xref: /linux/fs/xfs/xfs_inode.c (revision 02680c23d7b3febe45ea3d4f9818c2b2dc89020a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_sb.h"
15 #include "xfs_mount.h"
16 #include "xfs_defer.h"
17 #include "xfs_inode.h"
18 #include "xfs_dir2.h"
19 #include "xfs_attr.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_bmap.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_log.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
38 
39 kmem_zone_t *xfs_inode_zone;
40 
41 /*
42  * Used in xfs_itruncate_extents().  This is the maximum number of extents
43  * freed from a file in a single transaction.
44  */
45 #define	XFS_ITRUNC_MAX_EXTENTS	2
46 
47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
48 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
49 
50 /*
51  * helper function to extract extent size hint from inode
52  */
53 xfs_extlen_t
54 xfs_get_extsz_hint(
55 	struct xfs_inode	*ip)
56 {
57 	/*
58 	 * No point in aligning allocations if we need to COW to actually
59 	 * write to them.
60 	 */
61 	if (xfs_is_always_cow_inode(ip))
62 		return 0;
63 	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
64 		return ip->i_extsize;
65 	if (XFS_IS_REALTIME_INODE(ip))
66 		return ip->i_mount->m_sb.sb_rextsize;
67 	return 0;
68 }
69 
70 /*
71  * Helper function to extract CoW extent size hint from inode.
72  * Between the extent size hint and the CoW extent size hint, we
73  * return the greater of the two.  If the value is zero (automatic),
74  * use the default size.
75  */
76 xfs_extlen_t
77 xfs_get_cowextsz_hint(
78 	struct xfs_inode	*ip)
79 {
80 	xfs_extlen_t		a, b;
81 
82 	a = 0;
83 	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
84 		a = ip->i_cowextsize;
85 	b = xfs_get_extsz_hint(ip);
86 
87 	a = max(a, b);
88 	if (a == 0)
89 		return XFS_DEFAULT_COWEXTSZ_HINT;
90 	return a;
91 }
92 
93 /*
94  * These two are wrapper routines around the xfs_ilock() routine used to
95  * centralize some grungy code.  They are used in places that wish to lock the
96  * inode solely for reading the extents.  The reason these places can't just
97  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
98  * bringing in of the extents from disk for a file in b-tree format.  If the
99  * inode is in b-tree format, then we need to lock the inode exclusively until
100  * the extents are read in.  Locking it exclusively all the time would limit
101  * our parallelism unnecessarily, though.  What we do instead is check to see
102  * if the extents have been read in yet, and only lock the inode exclusively
103  * if they have not.
104  *
105  * The functions return a value which should be given to the corresponding
106  * xfs_iunlock() call.
107  */
108 uint
109 xfs_ilock_data_map_shared(
110 	struct xfs_inode	*ip)
111 {
112 	uint			lock_mode = XFS_ILOCK_SHARED;
113 
114 	if (xfs_need_iread_extents(&ip->i_df))
115 		lock_mode = XFS_ILOCK_EXCL;
116 	xfs_ilock(ip, lock_mode);
117 	return lock_mode;
118 }
119 
120 uint
121 xfs_ilock_attr_map_shared(
122 	struct xfs_inode	*ip)
123 {
124 	uint			lock_mode = XFS_ILOCK_SHARED;
125 
126 	if (ip->i_afp && xfs_need_iread_extents(ip->i_afp))
127 		lock_mode = XFS_ILOCK_EXCL;
128 	xfs_ilock(ip, lock_mode);
129 	return lock_mode;
130 }
131 
132 /*
133  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
134  * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
135  * various combinations of the locks to be obtained.
136  *
137  * The 3 locks should always be ordered so that the IO lock is obtained first,
138  * the mmap lock second and the ilock last in order to prevent deadlock.
139  *
140  * Basic locking order:
141  *
142  * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
143  *
144  * mmap_lock locking order:
145  *
146  * i_rwsem -> page lock -> mmap_lock
147  * mmap_lock -> i_mmap_lock -> page_lock
148  *
149  * The difference in mmap_lock locking order mean that we cannot hold the
150  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
151  * fault in pages during copy in/out (for buffered IO) or require the mmap_lock
152  * in get_user_pages() to map the user pages into the kernel address space for
153  * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
154  * page faults already hold the mmap_lock.
155  *
156  * Hence to serialise fully against both syscall and mmap based IO, we need to
157  * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
158  * taken in places where we need to invalidate the page cache in a race
159  * free manner (e.g. truncate, hole punch and other extent manipulation
160  * functions).
161  */
162 void
163 xfs_ilock(
164 	xfs_inode_t		*ip,
165 	uint			lock_flags)
166 {
167 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
168 
169 	/*
170 	 * You can't set both SHARED and EXCL for the same lock,
171 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
172 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
173 	 */
174 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
175 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
176 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
177 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
178 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
179 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
180 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
181 
182 	if (lock_flags & XFS_IOLOCK_EXCL) {
183 		down_write_nested(&VFS_I(ip)->i_rwsem,
184 				  XFS_IOLOCK_DEP(lock_flags));
185 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
186 		down_read_nested(&VFS_I(ip)->i_rwsem,
187 				 XFS_IOLOCK_DEP(lock_flags));
188 	}
189 
190 	if (lock_flags & XFS_MMAPLOCK_EXCL)
191 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
192 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
193 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
194 
195 	if (lock_flags & XFS_ILOCK_EXCL)
196 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
197 	else if (lock_flags & XFS_ILOCK_SHARED)
198 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
199 }
200 
201 /*
202  * This is just like xfs_ilock(), except that the caller
203  * is guaranteed not to sleep.  It returns 1 if it gets
204  * the requested locks and 0 otherwise.  If the IO lock is
205  * obtained but the inode lock cannot be, then the IO lock
206  * is dropped before returning.
207  *
208  * ip -- the inode being locked
209  * lock_flags -- this parameter indicates the inode's locks to be
210  *       to be locked.  See the comment for xfs_ilock() for a list
211  *	 of valid values.
212  */
213 int
214 xfs_ilock_nowait(
215 	xfs_inode_t		*ip,
216 	uint			lock_flags)
217 {
218 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
219 
220 	/*
221 	 * You can't set both SHARED and EXCL for the same lock,
222 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
223 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
224 	 */
225 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
226 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
227 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
228 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
229 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
230 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
231 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
232 
233 	if (lock_flags & XFS_IOLOCK_EXCL) {
234 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
235 			goto out;
236 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
237 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
238 			goto out;
239 	}
240 
241 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
242 		if (!mrtryupdate(&ip->i_mmaplock))
243 			goto out_undo_iolock;
244 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
245 		if (!mrtryaccess(&ip->i_mmaplock))
246 			goto out_undo_iolock;
247 	}
248 
249 	if (lock_flags & XFS_ILOCK_EXCL) {
250 		if (!mrtryupdate(&ip->i_lock))
251 			goto out_undo_mmaplock;
252 	} else if (lock_flags & XFS_ILOCK_SHARED) {
253 		if (!mrtryaccess(&ip->i_lock))
254 			goto out_undo_mmaplock;
255 	}
256 	return 1;
257 
258 out_undo_mmaplock:
259 	if (lock_flags & XFS_MMAPLOCK_EXCL)
260 		mrunlock_excl(&ip->i_mmaplock);
261 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
262 		mrunlock_shared(&ip->i_mmaplock);
263 out_undo_iolock:
264 	if (lock_flags & XFS_IOLOCK_EXCL)
265 		up_write(&VFS_I(ip)->i_rwsem);
266 	else if (lock_flags & XFS_IOLOCK_SHARED)
267 		up_read(&VFS_I(ip)->i_rwsem);
268 out:
269 	return 0;
270 }
271 
272 /*
273  * xfs_iunlock() is used to drop the inode locks acquired with
274  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
275  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
276  * that we know which locks to drop.
277  *
278  * ip -- the inode being unlocked
279  * lock_flags -- this parameter indicates the inode's locks to be
280  *       to be unlocked.  See the comment for xfs_ilock() for a list
281  *	 of valid values for this parameter.
282  *
283  */
284 void
285 xfs_iunlock(
286 	xfs_inode_t		*ip,
287 	uint			lock_flags)
288 {
289 	/*
290 	 * You can't set both SHARED and EXCL for the same lock,
291 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
292 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
293 	 */
294 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
295 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
296 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
297 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
298 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
299 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
300 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
301 	ASSERT(lock_flags != 0);
302 
303 	if (lock_flags & XFS_IOLOCK_EXCL)
304 		up_write(&VFS_I(ip)->i_rwsem);
305 	else if (lock_flags & XFS_IOLOCK_SHARED)
306 		up_read(&VFS_I(ip)->i_rwsem);
307 
308 	if (lock_flags & XFS_MMAPLOCK_EXCL)
309 		mrunlock_excl(&ip->i_mmaplock);
310 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
311 		mrunlock_shared(&ip->i_mmaplock);
312 
313 	if (lock_flags & XFS_ILOCK_EXCL)
314 		mrunlock_excl(&ip->i_lock);
315 	else if (lock_flags & XFS_ILOCK_SHARED)
316 		mrunlock_shared(&ip->i_lock);
317 
318 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
319 }
320 
321 /*
322  * give up write locks.  the i/o lock cannot be held nested
323  * if it is being demoted.
324  */
325 void
326 xfs_ilock_demote(
327 	xfs_inode_t		*ip,
328 	uint			lock_flags)
329 {
330 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
331 	ASSERT((lock_flags &
332 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
333 
334 	if (lock_flags & XFS_ILOCK_EXCL)
335 		mrdemote(&ip->i_lock);
336 	if (lock_flags & XFS_MMAPLOCK_EXCL)
337 		mrdemote(&ip->i_mmaplock);
338 	if (lock_flags & XFS_IOLOCK_EXCL)
339 		downgrade_write(&VFS_I(ip)->i_rwsem);
340 
341 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
342 }
343 
344 #if defined(DEBUG) || defined(XFS_WARN)
345 int
346 xfs_isilocked(
347 	xfs_inode_t		*ip,
348 	uint			lock_flags)
349 {
350 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
351 		if (!(lock_flags & XFS_ILOCK_SHARED))
352 			return !!ip->i_lock.mr_writer;
353 		return rwsem_is_locked(&ip->i_lock.mr_lock);
354 	}
355 
356 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
357 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
358 			return !!ip->i_mmaplock.mr_writer;
359 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
360 	}
361 
362 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
363 		if (!(lock_flags & XFS_IOLOCK_SHARED))
364 			return !debug_locks ||
365 				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
366 		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
367 	}
368 
369 	ASSERT(0);
370 	return 0;
371 }
372 #endif
373 
374 /*
375  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
376  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
377  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
378  * errors and warnings.
379  */
380 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
381 static bool
382 xfs_lockdep_subclass_ok(
383 	int subclass)
384 {
385 	return subclass < MAX_LOCKDEP_SUBCLASSES;
386 }
387 #else
388 #define xfs_lockdep_subclass_ok(subclass)	(true)
389 #endif
390 
391 /*
392  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
393  * value. This can be called for any type of inode lock combination, including
394  * parent locking. Care must be taken to ensure we don't overrun the subclass
395  * storage fields in the class mask we build.
396  */
397 static inline int
398 xfs_lock_inumorder(int lock_mode, int subclass)
399 {
400 	int	class = 0;
401 
402 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
403 			      XFS_ILOCK_RTSUM)));
404 	ASSERT(xfs_lockdep_subclass_ok(subclass));
405 
406 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
407 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
408 		class += subclass << XFS_IOLOCK_SHIFT;
409 	}
410 
411 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
412 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
413 		class += subclass << XFS_MMAPLOCK_SHIFT;
414 	}
415 
416 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
417 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
418 		class += subclass << XFS_ILOCK_SHIFT;
419 	}
420 
421 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
422 }
423 
424 /*
425  * The following routine will lock n inodes in exclusive mode.  We assume the
426  * caller calls us with the inodes in i_ino order.
427  *
428  * We need to detect deadlock where an inode that we lock is in the AIL and we
429  * start waiting for another inode that is locked by a thread in a long running
430  * transaction (such as truncate). This can result in deadlock since the long
431  * running trans might need to wait for the inode we just locked in order to
432  * push the tail and free space in the log.
433  *
434  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
435  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
436  * lock more than one at a time, lockdep will report false positives saying we
437  * have violated locking orders.
438  */
439 static void
440 xfs_lock_inodes(
441 	struct xfs_inode	**ips,
442 	int			inodes,
443 	uint			lock_mode)
444 {
445 	int			attempts = 0, i, j, try_lock;
446 	struct xfs_log_item	*lp;
447 
448 	/*
449 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
450 	 * support an arbitrary depth of locking here, but absolute limits on
451 	 * inodes depend on the type of locking and the limits placed by
452 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
453 	 * the asserts.
454 	 */
455 	ASSERT(ips && inodes >= 2 && inodes <= 5);
456 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
457 			    XFS_ILOCK_EXCL));
458 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
459 			      XFS_ILOCK_SHARED)));
460 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
461 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
462 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
463 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
464 
465 	if (lock_mode & XFS_IOLOCK_EXCL) {
466 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
467 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
468 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
469 
470 	try_lock = 0;
471 	i = 0;
472 again:
473 	for (; i < inodes; i++) {
474 		ASSERT(ips[i]);
475 
476 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
477 			continue;
478 
479 		/*
480 		 * If try_lock is not set yet, make sure all locked inodes are
481 		 * not in the AIL.  If any are, set try_lock to be used later.
482 		 */
483 		if (!try_lock) {
484 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
485 				lp = &ips[j]->i_itemp->ili_item;
486 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
487 					try_lock++;
488 			}
489 		}
490 
491 		/*
492 		 * If any of the previous locks we have locked is in the AIL,
493 		 * we must TRY to get the second and subsequent locks. If
494 		 * we can't get any, we must release all we have
495 		 * and try again.
496 		 */
497 		if (!try_lock) {
498 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
499 			continue;
500 		}
501 
502 		/* try_lock means we have an inode locked that is in the AIL. */
503 		ASSERT(i != 0);
504 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
505 			continue;
506 
507 		/*
508 		 * Unlock all previous guys and try again.  xfs_iunlock will try
509 		 * to push the tail if the inode is in the AIL.
510 		 */
511 		attempts++;
512 		for (j = i - 1; j >= 0; j--) {
513 			/*
514 			 * Check to see if we've already unlocked this one.  Not
515 			 * the first one going back, and the inode ptr is the
516 			 * same.
517 			 */
518 			if (j != (i - 1) && ips[j] == ips[j + 1])
519 				continue;
520 
521 			xfs_iunlock(ips[j], lock_mode);
522 		}
523 
524 		if ((attempts % 5) == 0) {
525 			delay(1); /* Don't just spin the CPU */
526 		}
527 		i = 0;
528 		try_lock = 0;
529 		goto again;
530 	}
531 }
532 
533 /*
534  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
535  * the mmaplock or the ilock, but not more than one type at a time. If we lock
536  * more than one at a time, lockdep will report false positives saying we have
537  * violated locking orders.  The iolock must be double-locked separately since
538  * we use i_rwsem for that.  We now support taking one lock EXCL and the other
539  * SHARED.
540  */
541 void
542 xfs_lock_two_inodes(
543 	struct xfs_inode	*ip0,
544 	uint			ip0_mode,
545 	struct xfs_inode	*ip1,
546 	uint			ip1_mode)
547 {
548 	struct xfs_inode	*temp;
549 	uint			mode_temp;
550 	int			attempts = 0;
551 	struct xfs_log_item	*lp;
552 
553 	ASSERT(hweight32(ip0_mode) == 1);
554 	ASSERT(hweight32(ip1_mode) == 1);
555 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
556 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
557 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
558 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
559 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
560 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
561 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
562 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
563 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
564 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
565 
566 	ASSERT(ip0->i_ino != ip1->i_ino);
567 
568 	if (ip0->i_ino > ip1->i_ino) {
569 		temp = ip0;
570 		ip0 = ip1;
571 		ip1 = temp;
572 		mode_temp = ip0_mode;
573 		ip0_mode = ip1_mode;
574 		ip1_mode = mode_temp;
575 	}
576 
577  again:
578 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
579 
580 	/*
581 	 * If the first lock we have locked is in the AIL, we must TRY to get
582 	 * the second lock. If we can't get it, we must release the first one
583 	 * and try again.
584 	 */
585 	lp = &ip0->i_itemp->ili_item;
586 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
587 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
588 			xfs_iunlock(ip0, ip0_mode);
589 			if ((++attempts % 5) == 0)
590 				delay(1); /* Don't just spin the CPU */
591 			goto again;
592 		}
593 	} else {
594 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
595 	}
596 }
597 
598 uint
599 xfs_ip2xflags(
600 	struct xfs_inode	*ip)
601 {
602 	uint			flags = 0;
603 
604 	if (ip->i_diflags & XFS_DIFLAG_ANY) {
605 		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
606 			flags |= FS_XFLAG_REALTIME;
607 		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
608 			flags |= FS_XFLAG_PREALLOC;
609 		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
610 			flags |= FS_XFLAG_IMMUTABLE;
611 		if (ip->i_diflags & XFS_DIFLAG_APPEND)
612 			flags |= FS_XFLAG_APPEND;
613 		if (ip->i_diflags & XFS_DIFLAG_SYNC)
614 			flags |= FS_XFLAG_SYNC;
615 		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
616 			flags |= FS_XFLAG_NOATIME;
617 		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
618 			flags |= FS_XFLAG_NODUMP;
619 		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
620 			flags |= FS_XFLAG_RTINHERIT;
621 		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
622 			flags |= FS_XFLAG_PROJINHERIT;
623 		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
624 			flags |= FS_XFLAG_NOSYMLINKS;
625 		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
626 			flags |= FS_XFLAG_EXTSIZE;
627 		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
628 			flags |= FS_XFLAG_EXTSZINHERIT;
629 		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
630 			flags |= FS_XFLAG_NODEFRAG;
631 		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
632 			flags |= FS_XFLAG_FILESTREAM;
633 	}
634 
635 	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
636 		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
637 			flags |= FS_XFLAG_DAX;
638 		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
639 			flags |= FS_XFLAG_COWEXTSIZE;
640 	}
641 
642 	if (XFS_IFORK_Q(ip))
643 		flags |= FS_XFLAG_HASATTR;
644 	return flags;
645 }
646 
647 /*
648  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
649  * is allowed, otherwise it has to be an exact match. If a CI match is found,
650  * ci_name->name will point to a the actual name (caller must free) or
651  * will be set to NULL if an exact match is found.
652  */
653 int
654 xfs_lookup(
655 	xfs_inode_t		*dp,
656 	struct xfs_name		*name,
657 	xfs_inode_t		**ipp,
658 	struct xfs_name		*ci_name)
659 {
660 	xfs_ino_t		inum;
661 	int			error;
662 
663 	trace_xfs_lookup(dp, name);
664 
665 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
666 		return -EIO;
667 
668 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
669 	if (error)
670 		goto out_unlock;
671 
672 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
673 	if (error)
674 		goto out_free_name;
675 
676 	return 0;
677 
678 out_free_name:
679 	if (ci_name)
680 		kmem_free(ci_name->name);
681 out_unlock:
682 	*ipp = NULL;
683 	return error;
684 }
685 
686 /* Propagate di_flags from a parent inode to a child inode. */
687 static void
688 xfs_inode_inherit_flags(
689 	struct xfs_inode	*ip,
690 	const struct xfs_inode	*pip)
691 {
692 	unsigned int		di_flags = 0;
693 	umode_t			mode = VFS_I(ip)->i_mode;
694 
695 	if (S_ISDIR(mode)) {
696 		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
697 			di_flags |= XFS_DIFLAG_RTINHERIT;
698 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
699 			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
700 			ip->i_extsize = pip->i_extsize;
701 		}
702 		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
703 			di_flags |= XFS_DIFLAG_PROJINHERIT;
704 	} else if (S_ISREG(mode)) {
705 		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
706 		    xfs_sb_version_hasrealtime(&ip->i_mount->m_sb))
707 			di_flags |= XFS_DIFLAG_REALTIME;
708 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
709 			di_flags |= XFS_DIFLAG_EXTSIZE;
710 			ip->i_extsize = pip->i_extsize;
711 		}
712 	}
713 	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
714 	    xfs_inherit_noatime)
715 		di_flags |= XFS_DIFLAG_NOATIME;
716 	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
717 	    xfs_inherit_nodump)
718 		di_flags |= XFS_DIFLAG_NODUMP;
719 	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
720 	    xfs_inherit_sync)
721 		di_flags |= XFS_DIFLAG_SYNC;
722 	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
723 	    xfs_inherit_nosymlinks)
724 		di_flags |= XFS_DIFLAG_NOSYMLINKS;
725 	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
726 	    xfs_inherit_nodefrag)
727 		di_flags |= XFS_DIFLAG_NODEFRAG;
728 	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
729 		di_flags |= XFS_DIFLAG_FILESTREAM;
730 
731 	ip->i_diflags |= di_flags;
732 }
733 
734 /* Propagate di_flags2 from a parent inode to a child inode. */
735 static void
736 xfs_inode_inherit_flags2(
737 	struct xfs_inode	*ip,
738 	const struct xfs_inode	*pip)
739 {
740 	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
741 		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
742 		ip->i_cowextsize = pip->i_cowextsize;
743 	}
744 	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
745 		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
746 }
747 
748 /*
749  * Initialise a newly allocated inode and return the in-core inode to the
750  * caller locked exclusively.
751  */
752 static int
753 xfs_init_new_inode(
754 	struct user_namespace	*mnt_userns,
755 	struct xfs_trans	*tp,
756 	struct xfs_inode	*pip,
757 	xfs_ino_t		ino,
758 	umode_t			mode,
759 	xfs_nlink_t		nlink,
760 	dev_t			rdev,
761 	prid_t			prid,
762 	bool			init_xattrs,
763 	struct xfs_inode	**ipp)
764 {
765 	struct inode		*dir = pip ? VFS_I(pip) : NULL;
766 	struct xfs_mount	*mp = tp->t_mountp;
767 	struct xfs_inode	*ip;
768 	unsigned int		flags;
769 	int			error;
770 	struct timespec64	tv;
771 	struct inode		*inode;
772 
773 	/*
774 	 * Protect against obviously corrupt allocation btree records. Later
775 	 * xfs_iget checks will catch re-allocation of other active in-memory
776 	 * and on-disk inodes. If we don't catch reallocating the parent inode
777 	 * here we will deadlock in xfs_iget() so we have to do these checks
778 	 * first.
779 	 */
780 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
781 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
782 		return -EFSCORRUPTED;
783 	}
784 
785 	/*
786 	 * Get the in-core inode with the lock held exclusively to prevent
787 	 * others from looking at until we're done.
788 	 */
789 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
790 	if (error)
791 		return error;
792 
793 	ASSERT(ip != NULL);
794 	inode = VFS_I(ip);
795 	set_nlink(inode, nlink);
796 	inode->i_rdev = rdev;
797 	ip->i_projid = prid;
798 
799 	if (dir && !(dir->i_mode & S_ISGID) &&
800 	    (mp->m_flags & XFS_MOUNT_GRPID)) {
801 		inode_fsuid_set(inode, mnt_userns);
802 		inode->i_gid = dir->i_gid;
803 		inode->i_mode = mode;
804 	} else {
805 		inode_init_owner(mnt_userns, inode, dir, mode);
806 	}
807 
808 	/*
809 	 * If the group ID of the new file does not match the effective group
810 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
811 	 * (and only if the irix_sgid_inherit compatibility variable is set).
812 	 */
813 	if (irix_sgid_inherit &&
814 	    (inode->i_mode & S_ISGID) &&
815 	    !in_group_p(i_gid_into_mnt(mnt_userns, inode)))
816 		inode->i_mode &= ~S_ISGID;
817 
818 	ip->i_disk_size = 0;
819 	ip->i_df.if_nextents = 0;
820 	ASSERT(ip->i_nblocks == 0);
821 
822 	tv = current_time(inode);
823 	inode->i_mtime = tv;
824 	inode->i_atime = tv;
825 	inode->i_ctime = tv;
826 
827 	ip->i_extsize = 0;
828 	ip->i_diflags = 0;
829 
830 	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
831 		inode_set_iversion(inode, 1);
832 		ip->i_cowextsize = 0;
833 		ip->i_crtime = tv;
834 	}
835 
836 	flags = XFS_ILOG_CORE;
837 	switch (mode & S_IFMT) {
838 	case S_IFIFO:
839 	case S_IFCHR:
840 	case S_IFBLK:
841 	case S_IFSOCK:
842 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
843 		flags |= XFS_ILOG_DEV;
844 		break;
845 	case S_IFREG:
846 	case S_IFDIR:
847 		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
848 			xfs_inode_inherit_flags(ip, pip);
849 		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
850 			xfs_inode_inherit_flags2(ip, pip);
851 		/* FALLTHROUGH */
852 	case S_IFLNK:
853 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
854 		ip->i_df.if_bytes = 0;
855 		ip->i_df.if_u1.if_root = NULL;
856 		break;
857 	default:
858 		ASSERT(0);
859 	}
860 
861 	/*
862 	 * If we need to create attributes immediately after allocating the
863 	 * inode, initialise an empty attribute fork right now. We use the
864 	 * default fork offset for attributes here as we don't know exactly what
865 	 * size or how many attributes we might be adding. We can do this
866 	 * safely here because we know the data fork is completely empty and
867 	 * this saves us from needing to run a separate transaction to set the
868 	 * fork offset in the immediate future.
869 	 */
870 	if (init_xattrs && xfs_sb_version_hasattr(&mp->m_sb)) {
871 		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
872 		ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0);
873 	}
874 
875 	/*
876 	 * Log the new values stuffed into the inode.
877 	 */
878 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
879 	xfs_trans_log_inode(tp, ip, flags);
880 
881 	/* now that we have an i_mode we can setup the inode structure */
882 	xfs_setup_inode(ip);
883 
884 	*ipp = ip;
885 	return 0;
886 }
887 
888 /*
889  * Allocates a new inode from disk and return a pointer to the incore copy. This
890  * routine will internally commit the current transaction and allocate a new one
891  * if we needed to allocate more on-disk free inodes to perform the requested
892  * operation.
893  *
894  * If we are allocating quota inodes, we do not have a parent inode to attach to
895  * or associate with (i.e. dp == NULL) because they are not linked into the
896  * directory structure - they are attached directly to the superblock - and so
897  * have no parent.
898  */
899 int
900 xfs_dir_ialloc(
901 	struct user_namespace	*mnt_userns,
902 	struct xfs_trans	**tpp,
903 	struct xfs_inode	*dp,
904 	umode_t			mode,
905 	xfs_nlink_t		nlink,
906 	dev_t			rdev,
907 	prid_t			prid,
908 	bool			init_xattrs,
909 	struct xfs_inode	**ipp)
910 {
911 	struct xfs_buf		*agibp;
912 	xfs_ino_t		parent_ino = dp ? dp->i_ino : 0;
913 	xfs_ino_t		ino;
914 	int			error;
915 
916 	ASSERT((*tpp)->t_flags & XFS_TRANS_PERM_LOG_RES);
917 
918 	/*
919 	 * Call the space management code to pick the on-disk inode to be
920 	 * allocated.
921 	 */
922 	error = xfs_dialloc_select_ag(tpp, parent_ino, mode, &agibp);
923 	if (error)
924 		return error;
925 
926 	if (!agibp)
927 		return -ENOSPC;
928 
929 	/* Allocate an inode from the selected AG */
930 	error = xfs_dialloc_ag(*tpp, agibp, parent_ino, &ino);
931 	if (error)
932 		return error;
933 	ASSERT(ino != NULLFSINO);
934 
935 	return xfs_init_new_inode(mnt_userns, *tpp, dp, ino, mode, nlink, rdev,
936 				  prid, init_xattrs, ipp);
937 }
938 
939 /*
940  * Decrement the link count on an inode & log the change.  If this causes the
941  * link count to go to zero, move the inode to AGI unlinked list so that it can
942  * be freed when the last active reference goes away via xfs_inactive().
943  */
944 static int			/* error */
945 xfs_droplink(
946 	xfs_trans_t *tp,
947 	xfs_inode_t *ip)
948 {
949 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
950 
951 	drop_nlink(VFS_I(ip));
952 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
953 
954 	if (VFS_I(ip)->i_nlink)
955 		return 0;
956 
957 	return xfs_iunlink(tp, ip);
958 }
959 
960 /*
961  * Increment the link count on an inode & log the change.
962  */
963 static void
964 xfs_bumplink(
965 	xfs_trans_t *tp,
966 	xfs_inode_t *ip)
967 {
968 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
969 
970 	inc_nlink(VFS_I(ip));
971 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
972 }
973 
974 int
975 xfs_create(
976 	struct user_namespace	*mnt_userns,
977 	xfs_inode_t		*dp,
978 	struct xfs_name		*name,
979 	umode_t			mode,
980 	dev_t			rdev,
981 	bool			init_xattrs,
982 	xfs_inode_t		**ipp)
983 {
984 	int			is_dir = S_ISDIR(mode);
985 	struct xfs_mount	*mp = dp->i_mount;
986 	struct xfs_inode	*ip = NULL;
987 	struct xfs_trans	*tp = NULL;
988 	int			error;
989 	bool                    unlock_dp_on_error = false;
990 	prid_t			prid;
991 	struct xfs_dquot	*udqp = NULL;
992 	struct xfs_dquot	*gdqp = NULL;
993 	struct xfs_dquot	*pdqp = NULL;
994 	struct xfs_trans_res	*tres;
995 	uint			resblks;
996 
997 	trace_xfs_create(dp, name);
998 
999 	if (XFS_FORCED_SHUTDOWN(mp))
1000 		return -EIO;
1001 
1002 	prid = xfs_get_initial_prid(dp);
1003 
1004 	/*
1005 	 * Make sure that we have allocated dquot(s) on disk.
1006 	 */
1007 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
1008 			mapped_fsgid(mnt_userns), prid,
1009 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1010 			&udqp, &gdqp, &pdqp);
1011 	if (error)
1012 		return error;
1013 
1014 	if (is_dir) {
1015 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1016 		tres = &M_RES(mp)->tr_mkdir;
1017 	} else {
1018 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1019 		tres = &M_RES(mp)->tr_create;
1020 	}
1021 
1022 	/*
1023 	 * Initially assume that the file does not exist and
1024 	 * reserve the resources for that case.  If that is not
1025 	 * the case we'll drop the one we have and get a more
1026 	 * appropriate transaction later.
1027 	 */
1028 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1029 			&tp);
1030 	if (error == -ENOSPC) {
1031 		/* flush outstanding delalloc blocks and retry */
1032 		xfs_flush_inodes(mp);
1033 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1034 				resblks, &tp);
1035 	}
1036 	if (error)
1037 		goto out_release_dquots;
1038 
1039 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1040 	unlock_dp_on_error = true;
1041 
1042 	error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK,
1043 			XFS_IEXT_DIR_MANIP_CNT(mp));
1044 	if (error)
1045 		goto out_trans_cancel;
1046 
1047 	/*
1048 	 * A newly created regular or special file just has one directory
1049 	 * entry pointing to them, but a directory also the "." entry
1050 	 * pointing to itself.
1051 	 */
1052 	error = xfs_dir_ialloc(mnt_userns, &tp, dp, mode, is_dir ? 2 : 1, rdev,
1053 			       prid, init_xattrs, &ip);
1054 	if (error)
1055 		goto out_trans_cancel;
1056 
1057 	/*
1058 	 * Now we join the directory inode to the transaction.  We do not do it
1059 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1060 	 * (and release all the locks).  An error from here on will result in
1061 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1062 	 * error path.
1063 	 */
1064 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1065 	unlock_dp_on_error = false;
1066 
1067 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1068 					resblks - XFS_IALLOC_SPACE_RES(mp));
1069 	if (error) {
1070 		ASSERT(error != -ENOSPC);
1071 		goto out_trans_cancel;
1072 	}
1073 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1074 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1075 
1076 	if (is_dir) {
1077 		error = xfs_dir_init(tp, ip, dp);
1078 		if (error)
1079 			goto out_trans_cancel;
1080 
1081 		xfs_bumplink(tp, dp);
1082 	}
1083 
1084 	/*
1085 	 * If this is a synchronous mount, make sure that the
1086 	 * create transaction goes to disk before returning to
1087 	 * the user.
1088 	 */
1089 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1090 		xfs_trans_set_sync(tp);
1091 
1092 	/*
1093 	 * Attach the dquot(s) to the inodes and modify them incore.
1094 	 * These ids of the inode couldn't have changed since the new
1095 	 * inode has been locked ever since it was created.
1096 	 */
1097 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1098 
1099 	error = xfs_trans_commit(tp);
1100 	if (error)
1101 		goto out_release_inode;
1102 
1103 	xfs_qm_dqrele(udqp);
1104 	xfs_qm_dqrele(gdqp);
1105 	xfs_qm_dqrele(pdqp);
1106 
1107 	*ipp = ip;
1108 	return 0;
1109 
1110  out_trans_cancel:
1111 	xfs_trans_cancel(tp);
1112  out_release_inode:
1113 	/*
1114 	 * Wait until after the current transaction is aborted to finish the
1115 	 * setup of the inode and release the inode.  This prevents recursive
1116 	 * transactions and deadlocks from xfs_inactive.
1117 	 */
1118 	if (ip) {
1119 		xfs_finish_inode_setup(ip);
1120 		xfs_irele(ip);
1121 	}
1122  out_release_dquots:
1123 	xfs_qm_dqrele(udqp);
1124 	xfs_qm_dqrele(gdqp);
1125 	xfs_qm_dqrele(pdqp);
1126 
1127 	if (unlock_dp_on_error)
1128 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1129 	return error;
1130 }
1131 
1132 int
1133 xfs_create_tmpfile(
1134 	struct user_namespace	*mnt_userns,
1135 	struct xfs_inode	*dp,
1136 	umode_t			mode,
1137 	struct xfs_inode	**ipp)
1138 {
1139 	struct xfs_mount	*mp = dp->i_mount;
1140 	struct xfs_inode	*ip = NULL;
1141 	struct xfs_trans	*tp = NULL;
1142 	int			error;
1143 	prid_t                  prid;
1144 	struct xfs_dquot	*udqp = NULL;
1145 	struct xfs_dquot	*gdqp = NULL;
1146 	struct xfs_dquot	*pdqp = NULL;
1147 	struct xfs_trans_res	*tres;
1148 	uint			resblks;
1149 
1150 	if (XFS_FORCED_SHUTDOWN(mp))
1151 		return -EIO;
1152 
1153 	prid = xfs_get_initial_prid(dp);
1154 
1155 	/*
1156 	 * Make sure that we have allocated dquot(s) on disk.
1157 	 */
1158 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
1159 			mapped_fsgid(mnt_userns), prid,
1160 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1161 			&udqp, &gdqp, &pdqp);
1162 	if (error)
1163 		return error;
1164 
1165 	resblks = XFS_IALLOC_SPACE_RES(mp);
1166 	tres = &M_RES(mp)->tr_create_tmpfile;
1167 
1168 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1169 			&tp);
1170 	if (error)
1171 		goto out_release_dquots;
1172 
1173 	error = xfs_dir_ialloc(mnt_userns, &tp, dp, mode, 0, 0, prid,
1174 				false, &ip);
1175 	if (error)
1176 		goto out_trans_cancel;
1177 
1178 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1179 		xfs_trans_set_sync(tp);
1180 
1181 	/*
1182 	 * Attach the dquot(s) to the inodes and modify them incore.
1183 	 * These ids of the inode couldn't have changed since the new
1184 	 * inode has been locked ever since it was created.
1185 	 */
1186 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1187 
1188 	error = xfs_iunlink(tp, ip);
1189 	if (error)
1190 		goto out_trans_cancel;
1191 
1192 	error = xfs_trans_commit(tp);
1193 	if (error)
1194 		goto out_release_inode;
1195 
1196 	xfs_qm_dqrele(udqp);
1197 	xfs_qm_dqrele(gdqp);
1198 	xfs_qm_dqrele(pdqp);
1199 
1200 	*ipp = ip;
1201 	return 0;
1202 
1203  out_trans_cancel:
1204 	xfs_trans_cancel(tp);
1205  out_release_inode:
1206 	/*
1207 	 * Wait until after the current transaction is aborted to finish the
1208 	 * setup of the inode and release the inode.  This prevents recursive
1209 	 * transactions and deadlocks from xfs_inactive.
1210 	 */
1211 	if (ip) {
1212 		xfs_finish_inode_setup(ip);
1213 		xfs_irele(ip);
1214 	}
1215  out_release_dquots:
1216 	xfs_qm_dqrele(udqp);
1217 	xfs_qm_dqrele(gdqp);
1218 	xfs_qm_dqrele(pdqp);
1219 
1220 	return error;
1221 }
1222 
1223 int
1224 xfs_link(
1225 	xfs_inode_t		*tdp,
1226 	xfs_inode_t		*sip,
1227 	struct xfs_name		*target_name)
1228 {
1229 	xfs_mount_t		*mp = tdp->i_mount;
1230 	xfs_trans_t		*tp;
1231 	int			error;
1232 	int			resblks;
1233 
1234 	trace_xfs_link(tdp, target_name);
1235 
1236 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1237 
1238 	if (XFS_FORCED_SHUTDOWN(mp))
1239 		return -EIO;
1240 
1241 	error = xfs_qm_dqattach(sip);
1242 	if (error)
1243 		goto std_return;
1244 
1245 	error = xfs_qm_dqattach(tdp);
1246 	if (error)
1247 		goto std_return;
1248 
1249 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1250 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1251 	if (error == -ENOSPC) {
1252 		resblks = 0;
1253 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1254 	}
1255 	if (error)
1256 		goto std_return;
1257 
1258 	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1259 
1260 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1261 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1262 
1263 	error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK,
1264 			XFS_IEXT_DIR_MANIP_CNT(mp));
1265 	if (error)
1266 		goto error_return;
1267 
1268 	/*
1269 	 * If we are using project inheritance, we only allow hard link
1270 	 * creation in our tree when the project IDs are the same; else
1271 	 * the tree quota mechanism could be circumvented.
1272 	 */
1273 	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1274 		     tdp->i_projid != sip->i_projid)) {
1275 		error = -EXDEV;
1276 		goto error_return;
1277 	}
1278 
1279 	if (!resblks) {
1280 		error = xfs_dir_canenter(tp, tdp, target_name);
1281 		if (error)
1282 			goto error_return;
1283 	}
1284 
1285 	/*
1286 	 * Handle initial link state of O_TMPFILE inode
1287 	 */
1288 	if (VFS_I(sip)->i_nlink == 0) {
1289 		error = xfs_iunlink_remove(tp, sip);
1290 		if (error)
1291 			goto error_return;
1292 	}
1293 
1294 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1295 				   resblks);
1296 	if (error)
1297 		goto error_return;
1298 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1299 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1300 
1301 	xfs_bumplink(tp, sip);
1302 
1303 	/*
1304 	 * If this is a synchronous mount, make sure that the
1305 	 * link transaction goes to disk before returning to
1306 	 * the user.
1307 	 */
1308 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1309 		xfs_trans_set_sync(tp);
1310 
1311 	return xfs_trans_commit(tp);
1312 
1313  error_return:
1314 	xfs_trans_cancel(tp);
1315  std_return:
1316 	return error;
1317 }
1318 
1319 /* Clear the reflink flag and the cowblocks tag if possible. */
1320 static void
1321 xfs_itruncate_clear_reflink_flags(
1322 	struct xfs_inode	*ip)
1323 {
1324 	struct xfs_ifork	*dfork;
1325 	struct xfs_ifork	*cfork;
1326 
1327 	if (!xfs_is_reflink_inode(ip))
1328 		return;
1329 	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1330 	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1331 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1332 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1333 	if (cfork->if_bytes == 0)
1334 		xfs_inode_clear_cowblocks_tag(ip);
1335 }
1336 
1337 /*
1338  * Free up the underlying blocks past new_size.  The new size must be smaller
1339  * than the current size.  This routine can be used both for the attribute and
1340  * data fork, and does not modify the inode size, which is left to the caller.
1341  *
1342  * The transaction passed to this routine must have made a permanent log
1343  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1344  * given transaction and start new ones, so make sure everything involved in
1345  * the transaction is tidy before calling here.  Some transaction will be
1346  * returned to the caller to be committed.  The incoming transaction must
1347  * already include the inode, and both inode locks must be held exclusively.
1348  * The inode must also be "held" within the transaction.  On return the inode
1349  * will be "held" within the returned transaction.  This routine does NOT
1350  * require any disk space to be reserved for it within the transaction.
1351  *
1352  * If we get an error, we must return with the inode locked and linked into the
1353  * current transaction. This keeps things simple for the higher level code,
1354  * because it always knows that the inode is locked and held in the transaction
1355  * that returns to it whether errors occur or not.  We don't mark the inode
1356  * dirty on error so that transactions can be easily aborted if possible.
1357  */
1358 int
1359 xfs_itruncate_extents_flags(
1360 	struct xfs_trans	**tpp,
1361 	struct xfs_inode	*ip,
1362 	int			whichfork,
1363 	xfs_fsize_t		new_size,
1364 	int			flags)
1365 {
1366 	struct xfs_mount	*mp = ip->i_mount;
1367 	struct xfs_trans	*tp = *tpp;
1368 	xfs_fileoff_t		first_unmap_block;
1369 	xfs_filblks_t		unmap_len;
1370 	int			error = 0;
1371 
1372 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1373 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1374 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1375 	ASSERT(new_size <= XFS_ISIZE(ip));
1376 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1377 	ASSERT(ip->i_itemp != NULL);
1378 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1379 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1380 
1381 	trace_xfs_itruncate_extents_start(ip, new_size);
1382 
1383 	flags |= xfs_bmapi_aflag(whichfork);
1384 
1385 	/*
1386 	 * Since it is possible for space to become allocated beyond
1387 	 * the end of the file (in a crash where the space is allocated
1388 	 * but the inode size is not yet updated), simply remove any
1389 	 * blocks which show up between the new EOF and the maximum
1390 	 * possible file size.
1391 	 *
1392 	 * We have to free all the blocks to the bmbt maximum offset, even if
1393 	 * the page cache can't scale that far.
1394 	 */
1395 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1396 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1397 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1398 		return 0;
1399 	}
1400 
1401 	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1402 	while (unmap_len > 0) {
1403 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1404 		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1405 				flags, XFS_ITRUNC_MAX_EXTENTS);
1406 		if (error)
1407 			goto out;
1408 
1409 		/* free the just unmapped extents */
1410 		error = xfs_defer_finish(&tp);
1411 		if (error)
1412 			goto out;
1413 	}
1414 
1415 	if (whichfork == XFS_DATA_FORK) {
1416 		/* Remove all pending CoW reservations. */
1417 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1418 				first_unmap_block, XFS_MAX_FILEOFF, true);
1419 		if (error)
1420 			goto out;
1421 
1422 		xfs_itruncate_clear_reflink_flags(ip);
1423 	}
1424 
1425 	/*
1426 	 * Always re-log the inode so that our permanent transaction can keep
1427 	 * on rolling it forward in the log.
1428 	 */
1429 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1430 
1431 	trace_xfs_itruncate_extents_end(ip, new_size);
1432 
1433 out:
1434 	*tpp = tp;
1435 	return error;
1436 }
1437 
1438 int
1439 xfs_release(
1440 	xfs_inode_t	*ip)
1441 {
1442 	xfs_mount_t	*mp = ip->i_mount;
1443 	int		error = 0;
1444 
1445 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1446 		return 0;
1447 
1448 	/* If this is a read-only mount, don't do this (would generate I/O) */
1449 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1450 		return 0;
1451 
1452 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1453 		int truncated;
1454 
1455 		/*
1456 		 * If we previously truncated this file and removed old data
1457 		 * in the process, we want to initiate "early" writeout on
1458 		 * the last close.  This is an attempt to combat the notorious
1459 		 * NULL files problem which is particularly noticeable from a
1460 		 * truncate down, buffered (re-)write (delalloc), followed by
1461 		 * a crash.  What we are effectively doing here is
1462 		 * significantly reducing the time window where we'd otherwise
1463 		 * be exposed to that problem.
1464 		 */
1465 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1466 		if (truncated) {
1467 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1468 			if (ip->i_delayed_blks > 0) {
1469 				error = filemap_flush(VFS_I(ip)->i_mapping);
1470 				if (error)
1471 					return error;
1472 			}
1473 		}
1474 	}
1475 
1476 	if (VFS_I(ip)->i_nlink == 0)
1477 		return 0;
1478 
1479 	/*
1480 	 * If we can't get the iolock just skip truncating the blocks past EOF
1481 	 * because we could deadlock with the mmap_lock otherwise. We'll get
1482 	 * another chance to drop them once the last reference to the inode is
1483 	 * dropped, so we'll never leak blocks permanently.
1484 	 */
1485 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1486 		return 0;
1487 
1488 	if (xfs_can_free_eofblocks(ip, false)) {
1489 		/*
1490 		 * Check if the inode is being opened, written and closed
1491 		 * frequently and we have delayed allocation blocks outstanding
1492 		 * (e.g. streaming writes from the NFS server), truncating the
1493 		 * blocks past EOF will cause fragmentation to occur.
1494 		 *
1495 		 * In this case don't do the truncation, but we have to be
1496 		 * careful how we detect this case. Blocks beyond EOF show up as
1497 		 * i_delayed_blks even when the inode is clean, so we need to
1498 		 * truncate them away first before checking for a dirty release.
1499 		 * Hence on the first dirty close we will still remove the
1500 		 * speculative allocation, but after that we will leave it in
1501 		 * place.
1502 		 */
1503 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1504 			goto out_unlock;
1505 
1506 		error = xfs_free_eofblocks(ip);
1507 		if (error)
1508 			goto out_unlock;
1509 
1510 		/* delalloc blocks after truncation means it really is dirty */
1511 		if (ip->i_delayed_blks)
1512 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1513 	}
1514 
1515 out_unlock:
1516 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1517 	return error;
1518 }
1519 
1520 /*
1521  * xfs_inactive_truncate
1522  *
1523  * Called to perform a truncate when an inode becomes unlinked.
1524  */
1525 STATIC int
1526 xfs_inactive_truncate(
1527 	struct xfs_inode *ip)
1528 {
1529 	struct xfs_mount	*mp = ip->i_mount;
1530 	struct xfs_trans	*tp;
1531 	int			error;
1532 
1533 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1534 	if (error) {
1535 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1536 		return error;
1537 	}
1538 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1539 	xfs_trans_ijoin(tp, ip, 0);
1540 
1541 	/*
1542 	 * Log the inode size first to prevent stale data exposure in the event
1543 	 * of a system crash before the truncate completes. See the related
1544 	 * comment in xfs_vn_setattr_size() for details.
1545 	 */
1546 	ip->i_disk_size = 0;
1547 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1548 
1549 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1550 	if (error)
1551 		goto error_trans_cancel;
1552 
1553 	ASSERT(ip->i_df.if_nextents == 0);
1554 
1555 	error = xfs_trans_commit(tp);
1556 	if (error)
1557 		goto error_unlock;
1558 
1559 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1560 	return 0;
1561 
1562 error_trans_cancel:
1563 	xfs_trans_cancel(tp);
1564 error_unlock:
1565 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1566 	return error;
1567 }
1568 
1569 /*
1570  * xfs_inactive_ifree()
1571  *
1572  * Perform the inode free when an inode is unlinked.
1573  */
1574 STATIC int
1575 xfs_inactive_ifree(
1576 	struct xfs_inode *ip)
1577 {
1578 	struct xfs_mount	*mp = ip->i_mount;
1579 	struct xfs_trans	*tp;
1580 	int			error;
1581 
1582 	/*
1583 	 * We try to use a per-AG reservation for any block needed by the finobt
1584 	 * tree, but as the finobt feature predates the per-AG reservation
1585 	 * support a degraded file system might not have enough space for the
1586 	 * reservation at mount time.  In that case try to dip into the reserved
1587 	 * pool and pray.
1588 	 *
1589 	 * Send a warning if the reservation does happen to fail, as the inode
1590 	 * now remains allocated and sits on the unlinked list until the fs is
1591 	 * repaired.
1592 	 */
1593 	if (unlikely(mp->m_finobt_nores)) {
1594 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1595 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1596 				&tp);
1597 	} else {
1598 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1599 	}
1600 	if (error) {
1601 		if (error == -ENOSPC) {
1602 			xfs_warn_ratelimited(mp,
1603 			"Failed to remove inode(s) from unlinked list. "
1604 			"Please free space, unmount and run xfs_repair.");
1605 		} else {
1606 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1607 		}
1608 		return error;
1609 	}
1610 
1611 	/*
1612 	 * We do not hold the inode locked across the entire rolling transaction
1613 	 * here. We only need to hold it for the first transaction that
1614 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1615 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1616 	 * here breaks the relationship between cluster buffer invalidation and
1617 	 * stale inode invalidation on cluster buffer item journal commit
1618 	 * completion, and can result in leaving dirty stale inodes hanging
1619 	 * around in memory.
1620 	 *
1621 	 * We have no need for serialising this inode operation against other
1622 	 * operations - we freed the inode and hence reallocation is required
1623 	 * and that will serialise on reallocating the space the deferops need
1624 	 * to free. Hence we can unlock the inode on the first commit of
1625 	 * the transaction rather than roll it right through the deferops. This
1626 	 * avoids relogging the XFS_ISTALE inode.
1627 	 *
1628 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1629 	 * by asserting that the inode is still locked when it returns.
1630 	 */
1631 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1632 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1633 
1634 	error = xfs_ifree(tp, ip);
1635 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1636 	if (error) {
1637 		/*
1638 		 * If we fail to free the inode, shut down.  The cancel
1639 		 * might do that, we need to make sure.  Otherwise the
1640 		 * inode might be lost for a long time or forever.
1641 		 */
1642 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1643 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1644 				__func__, error);
1645 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1646 		}
1647 		xfs_trans_cancel(tp);
1648 		return error;
1649 	}
1650 
1651 	/*
1652 	 * Credit the quota account(s). The inode is gone.
1653 	 */
1654 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1655 
1656 	/*
1657 	 * Just ignore errors at this point.  There is nothing we can do except
1658 	 * to try to keep going. Make sure it's not a silent error.
1659 	 */
1660 	error = xfs_trans_commit(tp);
1661 	if (error)
1662 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1663 			__func__, error);
1664 
1665 	return 0;
1666 }
1667 
1668 /*
1669  * xfs_inactive
1670  *
1671  * This is called when the vnode reference count for the vnode
1672  * goes to zero.  If the file has been unlinked, then it must
1673  * now be truncated.  Also, we clear all of the read-ahead state
1674  * kept for the inode here since the file is now closed.
1675  */
1676 void
1677 xfs_inactive(
1678 	xfs_inode_t	*ip)
1679 {
1680 	struct xfs_mount	*mp;
1681 	int			error;
1682 	int			truncate = 0;
1683 
1684 	/*
1685 	 * If the inode is already free, then there can be nothing
1686 	 * to clean up here.
1687 	 */
1688 	if (VFS_I(ip)->i_mode == 0) {
1689 		ASSERT(ip->i_df.if_broot_bytes == 0);
1690 		return;
1691 	}
1692 
1693 	mp = ip->i_mount;
1694 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1695 
1696 	/* If this is a read-only mount, don't do this (would generate I/O) */
1697 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1698 		return;
1699 
1700 	/* Metadata inodes require explicit resource cleanup. */
1701 	if (xfs_is_metadata_inode(ip))
1702 		return;
1703 
1704 	/* Try to clean out the cow blocks if there are any. */
1705 	if (xfs_inode_has_cow_data(ip))
1706 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1707 
1708 	if (VFS_I(ip)->i_nlink != 0) {
1709 		/*
1710 		 * force is true because we are evicting an inode from the
1711 		 * cache. Post-eof blocks must be freed, lest we end up with
1712 		 * broken free space accounting.
1713 		 *
1714 		 * Note: don't bother with iolock here since lockdep complains
1715 		 * about acquiring it in reclaim context. We have the only
1716 		 * reference to the inode at this point anyways.
1717 		 */
1718 		if (xfs_can_free_eofblocks(ip, true))
1719 			xfs_free_eofblocks(ip);
1720 
1721 		return;
1722 	}
1723 
1724 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1725 	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1726 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1727 		truncate = 1;
1728 
1729 	error = xfs_qm_dqattach(ip);
1730 	if (error)
1731 		return;
1732 
1733 	if (S_ISLNK(VFS_I(ip)->i_mode))
1734 		error = xfs_inactive_symlink(ip);
1735 	else if (truncate)
1736 		error = xfs_inactive_truncate(ip);
1737 	if (error)
1738 		return;
1739 
1740 	/*
1741 	 * If there are attributes associated with the file then blow them away
1742 	 * now.  The code calls a routine that recursively deconstructs the
1743 	 * attribute fork. If also blows away the in-core attribute fork.
1744 	 */
1745 	if (XFS_IFORK_Q(ip)) {
1746 		error = xfs_attr_inactive(ip);
1747 		if (error)
1748 			return;
1749 	}
1750 
1751 	ASSERT(!ip->i_afp);
1752 	ASSERT(ip->i_forkoff == 0);
1753 
1754 	/*
1755 	 * Free the inode.
1756 	 */
1757 	error = xfs_inactive_ifree(ip);
1758 	if (error)
1759 		return;
1760 
1761 	/*
1762 	 * Release the dquots held by inode, if any.
1763 	 */
1764 	xfs_qm_dqdetach(ip);
1765 }
1766 
1767 /*
1768  * In-Core Unlinked List Lookups
1769  * =============================
1770  *
1771  * Every inode is supposed to be reachable from some other piece of metadata
1772  * with the exception of the root directory.  Inodes with a connection to a
1773  * file descriptor but not linked from anywhere in the on-disk directory tree
1774  * are collectively known as unlinked inodes, though the filesystem itself
1775  * maintains links to these inodes so that on-disk metadata are consistent.
1776  *
1777  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1778  * header contains a number of buckets that point to an inode, and each inode
1779  * record has a pointer to the next inode in the hash chain.  This
1780  * singly-linked list causes scaling problems in the iunlink remove function
1781  * because we must walk that list to find the inode that points to the inode
1782  * being removed from the unlinked hash bucket list.
1783  *
1784  * What if we modelled the unlinked list as a collection of records capturing
1785  * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1786  * have a fast way to look up unlinked list predecessors, which avoids the
1787  * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1788  * rhashtable.
1789  *
1790  * Because this is a backref cache, we ignore operational failures since the
1791  * iunlink code can fall back to the slow bucket walk.  The only errors that
1792  * should bubble out are for obviously incorrect situations.
1793  *
1794  * All users of the backref cache MUST hold the AGI buffer lock to serialize
1795  * access or have otherwise provided for concurrency control.
1796  */
1797 
1798 /* Capture a "X.next_unlinked = Y" relationship. */
1799 struct xfs_iunlink {
1800 	struct rhash_head	iu_rhash_head;
1801 	xfs_agino_t		iu_agino;		/* X */
1802 	xfs_agino_t		iu_next_unlinked;	/* Y */
1803 };
1804 
1805 /* Unlinked list predecessor lookup hashtable construction */
1806 static int
1807 xfs_iunlink_obj_cmpfn(
1808 	struct rhashtable_compare_arg	*arg,
1809 	const void			*obj)
1810 {
1811 	const xfs_agino_t		*key = arg->key;
1812 	const struct xfs_iunlink	*iu = obj;
1813 
1814 	if (iu->iu_next_unlinked != *key)
1815 		return 1;
1816 	return 0;
1817 }
1818 
1819 static const struct rhashtable_params xfs_iunlink_hash_params = {
1820 	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1821 	.key_len		= sizeof(xfs_agino_t),
1822 	.key_offset		= offsetof(struct xfs_iunlink,
1823 					   iu_next_unlinked),
1824 	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1825 	.automatic_shrinking	= true,
1826 	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1827 };
1828 
1829 /*
1830  * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1831  * relation is found.
1832  */
1833 static xfs_agino_t
1834 xfs_iunlink_lookup_backref(
1835 	struct xfs_perag	*pag,
1836 	xfs_agino_t		agino)
1837 {
1838 	struct xfs_iunlink	*iu;
1839 
1840 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1841 			xfs_iunlink_hash_params);
1842 	return iu ? iu->iu_agino : NULLAGINO;
1843 }
1844 
1845 /*
1846  * Take ownership of an iunlink cache entry and insert it into the hash table.
1847  * If successful, the entry will be owned by the cache; if not, it is freed.
1848  * Either way, the caller does not own @iu after this call.
1849  */
1850 static int
1851 xfs_iunlink_insert_backref(
1852 	struct xfs_perag	*pag,
1853 	struct xfs_iunlink	*iu)
1854 {
1855 	int			error;
1856 
1857 	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1858 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1859 	/*
1860 	 * Fail loudly if there already was an entry because that's a sign of
1861 	 * corruption of in-memory data.  Also fail loudly if we see an error
1862 	 * code we didn't anticipate from the rhashtable code.  Currently we
1863 	 * only anticipate ENOMEM.
1864 	 */
1865 	if (error) {
1866 		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1867 		kmem_free(iu);
1868 	}
1869 	/*
1870 	 * Absorb any runtime errors that aren't a result of corruption because
1871 	 * this is a cache and we can always fall back to bucket list scanning.
1872 	 */
1873 	if (error != 0 && error != -EEXIST)
1874 		error = 0;
1875 	return error;
1876 }
1877 
1878 /* Remember that @prev_agino.next_unlinked = @this_agino. */
1879 static int
1880 xfs_iunlink_add_backref(
1881 	struct xfs_perag	*pag,
1882 	xfs_agino_t		prev_agino,
1883 	xfs_agino_t		this_agino)
1884 {
1885 	struct xfs_iunlink	*iu;
1886 
1887 	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
1888 		return 0;
1889 
1890 	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
1891 	iu->iu_agino = prev_agino;
1892 	iu->iu_next_unlinked = this_agino;
1893 
1894 	return xfs_iunlink_insert_backref(pag, iu);
1895 }
1896 
1897 /*
1898  * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
1899  * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
1900  * wasn't any such entry then we don't bother.
1901  */
1902 static int
1903 xfs_iunlink_change_backref(
1904 	struct xfs_perag	*pag,
1905 	xfs_agino_t		agino,
1906 	xfs_agino_t		next_unlinked)
1907 {
1908 	struct xfs_iunlink	*iu;
1909 	int			error;
1910 
1911 	/* Look up the old entry; if there wasn't one then exit. */
1912 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1913 			xfs_iunlink_hash_params);
1914 	if (!iu)
1915 		return 0;
1916 
1917 	/*
1918 	 * Remove the entry.  This shouldn't ever return an error, but if we
1919 	 * couldn't remove the old entry we don't want to add it again to the
1920 	 * hash table, and if the entry disappeared on us then someone's
1921 	 * violated the locking rules and we need to fail loudly.  Either way
1922 	 * we cannot remove the inode because internal state is or would have
1923 	 * been corrupt.
1924 	 */
1925 	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
1926 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1927 	if (error)
1928 		return error;
1929 
1930 	/* If there is no new next entry just free our item and return. */
1931 	if (next_unlinked == NULLAGINO) {
1932 		kmem_free(iu);
1933 		return 0;
1934 	}
1935 
1936 	/* Update the entry and re-add it to the hash table. */
1937 	iu->iu_next_unlinked = next_unlinked;
1938 	return xfs_iunlink_insert_backref(pag, iu);
1939 }
1940 
1941 /* Set up the in-core predecessor structures. */
1942 int
1943 xfs_iunlink_init(
1944 	struct xfs_perag	*pag)
1945 {
1946 	return rhashtable_init(&pag->pagi_unlinked_hash,
1947 			&xfs_iunlink_hash_params);
1948 }
1949 
1950 /* Free the in-core predecessor structures. */
1951 static void
1952 xfs_iunlink_free_item(
1953 	void			*ptr,
1954 	void			*arg)
1955 {
1956 	struct xfs_iunlink	*iu = ptr;
1957 	bool			*freed_anything = arg;
1958 
1959 	*freed_anything = true;
1960 	kmem_free(iu);
1961 }
1962 
1963 void
1964 xfs_iunlink_destroy(
1965 	struct xfs_perag	*pag)
1966 {
1967 	bool			freed_anything = false;
1968 
1969 	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
1970 			xfs_iunlink_free_item, &freed_anything);
1971 
1972 	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
1973 }
1974 
1975 /*
1976  * Point the AGI unlinked bucket at an inode and log the results.  The caller
1977  * is responsible for validating the old value.
1978  */
1979 STATIC int
1980 xfs_iunlink_update_bucket(
1981 	struct xfs_trans	*tp,
1982 	xfs_agnumber_t		agno,
1983 	struct xfs_buf		*agibp,
1984 	unsigned int		bucket_index,
1985 	xfs_agino_t		new_agino)
1986 {
1987 	struct xfs_agi		*agi = agibp->b_addr;
1988 	xfs_agino_t		old_value;
1989 	int			offset;
1990 
1991 	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
1992 
1993 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1994 	trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
1995 			old_value, new_agino);
1996 
1997 	/*
1998 	 * We should never find the head of the list already set to the value
1999 	 * passed in because either we're adding or removing ourselves from the
2000 	 * head of the list.
2001 	 */
2002 	if (old_value == new_agino) {
2003 		xfs_buf_mark_corrupt(agibp);
2004 		return -EFSCORRUPTED;
2005 	}
2006 
2007 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2008 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2009 			(sizeof(xfs_agino_t) * bucket_index);
2010 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2011 	return 0;
2012 }
2013 
2014 /* Set an on-disk inode's next_unlinked pointer. */
2015 STATIC void
2016 xfs_iunlink_update_dinode(
2017 	struct xfs_trans	*tp,
2018 	xfs_agnumber_t		agno,
2019 	xfs_agino_t		agino,
2020 	struct xfs_buf		*ibp,
2021 	struct xfs_dinode	*dip,
2022 	struct xfs_imap		*imap,
2023 	xfs_agino_t		next_agino)
2024 {
2025 	struct xfs_mount	*mp = tp->t_mountp;
2026 	int			offset;
2027 
2028 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2029 
2030 	trace_xfs_iunlink_update_dinode(mp, agno, agino,
2031 			be32_to_cpu(dip->di_next_unlinked), next_agino);
2032 
2033 	dip->di_next_unlinked = cpu_to_be32(next_agino);
2034 	offset = imap->im_boffset +
2035 			offsetof(struct xfs_dinode, di_next_unlinked);
2036 
2037 	/* need to recalc the inode CRC if appropriate */
2038 	xfs_dinode_calc_crc(mp, dip);
2039 	xfs_trans_inode_buf(tp, ibp);
2040 	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2041 }
2042 
2043 /* Set an in-core inode's unlinked pointer and return the old value. */
2044 STATIC int
2045 xfs_iunlink_update_inode(
2046 	struct xfs_trans	*tp,
2047 	struct xfs_inode	*ip,
2048 	xfs_agnumber_t		agno,
2049 	xfs_agino_t		next_agino,
2050 	xfs_agino_t		*old_next_agino)
2051 {
2052 	struct xfs_mount	*mp = tp->t_mountp;
2053 	struct xfs_dinode	*dip;
2054 	struct xfs_buf		*ibp;
2055 	xfs_agino_t		old_value;
2056 	int			error;
2057 
2058 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2059 
2060 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp);
2061 	if (error)
2062 		return error;
2063 	dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2064 
2065 	/* Make sure the old pointer isn't garbage. */
2066 	old_value = be32_to_cpu(dip->di_next_unlinked);
2067 	if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2068 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2069 				sizeof(*dip), __this_address);
2070 		error = -EFSCORRUPTED;
2071 		goto out;
2072 	}
2073 
2074 	/*
2075 	 * Since we're updating a linked list, we should never find that the
2076 	 * current pointer is the same as the new value, unless we're
2077 	 * terminating the list.
2078 	 */
2079 	*old_next_agino = old_value;
2080 	if (old_value == next_agino) {
2081 		if (next_agino != NULLAGINO) {
2082 			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2083 					dip, sizeof(*dip), __this_address);
2084 			error = -EFSCORRUPTED;
2085 		}
2086 		goto out;
2087 	}
2088 
2089 	/* Ok, update the new pointer. */
2090 	xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2091 			ibp, dip, &ip->i_imap, next_agino);
2092 	return 0;
2093 out:
2094 	xfs_trans_brelse(tp, ibp);
2095 	return error;
2096 }
2097 
2098 /*
2099  * This is called when the inode's link count has gone to 0 or we are creating
2100  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2101  *
2102  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2103  * list when the inode is freed.
2104  */
2105 STATIC int
2106 xfs_iunlink(
2107 	struct xfs_trans	*tp,
2108 	struct xfs_inode	*ip)
2109 {
2110 	struct xfs_mount	*mp = tp->t_mountp;
2111 	struct xfs_agi		*agi;
2112 	struct xfs_buf		*agibp;
2113 	xfs_agino_t		next_agino;
2114 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2115 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2116 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2117 	int			error;
2118 
2119 	ASSERT(VFS_I(ip)->i_nlink == 0);
2120 	ASSERT(VFS_I(ip)->i_mode != 0);
2121 	trace_xfs_iunlink(ip);
2122 
2123 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2124 	error = xfs_read_agi(mp, tp, agno, &agibp);
2125 	if (error)
2126 		return error;
2127 	agi = agibp->b_addr;
2128 
2129 	/*
2130 	 * Get the index into the agi hash table for the list this inode will
2131 	 * go on.  Make sure the pointer isn't garbage and that this inode
2132 	 * isn't already on the list.
2133 	 */
2134 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2135 	if (next_agino == agino ||
2136 	    !xfs_verify_agino_or_null(mp, agno, next_agino)) {
2137 		xfs_buf_mark_corrupt(agibp);
2138 		return -EFSCORRUPTED;
2139 	}
2140 
2141 	if (next_agino != NULLAGINO) {
2142 		xfs_agino_t		old_agino;
2143 
2144 		/*
2145 		 * There is already another inode in the bucket, so point this
2146 		 * inode to the current head of the list.
2147 		 */
2148 		error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2149 				&old_agino);
2150 		if (error)
2151 			return error;
2152 		ASSERT(old_agino == NULLAGINO);
2153 
2154 		/*
2155 		 * agino has been unlinked, add a backref from the next inode
2156 		 * back to agino.
2157 		 */
2158 		error = xfs_iunlink_add_backref(agibp->b_pag, agino, next_agino);
2159 		if (error)
2160 			return error;
2161 	}
2162 
2163 	/* Point the head of the list to point to this inode. */
2164 	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2165 }
2166 
2167 /* Return the imap, dinode pointer, and buffer for an inode. */
2168 STATIC int
2169 xfs_iunlink_map_ino(
2170 	struct xfs_trans	*tp,
2171 	xfs_agnumber_t		agno,
2172 	xfs_agino_t		agino,
2173 	struct xfs_imap		*imap,
2174 	struct xfs_dinode	**dipp,
2175 	struct xfs_buf		**bpp)
2176 {
2177 	struct xfs_mount	*mp = tp->t_mountp;
2178 	int			error;
2179 
2180 	imap->im_blkno = 0;
2181 	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2182 	if (error) {
2183 		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2184 				__func__, error);
2185 		return error;
2186 	}
2187 
2188 	error = xfs_imap_to_bp(mp, tp, imap, bpp);
2189 	if (error) {
2190 		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2191 				__func__, error);
2192 		return error;
2193 	}
2194 
2195 	*dipp = xfs_buf_offset(*bpp, imap->im_boffset);
2196 	return 0;
2197 }
2198 
2199 /*
2200  * Walk the unlinked chain from @head_agino until we find the inode that
2201  * points to @target_agino.  Return the inode number, map, dinode pointer,
2202  * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2203  *
2204  * @tp, @pag, @head_agino, and @target_agino are input parameters.
2205  * @agino, @imap, @dipp, and @bpp are all output parameters.
2206  *
2207  * Do not call this function if @target_agino is the head of the list.
2208  */
2209 STATIC int
2210 xfs_iunlink_map_prev(
2211 	struct xfs_trans	*tp,
2212 	xfs_agnumber_t		agno,
2213 	xfs_agino_t		head_agino,
2214 	xfs_agino_t		target_agino,
2215 	xfs_agino_t		*agino,
2216 	struct xfs_imap		*imap,
2217 	struct xfs_dinode	**dipp,
2218 	struct xfs_buf		**bpp,
2219 	struct xfs_perag	*pag)
2220 {
2221 	struct xfs_mount	*mp = tp->t_mountp;
2222 	xfs_agino_t		next_agino;
2223 	int			error;
2224 
2225 	ASSERT(head_agino != target_agino);
2226 	*bpp = NULL;
2227 
2228 	/* See if our backref cache can find it faster. */
2229 	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2230 	if (*agino != NULLAGINO) {
2231 		error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2232 		if (error)
2233 			return error;
2234 
2235 		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2236 			return 0;
2237 
2238 		/*
2239 		 * If we get here the cache contents were corrupt, so drop the
2240 		 * buffer and fall back to walking the bucket list.
2241 		 */
2242 		xfs_trans_brelse(tp, *bpp);
2243 		*bpp = NULL;
2244 		WARN_ON_ONCE(1);
2245 	}
2246 
2247 	trace_xfs_iunlink_map_prev_fallback(mp, agno);
2248 
2249 	/* Otherwise, walk the entire bucket until we find it. */
2250 	next_agino = head_agino;
2251 	while (next_agino != target_agino) {
2252 		xfs_agino_t	unlinked_agino;
2253 
2254 		if (*bpp)
2255 			xfs_trans_brelse(tp, *bpp);
2256 
2257 		*agino = next_agino;
2258 		error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2259 				bpp);
2260 		if (error)
2261 			return error;
2262 
2263 		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2264 		/*
2265 		 * Make sure this pointer is valid and isn't an obvious
2266 		 * infinite loop.
2267 		 */
2268 		if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2269 		    next_agino == unlinked_agino) {
2270 			XFS_CORRUPTION_ERROR(__func__,
2271 					XFS_ERRLEVEL_LOW, mp,
2272 					*dipp, sizeof(**dipp));
2273 			error = -EFSCORRUPTED;
2274 			return error;
2275 		}
2276 		next_agino = unlinked_agino;
2277 	}
2278 
2279 	return 0;
2280 }
2281 
2282 /*
2283  * Pull the on-disk inode from the AGI unlinked list.
2284  */
2285 STATIC int
2286 xfs_iunlink_remove(
2287 	struct xfs_trans	*tp,
2288 	struct xfs_inode	*ip)
2289 {
2290 	struct xfs_mount	*mp = tp->t_mountp;
2291 	struct xfs_agi		*agi;
2292 	struct xfs_buf		*agibp;
2293 	struct xfs_buf		*last_ibp;
2294 	struct xfs_dinode	*last_dip = NULL;
2295 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2296 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2297 	xfs_agino_t		next_agino;
2298 	xfs_agino_t		head_agino;
2299 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2300 	int			error;
2301 
2302 	trace_xfs_iunlink_remove(ip);
2303 
2304 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2305 	error = xfs_read_agi(mp, tp, agno, &agibp);
2306 	if (error)
2307 		return error;
2308 	agi = agibp->b_addr;
2309 
2310 	/*
2311 	 * Get the index into the agi hash table for the list this inode will
2312 	 * go on.  Make sure the head pointer isn't garbage.
2313 	 */
2314 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2315 	if (!xfs_verify_agino(mp, agno, head_agino)) {
2316 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2317 				agi, sizeof(*agi));
2318 		return -EFSCORRUPTED;
2319 	}
2320 
2321 	/*
2322 	 * Set our inode's next_unlinked pointer to NULL and then return
2323 	 * the old pointer value so that we can update whatever was previous
2324 	 * to us in the list to point to whatever was next in the list.
2325 	 */
2326 	error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2327 	if (error)
2328 		return error;
2329 
2330 	/*
2331 	 * If there was a backref pointing from the next inode back to this
2332 	 * one, remove it because we've removed this inode from the list.
2333 	 *
2334 	 * Later, if this inode was in the middle of the list we'll update
2335 	 * this inode's backref to point from the next inode.
2336 	 */
2337 	if (next_agino != NULLAGINO) {
2338 		error = xfs_iunlink_change_backref(agibp->b_pag, next_agino,
2339 				NULLAGINO);
2340 		if (error)
2341 			return error;
2342 	}
2343 
2344 	if (head_agino != agino) {
2345 		struct xfs_imap	imap;
2346 		xfs_agino_t	prev_agino;
2347 
2348 		/* We need to search the list for the inode being freed. */
2349 		error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2350 				&prev_agino, &imap, &last_dip, &last_ibp,
2351 				agibp->b_pag);
2352 		if (error)
2353 			return error;
2354 
2355 		/* Point the previous inode on the list to the next inode. */
2356 		xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2357 				last_dip, &imap, next_agino);
2358 
2359 		/*
2360 		 * Now we deal with the backref for this inode.  If this inode
2361 		 * pointed at a real inode, change the backref that pointed to
2362 		 * us to point to our old next.  If this inode was the end of
2363 		 * the list, delete the backref that pointed to us.  Note that
2364 		 * change_backref takes care of deleting the backref if
2365 		 * next_agino is NULLAGINO.
2366 		 */
2367 		return xfs_iunlink_change_backref(agibp->b_pag, agino,
2368 				next_agino);
2369 	}
2370 
2371 	/* Point the head of the list to the next unlinked inode. */
2372 	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2373 			next_agino);
2374 }
2375 
2376 /*
2377  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2378  * mark it stale. We should only find clean inodes in this lookup that aren't
2379  * already stale.
2380  */
2381 static void
2382 xfs_ifree_mark_inode_stale(
2383 	struct xfs_buf		*bp,
2384 	struct xfs_inode	*free_ip,
2385 	xfs_ino_t		inum)
2386 {
2387 	struct xfs_mount	*mp = bp->b_mount;
2388 	struct xfs_perag	*pag = bp->b_pag;
2389 	struct xfs_inode_log_item *iip;
2390 	struct xfs_inode	*ip;
2391 
2392 retry:
2393 	rcu_read_lock();
2394 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2395 
2396 	/* Inode not in memory, nothing to do */
2397 	if (!ip) {
2398 		rcu_read_unlock();
2399 		return;
2400 	}
2401 
2402 	/*
2403 	 * because this is an RCU protected lookup, we could find a recently
2404 	 * freed or even reallocated inode during the lookup. We need to check
2405 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2406 	 * valid, the wrong inode or stale.
2407 	 */
2408 	spin_lock(&ip->i_flags_lock);
2409 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2410 		goto out_iflags_unlock;
2411 
2412 	/*
2413 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2414 	 * other inodes that we did not find in the list attached to the buffer
2415 	 * and are not already marked stale. If we can't lock it, back off and
2416 	 * retry.
2417 	 */
2418 	if (ip != free_ip) {
2419 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2420 			spin_unlock(&ip->i_flags_lock);
2421 			rcu_read_unlock();
2422 			delay(1);
2423 			goto retry;
2424 		}
2425 	}
2426 	ip->i_flags |= XFS_ISTALE;
2427 
2428 	/*
2429 	 * If the inode is flushing, it is already attached to the buffer.  All
2430 	 * we needed to do here is mark the inode stale so buffer IO completion
2431 	 * will remove it from the AIL.
2432 	 */
2433 	iip = ip->i_itemp;
2434 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2435 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2436 		ASSERT(iip->ili_last_fields);
2437 		goto out_iunlock;
2438 	}
2439 
2440 	/*
2441 	 * Inodes not attached to the buffer can be released immediately.
2442 	 * Everything else has to go through xfs_iflush_abort() on journal
2443 	 * commit as the flock synchronises removal of the inode from the
2444 	 * cluster buffer against inode reclaim.
2445 	 */
2446 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2447 		goto out_iunlock;
2448 
2449 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2450 	spin_unlock(&ip->i_flags_lock);
2451 	rcu_read_unlock();
2452 
2453 	/* we have a dirty inode in memory that has not yet been flushed. */
2454 	spin_lock(&iip->ili_lock);
2455 	iip->ili_last_fields = iip->ili_fields;
2456 	iip->ili_fields = 0;
2457 	iip->ili_fsync_fields = 0;
2458 	spin_unlock(&iip->ili_lock);
2459 	ASSERT(iip->ili_last_fields);
2460 
2461 	if (ip != free_ip)
2462 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2463 	return;
2464 
2465 out_iunlock:
2466 	if (ip != free_ip)
2467 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2468 out_iflags_unlock:
2469 	spin_unlock(&ip->i_flags_lock);
2470 	rcu_read_unlock();
2471 }
2472 
2473 /*
2474  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2475  * inodes that are in memory - they all must be marked stale and attached to
2476  * the cluster buffer.
2477  */
2478 STATIC int
2479 xfs_ifree_cluster(
2480 	struct xfs_inode	*free_ip,
2481 	struct xfs_trans	*tp,
2482 	struct xfs_icluster	*xic)
2483 {
2484 	struct xfs_mount	*mp = free_ip->i_mount;
2485 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2486 	struct xfs_buf		*bp;
2487 	xfs_daddr_t		blkno;
2488 	xfs_ino_t		inum = xic->first_ino;
2489 	int			nbufs;
2490 	int			i, j;
2491 	int			ioffset;
2492 	int			error;
2493 
2494 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2495 
2496 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2497 		/*
2498 		 * The allocation bitmap tells us which inodes of the chunk were
2499 		 * physically allocated. Skip the cluster if an inode falls into
2500 		 * a sparse region.
2501 		 */
2502 		ioffset = inum - xic->first_ino;
2503 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2504 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2505 			continue;
2506 		}
2507 
2508 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2509 					 XFS_INO_TO_AGBNO(mp, inum));
2510 
2511 		/*
2512 		 * We obtain and lock the backing buffer first in the process
2513 		 * here to ensure dirty inodes attached to the buffer remain in
2514 		 * the flushing state while we mark them stale.
2515 		 *
2516 		 * If we scan the in-memory inodes first, then buffer IO can
2517 		 * complete before we get a lock on it, and hence we may fail
2518 		 * to mark all the active inodes on the buffer stale.
2519 		 */
2520 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2521 				mp->m_bsize * igeo->blocks_per_cluster,
2522 				XBF_UNMAPPED, &bp);
2523 		if (error)
2524 			return error;
2525 
2526 		/*
2527 		 * This buffer may not have been correctly initialised as we
2528 		 * didn't read it from disk. That's not important because we are
2529 		 * only using to mark the buffer as stale in the log, and to
2530 		 * attach stale cached inodes on it. That means it will never be
2531 		 * dispatched for IO. If it is, we want to know about it, and we
2532 		 * want it to fail. We can acheive this by adding a write
2533 		 * verifier to the buffer.
2534 		 */
2535 		bp->b_ops = &xfs_inode_buf_ops;
2536 
2537 		/*
2538 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2539 		 * too. This requires lookups, and will skip inodes that we've
2540 		 * already marked XFS_ISTALE.
2541 		 */
2542 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2543 			xfs_ifree_mark_inode_stale(bp, free_ip, inum + i);
2544 
2545 		xfs_trans_stale_inode_buf(tp, bp);
2546 		xfs_trans_binval(tp, bp);
2547 	}
2548 	return 0;
2549 }
2550 
2551 /*
2552  * This is called to return an inode to the inode free list.
2553  * The inode should already be truncated to 0 length and have
2554  * no pages associated with it.  This routine also assumes that
2555  * the inode is already a part of the transaction.
2556  *
2557  * The on-disk copy of the inode will have been added to the list
2558  * of unlinked inodes in the AGI. We need to remove the inode from
2559  * that list atomically with respect to freeing it here.
2560  */
2561 int
2562 xfs_ifree(
2563 	struct xfs_trans	*tp,
2564 	struct xfs_inode	*ip)
2565 {
2566 	int			error;
2567 	struct xfs_icluster	xic = { 0 };
2568 	struct xfs_inode_log_item *iip = ip->i_itemp;
2569 
2570 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2571 	ASSERT(VFS_I(ip)->i_nlink == 0);
2572 	ASSERT(ip->i_df.if_nextents == 0);
2573 	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2574 	ASSERT(ip->i_nblocks == 0);
2575 
2576 	/*
2577 	 * Pull the on-disk inode from the AGI unlinked list.
2578 	 */
2579 	error = xfs_iunlink_remove(tp, ip);
2580 	if (error)
2581 		return error;
2582 
2583 	error = xfs_difree(tp, ip->i_ino, &xic);
2584 	if (error)
2585 		return error;
2586 
2587 	/*
2588 	 * Free any local-format data sitting around before we reset the
2589 	 * data fork to extents format.  Note that the attr fork data has
2590 	 * already been freed by xfs_attr_inactive.
2591 	 */
2592 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2593 		kmem_free(ip->i_df.if_u1.if_data);
2594 		ip->i_df.if_u1.if_data = NULL;
2595 		ip->i_df.if_bytes = 0;
2596 	}
2597 
2598 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2599 	ip->i_diflags = 0;
2600 	ip->i_diflags2 = ip->i_mount->m_ino_geo.new_diflags2;
2601 	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2602 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2603 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2604 		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2605 
2606 	/* Don't attempt to replay owner changes for a deleted inode */
2607 	spin_lock(&iip->ili_lock);
2608 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2609 	spin_unlock(&iip->ili_lock);
2610 
2611 	/*
2612 	 * Bump the generation count so no one will be confused
2613 	 * by reincarnations of this inode.
2614 	 */
2615 	VFS_I(ip)->i_generation++;
2616 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2617 
2618 	if (xic.deleted)
2619 		error = xfs_ifree_cluster(ip, tp, &xic);
2620 
2621 	return error;
2622 }
2623 
2624 /*
2625  * This is called to unpin an inode.  The caller must have the inode locked
2626  * in at least shared mode so that the buffer cannot be subsequently pinned
2627  * once someone is waiting for it to be unpinned.
2628  */
2629 static void
2630 xfs_iunpin(
2631 	struct xfs_inode	*ip)
2632 {
2633 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2634 
2635 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2636 
2637 	/* Give the log a push to start the unpinning I/O */
2638 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2639 
2640 }
2641 
2642 static void
2643 __xfs_iunpin_wait(
2644 	struct xfs_inode	*ip)
2645 {
2646 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2647 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2648 
2649 	xfs_iunpin(ip);
2650 
2651 	do {
2652 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2653 		if (xfs_ipincount(ip))
2654 			io_schedule();
2655 	} while (xfs_ipincount(ip));
2656 	finish_wait(wq, &wait.wq_entry);
2657 }
2658 
2659 void
2660 xfs_iunpin_wait(
2661 	struct xfs_inode	*ip)
2662 {
2663 	if (xfs_ipincount(ip))
2664 		__xfs_iunpin_wait(ip);
2665 }
2666 
2667 /*
2668  * Removing an inode from the namespace involves removing the directory entry
2669  * and dropping the link count on the inode. Removing the directory entry can
2670  * result in locking an AGF (directory blocks were freed) and removing a link
2671  * count can result in placing the inode on an unlinked list which results in
2672  * locking an AGI.
2673  *
2674  * The big problem here is that we have an ordering constraint on AGF and AGI
2675  * locking - inode allocation locks the AGI, then can allocate a new extent for
2676  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2677  * removes the inode from the unlinked list, requiring that we lock the AGI
2678  * first, and then freeing the inode can result in an inode chunk being freed
2679  * and hence freeing disk space requiring that we lock an AGF.
2680  *
2681  * Hence the ordering that is imposed by other parts of the code is AGI before
2682  * AGF. This means we cannot remove the directory entry before we drop the inode
2683  * reference count and put it on the unlinked list as this results in a lock
2684  * order of AGF then AGI, and this can deadlock against inode allocation and
2685  * freeing. Therefore we must drop the link counts before we remove the
2686  * directory entry.
2687  *
2688  * This is still safe from a transactional point of view - it is not until we
2689  * get to xfs_defer_finish() that we have the possibility of multiple
2690  * transactions in this operation. Hence as long as we remove the directory
2691  * entry and drop the link count in the first transaction of the remove
2692  * operation, there are no transactional constraints on the ordering here.
2693  */
2694 int
2695 xfs_remove(
2696 	xfs_inode_t             *dp,
2697 	struct xfs_name		*name,
2698 	xfs_inode_t		*ip)
2699 {
2700 	xfs_mount_t		*mp = dp->i_mount;
2701 	xfs_trans_t             *tp = NULL;
2702 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2703 	int                     error = 0;
2704 	uint			resblks;
2705 
2706 	trace_xfs_remove(dp, name);
2707 
2708 	if (XFS_FORCED_SHUTDOWN(mp))
2709 		return -EIO;
2710 
2711 	error = xfs_qm_dqattach(dp);
2712 	if (error)
2713 		goto std_return;
2714 
2715 	error = xfs_qm_dqattach(ip);
2716 	if (error)
2717 		goto std_return;
2718 
2719 	/*
2720 	 * We try to get the real space reservation first,
2721 	 * allowing for directory btree deletion(s) implying
2722 	 * possible bmap insert(s).  If we can't get the space
2723 	 * reservation then we use 0 instead, and avoid the bmap
2724 	 * btree insert(s) in the directory code by, if the bmap
2725 	 * insert tries to happen, instead trimming the LAST
2726 	 * block from the directory.
2727 	 */
2728 	resblks = XFS_REMOVE_SPACE_RES(mp);
2729 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2730 	if (error == -ENOSPC) {
2731 		resblks = 0;
2732 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2733 				&tp);
2734 	}
2735 	if (error) {
2736 		ASSERT(error != -ENOSPC);
2737 		goto std_return;
2738 	}
2739 
2740 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2741 
2742 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2743 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2744 
2745 	/*
2746 	 * If we're removing a directory perform some additional validation.
2747 	 */
2748 	if (is_dir) {
2749 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2750 		if (VFS_I(ip)->i_nlink != 2) {
2751 			error = -ENOTEMPTY;
2752 			goto out_trans_cancel;
2753 		}
2754 		if (!xfs_dir_isempty(ip)) {
2755 			error = -ENOTEMPTY;
2756 			goto out_trans_cancel;
2757 		}
2758 
2759 		/* Drop the link from ip's "..".  */
2760 		error = xfs_droplink(tp, dp);
2761 		if (error)
2762 			goto out_trans_cancel;
2763 
2764 		/* Drop the "." link from ip to self.  */
2765 		error = xfs_droplink(tp, ip);
2766 		if (error)
2767 			goto out_trans_cancel;
2768 	} else {
2769 		/*
2770 		 * When removing a non-directory we need to log the parent
2771 		 * inode here.  For a directory this is done implicitly
2772 		 * by the xfs_droplink call for the ".." entry.
2773 		 */
2774 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2775 	}
2776 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2777 
2778 	/* Drop the link from dp to ip. */
2779 	error = xfs_droplink(tp, ip);
2780 	if (error)
2781 		goto out_trans_cancel;
2782 
2783 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2784 	if (error) {
2785 		ASSERT(error != -ENOENT);
2786 		goto out_trans_cancel;
2787 	}
2788 
2789 	/*
2790 	 * If this is a synchronous mount, make sure that the
2791 	 * remove transaction goes to disk before returning to
2792 	 * the user.
2793 	 */
2794 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2795 		xfs_trans_set_sync(tp);
2796 
2797 	error = xfs_trans_commit(tp);
2798 	if (error)
2799 		goto std_return;
2800 
2801 	if (is_dir && xfs_inode_is_filestream(ip))
2802 		xfs_filestream_deassociate(ip);
2803 
2804 	return 0;
2805 
2806  out_trans_cancel:
2807 	xfs_trans_cancel(tp);
2808  std_return:
2809 	return error;
2810 }
2811 
2812 /*
2813  * Enter all inodes for a rename transaction into a sorted array.
2814  */
2815 #define __XFS_SORT_INODES	5
2816 STATIC void
2817 xfs_sort_for_rename(
2818 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2819 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2820 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2821 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2822 	struct xfs_inode	*wip,	/* in: whiteout inode */
2823 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2824 	int			*num_inodes)  /* in/out: inodes in array */
2825 {
2826 	int			i, j;
2827 
2828 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2829 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2830 
2831 	/*
2832 	 * i_tab contains a list of pointers to inodes.  We initialize
2833 	 * the table here & we'll sort it.  We will then use it to
2834 	 * order the acquisition of the inode locks.
2835 	 *
2836 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2837 	 */
2838 	i = 0;
2839 	i_tab[i++] = dp1;
2840 	i_tab[i++] = dp2;
2841 	i_tab[i++] = ip1;
2842 	if (ip2)
2843 		i_tab[i++] = ip2;
2844 	if (wip)
2845 		i_tab[i++] = wip;
2846 	*num_inodes = i;
2847 
2848 	/*
2849 	 * Sort the elements via bubble sort.  (Remember, there are at
2850 	 * most 5 elements to sort, so this is adequate.)
2851 	 */
2852 	for (i = 0; i < *num_inodes; i++) {
2853 		for (j = 1; j < *num_inodes; j++) {
2854 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2855 				struct xfs_inode *temp = i_tab[j];
2856 				i_tab[j] = i_tab[j-1];
2857 				i_tab[j-1] = temp;
2858 			}
2859 		}
2860 	}
2861 }
2862 
2863 static int
2864 xfs_finish_rename(
2865 	struct xfs_trans	*tp)
2866 {
2867 	/*
2868 	 * If this is a synchronous mount, make sure that the rename transaction
2869 	 * goes to disk before returning to the user.
2870 	 */
2871 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2872 		xfs_trans_set_sync(tp);
2873 
2874 	return xfs_trans_commit(tp);
2875 }
2876 
2877 /*
2878  * xfs_cross_rename()
2879  *
2880  * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2881  */
2882 STATIC int
2883 xfs_cross_rename(
2884 	struct xfs_trans	*tp,
2885 	struct xfs_inode	*dp1,
2886 	struct xfs_name		*name1,
2887 	struct xfs_inode	*ip1,
2888 	struct xfs_inode	*dp2,
2889 	struct xfs_name		*name2,
2890 	struct xfs_inode	*ip2,
2891 	int			spaceres)
2892 {
2893 	int		error = 0;
2894 	int		ip1_flags = 0;
2895 	int		ip2_flags = 0;
2896 	int		dp2_flags = 0;
2897 
2898 	/* Swap inode number for dirent in first parent */
2899 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2900 	if (error)
2901 		goto out_trans_abort;
2902 
2903 	/* Swap inode number for dirent in second parent */
2904 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2905 	if (error)
2906 		goto out_trans_abort;
2907 
2908 	/*
2909 	 * If we're renaming one or more directories across different parents,
2910 	 * update the respective ".." entries (and link counts) to match the new
2911 	 * parents.
2912 	 */
2913 	if (dp1 != dp2) {
2914 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2915 
2916 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2917 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2918 						dp1->i_ino, spaceres);
2919 			if (error)
2920 				goto out_trans_abort;
2921 
2922 			/* transfer ip2 ".." reference to dp1 */
2923 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2924 				error = xfs_droplink(tp, dp2);
2925 				if (error)
2926 					goto out_trans_abort;
2927 				xfs_bumplink(tp, dp1);
2928 			}
2929 
2930 			/*
2931 			 * Although ip1 isn't changed here, userspace needs
2932 			 * to be warned about the change, so that applications
2933 			 * relying on it (like backup ones), will properly
2934 			 * notify the change
2935 			 */
2936 			ip1_flags |= XFS_ICHGTIME_CHG;
2937 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2938 		}
2939 
2940 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2941 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2942 						dp2->i_ino, spaceres);
2943 			if (error)
2944 				goto out_trans_abort;
2945 
2946 			/* transfer ip1 ".." reference to dp2 */
2947 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2948 				error = xfs_droplink(tp, dp1);
2949 				if (error)
2950 					goto out_trans_abort;
2951 				xfs_bumplink(tp, dp2);
2952 			}
2953 
2954 			/*
2955 			 * Although ip2 isn't changed here, userspace needs
2956 			 * to be warned about the change, so that applications
2957 			 * relying on it (like backup ones), will properly
2958 			 * notify the change
2959 			 */
2960 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2961 			ip2_flags |= XFS_ICHGTIME_CHG;
2962 		}
2963 	}
2964 
2965 	if (ip1_flags) {
2966 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2967 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2968 	}
2969 	if (ip2_flags) {
2970 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2971 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2972 	}
2973 	if (dp2_flags) {
2974 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2975 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2976 	}
2977 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2978 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2979 	return xfs_finish_rename(tp);
2980 
2981 out_trans_abort:
2982 	xfs_trans_cancel(tp);
2983 	return error;
2984 }
2985 
2986 /*
2987  * xfs_rename_alloc_whiteout()
2988  *
2989  * Return a referenced, unlinked, unlocked inode that can be used as a
2990  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2991  * crash between allocating the inode and linking it into the rename transaction
2992  * recovery will free the inode and we won't leak it.
2993  */
2994 static int
2995 xfs_rename_alloc_whiteout(
2996 	struct user_namespace	*mnt_userns,
2997 	struct xfs_inode	*dp,
2998 	struct xfs_inode	**wip)
2999 {
3000 	struct xfs_inode	*tmpfile;
3001 	int			error;
3002 
3003 	error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
3004 				   &tmpfile);
3005 	if (error)
3006 		return error;
3007 
3008 	/*
3009 	 * Prepare the tmpfile inode as if it were created through the VFS.
3010 	 * Complete the inode setup and flag it as linkable.  nlink is already
3011 	 * zero, so we can skip the drop_nlink.
3012 	 */
3013 	xfs_setup_iops(tmpfile);
3014 	xfs_finish_inode_setup(tmpfile);
3015 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3016 
3017 	*wip = tmpfile;
3018 	return 0;
3019 }
3020 
3021 /*
3022  * xfs_rename
3023  */
3024 int
3025 xfs_rename(
3026 	struct user_namespace	*mnt_userns,
3027 	struct xfs_inode	*src_dp,
3028 	struct xfs_name		*src_name,
3029 	struct xfs_inode	*src_ip,
3030 	struct xfs_inode	*target_dp,
3031 	struct xfs_name		*target_name,
3032 	struct xfs_inode	*target_ip,
3033 	unsigned int		flags)
3034 {
3035 	struct xfs_mount	*mp = src_dp->i_mount;
3036 	struct xfs_trans	*tp;
3037 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3038 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3039 	int			i;
3040 	int			num_inodes = __XFS_SORT_INODES;
3041 	bool			new_parent = (src_dp != target_dp);
3042 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3043 	int			spaceres;
3044 	int			error;
3045 
3046 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3047 
3048 	if ((flags & RENAME_EXCHANGE) && !target_ip)
3049 		return -EINVAL;
3050 
3051 	/*
3052 	 * If we are doing a whiteout operation, allocate the whiteout inode
3053 	 * we will be placing at the target and ensure the type is set
3054 	 * appropriately.
3055 	 */
3056 	if (flags & RENAME_WHITEOUT) {
3057 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3058 		error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip);
3059 		if (error)
3060 			return error;
3061 
3062 		/* setup target dirent info as whiteout */
3063 		src_name->type = XFS_DIR3_FT_CHRDEV;
3064 	}
3065 
3066 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3067 				inodes, &num_inodes);
3068 
3069 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3070 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3071 	if (error == -ENOSPC) {
3072 		spaceres = 0;
3073 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3074 				&tp);
3075 	}
3076 	if (error)
3077 		goto out_release_wip;
3078 
3079 	/*
3080 	 * Attach the dquots to the inodes
3081 	 */
3082 	error = xfs_qm_vop_rename_dqattach(inodes);
3083 	if (error)
3084 		goto out_trans_cancel;
3085 
3086 	/*
3087 	 * Lock all the participating inodes. Depending upon whether
3088 	 * the target_name exists in the target directory, and
3089 	 * whether the target directory is the same as the source
3090 	 * directory, we can lock from 2 to 4 inodes.
3091 	 */
3092 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3093 
3094 	/*
3095 	 * Join all the inodes to the transaction. From this point on,
3096 	 * we can rely on either trans_commit or trans_cancel to unlock
3097 	 * them.
3098 	 */
3099 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3100 	if (new_parent)
3101 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3102 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3103 	if (target_ip)
3104 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3105 	if (wip)
3106 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3107 
3108 	/*
3109 	 * If we are using project inheritance, we only allow renames
3110 	 * into our tree when the project IDs are the same; else the
3111 	 * tree quota mechanism would be circumvented.
3112 	 */
3113 	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3114 		     target_dp->i_projid != src_ip->i_projid)) {
3115 		error = -EXDEV;
3116 		goto out_trans_cancel;
3117 	}
3118 
3119 	/* RENAME_EXCHANGE is unique from here on. */
3120 	if (flags & RENAME_EXCHANGE)
3121 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3122 					target_dp, target_name, target_ip,
3123 					spaceres);
3124 
3125 	/*
3126 	 * Check for expected errors before we dirty the transaction
3127 	 * so we can return an error without a transaction abort.
3128 	 *
3129 	 * Extent count overflow check:
3130 	 *
3131 	 * From the perspective of src_dp, a rename operation is essentially a
3132 	 * directory entry remove operation. Hence the only place where we check
3133 	 * for extent count overflow for src_dp is in
3134 	 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns
3135 	 * -ENOSPC when it detects a possible extent count overflow and in
3136 	 * response, the higher layers of directory handling code do the
3137 	 * following:
3138 	 * 1. Data/Free blocks: XFS lets these blocks linger until a
3139 	 *    future remove operation removes them.
3140 	 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the
3141 	 *    Leaf space and unmaps the last block.
3142 	 *
3143 	 * For target_dp, there are two cases depending on whether the
3144 	 * destination directory entry exists or not.
3145 	 *
3146 	 * When destination directory entry does not exist (i.e. target_ip ==
3147 	 * NULL), extent count overflow check is performed only when transaction
3148 	 * has a non-zero sized space reservation associated with it.  With a
3149 	 * zero-sized space reservation, XFS allows a rename operation to
3150 	 * continue only when the directory has sufficient free space in its
3151 	 * data/leaf/free space blocks to hold the new entry.
3152 	 *
3153 	 * When destination directory entry exists (i.e. target_ip != NULL), all
3154 	 * we need to do is change the inode number associated with the already
3155 	 * existing entry. Hence there is no need to perform an extent count
3156 	 * overflow check.
3157 	 */
3158 	if (target_ip == NULL) {
3159 		/*
3160 		 * If there's no space reservation, check the entry will
3161 		 * fit before actually inserting it.
3162 		 */
3163 		if (!spaceres) {
3164 			error = xfs_dir_canenter(tp, target_dp, target_name);
3165 			if (error)
3166 				goto out_trans_cancel;
3167 		} else {
3168 			error = xfs_iext_count_may_overflow(target_dp,
3169 					XFS_DATA_FORK,
3170 					XFS_IEXT_DIR_MANIP_CNT(mp));
3171 			if (error)
3172 				goto out_trans_cancel;
3173 		}
3174 	} else {
3175 		/*
3176 		 * If target exists and it's a directory, check that whether
3177 		 * it can be destroyed.
3178 		 */
3179 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3180 		    (!xfs_dir_isempty(target_ip) ||
3181 		     (VFS_I(target_ip)->i_nlink > 2))) {
3182 			error = -EEXIST;
3183 			goto out_trans_cancel;
3184 		}
3185 	}
3186 
3187 	/*
3188 	 * Lock the AGI buffers we need to handle bumping the nlink of the
3189 	 * whiteout inode off the unlinked list and to handle dropping the
3190 	 * nlink of the target inode.  Per locking order rules, do this in
3191 	 * increasing AG order and before directory block allocation tries to
3192 	 * grab AGFs because we grab AGIs before AGFs.
3193 	 *
3194 	 * The (vfs) caller must ensure that if src is a directory then
3195 	 * target_ip is either null or an empty directory.
3196 	 */
3197 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3198 		if (inodes[i] == wip ||
3199 		    (inodes[i] == target_ip &&
3200 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3201 			struct xfs_buf	*bp;
3202 			xfs_agnumber_t	agno;
3203 
3204 			agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3205 			error = xfs_read_agi(mp, tp, agno, &bp);
3206 			if (error)
3207 				goto out_trans_cancel;
3208 		}
3209 	}
3210 
3211 	/*
3212 	 * Directory entry creation below may acquire the AGF. Remove
3213 	 * the whiteout from the unlinked list first to preserve correct
3214 	 * AGI/AGF locking order. This dirties the transaction so failures
3215 	 * after this point will abort and log recovery will clean up the
3216 	 * mess.
3217 	 *
3218 	 * For whiteouts, we need to bump the link count on the whiteout
3219 	 * inode. After this point, we have a real link, clear the tmpfile
3220 	 * state flag from the inode so it doesn't accidentally get misused
3221 	 * in future.
3222 	 */
3223 	if (wip) {
3224 		ASSERT(VFS_I(wip)->i_nlink == 0);
3225 		error = xfs_iunlink_remove(tp, wip);
3226 		if (error)
3227 			goto out_trans_cancel;
3228 
3229 		xfs_bumplink(tp, wip);
3230 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3231 	}
3232 
3233 	/*
3234 	 * Set up the target.
3235 	 */
3236 	if (target_ip == NULL) {
3237 		/*
3238 		 * If target does not exist and the rename crosses
3239 		 * directories, adjust the target directory link count
3240 		 * to account for the ".." reference from the new entry.
3241 		 */
3242 		error = xfs_dir_createname(tp, target_dp, target_name,
3243 					   src_ip->i_ino, spaceres);
3244 		if (error)
3245 			goto out_trans_cancel;
3246 
3247 		xfs_trans_ichgtime(tp, target_dp,
3248 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3249 
3250 		if (new_parent && src_is_directory) {
3251 			xfs_bumplink(tp, target_dp);
3252 		}
3253 	} else { /* target_ip != NULL */
3254 		/*
3255 		 * Link the source inode under the target name.
3256 		 * If the source inode is a directory and we are moving
3257 		 * it across directories, its ".." entry will be
3258 		 * inconsistent until we replace that down below.
3259 		 *
3260 		 * In case there is already an entry with the same
3261 		 * name at the destination directory, remove it first.
3262 		 */
3263 		error = xfs_dir_replace(tp, target_dp, target_name,
3264 					src_ip->i_ino, spaceres);
3265 		if (error)
3266 			goto out_trans_cancel;
3267 
3268 		xfs_trans_ichgtime(tp, target_dp,
3269 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3270 
3271 		/*
3272 		 * Decrement the link count on the target since the target
3273 		 * dir no longer points to it.
3274 		 */
3275 		error = xfs_droplink(tp, target_ip);
3276 		if (error)
3277 			goto out_trans_cancel;
3278 
3279 		if (src_is_directory) {
3280 			/*
3281 			 * Drop the link from the old "." entry.
3282 			 */
3283 			error = xfs_droplink(tp, target_ip);
3284 			if (error)
3285 				goto out_trans_cancel;
3286 		}
3287 	} /* target_ip != NULL */
3288 
3289 	/*
3290 	 * Remove the source.
3291 	 */
3292 	if (new_parent && src_is_directory) {
3293 		/*
3294 		 * Rewrite the ".." entry to point to the new
3295 		 * directory.
3296 		 */
3297 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3298 					target_dp->i_ino, spaceres);
3299 		ASSERT(error != -EEXIST);
3300 		if (error)
3301 			goto out_trans_cancel;
3302 	}
3303 
3304 	/*
3305 	 * We always want to hit the ctime on the source inode.
3306 	 *
3307 	 * This isn't strictly required by the standards since the source
3308 	 * inode isn't really being changed, but old unix file systems did
3309 	 * it and some incremental backup programs won't work without it.
3310 	 */
3311 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3312 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3313 
3314 	/*
3315 	 * Adjust the link count on src_dp.  This is necessary when
3316 	 * renaming a directory, either within one parent when
3317 	 * the target existed, or across two parent directories.
3318 	 */
3319 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3320 
3321 		/*
3322 		 * Decrement link count on src_directory since the
3323 		 * entry that's moved no longer points to it.
3324 		 */
3325 		error = xfs_droplink(tp, src_dp);
3326 		if (error)
3327 			goto out_trans_cancel;
3328 	}
3329 
3330 	/*
3331 	 * For whiteouts, we only need to update the source dirent with the
3332 	 * inode number of the whiteout inode rather than removing it
3333 	 * altogether.
3334 	 */
3335 	if (wip) {
3336 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3337 					spaceres);
3338 	} else {
3339 		/*
3340 		 * NOTE: We don't need to check for extent count overflow here
3341 		 * because the dir remove name code will leave the dir block in
3342 		 * place if the extent count would overflow.
3343 		 */
3344 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3345 					   spaceres);
3346 	}
3347 
3348 	if (error)
3349 		goto out_trans_cancel;
3350 
3351 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3352 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3353 	if (new_parent)
3354 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3355 
3356 	error = xfs_finish_rename(tp);
3357 	if (wip)
3358 		xfs_irele(wip);
3359 	return error;
3360 
3361 out_trans_cancel:
3362 	xfs_trans_cancel(tp);
3363 out_release_wip:
3364 	if (wip)
3365 		xfs_irele(wip);
3366 	return error;
3367 }
3368 
3369 static int
3370 xfs_iflush(
3371 	struct xfs_inode	*ip,
3372 	struct xfs_buf		*bp)
3373 {
3374 	struct xfs_inode_log_item *iip = ip->i_itemp;
3375 	struct xfs_dinode	*dip;
3376 	struct xfs_mount	*mp = ip->i_mount;
3377 	int			error;
3378 
3379 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3380 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3381 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3382 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3383 	ASSERT(iip->ili_item.li_buf == bp);
3384 
3385 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3386 
3387 	/*
3388 	 * We don't flush the inode if any of the following checks fail, but we
3389 	 * do still update the log item and attach to the backing buffer as if
3390 	 * the flush happened. This is a formality to facilitate predictable
3391 	 * error handling as the caller will shutdown and fail the buffer.
3392 	 */
3393 	error = -EFSCORRUPTED;
3394 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3395 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3396 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3397 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3398 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3399 		goto flush_out;
3400 	}
3401 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3402 		if (XFS_TEST_ERROR(
3403 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3404 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3405 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3406 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3407 				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3408 				__func__, ip->i_ino, ip);
3409 			goto flush_out;
3410 		}
3411 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3412 		if (XFS_TEST_ERROR(
3413 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3414 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3415 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3416 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3417 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3418 				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3419 				__func__, ip->i_ino, ip);
3420 			goto flush_out;
3421 		}
3422 	}
3423 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3424 				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3425 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3426 			"%s: detected corrupt incore inode %Lu, "
3427 			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3428 			__func__, ip->i_ino,
3429 			ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3430 			ip->i_nblocks, ip);
3431 		goto flush_out;
3432 	}
3433 	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3434 				mp, XFS_ERRTAG_IFLUSH_6)) {
3435 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3436 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3437 			__func__, ip->i_ino, ip->i_forkoff, ip);
3438 		goto flush_out;
3439 	}
3440 
3441 	/*
3442 	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3443 	 * count for correct sequencing.  We bump the flush iteration count so
3444 	 * we can detect flushes which postdate a log record during recovery.
3445 	 * This is redundant as we now log every change and hence this can't
3446 	 * happen but we need to still do it to ensure backwards compatibility
3447 	 * with old kernels that predate logging all inode changes.
3448 	 */
3449 	if (!xfs_sb_version_has_v3inode(&mp->m_sb))
3450 		ip->i_flushiter++;
3451 
3452 	/*
3453 	 * If there are inline format data / attr forks attached to this inode,
3454 	 * make sure they are not corrupt.
3455 	 */
3456 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3457 	    xfs_ifork_verify_local_data(ip))
3458 		goto flush_out;
3459 	if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3460 	    xfs_ifork_verify_local_attr(ip))
3461 		goto flush_out;
3462 
3463 	/*
3464 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3465 	 * copy out the core of the inode, because if the inode is dirty at all
3466 	 * the core must be.
3467 	 */
3468 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3469 
3470 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3471 	if (!xfs_sb_version_has_v3inode(&mp->m_sb)) {
3472 		if (ip->i_flushiter == DI_MAX_FLUSH)
3473 			ip->i_flushiter = 0;
3474 	}
3475 
3476 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3477 	if (XFS_IFORK_Q(ip))
3478 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3479 
3480 	/*
3481 	 * We've recorded everything logged in the inode, so we'd like to clear
3482 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3483 	 * However, we can't stop logging all this information until the data
3484 	 * we've copied into the disk buffer is written to disk.  If we did we
3485 	 * might overwrite the copy of the inode in the log with all the data
3486 	 * after re-logging only part of it, and in the face of a crash we
3487 	 * wouldn't have all the data we need to recover.
3488 	 *
3489 	 * What we do is move the bits to the ili_last_fields field.  When
3490 	 * logging the inode, these bits are moved back to the ili_fields field.
3491 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3492 	 * we know that the information those bits represent is permanently on
3493 	 * disk.  As long as the flush completes before the inode is logged
3494 	 * again, then both ili_fields and ili_last_fields will be cleared.
3495 	 */
3496 	error = 0;
3497 flush_out:
3498 	spin_lock(&iip->ili_lock);
3499 	iip->ili_last_fields = iip->ili_fields;
3500 	iip->ili_fields = 0;
3501 	iip->ili_fsync_fields = 0;
3502 	spin_unlock(&iip->ili_lock);
3503 
3504 	/*
3505 	 * Store the current LSN of the inode so that we can tell whether the
3506 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3507 	 */
3508 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3509 				&iip->ili_item.li_lsn);
3510 
3511 	/* generate the checksum. */
3512 	xfs_dinode_calc_crc(mp, dip);
3513 	return error;
3514 }
3515 
3516 /*
3517  * Non-blocking flush of dirty inode metadata into the backing buffer.
3518  *
3519  * The caller must have a reference to the inode and hold the cluster buffer
3520  * locked. The function will walk across all the inodes on the cluster buffer it
3521  * can find and lock without blocking, and flush them to the cluster buffer.
3522  *
3523  * On successful flushing of at least one inode, the caller must write out the
3524  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3525  * the caller needs to release the buffer. On failure, the filesystem will be
3526  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3527  * will be returned.
3528  */
3529 int
3530 xfs_iflush_cluster(
3531 	struct xfs_buf		*bp)
3532 {
3533 	struct xfs_mount	*mp = bp->b_mount;
3534 	struct xfs_log_item	*lip, *n;
3535 	struct xfs_inode	*ip;
3536 	struct xfs_inode_log_item *iip;
3537 	int			clcount = 0;
3538 	int			error = 0;
3539 
3540 	/*
3541 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3542 	 * can remove itself from the list.
3543 	 */
3544 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3545 		iip = (struct xfs_inode_log_item *)lip;
3546 		ip = iip->ili_inode;
3547 
3548 		/*
3549 		 * Quick and dirty check to avoid locks if possible.
3550 		 */
3551 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3552 			continue;
3553 		if (xfs_ipincount(ip))
3554 			continue;
3555 
3556 		/*
3557 		 * The inode is still attached to the buffer, which means it is
3558 		 * dirty but reclaim might try to grab it. Check carefully for
3559 		 * that, and grab the ilock while still holding the i_flags_lock
3560 		 * to guarantee reclaim will not be able to reclaim this inode
3561 		 * once we drop the i_flags_lock.
3562 		 */
3563 		spin_lock(&ip->i_flags_lock);
3564 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3565 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3566 			spin_unlock(&ip->i_flags_lock);
3567 			continue;
3568 		}
3569 
3570 		/*
3571 		 * ILOCK will pin the inode against reclaim and prevent
3572 		 * concurrent transactions modifying the inode while we are
3573 		 * flushing the inode. If we get the lock, set the flushing
3574 		 * state before we drop the i_flags_lock.
3575 		 */
3576 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3577 			spin_unlock(&ip->i_flags_lock);
3578 			continue;
3579 		}
3580 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3581 		spin_unlock(&ip->i_flags_lock);
3582 
3583 		/*
3584 		 * Abort flushing this inode if we are shut down because the
3585 		 * inode may not currently be in the AIL. This can occur when
3586 		 * log I/O failure unpins the inode without inserting into the
3587 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3588 		 * that otherwise looks like it should be flushed.
3589 		 */
3590 		if (XFS_FORCED_SHUTDOWN(mp)) {
3591 			xfs_iunpin_wait(ip);
3592 			xfs_iflush_abort(ip);
3593 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3594 			error = -EIO;
3595 			continue;
3596 		}
3597 
3598 		/* don't block waiting on a log force to unpin dirty inodes */
3599 		if (xfs_ipincount(ip)) {
3600 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3601 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3602 			continue;
3603 		}
3604 
3605 		if (!xfs_inode_clean(ip))
3606 			error = xfs_iflush(ip, bp);
3607 		else
3608 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3609 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3610 		if (error)
3611 			break;
3612 		clcount++;
3613 	}
3614 
3615 	if (error) {
3616 		bp->b_flags |= XBF_ASYNC;
3617 		xfs_buf_ioend_fail(bp);
3618 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3619 		return error;
3620 	}
3621 
3622 	if (!clcount)
3623 		return -EAGAIN;
3624 
3625 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3626 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3627 	return 0;
3628 
3629 }
3630 
3631 /* Release an inode. */
3632 void
3633 xfs_irele(
3634 	struct xfs_inode	*ip)
3635 {
3636 	trace_xfs_irele(ip, _RET_IP_);
3637 	iput(VFS_I(ip));
3638 }
3639 
3640 /*
3641  * Ensure all commited transactions touching the inode are written to the log.
3642  */
3643 int
3644 xfs_log_force_inode(
3645 	struct xfs_inode	*ip)
3646 {
3647 	xfs_lsn_t		lsn = 0;
3648 
3649 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3650 	if (xfs_ipincount(ip))
3651 		lsn = ip->i_itemp->ili_last_lsn;
3652 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3653 
3654 	if (!lsn)
3655 		return 0;
3656 	return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL);
3657 }
3658 
3659 /*
3660  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3661  * abide vfs locking order (lowest pointer value goes first) and breaking the
3662  * layout leases before proceeding.  The loop is needed because we cannot call
3663  * the blocking break_layout() with the iolocks held, and therefore have to
3664  * back out both locks.
3665  */
3666 static int
3667 xfs_iolock_two_inodes_and_break_layout(
3668 	struct inode		*src,
3669 	struct inode		*dest)
3670 {
3671 	int			error;
3672 
3673 	if (src > dest)
3674 		swap(src, dest);
3675 
3676 retry:
3677 	/* Wait to break both inodes' layouts before we start locking. */
3678 	error = break_layout(src, true);
3679 	if (error)
3680 		return error;
3681 	if (src != dest) {
3682 		error = break_layout(dest, true);
3683 		if (error)
3684 			return error;
3685 	}
3686 
3687 	/* Lock one inode and make sure nobody got in and leased it. */
3688 	inode_lock(src);
3689 	error = break_layout(src, false);
3690 	if (error) {
3691 		inode_unlock(src);
3692 		if (error == -EWOULDBLOCK)
3693 			goto retry;
3694 		return error;
3695 	}
3696 
3697 	if (src == dest)
3698 		return 0;
3699 
3700 	/* Lock the other inode and make sure nobody got in and leased it. */
3701 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3702 	error = break_layout(dest, false);
3703 	if (error) {
3704 		inode_unlock(src);
3705 		inode_unlock(dest);
3706 		if (error == -EWOULDBLOCK)
3707 			goto retry;
3708 		return error;
3709 	}
3710 
3711 	return 0;
3712 }
3713 
3714 /*
3715  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3716  * mmap activity.
3717  */
3718 int
3719 xfs_ilock2_io_mmap(
3720 	struct xfs_inode	*ip1,
3721 	struct xfs_inode	*ip2)
3722 {
3723 	int			ret;
3724 
3725 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3726 	if (ret)
3727 		return ret;
3728 	if (ip1 == ip2)
3729 		xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3730 	else
3731 		xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL,
3732 				    ip2, XFS_MMAPLOCK_EXCL);
3733 	return 0;
3734 }
3735 
3736 /* Unlock both inodes to allow IO and mmap activity. */
3737 void
3738 xfs_iunlock2_io_mmap(
3739 	struct xfs_inode	*ip1,
3740 	struct xfs_inode	*ip2)
3741 {
3742 	bool			same_inode = (ip1 == ip2);
3743 
3744 	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3745 	if (!same_inode)
3746 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3747 	inode_unlock(VFS_I(ip2));
3748 	if (!same_inode)
3749 		inode_unlock(VFS_I(ip1));
3750 }
3751