xref: /linux/fs/xfs/xfs_icache.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_log_priv.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dinode.h"
32 #include "xfs_error.h"
33 #include "xfs_filestream.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_quota.h"
37 #include "xfs_trace.h"
38 #include "xfs_fsops.h"
39 #include "xfs_icache.h"
40 
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 
44 STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
45 				struct xfs_perag *pag, struct xfs_inode *ip);
46 
47 /*
48  * Allocate and initialise an xfs_inode.
49  */
50 STATIC struct xfs_inode *
51 xfs_inode_alloc(
52 	struct xfs_mount	*mp,
53 	xfs_ino_t		ino)
54 {
55 	struct xfs_inode	*ip;
56 
57 	/*
58 	 * if this didn't occur in transactions, we could use
59 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
60 	 * code up to do this anyway.
61 	 */
62 	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
63 	if (!ip)
64 		return NULL;
65 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
66 		kmem_zone_free(xfs_inode_zone, ip);
67 		return NULL;
68 	}
69 
70 	ASSERT(atomic_read(&ip->i_pincount) == 0);
71 	ASSERT(!spin_is_locked(&ip->i_flags_lock));
72 	ASSERT(!xfs_isiflocked(ip));
73 	ASSERT(ip->i_ino == 0);
74 
75 	mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
76 
77 	/* initialise the xfs inode */
78 	ip->i_ino = ino;
79 	ip->i_mount = mp;
80 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
81 	ip->i_afp = NULL;
82 	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
83 	ip->i_flags = 0;
84 	ip->i_delayed_blks = 0;
85 	memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
86 
87 	return ip;
88 }
89 
90 STATIC void
91 xfs_inode_free_callback(
92 	struct rcu_head		*head)
93 {
94 	struct inode		*inode = container_of(head, struct inode, i_rcu);
95 	struct xfs_inode	*ip = XFS_I(inode);
96 
97 	kmem_zone_free(xfs_inode_zone, ip);
98 }
99 
100 STATIC void
101 xfs_inode_free(
102 	struct xfs_inode	*ip)
103 {
104 	switch (ip->i_d.di_mode & S_IFMT) {
105 	case S_IFREG:
106 	case S_IFDIR:
107 	case S_IFLNK:
108 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
109 		break;
110 	}
111 
112 	if (ip->i_afp)
113 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
114 
115 	if (ip->i_itemp) {
116 		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
117 		xfs_inode_item_destroy(ip);
118 		ip->i_itemp = NULL;
119 	}
120 
121 	/* asserts to verify all state is correct here */
122 	ASSERT(atomic_read(&ip->i_pincount) == 0);
123 	ASSERT(!spin_is_locked(&ip->i_flags_lock));
124 	ASSERT(!xfs_isiflocked(ip));
125 
126 	/*
127 	 * Because we use RCU freeing we need to ensure the inode always
128 	 * appears to be reclaimed with an invalid inode number when in the
129 	 * free state. The ip->i_flags_lock provides the barrier against lookup
130 	 * races.
131 	 */
132 	spin_lock(&ip->i_flags_lock);
133 	ip->i_flags = XFS_IRECLAIM;
134 	ip->i_ino = 0;
135 	spin_unlock(&ip->i_flags_lock);
136 
137 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
138 }
139 
140 /*
141  * Check the validity of the inode we just found it the cache
142  */
143 static int
144 xfs_iget_cache_hit(
145 	struct xfs_perag	*pag,
146 	struct xfs_inode	*ip,
147 	xfs_ino_t		ino,
148 	int			flags,
149 	int			lock_flags) __releases(RCU)
150 {
151 	struct inode		*inode = VFS_I(ip);
152 	struct xfs_mount	*mp = ip->i_mount;
153 	int			error;
154 
155 	/*
156 	 * check for re-use of an inode within an RCU grace period due to the
157 	 * radix tree nodes not being updated yet. We monitor for this by
158 	 * setting the inode number to zero before freeing the inode structure.
159 	 * If the inode has been reallocated and set up, then the inode number
160 	 * will not match, so check for that, too.
161 	 */
162 	spin_lock(&ip->i_flags_lock);
163 	if (ip->i_ino != ino) {
164 		trace_xfs_iget_skip(ip);
165 		XFS_STATS_INC(xs_ig_frecycle);
166 		error = EAGAIN;
167 		goto out_error;
168 	}
169 
170 
171 	/*
172 	 * If we are racing with another cache hit that is currently
173 	 * instantiating this inode or currently recycling it out of
174 	 * reclaimabe state, wait for the initialisation to complete
175 	 * before continuing.
176 	 *
177 	 * XXX(hch): eventually we should do something equivalent to
178 	 *	     wait_on_inode to wait for these flags to be cleared
179 	 *	     instead of polling for it.
180 	 */
181 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
182 		trace_xfs_iget_skip(ip);
183 		XFS_STATS_INC(xs_ig_frecycle);
184 		error = EAGAIN;
185 		goto out_error;
186 	}
187 
188 	/*
189 	 * If lookup is racing with unlink return an error immediately.
190 	 */
191 	if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
192 		error = ENOENT;
193 		goto out_error;
194 	}
195 
196 	/*
197 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
198 	 * Need to carefully get it back into useable state.
199 	 */
200 	if (ip->i_flags & XFS_IRECLAIMABLE) {
201 		trace_xfs_iget_reclaim(ip);
202 
203 		/*
204 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
205 		 * from stomping over us while we recycle the inode.  We can't
206 		 * clear the radix tree reclaimable tag yet as it requires
207 		 * pag_ici_lock to be held exclusive.
208 		 */
209 		ip->i_flags |= XFS_IRECLAIM;
210 
211 		spin_unlock(&ip->i_flags_lock);
212 		rcu_read_unlock();
213 
214 		error = -inode_init_always(mp->m_super, inode);
215 		if (error) {
216 			/*
217 			 * Re-initializing the inode failed, and we are in deep
218 			 * trouble.  Try to re-add it to the reclaim list.
219 			 */
220 			rcu_read_lock();
221 			spin_lock(&ip->i_flags_lock);
222 
223 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
224 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
225 			trace_xfs_iget_reclaim_fail(ip);
226 			goto out_error;
227 		}
228 
229 		spin_lock(&pag->pag_ici_lock);
230 		spin_lock(&ip->i_flags_lock);
231 
232 		/*
233 		 * Clear the per-lifetime state in the inode as we are now
234 		 * effectively a new inode and need to return to the initial
235 		 * state before reuse occurs.
236 		 */
237 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
238 		ip->i_flags |= XFS_INEW;
239 		__xfs_inode_clear_reclaim_tag(mp, pag, ip);
240 		inode->i_state = I_NEW;
241 
242 		ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
243 		mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
244 
245 		spin_unlock(&ip->i_flags_lock);
246 		spin_unlock(&pag->pag_ici_lock);
247 	} else {
248 		/* If the VFS inode is being torn down, pause and try again. */
249 		if (!igrab(inode)) {
250 			trace_xfs_iget_skip(ip);
251 			error = EAGAIN;
252 			goto out_error;
253 		}
254 
255 		/* We've got a live one. */
256 		spin_unlock(&ip->i_flags_lock);
257 		rcu_read_unlock();
258 		trace_xfs_iget_hit(ip);
259 	}
260 
261 	if (lock_flags != 0)
262 		xfs_ilock(ip, lock_flags);
263 
264 	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
265 	XFS_STATS_INC(xs_ig_found);
266 
267 	return 0;
268 
269 out_error:
270 	spin_unlock(&ip->i_flags_lock);
271 	rcu_read_unlock();
272 	return error;
273 }
274 
275 
276 static int
277 xfs_iget_cache_miss(
278 	struct xfs_mount	*mp,
279 	struct xfs_perag	*pag,
280 	xfs_trans_t		*tp,
281 	xfs_ino_t		ino,
282 	struct xfs_inode	**ipp,
283 	int			flags,
284 	int			lock_flags)
285 {
286 	struct xfs_inode	*ip;
287 	int			error;
288 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
289 	int			iflags;
290 
291 	ip = xfs_inode_alloc(mp, ino);
292 	if (!ip)
293 		return ENOMEM;
294 
295 	error = xfs_iread(mp, tp, ip, flags);
296 	if (error)
297 		goto out_destroy;
298 
299 	trace_xfs_iget_miss(ip);
300 
301 	if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
302 		error = ENOENT;
303 		goto out_destroy;
304 	}
305 
306 	/*
307 	 * Preload the radix tree so we can insert safely under the
308 	 * write spinlock. Note that we cannot sleep inside the preload
309 	 * region. Since we can be called from transaction context, don't
310 	 * recurse into the file system.
311 	 */
312 	if (radix_tree_preload(GFP_NOFS)) {
313 		error = EAGAIN;
314 		goto out_destroy;
315 	}
316 
317 	/*
318 	 * Because the inode hasn't been added to the radix-tree yet it can't
319 	 * be found by another thread, so we can do the non-sleeping lock here.
320 	 */
321 	if (lock_flags) {
322 		if (!xfs_ilock_nowait(ip, lock_flags))
323 			BUG();
324 	}
325 
326 	/*
327 	 * These values must be set before inserting the inode into the radix
328 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
329 	 * RCU locking mechanism) can find it and that lookup must see that this
330 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
331 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
332 	 * memory barrier that ensures this detection works correctly at lookup
333 	 * time.
334 	 */
335 	iflags = XFS_INEW;
336 	if (flags & XFS_IGET_DONTCACHE)
337 		iflags |= XFS_IDONTCACHE;
338 	ip->i_udquot = NULL;
339 	ip->i_gdquot = NULL;
340 	xfs_iflags_set(ip, iflags);
341 
342 	/* insert the new inode */
343 	spin_lock(&pag->pag_ici_lock);
344 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
345 	if (unlikely(error)) {
346 		WARN_ON(error != -EEXIST);
347 		XFS_STATS_INC(xs_ig_dup);
348 		error = EAGAIN;
349 		goto out_preload_end;
350 	}
351 	spin_unlock(&pag->pag_ici_lock);
352 	radix_tree_preload_end();
353 
354 	*ipp = ip;
355 	return 0;
356 
357 out_preload_end:
358 	spin_unlock(&pag->pag_ici_lock);
359 	radix_tree_preload_end();
360 	if (lock_flags)
361 		xfs_iunlock(ip, lock_flags);
362 out_destroy:
363 	__destroy_inode(VFS_I(ip));
364 	xfs_inode_free(ip);
365 	return error;
366 }
367 
368 /*
369  * Look up an inode by number in the given file system.
370  * The inode is looked up in the cache held in each AG.
371  * If the inode is found in the cache, initialise the vfs inode
372  * if necessary.
373  *
374  * If it is not in core, read it in from the file system's device,
375  * add it to the cache and initialise the vfs inode.
376  *
377  * The inode is locked according to the value of the lock_flags parameter.
378  * This flag parameter indicates how and if the inode's IO lock and inode lock
379  * should be taken.
380  *
381  * mp -- the mount point structure for the current file system.  It points
382  *       to the inode hash table.
383  * tp -- a pointer to the current transaction if there is one.  This is
384  *       simply passed through to the xfs_iread() call.
385  * ino -- the number of the inode desired.  This is the unique identifier
386  *        within the file system for the inode being requested.
387  * lock_flags -- flags indicating how to lock the inode.  See the comment
388  *		 for xfs_ilock() for a list of valid values.
389  */
390 int
391 xfs_iget(
392 	xfs_mount_t	*mp,
393 	xfs_trans_t	*tp,
394 	xfs_ino_t	ino,
395 	uint		flags,
396 	uint		lock_flags,
397 	xfs_inode_t	**ipp)
398 {
399 	xfs_inode_t	*ip;
400 	int		error;
401 	xfs_perag_t	*pag;
402 	xfs_agino_t	agino;
403 
404 	/*
405 	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
406 	 * doesn't get freed while it's being referenced during a
407 	 * radix tree traversal here.  It assumes this function
408 	 * aqcuires only the ILOCK (and therefore it has no need to
409 	 * involve the IOLOCK in this synchronization).
410 	 */
411 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
412 
413 	/* reject inode numbers outside existing AGs */
414 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
415 		return EINVAL;
416 
417 	/* get the perag structure and ensure that it's inode capable */
418 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
419 	agino = XFS_INO_TO_AGINO(mp, ino);
420 
421 again:
422 	error = 0;
423 	rcu_read_lock();
424 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
425 
426 	if (ip) {
427 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
428 		if (error)
429 			goto out_error_or_again;
430 	} else {
431 		rcu_read_unlock();
432 		XFS_STATS_INC(xs_ig_missed);
433 
434 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
435 							flags, lock_flags);
436 		if (error)
437 			goto out_error_or_again;
438 	}
439 	xfs_perag_put(pag);
440 
441 	*ipp = ip;
442 
443 	/*
444 	 * If we have a real type for an on-disk inode, we can set ops(&unlock)
445 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
446 	 */
447 	if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
448 		xfs_setup_inode(ip);
449 	return 0;
450 
451 out_error_or_again:
452 	if (error == EAGAIN) {
453 		delay(1);
454 		goto again;
455 	}
456 	xfs_perag_put(pag);
457 	return error;
458 }
459 
460 /*
461  * The inode lookup is done in batches to keep the amount of lock traffic and
462  * radix tree lookups to a minimum. The batch size is a trade off between
463  * lookup reduction and stack usage. This is in the reclaim path, so we can't
464  * be too greedy.
465  */
466 #define XFS_LOOKUP_BATCH	32
467 
468 STATIC int
469 xfs_inode_ag_walk_grab(
470 	struct xfs_inode	*ip)
471 {
472 	struct inode		*inode = VFS_I(ip);
473 
474 	ASSERT(rcu_read_lock_held());
475 
476 	/*
477 	 * check for stale RCU freed inode
478 	 *
479 	 * If the inode has been reallocated, it doesn't matter if it's not in
480 	 * the AG we are walking - we are walking for writeback, so if it
481 	 * passes all the "valid inode" checks and is dirty, then we'll write
482 	 * it back anyway.  If it has been reallocated and still being
483 	 * initialised, the XFS_INEW check below will catch it.
484 	 */
485 	spin_lock(&ip->i_flags_lock);
486 	if (!ip->i_ino)
487 		goto out_unlock_noent;
488 
489 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
490 	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
491 		goto out_unlock_noent;
492 	spin_unlock(&ip->i_flags_lock);
493 
494 	/* nothing to sync during shutdown */
495 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
496 		return EFSCORRUPTED;
497 
498 	/* If we can't grab the inode, it must on it's way to reclaim. */
499 	if (!igrab(inode))
500 		return ENOENT;
501 
502 	if (is_bad_inode(inode)) {
503 		IRELE(ip);
504 		return ENOENT;
505 	}
506 
507 	/* inode is valid */
508 	return 0;
509 
510 out_unlock_noent:
511 	spin_unlock(&ip->i_flags_lock);
512 	return ENOENT;
513 }
514 
515 STATIC int
516 xfs_inode_ag_walk(
517 	struct xfs_mount	*mp,
518 	struct xfs_perag	*pag,
519 	int			(*execute)(struct xfs_inode *ip,
520 					   struct xfs_perag *pag, int flags,
521 					   void *args),
522 	int			flags,
523 	void			*args,
524 	int			tag)
525 {
526 	uint32_t		first_index;
527 	int			last_error = 0;
528 	int			skipped;
529 	int			done;
530 	int			nr_found;
531 
532 restart:
533 	done = 0;
534 	skipped = 0;
535 	first_index = 0;
536 	nr_found = 0;
537 	do {
538 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
539 		int		error = 0;
540 		int		i;
541 
542 		rcu_read_lock();
543 
544 		if (tag == -1)
545 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
546 					(void **)batch, first_index,
547 					XFS_LOOKUP_BATCH);
548 		else
549 			nr_found = radix_tree_gang_lookup_tag(
550 					&pag->pag_ici_root,
551 					(void **) batch, first_index,
552 					XFS_LOOKUP_BATCH, tag);
553 
554 		if (!nr_found) {
555 			rcu_read_unlock();
556 			break;
557 		}
558 
559 		/*
560 		 * Grab the inodes before we drop the lock. if we found
561 		 * nothing, nr == 0 and the loop will be skipped.
562 		 */
563 		for (i = 0; i < nr_found; i++) {
564 			struct xfs_inode *ip = batch[i];
565 
566 			if (done || xfs_inode_ag_walk_grab(ip))
567 				batch[i] = NULL;
568 
569 			/*
570 			 * Update the index for the next lookup. Catch
571 			 * overflows into the next AG range which can occur if
572 			 * we have inodes in the last block of the AG and we
573 			 * are currently pointing to the last inode.
574 			 *
575 			 * Because we may see inodes that are from the wrong AG
576 			 * due to RCU freeing and reallocation, only update the
577 			 * index if it lies in this AG. It was a race that lead
578 			 * us to see this inode, so another lookup from the
579 			 * same index will not find it again.
580 			 */
581 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
582 				continue;
583 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
584 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
585 				done = 1;
586 		}
587 
588 		/* unlock now we've grabbed the inodes. */
589 		rcu_read_unlock();
590 
591 		for (i = 0; i < nr_found; i++) {
592 			if (!batch[i])
593 				continue;
594 			error = execute(batch[i], pag, flags, args);
595 			IRELE(batch[i]);
596 			if (error == EAGAIN) {
597 				skipped++;
598 				continue;
599 			}
600 			if (error && last_error != EFSCORRUPTED)
601 				last_error = error;
602 		}
603 
604 		/* bail out if the filesystem is corrupted.  */
605 		if (error == EFSCORRUPTED)
606 			break;
607 
608 		cond_resched();
609 
610 	} while (nr_found && !done);
611 
612 	if (skipped) {
613 		delay(1);
614 		goto restart;
615 	}
616 	return last_error;
617 }
618 
619 /*
620  * Background scanning to trim post-EOF preallocated space. This is queued
621  * based on the 'background_prealloc_discard_period' tunable (5m by default).
622  */
623 STATIC void
624 xfs_queue_eofblocks(
625 	struct xfs_mount *mp)
626 {
627 	rcu_read_lock();
628 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
629 		queue_delayed_work(mp->m_eofblocks_workqueue,
630 				   &mp->m_eofblocks_work,
631 				   msecs_to_jiffies(xfs_eofb_secs * 1000));
632 	rcu_read_unlock();
633 }
634 
635 void
636 xfs_eofblocks_worker(
637 	struct work_struct *work)
638 {
639 	struct xfs_mount *mp = container_of(to_delayed_work(work),
640 				struct xfs_mount, m_eofblocks_work);
641 	xfs_icache_free_eofblocks(mp, NULL);
642 	xfs_queue_eofblocks(mp);
643 }
644 
645 int
646 xfs_inode_ag_iterator(
647 	struct xfs_mount	*mp,
648 	int			(*execute)(struct xfs_inode *ip,
649 					   struct xfs_perag *pag, int flags,
650 					   void *args),
651 	int			flags,
652 	void			*args)
653 {
654 	struct xfs_perag	*pag;
655 	int			error = 0;
656 	int			last_error = 0;
657 	xfs_agnumber_t		ag;
658 
659 	ag = 0;
660 	while ((pag = xfs_perag_get(mp, ag))) {
661 		ag = pag->pag_agno + 1;
662 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
663 		xfs_perag_put(pag);
664 		if (error) {
665 			last_error = error;
666 			if (error == EFSCORRUPTED)
667 				break;
668 		}
669 	}
670 	return XFS_ERROR(last_error);
671 }
672 
673 int
674 xfs_inode_ag_iterator_tag(
675 	struct xfs_mount	*mp,
676 	int			(*execute)(struct xfs_inode *ip,
677 					   struct xfs_perag *pag, int flags,
678 					   void *args),
679 	int			flags,
680 	void			*args,
681 	int			tag)
682 {
683 	struct xfs_perag	*pag;
684 	int			error = 0;
685 	int			last_error = 0;
686 	xfs_agnumber_t		ag;
687 
688 	ag = 0;
689 	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
690 		ag = pag->pag_agno + 1;
691 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
692 		xfs_perag_put(pag);
693 		if (error) {
694 			last_error = error;
695 			if (error == EFSCORRUPTED)
696 				break;
697 		}
698 	}
699 	return XFS_ERROR(last_error);
700 }
701 
702 /*
703  * Queue a new inode reclaim pass if there are reclaimable inodes and there
704  * isn't a reclaim pass already in progress. By default it runs every 5s based
705  * on the xfs periodic sync default of 30s. Perhaps this should have it's own
706  * tunable, but that can be done if this method proves to be ineffective or too
707  * aggressive.
708  */
709 static void
710 xfs_reclaim_work_queue(
711 	struct xfs_mount        *mp)
712 {
713 
714 	rcu_read_lock();
715 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
716 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
717 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
718 	}
719 	rcu_read_unlock();
720 }
721 
722 /*
723  * This is a fast pass over the inode cache to try to get reclaim moving on as
724  * many inodes as possible in a short period of time. It kicks itself every few
725  * seconds, as well as being kicked by the inode cache shrinker when memory
726  * goes low. It scans as quickly as possible avoiding locked inodes or those
727  * already being flushed, and once done schedules a future pass.
728  */
729 void
730 xfs_reclaim_worker(
731 	struct work_struct *work)
732 {
733 	struct xfs_mount *mp = container_of(to_delayed_work(work),
734 					struct xfs_mount, m_reclaim_work);
735 
736 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
737 	xfs_reclaim_work_queue(mp);
738 }
739 
740 static void
741 __xfs_inode_set_reclaim_tag(
742 	struct xfs_perag	*pag,
743 	struct xfs_inode	*ip)
744 {
745 	radix_tree_tag_set(&pag->pag_ici_root,
746 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
747 			   XFS_ICI_RECLAIM_TAG);
748 
749 	if (!pag->pag_ici_reclaimable) {
750 		/* propagate the reclaim tag up into the perag radix tree */
751 		spin_lock(&ip->i_mount->m_perag_lock);
752 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
753 				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
754 				XFS_ICI_RECLAIM_TAG);
755 		spin_unlock(&ip->i_mount->m_perag_lock);
756 
757 		/* schedule periodic background inode reclaim */
758 		xfs_reclaim_work_queue(ip->i_mount);
759 
760 		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
761 							-1, _RET_IP_);
762 	}
763 	pag->pag_ici_reclaimable++;
764 }
765 
766 /*
767  * We set the inode flag atomically with the radix tree tag.
768  * Once we get tag lookups on the radix tree, this inode flag
769  * can go away.
770  */
771 void
772 xfs_inode_set_reclaim_tag(
773 	xfs_inode_t	*ip)
774 {
775 	struct xfs_mount *mp = ip->i_mount;
776 	struct xfs_perag *pag;
777 
778 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
779 	spin_lock(&pag->pag_ici_lock);
780 	spin_lock(&ip->i_flags_lock);
781 	__xfs_inode_set_reclaim_tag(pag, ip);
782 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
783 	spin_unlock(&ip->i_flags_lock);
784 	spin_unlock(&pag->pag_ici_lock);
785 	xfs_perag_put(pag);
786 }
787 
788 STATIC void
789 __xfs_inode_clear_reclaim(
790 	xfs_perag_t	*pag,
791 	xfs_inode_t	*ip)
792 {
793 	pag->pag_ici_reclaimable--;
794 	if (!pag->pag_ici_reclaimable) {
795 		/* clear the reclaim tag from the perag radix tree */
796 		spin_lock(&ip->i_mount->m_perag_lock);
797 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
798 				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
799 				XFS_ICI_RECLAIM_TAG);
800 		spin_unlock(&ip->i_mount->m_perag_lock);
801 		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
802 							-1, _RET_IP_);
803 	}
804 }
805 
806 STATIC void
807 __xfs_inode_clear_reclaim_tag(
808 	xfs_mount_t	*mp,
809 	xfs_perag_t	*pag,
810 	xfs_inode_t	*ip)
811 {
812 	radix_tree_tag_clear(&pag->pag_ici_root,
813 			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
814 	__xfs_inode_clear_reclaim(pag, ip);
815 }
816 
817 /*
818  * Grab the inode for reclaim exclusively.
819  * Return 0 if we grabbed it, non-zero otherwise.
820  */
821 STATIC int
822 xfs_reclaim_inode_grab(
823 	struct xfs_inode	*ip,
824 	int			flags)
825 {
826 	ASSERT(rcu_read_lock_held());
827 
828 	/* quick check for stale RCU freed inode */
829 	if (!ip->i_ino)
830 		return 1;
831 
832 	/*
833 	 * If we are asked for non-blocking operation, do unlocked checks to
834 	 * see if the inode already is being flushed or in reclaim to avoid
835 	 * lock traffic.
836 	 */
837 	if ((flags & SYNC_TRYLOCK) &&
838 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
839 		return 1;
840 
841 	/*
842 	 * The radix tree lock here protects a thread in xfs_iget from racing
843 	 * with us starting reclaim on the inode.  Once we have the
844 	 * XFS_IRECLAIM flag set it will not touch us.
845 	 *
846 	 * Due to RCU lookup, we may find inodes that have been freed and only
847 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
848 	 * aren't candidates for reclaim at all, so we must check the
849 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
850 	 */
851 	spin_lock(&ip->i_flags_lock);
852 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
853 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
854 		/* not a reclaim candidate. */
855 		spin_unlock(&ip->i_flags_lock);
856 		return 1;
857 	}
858 	__xfs_iflags_set(ip, XFS_IRECLAIM);
859 	spin_unlock(&ip->i_flags_lock);
860 	return 0;
861 }
862 
863 /*
864  * Inodes in different states need to be treated differently. The following
865  * table lists the inode states and the reclaim actions necessary:
866  *
867  *	inode state	     iflush ret		required action
868  *      ---------------      ----------         ---------------
869  *	bad			-		reclaim
870  *	shutdown		EIO		unpin and reclaim
871  *	clean, unpinned		0		reclaim
872  *	stale, unpinned		0		reclaim
873  *	clean, pinned(*)	0		requeue
874  *	stale, pinned		EAGAIN		requeue
875  *	dirty, async		-		requeue
876  *	dirty, sync		0		reclaim
877  *
878  * (*) dgc: I don't think the clean, pinned state is possible but it gets
879  * handled anyway given the order of checks implemented.
880  *
881  * Also, because we get the flush lock first, we know that any inode that has
882  * been flushed delwri has had the flush completed by the time we check that
883  * the inode is clean.
884  *
885  * Note that because the inode is flushed delayed write by AIL pushing, the
886  * flush lock may already be held here and waiting on it can result in very
887  * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
888  * the caller should push the AIL first before trying to reclaim inodes to
889  * minimise the amount of time spent waiting.  For background relaim, we only
890  * bother to reclaim clean inodes anyway.
891  *
892  * Hence the order of actions after gaining the locks should be:
893  *	bad		=> reclaim
894  *	shutdown	=> unpin and reclaim
895  *	pinned, async	=> requeue
896  *	pinned, sync	=> unpin
897  *	stale		=> reclaim
898  *	clean		=> reclaim
899  *	dirty, async	=> requeue
900  *	dirty, sync	=> flush, wait and reclaim
901  */
902 STATIC int
903 xfs_reclaim_inode(
904 	struct xfs_inode	*ip,
905 	struct xfs_perag	*pag,
906 	int			sync_mode)
907 {
908 	struct xfs_buf		*bp = NULL;
909 	int			error;
910 
911 restart:
912 	error = 0;
913 	xfs_ilock(ip, XFS_ILOCK_EXCL);
914 	if (!xfs_iflock_nowait(ip)) {
915 		if (!(sync_mode & SYNC_WAIT))
916 			goto out;
917 		xfs_iflock(ip);
918 	}
919 
920 	if (is_bad_inode(VFS_I(ip)))
921 		goto reclaim;
922 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
923 		xfs_iunpin_wait(ip);
924 		xfs_iflush_abort(ip, false);
925 		goto reclaim;
926 	}
927 	if (xfs_ipincount(ip)) {
928 		if (!(sync_mode & SYNC_WAIT))
929 			goto out_ifunlock;
930 		xfs_iunpin_wait(ip);
931 	}
932 	if (xfs_iflags_test(ip, XFS_ISTALE))
933 		goto reclaim;
934 	if (xfs_inode_clean(ip))
935 		goto reclaim;
936 
937 	/*
938 	 * Never flush out dirty data during non-blocking reclaim, as it would
939 	 * just contend with AIL pushing trying to do the same job.
940 	 */
941 	if (!(sync_mode & SYNC_WAIT))
942 		goto out_ifunlock;
943 
944 	/*
945 	 * Now we have an inode that needs flushing.
946 	 *
947 	 * Note that xfs_iflush will never block on the inode buffer lock, as
948 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
949 	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
950 	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
951 	 * result in an ABBA deadlock with xfs_ifree_cluster().
952 	 *
953 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
954 	 * cache to mark them stale, if we hit this case we don't actually want
955 	 * to do IO here - we want the inode marked stale so we can simply
956 	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
957 	 * inode, back off and try again.  Hopefully the next pass through will
958 	 * see the stale flag set on the inode.
959 	 */
960 	error = xfs_iflush(ip, &bp);
961 	if (error == EAGAIN) {
962 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
963 		/* backoff longer than in xfs_ifree_cluster */
964 		delay(2);
965 		goto restart;
966 	}
967 
968 	if (!error) {
969 		error = xfs_bwrite(bp);
970 		xfs_buf_relse(bp);
971 	}
972 
973 	xfs_iflock(ip);
974 reclaim:
975 	xfs_ifunlock(ip);
976 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
977 
978 	XFS_STATS_INC(xs_ig_reclaims);
979 	/*
980 	 * Remove the inode from the per-AG radix tree.
981 	 *
982 	 * Because radix_tree_delete won't complain even if the item was never
983 	 * added to the tree assert that it's been there before to catch
984 	 * problems with the inode life time early on.
985 	 */
986 	spin_lock(&pag->pag_ici_lock);
987 	if (!radix_tree_delete(&pag->pag_ici_root,
988 				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
989 		ASSERT(0);
990 	__xfs_inode_clear_reclaim(pag, ip);
991 	spin_unlock(&pag->pag_ici_lock);
992 
993 	/*
994 	 * Here we do an (almost) spurious inode lock in order to coordinate
995 	 * with inode cache radix tree lookups.  This is because the lookup
996 	 * can reference the inodes in the cache without taking references.
997 	 *
998 	 * We make that OK here by ensuring that we wait until the inode is
999 	 * unlocked after the lookup before we go ahead and free it.
1000 	 */
1001 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1002 	xfs_qm_dqdetach(ip);
1003 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1004 
1005 	xfs_inode_free(ip);
1006 	return error;
1007 
1008 out_ifunlock:
1009 	xfs_ifunlock(ip);
1010 out:
1011 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1012 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1013 	/*
1014 	 * We could return EAGAIN here to make reclaim rescan the inode tree in
1015 	 * a short while. However, this just burns CPU time scanning the tree
1016 	 * waiting for IO to complete and the reclaim work never goes back to
1017 	 * the idle state. Instead, return 0 to let the next scheduled
1018 	 * background reclaim attempt to reclaim the inode again.
1019 	 */
1020 	return 0;
1021 }
1022 
1023 /*
1024  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1025  * corrupted, we still want to try to reclaim all the inodes. If we don't,
1026  * then a shut down during filesystem unmount reclaim walk leak all the
1027  * unreclaimed inodes.
1028  */
1029 STATIC int
1030 xfs_reclaim_inodes_ag(
1031 	struct xfs_mount	*mp,
1032 	int			flags,
1033 	int			*nr_to_scan)
1034 {
1035 	struct xfs_perag	*pag;
1036 	int			error = 0;
1037 	int			last_error = 0;
1038 	xfs_agnumber_t		ag;
1039 	int			trylock = flags & SYNC_TRYLOCK;
1040 	int			skipped;
1041 
1042 restart:
1043 	ag = 0;
1044 	skipped = 0;
1045 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1046 		unsigned long	first_index = 0;
1047 		int		done = 0;
1048 		int		nr_found = 0;
1049 
1050 		ag = pag->pag_agno + 1;
1051 
1052 		if (trylock) {
1053 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1054 				skipped++;
1055 				xfs_perag_put(pag);
1056 				continue;
1057 			}
1058 			first_index = pag->pag_ici_reclaim_cursor;
1059 		} else
1060 			mutex_lock(&pag->pag_ici_reclaim_lock);
1061 
1062 		do {
1063 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1064 			int	i;
1065 
1066 			rcu_read_lock();
1067 			nr_found = radix_tree_gang_lookup_tag(
1068 					&pag->pag_ici_root,
1069 					(void **)batch, first_index,
1070 					XFS_LOOKUP_BATCH,
1071 					XFS_ICI_RECLAIM_TAG);
1072 			if (!nr_found) {
1073 				done = 1;
1074 				rcu_read_unlock();
1075 				break;
1076 			}
1077 
1078 			/*
1079 			 * Grab the inodes before we drop the lock. if we found
1080 			 * nothing, nr == 0 and the loop will be skipped.
1081 			 */
1082 			for (i = 0; i < nr_found; i++) {
1083 				struct xfs_inode *ip = batch[i];
1084 
1085 				if (done || xfs_reclaim_inode_grab(ip, flags))
1086 					batch[i] = NULL;
1087 
1088 				/*
1089 				 * Update the index for the next lookup. Catch
1090 				 * overflows into the next AG range which can
1091 				 * occur if we have inodes in the last block of
1092 				 * the AG and we are currently pointing to the
1093 				 * last inode.
1094 				 *
1095 				 * Because we may see inodes that are from the
1096 				 * wrong AG due to RCU freeing and
1097 				 * reallocation, only update the index if it
1098 				 * lies in this AG. It was a race that lead us
1099 				 * to see this inode, so another lookup from
1100 				 * the same index will not find it again.
1101 				 */
1102 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1103 								pag->pag_agno)
1104 					continue;
1105 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1106 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1107 					done = 1;
1108 			}
1109 
1110 			/* unlock now we've grabbed the inodes. */
1111 			rcu_read_unlock();
1112 
1113 			for (i = 0; i < nr_found; i++) {
1114 				if (!batch[i])
1115 					continue;
1116 				error = xfs_reclaim_inode(batch[i], pag, flags);
1117 				if (error && last_error != EFSCORRUPTED)
1118 					last_error = error;
1119 			}
1120 
1121 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1122 
1123 			cond_resched();
1124 
1125 		} while (nr_found && !done && *nr_to_scan > 0);
1126 
1127 		if (trylock && !done)
1128 			pag->pag_ici_reclaim_cursor = first_index;
1129 		else
1130 			pag->pag_ici_reclaim_cursor = 0;
1131 		mutex_unlock(&pag->pag_ici_reclaim_lock);
1132 		xfs_perag_put(pag);
1133 	}
1134 
1135 	/*
1136 	 * if we skipped any AG, and we still have scan count remaining, do
1137 	 * another pass this time using blocking reclaim semantics (i.e
1138 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1139 	 * ensure that when we get more reclaimers than AGs we block rather
1140 	 * than spin trying to execute reclaim.
1141 	 */
1142 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1143 		trylock = 0;
1144 		goto restart;
1145 	}
1146 	return XFS_ERROR(last_error);
1147 }
1148 
1149 int
1150 xfs_reclaim_inodes(
1151 	xfs_mount_t	*mp,
1152 	int		mode)
1153 {
1154 	int		nr_to_scan = INT_MAX;
1155 
1156 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1157 }
1158 
1159 /*
1160  * Scan a certain number of inodes for reclaim.
1161  *
1162  * When called we make sure that there is a background (fast) inode reclaim in
1163  * progress, while we will throttle the speed of reclaim via doing synchronous
1164  * reclaim of inodes. That means if we come across dirty inodes, we wait for
1165  * them to be cleaned, which we hope will not be very long due to the
1166  * background walker having already kicked the IO off on those dirty inodes.
1167  */
1168 void
1169 xfs_reclaim_inodes_nr(
1170 	struct xfs_mount	*mp,
1171 	int			nr_to_scan)
1172 {
1173 	/* kick background reclaimer and push the AIL */
1174 	xfs_reclaim_work_queue(mp);
1175 	xfs_ail_push_all(mp->m_ail);
1176 
1177 	xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1178 }
1179 
1180 /*
1181  * Return the number of reclaimable inodes in the filesystem for
1182  * the shrinker to determine how much to reclaim.
1183  */
1184 int
1185 xfs_reclaim_inodes_count(
1186 	struct xfs_mount	*mp)
1187 {
1188 	struct xfs_perag	*pag;
1189 	xfs_agnumber_t		ag = 0;
1190 	int			reclaimable = 0;
1191 
1192 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1193 		ag = pag->pag_agno + 1;
1194 		reclaimable += pag->pag_ici_reclaimable;
1195 		xfs_perag_put(pag);
1196 	}
1197 	return reclaimable;
1198 }
1199 
1200 STATIC int
1201 xfs_inode_match_id(
1202 	struct xfs_inode	*ip,
1203 	struct xfs_eofblocks	*eofb)
1204 {
1205 	if (eofb->eof_flags & XFS_EOF_FLAGS_UID &&
1206 	    ip->i_d.di_uid != eofb->eof_uid)
1207 		return 0;
1208 
1209 	if (eofb->eof_flags & XFS_EOF_FLAGS_GID &&
1210 	    ip->i_d.di_gid != eofb->eof_gid)
1211 		return 0;
1212 
1213 	if (eofb->eof_flags & XFS_EOF_FLAGS_PRID &&
1214 	    xfs_get_projid(ip) != eofb->eof_prid)
1215 		return 0;
1216 
1217 	return 1;
1218 }
1219 
1220 STATIC int
1221 xfs_inode_free_eofblocks(
1222 	struct xfs_inode	*ip,
1223 	struct xfs_perag	*pag,
1224 	int			flags,
1225 	void			*args)
1226 {
1227 	int ret;
1228 	struct xfs_eofblocks *eofb = args;
1229 
1230 	if (!xfs_can_free_eofblocks(ip, false)) {
1231 		/* inode could be preallocated or append-only */
1232 		trace_xfs_inode_free_eofblocks_invalid(ip);
1233 		xfs_inode_clear_eofblocks_tag(ip);
1234 		return 0;
1235 	}
1236 
1237 	/*
1238 	 * If the mapping is dirty the operation can block and wait for some
1239 	 * time. Unless we are waiting, skip it.
1240 	 */
1241 	if (!(flags & SYNC_WAIT) &&
1242 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1243 		return 0;
1244 
1245 	if (eofb) {
1246 		if (!xfs_inode_match_id(ip, eofb))
1247 			return 0;
1248 
1249 		/* skip the inode if the file size is too small */
1250 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1251 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1252 			return 0;
1253 	}
1254 
1255 	ret = xfs_free_eofblocks(ip->i_mount, ip, true);
1256 
1257 	/* don't revisit the inode if we're not waiting */
1258 	if (ret == EAGAIN && !(flags & SYNC_WAIT))
1259 		ret = 0;
1260 
1261 	return ret;
1262 }
1263 
1264 int
1265 xfs_icache_free_eofblocks(
1266 	struct xfs_mount	*mp,
1267 	struct xfs_eofblocks	*eofb)
1268 {
1269 	int flags = SYNC_TRYLOCK;
1270 
1271 	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1272 		flags = SYNC_WAIT;
1273 
1274 	return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1275 					 eofb, XFS_ICI_EOFBLOCKS_TAG);
1276 }
1277 
1278 void
1279 xfs_inode_set_eofblocks_tag(
1280 	xfs_inode_t	*ip)
1281 {
1282 	struct xfs_mount *mp = ip->i_mount;
1283 	struct xfs_perag *pag;
1284 	int tagged;
1285 
1286 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1287 	spin_lock(&pag->pag_ici_lock);
1288 	trace_xfs_inode_set_eofblocks_tag(ip);
1289 
1290 	tagged = radix_tree_tagged(&pag->pag_ici_root,
1291 				   XFS_ICI_EOFBLOCKS_TAG);
1292 	radix_tree_tag_set(&pag->pag_ici_root,
1293 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1294 			   XFS_ICI_EOFBLOCKS_TAG);
1295 	if (!tagged) {
1296 		/* propagate the eofblocks tag up into the perag radix tree */
1297 		spin_lock(&ip->i_mount->m_perag_lock);
1298 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1299 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1300 				   XFS_ICI_EOFBLOCKS_TAG);
1301 		spin_unlock(&ip->i_mount->m_perag_lock);
1302 
1303 		/* kick off background trimming */
1304 		xfs_queue_eofblocks(ip->i_mount);
1305 
1306 		trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1307 					      -1, _RET_IP_);
1308 	}
1309 
1310 	spin_unlock(&pag->pag_ici_lock);
1311 	xfs_perag_put(pag);
1312 }
1313 
1314 void
1315 xfs_inode_clear_eofblocks_tag(
1316 	xfs_inode_t	*ip)
1317 {
1318 	struct xfs_mount *mp = ip->i_mount;
1319 	struct xfs_perag *pag;
1320 
1321 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1322 	spin_lock(&pag->pag_ici_lock);
1323 	trace_xfs_inode_clear_eofblocks_tag(ip);
1324 
1325 	radix_tree_tag_clear(&pag->pag_ici_root,
1326 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1327 			     XFS_ICI_EOFBLOCKS_TAG);
1328 	if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1329 		/* clear the eofblocks tag from the perag radix tree */
1330 		spin_lock(&ip->i_mount->m_perag_lock);
1331 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1332 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1333 				     XFS_ICI_EOFBLOCKS_TAG);
1334 		spin_unlock(&ip->i_mount->m_perag_lock);
1335 		trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1336 					       -1, _RET_IP_);
1337 	}
1338 
1339 	spin_unlock(&pag->pag_ici_lock);
1340 	xfs_perag_put(pag);
1341 }
1342 
1343