1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_dir2.h" 18 #include "xfs_attr.h" 19 #include "xfs_bit.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_trans.h" 22 #include "xfs_buf_item.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_iunlink_item.h" 25 #include "xfs_ialloc.h" 26 #include "xfs_bmap.h" 27 #include "xfs_bmap_util.h" 28 #include "xfs_errortag.h" 29 #include "xfs_error.h" 30 #include "xfs_quota.h" 31 #include "xfs_filestream.h" 32 #include "xfs_trace.h" 33 #include "xfs_icache.h" 34 #include "xfs_symlink.h" 35 #include "xfs_trans_priv.h" 36 #include "xfs_log.h" 37 #include "xfs_bmap_btree.h" 38 #include "xfs_reflink.h" 39 #include "xfs_ag.h" 40 #include "xfs_log_priv.h" 41 #include "xfs_health.h" 42 #include "xfs_pnfs.h" 43 #include "xfs_parent.h" 44 #include "xfs_xattr.h" 45 #include "xfs_inode_util.h" 46 #include "xfs_metafile.h" 47 48 struct kmem_cache *xfs_inode_cache; 49 50 /* 51 * These two are wrapper routines around the xfs_ilock() routine used to 52 * centralize some grungy code. They are used in places that wish to lock the 53 * inode solely for reading the extents. The reason these places can't just 54 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 55 * bringing in of the extents from disk for a file in b-tree format. If the 56 * inode is in b-tree format, then we need to lock the inode exclusively until 57 * the extents are read in. Locking it exclusively all the time would limit 58 * our parallelism unnecessarily, though. What we do instead is check to see 59 * if the extents have been read in yet, and only lock the inode exclusively 60 * if they have not. 61 * 62 * The functions return a value which should be given to the corresponding 63 * xfs_iunlock() call. 64 */ 65 uint 66 xfs_ilock_data_map_shared( 67 struct xfs_inode *ip) 68 { 69 uint lock_mode = XFS_ILOCK_SHARED; 70 71 if (xfs_need_iread_extents(&ip->i_df)) 72 lock_mode = XFS_ILOCK_EXCL; 73 xfs_ilock(ip, lock_mode); 74 return lock_mode; 75 } 76 77 uint 78 xfs_ilock_attr_map_shared( 79 struct xfs_inode *ip) 80 { 81 uint lock_mode = XFS_ILOCK_SHARED; 82 83 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) 84 lock_mode = XFS_ILOCK_EXCL; 85 xfs_ilock(ip, lock_mode); 86 return lock_mode; 87 } 88 89 /* 90 * You can't set both SHARED and EXCL for the same lock, 91 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED, 92 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values 93 * to set in lock_flags. 94 */ 95 static inline void 96 xfs_lock_flags_assert( 97 uint lock_flags) 98 { 99 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 100 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 101 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 102 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 103 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 104 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 105 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 106 ASSERT(lock_flags != 0); 107 } 108 109 /* 110 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 111 * multi-reader locks: invalidate_lock and the i_lock. This routine allows 112 * various combinations of the locks to be obtained. 113 * 114 * The 3 locks should always be ordered so that the IO lock is obtained first, 115 * the mmap lock second and the ilock last in order to prevent deadlock. 116 * 117 * Basic locking order: 118 * 119 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock 120 * 121 * mmap_lock locking order: 122 * 123 * i_rwsem -> page lock -> mmap_lock 124 * mmap_lock -> invalidate_lock -> page_lock 125 * 126 * The difference in mmap_lock locking order mean that we cannot hold the 127 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths 128 * can fault in pages during copy in/out (for buffered IO) or require the 129 * mmap_lock in get_user_pages() to map the user pages into the kernel address 130 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page 131 * fault because page faults already hold the mmap_lock. 132 * 133 * Hence to serialise fully against both syscall and mmap based IO, we need to 134 * take both the i_rwsem and the invalidate_lock. These locks should *only* be 135 * both taken in places where we need to invalidate the page cache in a race 136 * free manner (e.g. truncate, hole punch and other extent manipulation 137 * functions). 138 */ 139 void 140 xfs_ilock( 141 xfs_inode_t *ip, 142 uint lock_flags) 143 { 144 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 145 146 xfs_lock_flags_assert(lock_flags); 147 148 if (lock_flags & XFS_IOLOCK_EXCL) { 149 down_write_nested(&VFS_I(ip)->i_rwsem, 150 XFS_IOLOCK_DEP(lock_flags)); 151 } else if (lock_flags & XFS_IOLOCK_SHARED) { 152 down_read_nested(&VFS_I(ip)->i_rwsem, 153 XFS_IOLOCK_DEP(lock_flags)); 154 } 155 156 if (lock_flags & XFS_MMAPLOCK_EXCL) { 157 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 158 XFS_MMAPLOCK_DEP(lock_flags)); 159 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 160 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 161 XFS_MMAPLOCK_DEP(lock_flags)); 162 } 163 164 if (lock_flags & XFS_ILOCK_EXCL) 165 down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 166 else if (lock_flags & XFS_ILOCK_SHARED) 167 down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 168 } 169 170 /* 171 * This is just like xfs_ilock(), except that the caller 172 * is guaranteed not to sleep. It returns 1 if it gets 173 * the requested locks and 0 otherwise. If the IO lock is 174 * obtained but the inode lock cannot be, then the IO lock 175 * is dropped before returning. 176 * 177 * ip -- the inode being locked 178 * lock_flags -- this parameter indicates the inode's locks to be 179 * to be locked. See the comment for xfs_ilock() for a list 180 * of valid values. 181 */ 182 int 183 xfs_ilock_nowait( 184 xfs_inode_t *ip, 185 uint lock_flags) 186 { 187 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 188 189 xfs_lock_flags_assert(lock_flags); 190 191 if (lock_flags & XFS_IOLOCK_EXCL) { 192 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 193 goto out; 194 } else if (lock_flags & XFS_IOLOCK_SHARED) { 195 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 196 goto out; 197 } 198 199 if (lock_flags & XFS_MMAPLOCK_EXCL) { 200 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 201 goto out_undo_iolock; 202 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 203 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 204 goto out_undo_iolock; 205 } 206 207 if (lock_flags & XFS_ILOCK_EXCL) { 208 if (!down_write_trylock(&ip->i_lock)) 209 goto out_undo_mmaplock; 210 } else if (lock_flags & XFS_ILOCK_SHARED) { 211 if (!down_read_trylock(&ip->i_lock)) 212 goto out_undo_mmaplock; 213 } 214 return 1; 215 216 out_undo_mmaplock: 217 if (lock_flags & XFS_MMAPLOCK_EXCL) 218 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 219 else if (lock_flags & XFS_MMAPLOCK_SHARED) 220 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 221 out_undo_iolock: 222 if (lock_flags & XFS_IOLOCK_EXCL) 223 up_write(&VFS_I(ip)->i_rwsem); 224 else if (lock_flags & XFS_IOLOCK_SHARED) 225 up_read(&VFS_I(ip)->i_rwsem); 226 out: 227 return 0; 228 } 229 230 /* 231 * xfs_iunlock() is used to drop the inode locks acquired with 232 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 233 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 234 * that we know which locks to drop. 235 * 236 * ip -- the inode being unlocked 237 * lock_flags -- this parameter indicates the inode's locks to be 238 * to be unlocked. See the comment for xfs_ilock() for a list 239 * of valid values for this parameter. 240 * 241 */ 242 void 243 xfs_iunlock( 244 xfs_inode_t *ip, 245 uint lock_flags) 246 { 247 xfs_lock_flags_assert(lock_flags); 248 249 if (lock_flags & XFS_IOLOCK_EXCL) 250 up_write(&VFS_I(ip)->i_rwsem); 251 else if (lock_flags & XFS_IOLOCK_SHARED) 252 up_read(&VFS_I(ip)->i_rwsem); 253 254 if (lock_flags & XFS_MMAPLOCK_EXCL) 255 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 256 else if (lock_flags & XFS_MMAPLOCK_SHARED) 257 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 258 259 if (lock_flags & XFS_ILOCK_EXCL) 260 up_write(&ip->i_lock); 261 else if (lock_flags & XFS_ILOCK_SHARED) 262 up_read(&ip->i_lock); 263 264 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 265 } 266 267 /* 268 * give up write locks. the i/o lock cannot be held nested 269 * if it is being demoted. 270 */ 271 void 272 xfs_ilock_demote( 273 xfs_inode_t *ip, 274 uint lock_flags) 275 { 276 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 277 ASSERT((lock_flags & 278 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 279 280 if (lock_flags & XFS_ILOCK_EXCL) 281 downgrade_write(&ip->i_lock); 282 if (lock_flags & XFS_MMAPLOCK_EXCL) 283 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); 284 if (lock_flags & XFS_IOLOCK_EXCL) 285 downgrade_write(&VFS_I(ip)->i_rwsem); 286 287 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 288 } 289 290 void 291 xfs_assert_ilocked( 292 struct xfs_inode *ip, 293 uint lock_flags) 294 { 295 /* 296 * Sometimes we assert the ILOCK is held exclusively, but we're in 297 * a workqueue, so lockdep doesn't know we're the owner. 298 */ 299 if (lock_flags & XFS_ILOCK_SHARED) 300 rwsem_assert_held(&ip->i_lock); 301 else if (lock_flags & XFS_ILOCK_EXCL) 302 rwsem_assert_held_write_nolockdep(&ip->i_lock); 303 304 if (lock_flags & XFS_MMAPLOCK_SHARED) 305 rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock); 306 else if (lock_flags & XFS_MMAPLOCK_EXCL) 307 rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock); 308 309 if (lock_flags & XFS_IOLOCK_SHARED) 310 rwsem_assert_held(&VFS_I(ip)->i_rwsem); 311 else if (lock_flags & XFS_IOLOCK_EXCL) 312 rwsem_assert_held_write(&VFS_I(ip)->i_rwsem); 313 } 314 315 /* 316 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 317 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 318 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 319 * errors and warnings. 320 */ 321 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 322 static bool 323 xfs_lockdep_subclass_ok( 324 int subclass) 325 { 326 return subclass < MAX_LOCKDEP_SUBCLASSES; 327 } 328 #else 329 #define xfs_lockdep_subclass_ok(subclass) (true) 330 #endif 331 332 /* 333 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 334 * value. This can be called for any type of inode lock combination, including 335 * parent locking. Care must be taken to ensure we don't overrun the subclass 336 * storage fields in the class mask we build. 337 */ 338 static inline uint 339 xfs_lock_inumorder( 340 uint lock_mode, 341 uint subclass) 342 { 343 uint class = 0; 344 345 ASSERT(!(lock_mode & XFS_ILOCK_PARENT)); 346 ASSERT(xfs_lockdep_subclass_ok(subclass)); 347 348 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 349 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 350 class += subclass << XFS_IOLOCK_SHIFT; 351 } 352 353 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 354 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 355 class += subclass << XFS_MMAPLOCK_SHIFT; 356 } 357 358 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 359 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 360 class += subclass << XFS_ILOCK_SHIFT; 361 } 362 363 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 364 } 365 366 /* 367 * The following routine will lock n inodes in exclusive mode. We assume the 368 * caller calls us with the inodes in i_ino order. 369 * 370 * We need to detect deadlock where an inode that we lock is in the AIL and we 371 * start waiting for another inode that is locked by a thread in a long running 372 * transaction (such as truncate). This can result in deadlock since the long 373 * running trans might need to wait for the inode we just locked in order to 374 * push the tail and free space in the log. 375 * 376 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 377 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 378 * lock more than one at a time, lockdep will report false positives saying we 379 * have violated locking orders. 380 */ 381 void 382 xfs_lock_inodes( 383 struct xfs_inode **ips, 384 int inodes, 385 uint lock_mode) 386 { 387 int attempts = 0; 388 uint i; 389 int j; 390 bool try_lock; 391 struct xfs_log_item *lp; 392 393 /* 394 * Currently supports between 2 and 5 inodes with exclusive locking. We 395 * support an arbitrary depth of locking here, but absolute limits on 396 * inodes depend on the type of locking and the limits placed by 397 * lockdep annotations in xfs_lock_inumorder. These are all checked by 398 * the asserts. 399 */ 400 ASSERT(ips && inodes >= 2 && inodes <= 5); 401 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 402 XFS_ILOCK_EXCL)); 403 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 404 XFS_ILOCK_SHARED))); 405 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 406 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 407 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 408 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 409 410 if (lock_mode & XFS_IOLOCK_EXCL) { 411 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 412 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 413 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 414 415 again: 416 try_lock = false; 417 i = 0; 418 for (; i < inodes; i++) { 419 ASSERT(ips[i]); 420 421 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 422 continue; 423 424 /* 425 * If try_lock is not set yet, make sure all locked inodes are 426 * not in the AIL. If any are, set try_lock to be used later. 427 */ 428 if (!try_lock) { 429 for (j = (i - 1); j >= 0 && !try_lock; j--) { 430 lp = &ips[j]->i_itemp->ili_item; 431 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 432 try_lock = true; 433 } 434 } 435 436 /* 437 * If any of the previous locks we have locked is in the AIL, 438 * we must TRY to get the second and subsequent locks. If 439 * we can't get any, we must release all we have 440 * and try again. 441 */ 442 if (!try_lock) { 443 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 444 continue; 445 } 446 447 /* try_lock means we have an inode locked that is in the AIL. */ 448 ASSERT(i != 0); 449 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 450 continue; 451 452 /* 453 * Unlock all previous guys and try again. xfs_iunlock will try 454 * to push the tail if the inode is in the AIL. 455 */ 456 attempts++; 457 for (j = i - 1; j >= 0; j--) { 458 /* 459 * Check to see if we've already unlocked this one. Not 460 * the first one going back, and the inode ptr is the 461 * same. 462 */ 463 if (j != (i - 1) && ips[j] == ips[j + 1]) 464 continue; 465 466 xfs_iunlock(ips[j], lock_mode); 467 } 468 469 if ((attempts % 5) == 0) { 470 delay(1); /* Don't just spin the CPU */ 471 } 472 goto again; 473 } 474 } 475 476 /* 477 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and 478 * mmaplock must be double-locked separately since we use i_rwsem and 479 * invalidate_lock for that. We now support taking one lock EXCL and the 480 * other SHARED. 481 */ 482 void 483 xfs_lock_two_inodes( 484 struct xfs_inode *ip0, 485 uint ip0_mode, 486 struct xfs_inode *ip1, 487 uint ip1_mode) 488 { 489 int attempts = 0; 490 struct xfs_log_item *lp; 491 492 ASSERT(hweight32(ip0_mode) == 1); 493 ASSERT(hweight32(ip1_mode) == 1); 494 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 495 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 496 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 497 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 498 ASSERT(ip0->i_ino != ip1->i_ino); 499 500 if (ip0->i_ino > ip1->i_ino) { 501 swap(ip0, ip1); 502 swap(ip0_mode, ip1_mode); 503 } 504 505 again: 506 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 507 508 /* 509 * If the first lock we have locked is in the AIL, we must TRY to get 510 * the second lock. If we can't get it, we must release the first one 511 * and try again. 512 */ 513 lp = &ip0->i_itemp->ili_item; 514 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 515 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 516 xfs_iunlock(ip0, ip0_mode); 517 if ((++attempts % 5) == 0) 518 delay(1); /* Don't just spin the CPU */ 519 goto again; 520 } 521 } else { 522 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 523 } 524 } 525 526 /* 527 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 528 * is allowed, otherwise it has to be an exact match. If a CI match is found, 529 * ci_name->name will point to a the actual name (caller must free) or 530 * will be set to NULL if an exact match is found. 531 */ 532 int 533 xfs_lookup( 534 struct xfs_inode *dp, 535 const struct xfs_name *name, 536 struct xfs_inode **ipp, 537 struct xfs_name *ci_name) 538 { 539 xfs_ino_t inum; 540 int error; 541 542 trace_xfs_lookup(dp, name); 543 544 if (xfs_is_shutdown(dp->i_mount)) 545 return -EIO; 546 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 547 return -EIO; 548 549 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 550 if (error) 551 goto out_unlock; 552 553 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 554 if (error) 555 goto out_free_name; 556 557 /* 558 * Fail if a directory entry in the regular directory tree points to 559 * a metadata file. 560 */ 561 if (XFS_IS_CORRUPT(dp->i_mount, xfs_is_metadir_inode(*ipp))) { 562 xfs_fs_mark_sick(dp->i_mount, XFS_SICK_FS_METADIR); 563 error = -EFSCORRUPTED; 564 goto out_irele; 565 } 566 567 return 0; 568 569 out_irele: 570 xfs_irele(*ipp); 571 out_free_name: 572 if (ci_name) 573 kfree(ci_name->name); 574 out_unlock: 575 *ipp = NULL; 576 return error; 577 } 578 579 /* 580 * Initialise a newly allocated inode and return the in-core inode to the 581 * caller locked exclusively. 582 * 583 * Caller is responsible for unlocking the inode manually upon return 584 */ 585 int 586 xfs_icreate( 587 struct xfs_trans *tp, 588 xfs_ino_t ino, 589 const struct xfs_icreate_args *args, 590 struct xfs_inode **ipp) 591 { 592 struct xfs_mount *mp = tp->t_mountp; 593 struct xfs_inode *ip = NULL; 594 int error; 595 596 /* 597 * Get the in-core inode with the lock held exclusively to prevent 598 * others from looking at until we're done. 599 */ 600 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 601 if (error) 602 return error; 603 604 ASSERT(ip != NULL); 605 xfs_trans_ijoin(tp, ip, 0); 606 xfs_inode_init(tp, args, ip); 607 608 /* now that we have an i_mode we can setup the inode structure */ 609 xfs_setup_inode(ip); 610 611 *ipp = ip; 612 return 0; 613 } 614 615 /* Return dquots for the ids that will be assigned to a new file. */ 616 int 617 xfs_icreate_dqalloc( 618 const struct xfs_icreate_args *args, 619 struct xfs_dquot **udqpp, 620 struct xfs_dquot **gdqpp, 621 struct xfs_dquot **pdqpp) 622 { 623 struct inode *dir = VFS_I(args->pip); 624 kuid_t uid = GLOBAL_ROOT_UID; 625 kgid_t gid = GLOBAL_ROOT_GID; 626 prid_t prid = 0; 627 unsigned int flags = XFS_QMOPT_QUOTALL; 628 629 if (args->idmap) { 630 /* 631 * The uid/gid computation code must match what the VFS uses to 632 * assign i_[ug]id. INHERIT adjusts the gid computation for 633 * setgid/grpid systems. 634 */ 635 uid = mapped_fsuid(args->idmap, i_user_ns(dir)); 636 gid = mapped_fsgid(args->idmap, i_user_ns(dir)); 637 prid = xfs_get_initial_prid(args->pip); 638 flags |= XFS_QMOPT_INHERIT; 639 } 640 641 *udqpp = *gdqpp = *pdqpp = NULL; 642 643 return xfs_qm_vop_dqalloc(args->pip, uid, gid, prid, flags, udqpp, 644 gdqpp, pdqpp); 645 } 646 647 int 648 xfs_create( 649 const struct xfs_icreate_args *args, 650 struct xfs_name *name, 651 struct xfs_inode **ipp) 652 { 653 struct xfs_inode *dp = args->pip; 654 struct xfs_dir_update du = { 655 .dp = dp, 656 .name = name, 657 }; 658 struct xfs_mount *mp = dp->i_mount; 659 struct xfs_trans *tp = NULL; 660 struct xfs_dquot *udqp; 661 struct xfs_dquot *gdqp; 662 struct xfs_dquot *pdqp; 663 struct xfs_trans_res *tres; 664 xfs_ino_t ino; 665 bool unlock_dp_on_error = false; 666 bool is_dir = S_ISDIR(args->mode); 667 uint resblks; 668 int error; 669 670 trace_xfs_create(dp, name); 671 672 if (xfs_is_shutdown(mp)) 673 return -EIO; 674 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 675 return -EIO; 676 677 /* Make sure that we have allocated dquot(s) on disk. */ 678 error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp); 679 if (error) 680 return error; 681 682 if (is_dir) { 683 resblks = xfs_mkdir_space_res(mp, name->len); 684 tres = &M_RES(mp)->tr_mkdir; 685 } else { 686 resblks = xfs_create_space_res(mp, name->len); 687 tres = &M_RES(mp)->tr_create; 688 } 689 690 error = xfs_parent_start(mp, &du.ppargs); 691 if (error) 692 goto out_release_dquots; 693 694 /* 695 * Initially assume that the file does not exist and 696 * reserve the resources for that case. If that is not 697 * the case we'll drop the one we have and get a more 698 * appropriate transaction later. 699 */ 700 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 701 &tp); 702 if (error == -ENOSPC) { 703 /* flush outstanding delalloc blocks and retry */ 704 xfs_flush_inodes(mp); 705 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, 706 resblks, &tp); 707 } 708 if (error) 709 goto out_parent; 710 711 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 712 unlock_dp_on_error = true; 713 714 /* 715 * A newly created regular or special file just has one directory 716 * entry pointing to them, but a directory also the "." entry 717 * pointing to itself. 718 */ 719 error = xfs_dialloc(&tp, args, &ino); 720 if (!error) 721 error = xfs_icreate(tp, ino, args, &du.ip); 722 if (error) 723 goto out_trans_cancel; 724 725 /* 726 * Now we join the directory inode to the transaction. We do not do it 727 * earlier because xfs_dialloc might commit the previous transaction 728 * (and release all the locks). An error from here on will result in 729 * the transaction cancel unlocking dp so don't do it explicitly in the 730 * error path. 731 */ 732 xfs_trans_ijoin(tp, dp, 0); 733 734 error = xfs_dir_create_child(tp, resblks, &du); 735 if (error) 736 goto out_trans_cancel; 737 738 /* 739 * If this is a synchronous mount, make sure that the 740 * create transaction goes to disk before returning to 741 * the user. 742 */ 743 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 744 xfs_trans_set_sync(tp); 745 746 /* 747 * Attach the dquot(s) to the inodes and modify them incore. 748 * These ids of the inode couldn't have changed since the new 749 * inode has been locked ever since it was created. 750 */ 751 xfs_qm_vop_create_dqattach(tp, du.ip, udqp, gdqp, pdqp); 752 753 error = xfs_trans_commit(tp); 754 if (error) 755 goto out_release_inode; 756 757 xfs_qm_dqrele(udqp); 758 xfs_qm_dqrele(gdqp); 759 xfs_qm_dqrele(pdqp); 760 761 *ipp = du.ip; 762 xfs_iunlock(du.ip, XFS_ILOCK_EXCL); 763 xfs_iunlock(dp, XFS_ILOCK_EXCL); 764 xfs_parent_finish(mp, du.ppargs); 765 return 0; 766 767 out_trans_cancel: 768 xfs_trans_cancel(tp); 769 out_release_inode: 770 /* 771 * Wait until after the current transaction is aborted to finish the 772 * setup of the inode and release the inode. This prevents recursive 773 * transactions and deadlocks from xfs_inactive. 774 */ 775 if (du.ip) { 776 xfs_iunlock(du.ip, XFS_ILOCK_EXCL); 777 xfs_finish_inode_setup(du.ip); 778 xfs_irele(du.ip); 779 } 780 out_parent: 781 xfs_parent_finish(mp, du.ppargs); 782 out_release_dquots: 783 xfs_qm_dqrele(udqp); 784 xfs_qm_dqrele(gdqp); 785 xfs_qm_dqrele(pdqp); 786 787 if (unlock_dp_on_error) 788 xfs_iunlock(dp, XFS_ILOCK_EXCL); 789 return error; 790 } 791 792 int 793 xfs_create_tmpfile( 794 const struct xfs_icreate_args *args, 795 struct xfs_inode **ipp) 796 { 797 struct xfs_inode *dp = args->pip; 798 struct xfs_mount *mp = dp->i_mount; 799 struct xfs_inode *ip = NULL; 800 struct xfs_trans *tp = NULL; 801 struct xfs_dquot *udqp; 802 struct xfs_dquot *gdqp; 803 struct xfs_dquot *pdqp; 804 struct xfs_trans_res *tres; 805 xfs_ino_t ino; 806 uint resblks; 807 int error; 808 809 ASSERT(args->flags & XFS_ICREATE_TMPFILE); 810 811 if (xfs_is_shutdown(mp)) 812 return -EIO; 813 814 /* Make sure that we have allocated dquot(s) on disk. */ 815 error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp); 816 if (error) 817 return error; 818 819 resblks = XFS_IALLOC_SPACE_RES(mp); 820 tres = &M_RES(mp)->tr_create_tmpfile; 821 822 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 823 &tp); 824 if (error) 825 goto out_release_dquots; 826 827 error = xfs_dialloc(&tp, args, &ino); 828 if (!error) 829 error = xfs_icreate(tp, ino, args, &ip); 830 if (error) 831 goto out_trans_cancel; 832 833 if (xfs_has_wsync(mp)) 834 xfs_trans_set_sync(tp); 835 836 /* 837 * Attach the dquot(s) to the inodes and modify them incore. 838 * These ids of the inode couldn't have changed since the new 839 * inode has been locked ever since it was created. 840 */ 841 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 842 843 error = xfs_iunlink(tp, ip); 844 if (error) 845 goto out_trans_cancel; 846 847 error = xfs_trans_commit(tp); 848 if (error) 849 goto out_release_inode; 850 851 xfs_qm_dqrele(udqp); 852 xfs_qm_dqrele(gdqp); 853 xfs_qm_dqrele(pdqp); 854 855 *ipp = ip; 856 xfs_iunlock(ip, XFS_ILOCK_EXCL); 857 return 0; 858 859 out_trans_cancel: 860 xfs_trans_cancel(tp); 861 out_release_inode: 862 /* 863 * Wait until after the current transaction is aborted to finish the 864 * setup of the inode and release the inode. This prevents recursive 865 * transactions and deadlocks from xfs_inactive. 866 */ 867 if (ip) { 868 xfs_iunlock(ip, XFS_ILOCK_EXCL); 869 xfs_finish_inode_setup(ip); 870 xfs_irele(ip); 871 } 872 out_release_dquots: 873 xfs_qm_dqrele(udqp); 874 xfs_qm_dqrele(gdqp); 875 xfs_qm_dqrele(pdqp); 876 877 return error; 878 } 879 880 static inline int 881 xfs_projid_differ( 882 struct xfs_inode *tdp, 883 struct xfs_inode *sip) 884 { 885 /* 886 * If we are using project inheritance, we only allow hard link/renames 887 * creation in our tree when the project IDs are the same; else 888 * the tree quota mechanism could be circumvented. 889 */ 890 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 891 tdp->i_projid != sip->i_projid)) { 892 /* 893 * Project quota setup skips special files which can 894 * leave inodes in a PROJINHERIT directory without a 895 * project ID set. We need to allow links to be made 896 * to these "project-less" inodes because userspace 897 * expects them to succeed after project ID setup, 898 * but everything else should be rejected. 899 */ 900 if (!special_file(VFS_I(sip)->i_mode) || 901 sip->i_projid != 0) { 902 return -EXDEV; 903 } 904 } 905 906 return 0; 907 } 908 909 int 910 xfs_link( 911 struct xfs_inode *tdp, 912 struct xfs_inode *sip, 913 struct xfs_name *target_name) 914 { 915 struct xfs_dir_update du = { 916 .dp = tdp, 917 .name = target_name, 918 .ip = sip, 919 }; 920 struct xfs_mount *mp = tdp->i_mount; 921 struct xfs_trans *tp; 922 int error, nospace_error = 0; 923 int resblks; 924 925 trace_xfs_link(tdp, target_name); 926 927 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 928 929 if (xfs_is_shutdown(mp)) 930 return -EIO; 931 if (xfs_ifork_zapped(tdp, XFS_DATA_FORK)) 932 return -EIO; 933 934 error = xfs_qm_dqattach(sip); 935 if (error) 936 goto std_return; 937 938 error = xfs_qm_dqattach(tdp); 939 if (error) 940 goto std_return; 941 942 error = xfs_parent_start(mp, &du.ppargs); 943 if (error) 944 goto std_return; 945 946 resblks = xfs_link_space_res(mp, target_name->len); 947 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks, 948 &tp, &nospace_error); 949 if (error) 950 goto out_parent; 951 952 /* 953 * We don't allow reservationless or quotaless hardlinking when parent 954 * pointers are enabled because we can't back out if the xattrs must 955 * grow. 956 */ 957 if (du.ppargs && nospace_error) { 958 error = nospace_error; 959 goto error_return; 960 } 961 962 error = xfs_projid_differ(tdp, sip); 963 if (error) 964 goto error_return; 965 966 error = xfs_dir_add_child(tp, resblks, &du); 967 if (error) 968 goto error_return; 969 970 /* 971 * If this is a synchronous mount, make sure that the 972 * link transaction goes to disk before returning to 973 * the user. 974 */ 975 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 976 xfs_trans_set_sync(tp); 977 978 error = xfs_trans_commit(tp); 979 xfs_iunlock(tdp, XFS_ILOCK_EXCL); 980 xfs_iunlock(sip, XFS_ILOCK_EXCL); 981 xfs_parent_finish(mp, du.ppargs); 982 return error; 983 984 error_return: 985 xfs_trans_cancel(tp); 986 xfs_iunlock(tdp, XFS_ILOCK_EXCL); 987 xfs_iunlock(sip, XFS_ILOCK_EXCL); 988 out_parent: 989 xfs_parent_finish(mp, du.ppargs); 990 std_return: 991 if (error == -ENOSPC && nospace_error) 992 error = nospace_error; 993 return error; 994 } 995 996 /* Clear the reflink flag and the cowblocks tag if possible. */ 997 static void 998 xfs_itruncate_clear_reflink_flags( 999 struct xfs_inode *ip) 1000 { 1001 struct xfs_ifork *dfork; 1002 struct xfs_ifork *cfork; 1003 1004 if (!xfs_is_reflink_inode(ip)) 1005 return; 1006 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK); 1007 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK); 1008 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1009 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1010 if (cfork->if_bytes == 0) 1011 xfs_inode_clear_cowblocks_tag(ip); 1012 } 1013 1014 /* 1015 * Free up the underlying blocks past new_size. The new size must be smaller 1016 * than the current size. This routine can be used both for the attribute and 1017 * data fork, and does not modify the inode size, which is left to the caller. 1018 * 1019 * The transaction passed to this routine must have made a permanent log 1020 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1021 * given transaction and start new ones, so make sure everything involved in 1022 * the transaction is tidy before calling here. Some transaction will be 1023 * returned to the caller to be committed. The incoming transaction must 1024 * already include the inode, and both inode locks must be held exclusively. 1025 * The inode must also be "held" within the transaction. On return the inode 1026 * will be "held" within the returned transaction. This routine does NOT 1027 * require any disk space to be reserved for it within the transaction. 1028 * 1029 * If we get an error, we must return with the inode locked and linked into the 1030 * current transaction. This keeps things simple for the higher level code, 1031 * because it always knows that the inode is locked and held in the transaction 1032 * that returns to it whether errors occur or not. We don't mark the inode 1033 * dirty on error so that transactions can be easily aborted if possible. 1034 */ 1035 int 1036 xfs_itruncate_extents_flags( 1037 struct xfs_trans **tpp, 1038 struct xfs_inode *ip, 1039 int whichfork, 1040 xfs_fsize_t new_size, 1041 int flags) 1042 { 1043 struct xfs_mount *mp = ip->i_mount; 1044 struct xfs_trans *tp = *tpp; 1045 xfs_fileoff_t first_unmap_block; 1046 int error = 0; 1047 1048 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 1049 if (icount_read(VFS_I(ip))) 1050 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL); 1051 ASSERT(new_size <= XFS_ISIZE(ip)); 1052 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1053 ASSERT(ip->i_itemp != NULL); 1054 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1055 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1056 1057 trace_xfs_itruncate_extents_start(ip, new_size); 1058 1059 flags |= xfs_bmapi_aflag(whichfork); 1060 1061 /* 1062 * Since it is possible for space to become allocated beyond 1063 * the end of the file (in a crash where the space is allocated 1064 * but the inode size is not yet updated), simply remove any 1065 * blocks which show up between the new EOF and the maximum 1066 * possible file size. 1067 * 1068 * We have to free all the blocks to the bmbt maximum offset, even if 1069 * the page cache can't scale that far. 1070 */ 1071 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1072 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1073 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1074 return 0; 1075 } 1076 1077 error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block, 1078 XFS_MAX_FILEOFF); 1079 if (error) 1080 goto out; 1081 1082 if (whichfork == XFS_DATA_FORK) { 1083 /* Remove all pending CoW reservations. */ 1084 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1085 first_unmap_block, XFS_MAX_FILEOFF, true); 1086 if (error) 1087 goto out; 1088 1089 xfs_itruncate_clear_reflink_flags(ip); 1090 } 1091 1092 /* 1093 * Always re-log the inode so that our permanent transaction can keep 1094 * on rolling it forward in the log. 1095 */ 1096 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1097 1098 trace_xfs_itruncate_extents_end(ip, new_size); 1099 1100 out: 1101 *tpp = tp; 1102 return error; 1103 } 1104 1105 /* 1106 * Mark all the buffers attached to this directory stale. In theory we should 1107 * never be freeing a directory with any blocks at all, but this covers the 1108 * case where we've recovered a directory swap with a "temporary" directory 1109 * created by online repair and now need to dump it. 1110 */ 1111 STATIC void 1112 xfs_inactive_dir( 1113 struct xfs_inode *dp) 1114 { 1115 struct xfs_iext_cursor icur; 1116 struct xfs_bmbt_irec got; 1117 struct xfs_mount *mp = dp->i_mount; 1118 struct xfs_da_geometry *geo = mp->m_dir_geo; 1119 struct xfs_ifork *ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK); 1120 xfs_fileoff_t off; 1121 1122 /* 1123 * Invalidate each directory block. All directory blocks are of 1124 * fsbcount length and alignment, so we only need to walk those same 1125 * offsets. We hold the only reference to this inode, so we must wait 1126 * for the buffer locks. 1127 */ 1128 for_each_xfs_iext(ifp, &icur, &got) { 1129 for (off = round_up(got.br_startoff, geo->fsbcount); 1130 off < got.br_startoff + got.br_blockcount; 1131 off += geo->fsbcount) { 1132 struct xfs_buf *bp = NULL; 1133 xfs_fsblock_t fsbno; 1134 int error; 1135 1136 fsbno = (off - got.br_startoff) + got.br_startblock; 1137 error = xfs_buf_incore(mp->m_ddev_targp, 1138 XFS_FSB_TO_DADDR(mp, fsbno), 1139 XFS_FSB_TO_BB(mp, geo->fsbcount), 1140 XBF_LIVESCAN, &bp); 1141 if (error) 1142 continue; 1143 1144 xfs_buf_stale(bp); 1145 xfs_buf_relse(bp); 1146 } 1147 } 1148 } 1149 1150 /* 1151 * xfs_inactive_truncate 1152 * 1153 * Called to perform a truncate when an inode becomes unlinked. 1154 */ 1155 STATIC int 1156 xfs_inactive_truncate( 1157 struct xfs_inode *ip) 1158 { 1159 struct xfs_mount *mp = ip->i_mount; 1160 struct xfs_trans *tp; 1161 int error; 1162 1163 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1164 if (error) { 1165 ASSERT(xfs_is_shutdown(mp)); 1166 return error; 1167 } 1168 xfs_ilock(ip, XFS_ILOCK_EXCL); 1169 xfs_trans_ijoin(tp, ip, 0); 1170 1171 /* 1172 * Log the inode size first to prevent stale data exposure in the event 1173 * of a system crash before the truncate completes. See the related 1174 * comment in xfs_vn_setattr_size() for details. 1175 */ 1176 ip->i_disk_size = 0; 1177 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1178 1179 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1180 if (error) 1181 goto error_trans_cancel; 1182 1183 ASSERT(ip->i_df.if_nextents == 0); 1184 1185 error = xfs_trans_commit(tp); 1186 if (error) 1187 goto error_unlock; 1188 1189 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1190 return 0; 1191 1192 error_trans_cancel: 1193 xfs_trans_cancel(tp); 1194 error_unlock: 1195 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1196 return error; 1197 } 1198 1199 /* 1200 * xfs_inactive_ifree() 1201 * 1202 * Perform the inode free when an inode is unlinked. 1203 */ 1204 STATIC int 1205 xfs_inactive_ifree( 1206 struct xfs_inode *ip) 1207 { 1208 struct xfs_mount *mp = ip->i_mount; 1209 struct xfs_trans *tp; 1210 int error; 1211 1212 /* 1213 * We try to use a per-AG reservation for any block needed by the finobt 1214 * tree, but as the finobt feature predates the per-AG reservation 1215 * support a degraded file system might not have enough space for the 1216 * reservation at mount time. In that case try to dip into the reserved 1217 * pool and pray. 1218 * 1219 * Send a warning if the reservation does happen to fail, as the inode 1220 * now remains allocated and sits on the unlinked list until the fs is 1221 * repaired. 1222 */ 1223 if (unlikely(mp->m_finobt_nores)) { 1224 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1225 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1226 &tp); 1227 } else { 1228 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1229 } 1230 if (error) { 1231 if (error == -ENOSPC) { 1232 xfs_warn_ratelimited(mp, 1233 "Failed to remove inode(s) from unlinked list. " 1234 "Please free space, unmount and run xfs_repair."); 1235 } else { 1236 ASSERT(xfs_is_shutdown(mp)); 1237 } 1238 return error; 1239 } 1240 1241 /* 1242 * We do not hold the inode locked across the entire rolling transaction 1243 * here. We only need to hold it for the first transaction that 1244 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1245 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1246 * here breaks the relationship between cluster buffer invalidation and 1247 * stale inode invalidation on cluster buffer item journal commit 1248 * completion, and can result in leaving dirty stale inodes hanging 1249 * around in memory. 1250 * 1251 * We have no need for serialising this inode operation against other 1252 * operations - we freed the inode and hence reallocation is required 1253 * and that will serialise on reallocating the space the deferops need 1254 * to free. Hence we can unlock the inode on the first commit of 1255 * the transaction rather than roll it right through the deferops. This 1256 * avoids relogging the XFS_ISTALE inode. 1257 * 1258 * We check that xfs_ifree() hasn't grown an internal transaction roll 1259 * by asserting that the inode is still locked when it returns. 1260 */ 1261 xfs_ilock(ip, XFS_ILOCK_EXCL); 1262 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1263 1264 error = xfs_ifree(tp, ip); 1265 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 1266 if (error) { 1267 /* 1268 * If we fail to free the inode, shut down. The cancel 1269 * might do that, we need to make sure. Otherwise the 1270 * inode might be lost for a long time or forever. 1271 */ 1272 if (!xfs_is_shutdown(mp)) { 1273 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1274 __func__, error); 1275 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1276 } 1277 xfs_trans_cancel(tp); 1278 return error; 1279 } 1280 1281 /* 1282 * Credit the quota account(s). The inode is gone. 1283 */ 1284 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1285 1286 return xfs_trans_commit(tp); 1287 } 1288 1289 /* 1290 * Returns true if we need to update the on-disk metadata before we can free 1291 * the memory used by this inode. Updates include freeing post-eof 1292 * preallocations; freeing COW staging extents; and marking the inode free in 1293 * the inobt if it is on the unlinked list. 1294 */ 1295 bool 1296 xfs_inode_needs_inactive( 1297 struct xfs_inode *ip) 1298 { 1299 struct xfs_mount *mp = ip->i_mount; 1300 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 1301 1302 /* 1303 * If the inode is already free, then there can be nothing 1304 * to clean up here. 1305 */ 1306 if (VFS_I(ip)->i_mode == 0) 1307 return false; 1308 1309 /* 1310 * If this is a read-only mount, don't do this (would generate I/O) 1311 * unless we're in log recovery and cleaning the iunlinked list. 1312 */ 1313 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1314 return false; 1315 1316 /* If the log isn't running, push inodes straight to reclaim. */ 1317 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) 1318 return false; 1319 1320 /* Metadata inodes require explicit resource cleanup. */ 1321 if (xfs_is_internal_inode(ip)) 1322 return false; 1323 1324 /* Want to clean out the cow blocks if there are any. */ 1325 if (cow_ifp && cow_ifp->if_bytes > 0) 1326 return true; 1327 1328 /* Unlinked files must be freed. */ 1329 if (VFS_I(ip)->i_nlink == 0) 1330 return true; 1331 1332 /* 1333 * This file isn't being freed, so check if there are post-eof blocks 1334 * to free. 1335 * 1336 * Note: don't bother with iolock here since lockdep complains about 1337 * acquiring it in reclaim context. We have the only reference to the 1338 * inode at this point anyways. 1339 */ 1340 return xfs_can_free_eofblocks(ip); 1341 } 1342 1343 /* 1344 * Save health status somewhere, if we're dumping an inode with uncorrected 1345 * errors and online repair isn't running. 1346 */ 1347 static inline void 1348 xfs_inactive_health( 1349 struct xfs_inode *ip) 1350 { 1351 struct xfs_mount *mp = ip->i_mount; 1352 struct xfs_perag *pag; 1353 unsigned int sick; 1354 unsigned int checked; 1355 1356 xfs_inode_measure_sickness(ip, &sick, &checked); 1357 if (!sick) 1358 return; 1359 1360 trace_xfs_inode_unfixed_corruption(ip, sick); 1361 1362 if (sick & XFS_SICK_INO_FORGET) 1363 return; 1364 1365 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1366 if (!pag) { 1367 /* There had better still be a perag structure! */ 1368 ASSERT(0); 1369 return; 1370 } 1371 1372 xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES); 1373 xfs_perag_put(pag); 1374 } 1375 1376 /* 1377 * xfs_inactive 1378 * 1379 * This is called when the vnode reference count for the vnode 1380 * goes to zero. If the file has been unlinked, then it must 1381 * now be truncated. Also, we clear all of the read-ahead state 1382 * kept for the inode here since the file is now closed. 1383 */ 1384 int 1385 xfs_inactive( 1386 xfs_inode_t *ip) 1387 { 1388 struct xfs_mount *mp; 1389 int error = 0; 1390 int truncate = 0; 1391 1392 /* 1393 * If the inode is already free, then there can be nothing 1394 * to clean up here. 1395 */ 1396 if (VFS_I(ip)->i_mode == 0) { 1397 ASSERT(ip->i_df.if_broot_bytes == 0); 1398 goto out; 1399 } 1400 1401 mp = ip->i_mount; 1402 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1403 1404 xfs_inactive_health(ip); 1405 1406 /* 1407 * If this is a read-only mount, don't do this (would generate I/O) 1408 * unless we're in log recovery and cleaning the iunlinked list. 1409 */ 1410 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1411 goto out; 1412 1413 /* Metadata inodes require explicit resource cleanup. */ 1414 if (xfs_is_internal_inode(ip)) 1415 goto out; 1416 1417 /* Try to clean out the cow blocks if there are any. */ 1418 if (xfs_inode_has_cow_data(ip)) { 1419 error = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1420 if (error) 1421 goto out; 1422 } 1423 1424 if (VFS_I(ip)->i_nlink != 0) { 1425 /* 1426 * Note: don't bother with iolock here since lockdep complains 1427 * about acquiring it in reclaim context. We have the only 1428 * reference to the inode at this point anyways. 1429 */ 1430 if (xfs_can_free_eofblocks(ip)) 1431 error = xfs_free_eofblocks(ip); 1432 1433 goto out; 1434 } 1435 1436 if (S_ISREG(VFS_I(ip)->i_mode) && 1437 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || 1438 xfs_inode_has_filedata(ip))) 1439 truncate = 1; 1440 1441 if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) { 1442 /* 1443 * If this inode is being inactivated during a quotacheck and 1444 * has not yet been scanned by quotacheck, we /must/ remove 1445 * the dquots from the inode before inactivation changes the 1446 * block and inode counts. Most probably this is a result of 1447 * reloading the incore iunlinked list to purge unrecovered 1448 * unlinked inodes. 1449 */ 1450 xfs_qm_dqdetach(ip); 1451 } else { 1452 error = xfs_qm_dqattach(ip); 1453 if (error) 1454 goto out; 1455 } 1456 1457 if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) { 1458 xfs_inactive_dir(ip); 1459 truncate = 1; 1460 } 1461 1462 if (S_ISLNK(VFS_I(ip)->i_mode)) 1463 error = xfs_inactive_symlink(ip); 1464 else if (truncate) 1465 error = xfs_inactive_truncate(ip); 1466 if (error) 1467 goto out; 1468 1469 /* 1470 * If there are attributes associated with the file then blow them away 1471 * now. The code calls a routine that recursively deconstructs the 1472 * attribute fork. If also blows away the in-core attribute fork. 1473 */ 1474 if (xfs_inode_has_attr_fork(ip)) { 1475 error = xfs_attr_inactive(ip); 1476 if (error) 1477 goto out; 1478 } 1479 1480 ASSERT(ip->i_forkoff == 0); 1481 1482 /* 1483 * Free the inode. 1484 */ 1485 error = xfs_inactive_ifree(ip); 1486 1487 out: 1488 /* 1489 * We're done making metadata updates for this inode, so we can release 1490 * the attached dquots. 1491 */ 1492 xfs_qm_dqdetach(ip); 1493 return error; 1494 } 1495 1496 /* 1497 * Find an inode on the unlinked list. This does not take references to the 1498 * inode as we have existence guarantees by holding the AGI buffer lock and that 1499 * only unlinked, referenced inodes can be on the unlinked inode list. If we 1500 * don't find the inode in cache, then let the caller handle the situation. 1501 */ 1502 struct xfs_inode * 1503 xfs_iunlink_lookup( 1504 struct xfs_perag *pag, 1505 xfs_agino_t agino) 1506 { 1507 struct xfs_inode *ip; 1508 1509 rcu_read_lock(); 1510 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 1511 if (!ip) { 1512 /* Caller can handle inode not being in memory. */ 1513 rcu_read_unlock(); 1514 return NULL; 1515 } 1516 1517 /* 1518 * Inode in RCU freeing limbo should not happen. Warn about this and 1519 * let the caller handle the failure. 1520 */ 1521 if (WARN_ON_ONCE(!ip->i_ino)) { 1522 rcu_read_unlock(); 1523 return NULL; 1524 } 1525 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)); 1526 rcu_read_unlock(); 1527 return ip; 1528 } 1529 1530 /* 1531 * Load the inode @next_agino into the cache and set its prev_unlinked pointer 1532 * to @prev_agino. Caller must hold the AGI to synchronize with other changes 1533 * to the unlinked list. 1534 */ 1535 int 1536 xfs_iunlink_reload_next( 1537 struct xfs_trans *tp, 1538 struct xfs_buf *agibp, 1539 xfs_agino_t prev_agino, 1540 xfs_agino_t next_agino) 1541 { 1542 struct xfs_perag *pag = agibp->b_pag; 1543 struct xfs_mount *mp = pag_mount(pag); 1544 struct xfs_inode *next_ip = NULL; 1545 int error; 1546 1547 ASSERT(next_agino != NULLAGINO); 1548 1549 #ifdef DEBUG 1550 rcu_read_lock(); 1551 next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino); 1552 ASSERT(next_ip == NULL); 1553 rcu_read_unlock(); 1554 #endif 1555 1556 xfs_info_ratelimited(mp, 1557 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.", 1558 next_agino, pag_agno(pag)); 1559 1560 /* 1561 * Use an untrusted lookup just to be cautious in case the AGI has been 1562 * corrupted and now points at a free inode. That shouldn't happen, 1563 * but we'd rather shut down now since we're already running in a weird 1564 * situation. 1565 */ 1566 error = xfs_iget(mp, tp, xfs_agino_to_ino(pag, next_agino), 1567 XFS_IGET_UNTRUSTED, 0, &next_ip); 1568 if (error) { 1569 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 1570 return error; 1571 } 1572 1573 /* If this is not an unlinked inode, something is very wrong. */ 1574 if (VFS_I(next_ip)->i_nlink != 0) { 1575 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 1576 error = -EFSCORRUPTED; 1577 goto rele; 1578 } 1579 1580 next_ip->i_prev_unlinked = prev_agino; 1581 trace_xfs_iunlink_reload_next(next_ip); 1582 rele: 1583 ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE)); 1584 if (xfs_is_quotacheck_running(mp) && next_ip) 1585 xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED); 1586 xfs_irele(next_ip); 1587 return error; 1588 } 1589 1590 /* 1591 * Look up the inode number specified and if it is not already marked XFS_ISTALE 1592 * mark it stale. We should only find clean inodes in this lookup that aren't 1593 * already stale. 1594 */ 1595 static void 1596 xfs_ifree_mark_inode_stale( 1597 struct xfs_perag *pag, 1598 struct xfs_inode *free_ip, 1599 xfs_ino_t inum) 1600 { 1601 struct xfs_mount *mp = pag_mount(pag); 1602 struct xfs_inode_log_item *iip; 1603 struct xfs_inode *ip; 1604 1605 retry: 1606 rcu_read_lock(); 1607 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 1608 1609 /* Inode not in memory, nothing to do */ 1610 if (!ip) { 1611 rcu_read_unlock(); 1612 return; 1613 } 1614 1615 /* 1616 * because this is an RCU protected lookup, we could find a recently 1617 * freed or even reallocated inode during the lookup. We need to check 1618 * under the i_flags_lock for a valid inode here. Skip it if it is not 1619 * valid, the wrong inode or stale. 1620 */ 1621 spin_lock(&ip->i_flags_lock); 1622 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 1623 goto out_iflags_unlock; 1624 1625 /* 1626 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 1627 * other inodes that we did not find in the list attached to the buffer 1628 * and are not already marked stale. If we can't lock it, back off and 1629 * retry. 1630 */ 1631 if (ip != free_ip) { 1632 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 1633 spin_unlock(&ip->i_flags_lock); 1634 rcu_read_unlock(); 1635 delay(1); 1636 goto retry; 1637 } 1638 } 1639 ip->i_flags |= XFS_ISTALE; 1640 1641 /* 1642 * If the inode is flushing, it is already attached to the buffer. All 1643 * we needed to do here is mark the inode stale so buffer IO completion 1644 * will remove it from the AIL. 1645 */ 1646 iip = ip->i_itemp; 1647 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 1648 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 1649 ASSERT(iip->ili_last_fields || xlog_is_shutdown(mp->m_log)); 1650 goto out_iunlock; 1651 } 1652 1653 /* 1654 * Inodes not attached to the buffer can be released immediately. 1655 * Everything else has to go through xfs_iflush_abort() on journal 1656 * commit as the flock synchronises removal of the inode from the 1657 * cluster buffer against inode reclaim. 1658 */ 1659 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 1660 goto out_iunlock; 1661 1662 __xfs_iflags_set(ip, XFS_IFLUSHING); 1663 spin_unlock(&ip->i_flags_lock); 1664 rcu_read_unlock(); 1665 1666 /* we have a dirty inode in memory that has not yet been flushed. */ 1667 spin_lock(&iip->ili_lock); 1668 iip->ili_last_fields = iip->ili_fields; 1669 iip->ili_fields = 0; 1670 spin_unlock(&iip->ili_lock); 1671 ASSERT(iip->ili_last_fields); 1672 1673 if (ip != free_ip) 1674 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1675 return; 1676 1677 out_iunlock: 1678 if (ip != free_ip) 1679 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1680 out_iflags_unlock: 1681 spin_unlock(&ip->i_flags_lock); 1682 rcu_read_unlock(); 1683 } 1684 1685 /* 1686 * A big issue when freeing the inode cluster is that we _cannot_ skip any 1687 * inodes that are in memory - they all must be marked stale and attached to 1688 * the cluster buffer. 1689 */ 1690 static int 1691 xfs_ifree_cluster( 1692 struct xfs_trans *tp, 1693 struct xfs_perag *pag, 1694 struct xfs_inode *free_ip, 1695 struct xfs_icluster *xic) 1696 { 1697 struct xfs_mount *mp = free_ip->i_mount; 1698 struct xfs_ino_geometry *igeo = M_IGEO(mp); 1699 struct xfs_buf *bp; 1700 xfs_daddr_t blkno; 1701 xfs_ino_t inum = xic->first_ino; 1702 int nbufs; 1703 int i, j; 1704 int ioffset; 1705 int error; 1706 1707 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 1708 1709 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 1710 /* 1711 * The allocation bitmap tells us which inodes of the chunk were 1712 * physically allocated. Skip the cluster if an inode falls into 1713 * a sparse region. 1714 */ 1715 ioffset = inum - xic->first_ino; 1716 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 1717 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 1718 continue; 1719 } 1720 1721 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 1722 XFS_INO_TO_AGBNO(mp, inum)); 1723 1724 /* 1725 * We obtain and lock the backing buffer first in the process 1726 * here to ensure dirty inodes attached to the buffer remain in 1727 * the flushing state while we mark them stale. 1728 * 1729 * If we scan the in-memory inodes first, then buffer IO can 1730 * complete before we get a lock on it, and hence we may fail 1731 * to mark all the active inodes on the buffer stale. 1732 */ 1733 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 1734 mp->m_bsize * igeo->blocks_per_cluster, 0, &bp); 1735 if (error) 1736 return error; 1737 1738 /* 1739 * This buffer may not have been correctly initialised as we 1740 * didn't read it from disk. That's not important because we are 1741 * only using to mark the buffer as stale in the log, and to 1742 * attach stale cached inodes on it. 1743 * 1744 * For the inode that triggered the cluster freeing, this 1745 * attachment may occur in xfs_inode_item_precommit() after we 1746 * have marked this buffer stale. If this buffer was not in 1747 * memory before xfs_ifree_cluster() started, it will not be 1748 * marked XBF_DONE and this will cause problems later in 1749 * xfs_inode_item_precommit() when we trip over a (stale, !done) 1750 * buffer to attached to the transaction. 1751 * 1752 * Hence we have to mark the buffer as XFS_DONE here. This is 1753 * safe because we are also marking the buffer as XBF_STALE and 1754 * XFS_BLI_STALE. That means it will never be dispatched for 1755 * IO and it won't be unlocked until the cluster freeing has 1756 * been committed to the journal and the buffer unpinned. If it 1757 * is written, we want to know about it, and we want it to 1758 * fail. We can acheive this by adding a write verifier to the 1759 * buffer. 1760 */ 1761 bp->b_flags |= XBF_DONE; 1762 bp->b_ops = &xfs_inode_buf_ops; 1763 1764 /* 1765 * Now we need to set all the cached clean inodes as XFS_ISTALE, 1766 * too. This requires lookups, and will skip inodes that we've 1767 * already marked XFS_ISTALE. 1768 */ 1769 for (i = 0; i < igeo->inodes_per_cluster; i++) 1770 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); 1771 1772 xfs_trans_stale_inode_buf(tp, bp); 1773 xfs_trans_binval(tp, bp); 1774 } 1775 return 0; 1776 } 1777 1778 /* 1779 * This is called to return an inode to the inode free list. The inode should 1780 * already be truncated to 0 length and have no pages associated with it. This 1781 * routine also assumes that the inode is already a part of the transaction. 1782 * 1783 * The on-disk copy of the inode will have been added to the list of unlinked 1784 * inodes in the AGI. We need to remove the inode from that list atomically with 1785 * respect to freeing it here. 1786 */ 1787 int 1788 xfs_ifree( 1789 struct xfs_trans *tp, 1790 struct xfs_inode *ip) 1791 { 1792 struct xfs_mount *mp = ip->i_mount; 1793 struct xfs_perag *pag; 1794 struct xfs_icluster xic = { 0 }; 1795 struct xfs_inode_log_item *iip = ip->i_itemp; 1796 int error; 1797 1798 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 1799 ASSERT(VFS_I(ip)->i_nlink == 0); 1800 ASSERT(ip->i_df.if_nextents == 0); 1801 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 1802 ASSERT(ip->i_nblocks == 0); 1803 1804 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1805 1806 error = xfs_inode_uninit(tp, pag, ip, &xic); 1807 if (error) 1808 goto out; 1809 1810 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) 1811 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); 1812 1813 /* Don't attempt to replay owner changes for a deleted inode */ 1814 spin_lock(&iip->ili_lock); 1815 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 1816 spin_unlock(&iip->ili_lock); 1817 1818 if (xic.deleted) 1819 error = xfs_ifree_cluster(tp, pag, ip, &xic); 1820 out: 1821 xfs_perag_put(pag); 1822 return error; 1823 } 1824 1825 /* 1826 * This is called to unpin an inode. The caller must have the inode locked 1827 * in at least shared mode so that the buffer cannot be subsequently pinned 1828 * once someone is waiting for it to be unpinned. 1829 */ 1830 static void 1831 xfs_iunpin( 1832 struct xfs_inode *ip) 1833 { 1834 struct xfs_inode_log_item *iip = ip->i_itemp; 1835 xfs_csn_t seq = 0; 1836 1837 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 1838 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); 1839 1840 spin_lock(&iip->ili_lock); 1841 seq = iip->ili_commit_seq; 1842 spin_unlock(&iip->ili_lock); 1843 if (!seq) 1844 return; 1845 1846 /* Give the log a push to start the unpinning I/O */ 1847 xfs_log_force_seq(ip->i_mount, seq, 0, NULL); 1848 1849 } 1850 1851 static void 1852 __xfs_iunpin_wait( 1853 struct xfs_inode *ip) 1854 { 1855 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 1856 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 1857 1858 xfs_iunpin(ip); 1859 1860 do { 1861 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 1862 if (xfs_ipincount(ip)) 1863 io_schedule(); 1864 } while (xfs_ipincount(ip)); 1865 finish_wait(wq, &wait.wq_entry); 1866 } 1867 1868 void 1869 xfs_iunpin_wait( 1870 struct xfs_inode *ip) 1871 { 1872 if (xfs_ipincount(ip)) 1873 __xfs_iunpin_wait(ip); 1874 } 1875 1876 /* 1877 * Removing an inode from the namespace involves removing the directory entry 1878 * and dropping the link count on the inode. Removing the directory entry can 1879 * result in locking an AGF (directory blocks were freed) and removing a link 1880 * count can result in placing the inode on an unlinked list which results in 1881 * locking an AGI. 1882 * 1883 * The big problem here is that we have an ordering constraint on AGF and AGI 1884 * locking - inode allocation locks the AGI, then can allocate a new extent for 1885 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 1886 * removes the inode from the unlinked list, requiring that we lock the AGI 1887 * first, and then freeing the inode can result in an inode chunk being freed 1888 * and hence freeing disk space requiring that we lock an AGF. 1889 * 1890 * Hence the ordering that is imposed by other parts of the code is AGI before 1891 * AGF. This means we cannot remove the directory entry before we drop the inode 1892 * reference count and put it on the unlinked list as this results in a lock 1893 * order of AGF then AGI, and this can deadlock against inode allocation and 1894 * freeing. Therefore we must drop the link counts before we remove the 1895 * directory entry. 1896 * 1897 * This is still safe from a transactional point of view - it is not until we 1898 * get to xfs_defer_finish() that we have the possibility of multiple 1899 * transactions in this operation. Hence as long as we remove the directory 1900 * entry and drop the link count in the first transaction of the remove 1901 * operation, there are no transactional constraints on the ordering here. 1902 */ 1903 int 1904 xfs_remove( 1905 struct xfs_inode *dp, 1906 struct xfs_name *name, 1907 struct xfs_inode *ip) 1908 { 1909 struct xfs_dir_update du = { 1910 .dp = dp, 1911 .name = name, 1912 .ip = ip, 1913 }; 1914 struct xfs_mount *mp = dp->i_mount; 1915 struct xfs_trans *tp = NULL; 1916 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 1917 int dontcare; 1918 int error = 0; 1919 uint resblks; 1920 1921 trace_xfs_remove(dp, name); 1922 1923 if (xfs_is_shutdown(mp)) 1924 return -EIO; 1925 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 1926 return -EIO; 1927 1928 error = xfs_qm_dqattach(dp); 1929 if (error) 1930 goto std_return; 1931 1932 error = xfs_qm_dqattach(ip); 1933 if (error) 1934 goto std_return; 1935 1936 error = xfs_parent_start(mp, &du.ppargs); 1937 if (error) 1938 goto std_return; 1939 1940 /* 1941 * We try to get the real space reservation first, allowing for 1942 * directory btree deletion(s) implying possible bmap insert(s). If we 1943 * can't get the space reservation then we use 0 instead, and avoid the 1944 * bmap btree insert(s) in the directory code by, if the bmap insert 1945 * tries to happen, instead trimming the LAST block from the directory. 1946 * 1947 * Ignore EDQUOT and ENOSPC being returned via nospace_error because 1948 * the directory code can handle a reservationless update and we don't 1949 * want to prevent a user from trying to free space by deleting things. 1950 */ 1951 resblks = xfs_remove_space_res(mp, name->len); 1952 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks, 1953 &tp, &dontcare); 1954 if (error) { 1955 ASSERT(error != -ENOSPC); 1956 goto out_parent; 1957 } 1958 1959 error = xfs_dir_remove_child(tp, resblks, &du); 1960 if (error) 1961 goto out_trans_cancel; 1962 1963 /* 1964 * If this is a synchronous mount, make sure that the 1965 * remove transaction goes to disk before returning to 1966 * the user. 1967 */ 1968 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1969 xfs_trans_set_sync(tp); 1970 1971 error = xfs_trans_commit(tp); 1972 if (error) 1973 goto out_unlock; 1974 1975 if (is_dir && xfs_inode_is_filestream(ip)) 1976 xfs_filestream_deassociate(ip); 1977 1978 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1979 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1980 xfs_parent_finish(mp, du.ppargs); 1981 return 0; 1982 1983 out_trans_cancel: 1984 xfs_trans_cancel(tp); 1985 out_unlock: 1986 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1987 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1988 out_parent: 1989 xfs_parent_finish(mp, du.ppargs); 1990 std_return: 1991 return error; 1992 } 1993 1994 static inline void 1995 xfs_iunlock_rename( 1996 struct xfs_inode **i_tab, 1997 int num_inodes) 1998 { 1999 int i; 2000 2001 for (i = num_inodes - 1; i >= 0; i--) { 2002 /* Skip duplicate inodes if src and target dps are the same */ 2003 if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1])) 2004 continue; 2005 xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL); 2006 } 2007 } 2008 2009 /* 2010 * Enter all inodes for a rename transaction into a sorted array. 2011 */ 2012 #define __XFS_SORT_INODES 5 2013 STATIC void 2014 xfs_sort_for_rename( 2015 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2016 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2017 struct xfs_inode *ip1, /* in: inode of old entry */ 2018 struct xfs_inode *ip2, /* in: inode of new entry */ 2019 struct xfs_inode *wip, /* in: whiteout inode */ 2020 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2021 int *num_inodes) /* in/out: inodes in array */ 2022 { 2023 int i; 2024 2025 ASSERT(*num_inodes == __XFS_SORT_INODES); 2026 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2027 2028 /* 2029 * i_tab contains a list of pointers to inodes. We initialize 2030 * the table here & we'll sort it. We will then use it to 2031 * order the acquisition of the inode locks. 2032 * 2033 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2034 */ 2035 i = 0; 2036 i_tab[i++] = dp1; 2037 i_tab[i++] = dp2; 2038 i_tab[i++] = ip1; 2039 if (ip2) 2040 i_tab[i++] = ip2; 2041 if (wip) 2042 i_tab[i++] = wip; 2043 *num_inodes = i; 2044 2045 xfs_sort_inodes(i_tab, *num_inodes); 2046 } 2047 2048 void 2049 xfs_sort_inodes( 2050 struct xfs_inode **i_tab, 2051 unsigned int num_inodes) 2052 { 2053 int i, j; 2054 2055 ASSERT(num_inodes <= __XFS_SORT_INODES); 2056 2057 /* 2058 * Sort the elements via bubble sort. (Remember, there are at 2059 * most 5 elements to sort, so this is adequate.) 2060 */ 2061 for (i = 0; i < num_inodes; i++) { 2062 for (j = 1; j < num_inodes; j++) { 2063 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) 2064 swap(i_tab[j], i_tab[j - 1]); 2065 } 2066 } 2067 } 2068 2069 /* 2070 * xfs_rename_alloc_whiteout() 2071 * 2072 * Return a referenced, unlinked, unlocked inode that can be used as a 2073 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2074 * crash between allocating the inode and linking it into the rename transaction 2075 * recovery will free the inode and we won't leak it. 2076 */ 2077 static int 2078 xfs_rename_alloc_whiteout( 2079 struct mnt_idmap *idmap, 2080 struct xfs_name *src_name, 2081 struct xfs_inode *dp, 2082 struct xfs_inode **wip) 2083 { 2084 struct xfs_icreate_args args = { 2085 .idmap = idmap, 2086 .pip = dp, 2087 .mode = S_IFCHR | WHITEOUT_MODE, 2088 .flags = XFS_ICREATE_TMPFILE, 2089 }; 2090 struct xfs_inode *tmpfile; 2091 struct qstr name; 2092 int error; 2093 2094 error = xfs_create_tmpfile(&args, &tmpfile); 2095 if (error) 2096 return error; 2097 2098 name.name = src_name->name; 2099 name.len = src_name->len; 2100 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name); 2101 if (error) { 2102 xfs_finish_inode_setup(tmpfile); 2103 xfs_irele(tmpfile); 2104 return error; 2105 } 2106 2107 /* 2108 * Prepare the tmpfile inode as if it were created through the VFS. 2109 * Complete the inode setup and flag it as linkable. nlink is already 2110 * zero, so we can skip the drop_nlink. 2111 */ 2112 xfs_setup_iops(tmpfile); 2113 xfs_finish_inode_setup(tmpfile); 2114 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2115 2116 *wip = tmpfile; 2117 return 0; 2118 } 2119 2120 /* 2121 * xfs_rename 2122 */ 2123 int 2124 xfs_rename( 2125 struct mnt_idmap *idmap, 2126 struct xfs_inode *src_dp, 2127 struct xfs_name *src_name, 2128 struct xfs_inode *src_ip, 2129 struct xfs_inode *target_dp, 2130 struct xfs_name *target_name, 2131 struct xfs_inode *target_ip, 2132 unsigned int flags) 2133 { 2134 struct xfs_dir_update du_src = { 2135 .dp = src_dp, 2136 .name = src_name, 2137 .ip = src_ip, 2138 }; 2139 struct xfs_dir_update du_tgt = { 2140 .dp = target_dp, 2141 .name = target_name, 2142 .ip = target_ip, 2143 }; 2144 struct xfs_dir_update du_wip = { }; 2145 struct xfs_mount *mp = src_dp->i_mount; 2146 struct xfs_trans *tp; 2147 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2148 int i; 2149 int num_inodes = __XFS_SORT_INODES; 2150 bool new_parent = (src_dp != target_dp); 2151 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 2152 int spaceres; 2153 bool retried = false; 2154 int error, nospace_error = 0; 2155 2156 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2157 2158 if ((flags & RENAME_EXCHANGE) && !target_ip) 2159 return -EINVAL; 2160 2161 /* 2162 * If we are doing a whiteout operation, allocate the whiteout inode 2163 * we will be placing at the target and ensure the type is set 2164 * appropriately. 2165 */ 2166 if (flags & RENAME_WHITEOUT) { 2167 error = xfs_rename_alloc_whiteout(idmap, src_name, target_dp, 2168 &du_wip.ip); 2169 if (error) 2170 return error; 2171 2172 /* setup target dirent info as whiteout */ 2173 src_name->type = XFS_DIR3_FT_CHRDEV; 2174 } 2175 2176 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, du_wip.ip, 2177 inodes, &num_inodes); 2178 2179 error = xfs_parent_start(mp, &du_src.ppargs); 2180 if (error) 2181 goto out_release_wip; 2182 2183 if (du_wip.ip) { 2184 error = xfs_parent_start(mp, &du_wip.ppargs); 2185 if (error) 2186 goto out_src_ppargs; 2187 } 2188 2189 if (target_ip) { 2190 error = xfs_parent_start(mp, &du_tgt.ppargs); 2191 if (error) 2192 goto out_wip_ppargs; 2193 } 2194 2195 retry: 2196 nospace_error = 0; 2197 spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL, 2198 target_name->len, du_wip.ip != NULL); 2199 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 2200 if (error == -ENOSPC) { 2201 nospace_error = error; 2202 spaceres = 0; 2203 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 2204 &tp); 2205 } 2206 if (error) 2207 goto out_tgt_ppargs; 2208 2209 /* 2210 * We don't allow reservationless renaming when parent pointers are 2211 * enabled because we can't back out if the xattrs must grow. 2212 */ 2213 if (du_src.ppargs && nospace_error) { 2214 error = nospace_error; 2215 xfs_trans_cancel(tp); 2216 goto out_tgt_ppargs; 2217 } 2218 2219 /* 2220 * Attach the dquots to the inodes 2221 */ 2222 error = xfs_qm_vop_rename_dqattach(inodes); 2223 if (error) { 2224 xfs_trans_cancel(tp); 2225 goto out_tgt_ppargs; 2226 } 2227 2228 /* 2229 * Lock all the participating inodes. Depending upon whether 2230 * the target_name exists in the target directory, and 2231 * whether the target directory is the same as the source 2232 * directory, we can lock from 2 to 5 inodes. 2233 */ 2234 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2235 2236 /* 2237 * Join all the inodes to the transaction. 2238 */ 2239 xfs_trans_ijoin(tp, src_dp, 0); 2240 if (new_parent) 2241 xfs_trans_ijoin(tp, target_dp, 0); 2242 xfs_trans_ijoin(tp, src_ip, 0); 2243 if (target_ip) 2244 xfs_trans_ijoin(tp, target_ip, 0); 2245 if (du_wip.ip) 2246 xfs_trans_ijoin(tp, du_wip.ip, 0); 2247 2248 error = xfs_projid_differ(target_dp, src_ip); 2249 if (error) 2250 goto out_trans_cancel; 2251 2252 /* RENAME_EXCHANGE is unique from here on. */ 2253 if (flags & RENAME_EXCHANGE) { 2254 error = xfs_dir_exchange_children(tp, &du_src, &du_tgt, 2255 spaceres); 2256 if (error) 2257 goto out_trans_cancel; 2258 goto out_commit; 2259 } 2260 2261 /* 2262 * Try to reserve quota to handle an expansion of the target directory. 2263 * We'll allow the rename to continue in reservationless mode if we hit 2264 * a space usage constraint. If we trigger reservationless mode, save 2265 * the errno if there isn't any free space in the target directory. 2266 */ 2267 if (spaceres != 0) { 2268 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres, 2269 0, false); 2270 if (error == -EDQUOT || error == -ENOSPC) { 2271 if (!retried) { 2272 xfs_trans_cancel(tp); 2273 xfs_iunlock_rename(inodes, num_inodes); 2274 xfs_blockgc_free_quota(target_dp, 0); 2275 retried = true; 2276 goto retry; 2277 } 2278 2279 nospace_error = error; 2280 spaceres = 0; 2281 error = 0; 2282 } 2283 if (error) 2284 goto out_trans_cancel; 2285 } 2286 2287 /* 2288 * We don't allow quotaless renaming when parent pointers are enabled 2289 * because we can't back out if the xattrs must grow. 2290 */ 2291 if (du_src.ppargs && nospace_error) { 2292 error = nospace_error; 2293 goto out_trans_cancel; 2294 } 2295 2296 /* 2297 * Lock the AGI buffers we need to handle bumping the nlink of the 2298 * whiteout inode off the unlinked list and to handle dropping the 2299 * nlink of the target inode. Per locking order rules, do this in 2300 * increasing AG order and before directory block allocation tries to 2301 * grab AGFs because we grab AGIs before AGFs. 2302 * 2303 * The (vfs) caller must ensure that if src is a directory then 2304 * target_ip is either null or an empty directory. 2305 */ 2306 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 2307 if (inodes[i] == du_wip.ip || 2308 (inodes[i] == target_ip && 2309 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 2310 struct xfs_perag *pag; 2311 struct xfs_buf *bp; 2312 2313 pag = xfs_perag_get(mp, 2314 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino)); 2315 error = xfs_read_agi(pag, tp, 0, &bp); 2316 xfs_perag_put(pag); 2317 if (error) 2318 goto out_trans_cancel; 2319 } 2320 } 2321 2322 error = xfs_dir_rename_children(tp, &du_src, &du_tgt, spaceres, 2323 &du_wip); 2324 if (error) 2325 goto out_trans_cancel; 2326 2327 if (du_wip.ip) { 2328 /* 2329 * Now we have a real link, clear the "I'm a tmpfile" state 2330 * flag from the inode so it doesn't accidentally get misused in 2331 * future. 2332 */ 2333 VFS_I(du_wip.ip)->i_state &= ~I_LINKABLE; 2334 } 2335 2336 out_commit: 2337 /* 2338 * If this is a synchronous mount, make sure that the rename 2339 * transaction goes to disk before returning to the user. 2340 */ 2341 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) 2342 xfs_trans_set_sync(tp); 2343 2344 error = xfs_trans_commit(tp); 2345 nospace_error = 0; 2346 goto out_unlock; 2347 2348 out_trans_cancel: 2349 xfs_trans_cancel(tp); 2350 out_unlock: 2351 xfs_iunlock_rename(inodes, num_inodes); 2352 out_tgt_ppargs: 2353 xfs_parent_finish(mp, du_tgt.ppargs); 2354 out_wip_ppargs: 2355 xfs_parent_finish(mp, du_wip.ppargs); 2356 out_src_ppargs: 2357 xfs_parent_finish(mp, du_src.ppargs); 2358 out_release_wip: 2359 if (du_wip.ip) 2360 xfs_irele(du_wip.ip); 2361 if (error == -ENOSPC && nospace_error) 2362 error = nospace_error; 2363 return error; 2364 } 2365 2366 static int 2367 xfs_iflush( 2368 struct xfs_inode *ip, 2369 struct xfs_buf *bp) 2370 { 2371 struct xfs_inode_log_item *iip = ip->i_itemp; 2372 struct xfs_dinode *dip; 2373 struct xfs_mount *mp = ip->i_mount; 2374 int error; 2375 2376 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); 2377 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 2378 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 2379 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 2380 ASSERT(iip->ili_item.li_buf == bp); 2381 2382 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 2383 2384 /* 2385 * We don't flush the inode if any of the following checks fail, but we 2386 * do still update the log item and attach to the backing buffer as if 2387 * the flush happened. This is a formality to facilitate predictable 2388 * error handling as the caller will shutdown and fail the buffer. 2389 */ 2390 error = -EFSCORRUPTED; 2391 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC) || 2392 XFS_TEST_ERROR(mp, XFS_ERRTAG_IFLUSH_1)) { 2393 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2394 "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT, 2395 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 2396 goto flush_out; 2397 } 2398 if (ip->i_df.if_format == XFS_DINODE_FMT_META_BTREE) { 2399 if (!S_ISREG(VFS_I(ip)->i_mode) || 2400 !(ip->i_diflags2 & XFS_DIFLAG2_METADATA)) { 2401 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2402 "%s: Bad %s meta btree inode %Lu, ptr "PTR_FMT, 2403 __func__, xfs_metafile_type_str(ip->i_metatype), 2404 ip->i_ino, ip); 2405 goto flush_out; 2406 } 2407 } else if (S_ISREG(VFS_I(ip)->i_mode)) { 2408 if ((ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 2409 ip->i_df.if_format != XFS_DINODE_FMT_BTREE) || 2410 XFS_TEST_ERROR(mp, XFS_ERRTAG_IFLUSH_3)) { 2411 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2412 "%s: Bad regular inode %llu, ptr "PTR_FMT, 2413 __func__, ip->i_ino, ip); 2414 goto flush_out; 2415 } 2416 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 2417 if ((ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 2418 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 2419 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL) || 2420 XFS_TEST_ERROR(mp, XFS_ERRTAG_IFLUSH_4)) { 2421 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2422 "%s: Bad directory inode %llu, ptr "PTR_FMT, 2423 __func__, ip->i_ino, ip); 2424 goto flush_out; 2425 } 2426 } 2427 if (ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) > 2428 ip->i_nblocks || XFS_TEST_ERROR(mp, XFS_ERRTAG_IFLUSH_5)) { 2429 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2430 "%s: detected corrupt incore inode %llu, " 2431 "total extents = %llu nblocks = %lld, ptr "PTR_FMT, 2432 __func__, ip->i_ino, 2433 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af), 2434 ip->i_nblocks, ip); 2435 goto flush_out; 2436 } 2437 if (ip->i_forkoff > mp->m_sb.sb_inodesize || 2438 XFS_TEST_ERROR(mp, XFS_ERRTAG_IFLUSH_6)) { 2439 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2440 "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT, 2441 __func__, ip->i_ino, ip->i_forkoff, ip); 2442 goto flush_out; 2443 } 2444 2445 if (xfs_inode_has_attr_fork(ip) && 2446 ip->i_af.if_format == XFS_DINODE_FMT_META_BTREE) { 2447 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2448 "%s: meta btree in inode %Lu attr fork, ptr "PTR_FMT, 2449 __func__, ip->i_ino, ip); 2450 goto flush_out; 2451 } 2452 2453 /* 2454 * Inode item log recovery for v2 inodes are dependent on the flushiter 2455 * count for correct sequencing. We bump the flush iteration count so 2456 * we can detect flushes which postdate a log record during recovery. 2457 * This is redundant as we now log every change and hence this can't 2458 * happen but we need to still do it to ensure backwards compatibility 2459 * with old kernels that predate logging all inode changes. 2460 */ 2461 if (!xfs_has_v3inodes(mp)) 2462 ip->i_flushiter++; 2463 2464 /* 2465 * If there are inline format data / attr forks attached to this inode, 2466 * make sure they are not corrupt. 2467 */ 2468 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 2469 xfs_ifork_verify_local_data(ip)) 2470 goto flush_out; 2471 if (xfs_inode_has_attr_fork(ip) && 2472 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL && 2473 xfs_ifork_verify_local_attr(ip)) 2474 goto flush_out; 2475 2476 /* 2477 * Copy the dirty parts of the inode into the on-disk inode. We always 2478 * copy out the core of the inode, because if the inode is dirty at all 2479 * the core must be. 2480 */ 2481 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 2482 2483 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 2484 if (!xfs_has_v3inodes(mp)) { 2485 if (ip->i_flushiter == DI_MAX_FLUSH) 2486 ip->i_flushiter = 0; 2487 } 2488 2489 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 2490 if (xfs_inode_has_attr_fork(ip)) 2491 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 2492 2493 /* 2494 * We've recorded everything logged in the inode, so we'd like to clear 2495 * the ili_fields bits so we don't log and flush things unnecessarily. 2496 * However, we can't stop logging all this information until the data 2497 * we've copied into the disk buffer is written to disk. If we did we 2498 * might overwrite the copy of the inode in the log with all the data 2499 * after re-logging only part of it, and in the face of a crash we 2500 * wouldn't have all the data we need to recover. 2501 * 2502 * What we do is move the bits to the ili_last_fields field. When 2503 * logging the inode, these bits are moved back to the ili_fields field. 2504 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 2505 * we know that the information those bits represent is permanently on 2506 * disk. As long as the flush completes before the inode is logged 2507 * again, then both ili_fields and ili_last_fields will be cleared. 2508 */ 2509 error = 0; 2510 flush_out: 2511 spin_lock(&iip->ili_lock); 2512 iip->ili_last_fields = iip->ili_fields; 2513 iip->ili_fields = 0; 2514 set_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags); 2515 spin_unlock(&iip->ili_lock); 2516 2517 /* 2518 * Store the current LSN of the inode so that we can tell whether the 2519 * item has moved in the AIL from xfs_buf_inode_iodone(). 2520 */ 2521 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2522 &iip->ili_item.li_lsn); 2523 2524 /* generate the checksum. */ 2525 xfs_dinode_calc_crc(mp, dip); 2526 if (error) 2527 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 2528 return error; 2529 } 2530 2531 /* 2532 * Non-blocking flush of dirty inode metadata into the backing buffer. 2533 * 2534 * The caller must have a reference to the inode and hold the cluster buffer 2535 * locked. The function will walk across all the inodes on the cluster buffer it 2536 * can find and lock without blocking, and flush them to the cluster buffer. 2537 * 2538 * On successful flushing of at least one inode, the caller must write out the 2539 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 2540 * the caller needs to release the buffer. On failure, the filesystem will be 2541 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 2542 * will be returned. 2543 */ 2544 int 2545 xfs_iflush_cluster( 2546 struct xfs_buf *bp) 2547 { 2548 struct xfs_mount *mp = bp->b_mount; 2549 struct xfs_log_item *lip, *n; 2550 struct xfs_inode *ip; 2551 struct xfs_inode_log_item *iip; 2552 int clcount = 0; 2553 int error = 0; 2554 2555 /* 2556 * We must use the safe variant here as on shutdown xfs_iflush_abort() 2557 * will remove itself from the list. 2558 */ 2559 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 2560 iip = (struct xfs_inode_log_item *)lip; 2561 ip = iip->ili_inode; 2562 2563 /* 2564 * Quick and dirty check to avoid locks if possible. 2565 */ 2566 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 2567 continue; 2568 if (xfs_ipincount(ip)) 2569 continue; 2570 2571 /* 2572 * The inode is still attached to the buffer, which means it is 2573 * dirty but reclaim might try to grab it. Check carefully for 2574 * that, and grab the ilock while still holding the i_flags_lock 2575 * to guarantee reclaim will not be able to reclaim this inode 2576 * once we drop the i_flags_lock. 2577 */ 2578 spin_lock(&ip->i_flags_lock); 2579 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 2580 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 2581 spin_unlock(&ip->i_flags_lock); 2582 continue; 2583 } 2584 2585 /* 2586 * ILOCK will pin the inode against reclaim and prevent 2587 * concurrent transactions modifying the inode while we are 2588 * flushing the inode. If we get the lock, set the flushing 2589 * state before we drop the i_flags_lock. 2590 */ 2591 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 2592 spin_unlock(&ip->i_flags_lock); 2593 continue; 2594 } 2595 __xfs_iflags_set(ip, XFS_IFLUSHING); 2596 spin_unlock(&ip->i_flags_lock); 2597 2598 /* 2599 * Abort flushing this inode if we are shut down because the 2600 * inode may not currently be in the AIL. This can occur when 2601 * log I/O failure unpins the inode without inserting into the 2602 * AIL, leaving a dirty/unpinned inode attached to the buffer 2603 * that otherwise looks like it should be flushed. 2604 */ 2605 if (xlog_is_shutdown(mp->m_log)) { 2606 xfs_iunpin_wait(ip); 2607 xfs_iflush_abort(ip); 2608 xfs_iunlock(ip, XFS_ILOCK_SHARED); 2609 error = -EIO; 2610 continue; 2611 } 2612 2613 /* don't block waiting on a log force to unpin dirty inodes */ 2614 if (xfs_ipincount(ip)) { 2615 xfs_iflags_clear(ip, XFS_IFLUSHING); 2616 xfs_iunlock(ip, XFS_ILOCK_SHARED); 2617 continue; 2618 } 2619 2620 if (!xfs_inode_clean(ip)) 2621 error = xfs_iflush(ip, bp); 2622 else 2623 xfs_iflags_clear(ip, XFS_IFLUSHING); 2624 xfs_iunlock(ip, XFS_ILOCK_SHARED); 2625 if (error) 2626 break; 2627 clcount++; 2628 } 2629 2630 if (error) { 2631 /* 2632 * Shutdown first so we kill the log before we release this 2633 * buffer. If it is an INODE_ALLOC buffer and pins the tail 2634 * of the log, failing it before the _log_ is shut down can 2635 * result in the log tail being moved forward in the journal 2636 * on disk because log writes can still be taking place. Hence 2637 * unpinning the tail will allow the ICREATE intent to be 2638 * removed from the log an recovery will fail with uninitialised 2639 * inode cluster buffers. 2640 */ 2641 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2642 bp->b_flags |= XBF_ASYNC; 2643 xfs_buf_ioend_fail(bp); 2644 return error; 2645 } 2646 2647 if (!clcount) 2648 return -EAGAIN; 2649 2650 XFS_STATS_INC(mp, xs_icluster_flushcnt); 2651 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 2652 return 0; 2653 2654 } 2655 2656 /* Release an inode. */ 2657 void 2658 xfs_irele( 2659 struct xfs_inode *ip) 2660 { 2661 trace_xfs_irele(ip, _RET_IP_); 2662 iput(VFS_I(ip)); 2663 } 2664 2665 /* 2666 * Ensure all commited transactions touching the inode are written to the log. 2667 */ 2668 int 2669 xfs_log_force_inode( 2670 struct xfs_inode *ip) 2671 { 2672 struct xfs_inode_log_item *iip = ip->i_itemp; 2673 xfs_csn_t seq = 0; 2674 2675 if (!iip) 2676 return 0; 2677 2678 spin_lock(&iip->ili_lock); 2679 seq = iip->ili_commit_seq; 2680 spin_unlock(&iip->ili_lock); 2681 2682 if (!seq) 2683 return 0; 2684 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); 2685 } 2686 2687 /* 2688 * Grab the exclusive iolock for a data copy from src to dest, making sure to 2689 * abide vfs locking order (lowest pointer value goes first) and breaking the 2690 * layout leases before proceeding. The loop is needed because we cannot call 2691 * the blocking break_layout() with the iolocks held, and therefore have to 2692 * back out both locks. 2693 */ 2694 static int 2695 xfs_iolock_two_inodes_and_break_layout( 2696 struct inode *src, 2697 struct inode *dest) 2698 { 2699 int error; 2700 2701 if (src > dest) 2702 swap(src, dest); 2703 2704 retry: 2705 /* Wait to break both inodes' layouts before we start locking. */ 2706 error = break_layout(src, true); 2707 if (error) 2708 return error; 2709 if (src != dest) { 2710 error = break_layout(dest, true); 2711 if (error) 2712 return error; 2713 } 2714 2715 /* Lock one inode and make sure nobody got in and leased it. */ 2716 inode_lock(src); 2717 error = break_layout(src, false); 2718 if (error) { 2719 inode_unlock(src); 2720 if (error == -EWOULDBLOCK) 2721 goto retry; 2722 return error; 2723 } 2724 2725 if (src == dest) 2726 return 0; 2727 2728 /* Lock the other inode and make sure nobody got in and leased it. */ 2729 inode_lock_nested(dest, I_MUTEX_NONDIR2); 2730 error = break_layout(dest, false); 2731 if (error) { 2732 inode_unlock(src); 2733 inode_unlock(dest); 2734 if (error == -EWOULDBLOCK) 2735 goto retry; 2736 return error; 2737 } 2738 2739 return 0; 2740 } 2741 2742 static int 2743 xfs_mmaplock_two_inodes_and_break_dax_layout( 2744 struct xfs_inode *ip1, 2745 struct xfs_inode *ip2) 2746 { 2747 int error; 2748 2749 if (ip1->i_ino > ip2->i_ino) 2750 swap(ip1, ip2); 2751 2752 again: 2753 /* Lock the first inode */ 2754 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); 2755 error = xfs_break_dax_layouts(VFS_I(ip1)); 2756 if (error) { 2757 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 2758 return error; 2759 } 2760 2761 if (ip1 == ip2) 2762 return 0; 2763 2764 /* Nested lock the second inode */ 2765 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1)); 2766 /* 2767 * We cannot use xfs_break_dax_layouts() directly here because it may 2768 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable 2769 * for this nested lock case. 2770 */ 2771 error = dax_break_layout(VFS_I(ip2), 0, -1, NULL); 2772 if (error) { 2773 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 2774 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 2775 goto again; 2776 } 2777 2778 return 0; 2779 } 2780 2781 /* 2782 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 2783 * mmap activity. 2784 */ 2785 int 2786 xfs_ilock2_io_mmap( 2787 struct xfs_inode *ip1, 2788 struct xfs_inode *ip2) 2789 { 2790 int ret; 2791 2792 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 2793 if (ret) 2794 return ret; 2795 2796 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 2797 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2); 2798 if (ret) { 2799 inode_unlock(VFS_I(ip2)); 2800 if (ip1 != ip2) 2801 inode_unlock(VFS_I(ip1)); 2802 return ret; 2803 } 2804 } else 2805 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, 2806 VFS_I(ip2)->i_mapping); 2807 2808 return 0; 2809 } 2810 2811 /* Unlock both inodes to allow IO and mmap activity. */ 2812 void 2813 xfs_iunlock2_io_mmap( 2814 struct xfs_inode *ip1, 2815 struct xfs_inode *ip2) 2816 { 2817 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 2818 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 2819 if (ip1 != ip2) 2820 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 2821 } else 2822 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, 2823 VFS_I(ip2)->i_mapping); 2824 2825 inode_unlock(VFS_I(ip2)); 2826 if (ip1 != ip2) 2827 inode_unlock(VFS_I(ip1)); 2828 } 2829 2830 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */ 2831 void 2832 xfs_iunlock2_remapping( 2833 struct xfs_inode *ip1, 2834 struct xfs_inode *ip2) 2835 { 2836 xfs_iflags_clear(ip1, XFS_IREMAPPING); 2837 2838 if (ip1 != ip2) 2839 xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED); 2840 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 2841 2842 if (ip1 != ip2) 2843 inode_unlock_shared(VFS_I(ip1)); 2844 inode_unlock(VFS_I(ip2)); 2845 } 2846 2847 /* 2848 * Reload the incore inode list for this inode. Caller should ensure that 2849 * the link count cannot change, either by taking ILOCK_SHARED or otherwise 2850 * preventing other threads from executing. 2851 */ 2852 int 2853 xfs_inode_reload_unlinked_bucket( 2854 struct xfs_trans *tp, 2855 struct xfs_inode *ip) 2856 { 2857 struct xfs_mount *mp = tp->t_mountp; 2858 struct xfs_buf *agibp; 2859 struct xfs_agi *agi; 2860 struct xfs_perag *pag; 2861 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2862 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2863 xfs_agino_t prev_agino, next_agino; 2864 unsigned int bucket; 2865 bool foundit = false; 2866 int error; 2867 2868 /* Grab the first inode in the list */ 2869 pag = xfs_perag_get(mp, agno); 2870 error = xfs_ialloc_read_agi(pag, tp, 0, &agibp); 2871 xfs_perag_put(pag); 2872 if (error) 2873 return error; 2874 2875 /* 2876 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the 2877 * incore unlinked list pointers for this inode. Check once more to 2878 * see if we raced with anyone else to reload the unlinked list. 2879 */ 2880 if (!xfs_inode_unlinked_incomplete(ip)) { 2881 foundit = true; 2882 goto out_agibp; 2883 } 2884 2885 bucket = agino % XFS_AGI_UNLINKED_BUCKETS; 2886 agi = agibp->b_addr; 2887 2888 trace_xfs_inode_reload_unlinked_bucket(ip); 2889 2890 xfs_info_ratelimited(mp, 2891 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.", 2892 agino, agno); 2893 2894 prev_agino = NULLAGINO; 2895 next_agino = be32_to_cpu(agi->agi_unlinked[bucket]); 2896 while (next_agino != NULLAGINO) { 2897 struct xfs_inode *next_ip = NULL; 2898 2899 /* Found this caller's inode, set its backlink. */ 2900 if (next_agino == agino) { 2901 next_ip = ip; 2902 next_ip->i_prev_unlinked = prev_agino; 2903 foundit = true; 2904 goto next_inode; 2905 } 2906 2907 /* Try in-memory lookup first. */ 2908 next_ip = xfs_iunlink_lookup(pag, next_agino); 2909 if (next_ip) 2910 goto next_inode; 2911 2912 /* Inode not in memory, try reloading it. */ 2913 error = xfs_iunlink_reload_next(tp, agibp, prev_agino, 2914 next_agino); 2915 if (error) 2916 break; 2917 2918 /* Grab the reloaded inode. */ 2919 next_ip = xfs_iunlink_lookup(pag, next_agino); 2920 if (!next_ip) { 2921 /* No incore inode at all? We reloaded it... */ 2922 ASSERT(next_ip != NULL); 2923 error = -EFSCORRUPTED; 2924 break; 2925 } 2926 2927 next_inode: 2928 prev_agino = next_agino; 2929 next_agino = next_ip->i_next_unlinked; 2930 } 2931 2932 out_agibp: 2933 xfs_trans_brelse(tp, agibp); 2934 /* Should have found this inode somewhere in the iunlinked bucket. */ 2935 if (!error && !foundit) 2936 error = -EFSCORRUPTED; 2937 return error; 2938 } 2939 2940 /* Decide if this inode is missing its unlinked list and reload it. */ 2941 int 2942 xfs_inode_reload_unlinked( 2943 struct xfs_inode *ip) 2944 { 2945 struct xfs_trans *tp; 2946 int error = 0; 2947 2948 tp = xfs_trans_alloc_empty(ip->i_mount); 2949 xfs_ilock(ip, XFS_ILOCK_SHARED); 2950 if (xfs_inode_unlinked_incomplete(ip)) 2951 error = xfs_inode_reload_unlinked_bucket(tp, ip); 2952 xfs_iunlock(ip, XFS_ILOCK_SHARED); 2953 xfs_trans_cancel(tp); 2954 2955 return error; 2956 } 2957 2958 /* Has this inode fork been zapped by repair? */ 2959 bool 2960 xfs_ifork_zapped( 2961 const struct xfs_inode *ip, 2962 int whichfork) 2963 { 2964 unsigned int datamask = 0; 2965 2966 switch (whichfork) { 2967 case XFS_DATA_FORK: 2968 switch (ip->i_vnode.i_mode & S_IFMT) { 2969 case S_IFDIR: 2970 datamask = XFS_SICK_INO_DIR_ZAPPED; 2971 break; 2972 case S_IFLNK: 2973 datamask = XFS_SICK_INO_SYMLINK_ZAPPED; 2974 break; 2975 } 2976 return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask); 2977 case XFS_ATTR_FORK: 2978 return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED; 2979 default: 2980 return false; 2981 } 2982 } 2983 2984 /* Compute the number of data and realtime blocks used by a file. */ 2985 void 2986 xfs_inode_count_blocks( 2987 struct xfs_trans *tp, 2988 struct xfs_inode *ip, 2989 xfs_filblks_t *dblocks, 2990 xfs_filblks_t *rblocks) 2991 { 2992 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 2993 2994 *rblocks = 0; 2995 if (XFS_IS_REALTIME_INODE(ip)) 2996 xfs_bmap_count_leaves(ifp, rblocks); 2997 *dblocks = ip->i_nblocks - *rblocks; 2998 } 2999 3000 static void 3001 xfs_wait_dax_page( 3002 struct inode *inode) 3003 { 3004 struct xfs_inode *ip = XFS_I(inode); 3005 3006 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 3007 schedule(); 3008 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 3009 } 3010 3011 int 3012 xfs_break_dax_layouts( 3013 struct inode *inode) 3014 { 3015 xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL); 3016 3017 return dax_break_layout_inode(inode, xfs_wait_dax_page); 3018 } 3019 3020 int 3021 xfs_break_layouts( 3022 struct inode *inode, 3023 uint *iolock, 3024 enum layout_break_reason reason) 3025 { 3026 bool retry; 3027 int error; 3028 3029 xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL); 3030 3031 do { 3032 retry = false; 3033 switch (reason) { 3034 case BREAK_UNMAP: 3035 error = xfs_break_dax_layouts(inode); 3036 if (error) 3037 break; 3038 fallthrough; 3039 case BREAK_WRITE: 3040 error = xfs_break_leased_layouts(inode, iolock, &retry); 3041 break; 3042 default: 3043 WARN_ON_ONCE(1); 3044 error = -EINVAL; 3045 } 3046 } while (error == 0 && retry); 3047 3048 return error; 3049 } 3050 3051 /* Returns the size of fundamental allocation unit for a file, in bytes. */ 3052 unsigned int 3053 xfs_inode_alloc_unitsize( 3054 struct xfs_inode *ip) 3055 { 3056 unsigned int blocks = 1; 3057 3058 if (XFS_IS_REALTIME_INODE(ip)) 3059 blocks = ip->i_mount->m_sb.sb_rextsize; 3060 3061 return XFS_FSB_TO_B(ip->i_mount, blocks); 3062 } 3063 3064 /* Should we always be using copy on write for file writes? */ 3065 bool 3066 xfs_is_always_cow_inode( 3067 const struct xfs_inode *ip) 3068 { 3069 return xfs_is_zoned_inode(ip) || 3070 (ip->i_mount->m_always_cow && xfs_has_reflink(ip->i_mount)); 3071 } 3072