1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_log.h" 22 #include "xfs_log_priv.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_mount.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_inode.h" 31 #include "xfs_dinode.h" 32 #include "xfs_error.h" 33 #include "xfs_filestream.h" 34 #include "xfs_vnodeops.h" 35 #include "xfs_inode_item.h" 36 #include "xfs_quota.h" 37 #include "xfs_trace.h" 38 #include "xfs_fsops.h" 39 #include "xfs_icache.h" 40 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 44 STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp, 45 struct xfs_perag *pag, struct xfs_inode *ip); 46 47 /* 48 * Allocate and initialise an xfs_inode. 49 */ 50 STATIC struct xfs_inode * 51 xfs_inode_alloc( 52 struct xfs_mount *mp, 53 xfs_ino_t ino) 54 { 55 struct xfs_inode *ip; 56 57 /* 58 * if this didn't occur in transactions, we could use 59 * KM_MAYFAIL and return NULL here on ENOMEM. Set the 60 * code up to do this anyway. 61 */ 62 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); 63 if (!ip) 64 return NULL; 65 if (inode_init_always(mp->m_super, VFS_I(ip))) { 66 kmem_zone_free(xfs_inode_zone, ip); 67 return NULL; 68 } 69 70 ASSERT(atomic_read(&ip->i_pincount) == 0); 71 ASSERT(!spin_is_locked(&ip->i_flags_lock)); 72 ASSERT(!xfs_isiflocked(ip)); 73 ASSERT(ip->i_ino == 0); 74 75 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); 76 77 /* initialise the xfs inode */ 78 ip->i_ino = ino; 79 ip->i_mount = mp; 80 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 81 ip->i_afp = NULL; 82 memset(&ip->i_df, 0, sizeof(xfs_ifork_t)); 83 ip->i_flags = 0; 84 ip->i_delayed_blks = 0; 85 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t)); 86 87 return ip; 88 } 89 90 STATIC void 91 xfs_inode_free_callback( 92 struct rcu_head *head) 93 { 94 struct inode *inode = container_of(head, struct inode, i_rcu); 95 struct xfs_inode *ip = XFS_I(inode); 96 97 kmem_zone_free(xfs_inode_zone, ip); 98 } 99 100 STATIC void 101 xfs_inode_free( 102 struct xfs_inode *ip) 103 { 104 switch (ip->i_d.di_mode & S_IFMT) { 105 case S_IFREG: 106 case S_IFDIR: 107 case S_IFLNK: 108 xfs_idestroy_fork(ip, XFS_DATA_FORK); 109 break; 110 } 111 112 if (ip->i_afp) 113 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 114 115 if (ip->i_itemp) { 116 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL)); 117 xfs_inode_item_destroy(ip); 118 ip->i_itemp = NULL; 119 } 120 121 /* asserts to verify all state is correct here */ 122 ASSERT(atomic_read(&ip->i_pincount) == 0); 123 ASSERT(!spin_is_locked(&ip->i_flags_lock)); 124 ASSERT(!xfs_isiflocked(ip)); 125 126 /* 127 * Because we use RCU freeing we need to ensure the inode always 128 * appears to be reclaimed with an invalid inode number when in the 129 * free state. The ip->i_flags_lock provides the barrier against lookup 130 * races. 131 */ 132 spin_lock(&ip->i_flags_lock); 133 ip->i_flags = XFS_IRECLAIM; 134 ip->i_ino = 0; 135 spin_unlock(&ip->i_flags_lock); 136 137 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 138 } 139 140 /* 141 * Check the validity of the inode we just found it the cache 142 */ 143 static int 144 xfs_iget_cache_hit( 145 struct xfs_perag *pag, 146 struct xfs_inode *ip, 147 xfs_ino_t ino, 148 int flags, 149 int lock_flags) __releases(RCU) 150 { 151 struct inode *inode = VFS_I(ip); 152 struct xfs_mount *mp = ip->i_mount; 153 int error; 154 155 /* 156 * check for re-use of an inode within an RCU grace period due to the 157 * radix tree nodes not being updated yet. We monitor for this by 158 * setting the inode number to zero before freeing the inode structure. 159 * If the inode has been reallocated and set up, then the inode number 160 * will not match, so check for that, too. 161 */ 162 spin_lock(&ip->i_flags_lock); 163 if (ip->i_ino != ino) { 164 trace_xfs_iget_skip(ip); 165 XFS_STATS_INC(xs_ig_frecycle); 166 error = EAGAIN; 167 goto out_error; 168 } 169 170 171 /* 172 * If we are racing with another cache hit that is currently 173 * instantiating this inode or currently recycling it out of 174 * reclaimabe state, wait for the initialisation to complete 175 * before continuing. 176 * 177 * XXX(hch): eventually we should do something equivalent to 178 * wait_on_inode to wait for these flags to be cleared 179 * instead of polling for it. 180 */ 181 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { 182 trace_xfs_iget_skip(ip); 183 XFS_STATS_INC(xs_ig_frecycle); 184 error = EAGAIN; 185 goto out_error; 186 } 187 188 /* 189 * If lookup is racing with unlink return an error immediately. 190 */ 191 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) { 192 error = ENOENT; 193 goto out_error; 194 } 195 196 /* 197 * If IRECLAIMABLE is set, we've torn down the VFS inode already. 198 * Need to carefully get it back into useable state. 199 */ 200 if (ip->i_flags & XFS_IRECLAIMABLE) { 201 trace_xfs_iget_reclaim(ip); 202 203 /* 204 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode 205 * from stomping over us while we recycle the inode. We can't 206 * clear the radix tree reclaimable tag yet as it requires 207 * pag_ici_lock to be held exclusive. 208 */ 209 ip->i_flags |= XFS_IRECLAIM; 210 211 spin_unlock(&ip->i_flags_lock); 212 rcu_read_unlock(); 213 214 error = -inode_init_always(mp->m_super, inode); 215 if (error) { 216 /* 217 * Re-initializing the inode failed, and we are in deep 218 * trouble. Try to re-add it to the reclaim list. 219 */ 220 rcu_read_lock(); 221 spin_lock(&ip->i_flags_lock); 222 223 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 224 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 225 trace_xfs_iget_reclaim_fail(ip); 226 goto out_error; 227 } 228 229 spin_lock(&pag->pag_ici_lock); 230 spin_lock(&ip->i_flags_lock); 231 232 /* 233 * Clear the per-lifetime state in the inode as we are now 234 * effectively a new inode and need to return to the initial 235 * state before reuse occurs. 236 */ 237 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 238 ip->i_flags |= XFS_INEW; 239 __xfs_inode_clear_reclaim_tag(mp, pag, ip); 240 inode->i_state = I_NEW; 241 242 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock)); 243 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); 244 245 spin_unlock(&ip->i_flags_lock); 246 spin_unlock(&pag->pag_ici_lock); 247 } else { 248 /* If the VFS inode is being torn down, pause and try again. */ 249 if (!igrab(inode)) { 250 trace_xfs_iget_skip(ip); 251 error = EAGAIN; 252 goto out_error; 253 } 254 255 /* We've got a live one. */ 256 spin_unlock(&ip->i_flags_lock); 257 rcu_read_unlock(); 258 trace_xfs_iget_hit(ip); 259 } 260 261 if (lock_flags != 0) 262 xfs_ilock(ip, lock_flags); 263 264 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE); 265 XFS_STATS_INC(xs_ig_found); 266 267 return 0; 268 269 out_error: 270 spin_unlock(&ip->i_flags_lock); 271 rcu_read_unlock(); 272 return error; 273 } 274 275 276 static int 277 xfs_iget_cache_miss( 278 struct xfs_mount *mp, 279 struct xfs_perag *pag, 280 xfs_trans_t *tp, 281 xfs_ino_t ino, 282 struct xfs_inode **ipp, 283 int flags, 284 int lock_flags) 285 { 286 struct xfs_inode *ip; 287 int error; 288 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 289 int iflags; 290 291 ip = xfs_inode_alloc(mp, ino); 292 if (!ip) 293 return ENOMEM; 294 295 error = xfs_iread(mp, tp, ip, flags); 296 if (error) 297 goto out_destroy; 298 299 trace_xfs_iget_miss(ip); 300 301 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) { 302 error = ENOENT; 303 goto out_destroy; 304 } 305 306 /* 307 * Preload the radix tree so we can insert safely under the 308 * write spinlock. Note that we cannot sleep inside the preload 309 * region. Since we can be called from transaction context, don't 310 * recurse into the file system. 311 */ 312 if (radix_tree_preload(GFP_NOFS)) { 313 error = EAGAIN; 314 goto out_destroy; 315 } 316 317 /* 318 * Because the inode hasn't been added to the radix-tree yet it can't 319 * be found by another thread, so we can do the non-sleeping lock here. 320 */ 321 if (lock_flags) { 322 if (!xfs_ilock_nowait(ip, lock_flags)) 323 BUG(); 324 } 325 326 /* 327 * These values must be set before inserting the inode into the radix 328 * tree as the moment it is inserted a concurrent lookup (allowed by the 329 * RCU locking mechanism) can find it and that lookup must see that this 330 * is an inode currently under construction (i.e. that XFS_INEW is set). 331 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 332 * memory barrier that ensures this detection works correctly at lookup 333 * time. 334 */ 335 iflags = XFS_INEW; 336 if (flags & XFS_IGET_DONTCACHE) 337 iflags |= XFS_IDONTCACHE; 338 ip->i_udquot = NULL; 339 ip->i_gdquot = NULL; 340 xfs_iflags_set(ip, iflags); 341 342 /* insert the new inode */ 343 spin_lock(&pag->pag_ici_lock); 344 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 345 if (unlikely(error)) { 346 WARN_ON(error != -EEXIST); 347 XFS_STATS_INC(xs_ig_dup); 348 error = EAGAIN; 349 goto out_preload_end; 350 } 351 spin_unlock(&pag->pag_ici_lock); 352 radix_tree_preload_end(); 353 354 *ipp = ip; 355 return 0; 356 357 out_preload_end: 358 spin_unlock(&pag->pag_ici_lock); 359 radix_tree_preload_end(); 360 if (lock_flags) 361 xfs_iunlock(ip, lock_flags); 362 out_destroy: 363 __destroy_inode(VFS_I(ip)); 364 xfs_inode_free(ip); 365 return error; 366 } 367 368 /* 369 * Look up an inode by number in the given file system. 370 * The inode is looked up in the cache held in each AG. 371 * If the inode is found in the cache, initialise the vfs inode 372 * if necessary. 373 * 374 * If it is not in core, read it in from the file system's device, 375 * add it to the cache and initialise the vfs inode. 376 * 377 * The inode is locked according to the value of the lock_flags parameter. 378 * This flag parameter indicates how and if the inode's IO lock and inode lock 379 * should be taken. 380 * 381 * mp -- the mount point structure for the current file system. It points 382 * to the inode hash table. 383 * tp -- a pointer to the current transaction if there is one. This is 384 * simply passed through to the xfs_iread() call. 385 * ino -- the number of the inode desired. This is the unique identifier 386 * within the file system for the inode being requested. 387 * lock_flags -- flags indicating how to lock the inode. See the comment 388 * for xfs_ilock() for a list of valid values. 389 */ 390 int 391 xfs_iget( 392 xfs_mount_t *mp, 393 xfs_trans_t *tp, 394 xfs_ino_t ino, 395 uint flags, 396 uint lock_flags, 397 xfs_inode_t **ipp) 398 { 399 xfs_inode_t *ip; 400 int error; 401 xfs_perag_t *pag; 402 xfs_agino_t agino; 403 404 /* 405 * xfs_reclaim_inode() uses the ILOCK to ensure an inode 406 * doesn't get freed while it's being referenced during a 407 * radix tree traversal here. It assumes this function 408 * aqcuires only the ILOCK (and therefore it has no need to 409 * involve the IOLOCK in this synchronization). 410 */ 411 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 412 413 /* reject inode numbers outside existing AGs */ 414 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 415 return EINVAL; 416 417 /* get the perag structure and ensure that it's inode capable */ 418 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 419 agino = XFS_INO_TO_AGINO(mp, ino); 420 421 again: 422 error = 0; 423 rcu_read_lock(); 424 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 425 426 if (ip) { 427 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 428 if (error) 429 goto out_error_or_again; 430 } else { 431 rcu_read_unlock(); 432 XFS_STATS_INC(xs_ig_missed); 433 434 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 435 flags, lock_flags); 436 if (error) 437 goto out_error_or_again; 438 } 439 xfs_perag_put(pag); 440 441 *ipp = ip; 442 443 /* 444 * If we have a real type for an on-disk inode, we can set ops(&unlock) 445 * now. If it's a new inode being created, xfs_ialloc will handle it. 446 */ 447 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0) 448 xfs_setup_inode(ip); 449 return 0; 450 451 out_error_or_again: 452 if (error == EAGAIN) { 453 delay(1); 454 goto again; 455 } 456 xfs_perag_put(pag); 457 return error; 458 } 459 460 /* 461 * The inode lookup is done in batches to keep the amount of lock traffic and 462 * radix tree lookups to a minimum. The batch size is a trade off between 463 * lookup reduction and stack usage. This is in the reclaim path, so we can't 464 * be too greedy. 465 */ 466 #define XFS_LOOKUP_BATCH 32 467 468 STATIC int 469 xfs_inode_ag_walk_grab( 470 struct xfs_inode *ip) 471 { 472 struct inode *inode = VFS_I(ip); 473 474 ASSERT(rcu_read_lock_held()); 475 476 /* 477 * check for stale RCU freed inode 478 * 479 * If the inode has been reallocated, it doesn't matter if it's not in 480 * the AG we are walking - we are walking for writeback, so if it 481 * passes all the "valid inode" checks and is dirty, then we'll write 482 * it back anyway. If it has been reallocated and still being 483 * initialised, the XFS_INEW check below will catch it. 484 */ 485 spin_lock(&ip->i_flags_lock); 486 if (!ip->i_ino) 487 goto out_unlock_noent; 488 489 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ 490 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM)) 491 goto out_unlock_noent; 492 spin_unlock(&ip->i_flags_lock); 493 494 /* nothing to sync during shutdown */ 495 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 496 return EFSCORRUPTED; 497 498 /* If we can't grab the inode, it must on it's way to reclaim. */ 499 if (!igrab(inode)) 500 return ENOENT; 501 502 if (is_bad_inode(inode)) { 503 IRELE(ip); 504 return ENOENT; 505 } 506 507 /* inode is valid */ 508 return 0; 509 510 out_unlock_noent: 511 spin_unlock(&ip->i_flags_lock); 512 return ENOENT; 513 } 514 515 STATIC int 516 xfs_inode_ag_walk( 517 struct xfs_mount *mp, 518 struct xfs_perag *pag, 519 int (*execute)(struct xfs_inode *ip, 520 struct xfs_perag *pag, int flags, 521 void *args), 522 int flags, 523 void *args, 524 int tag) 525 { 526 uint32_t first_index; 527 int last_error = 0; 528 int skipped; 529 int done; 530 int nr_found; 531 532 restart: 533 done = 0; 534 skipped = 0; 535 first_index = 0; 536 nr_found = 0; 537 do { 538 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 539 int error = 0; 540 int i; 541 542 rcu_read_lock(); 543 544 if (tag == -1) 545 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, 546 (void **)batch, first_index, 547 XFS_LOOKUP_BATCH); 548 else 549 nr_found = radix_tree_gang_lookup_tag( 550 &pag->pag_ici_root, 551 (void **) batch, first_index, 552 XFS_LOOKUP_BATCH, tag); 553 554 if (!nr_found) { 555 rcu_read_unlock(); 556 break; 557 } 558 559 /* 560 * Grab the inodes before we drop the lock. if we found 561 * nothing, nr == 0 and the loop will be skipped. 562 */ 563 for (i = 0; i < nr_found; i++) { 564 struct xfs_inode *ip = batch[i]; 565 566 if (done || xfs_inode_ag_walk_grab(ip)) 567 batch[i] = NULL; 568 569 /* 570 * Update the index for the next lookup. Catch 571 * overflows into the next AG range which can occur if 572 * we have inodes in the last block of the AG and we 573 * are currently pointing to the last inode. 574 * 575 * Because we may see inodes that are from the wrong AG 576 * due to RCU freeing and reallocation, only update the 577 * index if it lies in this AG. It was a race that lead 578 * us to see this inode, so another lookup from the 579 * same index will not find it again. 580 */ 581 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 582 continue; 583 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 584 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 585 done = 1; 586 } 587 588 /* unlock now we've grabbed the inodes. */ 589 rcu_read_unlock(); 590 591 for (i = 0; i < nr_found; i++) { 592 if (!batch[i]) 593 continue; 594 error = execute(batch[i], pag, flags, args); 595 IRELE(batch[i]); 596 if (error == EAGAIN) { 597 skipped++; 598 continue; 599 } 600 if (error && last_error != EFSCORRUPTED) 601 last_error = error; 602 } 603 604 /* bail out if the filesystem is corrupted. */ 605 if (error == EFSCORRUPTED) 606 break; 607 608 cond_resched(); 609 610 } while (nr_found && !done); 611 612 if (skipped) { 613 delay(1); 614 goto restart; 615 } 616 return last_error; 617 } 618 619 /* 620 * Background scanning to trim post-EOF preallocated space. This is queued 621 * based on the 'background_prealloc_discard_period' tunable (5m by default). 622 */ 623 STATIC void 624 xfs_queue_eofblocks( 625 struct xfs_mount *mp) 626 { 627 rcu_read_lock(); 628 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG)) 629 queue_delayed_work(mp->m_eofblocks_workqueue, 630 &mp->m_eofblocks_work, 631 msecs_to_jiffies(xfs_eofb_secs * 1000)); 632 rcu_read_unlock(); 633 } 634 635 void 636 xfs_eofblocks_worker( 637 struct work_struct *work) 638 { 639 struct xfs_mount *mp = container_of(to_delayed_work(work), 640 struct xfs_mount, m_eofblocks_work); 641 xfs_icache_free_eofblocks(mp, NULL); 642 xfs_queue_eofblocks(mp); 643 } 644 645 int 646 xfs_inode_ag_iterator( 647 struct xfs_mount *mp, 648 int (*execute)(struct xfs_inode *ip, 649 struct xfs_perag *pag, int flags, 650 void *args), 651 int flags, 652 void *args) 653 { 654 struct xfs_perag *pag; 655 int error = 0; 656 int last_error = 0; 657 xfs_agnumber_t ag; 658 659 ag = 0; 660 while ((pag = xfs_perag_get(mp, ag))) { 661 ag = pag->pag_agno + 1; 662 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1); 663 xfs_perag_put(pag); 664 if (error) { 665 last_error = error; 666 if (error == EFSCORRUPTED) 667 break; 668 } 669 } 670 return XFS_ERROR(last_error); 671 } 672 673 int 674 xfs_inode_ag_iterator_tag( 675 struct xfs_mount *mp, 676 int (*execute)(struct xfs_inode *ip, 677 struct xfs_perag *pag, int flags, 678 void *args), 679 int flags, 680 void *args, 681 int tag) 682 { 683 struct xfs_perag *pag; 684 int error = 0; 685 int last_error = 0; 686 xfs_agnumber_t ag; 687 688 ag = 0; 689 while ((pag = xfs_perag_get_tag(mp, ag, tag))) { 690 ag = pag->pag_agno + 1; 691 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag); 692 xfs_perag_put(pag); 693 if (error) { 694 last_error = error; 695 if (error == EFSCORRUPTED) 696 break; 697 } 698 } 699 return XFS_ERROR(last_error); 700 } 701 702 /* 703 * Queue a new inode reclaim pass if there are reclaimable inodes and there 704 * isn't a reclaim pass already in progress. By default it runs every 5s based 705 * on the xfs periodic sync default of 30s. Perhaps this should have it's own 706 * tunable, but that can be done if this method proves to be ineffective or too 707 * aggressive. 708 */ 709 static void 710 xfs_reclaim_work_queue( 711 struct xfs_mount *mp) 712 { 713 714 rcu_read_lock(); 715 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 716 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 717 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 718 } 719 rcu_read_unlock(); 720 } 721 722 /* 723 * This is a fast pass over the inode cache to try to get reclaim moving on as 724 * many inodes as possible in a short period of time. It kicks itself every few 725 * seconds, as well as being kicked by the inode cache shrinker when memory 726 * goes low. It scans as quickly as possible avoiding locked inodes or those 727 * already being flushed, and once done schedules a future pass. 728 */ 729 void 730 xfs_reclaim_worker( 731 struct work_struct *work) 732 { 733 struct xfs_mount *mp = container_of(to_delayed_work(work), 734 struct xfs_mount, m_reclaim_work); 735 736 xfs_reclaim_inodes(mp, SYNC_TRYLOCK); 737 xfs_reclaim_work_queue(mp); 738 } 739 740 static void 741 __xfs_inode_set_reclaim_tag( 742 struct xfs_perag *pag, 743 struct xfs_inode *ip) 744 { 745 radix_tree_tag_set(&pag->pag_ici_root, 746 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 747 XFS_ICI_RECLAIM_TAG); 748 749 if (!pag->pag_ici_reclaimable) { 750 /* propagate the reclaim tag up into the perag radix tree */ 751 spin_lock(&ip->i_mount->m_perag_lock); 752 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 753 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 754 XFS_ICI_RECLAIM_TAG); 755 spin_unlock(&ip->i_mount->m_perag_lock); 756 757 /* schedule periodic background inode reclaim */ 758 xfs_reclaim_work_queue(ip->i_mount); 759 760 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno, 761 -1, _RET_IP_); 762 } 763 pag->pag_ici_reclaimable++; 764 } 765 766 /* 767 * We set the inode flag atomically with the radix tree tag. 768 * Once we get tag lookups on the radix tree, this inode flag 769 * can go away. 770 */ 771 void 772 xfs_inode_set_reclaim_tag( 773 xfs_inode_t *ip) 774 { 775 struct xfs_mount *mp = ip->i_mount; 776 struct xfs_perag *pag; 777 778 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 779 spin_lock(&pag->pag_ici_lock); 780 spin_lock(&ip->i_flags_lock); 781 __xfs_inode_set_reclaim_tag(pag, ip); 782 __xfs_iflags_set(ip, XFS_IRECLAIMABLE); 783 spin_unlock(&ip->i_flags_lock); 784 spin_unlock(&pag->pag_ici_lock); 785 xfs_perag_put(pag); 786 } 787 788 STATIC void 789 __xfs_inode_clear_reclaim( 790 xfs_perag_t *pag, 791 xfs_inode_t *ip) 792 { 793 pag->pag_ici_reclaimable--; 794 if (!pag->pag_ici_reclaimable) { 795 /* clear the reclaim tag from the perag radix tree */ 796 spin_lock(&ip->i_mount->m_perag_lock); 797 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 798 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 799 XFS_ICI_RECLAIM_TAG); 800 spin_unlock(&ip->i_mount->m_perag_lock); 801 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno, 802 -1, _RET_IP_); 803 } 804 } 805 806 STATIC void 807 __xfs_inode_clear_reclaim_tag( 808 xfs_mount_t *mp, 809 xfs_perag_t *pag, 810 xfs_inode_t *ip) 811 { 812 radix_tree_tag_clear(&pag->pag_ici_root, 813 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); 814 __xfs_inode_clear_reclaim(pag, ip); 815 } 816 817 /* 818 * Grab the inode for reclaim exclusively. 819 * Return 0 if we grabbed it, non-zero otherwise. 820 */ 821 STATIC int 822 xfs_reclaim_inode_grab( 823 struct xfs_inode *ip, 824 int flags) 825 { 826 ASSERT(rcu_read_lock_held()); 827 828 /* quick check for stale RCU freed inode */ 829 if (!ip->i_ino) 830 return 1; 831 832 /* 833 * If we are asked for non-blocking operation, do unlocked checks to 834 * see if the inode already is being flushed or in reclaim to avoid 835 * lock traffic. 836 */ 837 if ((flags & SYNC_TRYLOCK) && 838 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) 839 return 1; 840 841 /* 842 * The radix tree lock here protects a thread in xfs_iget from racing 843 * with us starting reclaim on the inode. Once we have the 844 * XFS_IRECLAIM flag set it will not touch us. 845 * 846 * Due to RCU lookup, we may find inodes that have been freed and only 847 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that 848 * aren't candidates for reclaim at all, so we must check the 849 * XFS_IRECLAIMABLE is set first before proceeding to reclaim. 850 */ 851 spin_lock(&ip->i_flags_lock); 852 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 853 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 854 /* not a reclaim candidate. */ 855 spin_unlock(&ip->i_flags_lock); 856 return 1; 857 } 858 __xfs_iflags_set(ip, XFS_IRECLAIM); 859 spin_unlock(&ip->i_flags_lock); 860 return 0; 861 } 862 863 /* 864 * Inodes in different states need to be treated differently. The following 865 * table lists the inode states and the reclaim actions necessary: 866 * 867 * inode state iflush ret required action 868 * --------------- ---------- --------------- 869 * bad - reclaim 870 * shutdown EIO unpin and reclaim 871 * clean, unpinned 0 reclaim 872 * stale, unpinned 0 reclaim 873 * clean, pinned(*) 0 requeue 874 * stale, pinned EAGAIN requeue 875 * dirty, async - requeue 876 * dirty, sync 0 reclaim 877 * 878 * (*) dgc: I don't think the clean, pinned state is possible but it gets 879 * handled anyway given the order of checks implemented. 880 * 881 * Also, because we get the flush lock first, we know that any inode that has 882 * been flushed delwri has had the flush completed by the time we check that 883 * the inode is clean. 884 * 885 * Note that because the inode is flushed delayed write by AIL pushing, the 886 * flush lock may already be held here and waiting on it can result in very 887 * long latencies. Hence for sync reclaims, where we wait on the flush lock, 888 * the caller should push the AIL first before trying to reclaim inodes to 889 * minimise the amount of time spent waiting. For background relaim, we only 890 * bother to reclaim clean inodes anyway. 891 * 892 * Hence the order of actions after gaining the locks should be: 893 * bad => reclaim 894 * shutdown => unpin and reclaim 895 * pinned, async => requeue 896 * pinned, sync => unpin 897 * stale => reclaim 898 * clean => reclaim 899 * dirty, async => requeue 900 * dirty, sync => flush, wait and reclaim 901 */ 902 STATIC int 903 xfs_reclaim_inode( 904 struct xfs_inode *ip, 905 struct xfs_perag *pag, 906 int sync_mode) 907 { 908 struct xfs_buf *bp = NULL; 909 int error; 910 911 restart: 912 error = 0; 913 xfs_ilock(ip, XFS_ILOCK_EXCL); 914 if (!xfs_iflock_nowait(ip)) { 915 if (!(sync_mode & SYNC_WAIT)) 916 goto out; 917 xfs_iflock(ip); 918 } 919 920 if (is_bad_inode(VFS_I(ip))) 921 goto reclaim; 922 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 923 xfs_iunpin_wait(ip); 924 xfs_iflush_abort(ip, false); 925 goto reclaim; 926 } 927 if (xfs_ipincount(ip)) { 928 if (!(sync_mode & SYNC_WAIT)) 929 goto out_ifunlock; 930 xfs_iunpin_wait(ip); 931 } 932 if (xfs_iflags_test(ip, XFS_ISTALE)) 933 goto reclaim; 934 if (xfs_inode_clean(ip)) 935 goto reclaim; 936 937 /* 938 * Never flush out dirty data during non-blocking reclaim, as it would 939 * just contend with AIL pushing trying to do the same job. 940 */ 941 if (!(sync_mode & SYNC_WAIT)) 942 goto out_ifunlock; 943 944 /* 945 * Now we have an inode that needs flushing. 946 * 947 * Note that xfs_iflush will never block on the inode buffer lock, as 948 * xfs_ifree_cluster() can lock the inode buffer before it locks the 949 * ip->i_lock, and we are doing the exact opposite here. As a result, 950 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would 951 * result in an ABBA deadlock with xfs_ifree_cluster(). 952 * 953 * As xfs_ifree_cluser() must gather all inodes that are active in the 954 * cache to mark them stale, if we hit this case we don't actually want 955 * to do IO here - we want the inode marked stale so we can simply 956 * reclaim it. Hence if we get an EAGAIN error here, just unlock the 957 * inode, back off and try again. Hopefully the next pass through will 958 * see the stale flag set on the inode. 959 */ 960 error = xfs_iflush(ip, &bp); 961 if (error == EAGAIN) { 962 xfs_iunlock(ip, XFS_ILOCK_EXCL); 963 /* backoff longer than in xfs_ifree_cluster */ 964 delay(2); 965 goto restart; 966 } 967 968 if (!error) { 969 error = xfs_bwrite(bp); 970 xfs_buf_relse(bp); 971 } 972 973 xfs_iflock(ip); 974 reclaim: 975 xfs_ifunlock(ip); 976 xfs_iunlock(ip, XFS_ILOCK_EXCL); 977 978 XFS_STATS_INC(xs_ig_reclaims); 979 /* 980 * Remove the inode from the per-AG radix tree. 981 * 982 * Because radix_tree_delete won't complain even if the item was never 983 * added to the tree assert that it's been there before to catch 984 * problems with the inode life time early on. 985 */ 986 spin_lock(&pag->pag_ici_lock); 987 if (!radix_tree_delete(&pag->pag_ici_root, 988 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino))) 989 ASSERT(0); 990 __xfs_inode_clear_reclaim(pag, ip); 991 spin_unlock(&pag->pag_ici_lock); 992 993 /* 994 * Here we do an (almost) spurious inode lock in order to coordinate 995 * with inode cache radix tree lookups. This is because the lookup 996 * can reference the inodes in the cache without taking references. 997 * 998 * We make that OK here by ensuring that we wait until the inode is 999 * unlocked after the lookup before we go ahead and free it. 1000 */ 1001 xfs_ilock(ip, XFS_ILOCK_EXCL); 1002 xfs_qm_dqdetach(ip); 1003 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1004 1005 xfs_inode_free(ip); 1006 return error; 1007 1008 out_ifunlock: 1009 xfs_ifunlock(ip); 1010 out: 1011 xfs_iflags_clear(ip, XFS_IRECLAIM); 1012 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1013 /* 1014 * We could return EAGAIN here to make reclaim rescan the inode tree in 1015 * a short while. However, this just burns CPU time scanning the tree 1016 * waiting for IO to complete and the reclaim work never goes back to 1017 * the idle state. Instead, return 0 to let the next scheduled 1018 * background reclaim attempt to reclaim the inode again. 1019 */ 1020 return 0; 1021 } 1022 1023 /* 1024 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is 1025 * corrupted, we still want to try to reclaim all the inodes. If we don't, 1026 * then a shut down during filesystem unmount reclaim walk leak all the 1027 * unreclaimed inodes. 1028 */ 1029 STATIC int 1030 xfs_reclaim_inodes_ag( 1031 struct xfs_mount *mp, 1032 int flags, 1033 int *nr_to_scan) 1034 { 1035 struct xfs_perag *pag; 1036 int error = 0; 1037 int last_error = 0; 1038 xfs_agnumber_t ag; 1039 int trylock = flags & SYNC_TRYLOCK; 1040 int skipped; 1041 1042 restart: 1043 ag = 0; 1044 skipped = 0; 1045 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1046 unsigned long first_index = 0; 1047 int done = 0; 1048 int nr_found = 0; 1049 1050 ag = pag->pag_agno + 1; 1051 1052 if (trylock) { 1053 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { 1054 skipped++; 1055 xfs_perag_put(pag); 1056 continue; 1057 } 1058 first_index = pag->pag_ici_reclaim_cursor; 1059 } else 1060 mutex_lock(&pag->pag_ici_reclaim_lock); 1061 1062 do { 1063 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1064 int i; 1065 1066 rcu_read_lock(); 1067 nr_found = radix_tree_gang_lookup_tag( 1068 &pag->pag_ici_root, 1069 (void **)batch, first_index, 1070 XFS_LOOKUP_BATCH, 1071 XFS_ICI_RECLAIM_TAG); 1072 if (!nr_found) { 1073 done = 1; 1074 rcu_read_unlock(); 1075 break; 1076 } 1077 1078 /* 1079 * Grab the inodes before we drop the lock. if we found 1080 * nothing, nr == 0 and the loop will be skipped. 1081 */ 1082 for (i = 0; i < nr_found; i++) { 1083 struct xfs_inode *ip = batch[i]; 1084 1085 if (done || xfs_reclaim_inode_grab(ip, flags)) 1086 batch[i] = NULL; 1087 1088 /* 1089 * Update the index for the next lookup. Catch 1090 * overflows into the next AG range which can 1091 * occur if we have inodes in the last block of 1092 * the AG and we are currently pointing to the 1093 * last inode. 1094 * 1095 * Because we may see inodes that are from the 1096 * wrong AG due to RCU freeing and 1097 * reallocation, only update the index if it 1098 * lies in this AG. It was a race that lead us 1099 * to see this inode, so another lookup from 1100 * the same index will not find it again. 1101 */ 1102 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != 1103 pag->pag_agno) 1104 continue; 1105 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1106 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1107 done = 1; 1108 } 1109 1110 /* unlock now we've grabbed the inodes. */ 1111 rcu_read_unlock(); 1112 1113 for (i = 0; i < nr_found; i++) { 1114 if (!batch[i]) 1115 continue; 1116 error = xfs_reclaim_inode(batch[i], pag, flags); 1117 if (error && last_error != EFSCORRUPTED) 1118 last_error = error; 1119 } 1120 1121 *nr_to_scan -= XFS_LOOKUP_BATCH; 1122 1123 cond_resched(); 1124 1125 } while (nr_found && !done && *nr_to_scan > 0); 1126 1127 if (trylock && !done) 1128 pag->pag_ici_reclaim_cursor = first_index; 1129 else 1130 pag->pag_ici_reclaim_cursor = 0; 1131 mutex_unlock(&pag->pag_ici_reclaim_lock); 1132 xfs_perag_put(pag); 1133 } 1134 1135 /* 1136 * if we skipped any AG, and we still have scan count remaining, do 1137 * another pass this time using blocking reclaim semantics (i.e 1138 * waiting on the reclaim locks and ignoring the reclaim cursors). This 1139 * ensure that when we get more reclaimers than AGs we block rather 1140 * than spin trying to execute reclaim. 1141 */ 1142 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { 1143 trylock = 0; 1144 goto restart; 1145 } 1146 return XFS_ERROR(last_error); 1147 } 1148 1149 int 1150 xfs_reclaim_inodes( 1151 xfs_mount_t *mp, 1152 int mode) 1153 { 1154 int nr_to_scan = INT_MAX; 1155 1156 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); 1157 } 1158 1159 /* 1160 * Scan a certain number of inodes for reclaim. 1161 * 1162 * When called we make sure that there is a background (fast) inode reclaim in 1163 * progress, while we will throttle the speed of reclaim via doing synchronous 1164 * reclaim of inodes. That means if we come across dirty inodes, we wait for 1165 * them to be cleaned, which we hope will not be very long due to the 1166 * background walker having already kicked the IO off on those dirty inodes. 1167 */ 1168 void 1169 xfs_reclaim_inodes_nr( 1170 struct xfs_mount *mp, 1171 int nr_to_scan) 1172 { 1173 /* kick background reclaimer and push the AIL */ 1174 xfs_reclaim_work_queue(mp); 1175 xfs_ail_push_all(mp->m_ail); 1176 1177 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); 1178 } 1179 1180 /* 1181 * Return the number of reclaimable inodes in the filesystem for 1182 * the shrinker to determine how much to reclaim. 1183 */ 1184 int 1185 xfs_reclaim_inodes_count( 1186 struct xfs_mount *mp) 1187 { 1188 struct xfs_perag *pag; 1189 xfs_agnumber_t ag = 0; 1190 int reclaimable = 0; 1191 1192 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1193 ag = pag->pag_agno + 1; 1194 reclaimable += pag->pag_ici_reclaimable; 1195 xfs_perag_put(pag); 1196 } 1197 return reclaimable; 1198 } 1199 1200 STATIC int 1201 xfs_inode_match_id( 1202 struct xfs_inode *ip, 1203 struct xfs_eofblocks *eofb) 1204 { 1205 if (eofb->eof_flags & XFS_EOF_FLAGS_UID && 1206 ip->i_d.di_uid != eofb->eof_uid) 1207 return 0; 1208 1209 if (eofb->eof_flags & XFS_EOF_FLAGS_GID && 1210 ip->i_d.di_gid != eofb->eof_gid) 1211 return 0; 1212 1213 if (eofb->eof_flags & XFS_EOF_FLAGS_PRID && 1214 xfs_get_projid(ip) != eofb->eof_prid) 1215 return 0; 1216 1217 return 1; 1218 } 1219 1220 STATIC int 1221 xfs_inode_free_eofblocks( 1222 struct xfs_inode *ip, 1223 struct xfs_perag *pag, 1224 int flags, 1225 void *args) 1226 { 1227 int ret; 1228 struct xfs_eofblocks *eofb = args; 1229 1230 if (!xfs_can_free_eofblocks(ip, false)) { 1231 /* inode could be preallocated or append-only */ 1232 trace_xfs_inode_free_eofblocks_invalid(ip); 1233 xfs_inode_clear_eofblocks_tag(ip); 1234 return 0; 1235 } 1236 1237 /* 1238 * If the mapping is dirty the operation can block and wait for some 1239 * time. Unless we are waiting, skip it. 1240 */ 1241 if (!(flags & SYNC_WAIT) && 1242 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1243 return 0; 1244 1245 if (eofb) { 1246 if (!xfs_inode_match_id(ip, eofb)) 1247 return 0; 1248 1249 /* skip the inode if the file size is too small */ 1250 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && 1251 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1252 return 0; 1253 } 1254 1255 ret = xfs_free_eofblocks(ip->i_mount, ip, true); 1256 1257 /* don't revisit the inode if we're not waiting */ 1258 if (ret == EAGAIN && !(flags & SYNC_WAIT)) 1259 ret = 0; 1260 1261 return ret; 1262 } 1263 1264 int 1265 xfs_icache_free_eofblocks( 1266 struct xfs_mount *mp, 1267 struct xfs_eofblocks *eofb) 1268 { 1269 int flags = SYNC_TRYLOCK; 1270 1271 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC)) 1272 flags = SYNC_WAIT; 1273 1274 return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags, 1275 eofb, XFS_ICI_EOFBLOCKS_TAG); 1276 } 1277 1278 void 1279 xfs_inode_set_eofblocks_tag( 1280 xfs_inode_t *ip) 1281 { 1282 struct xfs_mount *mp = ip->i_mount; 1283 struct xfs_perag *pag; 1284 int tagged; 1285 1286 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1287 spin_lock(&pag->pag_ici_lock); 1288 trace_xfs_inode_set_eofblocks_tag(ip); 1289 1290 tagged = radix_tree_tagged(&pag->pag_ici_root, 1291 XFS_ICI_EOFBLOCKS_TAG); 1292 radix_tree_tag_set(&pag->pag_ici_root, 1293 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 1294 XFS_ICI_EOFBLOCKS_TAG); 1295 if (!tagged) { 1296 /* propagate the eofblocks tag up into the perag radix tree */ 1297 spin_lock(&ip->i_mount->m_perag_lock); 1298 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 1299 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1300 XFS_ICI_EOFBLOCKS_TAG); 1301 spin_unlock(&ip->i_mount->m_perag_lock); 1302 1303 /* kick off background trimming */ 1304 xfs_queue_eofblocks(ip->i_mount); 1305 1306 trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno, 1307 -1, _RET_IP_); 1308 } 1309 1310 spin_unlock(&pag->pag_ici_lock); 1311 xfs_perag_put(pag); 1312 } 1313 1314 void 1315 xfs_inode_clear_eofblocks_tag( 1316 xfs_inode_t *ip) 1317 { 1318 struct xfs_mount *mp = ip->i_mount; 1319 struct xfs_perag *pag; 1320 1321 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1322 spin_lock(&pag->pag_ici_lock); 1323 trace_xfs_inode_clear_eofblocks_tag(ip); 1324 1325 radix_tree_tag_clear(&pag->pag_ici_root, 1326 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 1327 XFS_ICI_EOFBLOCKS_TAG); 1328 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) { 1329 /* clear the eofblocks tag from the perag radix tree */ 1330 spin_lock(&ip->i_mount->m_perag_lock); 1331 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 1332 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1333 XFS_ICI_EOFBLOCKS_TAG); 1334 spin_unlock(&ip->i_mount->m_perag_lock); 1335 trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno, 1336 -1, _RET_IP_); 1337 } 1338 1339 spin_unlock(&pag->pag_ici_lock); 1340 xfs_perag_put(pag); 1341 } 1342 1343