1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_dir2.h" 18 #include "xfs_attr.h" 19 #include "xfs_bit.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_trans.h" 22 #include "xfs_buf_item.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_iunlink_item.h" 25 #include "xfs_ialloc.h" 26 #include "xfs_bmap.h" 27 #include "xfs_bmap_util.h" 28 #include "xfs_errortag.h" 29 #include "xfs_error.h" 30 #include "xfs_quota.h" 31 #include "xfs_filestream.h" 32 #include "xfs_trace.h" 33 #include "xfs_icache.h" 34 #include "xfs_symlink.h" 35 #include "xfs_trans_priv.h" 36 #include "xfs_log.h" 37 #include "xfs_bmap_btree.h" 38 #include "xfs_reflink.h" 39 #include "xfs_ag.h" 40 #include "xfs_log_priv.h" 41 #include "xfs_health.h" 42 #include "xfs_pnfs.h" 43 #include "xfs_parent.h" 44 #include "xfs_xattr.h" 45 #include "xfs_inode_util.h" 46 #include "xfs_metafile.h" 47 48 struct kmem_cache *xfs_inode_cache; 49 50 /* 51 * These two are wrapper routines around the xfs_ilock() routine used to 52 * centralize some grungy code. They are used in places that wish to lock the 53 * inode solely for reading the extents. The reason these places can't just 54 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 55 * bringing in of the extents from disk for a file in b-tree format. If the 56 * inode is in b-tree format, then we need to lock the inode exclusively until 57 * the extents are read in. Locking it exclusively all the time would limit 58 * our parallelism unnecessarily, though. What we do instead is check to see 59 * if the extents have been read in yet, and only lock the inode exclusively 60 * if they have not. 61 * 62 * The functions return a value which should be given to the corresponding 63 * xfs_iunlock() call. 64 */ 65 uint 66 xfs_ilock_data_map_shared( 67 struct xfs_inode *ip) 68 { 69 uint lock_mode = XFS_ILOCK_SHARED; 70 71 if (xfs_need_iread_extents(&ip->i_df)) 72 lock_mode = XFS_ILOCK_EXCL; 73 xfs_ilock(ip, lock_mode); 74 return lock_mode; 75 } 76 77 uint 78 xfs_ilock_attr_map_shared( 79 struct xfs_inode *ip) 80 { 81 uint lock_mode = XFS_ILOCK_SHARED; 82 83 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) 84 lock_mode = XFS_ILOCK_EXCL; 85 xfs_ilock(ip, lock_mode); 86 return lock_mode; 87 } 88 89 /* 90 * You can't set both SHARED and EXCL for the same lock, 91 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED, 92 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values 93 * to set in lock_flags. 94 */ 95 static inline void 96 xfs_lock_flags_assert( 97 uint lock_flags) 98 { 99 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 100 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 101 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 102 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 103 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 104 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 105 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 106 ASSERT(lock_flags != 0); 107 } 108 109 /* 110 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 111 * multi-reader locks: invalidate_lock and the i_lock. This routine allows 112 * various combinations of the locks to be obtained. 113 * 114 * The 3 locks should always be ordered so that the IO lock is obtained first, 115 * the mmap lock second and the ilock last in order to prevent deadlock. 116 * 117 * Basic locking order: 118 * 119 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock 120 * 121 * mmap_lock locking order: 122 * 123 * i_rwsem -> page lock -> mmap_lock 124 * mmap_lock -> invalidate_lock -> page_lock 125 * 126 * The difference in mmap_lock locking order mean that we cannot hold the 127 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths 128 * can fault in pages during copy in/out (for buffered IO) or require the 129 * mmap_lock in get_user_pages() to map the user pages into the kernel address 130 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page 131 * fault because page faults already hold the mmap_lock. 132 * 133 * Hence to serialise fully against both syscall and mmap based IO, we need to 134 * take both the i_rwsem and the invalidate_lock. These locks should *only* be 135 * both taken in places where we need to invalidate the page cache in a race 136 * free manner (e.g. truncate, hole punch and other extent manipulation 137 * functions). 138 */ 139 void 140 xfs_ilock( 141 xfs_inode_t *ip, 142 uint lock_flags) 143 { 144 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 145 146 xfs_lock_flags_assert(lock_flags); 147 148 if (lock_flags & XFS_IOLOCK_EXCL) { 149 down_write_nested(&VFS_I(ip)->i_rwsem, 150 XFS_IOLOCK_DEP(lock_flags)); 151 } else if (lock_flags & XFS_IOLOCK_SHARED) { 152 down_read_nested(&VFS_I(ip)->i_rwsem, 153 XFS_IOLOCK_DEP(lock_flags)); 154 } 155 156 if (lock_flags & XFS_MMAPLOCK_EXCL) { 157 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 158 XFS_MMAPLOCK_DEP(lock_flags)); 159 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 160 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 161 XFS_MMAPLOCK_DEP(lock_flags)); 162 } 163 164 if (lock_flags & XFS_ILOCK_EXCL) 165 down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 166 else if (lock_flags & XFS_ILOCK_SHARED) 167 down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 168 } 169 170 /* 171 * This is just like xfs_ilock(), except that the caller 172 * is guaranteed not to sleep. It returns 1 if it gets 173 * the requested locks and 0 otherwise. If the IO lock is 174 * obtained but the inode lock cannot be, then the IO lock 175 * is dropped before returning. 176 * 177 * ip -- the inode being locked 178 * lock_flags -- this parameter indicates the inode's locks to be 179 * to be locked. See the comment for xfs_ilock() for a list 180 * of valid values. 181 */ 182 int 183 xfs_ilock_nowait( 184 xfs_inode_t *ip, 185 uint lock_flags) 186 { 187 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 188 189 xfs_lock_flags_assert(lock_flags); 190 191 if (lock_flags & XFS_IOLOCK_EXCL) { 192 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 193 goto out; 194 } else if (lock_flags & XFS_IOLOCK_SHARED) { 195 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 196 goto out; 197 } 198 199 if (lock_flags & XFS_MMAPLOCK_EXCL) { 200 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 201 goto out_undo_iolock; 202 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 203 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 204 goto out_undo_iolock; 205 } 206 207 if (lock_flags & XFS_ILOCK_EXCL) { 208 if (!down_write_trylock(&ip->i_lock)) 209 goto out_undo_mmaplock; 210 } else if (lock_flags & XFS_ILOCK_SHARED) { 211 if (!down_read_trylock(&ip->i_lock)) 212 goto out_undo_mmaplock; 213 } 214 return 1; 215 216 out_undo_mmaplock: 217 if (lock_flags & XFS_MMAPLOCK_EXCL) 218 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 219 else if (lock_flags & XFS_MMAPLOCK_SHARED) 220 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 221 out_undo_iolock: 222 if (lock_flags & XFS_IOLOCK_EXCL) 223 up_write(&VFS_I(ip)->i_rwsem); 224 else if (lock_flags & XFS_IOLOCK_SHARED) 225 up_read(&VFS_I(ip)->i_rwsem); 226 out: 227 return 0; 228 } 229 230 /* 231 * xfs_iunlock() is used to drop the inode locks acquired with 232 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 233 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 234 * that we know which locks to drop. 235 * 236 * ip -- the inode being unlocked 237 * lock_flags -- this parameter indicates the inode's locks to be 238 * to be unlocked. See the comment for xfs_ilock() for a list 239 * of valid values for this parameter. 240 * 241 */ 242 void 243 xfs_iunlock( 244 xfs_inode_t *ip, 245 uint lock_flags) 246 { 247 xfs_lock_flags_assert(lock_flags); 248 249 if (lock_flags & XFS_IOLOCK_EXCL) 250 up_write(&VFS_I(ip)->i_rwsem); 251 else if (lock_flags & XFS_IOLOCK_SHARED) 252 up_read(&VFS_I(ip)->i_rwsem); 253 254 if (lock_flags & XFS_MMAPLOCK_EXCL) 255 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 256 else if (lock_flags & XFS_MMAPLOCK_SHARED) 257 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 258 259 if (lock_flags & XFS_ILOCK_EXCL) 260 up_write(&ip->i_lock); 261 else if (lock_flags & XFS_ILOCK_SHARED) 262 up_read(&ip->i_lock); 263 264 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 265 } 266 267 /* 268 * give up write locks. the i/o lock cannot be held nested 269 * if it is being demoted. 270 */ 271 void 272 xfs_ilock_demote( 273 xfs_inode_t *ip, 274 uint lock_flags) 275 { 276 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 277 ASSERT((lock_flags & 278 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 279 280 if (lock_flags & XFS_ILOCK_EXCL) 281 downgrade_write(&ip->i_lock); 282 if (lock_flags & XFS_MMAPLOCK_EXCL) 283 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); 284 if (lock_flags & XFS_IOLOCK_EXCL) 285 downgrade_write(&VFS_I(ip)->i_rwsem); 286 287 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 288 } 289 290 void 291 xfs_assert_ilocked( 292 struct xfs_inode *ip, 293 uint lock_flags) 294 { 295 /* 296 * Sometimes we assert the ILOCK is held exclusively, but we're in 297 * a workqueue, so lockdep doesn't know we're the owner. 298 */ 299 if (lock_flags & XFS_ILOCK_SHARED) 300 rwsem_assert_held(&ip->i_lock); 301 else if (lock_flags & XFS_ILOCK_EXCL) 302 rwsem_assert_held_write_nolockdep(&ip->i_lock); 303 304 if (lock_flags & XFS_MMAPLOCK_SHARED) 305 rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock); 306 else if (lock_flags & XFS_MMAPLOCK_EXCL) 307 rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock); 308 309 if (lock_flags & XFS_IOLOCK_SHARED) 310 rwsem_assert_held(&VFS_I(ip)->i_rwsem); 311 else if (lock_flags & XFS_IOLOCK_EXCL) 312 rwsem_assert_held_write(&VFS_I(ip)->i_rwsem); 313 } 314 315 /* 316 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 317 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 318 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 319 * errors and warnings. 320 */ 321 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 322 static bool 323 xfs_lockdep_subclass_ok( 324 int subclass) 325 { 326 return subclass < MAX_LOCKDEP_SUBCLASSES; 327 } 328 #else 329 #define xfs_lockdep_subclass_ok(subclass) (true) 330 #endif 331 332 /* 333 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 334 * value. This can be called for any type of inode lock combination, including 335 * parent locking. Care must be taken to ensure we don't overrun the subclass 336 * storage fields in the class mask we build. 337 */ 338 static inline uint 339 xfs_lock_inumorder( 340 uint lock_mode, 341 uint subclass) 342 { 343 uint class = 0; 344 345 ASSERT(!(lock_mode & XFS_ILOCK_PARENT)); 346 ASSERT(xfs_lockdep_subclass_ok(subclass)); 347 348 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 349 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 350 class += subclass << XFS_IOLOCK_SHIFT; 351 } 352 353 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 354 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 355 class += subclass << XFS_MMAPLOCK_SHIFT; 356 } 357 358 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 359 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 360 class += subclass << XFS_ILOCK_SHIFT; 361 } 362 363 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 364 } 365 366 /* 367 * The following routine will lock n inodes in exclusive mode. We assume the 368 * caller calls us with the inodes in i_ino order. 369 * 370 * We need to detect deadlock where an inode that we lock is in the AIL and we 371 * start waiting for another inode that is locked by a thread in a long running 372 * transaction (such as truncate). This can result in deadlock since the long 373 * running trans might need to wait for the inode we just locked in order to 374 * push the tail and free space in the log. 375 * 376 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 377 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 378 * lock more than one at a time, lockdep will report false positives saying we 379 * have violated locking orders. 380 */ 381 void 382 xfs_lock_inodes( 383 struct xfs_inode **ips, 384 int inodes, 385 uint lock_mode) 386 { 387 int attempts = 0; 388 uint i; 389 int j; 390 bool try_lock; 391 struct xfs_log_item *lp; 392 393 /* 394 * Currently supports between 2 and 5 inodes with exclusive locking. We 395 * support an arbitrary depth of locking here, but absolute limits on 396 * inodes depend on the type of locking and the limits placed by 397 * lockdep annotations in xfs_lock_inumorder. These are all checked by 398 * the asserts. 399 */ 400 ASSERT(ips && inodes >= 2 && inodes <= 5); 401 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 402 XFS_ILOCK_EXCL)); 403 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 404 XFS_ILOCK_SHARED))); 405 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 406 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 407 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 408 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 409 410 if (lock_mode & XFS_IOLOCK_EXCL) { 411 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 412 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 413 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 414 415 again: 416 try_lock = false; 417 i = 0; 418 for (; i < inodes; i++) { 419 ASSERT(ips[i]); 420 421 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 422 continue; 423 424 /* 425 * If try_lock is not set yet, make sure all locked inodes are 426 * not in the AIL. If any are, set try_lock to be used later. 427 */ 428 if (!try_lock) { 429 for (j = (i - 1); j >= 0 && !try_lock; j--) { 430 lp = &ips[j]->i_itemp->ili_item; 431 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 432 try_lock = true; 433 } 434 } 435 436 /* 437 * If any of the previous locks we have locked is in the AIL, 438 * we must TRY to get the second and subsequent locks. If 439 * we can't get any, we must release all we have 440 * and try again. 441 */ 442 if (!try_lock) { 443 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 444 continue; 445 } 446 447 /* try_lock means we have an inode locked that is in the AIL. */ 448 ASSERT(i != 0); 449 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 450 continue; 451 452 /* 453 * Unlock all previous guys and try again. xfs_iunlock will try 454 * to push the tail if the inode is in the AIL. 455 */ 456 attempts++; 457 for (j = i - 1; j >= 0; j--) { 458 /* 459 * Check to see if we've already unlocked this one. Not 460 * the first one going back, and the inode ptr is the 461 * same. 462 */ 463 if (j != (i - 1) && ips[j] == ips[j + 1]) 464 continue; 465 466 xfs_iunlock(ips[j], lock_mode); 467 } 468 469 if ((attempts % 5) == 0) { 470 delay(1); /* Don't just spin the CPU */ 471 } 472 goto again; 473 } 474 } 475 476 /* 477 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and 478 * mmaplock must be double-locked separately since we use i_rwsem and 479 * invalidate_lock for that. We now support taking one lock EXCL and the 480 * other SHARED. 481 */ 482 void 483 xfs_lock_two_inodes( 484 struct xfs_inode *ip0, 485 uint ip0_mode, 486 struct xfs_inode *ip1, 487 uint ip1_mode) 488 { 489 int attempts = 0; 490 struct xfs_log_item *lp; 491 492 ASSERT(hweight32(ip0_mode) == 1); 493 ASSERT(hweight32(ip1_mode) == 1); 494 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 495 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 496 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 497 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 498 ASSERT(ip0->i_ino != ip1->i_ino); 499 500 if (ip0->i_ino > ip1->i_ino) { 501 swap(ip0, ip1); 502 swap(ip0_mode, ip1_mode); 503 } 504 505 again: 506 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 507 508 /* 509 * If the first lock we have locked is in the AIL, we must TRY to get 510 * the second lock. If we can't get it, we must release the first one 511 * and try again. 512 */ 513 lp = &ip0->i_itemp->ili_item; 514 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 515 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 516 xfs_iunlock(ip0, ip0_mode); 517 if ((++attempts % 5) == 0) 518 delay(1); /* Don't just spin the CPU */ 519 goto again; 520 } 521 } else { 522 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 523 } 524 } 525 526 /* 527 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 528 * is allowed, otherwise it has to be an exact match. If a CI match is found, 529 * ci_name->name will point to a the actual name (caller must free) or 530 * will be set to NULL if an exact match is found. 531 */ 532 int 533 xfs_lookup( 534 struct xfs_inode *dp, 535 const struct xfs_name *name, 536 struct xfs_inode **ipp, 537 struct xfs_name *ci_name) 538 { 539 xfs_ino_t inum; 540 int error; 541 542 trace_xfs_lookup(dp, name); 543 544 if (xfs_is_shutdown(dp->i_mount)) 545 return -EIO; 546 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 547 return -EIO; 548 549 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 550 if (error) 551 goto out_unlock; 552 553 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 554 if (error) 555 goto out_free_name; 556 557 /* 558 * Fail if a directory entry in the regular directory tree points to 559 * a metadata file. 560 */ 561 if (XFS_IS_CORRUPT(dp->i_mount, xfs_is_metadir_inode(*ipp))) { 562 xfs_fs_mark_sick(dp->i_mount, XFS_SICK_FS_METADIR); 563 error = -EFSCORRUPTED; 564 goto out_irele; 565 } 566 567 return 0; 568 569 out_irele: 570 xfs_irele(*ipp); 571 out_free_name: 572 if (ci_name) 573 kfree(ci_name->name); 574 out_unlock: 575 *ipp = NULL; 576 return error; 577 } 578 579 /* 580 * Initialise a newly allocated inode and return the in-core inode to the 581 * caller locked exclusively. 582 * 583 * Caller is responsible for unlocking the inode manually upon return 584 */ 585 int 586 xfs_icreate( 587 struct xfs_trans *tp, 588 xfs_ino_t ino, 589 const struct xfs_icreate_args *args, 590 struct xfs_inode **ipp) 591 { 592 struct xfs_mount *mp = tp->t_mountp; 593 struct xfs_inode *ip = NULL; 594 int error; 595 596 /* 597 * Get the in-core inode with the lock held exclusively to prevent 598 * others from looking at until we're done. 599 */ 600 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 601 if (error) 602 return error; 603 604 ASSERT(ip != NULL); 605 xfs_trans_ijoin(tp, ip, 0); 606 xfs_inode_init(tp, args, ip); 607 608 /* now that we have an i_mode we can setup the inode structure */ 609 xfs_setup_inode(ip); 610 611 *ipp = ip; 612 return 0; 613 } 614 615 /* Return dquots for the ids that will be assigned to a new file. */ 616 int 617 xfs_icreate_dqalloc( 618 const struct xfs_icreate_args *args, 619 struct xfs_dquot **udqpp, 620 struct xfs_dquot **gdqpp, 621 struct xfs_dquot **pdqpp) 622 { 623 struct inode *dir = VFS_I(args->pip); 624 kuid_t uid = GLOBAL_ROOT_UID; 625 kgid_t gid = GLOBAL_ROOT_GID; 626 prid_t prid = 0; 627 unsigned int flags = XFS_QMOPT_QUOTALL; 628 629 if (args->idmap) { 630 /* 631 * The uid/gid computation code must match what the VFS uses to 632 * assign i_[ug]id. INHERIT adjusts the gid computation for 633 * setgid/grpid systems. 634 */ 635 uid = mapped_fsuid(args->idmap, i_user_ns(dir)); 636 gid = mapped_fsgid(args->idmap, i_user_ns(dir)); 637 prid = xfs_get_initial_prid(args->pip); 638 flags |= XFS_QMOPT_INHERIT; 639 } 640 641 *udqpp = *gdqpp = *pdqpp = NULL; 642 643 return xfs_qm_vop_dqalloc(args->pip, uid, gid, prid, flags, udqpp, 644 gdqpp, pdqpp); 645 } 646 647 int 648 xfs_create( 649 const struct xfs_icreate_args *args, 650 struct xfs_name *name, 651 struct xfs_inode **ipp) 652 { 653 struct xfs_inode *dp = args->pip; 654 struct xfs_dir_update du = { 655 .dp = dp, 656 .name = name, 657 }; 658 struct xfs_mount *mp = dp->i_mount; 659 struct xfs_trans *tp = NULL; 660 struct xfs_dquot *udqp; 661 struct xfs_dquot *gdqp; 662 struct xfs_dquot *pdqp; 663 struct xfs_trans_res *tres; 664 xfs_ino_t ino; 665 bool unlock_dp_on_error = false; 666 bool is_dir = S_ISDIR(args->mode); 667 uint resblks; 668 int error; 669 670 trace_xfs_create(dp, name); 671 672 if (xfs_is_shutdown(mp)) 673 return -EIO; 674 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 675 return -EIO; 676 677 /* Make sure that we have allocated dquot(s) on disk. */ 678 error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp); 679 if (error) 680 return error; 681 682 if (is_dir) { 683 resblks = xfs_mkdir_space_res(mp, name->len); 684 tres = &M_RES(mp)->tr_mkdir; 685 } else { 686 resblks = xfs_create_space_res(mp, name->len); 687 tres = &M_RES(mp)->tr_create; 688 } 689 690 error = xfs_parent_start(mp, &du.ppargs); 691 if (error) 692 goto out_release_dquots; 693 694 /* 695 * Initially assume that the file does not exist and 696 * reserve the resources for that case. If that is not 697 * the case we'll drop the one we have and get a more 698 * appropriate transaction later. 699 */ 700 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 701 &tp); 702 if (error == -ENOSPC) { 703 /* flush outstanding delalloc blocks and retry */ 704 xfs_flush_inodes(mp); 705 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, 706 resblks, &tp); 707 } 708 if (error) 709 goto out_parent; 710 711 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 712 unlock_dp_on_error = true; 713 714 /* 715 * A newly created regular or special file just has one directory 716 * entry pointing to them, but a directory also the "." entry 717 * pointing to itself. 718 */ 719 error = xfs_dialloc(&tp, args, &ino); 720 if (!error) 721 error = xfs_icreate(tp, ino, args, &du.ip); 722 if (error) 723 goto out_trans_cancel; 724 725 /* 726 * Now we join the directory inode to the transaction. We do not do it 727 * earlier because xfs_dialloc might commit the previous transaction 728 * (and release all the locks). An error from here on will result in 729 * the transaction cancel unlocking dp so don't do it explicitly in the 730 * error path. 731 */ 732 xfs_trans_ijoin(tp, dp, 0); 733 734 error = xfs_dir_create_child(tp, resblks, &du); 735 if (error) 736 goto out_trans_cancel; 737 738 /* 739 * If this is a synchronous mount, make sure that the 740 * create transaction goes to disk before returning to 741 * the user. 742 */ 743 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 744 xfs_trans_set_sync(tp); 745 746 /* 747 * Attach the dquot(s) to the inodes and modify them incore. 748 * These ids of the inode couldn't have changed since the new 749 * inode has been locked ever since it was created. 750 */ 751 xfs_qm_vop_create_dqattach(tp, du.ip, udqp, gdqp, pdqp); 752 753 error = xfs_trans_commit(tp); 754 if (error) 755 goto out_release_inode; 756 757 xfs_qm_dqrele(udqp); 758 xfs_qm_dqrele(gdqp); 759 xfs_qm_dqrele(pdqp); 760 761 *ipp = du.ip; 762 xfs_iunlock(du.ip, XFS_ILOCK_EXCL); 763 xfs_iunlock(dp, XFS_ILOCK_EXCL); 764 xfs_parent_finish(mp, du.ppargs); 765 return 0; 766 767 out_trans_cancel: 768 xfs_trans_cancel(tp); 769 out_release_inode: 770 /* 771 * Wait until after the current transaction is aborted to finish the 772 * setup of the inode and release the inode. This prevents recursive 773 * transactions and deadlocks from xfs_inactive. 774 */ 775 if (du.ip) { 776 xfs_iunlock(du.ip, XFS_ILOCK_EXCL); 777 xfs_finish_inode_setup(du.ip); 778 xfs_irele(du.ip); 779 } 780 out_parent: 781 xfs_parent_finish(mp, du.ppargs); 782 out_release_dquots: 783 xfs_qm_dqrele(udqp); 784 xfs_qm_dqrele(gdqp); 785 xfs_qm_dqrele(pdqp); 786 787 if (unlock_dp_on_error) 788 xfs_iunlock(dp, XFS_ILOCK_EXCL); 789 return error; 790 } 791 792 int 793 xfs_create_tmpfile( 794 const struct xfs_icreate_args *args, 795 struct xfs_inode **ipp) 796 { 797 struct xfs_inode *dp = args->pip; 798 struct xfs_mount *mp = dp->i_mount; 799 struct xfs_inode *ip = NULL; 800 struct xfs_trans *tp = NULL; 801 struct xfs_dquot *udqp; 802 struct xfs_dquot *gdqp; 803 struct xfs_dquot *pdqp; 804 struct xfs_trans_res *tres; 805 xfs_ino_t ino; 806 uint resblks; 807 int error; 808 809 ASSERT(args->flags & XFS_ICREATE_TMPFILE); 810 811 if (xfs_is_shutdown(mp)) 812 return -EIO; 813 814 /* Make sure that we have allocated dquot(s) on disk. */ 815 error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp); 816 if (error) 817 return error; 818 819 resblks = XFS_IALLOC_SPACE_RES(mp); 820 tres = &M_RES(mp)->tr_create_tmpfile; 821 822 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 823 &tp); 824 if (error) 825 goto out_release_dquots; 826 827 error = xfs_dialloc(&tp, args, &ino); 828 if (!error) 829 error = xfs_icreate(tp, ino, args, &ip); 830 if (error) 831 goto out_trans_cancel; 832 833 if (xfs_has_wsync(mp)) 834 xfs_trans_set_sync(tp); 835 836 /* 837 * Attach the dquot(s) to the inodes and modify them incore. 838 * These ids of the inode couldn't have changed since the new 839 * inode has been locked ever since it was created. 840 */ 841 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 842 843 error = xfs_iunlink(tp, ip); 844 if (error) 845 goto out_trans_cancel; 846 847 error = xfs_trans_commit(tp); 848 if (error) 849 goto out_release_inode; 850 851 xfs_qm_dqrele(udqp); 852 xfs_qm_dqrele(gdqp); 853 xfs_qm_dqrele(pdqp); 854 855 *ipp = ip; 856 xfs_iunlock(ip, XFS_ILOCK_EXCL); 857 return 0; 858 859 out_trans_cancel: 860 xfs_trans_cancel(tp); 861 out_release_inode: 862 /* 863 * Wait until after the current transaction is aborted to finish the 864 * setup of the inode and release the inode. This prevents recursive 865 * transactions and deadlocks from xfs_inactive. 866 */ 867 if (ip) { 868 xfs_iunlock(ip, XFS_ILOCK_EXCL); 869 xfs_finish_inode_setup(ip); 870 xfs_irele(ip); 871 } 872 out_release_dquots: 873 xfs_qm_dqrele(udqp); 874 xfs_qm_dqrele(gdqp); 875 xfs_qm_dqrele(pdqp); 876 877 return error; 878 } 879 880 int 881 xfs_link( 882 struct xfs_inode *tdp, 883 struct xfs_inode *sip, 884 struct xfs_name *target_name) 885 { 886 struct xfs_dir_update du = { 887 .dp = tdp, 888 .name = target_name, 889 .ip = sip, 890 }; 891 struct xfs_mount *mp = tdp->i_mount; 892 struct xfs_trans *tp; 893 int error, nospace_error = 0; 894 int resblks; 895 896 trace_xfs_link(tdp, target_name); 897 898 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 899 900 if (xfs_is_shutdown(mp)) 901 return -EIO; 902 if (xfs_ifork_zapped(tdp, XFS_DATA_FORK)) 903 return -EIO; 904 905 error = xfs_qm_dqattach(sip); 906 if (error) 907 goto std_return; 908 909 error = xfs_qm_dqattach(tdp); 910 if (error) 911 goto std_return; 912 913 error = xfs_parent_start(mp, &du.ppargs); 914 if (error) 915 goto std_return; 916 917 resblks = xfs_link_space_res(mp, target_name->len); 918 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks, 919 &tp, &nospace_error); 920 if (error) 921 goto out_parent; 922 923 /* 924 * We don't allow reservationless or quotaless hardlinking when parent 925 * pointers are enabled because we can't back out if the xattrs must 926 * grow. 927 */ 928 if (du.ppargs && nospace_error) { 929 error = nospace_error; 930 goto error_return; 931 } 932 933 /* 934 * If we are using project inheritance, we only allow hard link 935 * creation in our tree when the project IDs are the same; else 936 * the tree quota mechanism could be circumvented. 937 */ 938 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 939 tdp->i_projid != sip->i_projid)) { 940 /* 941 * Project quota setup skips special files which can 942 * leave inodes in a PROJINHERIT directory without a 943 * project ID set. We need to allow links to be made 944 * to these "project-less" inodes because userspace 945 * expects them to succeed after project ID setup, 946 * but everything else should be rejected. 947 */ 948 if (!special_file(VFS_I(sip)->i_mode) || 949 sip->i_projid != 0) { 950 error = -EXDEV; 951 goto error_return; 952 } 953 } 954 955 error = xfs_dir_add_child(tp, resblks, &du); 956 if (error) 957 goto error_return; 958 959 /* 960 * If this is a synchronous mount, make sure that the 961 * link transaction goes to disk before returning to 962 * the user. 963 */ 964 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 965 xfs_trans_set_sync(tp); 966 967 error = xfs_trans_commit(tp); 968 xfs_iunlock(tdp, XFS_ILOCK_EXCL); 969 xfs_iunlock(sip, XFS_ILOCK_EXCL); 970 xfs_parent_finish(mp, du.ppargs); 971 return error; 972 973 error_return: 974 xfs_trans_cancel(tp); 975 xfs_iunlock(tdp, XFS_ILOCK_EXCL); 976 xfs_iunlock(sip, XFS_ILOCK_EXCL); 977 out_parent: 978 xfs_parent_finish(mp, du.ppargs); 979 std_return: 980 if (error == -ENOSPC && nospace_error) 981 error = nospace_error; 982 return error; 983 } 984 985 /* Clear the reflink flag and the cowblocks tag if possible. */ 986 static void 987 xfs_itruncate_clear_reflink_flags( 988 struct xfs_inode *ip) 989 { 990 struct xfs_ifork *dfork; 991 struct xfs_ifork *cfork; 992 993 if (!xfs_is_reflink_inode(ip)) 994 return; 995 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK); 996 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK); 997 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 998 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 999 if (cfork->if_bytes == 0) 1000 xfs_inode_clear_cowblocks_tag(ip); 1001 } 1002 1003 /* 1004 * Free up the underlying blocks past new_size. The new size must be smaller 1005 * than the current size. This routine can be used both for the attribute and 1006 * data fork, and does not modify the inode size, which is left to the caller. 1007 * 1008 * The transaction passed to this routine must have made a permanent log 1009 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1010 * given transaction and start new ones, so make sure everything involved in 1011 * the transaction is tidy before calling here. Some transaction will be 1012 * returned to the caller to be committed. The incoming transaction must 1013 * already include the inode, and both inode locks must be held exclusively. 1014 * The inode must also be "held" within the transaction. On return the inode 1015 * will be "held" within the returned transaction. This routine does NOT 1016 * require any disk space to be reserved for it within the transaction. 1017 * 1018 * If we get an error, we must return with the inode locked and linked into the 1019 * current transaction. This keeps things simple for the higher level code, 1020 * because it always knows that the inode is locked and held in the transaction 1021 * that returns to it whether errors occur or not. We don't mark the inode 1022 * dirty on error so that transactions can be easily aborted if possible. 1023 */ 1024 int 1025 xfs_itruncate_extents_flags( 1026 struct xfs_trans **tpp, 1027 struct xfs_inode *ip, 1028 int whichfork, 1029 xfs_fsize_t new_size, 1030 int flags) 1031 { 1032 struct xfs_mount *mp = ip->i_mount; 1033 struct xfs_trans *tp = *tpp; 1034 xfs_fileoff_t first_unmap_block; 1035 int error = 0; 1036 1037 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 1038 if (atomic_read(&VFS_I(ip)->i_count)) 1039 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL); 1040 ASSERT(new_size <= XFS_ISIZE(ip)); 1041 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1042 ASSERT(ip->i_itemp != NULL); 1043 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1044 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1045 1046 trace_xfs_itruncate_extents_start(ip, new_size); 1047 1048 flags |= xfs_bmapi_aflag(whichfork); 1049 1050 /* 1051 * Since it is possible for space to become allocated beyond 1052 * the end of the file (in a crash where the space is allocated 1053 * but the inode size is not yet updated), simply remove any 1054 * blocks which show up between the new EOF and the maximum 1055 * possible file size. 1056 * 1057 * We have to free all the blocks to the bmbt maximum offset, even if 1058 * the page cache can't scale that far. 1059 */ 1060 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1061 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1062 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1063 return 0; 1064 } 1065 1066 error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block, 1067 XFS_MAX_FILEOFF); 1068 if (error) 1069 goto out; 1070 1071 if (whichfork == XFS_DATA_FORK) { 1072 /* Remove all pending CoW reservations. */ 1073 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1074 first_unmap_block, XFS_MAX_FILEOFF, true); 1075 if (error) 1076 goto out; 1077 1078 xfs_itruncate_clear_reflink_flags(ip); 1079 } 1080 1081 /* 1082 * Always re-log the inode so that our permanent transaction can keep 1083 * on rolling it forward in the log. 1084 */ 1085 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1086 1087 trace_xfs_itruncate_extents_end(ip, new_size); 1088 1089 out: 1090 *tpp = tp; 1091 return error; 1092 } 1093 1094 /* 1095 * Mark all the buffers attached to this directory stale. In theory we should 1096 * never be freeing a directory with any blocks at all, but this covers the 1097 * case where we've recovered a directory swap with a "temporary" directory 1098 * created by online repair and now need to dump it. 1099 */ 1100 STATIC void 1101 xfs_inactive_dir( 1102 struct xfs_inode *dp) 1103 { 1104 struct xfs_iext_cursor icur; 1105 struct xfs_bmbt_irec got; 1106 struct xfs_mount *mp = dp->i_mount; 1107 struct xfs_da_geometry *geo = mp->m_dir_geo; 1108 struct xfs_ifork *ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK); 1109 xfs_fileoff_t off; 1110 1111 /* 1112 * Invalidate each directory block. All directory blocks are of 1113 * fsbcount length and alignment, so we only need to walk those same 1114 * offsets. We hold the only reference to this inode, so we must wait 1115 * for the buffer locks. 1116 */ 1117 for_each_xfs_iext(ifp, &icur, &got) { 1118 for (off = round_up(got.br_startoff, geo->fsbcount); 1119 off < got.br_startoff + got.br_blockcount; 1120 off += geo->fsbcount) { 1121 struct xfs_buf *bp = NULL; 1122 xfs_fsblock_t fsbno; 1123 int error; 1124 1125 fsbno = (off - got.br_startoff) + got.br_startblock; 1126 error = xfs_buf_incore(mp->m_ddev_targp, 1127 XFS_FSB_TO_DADDR(mp, fsbno), 1128 XFS_FSB_TO_BB(mp, geo->fsbcount), 1129 XBF_LIVESCAN, &bp); 1130 if (error) 1131 continue; 1132 1133 xfs_buf_stale(bp); 1134 xfs_buf_relse(bp); 1135 } 1136 } 1137 } 1138 1139 /* 1140 * xfs_inactive_truncate 1141 * 1142 * Called to perform a truncate when an inode becomes unlinked. 1143 */ 1144 STATIC int 1145 xfs_inactive_truncate( 1146 struct xfs_inode *ip) 1147 { 1148 struct xfs_mount *mp = ip->i_mount; 1149 struct xfs_trans *tp; 1150 int error; 1151 1152 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1153 if (error) { 1154 ASSERT(xfs_is_shutdown(mp)); 1155 return error; 1156 } 1157 xfs_ilock(ip, XFS_ILOCK_EXCL); 1158 xfs_trans_ijoin(tp, ip, 0); 1159 1160 /* 1161 * Log the inode size first to prevent stale data exposure in the event 1162 * of a system crash before the truncate completes. See the related 1163 * comment in xfs_vn_setattr_size() for details. 1164 */ 1165 ip->i_disk_size = 0; 1166 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1167 1168 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1169 if (error) 1170 goto error_trans_cancel; 1171 1172 ASSERT(ip->i_df.if_nextents == 0); 1173 1174 error = xfs_trans_commit(tp); 1175 if (error) 1176 goto error_unlock; 1177 1178 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1179 return 0; 1180 1181 error_trans_cancel: 1182 xfs_trans_cancel(tp); 1183 error_unlock: 1184 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1185 return error; 1186 } 1187 1188 /* 1189 * xfs_inactive_ifree() 1190 * 1191 * Perform the inode free when an inode is unlinked. 1192 */ 1193 STATIC int 1194 xfs_inactive_ifree( 1195 struct xfs_inode *ip) 1196 { 1197 struct xfs_mount *mp = ip->i_mount; 1198 struct xfs_trans *tp; 1199 int error; 1200 1201 /* 1202 * We try to use a per-AG reservation for any block needed by the finobt 1203 * tree, but as the finobt feature predates the per-AG reservation 1204 * support a degraded file system might not have enough space for the 1205 * reservation at mount time. In that case try to dip into the reserved 1206 * pool and pray. 1207 * 1208 * Send a warning if the reservation does happen to fail, as the inode 1209 * now remains allocated and sits on the unlinked list until the fs is 1210 * repaired. 1211 */ 1212 if (unlikely(mp->m_finobt_nores)) { 1213 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1214 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1215 &tp); 1216 } else { 1217 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1218 } 1219 if (error) { 1220 if (error == -ENOSPC) { 1221 xfs_warn_ratelimited(mp, 1222 "Failed to remove inode(s) from unlinked list. " 1223 "Please free space, unmount and run xfs_repair."); 1224 } else { 1225 ASSERT(xfs_is_shutdown(mp)); 1226 } 1227 return error; 1228 } 1229 1230 /* 1231 * We do not hold the inode locked across the entire rolling transaction 1232 * here. We only need to hold it for the first transaction that 1233 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1234 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1235 * here breaks the relationship between cluster buffer invalidation and 1236 * stale inode invalidation on cluster buffer item journal commit 1237 * completion, and can result in leaving dirty stale inodes hanging 1238 * around in memory. 1239 * 1240 * We have no need for serialising this inode operation against other 1241 * operations - we freed the inode and hence reallocation is required 1242 * and that will serialise on reallocating the space the deferops need 1243 * to free. Hence we can unlock the inode on the first commit of 1244 * the transaction rather than roll it right through the deferops. This 1245 * avoids relogging the XFS_ISTALE inode. 1246 * 1247 * We check that xfs_ifree() hasn't grown an internal transaction roll 1248 * by asserting that the inode is still locked when it returns. 1249 */ 1250 xfs_ilock(ip, XFS_ILOCK_EXCL); 1251 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1252 1253 error = xfs_ifree(tp, ip); 1254 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 1255 if (error) { 1256 /* 1257 * If we fail to free the inode, shut down. The cancel 1258 * might do that, we need to make sure. Otherwise the 1259 * inode might be lost for a long time or forever. 1260 */ 1261 if (!xfs_is_shutdown(mp)) { 1262 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1263 __func__, error); 1264 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1265 } 1266 xfs_trans_cancel(tp); 1267 return error; 1268 } 1269 1270 /* 1271 * Credit the quota account(s). The inode is gone. 1272 */ 1273 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1274 1275 return xfs_trans_commit(tp); 1276 } 1277 1278 /* 1279 * Returns true if we need to update the on-disk metadata before we can free 1280 * the memory used by this inode. Updates include freeing post-eof 1281 * preallocations; freeing COW staging extents; and marking the inode free in 1282 * the inobt if it is on the unlinked list. 1283 */ 1284 bool 1285 xfs_inode_needs_inactive( 1286 struct xfs_inode *ip) 1287 { 1288 struct xfs_mount *mp = ip->i_mount; 1289 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 1290 1291 /* 1292 * If the inode is already free, then there can be nothing 1293 * to clean up here. 1294 */ 1295 if (VFS_I(ip)->i_mode == 0) 1296 return false; 1297 1298 /* 1299 * If this is a read-only mount, don't do this (would generate I/O) 1300 * unless we're in log recovery and cleaning the iunlinked list. 1301 */ 1302 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1303 return false; 1304 1305 /* If the log isn't running, push inodes straight to reclaim. */ 1306 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) 1307 return false; 1308 1309 /* Metadata inodes require explicit resource cleanup. */ 1310 if (xfs_is_internal_inode(ip)) 1311 return false; 1312 1313 /* Want to clean out the cow blocks if there are any. */ 1314 if (cow_ifp && cow_ifp->if_bytes > 0) 1315 return true; 1316 1317 /* Unlinked files must be freed. */ 1318 if (VFS_I(ip)->i_nlink == 0) 1319 return true; 1320 1321 /* 1322 * This file isn't being freed, so check if there are post-eof blocks 1323 * to free. 1324 * 1325 * Note: don't bother with iolock here since lockdep complains about 1326 * acquiring it in reclaim context. We have the only reference to the 1327 * inode at this point anyways. 1328 */ 1329 return xfs_can_free_eofblocks(ip); 1330 } 1331 1332 /* 1333 * Save health status somewhere, if we're dumping an inode with uncorrected 1334 * errors and online repair isn't running. 1335 */ 1336 static inline void 1337 xfs_inactive_health( 1338 struct xfs_inode *ip) 1339 { 1340 struct xfs_mount *mp = ip->i_mount; 1341 struct xfs_perag *pag; 1342 unsigned int sick; 1343 unsigned int checked; 1344 1345 xfs_inode_measure_sickness(ip, &sick, &checked); 1346 if (!sick) 1347 return; 1348 1349 trace_xfs_inode_unfixed_corruption(ip, sick); 1350 1351 if (sick & XFS_SICK_INO_FORGET) 1352 return; 1353 1354 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1355 if (!pag) { 1356 /* There had better still be a perag structure! */ 1357 ASSERT(0); 1358 return; 1359 } 1360 1361 xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES); 1362 xfs_perag_put(pag); 1363 } 1364 1365 /* 1366 * xfs_inactive 1367 * 1368 * This is called when the vnode reference count for the vnode 1369 * goes to zero. If the file has been unlinked, then it must 1370 * now be truncated. Also, we clear all of the read-ahead state 1371 * kept for the inode here since the file is now closed. 1372 */ 1373 int 1374 xfs_inactive( 1375 xfs_inode_t *ip) 1376 { 1377 struct xfs_mount *mp; 1378 int error = 0; 1379 int truncate = 0; 1380 1381 /* 1382 * If the inode is already free, then there can be nothing 1383 * to clean up here. 1384 */ 1385 if (VFS_I(ip)->i_mode == 0) { 1386 ASSERT(ip->i_df.if_broot_bytes == 0); 1387 goto out; 1388 } 1389 1390 mp = ip->i_mount; 1391 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1392 1393 xfs_inactive_health(ip); 1394 1395 /* 1396 * If this is a read-only mount, don't do this (would generate I/O) 1397 * unless we're in log recovery and cleaning the iunlinked list. 1398 */ 1399 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1400 goto out; 1401 1402 /* Metadata inodes require explicit resource cleanup. */ 1403 if (xfs_is_internal_inode(ip)) 1404 goto out; 1405 1406 /* Try to clean out the cow blocks if there are any. */ 1407 if (xfs_inode_has_cow_data(ip)) { 1408 error = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1409 if (error) 1410 goto out; 1411 } 1412 1413 if (VFS_I(ip)->i_nlink != 0) { 1414 /* 1415 * Note: don't bother with iolock here since lockdep complains 1416 * about acquiring it in reclaim context. We have the only 1417 * reference to the inode at this point anyways. 1418 */ 1419 if (xfs_can_free_eofblocks(ip)) 1420 error = xfs_free_eofblocks(ip); 1421 1422 goto out; 1423 } 1424 1425 if (S_ISREG(VFS_I(ip)->i_mode) && 1426 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || 1427 xfs_inode_has_filedata(ip))) 1428 truncate = 1; 1429 1430 if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) { 1431 /* 1432 * If this inode is being inactivated during a quotacheck and 1433 * has not yet been scanned by quotacheck, we /must/ remove 1434 * the dquots from the inode before inactivation changes the 1435 * block and inode counts. Most probably this is a result of 1436 * reloading the incore iunlinked list to purge unrecovered 1437 * unlinked inodes. 1438 */ 1439 xfs_qm_dqdetach(ip); 1440 } else { 1441 error = xfs_qm_dqattach(ip); 1442 if (error) 1443 goto out; 1444 } 1445 1446 if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) { 1447 xfs_inactive_dir(ip); 1448 truncate = 1; 1449 } 1450 1451 if (S_ISLNK(VFS_I(ip)->i_mode)) 1452 error = xfs_inactive_symlink(ip); 1453 else if (truncate) 1454 error = xfs_inactive_truncate(ip); 1455 if (error) 1456 goto out; 1457 1458 /* 1459 * If there are attributes associated with the file then blow them away 1460 * now. The code calls a routine that recursively deconstructs the 1461 * attribute fork. If also blows away the in-core attribute fork. 1462 */ 1463 if (xfs_inode_has_attr_fork(ip)) { 1464 error = xfs_attr_inactive(ip); 1465 if (error) 1466 goto out; 1467 } 1468 1469 ASSERT(ip->i_forkoff == 0); 1470 1471 /* 1472 * Free the inode. 1473 */ 1474 error = xfs_inactive_ifree(ip); 1475 1476 out: 1477 /* 1478 * We're done making metadata updates for this inode, so we can release 1479 * the attached dquots. 1480 */ 1481 xfs_qm_dqdetach(ip); 1482 return error; 1483 } 1484 1485 /* 1486 * Find an inode on the unlinked list. This does not take references to the 1487 * inode as we have existence guarantees by holding the AGI buffer lock and that 1488 * only unlinked, referenced inodes can be on the unlinked inode list. If we 1489 * don't find the inode in cache, then let the caller handle the situation. 1490 */ 1491 struct xfs_inode * 1492 xfs_iunlink_lookup( 1493 struct xfs_perag *pag, 1494 xfs_agino_t agino) 1495 { 1496 struct xfs_inode *ip; 1497 1498 rcu_read_lock(); 1499 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 1500 if (!ip) { 1501 /* Caller can handle inode not being in memory. */ 1502 rcu_read_unlock(); 1503 return NULL; 1504 } 1505 1506 /* 1507 * Inode in RCU freeing limbo should not happen. Warn about this and 1508 * let the caller handle the failure. 1509 */ 1510 if (WARN_ON_ONCE(!ip->i_ino)) { 1511 rcu_read_unlock(); 1512 return NULL; 1513 } 1514 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)); 1515 rcu_read_unlock(); 1516 return ip; 1517 } 1518 1519 /* 1520 * Load the inode @next_agino into the cache and set its prev_unlinked pointer 1521 * to @prev_agino. Caller must hold the AGI to synchronize with other changes 1522 * to the unlinked list. 1523 */ 1524 int 1525 xfs_iunlink_reload_next( 1526 struct xfs_trans *tp, 1527 struct xfs_buf *agibp, 1528 xfs_agino_t prev_agino, 1529 xfs_agino_t next_agino) 1530 { 1531 struct xfs_perag *pag = agibp->b_pag; 1532 struct xfs_mount *mp = pag_mount(pag); 1533 struct xfs_inode *next_ip = NULL; 1534 int error; 1535 1536 ASSERT(next_agino != NULLAGINO); 1537 1538 #ifdef DEBUG 1539 rcu_read_lock(); 1540 next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino); 1541 ASSERT(next_ip == NULL); 1542 rcu_read_unlock(); 1543 #endif 1544 1545 xfs_info_ratelimited(mp, 1546 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.", 1547 next_agino, pag_agno(pag)); 1548 1549 /* 1550 * Use an untrusted lookup just to be cautious in case the AGI has been 1551 * corrupted and now points at a free inode. That shouldn't happen, 1552 * but we'd rather shut down now since we're already running in a weird 1553 * situation. 1554 */ 1555 error = xfs_iget(mp, tp, xfs_agino_to_ino(pag, next_agino), 1556 XFS_IGET_UNTRUSTED, 0, &next_ip); 1557 if (error) { 1558 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 1559 return error; 1560 } 1561 1562 /* If this is not an unlinked inode, something is very wrong. */ 1563 if (VFS_I(next_ip)->i_nlink != 0) { 1564 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 1565 error = -EFSCORRUPTED; 1566 goto rele; 1567 } 1568 1569 next_ip->i_prev_unlinked = prev_agino; 1570 trace_xfs_iunlink_reload_next(next_ip); 1571 rele: 1572 ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE)); 1573 if (xfs_is_quotacheck_running(mp) && next_ip) 1574 xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED); 1575 xfs_irele(next_ip); 1576 return error; 1577 } 1578 1579 /* 1580 * Look up the inode number specified and if it is not already marked XFS_ISTALE 1581 * mark it stale. We should only find clean inodes in this lookup that aren't 1582 * already stale. 1583 */ 1584 static void 1585 xfs_ifree_mark_inode_stale( 1586 struct xfs_perag *pag, 1587 struct xfs_inode *free_ip, 1588 xfs_ino_t inum) 1589 { 1590 struct xfs_mount *mp = pag_mount(pag); 1591 struct xfs_inode_log_item *iip; 1592 struct xfs_inode *ip; 1593 1594 retry: 1595 rcu_read_lock(); 1596 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 1597 1598 /* Inode not in memory, nothing to do */ 1599 if (!ip) { 1600 rcu_read_unlock(); 1601 return; 1602 } 1603 1604 /* 1605 * because this is an RCU protected lookup, we could find a recently 1606 * freed or even reallocated inode during the lookup. We need to check 1607 * under the i_flags_lock for a valid inode here. Skip it if it is not 1608 * valid, the wrong inode or stale. 1609 */ 1610 spin_lock(&ip->i_flags_lock); 1611 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 1612 goto out_iflags_unlock; 1613 1614 /* 1615 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 1616 * other inodes that we did not find in the list attached to the buffer 1617 * and are not already marked stale. If we can't lock it, back off and 1618 * retry. 1619 */ 1620 if (ip != free_ip) { 1621 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 1622 spin_unlock(&ip->i_flags_lock); 1623 rcu_read_unlock(); 1624 delay(1); 1625 goto retry; 1626 } 1627 } 1628 ip->i_flags |= XFS_ISTALE; 1629 1630 /* 1631 * If the inode is flushing, it is already attached to the buffer. All 1632 * we needed to do here is mark the inode stale so buffer IO completion 1633 * will remove it from the AIL. 1634 */ 1635 iip = ip->i_itemp; 1636 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 1637 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 1638 ASSERT(iip->ili_last_fields); 1639 goto out_iunlock; 1640 } 1641 1642 /* 1643 * Inodes not attached to the buffer can be released immediately. 1644 * Everything else has to go through xfs_iflush_abort() on journal 1645 * commit as the flock synchronises removal of the inode from the 1646 * cluster buffer against inode reclaim. 1647 */ 1648 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 1649 goto out_iunlock; 1650 1651 __xfs_iflags_set(ip, XFS_IFLUSHING); 1652 spin_unlock(&ip->i_flags_lock); 1653 rcu_read_unlock(); 1654 1655 /* we have a dirty inode in memory that has not yet been flushed. */ 1656 spin_lock(&iip->ili_lock); 1657 iip->ili_last_fields = iip->ili_fields; 1658 iip->ili_fields = 0; 1659 iip->ili_fsync_fields = 0; 1660 spin_unlock(&iip->ili_lock); 1661 ASSERT(iip->ili_last_fields); 1662 1663 if (ip != free_ip) 1664 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1665 return; 1666 1667 out_iunlock: 1668 if (ip != free_ip) 1669 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1670 out_iflags_unlock: 1671 spin_unlock(&ip->i_flags_lock); 1672 rcu_read_unlock(); 1673 } 1674 1675 /* 1676 * A big issue when freeing the inode cluster is that we _cannot_ skip any 1677 * inodes that are in memory - they all must be marked stale and attached to 1678 * the cluster buffer. 1679 */ 1680 static int 1681 xfs_ifree_cluster( 1682 struct xfs_trans *tp, 1683 struct xfs_perag *pag, 1684 struct xfs_inode *free_ip, 1685 struct xfs_icluster *xic) 1686 { 1687 struct xfs_mount *mp = free_ip->i_mount; 1688 struct xfs_ino_geometry *igeo = M_IGEO(mp); 1689 struct xfs_buf *bp; 1690 xfs_daddr_t blkno; 1691 xfs_ino_t inum = xic->first_ino; 1692 int nbufs; 1693 int i, j; 1694 int ioffset; 1695 int error; 1696 1697 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 1698 1699 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 1700 /* 1701 * The allocation bitmap tells us which inodes of the chunk were 1702 * physically allocated. Skip the cluster if an inode falls into 1703 * a sparse region. 1704 */ 1705 ioffset = inum - xic->first_ino; 1706 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 1707 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 1708 continue; 1709 } 1710 1711 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 1712 XFS_INO_TO_AGBNO(mp, inum)); 1713 1714 /* 1715 * We obtain and lock the backing buffer first in the process 1716 * here to ensure dirty inodes attached to the buffer remain in 1717 * the flushing state while we mark them stale. 1718 * 1719 * If we scan the in-memory inodes first, then buffer IO can 1720 * complete before we get a lock on it, and hence we may fail 1721 * to mark all the active inodes on the buffer stale. 1722 */ 1723 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 1724 mp->m_bsize * igeo->blocks_per_cluster, 1725 XBF_UNMAPPED, &bp); 1726 if (error) 1727 return error; 1728 1729 /* 1730 * This buffer may not have been correctly initialised as we 1731 * didn't read it from disk. That's not important because we are 1732 * only using to mark the buffer as stale in the log, and to 1733 * attach stale cached inodes on it. 1734 * 1735 * For the inode that triggered the cluster freeing, this 1736 * attachment may occur in xfs_inode_item_precommit() after we 1737 * have marked this buffer stale. If this buffer was not in 1738 * memory before xfs_ifree_cluster() started, it will not be 1739 * marked XBF_DONE and this will cause problems later in 1740 * xfs_inode_item_precommit() when we trip over a (stale, !done) 1741 * buffer to attached to the transaction. 1742 * 1743 * Hence we have to mark the buffer as XFS_DONE here. This is 1744 * safe because we are also marking the buffer as XBF_STALE and 1745 * XFS_BLI_STALE. That means it will never be dispatched for 1746 * IO and it won't be unlocked until the cluster freeing has 1747 * been committed to the journal and the buffer unpinned. If it 1748 * is written, we want to know about it, and we want it to 1749 * fail. We can acheive this by adding a write verifier to the 1750 * buffer. 1751 */ 1752 bp->b_flags |= XBF_DONE; 1753 bp->b_ops = &xfs_inode_buf_ops; 1754 1755 /* 1756 * Now we need to set all the cached clean inodes as XFS_ISTALE, 1757 * too. This requires lookups, and will skip inodes that we've 1758 * already marked XFS_ISTALE. 1759 */ 1760 for (i = 0; i < igeo->inodes_per_cluster; i++) 1761 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); 1762 1763 xfs_trans_stale_inode_buf(tp, bp); 1764 xfs_trans_binval(tp, bp); 1765 } 1766 return 0; 1767 } 1768 1769 /* 1770 * This is called to return an inode to the inode free list. The inode should 1771 * already be truncated to 0 length and have no pages associated with it. This 1772 * routine also assumes that the inode is already a part of the transaction. 1773 * 1774 * The on-disk copy of the inode will have been added to the list of unlinked 1775 * inodes in the AGI. We need to remove the inode from that list atomically with 1776 * respect to freeing it here. 1777 */ 1778 int 1779 xfs_ifree( 1780 struct xfs_trans *tp, 1781 struct xfs_inode *ip) 1782 { 1783 struct xfs_mount *mp = ip->i_mount; 1784 struct xfs_perag *pag; 1785 struct xfs_icluster xic = { 0 }; 1786 struct xfs_inode_log_item *iip = ip->i_itemp; 1787 int error; 1788 1789 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 1790 ASSERT(VFS_I(ip)->i_nlink == 0); 1791 ASSERT(ip->i_df.if_nextents == 0); 1792 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 1793 ASSERT(ip->i_nblocks == 0); 1794 1795 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1796 1797 error = xfs_inode_uninit(tp, pag, ip, &xic); 1798 if (error) 1799 goto out; 1800 1801 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) 1802 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); 1803 1804 /* Don't attempt to replay owner changes for a deleted inode */ 1805 spin_lock(&iip->ili_lock); 1806 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 1807 spin_unlock(&iip->ili_lock); 1808 1809 if (xic.deleted) 1810 error = xfs_ifree_cluster(tp, pag, ip, &xic); 1811 out: 1812 xfs_perag_put(pag); 1813 return error; 1814 } 1815 1816 /* 1817 * This is called to unpin an inode. The caller must have the inode locked 1818 * in at least shared mode so that the buffer cannot be subsequently pinned 1819 * once someone is waiting for it to be unpinned. 1820 */ 1821 static void 1822 xfs_iunpin( 1823 struct xfs_inode *ip) 1824 { 1825 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); 1826 1827 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 1828 1829 /* Give the log a push to start the unpinning I/O */ 1830 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); 1831 1832 } 1833 1834 static void 1835 __xfs_iunpin_wait( 1836 struct xfs_inode *ip) 1837 { 1838 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 1839 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 1840 1841 xfs_iunpin(ip); 1842 1843 do { 1844 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 1845 if (xfs_ipincount(ip)) 1846 io_schedule(); 1847 } while (xfs_ipincount(ip)); 1848 finish_wait(wq, &wait.wq_entry); 1849 } 1850 1851 void 1852 xfs_iunpin_wait( 1853 struct xfs_inode *ip) 1854 { 1855 if (xfs_ipincount(ip)) 1856 __xfs_iunpin_wait(ip); 1857 } 1858 1859 /* 1860 * Removing an inode from the namespace involves removing the directory entry 1861 * and dropping the link count on the inode. Removing the directory entry can 1862 * result in locking an AGF (directory blocks were freed) and removing a link 1863 * count can result in placing the inode on an unlinked list which results in 1864 * locking an AGI. 1865 * 1866 * The big problem here is that we have an ordering constraint on AGF and AGI 1867 * locking - inode allocation locks the AGI, then can allocate a new extent for 1868 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 1869 * removes the inode from the unlinked list, requiring that we lock the AGI 1870 * first, and then freeing the inode can result in an inode chunk being freed 1871 * and hence freeing disk space requiring that we lock an AGF. 1872 * 1873 * Hence the ordering that is imposed by other parts of the code is AGI before 1874 * AGF. This means we cannot remove the directory entry before we drop the inode 1875 * reference count and put it on the unlinked list as this results in a lock 1876 * order of AGF then AGI, and this can deadlock against inode allocation and 1877 * freeing. Therefore we must drop the link counts before we remove the 1878 * directory entry. 1879 * 1880 * This is still safe from a transactional point of view - it is not until we 1881 * get to xfs_defer_finish() that we have the possibility of multiple 1882 * transactions in this operation. Hence as long as we remove the directory 1883 * entry and drop the link count in the first transaction of the remove 1884 * operation, there are no transactional constraints on the ordering here. 1885 */ 1886 int 1887 xfs_remove( 1888 struct xfs_inode *dp, 1889 struct xfs_name *name, 1890 struct xfs_inode *ip) 1891 { 1892 struct xfs_dir_update du = { 1893 .dp = dp, 1894 .name = name, 1895 .ip = ip, 1896 }; 1897 struct xfs_mount *mp = dp->i_mount; 1898 struct xfs_trans *tp = NULL; 1899 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 1900 int dontcare; 1901 int error = 0; 1902 uint resblks; 1903 1904 trace_xfs_remove(dp, name); 1905 1906 if (xfs_is_shutdown(mp)) 1907 return -EIO; 1908 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 1909 return -EIO; 1910 1911 error = xfs_qm_dqattach(dp); 1912 if (error) 1913 goto std_return; 1914 1915 error = xfs_qm_dqattach(ip); 1916 if (error) 1917 goto std_return; 1918 1919 error = xfs_parent_start(mp, &du.ppargs); 1920 if (error) 1921 goto std_return; 1922 1923 /* 1924 * We try to get the real space reservation first, allowing for 1925 * directory btree deletion(s) implying possible bmap insert(s). If we 1926 * can't get the space reservation then we use 0 instead, and avoid the 1927 * bmap btree insert(s) in the directory code by, if the bmap insert 1928 * tries to happen, instead trimming the LAST block from the directory. 1929 * 1930 * Ignore EDQUOT and ENOSPC being returned via nospace_error because 1931 * the directory code can handle a reservationless update and we don't 1932 * want to prevent a user from trying to free space by deleting things. 1933 */ 1934 resblks = xfs_remove_space_res(mp, name->len); 1935 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks, 1936 &tp, &dontcare); 1937 if (error) { 1938 ASSERT(error != -ENOSPC); 1939 goto out_parent; 1940 } 1941 1942 error = xfs_dir_remove_child(tp, resblks, &du); 1943 if (error) 1944 goto out_trans_cancel; 1945 1946 /* 1947 * If this is a synchronous mount, make sure that the 1948 * remove transaction goes to disk before returning to 1949 * the user. 1950 */ 1951 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1952 xfs_trans_set_sync(tp); 1953 1954 error = xfs_trans_commit(tp); 1955 if (error) 1956 goto out_unlock; 1957 1958 if (is_dir && xfs_inode_is_filestream(ip)) 1959 xfs_filestream_deassociate(ip); 1960 1961 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1962 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1963 xfs_parent_finish(mp, du.ppargs); 1964 return 0; 1965 1966 out_trans_cancel: 1967 xfs_trans_cancel(tp); 1968 out_unlock: 1969 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1970 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1971 out_parent: 1972 xfs_parent_finish(mp, du.ppargs); 1973 std_return: 1974 return error; 1975 } 1976 1977 static inline void 1978 xfs_iunlock_rename( 1979 struct xfs_inode **i_tab, 1980 int num_inodes) 1981 { 1982 int i; 1983 1984 for (i = num_inodes - 1; i >= 0; i--) { 1985 /* Skip duplicate inodes if src and target dps are the same */ 1986 if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1])) 1987 continue; 1988 xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL); 1989 } 1990 } 1991 1992 /* 1993 * Enter all inodes for a rename transaction into a sorted array. 1994 */ 1995 #define __XFS_SORT_INODES 5 1996 STATIC void 1997 xfs_sort_for_rename( 1998 struct xfs_inode *dp1, /* in: old (source) directory inode */ 1999 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2000 struct xfs_inode *ip1, /* in: inode of old entry */ 2001 struct xfs_inode *ip2, /* in: inode of new entry */ 2002 struct xfs_inode *wip, /* in: whiteout inode */ 2003 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2004 int *num_inodes) /* in/out: inodes in array */ 2005 { 2006 int i; 2007 2008 ASSERT(*num_inodes == __XFS_SORT_INODES); 2009 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2010 2011 /* 2012 * i_tab contains a list of pointers to inodes. We initialize 2013 * the table here & we'll sort it. We will then use it to 2014 * order the acquisition of the inode locks. 2015 * 2016 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2017 */ 2018 i = 0; 2019 i_tab[i++] = dp1; 2020 i_tab[i++] = dp2; 2021 i_tab[i++] = ip1; 2022 if (ip2) 2023 i_tab[i++] = ip2; 2024 if (wip) 2025 i_tab[i++] = wip; 2026 *num_inodes = i; 2027 2028 xfs_sort_inodes(i_tab, *num_inodes); 2029 } 2030 2031 void 2032 xfs_sort_inodes( 2033 struct xfs_inode **i_tab, 2034 unsigned int num_inodes) 2035 { 2036 int i, j; 2037 2038 ASSERT(num_inodes <= __XFS_SORT_INODES); 2039 2040 /* 2041 * Sort the elements via bubble sort. (Remember, there are at 2042 * most 5 elements to sort, so this is adequate.) 2043 */ 2044 for (i = 0; i < num_inodes; i++) { 2045 for (j = 1; j < num_inodes; j++) { 2046 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) 2047 swap(i_tab[j], i_tab[j - 1]); 2048 } 2049 } 2050 } 2051 2052 /* 2053 * xfs_rename_alloc_whiteout() 2054 * 2055 * Return a referenced, unlinked, unlocked inode that can be used as a 2056 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2057 * crash between allocating the inode and linking it into the rename transaction 2058 * recovery will free the inode and we won't leak it. 2059 */ 2060 static int 2061 xfs_rename_alloc_whiteout( 2062 struct mnt_idmap *idmap, 2063 struct xfs_name *src_name, 2064 struct xfs_inode *dp, 2065 struct xfs_inode **wip) 2066 { 2067 struct xfs_icreate_args args = { 2068 .idmap = idmap, 2069 .pip = dp, 2070 .mode = S_IFCHR | WHITEOUT_MODE, 2071 .flags = XFS_ICREATE_TMPFILE, 2072 }; 2073 struct xfs_inode *tmpfile; 2074 struct qstr name; 2075 int error; 2076 2077 error = xfs_create_tmpfile(&args, &tmpfile); 2078 if (error) 2079 return error; 2080 2081 name.name = src_name->name; 2082 name.len = src_name->len; 2083 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name); 2084 if (error) { 2085 xfs_finish_inode_setup(tmpfile); 2086 xfs_irele(tmpfile); 2087 return error; 2088 } 2089 2090 /* 2091 * Prepare the tmpfile inode as if it were created through the VFS. 2092 * Complete the inode setup and flag it as linkable. nlink is already 2093 * zero, so we can skip the drop_nlink. 2094 */ 2095 xfs_setup_iops(tmpfile); 2096 xfs_finish_inode_setup(tmpfile); 2097 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2098 2099 *wip = tmpfile; 2100 return 0; 2101 } 2102 2103 /* 2104 * xfs_rename 2105 */ 2106 int 2107 xfs_rename( 2108 struct mnt_idmap *idmap, 2109 struct xfs_inode *src_dp, 2110 struct xfs_name *src_name, 2111 struct xfs_inode *src_ip, 2112 struct xfs_inode *target_dp, 2113 struct xfs_name *target_name, 2114 struct xfs_inode *target_ip, 2115 unsigned int flags) 2116 { 2117 struct xfs_dir_update du_src = { 2118 .dp = src_dp, 2119 .name = src_name, 2120 .ip = src_ip, 2121 }; 2122 struct xfs_dir_update du_tgt = { 2123 .dp = target_dp, 2124 .name = target_name, 2125 .ip = target_ip, 2126 }; 2127 struct xfs_dir_update du_wip = { }; 2128 struct xfs_mount *mp = src_dp->i_mount; 2129 struct xfs_trans *tp; 2130 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2131 int i; 2132 int num_inodes = __XFS_SORT_INODES; 2133 bool new_parent = (src_dp != target_dp); 2134 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 2135 int spaceres; 2136 bool retried = false; 2137 int error, nospace_error = 0; 2138 2139 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2140 2141 if ((flags & RENAME_EXCHANGE) && !target_ip) 2142 return -EINVAL; 2143 2144 /* 2145 * If we are doing a whiteout operation, allocate the whiteout inode 2146 * we will be placing at the target and ensure the type is set 2147 * appropriately. 2148 */ 2149 if (flags & RENAME_WHITEOUT) { 2150 error = xfs_rename_alloc_whiteout(idmap, src_name, target_dp, 2151 &du_wip.ip); 2152 if (error) 2153 return error; 2154 2155 /* setup target dirent info as whiteout */ 2156 src_name->type = XFS_DIR3_FT_CHRDEV; 2157 } 2158 2159 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, du_wip.ip, 2160 inodes, &num_inodes); 2161 2162 error = xfs_parent_start(mp, &du_src.ppargs); 2163 if (error) 2164 goto out_release_wip; 2165 2166 if (du_wip.ip) { 2167 error = xfs_parent_start(mp, &du_wip.ppargs); 2168 if (error) 2169 goto out_src_ppargs; 2170 } 2171 2172 if (target_ip) { 2173 error = xfs_parent_start(mp, &du_tgt.ppargs); 2174 if (error) 2175 goto out_wip_ppargs; 2176 } 2177 2178 retry: 2179 nospace_error = 0; 2180 spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL, 2181 target_name->len, du_wip.ip != NULL); 2182 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 2183 if (error == -ENOSPC) { 2184 nospace_error = error; 2185 spaceres = 0; 2186 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 2187 &tp); 2188 } 2189 if (error) 2190 goto out_tgt_ppargs; 2191 2192 /* 2193 * We don't allow reservationless renaming when parent pointers are 2194 * enabled because we can't back out if the xattrs must grow. 2195 */ 2196 if (du_src.ppargs && nospace_error) { 2197 error = nospace_error; 2198 xfs_trans_cancel(tp); 2199 goto out_tgt_ppargs; 2200 } 2201 2202 /* 2203 * Attach the dquots to the inodes 2204 */ 2205 error = xfs_qm_vop_rename_dqattach(inodes); 2206 if (error) { 2207 xfs_trans_cancel(tp); 2208 goto out_tgt_ppargs; 2209 } 2210 2211 /* 2212 * Lock all the participating inodes. Depending upon whether 2213 * the target_name exists in the target directory, and 2214 * whether the target directory is the same as the source 2215 * directory, we can lock from 2 to 5 inodes. 2216 */ 2217 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2218 2219 /* 2220 * Join all the inodes to the transaction. 2221 */ 2222 xfs_trans_ijoin(tp, src_dp, 0); 2223 if (new_parent) 2224 xfs_trans_ijoin(tp, target_dp, 0); 2225 xfs_trans_ijoin(tp, src_ip, 0); 2226 if (target_ip) 2227 xfs_trans_ijoin(tp, target_ip, 0); 2228 if (du_wip.ip) 2229 xfs_trans_ijoin(tp, du_wip.ip, 0); 2230 2231 /* 2232 * If we are using project inheritance, we only allow renames 2233 * into our tree when the project IDs are the same; else the 2234 * tree quota mechanism would be circumvented. 2235 */ 2236 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 2237 target_dp->i_projid != src_ip->i_projid)) { 2238 error = -EXDEV; 2239 goto out_trans_cancel; 2240 } 2241 2242 /* RENAME_EXCHANGE is unique from here on. */ 2243 if (flags & RENAME_EXCHANGE) { 2244 error = xfs_dir_exchange_children(tp, &du_src, &du_tgt, 2245 spaceres); 2246 if (error) 2247 goto out_trans_cancel; 2248 goto out_commit; 2249 } 2250 2251 /* 2252 * Try to reserve quota to handle an expansion of the target directory. 2253 * We'll allow the rename to continue in reservationless mode if we hit 2254 * a space usage constraint. If we trigger reservationless mode, save 2255 * the errno if there isn't any free space in the target directory. 2256 */ 2257 if (spaceres != 0) { 2258 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres, 2259 0, false); 2260 if (error == -EDQUOT || error == -ENOSPC) { 2261 if (!retried) { 2262 xfs_trans_cancel(tp); 2263 xfs_iunlock_rename(inodes, num_inodes); 2264 xfs_blockgc_free_quota(target_dp, 0); 2265 retried = true; 2266 goto retry; 2267 } 2268 2269 nospace_error = error; 2270 spaceres = 0; 2271 error = 0; 2272 } 2273 if (error) 2274 goto out_trans_cancel; 2275 } 2276 2277 /* 2278 * We don't allow quotaless renaming when parent pointers are enabled 2279 * because we can't back out if the xattrs must grow. 2280 */ 2281 if (du_src.ppargs && nospace_error) { 2282 error = nospace_error; 2283 goto out_trans_cancel; 2284 } 2285 2286 /* 2287 * Lock the AGI buffers we need to handle bumping the nlink of the 2288 * whiteout inode off the unlinked list and to handle dropping the 2289 * nlink of the target inode. Per locking order rules, do this in 2290 * increasing AG order and before directory block allocation tries to 2291 * grab AGFs because we grab AGIs before AGFs. 2292 * 2293 * The (vfs) caller must ensure that if src is a directory then 2294 * target_ip is either null or an empty directory. 2295 */ 2296 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 2297 if (inodes[i] == du_wip.ip || 2298 (inodes[i] == target_ip && 2299 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 2300 struct xfs_perag *pag; 2301 struct xfs_buf *bp; 2302 2303 pag = xfs_perag_get(mp, 2304 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino)); 2305 error = xfs_read_agi(pag, tp, 0, &bp); 2306 xfs_perag_put(pag); 2307 if (error) 2308 goto out_trans_cancel; 2309 } 2310 } 2311 2312 error = xfs_dir_rename_children(tp, &du_src, &du_tgt, spaceres, 2313 &du_wip); 2314 if (error) 2315 goto out_trans_cancel; 2316 2317 if (du_wip.ip) { 2318 /* 2319 * Now we have a real link, clear the "I'm a tmpfile" state 2320 * flag from the inode so it doesn't accidentally get misused in 2321 * future. 2322 */ 2323 VFS_I(du_wip.ip)->i_state &= ~I_LINKABLE; 2324 } 2325 2326 out_commit: 2327 /* 2328 * If this is a synchronous mount, make sure that the rename 2329 * transaction goes to disk before returning to the user. 2330 */ 2331 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) 2332 xfs_trans_set_sync(tp); 2333 2334 error = xfs_trans_commit(tp); 2335 nospace_error = 0; 2336 goto out_unlock; 2337 2338 out_trans_cancel: 2339 xfs_trans_cancel(tp); 2340 out_unlock: 2341 xfs_iunlock_rename(inodes, num_inodes); 2342 out_tgt_ppargs: 2343 xfs_parent_finish(mp, du_tgt.ppargs); 2344 out_wip_ppargs: 2345 xfs_parent_finish(mp, du_wip.ppargs); 2346 out_src_ppargs: 2347 xfs_parent_finish(mp, du_src.ppargs); 2348 out_release_wip: 2349 if (du_wip.ip) 2350 xfs_irele(du_wip.ip); 2351 if (error == -ENOSPC && nospace_error) 2352 error = nospace_error; 2353 return error; 2354 } 2355 2356 static int 2357 xfs_iflush( 2358 struct xfs_inode *ip, 2359 struct xfs_buf *bp) 2360 { 2361 struct xfs_inode_log_item *iip = ip->i_itemp; 2362 struct xfs_dinode *dip; 2363 struct xfs_mount *mp = ip->i_mount; 2364 int error; 2365 2366 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); 2367 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 2368 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 2369 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 2370 ASSERT(iip->ili_item.li_buf == bp); 2371 2372 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 2373 2374 /* 2375 * We don't flush the inode if any of the following checks fail, but we 2376 * do still update the log item and attach to the backing buffer as if 2377 * the flush happened. This is a formality to facilitate predictable 2378 * error handling as the caller will shutdown and fail the buffer. 2379 */ 2380 error = -EFSCORRUPTED; 2381 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 2382 mp, XFS_ERRTAG_IFLUSH_1)) { 2383 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2384 "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT, 2385 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 2386 goto flush_out; 2387 } 2388 if (ip->i_df.if_format == XFS_DINODE_FMT_META_BTREE) { 2389 if (!S_ISREG(VFS_I(ip)->i_mode) || 2390 !(ip->i_diflags2 & XFS_DIFLAG2_METADATA)) { 2391 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2392 "%s: Bad %s meta btree inode %Lu, ptr "PTR_FMT, 2393 __func__, xfs_metafile_type_str(ip->i_metatype), 2394 ip->i_ino, ip); 2395 goto flush_out; 2396 } 2397 } else if (S_ISREG(VFS_I(ip)->i_mode)) { 2398 if (XFS_TEST_ERROR( 2399 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 2400 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 2401 mp, XFS_ERRTAG_IFLUSH_3)) { 2402 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2403 "%s: Bad regular inode %llu, ptr "PTR_FMT, 2404 __func__, ip->i_ino, ip); 2405 goto flush_out; 2406 } 2407 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 2408 if (XFS_TEST_ERROR( 2409 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 2410 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 2411 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 2412 mp, XFS_ERRTAG_IFLUSH_4)) { 2413 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2414 "%s: Bad directory inode %llu, ptr "PTR_FMT, 2415 __func__, ip->i_ino, ip); 2416 goto flush_out; 2417 } 2418 } 2419 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) > 2420 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 2421 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2422 "%s: detected corrupt incore inode %llu, " 2423 "total extents = %llu nblocks = %lld, ptr "PTR_FMT, 2424 __func__, ip->i_ino, 2425 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af), 2426 ip->i_nblocks, ip); 2427 goto flush_out; 2428 } 2429 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, 2430 mp, XFS_ERRTAG_IFLUSH_6)) { 2431 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2432 "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT, 2433 __func__, ip->i_ino, ip->i_forkoff, ip); 2434 goto flush_out; 2435 } 2436 2437 if (xfs_inode_has_attr_fork(ip) && 2438 ip->i_af.if_format == XFS_DINODE_FMT_META_BTREE) { 2439 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2440 "%s: meta btree in inode %Lu attr fork, ptr "PTR_FMT, 2441 __func__, ip->i_ino, ip); 2442 goto flush_out; 2443 } 2444 2445 /* 2446 * Inode item log recovery for v2 inodes are dependent on the flushiter 2447 * count for correct sequencing. We bump the flush iteration count so 2448 * we can detect flushes which postdate a log record during recovery. 2449 * This is redundant as we now log every change and hence this can't 2450 * happen but we need to still do it to ensure backwards compatibility 2451 * with old kernels that predate logging all inode changes. 2452 */ 2453 if (!xfs_has_v3inodes(mp)) 2454 ip->i_flushiter++; 2455 2456 /* 2457 * If there are inline format data / attr forks attached to this inode, 2458 * make sure they are not corrupt. 2459 */ 2460 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 2461 xfs_ifork_verify_local_data(ip)) 2462 goto flush_out; 2463 if (xfs_inode_has_attr_fork(ip) && 2464 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL && 2465 xfs_ifork_verify_local_attr(ip)) 2466 goto flush_out; 2467 2468 /* 2469 * Copy the dirty parts of the inode into the on-disk inode. We always 2470 * copy out the core of the inode, because if the inode is dirty at all 2471 * the core must be. 2472 */ 2473 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 2474 2475 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 2476 if (!xfs_has_v3inodes(mp)) { 2477 if (ip->i_flushiter == DI_MAX_FLUSH) 2478 ip->i_flushiter = 0; 2479 } 2480 2481 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 2482 if (xfs_inode_has_attr_fork(ip)) 2483 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 2484 2485 /* 2486 * We've recorded everything logged in the inode, so we'd like to clear 2487 * the ili_fields bits so we don't log and flush things unnecessarily. 2488 * However, we can't stop logging all this information until the data 2489 * we've copied into the disk buffer is written to disk. If we did we 2490 * might overwrite the copy of the inode in the log with all the data 2491 * after re-logging only part of it, and in the face of a crash we 2492 * wouldn't have all the data we need to recover. 2493 * 2494 * What we do is move the bits to the ili_last_fields field. When 2495 * logging the inode, these bits are moved back to the ili_fields field. 2496 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 2497 * we know that the information those bits represent is permanently on 2498 * disk. As long as the flush completes before the inode is logged 2499 * again, then both ili_fields and ili_last_fields will be cleared. 2500 */ 2501 error = 0; 2502 flush_out: 2503 spin_lock(&iip->ili_lock); 2504 iip->ili_last_fields = iip->ili_fields; 2505 iip->ili_fields = 0; 2506 iip->ili_fsync_fields = 0; 2507 set_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags); 2508 spin_unlock(&iip->ili_lock); 2509 2510 /* 2511 * Store the current LSN of the inode so that we can tell whether the 2512 * item has moved in the AIL from xfs_buf_inode_iodone(). 2513 */ 2514 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2515 &iip->ili_item.li_lsn); 2516 2517 /* generate the checksum. */ 2518 xfs_dinode_calc_crc(mp, dip); 2519 if (error) 2520 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 2521 return error; 2522 } 2523 2524 /* 2525 * Non-blocking flush of dirty inode metadata into the backing buffer. 2526 * 2527 * The caller must have a reference to the inode and hold the cluster buffer 2528 * locked. The function will walk across all the inodes on the cluster buffer it 2529 * can find and lock without blocking, and flush them to the cluster buffer. 2530 * 2531 * On successful flushing of at least one inode, the caller must write out the 2532 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 2533 * the caller needs to release the buffer. On failure, the filesystem will be 2534 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 2535 * will be returned. 2536 */ 2537 int 2538 xfs_iflush_cluster( 2539 struct xfs_buf *bp) 2540 { 2541 struct xfs_mount *mp = bp->b_mount; 2542 struct xfs_log_item *lip, *n; 2543 struct xfs_inode *ip; 2544 struct xfs_inode_log_item *iip; 2545 int clcount = 0; 2546 int error = 0; 2547 2548 /* 2549 * We must use the safe variant here as on shutdown xfs_iflush_abort() 2550 * will remove itself from the list. 2551 */ 2552 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 2553 iip = (struct xfs_inode_log_item *)lip; 2554 ip = iip->ili_inode; 2555 2556 /* 2557 * Quick and dirty check to avoid locks if possible. 2558 */ 2559 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 2560 continue; 2561 if (xfs_ipincount(ip)) 2562 continue; 2563 2564 /* 2565 * The inode is still attached to the buffer, which means it is 2566 * dirty but reclaim might try to grab it. Check carefully for 2567 * that, and grab the ilock while still holding the i_flags_lock 2568 * to guarantee reclaim will not be able to reclaim this inode 2569 * once we drop the i_flags_lock. 2570 */ 2571 spin_lock(&ip->i_flags_lock); 2572 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 2573 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 2574 spin_unlock(&ip->i_flags_lock); 2575 continue; 2576 } 2577 2578 /* 2579 * ILOCK will pin the inode against reclaim and prevent 2580 * concurrent transactions modifying the inode while we are 2581 * flushing the inode. If we get the lock, set the flushing 2582 * state before we drop the i_flags_lock. 2583 */ 2584 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 2585 spin_unlock(&ip->i_flags_lock); 2586 continue; 2587 } 2588 __xfs_iflags_set(ip, XFS_IFLUSHING); 2589 spin_unlock(&ip->i_flags_lock); 2590 2591 /* 2592 * Abort flushing this inode if we are shut down because the 2593 * inode may not currently be in the AIL. This can occur when 2594 * log I/O failure unpins the inode without inserting into the 2595 * AIL, leaving a dirty/unpinned inode attached to the buffer 2596 * that otherwise looks like it should be flushed. 2597 */ 2598 if (xlog_is_shutdown(mp->m_log)) { 2599 xfs_iunpin_wait(ip); 2600 xfs_iflush_abort(ip); 2601 xfs_iunlock(ip, XFS_ILOCK_SHARED); 2602 error = -EIO; 2603 continue; 2604 } 2605 2606 /* don't block waiting on a log force to unpin dirty inodes */ 2607 if (xfs_ipincount(ip)) { 2608 xfs_iflags_clear(ip, XFS_IFLUSHING); 2609 xfs_iunlock(ip, XFS_ILOCK_SHARED); 2610 continue; 2611 } 2612 2613 if (!xfs_inode_clean(ip)) 2614 error = xfs_iflush(ip, bp); 2615 else 2616 xfs_iflags_clear(ip, XFS_IFLUSHING); 2617 xfs_iunlock(ip, XFS_ILOCK_SHARED); 2618 if (error) 2619 break; 2620 clcount++; 2621 } 2622 2623 if (error) { 2624 /* 2625 * Shutdown first so we kill the log before we release this 2626 * buffer. If it is an INODE_ALLOC buffer and pins the tail 2627 * of the log, failing it before the _log_ is shut down can 2628 * result in the log tail being moved forward in the journal 2629 * on disk because log writes can still be taking place. Hence 2630 * unpinning the tail will allow the ICREATE intent to be 2631 * removed from the log an recovery will fail with uninitialised 2632 * inode cluster buffers. 2633 */ 2634 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2635 bp->b_flags |= XBF_ASYNC; 2636 xfs_buf_ioend_fail(bp); 2637 return error; 2638 } 2639 2640 if (!clcount) 2641 return -EAGAIN; 2642 2643 XFS_STATS_INC(mp, xs_icluster_flushcnt); 2644 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 2645 return 0; 2646 2647 } 2648 2649 /* Release an inode. */ 2650 void 2651 xfs_irele( 2652 struct xfs_inode *ip) 2653 { 2654 trace_xfs_irele(ip, _RET_IP_); 2655 iput(VFS_I(ip)); 2656 } 2657 2658 /* 2659 * Ensure all commited transactions touching the inode are written to the log. 2660 */ 2661 int 2662 xfs_log_force_inode( 2663 struct xfs_inode *ip) 2664 { 2665 xfs_csn_t seq = 0; 2666 2667 xfs_ilock(ip, XFS_ILOCK_SHARED); 2668 if (xfs_ipincount(ip)) 2669 seq = ip->i_itemp->ili_commit_seq; 2670 xfs_iunlock(ip, XFS_ILOCK_SHARED); 2671 2672 if (!seq) 2673 return 0; 2674 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); 2675 } 2676 2677 /* 2678 * Grab the exclusive iolock for a data copy from src to dest, making sure to 2679 * abide vfs locking order (lowest pointer value goes first) and breaking the 2680 * layout leases before proceeding. The loop is needed because we cannot call 2681 * the blocking break_layout() with the iolocks held, and therefore have to 2682 * back out both locks. 2683 */ 2684 static int 2685 xfs_iolock_two_inodes_and_break_layout( 2686 struct inode *src, 2687 struct inode *dest) 2688 { 2689 int error; 2690 2691 if (src > dest) 2692 swap(src, dest); 2693 2694 retry: 2695 /* Wait to break both inodes' layouts before we start locking. */ 2696 error = break_layout(src, true); 2697 if (error) 2698 return error; 2699 if (src != dest) { 2700 error = break_layout(dest, true); 2701 if (error) 2702 return error; 2703 } 2704 2705 /* Lock one inode and make sure nobody got in and leased it. */ 2706 inode_lock(src); 2707 error = break_layout(src, false); 2708 if (error) { 2709 inode_unlock(src); 2710 if (error == -EWOULDBLOCK) 2711 goto retry; 2712 return error; 2713 } 2714 2715 if (src == dest) 2716 return 0; 2717 2718 /* Lock the other inode and make sure nobody got in and leased it. */ 2719 inode_lock_nested(dest, I_MUTEX_NONDIR2); 2720 error = break_layout(dest, false); 2721 if (error) { 2722 inode_unlock(src); 2723 inode_unlock(dest); 2724 if (error == -EWOULDBLOCK) 2725 goto retry; 2726 return error; 2727 } 2728 2729 return 0; 2730 } 2731 2732 static int 2733 xfs_mmaplock_two_inodes_and_break_dax_layout( 2734 struct xfs_inode *ip1, 2735 struct xfs_inode *ip2) 2736 { 2737 int error; 2738 bool retry; 2739 struct page *page; 2740 2741 if (ip1->i_ino > ip2->i_ino) 2742 swap(ip1, ip2); 2743 2744 again: 2745 retry = false; 2746 /* Lock the first inode */ 2747 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); 2748 error = xfs_break_dax_layouts(VFS_I(ip1), &retry); 2749 if (error || retry) { 2750 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 2751 if (error == 0 && retry) 2752 goto again; 2753 return error; 2754 } 2755 2756 if (ip1 == ip2) 2757 return 0; 2758 2759 /* Nested lock the second inode */ 2760 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1)); 2761 /* 2762 * We cannot use xfs_break_dax_layouts() directly here because it may 2763 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable 2764 * for this nested lock case. 2765 */ 2766 page = dax_layout_busy_page(VFS_I(ip2)->i_mapping); 2767 if (page && page_ref_count(page) != 1) { 2768 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 2769 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 2770 goto again; 2771 } 2772 2773 return 0; 2774 } 2775 2776 /* 2777 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 2778 * mmap activity. 2779 */ 2780 int 2781 xfs_ilock2_io_mmap( 2782 struct xfs_inode *ip1, 2783 struct xfs_inode *ip2) 2784 { 2785 int ret; 2786 2787 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 2788 if (ret) 2789 return ret; 2790 2791 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 2792 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2); 2793 if (ret) { 2794 inode_unlock(VFS_I(ip2)); 2795 if (ip1 != ip2) 2796 inode_unlock(VFS_I(ip1)); 2797 return ret; 2798 } 2799 } else 2800 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, 2801 VFS_I(ip2)->i_mapping); 2802 2803 return 0; 2804 } 2805 2806 /* Unlock both inodes to allow IO and mmap activity. */ 2807 void 2808 xfs_iunlock2_io_mmap( 2809 struct xfs_inode *ip1, 2810 struct xfs_inode *ip2) 2811 { 2812 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 2813 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 2814 if (ip1 != ip2) 2815 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 2816 } else 2817 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, 2818 VFS_I(ip2)->i_mapping); 2819 2820 inode_unlock(VFS_I(ip2)); 2821 if (ip1 != ip2) 2822 inode_unlock(VFS_I(ip1)); 2823 } 2824 2825 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */ 2826 void 2827 xfs_iunlock2_remapping( 2828 struct xfs_inode *ip1, 2829 struct xfs_inode *ip2) 2830 { 2831 xfs_iflags_clear(ip1, XFS_IREMAPPING); 2832 2833 if (ip1 != ip2) 2834 xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED); 2835 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 2836 2837 if (ip1 != ip2) 2838 inode_unlock_shared(VFS_I(ip1)); 2839 inode_unlock(VFS_I(ip2)); 2840 } 2841 2842 /* 2843 * Reload the incore inode list for this inode. Caller should ensure that 2844 * the link count cannot change, either by taking ILOCK_SHARED or otherwise 2845 * preventing other threads from executing. 2846 */ 2847 int 2848 xfs_inode_reload_unlinked_bucket( 2849 struct xfs_trans *tp, 2850 struct xfs_inode *ip) 2851 { 2852 struct xfs_mount *mp = tp->t_mountp; 2853 struct xfs_buf *agibp; 2854 struct xfs_agi *agi; 2855 struct xfs_perag *pag; 2856 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2857 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2858 xfs_agino_t prev_agino, next_agino; 2859 unsigned int bucket; 2860 bool foundit = false; 2861 int error; 2862 2863 /* Grab the first inode in the list */ 2864 pag = xfs_perag_get(mp, agno); 2865 error = xfs_ialloc_read_agi(pag, tp, 0, &agibp); 2866 xfs_perag_put(pag); 2867 if (error) 2868 return error; 2869 2870 /* 2871 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the 2872 * incore unlinked list pointers for this inode. Check once more to 2873 * see if we raced with anyone else to reload the unlinked list. 2874 */ 2875 if (!xfs_inode_unlinked_incomplete(ip)) { 2876 foundit = true; 2877 goto out_agibp; 2878 } 2879 2880 bucket = agino % XFS_AGI_UNLINKED_BUCKETS; 2881 agi = agibp->b_addr; 2882 2883 trace_xfs_inode_reload_unlinked_bucket(ip); 2884 2885 xfs_info_ratelimited(mp, 2886 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.", 2887 agino, agno); 2888 2889 prev_agino = NULLAGINO; 2890 next_agino = be32_to_cpu(agi->agi_unlinked[bucket]); 2891 while (next_agino != NULLAGINO) { 2892 struct xfs_inode *next_ip = NULL; 2893 2894 /* Found this caller's inode, set its backlink. */ 2895 if (next_agino == agino) { 2896 next_ip = ip; 2897 next_ip->i_prev_unlinked = prev_agino; 2898 foundit = true; 2899 goto next_inode; 2900 } 2901 2902 /* Try in-memory lookup first. */ 2903 next_ip = xfs_iunlink_lookup(pag, next_agino); 2904 if (next_ip) 2905 goto next_inode; 2906 2907 /* Inode not in memory, try reloading it. */ 2908 error = xfs_iunlink_reload_next(tp, agibp, prev_agino, 2909 next_agino); 2910 if (error) 2911 break; 2912 2913 /* Grab the reloaded inode. */ 2914 next_ip = xfs_iunlink_lookup(pag, next_agino); 2915 if (!next_ip) { 2916 /* No incore inode at all? We reloaded it... */ 2917 ASSERT(next_ip != NULL); 2918 error = -EFSCORRUPTED; 2919 break; 2920 } 2921 2922 next_inode: 2923 prev_agino = next_agino; 2924 next_agino = next_ip->i_next_unlinked; 2925 } 2926 2927 out_agibp: 2928 xfs_trans_brelse(tp, agibp); 2929 /* Should have found this inode somewhere in the iunlinked bucket. */ 2930 if (!error && !foundit) 2931 error = -EFSCORRUPTED; 2932 return error; 2933 } 2934 2935 /* Decide if this inode is missing its unlinked list and reload it. */ 2936 int 2937 xfs_inode_reload_unlinked( 2938 struct xfs_inode *ip) 2939 { 2940 struct xfs_trans *tp; 2941 int error; 2942 2943 error = xfs_trans_alloc_empty(ip->i_mount, &tp); 2944 if (error) 2945 return error; 2946 2947 xfs_ilock(ip, XFS_ILOCK_SHARED); 2948 if (xfs_inode_unlinked_incomplete(ip)) 2949 error = xfs_inode_reload_unlinked_bucket(tp, ip); 2950 xfs_iunlock(ip, XFS_ILOCK_SHARED); 2951 xfs_trans_cancel(tp); 2952 2953 return error; 2954 } 2955 2956 /* Has this inode fork been zapped by repair? */ 2957 bool 2958 xfs_ifork_zapped( 2959 const struct xfs_inode *ip, 2960 int whichfork) 2961 { 2962 unsigned int datamask = 0; 2963 2964 switch (whichfork) { 2965 case XFS_DATA_FORK: 2966 switch (ip->i_vnode.i_mode & S_IFMT) { 2967 case S_IFDIR: 2968 datamask = XFS_SICK_INO_DIR_ZAPPED; 2969 break; 2970 case S_IFLNK: 2971 datamask = XFS_SICK_INO_SYMLINK_ZAPPED; 2972 break; 2973 } 2974 return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask); 2975 case XFS_ATTR_FORK: 2976 return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED; 2977 default: 2978 return false; 2979 } 2980 } 2981 2982 /* Compute the number of data and realtime blocks used by a file. */ 2983 void 2984 xfs_inode_count_blocks( 2985 struct xfs_trans *tp, 2986 struct xfs_inode *ip, 2987 xfs_filblks_t *dblocks, 2988 xfs_filblks_t *rblocks) 2989 { 2990 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 2991 2992 *rblocks = 0; 2993 if (XFS_IS_REALTIME_INODE(ip)) 2994 xfs_bmap_count_leaves(ifp, rblocks); 2995 *dblocks = ip->i_nblocks - *rblocks; 2996 } 2997 2998 static void 2999 xfs_wait_dax_page( 3000 struct inode *inode) 3001 { 3002 struct xfs_inode *ip = XFS_I(inode); 3003 3004 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 3005 schedule(); 3006 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 3007 } 3008 3009 int 3010 xfs_break_dax_layouts( 3011 struct inode *inode, 3012 bool *retry) 3013 { 3014 struct page *page; 3015 3016 xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL); 3017 3018 page = dax_layout_busy_page(inode->i_mapping); 3019 if (!page) 3020 return 0; 3021 3022 *retry = true; 3023 return ___wait_var_event(&page->_refcount, 3024 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 3025 0, 0, xfs_wait_dax_page(inode)); 3026 } 3027 3028 int 3029 xfs_break_layouts( 3030 struct inode *inode, 3031 uint *iolock, 3032 enum layout_break_reason reason) 3033 { 3034 bool retry; 3035 int error; 3036 3037 xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL); 3038 3039 do { 3040 retry = false; 3041 switch (reason) { 3042 case BREAK_UNMAP: 3043 error = xfs_break_dax_layouts(inode, &retry); 3044 if (error || retry) 3045 break; 3046 fallthrough; 3047 case BREAK_WRITE: 3048 error = xfs_break_leased_layouts(inode, iolock, &retry); 3049 break; 3050 default: 3051 WARN_ON_ONCE(1); 3052 error = -EINVAL; 3053 } 3054 } while (error == 0 && retry); 3055 3056 return error; 3057 } 3058 3059 /* Returns the size of fundamental allocation unit for a file, in bytes. */ 3060 unsigned int 3061 xfs_inode_alloc_unitsize( 3062 struct xfs_inode *ip) 3063 { 3064 unsigned int blocks = 1; 3065 3066 if (XFS_IS_REALTIME_INODE(ip)) 3067 blocks = ip->i_mount->m_sb.sb_rextsize; 3068 3069 return XFS_FSB_TO_B(ip->i_mount, blocks); 3070 } 3071 3072 /* Should we always be using copy on write for file writes? */ 3073 bool 3074 xfs_is_always_cow_inode( 3075 const struct xfs_inode *ip) 3076 { 3077 return ip->i_mount->m_always_cow && xfs_has_reflink(ip->i_mount); 3078 } 3079