from->di_forkoff;
628 	to->di_aformat = from->di_aformat;
629 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
630 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
631 	to->di_flags = cpu_to_be16(from->di_flags);
632 	to->di_gen = cpu_to_be32(from->di_gen);
633 }
634 
635 STATIC uint
636 _xfs_dic2xflags(
637 	__uint16_t		di_flags)
638 {
639 	uint			flags = 0;
640 
641 	if (di_flags & XFS_DIFLAG_ANY) {
642 		if (di_flags & XFS_DIFLAG_REALTIME)
643 			flags |= XFS_XFLAG_REALTIME;
644 		if (di_flags & XFS_DIFLAG_PREALLOC)
645 			flags |= XFS_XFLAG_PREALLOC;
646 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
647 			flags |= XFS_XFLAG_IMMUTABLE;
648 		if (di_flags & XFS_DIFLAG_APPEND)
649 			flags |= XFS_XFLAG_APPEND;
650 		if (di_flags & XFS_DIFLAG_SYNC)
651 			flags |= XFS_XFLAG_SYNC;
652 		if (di_flags & XFS_DIFLAG_NOATIME)
653 			flags |= XFS_XFLAG_NOATIME;
654 		if (di_flags & XFS_DIFLAG_NODUMP)
655 			flags |= XFS_XFLAG_NODUMP;
656 		if (di_flags & XFS_DIFLAG_RTINHERIT)
657 			flags |= XFS_XFLAG_RTINHERIT;
658 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
659 			flags |= XFS_XFLAG_PROJINHERIT;
660 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
661 			flags |= XFS_XFLAG_NOSYMLINKS;
662 		if (di_flags & XFS_DIFLAG_EXTSIZE)
663 			flags |= XFS_XFLAG_EXTSIZE;
664 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
665 			flags |= XFS_XFLAG_EXTSZINHERIT;
666 		if (di_flags & XFS_DIFLAG_NODEFRAG)
667 			flags |= XFS_XFLAG_NODEFRAG;
668 		if (di_flags & XFS_DIFLAG_FILESTREAM)
669 			flags |= XFS_XFLAG_FILESTREAM;
670 	}
671 
672 	return flags;
673 }
674 
675 uint
676 xfs_ip2xflags(
677 	xfs_inode_t		*ip)
678 {
679 	xfs_icdinode_t		*dic = &ip->i_d;
680 
681 	return _xfs_dic2xflags(dic->di_flags) |
682 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
683 }
684 
685 uint
686 xfs_dic2xflags(
687 	xfs_dinode_t		*dip)
688 {
689 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
690 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
691 }
692 
693 /*
694  * Read the disk inode attributes into the in-core inode structure.
695  */
696 int
697 xfs_iread(
698 	xfs_mount_t	*mp,
699 	xfs_trans_t	*tp,
700 	xfs_inode_t	*ip,
701 	uint		iget_flags)
702 {
703 	xfs_buf_t	*bp;
704 	xfs_dinode_t	*dip;
705 	int		error;
706 
707 	/*
708 	 * Fill in the location information in the in-core inode.
709 	 */
710 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
711 	if (error)
712 		return error;
713 
714 	/*
715 	 * Get pointers to the on-disk inode and the buffer containing it.
716 	 */
717 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
718 	if (error)
719 		return error;
720 
721 	/*
722 	 * If we got something that isn't an inode it means someone
723 	 * (nfs or dmi) has a stale handle.
724 	 */
725 	if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
726 #ifdef DEBUG
727 		xfs_alert(mp,
728 			"%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
729 			__func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
730 #endif /* DEBUG */
731 		error = XFS_ERROR(EINVAL);
732 		goto out_brelse;
733 	}
734 
735 	/*
736 	 * If the on-disk inode is already linked to a directory
737 	 * entry, copy all of the inode into the in-core inode.
738 	 * xfs_iformat() handles copying in the inode format
739 	 * specific information.
740 	 * Otherwise, just get the truly permanent information.
741 	 */
742 	if (dip->di_mode) {
743 		xfs_dinode_from_disk(&ip->i_d, dip);
744 		error = xfs_iformat(ip, dip);
745 		if (error)  {
746 #ifdef DEBUG
747 			xfs_alert(mp, "%s: xfs_iformat() returned error %d",
748 				__func__, error);
749 #endif /* DEBUG */
750 			goto out_brelse;
751 		}
752 	} else {
753 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
754 		ip->i_d.di_version = dip->di_version;
755 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
756 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
757 		/*
758 		 * Make sure to pull in the mode here as well in
759 		 * case the inode is released without being used.
760 		 * This ensures that xfs_inactive() will see that
761 		 * the inode is already free and not try to mess
762 		 * with the uninitialized part of it.
763 		 */
764 		ip->i_d.di_mode = 0;
765 	}
766 
767 	/*
768 	 * The inode format changed when we moved the link count and
769 	 * made it 32 bits long.  If this is an old format inode,
770 	 * convert it in memory to look like a new one.  If it gets
771 	 * flushed to disk we will convert back before flushing or
772 	 * logging it.  We zero out the new projid field and the old link
773 	 * count field.  We'll handle clearing the pad field (the remains
774 	 * of the old uuid field) when we actually convert the inode to
775 	 * the new format. We don't change the version number so that we
776 	 * can distinguish this from a real new format inode.
777 	 */
778 	if (ip->i_d.di_version == 1) {
779 		ip->i_d.di_nlink = ip->i_d.di_onlink;
780 		ip->i_d.di_onlink = 0;
781 		xfs_set_projid(ip, 0);
782 	}
783 
784 	ip->i_delayed_blks = 0;
785 
786 	/*
787 	 * Mark the buffer containing the inode as something to keep
788 	 * around for a while.  This helps to keep recently accessed
789 	 * meta-data in-core longer.
790 	 */
791 	xfs_buf_set_ref(bp, XFS_INO_REF);
792 
793 	/*
794 	 * Use xfs_trans_brelse() to release the buffer containing the
795 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
796 	 * in xfs_imap_to_bp() above.  If tp is NULL, this is just a normal
797 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
798 	 * will only release the buffer if it is not dirty within the
799 	 * transaction.  It will be OK to release the buffer in this case,
800 	 * because inodes on disk are never destroyed and we will be
801 	 * locking the new in-core inode before putting it in the hash
802 	 * table where other processes can find it.  Thus we don't have
803 	 * to worry about the inode being changed just because we released
804 	 * the buffer.
805 	 */
806  out_brelse:
807 	xfs_trans_brelse(tp, bp);
808 	return error;
809 }
810 
811 /*
812  * Read in extents from a btree-format inode.
813  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
814  */
815 int
816 xfs_iread_extents(
817 	xfs_trans_t	*tp,
818 	xfs_inode_t	*ip,
819 	int		whichfork)
820 {
821 	int		error;
822 	xfs_ifork_t	*ifp;
823 	xfs_extnum_t	nextents;
824 
825 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
826 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
827 				 ip->i_mount);
828 		return XFS_ERROR(EFSCORRUPTED);
829 	}
830 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
831 	ifp = XFS_IFORK_PTR(ip, whichfork);
832 
833 	/*
834 	 * We know that the size is valid (it's checked in iformat_btree)
835 	 */
836 	ifp->if_bytes = ifp->if_real_bytes = 0;
837 	ifp->if_flags |= XFS_IFEXTENTS;
838 	xfs_iext_add(ifp, 0, nextents);
839 	error = xfs_bmap_read_extents(tp, ip, whichfork);
840 	if (error) {
841 		xfs_iext_destroy(ifp);
842 		ifp->if_flags &= ~XFS_IFEXTENTS;
843 		return error;
844 	}
845 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
846 	return 0;
847 }
848 
849 /*
850  * Allocate an inode on disk and return a copy of its in-core version.
851  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
852  * appropriately within the inode.  The uid and gid for the inode are
853  * set according to the contents of the given cred structure.
854  *
855  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
856  * has a free inode available, call xfs_iget()
857  * to obtain the in-core version of the allocated inode.  Finally,
858  * fill in the inode and log its initial contents.  In this case,
859  * ialloc_context would be set to NULL and call_again set to false.
860  *
861  * If xfs_dialloc() does not have an available inode,
862  * it will replenish its supply by doing an allocation. Since we can
863  * only do one allocation within a transaction without deadlocks, we
864  * must commit the current transaction before returning the inode itself.
865  * In this case, therefore, we will set call_again to true and return.
866  * The caller should then commit the current transaction, start a new
867  * transaction, and call xfs_ialloc() again to actually get the inode.
868  *
869  * To ensure that some other process does not grab the inode that
870  * was allocated during the first call to xfs_ialloc(), this routine
871  * also returns the [locked] bp pointing to the head of the freelist
872  * as ialloc_context.  The caller should hold this buffer across
873  * the commit and pass it back into this routine on the second call.
874  *
875  * If we are allocating quota inodes, we do not have a parent inode
876  * to attach to or associate with (i.e. pip == NULL) because they
877  * are not linked into the directory structure - they are attached
878  * directly to the superblock - and so have no parent.
879  */
880 int
881 xfs_ialloc(
882 	xfs_trans_t	*tp,
883 	xfs_inode_t	*pip,
884 	umode_t		mode,
885 	xfs_nlink_t	nlink,
886 	xfs_dev_t	rdev,
887 	prid_t		prid,
888 	int		okalloc,
889 	xfs_buf_t	**ialloc_context,
890 	xfs_inode_t	**ipp)
891 {
892 	xfs_ino_t	ino;
893 	xfs_inode_t	*ip;
894 	uint		flags;
895 	int		error;
896 	timespec_t	tv;
897 	int		filestreams = 0;
898 
899 	/*
900 	 * Call the space management code to pick
901 	 * the on-disk inode to be allocated.
902 	 */
903 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
904 			    ialloc_context, &ino);
905 	if (error)
906 		return error;
907 	if (*ialloc_context || ino == NULLFSINO) {
908 		*ipp = NULL;
909 		return 0;
910 	}
911 	ASSERT(*ialloc_context == NULL);
912 
913 	/*
914 	 * Get the in-core inode with the lock held exclusively.
915 	 * This is because we're setting fields here we need
916 	 * to prevent others from looking at until we're done.
917 	 */
918 	error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
919 			 XFS_ILOCK_EXCL, &ip);
920 	if (error)
921 		return error;
922 	ASSERT(ip != NULL);
923 
924 	ip->i_d.di_mode = mode;
925 	ip->i_d.di_onlink = 0;
926 	ip->i_d.di_nlink = nlink;
927 	ASSERT(ip->i_d.di_nlink == nlink);
928 	ip->i_d.di_uid = current_fsuid();
929 	ip->i_d.di_gid = current_fsgid();
930 	xfs_set_projid(ip, prid);
931 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
932 
933 	/*
934 	 * If the superblock version is up to where we support new format
935 	 * inodes and this is currently an old format inode, then change
936 	 * the inode version number now.  This way we only do the conversion
937 	 * here rather than here and in the flush/logging code.
938 	 */
939 	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
940 	    ip->i_d.di_version == 1) {
941 		ip->i_d.di_version = 2;
942 		/*
943 		 * We've already zeroed the old link count, the projid field,
944 		 * and the pad field.
945 		 */
946 	}
947 
948 	/*
949 	 * Project ids won't be stored on disk if we are using a version 1 inode.
950 	 */
951 	if ((prid != 0) && (ip->i_d.di_version == 1))
952 		xfs_bump_ino_vers2(tp, ip);
953 
954 	if (pip && XFS_INHERIT_GID(pip)) {
955 		ip->i_d.di_gid = pip->i_d.di_gid;
956 		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
957 			ip->i_d.di_mode |= S_ISGID;
958 		}
959 	}
960 
961 	/*
962 	 * If the group ID of the new file does not match the effective group
963 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
964 	 * (and only if the irix_sgid_inherit compatibility variable is set).
965 	 */
966 	if ((irix_sgid_inherit) &&
967 	    (ip->i_d.di_mode & S_ISGID) &&
968 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
969 		ip->i_d.di_mode &= ~S_ISGID;
970 	}
971 
972 	ip->i_d.di_size = 0;
973 	ip->i_d.di_nextents = 0;
974 	ASSERT(ip->i_d.di_nblocks == 0);
975 
976 	nanotime(&tv);
977 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
978 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
979 	ip->i_d.di_atime = ip->i_d.di_mtime;
980 	ip->i_d.di_ctime = ip->i_d.di_mtime;
981 
982 	/*
983 	 * di_gen will have been taken care of in xfs_iread.
984 	 */
985 	ip->i_d.di_extsize = 0;
986 	ip->i_d.di_dmevmask = 0;
987 	ip->i_d.di_dmstate = 0;
988 	ip->i_d.di_flags = 0;
989 	flags = XFS_ILOG_CORE;
990 	switch (mode & S_IFMT) {
991 	case S_IFIFO:
992 	case S_IFCHR:
993 	case S_IFBLK:
994 	case S_IFSOCK:
995 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
996 		ip->i_df.if_u2.if_rdev = rdev;
997 		ip->i_df.if_flags = 0;
998 		flags |= XFS_ILOG_DEV;
999 		break;
1000 	case S_IFREG:
1001 		/*
1002 		 * we can't set up filestreams until after the VFS inode
1003 		 * is set up properly.
1004 		 */
1005 		if (pip && xfs_inode_is_filestream(pip))
1006 			filestreams = 1;
1007 		/* fall through */
1008 	case S_IFDIR:
1009 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1010 			uint	di_flags = 0;
1011 
1012 			if (S_ISDIR(mode)) {
1013 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1014 					di_flags |= XFS_DIFLAG_RTINHERIT;
1015 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1016 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1017 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1018 				}
1019 			} else if (S_ISREG(mode)) {
1020 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1021 					di_flags |= XFS_DIFLAG_REALTIME;
1022 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1023 					di_flags |= XFS_DIFLAG_EXTSIZE;
1024 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1025 				}
1026 			}
1027 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1028 			    xfs_inherit_noatime)
1029 				di_flags |= XFS_DIFLAG_NOATIME;
1030 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1031 			    xfs_inherit_nodump)
1032 				di_flags |= XFS_DIFLAG_NODUMP;
1033 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1034 			    xfs_inherit_sync)
1035 				di_flags |= XFS_DIFLAG_SYNC;
1036 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1037 			    xfs_inherit_nosymlinks)
1038 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1039 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1040 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1041 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1042 			    xfs_inherit_nodefrag)
1043 				di_flags |= XFS_DIFLAG_NODEFRAG;
1044 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1045 				di_flags |= XFS_DIFLAG_FILESTREAM;
1046 			ip->i_d.di_flags |= di_flags;
1047 		}
1048 		/* FALLTHROUGH */
1049 	case S_IFLNK:
1050 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1051 		ip->i_df.if_flags = XFS_IFEXTENTS;
1052 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1053 		ip->i_df.if_u1.if_extents = NULL;
1054 		break;
1055 	default:
1056 		ASSERT(0);
1057 	}
1058 	/*
1059 	 * Attribute fork settings for new inode.
1060 	 */
1061 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1062 	ip->i_d.di_anextents = 0;
1063 
1064 	/*
1065 	 * Log the new values stuffed into the inode.
1066 	 */
1067 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1068 	xfs_trans_log_inode(tp, ip, flags);
1069 
1070 	/* now that we have an i_mode we can setup inode ops and unlock */
1071 	xfs_setup_inode(ip);
1072 
1073 	/* now we have set up the vfs inode we can associate the filestream */
1074 	if (filestreams) {
1075 		error = xfs_filestream_associate(pip, ip);
1076 		if (error < 0)
1077 			return -error;
1078 		if (!error)
1079 			xfs_iflags_set(ip, XFS_IFILESTREAM);
1080 	}
1081 
1082 	*ipp = ip;
1083 	return 0;
1084 }
1085 
1086 /*
1087  * Free up the underlying blocks past new_size.  The new size must be smaller
1088  * than the current size.  This routine can be used both for the attribute and
1089  * data fork, and does not modify the inode size, which is left to the caller.
1090  *
1091  * The transaction passed to this routine must have made a permanent log
1092  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1093  * given transaction and start new ones, so make sure everything involved in
1094  * the transaction is tidy before calling here.  Some transaction will be
1095  * returned to the caller to be committed.  The incoming transaction must
1096  * already include the inode, and both inode locks must be held exclusively.
1097  * The inode must also be "held" within the transaction.  On return the inode
1098  * will be "held" within the returned transaction.  This routine does NOT
1099  * require any disk space to be reserved for it within the transaction.
1100  *
1101  * If we get an error, we must return with the inode locked and linked into the
1102  * current transaction. This keeps things simple for the higher level code,
1103  * because it always knows that the inode is locked and held in the transaction
1104  * that returns to it whether errors occur or not.  We don't mark the inode
1105  * dirty on error so that transactions can be easily aborted if possible.
1106  */
1107 int
1108 xfs_itruncate_extents(
1109 	struct xfs_trans	**tpp,
1110 	struct xfs_inode	*ip,
1111 	int			whichfork,
1112 	xfs_fsize_t		new_size)
1113 {
1114 	struct xfs_mount	*mp = ip->i_mount;
1115 	struct xfs_trans	*tp = *tpp;
1116 	struct xfs_trans	*ntp;
1117 	xfs_bmap_free_t		free_list;
1118 	xfs_fsblock_t		first_block;
1119 	xfs_fileoff_t		first_unmap_block;
1120 	xfs_fileoff_t		last_block;
1121 	xfs_filblks_t		unmap_len;
1122 	int			committed;
1123 	int			error = 0;
1124 	int			done = 0;
1125 
1126 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1127 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1128 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1129 	ASSERT(new_size <= XFS_ISIZE(ip));
1130 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1131 	ASSERT(ip->i_itemp != NULL);
1132 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1133 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1134 
1135 	trace_xfs_itruncate_extents_start(ip, new_size);
1136 
1137 	/*
1138 	 * Since it is possible for space to become allocated beyond
1139 	 * the end of the file (in a crash where the space is allocated
1140 	 * but the inode size is not yet updated), simply remove any
1141 	 * blocks which show up between the new EOF and the maximum
1142 	 * possible file size.  If the first block to be removed is
1143 	 * beyond the maximum file size (ie it is the same as last_block),
1144 	 * then there is nothing to do.
1145 	 */
1146 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1147 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1148 	if (first_unmap_block == last_block)
1149 		return 0;
1150 
1151 	ASSERT(first_unmap_block < last_block);
1152 	unmap_len = last_block - first_unmap_block + 1;
1153 	while (!done) {
1154 		xfs_bmap_init(&free_list, &first_block);
1155 		error = xfs_bunmapi(tp, ip,
1156 				    first_unmap_block, unmap_len,
1157 				    xfs_bmapi_aflag(whichfork),
1158 				    XFS_ITRUNC_MAX_EXTENTS,
1159 				    &first_block, &free_list,
1160 				    &done);
1161 		if (error)
1162 			goto out_bmap_cancel;
1163 
1164 		/*
1165 		 * Duplicate the transaction that has the permanent
1166 		 * reservation and commit the old transaction.
1167 		 */
1168 		error = xfs_bmap_finish(&tp, &free_list, &committed);
1169 		if (committed)
1170 			xfs_trans_ijoin(tp, ip, 0);
1171 		if (error)
1172 			goto out_bmap_cancel;
1173 
1174 		if (committed) {
1175 			/*
1176 			 * Mark the inode dirty so it will be logged and
1177 			 * moved forward in the log as part of every commit.
1178 			 */
1179 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1180 		}
1181 
1182 		ntp = xfs_trans_dup(tp);
1183 		error = xfs_trans_commit(tp, 0);
1184 		tp = ntp;
1185 
1186 		xfs_trans_ijoin(tp, ip, 0);
1187 
1188 		if (error)
1189 			goto out;
1190 
1191 		/*
1192 		 * Transaction commit worked ok so we can drop the extra ticket
1193 		 * reference that we gained in xfs_trans_dup()
1194 		 */
1195 		xfs_log_ticket_put(tp->t_ticket);
1196 		error = xfs_trans_reserve(tp, 0,
1197 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1198 					XFS_TRANS_PERM_LOG_RES,
1199 					XFS_ITRUNCATE_LOG_COUNT);
1200 		if (error)
1201 			goto out;
1202 	}
1203 
1204 	/*
1205 	 * Always re-log the inode so that our permanent transaction can keep
1206 	 * on rolling it forward in the log.
1207 	 */
1208 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1209 
1210 	trace_xfs_itruncate_extents_end(ip, new_size);
1211 
1212 out:
1213 	*tpp = tp;
1214 	return error;
1215 out_bmap_cancel:
1216 	/*
1217 	 * If the bunmapi call encounters an error, return to the caller where
1218 	 * the transaction can be properly aborted.  We just need to make sure
1219 	 * we're not holding any resources that we were not when we came in.
1220 	 */
1221 	xfs_bmap_cancel(&free_list);
1222 	goto out;
1223 }
1224 
1225 /*
1226  * This is called when the inode's link count goes to 0.
1227  * We place the on-disk inode on a list in the AGI.  It
1228  * will be pulled from this list when the inode is freed.
1229  */
1230 int
1231 xfs_iunlink(
1232 	xfs_trans_t	*tp,
1233 	xfs_inode_t	*ip)
1234 {
1235 	xfs_mount_t	*mp;
1236 	xfs_agi_t	*agi;
1237 	xfs_dinode_t	*dip;
1238 	xfs_buf_t	*agibp;
1239 	xfs_buf_t	*ibp;
1240 	xfs_agino_t	agino;
1241 	short		bucket_index;
1242 	int		offset;
1243 	int		error;
1244 
1245 	ASSERT(ip->i_d.di_nlink == 0);
1246 	ASSERT(ip->i_d.di_mode != 0);
1247 
1248 	mp = tp->t_mountp;
1249 
1250 	/*
1251 	 * Get the agi buffer first.  It ensures lock ordering
1252 	 * on the list.
1253 	 */
1254 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1255 	if (error)
1256 		return error;
1257 	agi = XFS_BUF_TO_AGI(agibp);
1258 
1259 	/*
1260 	 * Get the index into the agi hash table for the
1261 	 * list this inode will go on.
1262 	 */
1263 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1264 	ASSERT(agino != 0);
1265 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1266 	ASSERT(agi->agi_unlinked[bucket_index]);
1267 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1268 
1269 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1270 		/*
1271 		 * There is already another inode in the bucket we need
1272 		 * to add ourselves to.  Add us at the front of the list.
1273 		 * Here we put the head pointer into our next pointer,
1274 		 * and then we fall through to point the head at us.
1275 		 */
1276 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1277 				       0, 0);
1278 		if (error)
1279 			return error;
1280 
1281 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1282 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1283 		offset = ip->i_imap.im_boffset +
1284 			offsetof(xfs_dinode_t, di_next_unlinked);
1285 		xfs_trans_inode_buf(tp, ibp);
1286 		xfs_trans_log_buf(tp, ibp, offset,
1287 				  (offset + sizeof(xfs_agino_t) - 1));
1288 		xfs_inobp_check(mp, ibp);
1289 	}
1290 
1291 	/*
1292 	 * Point the bucket head pointer at the inode being inserted.
1293 	 */
1294 	ASSERT(agino != 0);
1295 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1296 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1297 		(sizeof(xfs_agino_t) * bucket_index);
1298 	xfs_trans_log_buf(tp, agibp, offset,
1299 			  (offset + sizeof(xfs_agino_t) - 1));
1300 	return 0;
1301 }
1302 
1303 /*
1304  * Pull the on-disk inode from the AGI unlinked list.
1305  */
1306 STATIC int
1307 xfs_iunlink_remove(
1308 	xfs_trans_t	*tp,
1309 	xfs_inode_t	*ip)
1310 {
1311 	xfs_ino_t	next_ino;
1312 	xfs_mount_t	*mp;
1313 	xfs_agi_t	*agi;
1314 	xfs_dinode_t	*dip;
1315 	xfs_buf_t	*agibp;
1316 	xfs_buf_t	*ibp;
1317 	xfs_agnumber_t	agno;
1318 	xfs_agino_t	agino;
1319 	xfs_agino_t	next_agino;
1320 	xfs_buf_t	*last_ibp;
1321 	xfs_dinode_t	*last_dip = NULL;
1322 	short		bucket_index;
1323 	int		offset, last_offset = 0;
1324 	int		error;
1325 
1326 	mp = tp->t_mountp;
1327 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1328 
1329 	/*
1330 	 * Get the agi buffer first.  It ensures lock ordering
1331 	 * on the list.
1332 	 */
1333 	error = xfs_read_agi(mp, tp, agno, &agibp);
1334 	if (error)
1335 		return error;
1336 
1337 	agi = XFS_BUF_TO_AGI(agibp);
1338 
1339 	/*
1340 	 * Get the index into the agi hash table for the
1341 	 * list this inode will go on.
1342 	 */
1343 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1344 	ASSERT(agino != 0);
1345 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1346 	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1347 	ASSERT(agi->agi_unlinked[bucket_index]);
1348 
1349 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1350 		/*
1351 		 * We're at the head of the list.  Get the inode's on-disk
1352 		 * buffer to see if there is anyone after us on the list.
1353 		 * Only modify our next pointer if it is not already NULLAGINO.
1354 		 * This saves us the overhead of dealing with the buffer when
1355 		 * there is no need to change it.
1356 		 */
1357 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1358 				       0, 0);
1359 		if (error) {
1360 			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
1361 				__func__, error);
1362 			return error;
1363 		}
1364 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1365 		ASSERT(next_agino != 0);
1366 		if (next_agino != NULLAGINO) {
1367 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1368 			offset = ip->i_imap.im_boffset +
1369 				offsetof(xfs_dinode_t, di_next_unlinked);
1370 			xfs_trans_inode_buf(tp, ibp);
1371 			xfs_trans_log_buf(tp, ibp, offset,
1372 					  (offset + sizeof(xfs_agino_t) - 1));
1373 			xfs_inobp_check(mp, ibp);
1374 		} else {
1375 			xfs_trans_brelse(tp, ibp);
1376 		}
1377 		/*
1378 		 * Point the bucket head pointer at the next inode.
1379 		 */
1380 		ASSERT(next_agino != 0);
1381 		ASSERT(next_agino != agino);
1382 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1383 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1384 			(sizeof(xfs_agino_t) * bucket_index);
1385 		xfs_trans_log_buf(tp, agibp, offset,
1386 				  (offset + sizeof(xfs_agino_t) - 1));
1387 	} else {
1388 		/*
1389 		 * We need to search the list for the inode being freed.
1390 		 */
1391 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1392 		last_ibp = NULL;
1393 		while (next_agino != agino) {
1394 			struct xfs_imap	imap;
1395 
1396 			if (last_ibp)
1397 				xfs_trans_brelse(tp, last_ibp);
1398 
1399 			imap.im_blkno = 0;
1400 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1401 
1402 			error = xfs_imap(mp, tp, next_ino, &imap, 0);
1403 			if (error) {
1404 				xfs_warn(mp,
1405 	"%s: xfs_imap returned error %d.",
1406 					 __func__, error);
1407 				return error;
1408 			}
1409 
1410 			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
1411 					       &last_ibp, 0, 0);
1412 			if (error) {
1413 				xfs_warn(mp,
1414 	"%s: xfs_imap_to_bp returned error %d.",
1415 					__func__, error);
1416 				return error;
1417 			}
1418 
1419 			last_offset = imap.im_boffset;
1420 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1421 			ASSERT(next_agino != NULLAGINO);
1422 			ASSERT(next_agino != 0);
1423 		}
1424 
1425 		/*
1426 		 * Now last_ibp points to the buffer previous to us on the
1427 		 * unlinked list.  Pull us from the list.
1428 		 */
1429 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1430 				       0, 0);
1431 		if (error) {
1432 			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
1433 				__func__, error);
1434 			return error;
1435 		}
1436 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1437 		ASSERT(next_agino != 0);
1438 		ASSERT(next_agino != agino);
1439 		if (next_agino != NULLAGINO) {
1440 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1441 			offset = ip->i_imap.im_boffset +
1442 				offsetof(xfs_dinode_t, di_next_unlinked);
1443 			xfs_trans_inode_buf(tp, ibp);
1444 			xfs_trans_log_buf(tp, ibp, offset,
1445 					  (offset + sizeof(xfs_agino_t) - 1));
1446 			xfs_inobp_check(mp, ibp);
1447 		} else {
1448 			xfs_trans_brelse(tp, ibp);
1449 		}
1450 		/*
1451 		 * Point the previous inode on the list to the next inode.
1452 		 */
1453 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1454 		ASSERT(next_agino != 0);
1455 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1456 		xfs_trans_inode_buf(tp, last_ibp);
1457 		xfs_trans_log_buf(tp, last_ibp, offset,
1458 				  (offset + sizeof(xfs_agino_t) - 1));
1459 		xfs_inobp_check(mp, last_ibp);
1460 	}
1461 	return 0;
1462 }
1463 
1464 /*
1465  * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1466  * inodes that are in memory - they all must be marked stale and attached to
1467  * the cluster buffer.
1468  */
1469 STATIC int
1470 xfs_ifree_cluster(
1471 	xfs_inode_t	*free_ip,
1472 	xfs_trans_t	*tp,
1473 	xfs_ino_t	inum)
1474 {
1475 	xfs_mount_t		*mp = free_ip->i_mount;
1476 	int			blks_per_cluster;
1477 	int			nbufs;
1478 	int			ninodes;
1479 	int			i, j;
1480 	xfs_daddr_t		blkno;
1481 	xfs_buf_t		*bp;
1482 	xfs_inode_t		*ip;
1483 	xfs_inode_log_item_t	*iip;
1484 	xfs_log_item_t		*lip;
1485 	struct xfs_perag	*pag;
1486 
1487 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1488 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1489 		blks_per_cluster = 1;
1490 		ninodes = mp->m_sb.sb_inopblock;
1491 		nbufs = XFS_IALLOC_BLOCKS(mp);
1492 	} else {
1493 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1494 					mp->m_sb.sb_blocksize;
1495 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1496 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1497 	}
1498 
1499 	for (j = 0; j < nbufs; j++, inum += ninodes) {
1500 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1501 					 XFS_INO_TO_AGBNO(mp, inum));
1502 
1503 		/*
1504 		 * We obtain and lock the backing buffer first in the process
1505 		 * here, as we have to ensure that any dirty inode that we
1506 		 * can't get the flush lock on is attached to the buffer.
1507 		 * If we scan the in-memory inodes first, then buffer IO can
1508 		 * complete before we get a lock on it, and hence we may fail
1509 		 * to mark all the active inodes on the buffer stale.
1510 		 */
1511 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1512 					mp->m_bsize * blks_per_cluster, 0);
1513 
1514 		if (!bp)
1515 			return ENOMEM;
1516 		/*
1517 		 * Walk the inodes already attached to the buffer and mark them
1518 		 * stale. These will all have the flush locks held, so an
1519 		 * in-memory inode walk can't lock them. By marking them all
1520 		 * stale first, we will not attempt to lock them in the loop
1521 		 * below as the XFS_ISTALE flag will be set.
1522 		 */
1523 		lip = bp->b_fspriv;
1524 		while (lip) {
1525 			if (lip->li_type == XFS_LI_INODE) {
1526 				iip = (xfs_inode_log_item_t *)lip;
1527 				ASSERT(iip->ili_logged == 1);
1528 				lip->li_cb = xfs_istale_done;
1529 				xfs_trans_ail_copy_lsn(mp->m_ail,
1530 							&iip->ili_flush_lsn,
1531 							&iip->ili_item.li_lsn);
1532 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1533 			}
1534 			lip = lip->li_bio_list;
1535 		}
1536 
1537 
1538 		/*
1539 		 * For each inode in memory attempt to add it to the inode
1540 		 * buffer and set it up for being staled on buffer IO
1541 		 * completion.  This is safe as we've locked out tail pushing
1542 		 * and flushing by locking the buffer.
1543 		 *
1544 		 * We have already marked every inode that was part of a
1545 		 * transaction stale above, which means there is no point in
1546 		 * even trying to lock them.
1547 		 */
1548 		for (i = 0; i < ninodes; i++) {
1549 retry:
1550 			rcu_read_lock();
1551 			ip = radix_tree_lookup(&pag->pag_ici_root,
1552 					XFS_INO_TO_AGINO(mp, (inum + i)));
1553 
1554 			/* Inode not in memory, nothing to do */
1555 			if (!ip) {
1556 				rcu_read_unlock();
1557 				continue;
1558 			}
1559 
1560 			/*
1561 			 * because this is an RCU protected lookup, we could
1562 			 * find a recently freed or even reallocated inode
1563 			 * during the lookup. We need to check under the
1564 			 * i_flags_lock for a valid inode here. Skip it if it
1565 			 * is not valid, the wrong inode or stale.
1566 			 */
1567 			spin_lock(&ip->i_flags_lock);
1568 			if (ip->i_ino != inum + i ||
1569 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
1570 				spin_unlock(&ip->i_flags_lock);
1571 				rcu_read_unlock();
1572 				continue;
1573 			}
1574 			spin_unlock(&ip->i_flags_lock);
1575 
1576 			/*
1577 			 * Don't try to lock/unlock the current inode, but we
1578 			 * _cannot_ skip the other inodes that we did not find
1579 			 * in the list attached to the buffer and are not
1580 			 * already marked stale. If we can't lock it, back off
1581 			 * and retry.
1582 			 */
1583 			if (ip != free_ip &&
1584 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1585 				rcu_read_unlock();
1586 				delay(1);
1587 				goto retry;
1588 			}
1589 			rcu_read_unlock();
1590 
1591 			xfs_iflock(ip);
1592 			xfs_iflags_set(ip, XFS_ISTALE);
1593 
1594 			/*
1595 			 * we don't need to attach clean inodes or those only
1596 			 * with unlogged changes (which we throw away, anyway).
1597 			 */
1598 			iip = ip->i_itemp;
1599 			if (!iip || xfs_inode_clean(ip)) {
1600 				ASSERT(ip != free_ip);
1601 				xfs_ifunlock(ip);
1602 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1603 				continue;
1604 			}
1605 
1606 			iip->ili_last_fields = iip->ili_fields;
1607 			iip->ili_fields = 0;
1608 			iip->ili_logged = 1;
1609 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1610 						&iip->ili_item.li_lsn);
1611 
1612 			xfs_buf_attach_iodone(bp, xfs_istale_done,
1613 						  &iip->ili_item);
1614 
1615 			if (ip != free_ip)
1616 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1617 		}
1618 
1619 		xfs_trans_stale_inode_buf(tp, bp);
1620 		xfs_trans_binval(tp, bp);
1621 	}
1622 
1623 	xfs_perag_put(pag);
1624 	return 0;
1625 }
1626 
1627 /*
1628  * This is called to return an inode to the inode free list.
1629  * The inode should already be truncated to 0 length and have
1630  * no pages associated with it.  This routine also assumes that
1631  * the inode is already a part of the transaction.
1632  *
1633  * The on-disk copy of the inode will have been added to the list
1634  * of unlinked inodes in the AGI. We need to remove the inode from
1635  * that list atomically with respect to freeing it here.
1636  */
1637 int
1638 xfs_ifree(
1639 	xfs_trans_t	*tp,
1640 	xfs_inode_t	*ip,
1641 	xfs_bmap_free_t	*flist)
1642 {
1643 	int			error;
1644 	int			delete;
1645 	xfs_ino_t		first_ino;
1646 	xfs_dinode_t    	*dip;
1647 	xfs_buf_t       	*ibp;
1648 
1649 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1650 	ASSERT(ip->i_d.di_nlink == 0);
1651 	ASSERT(ip->i_d.di_nextents == 0);
1652 	ASSERT(ip->i_d.di_anextents == 0);
1653 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1654 	ASSERT(ip->i_d.di_nblocks == 0);
1655 
1656 	/*
1657 	 * Pull the on-disk inode from the AGI unlinked list.
1658 	 */
1659 	error = xfs_iunlink_remove(tp, ip);
1660 	if (error != 0) {
1661 		return error;
1662 	}
1663 
1664 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1665 	if (error != 0) {
1666 		return error;
1667 	}
1668 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
1669 	ip->i_d.di_flags = 0;
1670 	ip->i_d.di_dmevmask = 0;
1671 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
1672 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1673 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1674 	/*
1675 	 * Bump the generation count so no one will be confused
1676 	 * by reincarnations of this inode.
1677 	 */
1678 	ip->i_d.di_gen++;
1679 
1680 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1681 
1682 	error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &dip, &ibp,
1683 			       0, 0);
1684 	if (error)
1685 		return error;
1686 
1687         /*
1688 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1689 	* from picking up this inode when it is reclaimed (its incore state
1690 	* initialzed but not flushed to disk yet). The in-core di_mode is
1691 	* already cleared  and a corresponding transaction logged.
1692 	* The hack here just synchronizes the in-core to on-disk
1693 	* di_mode value in advance before the actual inode sync to disk.
1694 	* This is OK because the inode is already unlinked and would never
1695 	* change its di_mode again for this inode generation.
1696 	* This is a temporary hack that would require a proper fix
1697 	* in the future.
1698 	*/
1699 	dip->di_mode = 0;
1700 
1701 	if (delete) {
1702 		error = xfs_ifree_cluster(ip, tp, first_ino);
1703 	}
1704 
1705 	return error;
1706 }
1707 
1708 /*
1709  * Reallocate the space for if_broot based on the number of records
1710  * being added or deleted as indicated in rec_diff.  Move the records
1711  * and pointers in if_broot to fit the new size.  When shrinking this
1712  * will eliminate holes between the records and pointers created by
1713  * the caller.  When growing this will create holes to be filled in
1714  * by the caller.
1715  *
1716  * The caller must not request to add more records than would fit in
1717  * the on-disk inode root.  If the if_broot is currently NULL, then
1718  * if we adding records one will be allocated.  The caller must also
1719  * not request that the number of records go below zero, although
1720  * it can go to zero.
1721  *
1722  * ip -- the inode whose if_broot area is changing
1723  * ext_diff -- the change in the number of records, positive or negative,
1724  *	 requested for the if_broot array.
1725  */
1726 void
1727 xfs_iroot_realloc(
1728 	xfs_inode_t		*ip,
1729 	int			rec_diff,
1730 	int			whichfork)
1731 {
1732 	struct xfs_mount	*mp = ip->i_mount;
1733 	int			cur_max;
1734 	xfs_ifork_t		*ifp;
1735 	struct xfs_btree_block	*new_broot;
1736 	int			new_max;
1737 	size_t			new_size;
1738 	char			*np;
1739 	char			*op;
1740 
1741 	/*
1742 	 * Handle the degenerate case quietly.
1743 	 */
1744 	if (rec_diff == 0) {
1745 		return;
1746 	}
1747 
1748 	ifp = XFS_IFORK_PTR(ip, whichfork);
1749 	if (rec_diff > 0) {
1750 		/*
1751 		 * If there wasn't any memory allocated before, just
1752 		 * allocate it now and get out.
1753 		 */
1754 		if (ifp->if_broot_bytes == 0) {
1755 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
1756 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1757 			ifp->if_broot_bytes = (int)new_size;
1758 			return;
1759 		}
1760 
1761 		/*
1762 		 * If there is already an existing if_broot, then we need
1763 		 * to realloc() it and shift the pointers to their new
1764 		 * location.  The records don't change location because
1765 		 * they are kept butted up against the btree block header.
1766 		 */
1767 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1768 		new_max = cur_max + rec_diff;
1769 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1770 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1771 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
1772 				KM_SLEEP | KM_NOFS);
1773 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1774 						     ifp->if_broot_bytes);
1775 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1776 						     (int)new_size);
1777 		ifp->if_broot_bytes = (int)new_size;
1778 		ASSERT(ifp->if_broot_bytes <=
1779 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1780 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
1781 		return;
1782 	}
1783 
1784 	/*
1785 	 * rec_diff is less than 0.  In this case, we are shrinking the
1786 	 * if_broot buffer.  It must already exist.  If we go to zero
1787 	 * records, just get rid of the root and clear the status bit.
1788 	 */
1789 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
1790 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1791 	new_max = cur_max + rec_diff;
1792 	ASSERT(new_max >= 0);
1793 	if (new_max > 0)
1794 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1795 	else
1796 		new_size = 0;
1797 	if (new_size > 0) {
1798 		new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1799 		/*
1800 		 * First copy over the btree block header.
1801 		 */
1802 		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1803 	} else {
1804 		new_broot = NULL;
1805 		ifp->if_flags &= ~XFS_IFBROOT;
1806 	}
1807 
1808 	/*
1809 	 * Only copy the records and pointers if there are any.
1810 	 */
1811 	if (new_max > 0) {
1812 		/*
1813 		 * First copy the records.
1814 		 */
1815 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
1816 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1817 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
1818 
1819 		/*
1820 		 * Then copy the pointers.
1821 		 */
1822 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1823 						     ifp->if_broot_bytes);
1824 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1825 						     (int)new_size);
1826 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
1827 	}
1828 	kmem_free(ifp->if_broot);
1829 	ifp->if_broot = new_broot;
1830 	ifp->if_broot_bytes = (int)new_size;
1831 	ASSERT(ifp->if_broot_bytes <=
1832 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1833 	return;
1834 }
1835 
1836 
1837 /*
1838  * This is called when the amount of space needed for if_data
1839  * is increased or decreased.  The change in size is indicated by
1840  * the number of bytes that need to be added or deleted in the
1841  * byte_diff parameter.
1842  *
1843  * If the amount of space needed has decreased below the size of the
1844  * inline buffer, then switch to using the inline buffer.  Otherwise,
1845  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
1846  * to what is needed.
1847  *
1848  * ip -- the inode whose if_data area is changing
1849  * byte_diff -- the change in the number of bytes, positive or negative,
1850  *	 requested for the if_data array.
1851  */
1852 void
1853 xfs_idata_realloc(
1854 	xfs_inode_t	*ip,
1855 	int		byte_diff,
1856 	int		whichfork)
1857 {
1858 	xfs_ifork_t	*ifp;
1859 	int		new_size;
1860 	int		real_size;
1861 
1862 	if (byte_diff == 0) {
1863 		return;
1864 	}
1865 
1866 	ifp = XFS_IFORK_PTR(ip, whichfork);
1867 	new_size = (int)ifp->if_bytes + byte_diff;
1868 	ASSERT(new_size >= 0);
1869 
1870 	if (new_size == 0) {
1871 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1872 			kmem_free(ifp->if_u1.if_data);
1873 		}
1874 		ifp->if_u1.if_data = NULL;
1875 		real_size = 0;
1876 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
1877 		/*
1878 		 * If the valid extents/data can fit in if_inline_ext/data,
1879 		 * copy them from the malloc'd vector and free it.
1880 		 */
1881 		if (ifp->if_u1.if_data == NULL) {
1882 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1883 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1884 			ASSERT(ifp->if_real_bytes != 0);
1885 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
1886 			      new_size);
1887 			kmem_free(ifp->if_u1.if_data);
1888 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1889 		}
1890 		real_size = 0;
1891 	} else {
1892 		/*
1893 		 * Stuck with malloc/realloc.
1894 		 * For inline data, the underlying buffer must be
1895 		 * a multiple of 4 bytes in size so that it can be
1896 		 * logged and stay on word boundaries.  We enforce
1897 		 * that here.
1898 		 */
1899 		real_size = roundup(new_size, 4);
1900 		if (ifp->if_u1.if_data == NULL) {
1901 			ASSERT(ifp->if_real_bytes == 0);
1902 			ifp->if_u1.if_data = kmem_alloc(real_size,
1903 							KM_SLEEP | KM_NOFS);
1904 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1905 			/*
1906 			 * Only do the realloc if the underlying size
1907 			 * is really changing.
1908 			 */
1909 			if (ifp->if_real_bytes != real_size) {
1910 				ifp->if_u1.if_data =
1911 					kmem_realloc(ifp->if_u1.if_data,
1912 							real_size,
1913 							ifp->if_real_bytes,
1914 							KM_SLEEP | KM_NOFS);
1915 			}
1916 		} else {
1917 			ASSERT(ifp->if_real_bytes == 0);
1918 			ifp->if_u1.if_data = kmem_alloc(real_size,
1919 							KM_SLEEP | KM_NOFS);
1920 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
1921 				ifp->if_bytes);
1922 		}
1923 	}
1924 	ifp->if_real_bytes = real_size;
1925 	ifp->if_bytes = new_size;
1926 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
1927 }
1928 
1929 void
1930 xfs_idestroy_fork(
1931 	xfs_inode_t	*ip,
1932 	int		whichfork)
1933 {
1934 	xfs_ifork_t	*ifp;
1935 
1936 	ifp = XFS_IFORK_PTR(ip, whichfork);
1937 	if (ifp->if_broot != NULL) {
1938 		kmem_free(ifp->if_broot);
1939 		ifp->if_broot = NULL;
1940 	}
1941 
1942 	/*
1943 	 * If the format is local, then we can't have an extents
1944 	 * array so just look for an inline data array.  If we're
1945 	 * not local then we may or may not have an extents list,
1946 	 * so check and free it up if we do.
1947 	 */
1948 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
1949 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
1950 		    (ifp->if_u1.if_data != NULL)) {
1951 			ASSERT(ifp->if_real_bytes != 0);
1952 			kmem_free(ifp->if_u1.if_data);
1953 			ifp->if_u1.if_data = NULL;
1954 			ifp->if_real_bytes = 0;
1955 		}
1956 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
1957 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
1958 		    ((ifp->if_u1.if_extents != NULL) &&
1959 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1960 		ASSERT(ifp->if_real_bytes != 0);
1961 		xfs_iext_destroy(ifp);
1962 	}
1963 	ASSERT(ifp->if_u1.if_extents == NULL ||
1964 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
1965 	ASSERT(ifp->if_real_bytes == 0);
1966 	if (whichfork == XFS_ATTR_FORK) {
1967 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
1968 		ip->i_afp = NULL;
1969 	}
1970 }
1971 
1972 /*
1973  * This is called to unpin an inode.  The caller must have the inode locked
1974  * in at least shared mode so that the buffer cannot be subsequently pinned
1975  * once someone is waiting for it to be unpinned.
1976  */
1977 static void
1978 xfs_iunpin(
1979 	struct xfs_inode	*ip)
1980 {
1981 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1982 
1983 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
1984 
1985 	/* Give the log a push to start the unpinning I/O */
1986 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
1987 
1988 }
1989 
1990 static void
1991 __xfs_iunpin_wait(
1992 	struct xfs_inode	*ip)
1993 {
1994 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
1995 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
1996 
1997 	xfs_iunpin(ip);
1998 
1999 	do {
2000 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2001 		if (xfs_ipincount(ip))
2002 			io_schedule();
2003 	} while (xfs_ipincount(ip));
2004 	finish_wait(wq, &wait.wait);
2005 }
2006 
2007 void
2008 xfs_iunpin_wait(
2009 	struct xfs_inode	*ip)
2010 {
2011 	if (xfs_ipincount(ip))
2012 		__xfs_iunpin_wait(ip);
2013 }
2014 
2015 /*
2016  * xfs_iextents_copy()
2017  *
2018  * This is called to copy the REAL extents (as opposed to the delayed
2019  * allocation extents) from the inode into the given buffer.  It
2020  * returns the number of bytes copied into the buffer.
2021  *
2022  * If there are no delayed allocation extents, then we can just
2023  * memcpy() the extents into the buffer.  Otherwise, we need to
2024  * examine each extent in turn and skip those which are delayed.
2025  */
2026 int
2027 xfs_iextents_copy(
2028 	xfs_inode_t		*ip,
2029 	xfs_bmbt_rec_t		*dp,
2030 	int			whichfork)
2031 {
2032 	int			copied;
2033 	int			i;
2034 	xfs_ifork_t		*ifp;
2035 	int			nrecs;
2036 	xfs_fsblock_t		start_block;
2037 
2038 	ifp = XFS_IFORK_PTR(ip, whichfork);
2039 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2040 	ASSERT(ifp->if_bytes > 0);
2041 
2042 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2043 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2044 	ASSERT(nrecs > 0);
2045 
2046 	/*
2047 	 * There are some delayed allocation extents in the
2048 	 * inode, so copy the extents one at a time and skip
2049 	 * the delayed ones.  There must be at least one
2050 	 * non-delayed extent.
2051 	 */
2052 	copied = 0;
2053 	for (i = 0; i < nrecs; i++) {
2054 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2055 		start_block = xfs_bmbt_get_startblock(ep);
2056 		if (isnullstartblock(start_block)) {
2057 			/*
2058 			 * It's a delayed allocation extent, so skip it.
2059 			 */
2060 			continue;
2061 		}
2062 
2063 		/* Translate to on disk format */
2064 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2065 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2066 		dp++;
2067 		copied++;
2068 	}
2069 	ASSERT(copied != 0);
2070 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2071 
2072 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2073 }
2074 
2075 /*
2076  * Each of the following cases stores data into the same region
2077  * of the on-disk inode, so only one of them can be valid at
2078  * any given time. While it is possible to have conflicting formats
2079  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2080  * in EXTENTS format, this can only happen when the fork has
2081  * changed formats after being modified but before being flushed.
2082  * In these cases, the format always takes precedence, because the
2083  * format indicates the current state of the fork.
2084  */
2085 /*ARGSUSED*/
2086 STATIC void
2087 xfs_iflush_fork(
2088 	xfs_inode_t		*ip,
2089 	xfs_dinode_t		*dip,
2090 	xfs_inode_log_item_t	*iip,
2091 	int			whichfork,
2092 	xfs_buf_t		*bp)
2093 {
2094 	char			*cp;
2095 	xfs_ifork_t		*ifp;
2096 	xfs_mount_t		*mp;
2097 #ifdef XFS_TRANS_DEBUG
2098 	int			first;
2099 #endif
2100 	static const short	brootflag[2] =
2101 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2102 	static const short	dataflag[2] =
2103 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2104 	static const short	extflag[2] =
2105 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2106 
2107 	if (!iip)
2108 		return;
2109 	ifp = XFS_IFORK_PTR(ip, whichfork);
2110 	/*
2111 	 * This can happen if we gave up in iformat in an error path,
2112 	 * for the attribute fork.
2113 	 */
2114 	if (!ifp) {
2115 		ASSERT(whichfork == XFS_ATTR_FORK);
2116 		return;
2117 	}
2118 	cp = XFS_DFORK_PTR(dip, whichfork);
2119 	mp = ip->i_mount;
2120 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2121 	case XFS_DINODE_FMT_LOCAL:
2122 		if ((iip->ili_fields & dataflag[whichfork]) &&
2123 		    (ifp->if_bytes > 0)) {
2124 			ASSERT(ifp->if_u1.if_data != NULL);
2125 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2126 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2127 		}
2128 		break;
2129 
2130 	case XFS_DINODE_FMT_EXTENTS:
2131 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2132 		       !(iip->ili_fields & extflag[whichfork]));
2133 		if ((iip->ili_fields & extflag[whichfork]) &&
2134 		    (ifp->if_bytes > 0)) {
2135 			ASSERT(xfs_iext_get_ext(ifp, 0));
2136 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2137 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2138 				whichfork);
2139 		}
2140 		break;
2141 
2142 	case XFS_DINODE_FMT_BTREE:
2143 		if ((iip->ili_fields & brootflag[whichfork]) &&
2144 		    (ifp->if_broot_bytes > 0)) {
2145 			ASSERT(ifp->if_broot != NULL);
2146 			ASSERT(ifp->if_broot_bytes <=
2147 			       (XFS_IFORK_SIZE(ip, whichfork) +
2148 				XFS_BROOT_SIZE_ADJ));
2149 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2150 				(xfs_bmdr_block_t *)cp,
2151 				XFS_DFORK_SIZE(dip, mp, whichfork));
2152 		}
2153 		break;
2154 
2155 	case XFS_DINODE_FMT_DEV:
2156 		if (iip->ili_fields & XFS_ILOG_DEV) {
2157 			ASSERT(whichfork == XFS_DATA_FORK);
2158 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2159 		}
2160 		break;
2161 
2162 	case XFS_DINODE_FMT_UUID:
2163 		if (iip->ili_fields & XFS_ILOG_UUID) {
2164 			ASSERT(whichfork == XFS_DATA_FORK);
2165 			memcpy(XFS_DFORK_DPTR(dip),
2166 			       &ip->i_df.if_u2.if_uuid,
2167 			       sizeof(uuid_t));
2168 		}
2169 		break;
2170 
2171 	default:
2172 		ASSERT(0);
2173 		break;
2174 	}
2175 }
2176 
2177 STATIC int
2178 xfs_iflush_cluster(
2179 	xfs_inode_t	*ip,
2180 	xfs_buf_t	*bp)
2181 {
2182 	xfs_mount_t		*mp = ip->i_mount;
2183 	struct xfs_perag	*pag;
2184 	unsigned long		first_index, mask;
2185 	unsigned long		inodes_per_cluster;
2186 	int			ilist_size;
2187 	xfs_inode_t		**ilist;
2188 	xfs_inode_t		*iq;
2189 	int			nr_found;
2190 	int			clcount = 0;
2191 	int			bufwasdelwri;
2192 	int			i;
2193 
2194 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2195 
2196 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2197 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2198 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2199 	if (!ilist)
2200 		goto out_put;
2201 
2202 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2203 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2204 	rcu_read_lock();
2205 	/* really need a gang lookup range call here */
2206 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2207 					first_index, inodes_per_cluster);
2208 	if (nr_found == 0)
2209 		goto out_free;
2210 
2211 	for (i = 0; i < nr_found; i++) {
2212 		iq = ilist[i];
2213 		if (iq == ip)
2214 			continue;
2215 
2216 		/*
2217 		 * because this is an RCU protected lookup, we could find a
2218 		 * recently freed or even reallocated inode during the lookup.
2219 		 * We need to check under the i_flags_lock for a valid inode
2220 		 * here. Skip it if it is not valid or the wrong inode.
2221 		 */
2222 		spin_lock(&ip->i_flags_lock);
2223 		if (!ip->i_ino ||
2224 		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2225 			spin_unlock(&ip->i_flags_lock);
2226 			continue;
2227 		}
2228 		spin_unlock(&ip->i_flags_lock);
2229 
2230 		/*
2231 		 * Do an un-protected check to see if the inode is dirty and
2232 		 * is a candidate for flushing.  These checks will be repeated
2233 		 * later after the appropriate locks are acquired.
2234 		 */
2235 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2236 			continue;
2237 
2238 		/*
2239 		 * Try to get locks.  If any are unavailable or it is pinned,
2240 		 * then this inode cannot be flushed and is skipped.
2241 		 */
2242 
2243 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2244 			continue;
2245 		if (!xfs_iflock_nowait(iq)) {
2246 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2247 			continue;
2248 		}
2249 		if (xfs_ipincount(iq)) {
2250 			xfs_ifunlock(iq);
2251 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2252 			continue;
2253 		}
2254 
2255 		/*
2256 		 * arriving here means that this inode can be flushed.  First
2257 		 * re-check that it's dirty before flushing.
2258 		 */
2259 		if (!xfs_inode_clean(iq)) {
2260 			int	error;
2261 			error = xfs_iflush_int(iq, bp);
2262 			if (error) {
2263 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2264 				goto cluster_corrupt_out;
2265 			}
2266 			clcount++;
2267 		} else {
2268 			xfs_ifunlock(iq);
2269 		}
2270 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2271 	}
2272 
2273 	if (clcount) {
2274 		XFS_STATS_INC(xs_icluster_flushcnt);
2275 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2276 	}
2277 
2278 out_free:
2279 	rcu_read_unlock();
2280 	kmem_free(ilist);
2281 out_put:
2282 	xfs_perag_put(pag);
2283 	return 0;
2284 
2285 
2286 cluster_corrupt_out:
2287 	/*
2288 	 * Corruption detected in the clustering loop.  Invalidate the
2289 	 * inode buffer and shut down the filesystem.
2290 	 */
2291 	rcu_read_unlock();
2292 	/*
2293 	 * Clean up the buffer.  If it was delwri, just release it --
2294 	 * brelse can handle it with no problems.  If not, shut down the
2295 	 * filesystem before releasing the buffer.
2296 	 */
2297 	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
2298 	if (bufwasdelwri)
2299 		xfs_buf_relse(bp);
2300 
2301 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2302 
2303 	if (!bufwasdelwri) {
2304 		/*
2305 		 * Just like incore_relse: if we have b_iodone functions,
2306 		 * mark the buffer as an error and call them.  Otherwise
2307 		 * mark it as stale and brelse.
2308 		 */
2309 		if (bp->b_iodone) {
2310 			XFS_BUF_UNDONE(bp);
2311 			xfs_buf_stale(bp);
2312 			xfs_buf_ioerror(bp, EIO);
2313 			xfs_buf_ioend(bp, 0);
2314 		} else {
2315 			xfs_buf_stale(bp);
2316 			xfs_buf_relse(bp);
2317 		}
2318 	}
2319 
2320 	/*
2321 	 * Unlocks the flush lock
2322 	 */
2323 	xfs_iflush_abort(iq, false);
2324 	kmem_free(ilist);
2325 	xfs_perag_put(pag);
2326 	return XFS_ERROR(EFSCORRUPTED);
2327 }
2328 
2329 /*
2330  * Flush dirty inode metadata into the backing buffer.
2331  *
2332  * The caller must have the inode lock and the inode flush lock held.  The
2333  * inode lock will still be held upon return to the caller, and the inode
2334  * flush lock will be released after the inode has reached the disk.
2335  *
2336  * The caller must write out the buffer returned in *bpp and release it.
2337  */
2338 int
2339 xfs_iflush(
2340 	struct xfs_inode	*ip,
2341 	struct xfs_buf		**bpp)
2342 {
2343 	struct xfs_mount	*mp = ip->i_mount;
2344 	struct xfs_buf		*bp;
2345 	struct xfs_dinode	*dip;
2346 	int			error;
2347 
2348 	XFS_STATS_INC(xs_iflush_count);
2349 
2350 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2351 	ASSERT(xfs_isiflocked(ip));
2352 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2353 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2354 
2355 	*bpp = NULL;
2356 
2357 	xfs_iunpin_wait(ip);
2358 
2359 	/*
2360 	 * For stale inodes we cannot rely on the backing buffer remaining
2361 	 * stale in cache for the remaining life of the stale inode and so
2362 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
2363 	 * inodes below. We have to check this after ensuring the inode is
2364 	 * unpinned so that it is safe to reclaim the stale inode after the
2365 	 * flush call.
2366 	 */
2367 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
2368 		xfs_ifunlock(ip);
2369 		return 0;
2370 	}
2371 
2372 	/*
2373 	 * This may have been unpinned because the filesystem is shutting
2374 	 * down forcibly. If that's the case we must not write this inode
2375 	 * to disk, because the log record didn't make it to disk.
2376 	 *
2377 	 * We also have to remove the log item from the AIL in this case,
2378 	 * as we wait for an empty AIL as part of the unmount process.
2379 	 */
2380 	if (XFS_FORCED_SHUTDOWN(mp)) {
2381 		error = XFS_ERROR(EIO);
2382 		goto abort_out;
2383 	}
2384 
2385 	/*
2386 	 * Get the buffer containing the on-disk inode.
2387 	 */
2388 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
2389 			       0);
2390 	if (error || !bp) {
2391 		xfs_ifunlock(ip);
2392 		return error;
2393 	}
2394 
2395 	/*
2396 	 * First flush out the inode that xfs_iflush was called with.
2397 	 */
2398 	error = xfs_iflush_int(ip, bp);
2399 	if (error)
2400 		goto corrupt_out;
2401 
2402 	/*
2403 	 * If the buffer is pinned then push on the log now so we won't
2404 	 * get stuck waiting in the write for too long.
2405 	 */
2406 	if (xfs_buf_ispinned(bp))
2407 		xfs_log_force(mp, 0);
2408 
2409 	/*
2410 	 * inode clustering:
2411 	 * see if other inodes can be gathered into this write
2412 	 */
2413 	error = xfs_iflush_cluster(ip, bp);
2414 	if (error)
2415 		goto cluster_corrupt_out;
2416 
2417 	*bpp = bp;
2418 	return 0;
2419 
2420 corrupt_out:
2421 	xfs_buf_relse(bp);
2422 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2423 cluster_corrupt_out:
2424 	error = XFS_ERROR(EFSCORRUPTED);
2425 abort_out:
2426 	/*
2427 	 * Unlocks the flush lock
2428 	 */
2429 	xfs_iflush_abort(ip, false);
2430 	return error;
2431 }
2432 
2433 
2434 STATIC int
2435 xfs_iflush_int(
2436 	xfs_inode_t		*ip,
2437 	xfs_buf_t		*bp)
2438 {
2439 	xfs_inode_log_item_t	*iip;
2440 	xfs_dinode_t		*dip;
2441 	xfs_mount_t		*mp;
2442 #ifdef XFS_TRANS_DEBUG
2443 	int			first;
2444 #endif
2445 
2446 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2447 	ASSERT(xfs_isiflocked(ip));
2448 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2449 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2450 
2451 	iip = ip->i_itemp;
2452 	mp = ip->i_mount;
2453 
2454 	/* set *dip = inode's place in the buffer */
2455 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2456 
2457 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2458 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2459 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2460 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2461 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2462 		goto corrupt_out;
2463 	}
2464 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2465 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2466 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2467 			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2468 			__func__, ip->i_ino, ip, ip->i_d.di_magic);
2469 		goto corrupt_out;
2470 	}
2471 	if (S_ISREG(ip->i_d.di_mode)) {
2472 		if (XFS_TEST_ERROR(
2473 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2474 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2475 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2476 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2477 				"%s: Bad regular inode %Lu, ptr 0x%p",
2478 				__func__, ip->i_ino, ip);
2479 			goto corrupt_out;
2480 		}
2481 	} else if (S_ISDIR(ip->i_d.di_mode)) {
2482 		if (XFS_TEST_ERROR(
2483 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2484 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2485 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2486 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2487 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2488 				"%s: Bad directory inode %Lu, ptr 0x%p",
2489 				__func__, ip->i_ino, ip);
2490 			goto corrupt_out;
2491 		}
2492 	}
2493 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2494 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2495 				XFS_RANDOM_IFLUSH_5)) {
2496 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2497 			"%s: detected corrupt incore inode %Lu, "
2498 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
2499 			__func__, ip->i_ino,
2500 			ip->i_d.di_nextents + ip->i_d.di_anextents,
2501 			ip->i_d.di_nblocks, ip);
2502 		goto corrupt_out;
2503 	}
2504 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2505 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2506 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2507 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2508 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2509 		goto corrupt_out;
2510 	}
2511 	/*
2512 	 * bump the flush iteration count, used to detect flushes which
2513 	 * postdate a log record during recovery.
2514 	 */
2515 
2516 	ip->i_d.di_flushiter++;
2517 
2518 	/*
2519 	 * Copy the dirty parts of the inode into the on-disk
2520 	 * inode.  We always copy out the core of the inode,
2521 	 * because if the inode is dirty at all the core must
2522 	 * be.
2523 	 */
2524 	xfs_dinode_to_disk(dip, &ip->i_d);
2525 
2526 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2527 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2528 		ip->i_d.di_flushiter = 0;
2529 
2530 	/*
2531 	 * If this is really an old format inode and the superblock version
2532 	 * has not been updated to support only new format inodes, then
2533 	 * convert back to the old inode format.  If the superblock version
2534 	 * has been updated, then make the conversion permanent.
2535 	 */
2536 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2537 	if (ip->i_d.di_version == 1) {
2538 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2539 			/*
2540 			 * Convert it back.
2541 			 */
2542 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2543 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2544 		} else {
2545 			/*
2546 			 * The superblock version has already been bumped,
2547 			 * so just make the conversion to the new inode
2548 			 * format permanent.
2549 			 */
2550 			ip->i_d.di_version = 2;
2551 			dip->di_version = 2;
2552 			ip->i_d.di_onlink = 0;
2553 			dip->di_onlink = 0;
2554 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
2555 			memset(&(dip->di_pad[0]), 0,
2556 			      sizeof(dip->di_pad));
2557 			ASSERT(xfs_get_projid(ip) == 0);
2558 		}
2559 	}
2560 
2561 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2562 	if (XFS_IFORK_Q(ip))
2563 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
2564 	xfs_inobp_check(mp, bp);
2565 
2566 	/*
2567 	 * We've recorded everything logged in the inode, so we'd like to clear
2568 	 * the ili_fields bits so we don't log and flush things unnecessarily.
2569 	 * However, we can't stop logging all this information until the data
2570 	 * we've copied into the disk buffer is written to disk.  If we did we
2571 	 * might overwrite the copy of the inode in the log with all the data
2572 	 * after re-logging only part of it, and in the face of a crash we
2573 	 * wouldn't have all the data we need to recover.
2574 	 *
2575 	 * What we do is move the bits to the ili_last_fields field.  When
2576 	 * logging the inode, these bits are moved back to the ili_fields field.
2577 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
2578 	 * know that the information those bits represent is permanently on
2579 	 * disk.  As long as the flush completes before the inode is logged
2580 	 * again, then both ili_fields and ili_last_fields will be cleared.
2581 	 *
2582 	 * We can play with the ili_fields bits here, because the inode lock
2583 	 * must be held exclusively in order to set bits there and the flush
2584 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
2585 	 * done routine can tell whether or not to look in the AIL.  Also, store
2586 	 * the current LSN of the inode so that we can tell whether the item has
2587 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
2588 	 * need the AIL lock, because it is a 64 bit value that cannot be read
2589 	 * atomically.
2590 	 */
2591 	if (iip != NULL && iip->ili_fields != 0) {
2592 		iip->ili_last_fields = iip->ili_fields;
2593 		iip->ili_fields = 0;
2594 		iip->ili_logged = 1;
2595 
2596 		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2597 					&iip->ili_item.li_lsn);
2598 
2599 		/*
2600 		 * Attach the function xfs_iflush_done to the inode's
2601 		 * buffer.  This will remove the inode from the AIL
2602 		 * and unlock the inode's flush lock when the inode is
2603 		 * completely written to disk.
2604 		 */
2605 		xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
2606 
2607 		ASSERT(bp->b_fspriv != NULL);
2608 		ASSERT(bp->b_iodone != NULL);
2609 	} else {
2610 		/*
2611 		 * We're flushing an inode which is not in the AIL and has
2612 		 * not been logged.  For this case we can immediately drop
2613 		 * the inode flush lock because we can avoid the whole
2614 		 * AIL state thing.  It's OK to drop the flush lock now,
2615 		 * because we've already locked the buffer and to do anything
2616 		 * you really need both.
2617 		 */
2618 		if (iip != NULL) {
2619 			ASSERT(iip->ili_logged == 0);
2620 			ASSERT(iip->ili_last_fields == 0);
2621 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2622 		}
2623 		xfs_ifunlock(ip);
2624 	}
2625 
2626 	return 0;
2627 
2628 corrupt_out:
2629 	return XFS_ERROR(EFSCORRUPTED);
2630 }
2631 
2632 /*
2633  * Return a pointer to the extent record at file index idx.
2634  */
2635 xfs_bmbt_rec_host_t *
2636 xfs_iext_get_ext(
2637 	xfs_ifork_t	*ifp,		/* inode fork pointer */
2638 	xfs_extnum_t	idx)		/* index of target extent */
2639 {
2640 	ASSERT(idx >= 0);
2641 	ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
2642 
2643 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2644 		return ifp->if_u1.if_ext_irec->er_extbuf;
2645 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
2646 		xfs_ext_irec_t	*erp;		/* irec pointer */
2647 		int		erp_idx = 0;	/* irec index */
2648 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
2649 
2650 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2651 		return &erp->er_extbuf[page_idx];
2652 	} else if (ifp->if_bytes) {
2653 		return &ifp->if_u1.if_extents[idx];
2654 	} else {
2655 		return NULL;
2656 	}
2657 }
2658 
2659 /*
2660  * Insert new item(s) into the extent records for incore inode
2661  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
2662  */
2663 void
2664 xfs_iext_insert(
2665 	xfs_inode_t	*ip,		/* incore inode pointer */
2666 	xfs_extnum_t	idx,		/* starting index of new items */
2667 	xfs_extnum_t	count,		/* number of inserted items */
2668 	xfs_bmbt_irec_t	*new,		/* items to insert */
2669 	int		state)		/* type of extent conversion */
2670 {
2671 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
2672 	xfs_extnum_t	i;		/* extent record index */
2673 
2674 	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2675 
2676 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2677 	xfs_iext_add(ifp, idx, count);
2678 	for (i = idx; i < idx + count; i++, new++)
2679 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
2680 }
2681 
2682 /*
2683  * This is called when the amount of space required for incore file
2684  * extents needs to be increased. The ext_diff parameter stores the
2685  * number of new extents being added and the idx parameter contains
2686  * the extent index where the new extents will be added. If the new
2687  * extents are being appended, then we just need to (re)allocate and
2688  * initialize the space. Otherwise, if the new extents are being
2689  * inserted into the middle of the existing entries, a bit more work
2690  * is required to make room for the new extents to be inserted. The
2691  * caller is responsible for filling in the new extent entries upon
2692  * return.
2693  */
2694 void
2695 xfs_iext_add(
2696 	xfs_ifork_t	*ifp,		/* inode fork pointer */
2697 	xfs_extnum_t	idx,		/* index to begin adding exts */
2698 	int		ext_diff)	/* number of extents to add */
2699 {
2700 	int		byte_diff;	/* new bytes being added */
2701 	int		new_size;	/* size of extents after adding */
2702 	xfs_extnum_t	nextents;	/* number of extents in file */
2703 
2704 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2705 	ASSERT((idx >= 0) && (idx <= nextents));
2706 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2707 	new_size = ifp->if_bytes + byte_diff;
2708 	/*
2709 	 * If the new number of extents (nextents + ext_diff)
2710 	 * fits inside the inode, then continue to use the inline
2711 	 * extent buffer.
2712 	 */
2713 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2714 		if (idx < nextents) {
2715 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
2716 				&ifp->if_u2.if_inline_ext[idx],
2717 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
2718 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
2719 		}
2720 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2721 		ifp->if_real_bytes = 0;
2722 	}
2723 	/*
2724 	 * Otherwise use a linear (direct) extent list.
2725 	 * If the extents are currently inside the inode,
2726 	 * xfs_iext_realloc_direct will switch us from
2727 	 * inline to direct extent allocation mode.
2728 	 */
2729 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
2730 		xfs_iext_realloc_direct(ifp, new_size);
2731 		if (idx < nextents) {
2732 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
2733 				&ifp->if_u1.if_extents[idx],
2734 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
2735 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
2736 		}
2737 	}
2738 	/* Indirection array */
2739 	else {
2740 		xfs_ext_irec_t	*erp;
2741 		int		erp_idx = 0;
2742 		int		page_idx = idx;
2743 
2744 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
2745 		if (ifp->if_flags & XFS_IFEXTIREC) {
2746 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
2747 		} else {
2748 			xfs_iext_irec_init(ifp);
2749 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2750 			erp = ifp->if_u1.if_ext_irec;
2751 		}
2752 		/* Extents fit in target extent page */
2753 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
2754 			if (page_idx < erp->er_extcount) {
2755 				memmove(&erp->er_extbuf[page_idx + ext_diff],
2756 					&erp->er_extbuf[page_idx],
2757 					(erp->er_extcount - page_idx) *
2758 					sizeof(xfs_bmbt_rec_t));
2759 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
2760 			}
2761 			erp->er_extcount += ext_diff;
2762 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2763 		}
2764 		/* Insert a new extent page */
2765 		else if (erp) {
2766 			xfs_iext_add_indirect_multi(ifp,
2767 				erp_idx, page_idx, ext_diff);
2768 		}
2769 		/*
2770 		 * If extent(s) are being appended to the last page in
2771 		 * the indirection array and the new extent(s) don't fit
2772 		 * in the page, then erp is NULL and erp_idx is set to
2773 		 * the next index needed in the indirection array.
2774 		 */
2775 		else {
2776 			int	count = ext_diff;
2777 
2778 			while (count) {
2779 				erp = xfs_iext_irec_new(ifp, erp_idx);
2780 				erp->er_extcount = count;
2781 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
2782 				if (count) {
2783 					erp_idx++;
2784 				}
2785 			}
2786 		}
2787 	}
2788 	ifp->if_bytes = new_size;
2789 }
2790 
2791 /*
2792  * This is called when incore extents are being added to the indirection
2793  * array and the new extents do not fit in the target extent list. The
2794  * erp_idx parameter contains the irec index for the target extent list
2795  * in the indirection array, and the idx parameter contains the extent
2796  * index within the list. The number of extents being added is stored
2797  * in the count parameter.
2798  *
2799  *    |-------|   |-------|
2800  *    |       |   |       |    idx - number of extents before idx
2801  *    |  idx  |   | count |
2802  *    |       |   |       |    count - number of extents being inserted at idx
2803  *    |-------|   |-------|
2804  *    | count |   | nex2  |    nex2 - number of extents after idx + count
2805  *    |-------|   |-------|
2806  */
2807 void
2808 xfs_iext_add_indirect_multi(
2809 	xfs_ifork_t	*ifp,			/* inode fork pointer */
2810 	int		erp_idx,		/* target extent irec index */
2811 	xfs_extnum_t	idx,			/* index within target list */
2812 	int		count)			/* new extents being added */
2813 {
2814 	int		byte_diff;		/* new bytes being added */
2815 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
2816 	xfs_extnum_t	ext_diff;		/* number of extents to add */
2817 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
2818 	xfs_extnum_t	nex2;			/* extents after idx + count */
2819 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
2820 	int		nlists;			/* number of irec's (lists) */
2821 
2822 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2823 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
2824 	nex2 = erp->er_extcount - idx;
2825 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
2826 
2827 	/*
2828 	 * Save second part of target extent list
2829 	 * (all extents past */
2830 	if (nex2) {
2831 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
2832 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
2833 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
2834 		erp->er_extcount -= nex2;
2835 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
2836 		memset(&erp->er_extbuf[idx], 0, byte_diff);
2837 	}
2838 
2839 	/*
2840 	 * Add the new extents to the end of the target
2841 	 * list, then allocate new irec record(s) and
2842 	 * extent buffer(s) as needed to store the rest
2843 	 * of the new extents.
2844 	 */
2845 	ext_cnt = count;
2846 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
2847 	if (ext_diff) {
2848 		erp->er_extcount += ext_diff;
2849 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2850 		ext_cnt -= ext_diff;
2851 	}
2852 	while (ext_cnt) {
2853 		erp_idx++;
2854 		erp = xfs_iext_irec_new(ifp, erp_idx);
2855 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
2856 		erp->er_extcount = ext_diff;
2857 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2858 		ext_cnt -= ext_diff;
2859 	}
2860 
2861 	/* Add nex2 extents back to indirection array */
2862 	if (nex2) {
2863 		xfs_extnum_t	ext_avail;
2864 		int		i;
2865 
2866 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
2867 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
2868 		i = 0;
2869 		/*
2870 		 * If nex2 extents fit in the current page, append
2871 		 * nex2_ep after the new extents.
2872 		 */
2873 		if (nex2 <= ext_avail) {
2874 			i = erp->er_extcount;
2875 		}
2876 		/*
2877 		 * Otherwise, check if space is available in the
2878 		 * next page.
2879 		 */
2880 		else if ((erp_idx < nlists - 1) &&
2881 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
2882 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
2883 			erp_idx++;
2884 			erp++;
2885 			/* Create a hole for nex2 extents */
2886 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
2887 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
2888 		}
2889 		/*
2890 		 * Final choice, create a new extent page for
2891 		 * nex2 extents.
2892 		 */
2893 		else {
2894 			erp_idx++;
2895 			erp = xfs_iext_irec_new(ifp, erp_idx);
2896 		}
2897 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
2898 		kmem_free(nex2_ep);
2899 		erp->er_extcount += nex2;
2900 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
2901 	}
2902 }
2903 
2904 /*
2905  * This is called when the amount of space required for incore file
2906  * extents needs to be decreased. The ext_diff parameter stores the
2907  * number of extents to be removed and the idx parameter contains
2908  * the extent index where the extents will be removed from.
2909  *
2910  * If the amount of space needed has decreased below the linear
2911  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
2912  * extent array.  Otherwise, use kmem_realloc() to adjust the
2913  * size to what is needed.
2914  */
2915 void
2916 xfs_iext_remove(
2917 	xfs_inode_t	*ip,		/* incore inode pointer */
2918 	xfs_extnum_t	idx,		/* index to begin removing exts */
2919 	int		ext_diff,	/* number of extents to remove */
2920 	int		state)		/* type of extent conversion */
2921 {
2922 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
2923 	xfs_extnum_t	nextents;	/* number of extents in file */
2924 	int		new_size;	/* size of extents after removal */
2925 
2926 	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
2927 
2928 	ASSERT(ext_diff > 0);
2929 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2930 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
2931 
2932 	if (new_size == 0) {
2933 		xfs_iext_destroy(ifp);
2934 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
2935 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
2936 	} else if (ifp->if_real_bytes) {
2937 		xfs_iext_remove_direct(ifp, idx, ext_diff);
2938 	} else {
2939 		xfs_iext_remove_inline(ifp, idx, ext_diff);
2940 	}
2941 	ifp->if_bytes = new_size;
2942 }
2943 
2944 /*
2945  * This removes ext_diff extents from the inline buffer, beginning
2946  * at extent index idx.
2947  */
2948 void
2949 xfs_iext_remove_inline(
2950 	xfs_ifork_t	*ifp,		/* inode fork pointer */
2951 	xfs_extnum_t	idx,		/* index to begin removing exts */
2952 	int		ext_diff)	/* number of extents to remove */
2953 {
2954 	int		nextents;	/* number of extents in file */
2955 
2956 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
2957 	ASSERT(idx < XFS_INLINE_EXTS);
2958 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2959 	ASSERT(((nextents - ext_diff) > 0) &&
2960 		(nextents - ext_diff) < XFS_INLINE_EXTS);
2961 
2962 	if (idx + ext_diff < nextents) {
2963 		memmove(&ifp->if_u2.if_inline_ext[idx],
2964 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
2965 			(nextents - (idx + ext_diff)) *
2966 			 sizeof(xfs_bmbt_rec_t));
2967 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
2968 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
2969 	} else {
2970 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
2971 			ext_diff * sizeof(xfs_bmbt_rec_t));
2972 	}
2973 }
2974 
2975 /*
2976  * This removes ext_diff extents from a linear (direct) extent list,
2977  * beginning at extent index idx. If the extents are being removed
2978  * from the end of the list (ie. truncate) then we just need to re-
2979  * allocate the list to remove the extra space. Otherwise, if the
2980  * extents are being removed from the middle of the existing extent
2981  * entries, then we first need to move the extent records beginning
2982  * at idx + ext_diff up in the list to overwrite the records being
2983  * removed, then remove the extra space via kmem_realloc.
2984  */
2985 void
2986 xfs_iext_remove_direct(
2987 	xfs_ifork_t	*ifp,		/* inode fork pointer */
2988 	xfs_extnum_t	idx,		/* index to begin removing exts */
2989 	int		ext_diff)	/* number of extents to remove */
2990 {
2991 	xfs_extnum_t	nextents;	/* number of extents in file */
2992 	int		new_size;	/* size of extents after removal */
2993 
2994 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
2995 	new_size = ifp->if_bytes -
2996 		(ext_diff * sizeof(xfs_bmbt_rec_t));
2997 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2998 
2999 	if (new_size == 0) {
3000 		xfs_iext_destroy(ifp);
3001 		return;
3002 	}
3003 	/* Move extents up in the list (if needed) */
3004 	if (idx + ext_diff < nextents) {
3005 		memmove(&ifp->if_u1.if_extents[idx],
3006 			&ifp->if_u1.if_extents[idx + ext_diff],
3007 			(nextents - (idx + ext_diff)) *
3008 			 sizeof(xfs_bmbt_rec_t));
3009 	}
3010 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3011 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3012 	/*
3013 	 * Reallocate the direct extent list. If the extents
3014 	 * will fit inside the inode then xfs_iext_realloc_direct
3015 	 * will switch from direct to inline extent allocation
3016 	 * mode for us.
3017 	 */
3018 	xfs_iext_realloc_direct(ifp, new_size);
3019 	ifp->if_bytes = new_size;
3020 }
3021 
3022 /*
3023  * This is called when incore extents are being removed from the
3024  * indirection array and the extents being removed span multiple extent
3025  * buffers. The idx parameter contains the file extent index where we
3026  * want to begin removing extents, and the count parameter contains
3027  * how many extents need to be removed.
3028  *
3029  *    |-------|   |-------|
3030  *    | nex1  |   |       |    nex1 - number of extents before idx
3031  *    |-------|   | count |
3032  *    |       |   |       |    count - number of extents being removed at idx
3033  *    | count |   |-------|
3034  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3035  *    |-------|   |-------|
3036  */
3037 void
3038 xfs_iext_remove_indirect(
3039 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3040 	xfs_extnum_t	idx,		/* index to begin removing extents */
3041 	int		count)		/* number of extents to remove */
3042 {
3043 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3044 	int		erp_idx = 0;	/* indirection array index */
3045 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3046 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3047 	xfs_extnum_t	nex1;		/* number of extents before idx */
3048 	xfs_extnum_t	nex2;		/* extents after idx + count */
3049 	int		page_idx = idx;	/* index in target extent list */
3050 
3051 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3052 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3053 	ASSERT(erp != NULL);
3054 	nex1 = page_idx;
3055 	ext_cnt = count;
3056 	while (ext_cnt) {
3057 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3058 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3059 		/*
3060 		 * Check for deletion of entire list;
3061 		 * xfs_iext_irec_remove() updates extent offsets.
3062 		 */
3063 		if (ext_diff == erp->er_extcount) {
3064 			xfs_iext_irec_remove(ifp, erp_idx);
3065 			ext_cnt -= ext_diff;
3066 			nex1 = 0;
3067 			if (ext_cnt) {
3068 				ASSERT(erp_idx < ifp->if_real_bytes /
3069 					XFS_IEXT_BUFSZ);
3070 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3071 				nex1 = 0;
3072 				continue;
3073 			} else {
3074 				break;
3075 			}
3076 		}
3077 		/* Move extents up (if needed) */
3078 		if (nex2) {
3079 			memmove(&erp->er_extbuf[nex1],
3080 				&erp->er_extbuf[nex1 + ext_diff],
3081 				nex2 * sizeof(xfs_bmbt_rec_t));
3082 		}
3083 		/* Zero out rest of page */
3084 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3085 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3086 		/* Update remaining counters */
3087 		erp->er_extcount -= ext_diff;
3088 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3089 		ext_cnt -= ext_diff;
3090 		nex1 = 0;
3091 		erp_idx++;
3092 		erp++;
3093 	}
3094 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3095 	xfs_iext_irec_compact(ifp);
3096 }
3097 
3098 /*
3099  * Create, destroy, or resize a linear (direct) block of extents.
3100  */
3101 void
3102 xfs_iext_realloc_direct(
3103 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3104 	int		new_size)	/* new size of extents */
3105 {
3106 	int		rnew_size;	/* real new size of extents */
3107 
3108 	rnew_size = new_size;
3109 
3110 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3111 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3112 		 (new_size != ifp->if_real_bytes)));
3113 
3114 	/* Free extent records */
3115 	if (new_size == 0) {
3116 		xfs_iext_destroy(ifp);
3117 	}
3118 	/* Resize direct extent list and zero any new bytes */
3119 	else if (ifp->if_real_bytes) {
3120 		/* Check if extents will fit inside the inode */
3121 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3122 			xfs_iext_direct_to_inline(ifp, new_size /
3123 				(uint)sizeof(xfs_bmbt_rec_t));
3124 			ifp->if_bytes = new_size;
3125 			return;
3126 		}
3127 		if (!is_power_of_2(new_size)){
3128 			rnew_size = roundup_pow_of_two(new_size);
3129 		}
3130 		if (rnew_size != ifp->if_real_bytes) {
3131 			ifp->if_u1.if_extents =
3132 				kmem_realloc(ifp->if_u1.if_extents,
3133 						rnew_size,
3134 						ifp->if_real_bytes, KM_NOFS);
3135 		}
3136 		if (rnew_size > ifp->if_real_bytes) {
3137 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3138 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3139 				rnew_size - ifp->if_real_bytes);
3140 		}
3141 	}
3142 	/*
3143 	 * Switch from the inline extent buffer to a direct
3144 	 * extent list. Be sure to include the inline extent
3145 	 * bytes in new_size.
3146 	 */
3147 	else {
3148 		new_size += ifp->if_bytes;
3149 		if (!is_power_of_2(new_size)) {
3150 			rnew_size = roundup_pow_of_two(new_size);
3151 		}
3152 		xfs_iext_inline_to_direct(ifp, rnew_size);
3153 	}
3154 	ifp->if_real_bytes = rnew_size;
3155 	ifp->if_bytes = new_size;
3156 }
3157 
3158 /*
3159  * Switch from linear (direct) extent records to inline buffer.
3160  */
3161 void
3162 xfs_iext_direct_to_inline(
3163 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3164 	xfs_extnum_t	nextents)	/* number of extents in file */
3165 {
3166 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3167 	ASSERT(nextents <= XFS_INLINE_EXTS);
3168 	/*
3169 	 * The inline buffer was zeroed when we switched
3170 	 * from inline to direct extent allocation mode,
3171 	 * so we don't need to clear it here.
3172 	 */
3173 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3174 		nextents * sizeof(xfs_bmbt_rec_t));
3175 	kmem_free(ifp->if_u1.if_extents);
3176 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3177 	ifp->if_real_bytes = 0;
3178 }
3179 
3180 /*
3181  * Switch from inline buffer to linear (direct) extent records.
3182  * new_size should already be rounded up to the next power of 2
3183  * by the caller (when appropriate), so use new_size as it is.
3184  * However, since new_size may be rounded up, we can't update
3185  * if_bytes here. It is the caller's responsibility to update
3186  * if_bytes upon return.
3187  */
3188 void
3189 xfs_iext_inline_to_direct(
3190 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3191 	int		new_size)	/* number of extents in file */
3192 {
3193 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3194 	memset(ifp->if_u1.if_extents, 0, new_size);
3195 	if (ifp->if_bytes) {
3196 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3197 			ifp->if_bytes);
3198 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3199 			sizeof(xfs_bmbt_rec_t));
3200 	}
3201 	ifp->if_real_bytes = new_size;
3202 }
3203 
3204 /*
3205  * Resize an extent indirection array to new_size bytes.
3206  */
3207 STATIC void
3208 xfs_iext_realloc_indirect(
3209 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3210 	int		new_size)	/* new indirection array size */
3211 {
3212 	int		nlists;		/* number of irec's (ex lists) */
3213 	int		size;		/* current indirection array size */
3214 
3215 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3216 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3217 	size = nlists * sizeof(xfs_ext_irec_t);
3218 	ASSERT(ifp->if_real_bytes);
3219 	ASSERT((new_size >= 0) && (new_size != size));
3220 	if (new_size == 0) {
3221 		xfs_iext_destroy(ifp);
3222 	} else {
3223 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3224 			kmem_realloc(ifp->if_u1.if_ext_irec,
3225 				new_size, size, KM_NOFS);
3226 	}
3227 }
3228 
3229 /*
3230  * Switch from indirection array to linear (direct) extent allocations.
3231  */
3232 STATIC void
3233 xfs_iext_indirect_to_direct(
3234 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3235 {
3236 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3237 	xfs_extnum_t	nextents;	/* number of extents in file */
3238 	int		size;		/* size of file extents */
3239 
3240 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3241 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3242 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3243 	size = nextents * sizeof(xfs_bmbt_rec_t);
3244 
3245 	xfs_iext_irec_compact_pages(ifp);
3246 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3247 
3248 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3249 	kmem_free(ifp->if_u1.if_ext_irec);
3250 	ifp->if_flags &= ~XFS_IFEXTIREC;
3251 	ifp->if_u1.if_extents = ep;
3252 	ifp->if_bytes = size;
3253 	if (nextents < XFS_LINEAR_EXTS) {
3254 		xfs_iext_realloc_direct(ifp, size);
3255 	}
3256 }
3257 
3258 /*
3259  * Free incore file extents.
3260  */
3261 void
3262 xfs_iext_destroy(
3263 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3264 {
3265 	if (ifp->if_flags & XFS_IFEXTIREC) {
3266 		int	erp_idx;
3267 		int	nlists;
3268 
3269 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3270 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3271 			xfs_iext_irec_remove(ifp, erp_idx);
3272 		}
3273 		ifp->if_flags &= ~XFS_IFEXTIREC;
3274 	} else if (ifp->if_real_bytes) {
3275 		kmem_free(ifp->if_u1.if_extents);
3276 	} else if (ifp->if_bytes) {
3277 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3278 			sizeof(xfs_bmbt_rec_t));
3279 	}
3280 	ifp->if_u1.if_extents = NULL;
3281 	ifp->if_real_bytes = 0;
3282 	ifp->if_bytes = 0;
3283 }
3284 
3285 /*
3286  * Return a pointer to the extent record for file system block bno.
3287  */
3288 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3289 xfs_iext_bno_to_ext(
3290 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3291 	xfs_fileoff_t	bno,		/* block number to search for */
3292 	xfs_extnum_t	*idxp)		/* index of target extent */
3293 {
3294 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3295 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3296 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3297 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3298 	int		high;		/* upper boundary in search */
3299 	xfs_extnum_t	idx = 0;	/* index of target extent */
3300 	int		low;		/* lower boundary in search */
3301 	xfs_extnum_t	nextents;	/* number of file extents */
3302 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3303 
3304 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3305 	if (nextents == 0) {
3306 		*idxp = 0;
3307 		return NULL;
3308 	}
3309 	low = 0;
3310 	if (ifp->if_flags & XFS_IFEXTIREC) {
3311 		/* Find target extent list */
3312 		int	erp_idx = 0;
3313 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3314 		base = erp->er_extbuf;
3315 		high = erp->er_extcount - 1;
3316 	} else {
3317 		base = ifp->if_u1.if_extents;
3318 		high = nextents - 1;
3319 	}
3320 	/* Binary search extent records */
3321 	while (low <= high) {
3322 		idx = (low + high) >> 1;
3323 		ep = base + idx;
3324 		startoff = xfs_bmbt_get_startoff(ep);
3325 		blockcount = xfs_bmbt_get_blockcount(ep);
3326 		if (bno < startoff) {
3327 			high = idx - 1;
3328 		} else if (bno >= startoff + blockcount) {
3329 			low = idx + 1;
3330 		} else {
3331 			/* Convert back to file-based extent index */
3332 			if (ifp->if_flags & XFS_IFEXTIREC) {
3333 				idx += erp->er_extoff;
3334 			}
3335 			*idxp = idx;
3336 			return ep;
3337 		}
3338 	}
3339 	/* Convert back to file-based extent index */
3340 	if (ifp->if_flags & XFS_IFEXTIREC) {
3341 		idx += erp->er_extoff;
3342 	}
3343 	if (bno >= startoff + blockcount) {
3344 		if (++idx == nextents) {
3345 			ep = NULL;
3346 		} else {
3347 			ep = xfs_iext_get_ext(ifp, idx);
3348 		}
3349 	}
3350 	*idxp = idx;
3351 	return ep;
3352 }
3353 
3354 /*
3355  * Return a pointer to the indirection array entry containing the
3356  * extent record for filesystem block bno. Store the index of the
3357  * target irec in *erp_idxp.
3358  */
3359 xfs_ext_irec_t *			/* pointer to found extent record */
3360 xfs_iext_bno_to_irec(
3361 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3362 	xfs_fileoff_t	bno,		/* block number to search for */
3363 	int		*erp_idxp)	/* irec index of target ext list */
3364 {
3365 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3366 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3367 	int		erp_idx;	/* indirection array index */
3368 	int		nlists;		/* number of extent irec's (lists) */
3369 	int		high;		/* binary search upper limit */
3370 	int		low;		/* binary search lower limit */
3371 
3372 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3373 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3374 	erp_idx = 0;
3375 	low = 0;
3376 	high = nlists - 1;
3377 	while (low <= high) {
3378 		erp_idx = (low + high) >> 1;
3379 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3380 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3381 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3382 			high = erp_idx - 1;
3383 		} else if (erp_next && bno >=
3384 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3385 			low = erp_idx + 1;
3386 		} else {
3387 			break;
3388 		}
3389 	}
3390 	*erp_idxp = erp_idx;
3391 	return erp;
3392 }
3393 
3394 /*
3395  * Return a pointer to the indirection array entry containing the
3396  * extent record at file extent index *idxp. Store the index of the
3397  * target irec in *erp_idxp and store the page index of the target
3398  * extent record in *idxp.
3399  */
3400 xfs_ext_irec_t *
3401 xfs_iext_idx_to_irec(
3402 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3403 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
3404 	int		*erp_idxp,	/* pointer to target irec */
3405 	int		realloc)	/* new bytes were just added */
3406 {
3407 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
3408 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
3409 	int		erp_idx;	/* indirection array index */
3410 	int		nlists;		/* number of irec's (ex lists) */
3411 	int		high;		/* binary search upper limit */
3412 	int		low;		/* binary search lower limit */
3413 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
3414 
3415 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3416 	ASSERT(page_idx >= 0);
3417 	ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3418 	ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3419 
3420 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3421 	erp_idx = 0;
3422 	low = 0;
3423 	high = nlists - 1;
3424 
3425 	/* Binary search extent irec's */
3426 	while (low <= high) {
3427 		erp_idx = (low + high) >> 1;
3428 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3429 		prev = erp_idx > 0 ? erp - 1 : NULL;
3430 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3431 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3432 			high = erp_idx - 1;
3433 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
3434 			   (page_idx == erp->er_extoff + erp->er_extcount &&
3435 			    !realloc)) {
3436 			low = erp_idx + 1;
3437 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
3438 			   erp->er_extcount == XFS_LINEAR_EXTS) {
3439 			ASSERT(realloc);
3440 			page_idx = 0;
3441 			erp_idx++;
3442 			erp = erp_idx < nlists ? erp + 1 : NULL;
3443 			break;
3444 		} else {
3445 			page_idx -= erp->er_extoff;
3446 			break;
3447 		}
3448 	}
3449 	*idxp = page_idx;
3450 	*erp_idxp = erp_idx;
3451 	return(erp);
3452 }
3453 
3454 /*
3455  * Allocate and initialize an indirection array once the space needed
3456  * for incore extents increases above XFS_IEXT_BUFSZ.
3457  */
3458 void
3459 xfs_iext_irec_init(
3460 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3461 {
3462 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3463 	xfs_extnum_t	nextents;	/* number of extents in file */
3464 
3465 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3466 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3467 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3468 
3469 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3470 
3471 	if (nextents == 0) {
3472 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3473 	} else if (!ifp->if_real_bytes) {
3474 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3475 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3476 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3477 	}
3478 	erp->er_extbuf = ifp->if_u1.if_extents;
3479 	erp->er_extcount = nextents;
3480 	erp->er_extoff = 0;
3481 
3482 	ifp->if_flags |= XFS_IFEXTIREC;
3483 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3484 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3485 	ifp->if_u1.if_ext_irec = erp;
3486 
3487 	return;
3488 }
3489 
3490 /*
3491  * Allocate and initialize a new entry in the indirection array.
3492  */
3493 xfs_ext_irec_t *
3494 xfs_iext_irec_new(
3495 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3496 	int		erp_idx)	/* index for new irec */
3497 {
3498 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3499 	int		i;		/* loop counter */
3500 	int		nlists;		/* number of irec's (ex lists) */
3501 
3502 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3503 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3504 
3505 	/* Resize indirection array */
3506 	xfs_iext_realloc_indirect(ifp, ++nlists *
3507 				  sizeof(xfs_ext_irec_t));
3508 	/*
3509 	 * Move records down in the array so the
3510 	 * new page can use erp_idx.
3511 	 */
3512 	erp = ifp->if_u1.if_ext_irec;
3513 	for (i = nlists - 1; i > erp_idx; i--) {
3514 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3515 	}
3516 	ASSERT(i == erp_idx);
3517 
3518 	/* Initialize new extent record */
3519 	erp = ifp->if_u1.if_ext_irec;
3520 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3521 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3522 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3523 	erp[erp_idx].er_extcount = 0;
3524 	erp[erp_idx].er_extoff = erp_idx > 0 ?
3525 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3526 	return (&erp[erp_idx]);
3527 }
3528 
3529 /*
3530  * Remove a record from the indirection array.
3531  */
3532 void
3533 xfs_iext_irec_remove(
3534 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3535 	int		erp_idx)	/* irec index to remove */
3536 {
3537 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3538 	int		i;		/* loop counter */
3539 	int		nlists;		/* number of irec's (ex lists) */
3540 
3541 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3542 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3543 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3544 	if (erp->er_extbuf) {
3545 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3546 			-erp->er_extcount);
3547 		kmem_free(erp->er_extbuf);
3548 	}
3549 	/* Compact extent records */
3550 	erp = ifp->if_u1.if_ext_irec;
3551 	for (i = erp_idx; i < nlists - 1; i++) {
3552 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3553 	}
3554 	/*
3555 	 * Manually free the last extent record from the indirection
3556 	 * array.  A call to xfs_iext_realloc_indirect() with a size
3557 	 * of zero would result in a call to xfs_iext_destroy() which
3558 	 * would in turn call this function again, creating a nasty
3559 	 * infinite loop.
3560 	 */
3561 	if (--nlists) {
3562 		xfs_iext_realloc_indirect(ifp,
3563 			nlists * sizeof(xfs_ext_irec_t));
3564 	} else {
3565 		kmem_free(ifp->if_u1.if_ext_irec);
3566 	}
3567 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3568 }
3569 
3570 /*
3571  * This is called to clean up large amounts of unused memory allocated
3572  * by the indirection array.  Before compacting anything though, verify
3573  * that the indirection array is still needed and switch back to the
3574  * linear extent list (or even the inline buffer) if possible.  The
3575  * compaction policy is as follows:
3576  *
3577  *    Full Compaction: Extents fit into a single page (or inline buffer)
3578  * Partial Compaction: Extents occupy less than 50% of allocated space
3579  *      No Compaction: Extents occupy at least 50% of allocated space
3580  */
3581 void
3582 xfs_iext_irec_compact(
3583 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3584 {
3585 	xfs_extnum_t	nextents;	/* number of extents in file */
3586 	int		nlists;		/* number of irec's (ex lists) */
3587 
3588 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3589 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3590 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3591 
3592 	if (nextents == 0) {
3593 		xfs_iext_destroy(ifp);
3594 	} else if (nextents <= XFS_INLINE_EXTS) {
3595 		xfs_iext_indirect_to_direct(ifp);
3596 		xfs_iext_direct_to_inline(ifp, nextents);
3597 	} else if (nextents <= XFS_LINEAR_EXTS) {
3598 		xfs_iext_indirect_to_direct(ifp);
3599 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3600 		xfs_iext_irec_compact_pages(ifp);
3601 	}
3602 }
3603 
3604 /*
3605  * Combine extents from neighboring extent pages.
3606  */
3607 void
3608 xfs_iext_irec_compact_pages(
3609 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3610 {
3611 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
3612 	int		erp_idx = 0;	/* indirection array index */
3613 	int		nlists;		/* number of irec's (ex lists) */
3614 
3615 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3616 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3617 	while (erp_idx < nlists - 1) {
3618 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3619 		erp_next = erp + 1;
3620 		if (erp_next->er_extcount <=
3621 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
3622 			memcpy(&erp->er_extbuf[erp->er_extcount],
3623 				erp_next->er_extbuf, erp_next->er_extcount *
3624 				sizeof(xfs_bmbt_rec_t));
3625 			erp->er_extcount += erp_next->er_extcount;
3626 			/*
3627 			 * Free page before removing extent record
3628 			 * so er_extoffs don't get modified in
3629 			 * xfs_iext_irec_remove.
3630 			 */
3631 			kmem_free(erp_next->er_extbuf);
3632 			erp_next->er_extbuf = NULL;
3633 			xfs_iext_irec_remove(ifp, erp_idx + 1);
3634 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3635 		} else {
3636 			erp_idx++;
3637 		}
3638 	}
3639 }
3640 
3641 /*
3642  * This is called to update the er_extoff field in the indirection
3643  * array when extents have been added or removed from one of the
3644  * extent lists. erp_idx contains the irec index to begin updating
3645  * at and ext_diff contains the number of extents that were added
3646  * or removed.
3647  */
3648 void
3649 xfs_iext_irec_update_extoffs(
3650 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3651 	int		erp_idx,	/* irec index to update */
3652 	int		ext_diff)	/* number of new extents */
3653 {
3654 	int		i;		/* loop counter */
3655 	int		nlists;		/* number of irec's (ex lists */
3656 
3657 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3658 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3659 	for (i = erp_idx; i < nlists; i++) {
3660 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
3661 	}
3662 }
3663