1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_log.h" 22 #include "xfs_log_priv.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_mount.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_inode.h" 31 #include "xfs_dinode.h" 32 #include "xfs_error.h" 33 #include "xfs_filestream.h" 34 #include "xfs_vnodeops.h" 35 #include "xfs_inode_item.h" 36 #include "xfs_quota.h" 37 #include "xfs_trace.h" 38 #include "xfs_fsops.h" 39 #include "xfs_icache.h" 40 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 44 STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp, 45 struct xfs_perag *pag, struct xfs_inode *ip); 46 47 /* 48 * Allocate and initialise an xfs_inode. 49 */ 50 STATIC struct xfs_inode * 51 xfs_inode_alloc( 52 struct xfs_mount *mp, 53 xfs_ino_t ino) 54 { 55 struct xfs_inode *ip; 56 57 /* 58 * if this didn't occur in transactions, we could use 59 * KM_MAYFAIL and return NULL here on ENOMEM. Set the 60 * code up to do this anyway. 61 */ 62 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); 63 if (!ip) 64 return NULL; 65 if (inode_init_always(mp->m_super, VFS_I(ip))) { 66 kmem_zone_free(xfs_inode_zone, ip); 67 return NULL; 68 } 69 70 ASSERT(atomic_read(&ip->i_pincount) == 0); 71 ASSERT(!spin_is_locked(&ip->i_flags_lock)); 72 ASSERT(!xfs_isiflocked(ip)); 73 ASSERT(ip->i_ino == 0); 74 75 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); 76 77 /* initialise the xfs inode */ 78 ip->i_ino = ino; 79 ip->i_mount = mp; 80 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 81 ip->i_afp = NULL; 82 memset(&ip->i_df, 0, sizeof(xfs_ifork_t)); 83 ip->i_flags = 0; 84 ip->i_delayed_blks = 0; 85 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t)); 86 87 return ip; 88 } 89 90 STATIC void 91 xfs_inode_free_callback( 92 struct rcu_head *head) 93 { 94 struct inode *inode = container_of(head, struct inode, i_rcu); 95 struct xfs_inode *ip = XFS_I(inode); 96 97 kmem_zone_free(xfs_inode_zone, ip); 98 } 99 100 STATIC void 101 xfs_inode_free( 102 struct xfs_inode *ip) 103 { 104 switch (ip->i_d.di_mode & S_IFMT) { 105 case S_IFREG: 106 case S_IFDIR: 107 case S_IFLNK: 108 xfs_idestroy_fork(ip, XFS_DATA_FORK); 109 break; 110 } 111 112 if (ip->i_afp) 113 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 114 115 if (ip->i_itemp) { 116 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL)); 117 xfs_inode_item_destroy(ip); 118 ip->i_itemp = NULL; 119 } 120 121 /* asserts to verify all state is correct here */ 122 ASSERT(atomic_read(&ip->i_pincount) == 0); 123 ASSERT(!spin_is_locked(&ip->i_flags_lock)); 124 ASSERT(!xfs_isiflocked(ip)); 125 126 /* 127 * Because we use RCU freeing we need to ensure the inode always 128 * appears to be reclaimed with an invalid inode number when in the 129 * free state. The ip->i_flags_lock provides the barrier against lookup 130 * races. 131 */ 132 spin_lock(&ip->i_flags_lock); 133 ip->i_flags = XFS_IRECLAIM; 134 ip->i_ino = 0; 135 spin_unlock(&ip->i_flags_lock); 136 137 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 138 } 139 140 /* 141 * Check the validity of the inode we just found it the cache 142 */ 143 static int 144 xfs_iget_cache_hit( 145 struct xfs_perag *pag, 146 struct xfs_inode *ip, 147 xfs_ino_t ino, 148 int flags, 149 int lock_flags) __releases(RCU) 150 { 151 struct inode *inode = VFS_I(ip); 152 struct xfs_mount *mp = ip->i_mount; 153 int error; 154 155 /* 156 * check for re-use of an inode within an RCU grace period due to the 157 * radix tree nodes not being updated yet. We monitor for this by 158 * setting the inode number to zero before freeing the inode structure. 159 * If the inode has been reallocated and set up, then the inode number 160 * will not match, so check for that, too. 161 */ 162 spin_lock(&ip->i_flags_lock); 163 if (ip->i_ino != ino) { 164 trace_xfs_iget_skip(ip); 165 XFS_STATS_INC(xs_ig_frecycle); 166 error = EAGAIN; 167 goto out_error; 168 } 169 170 171 /* 172 * If we are racing with another cache hit that is currently 173 * instantiating this inode or currently recycling it out of 174 * reclaimabe state, wait for the initialisation to complete 175 * before continuing. 176 * 177 * XXX(hch): eventually we should do something equivalent to 178 * wait_on_inode to wait for these flags to be cleared 179 * instead of polling for it. 180 */ 181 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { 182 trace_xfs_iget_skip(ip); 183 XFS_STATS_INC(xs_ig_frecycle); 184 error = EAGAIN; 185 goto out_error; 186 } 187 188 /* 189 * If lookup is racing with unlink return an error immediately. 190 */ 191 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) { 192 error = ENOENT; 193 goto out_error; 194 } 195 196 /* 197 * If IRECLAIMABLE is set, we've torn down the VFS inode already. 198 * Need to carefully get it back into useable state. 199 */ 200 if (ip->i_flags & XFS_IRECLAIMABLE) { 201 trace_xfs_iget_reclaim(ip); 202 203 /* 204 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode 205 * from stomping over us while we recycle the inode. We can't 206 * clear the radix tree reclaimable tag yet as it requires 207 * pag_ici_lock to be held exclusive. 208 */ 209 ip->i_flags |= XFS_IRECLAIM; 210 211 spin_unlock(&ip->i_flags_lock); 212 rcu_read_unlock(); 213 214 error = -inode_init_always(mp->m_super, inode); 215 if (error) { 216 /* 217 * Re-initializing the inode failed, and we are in deep 218 * trouble. Try to re-add it to the reclaim list. 219 */ 220 rcu_read_lock(); 221 spin_lock(&ip->i_flags_lock); 222 223 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 224 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 225 trace_xfs_iget_reclaim_fail(ip); 226 goto out_error; 227 } 228 229 spin_lock(&pag->pag_ici_lock); 230 spin_lock(&ip->i_flags_lock); 231 232 /* 233 * Clear the per-lifetime state in the inode as we are now 234 * effectively a new inode and need to return to the initial 235 * state before reuse occurs. 236 */ 237 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 238 ip->i_flags |= XFS_INEW; 239 __xfs_inode_clear_reclaim_tag(mp, pag, ip); 240 inode->i_state = I_NEW; 241 242 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock)); 243 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); 244 245 spin_unlock(&ip->i_flags_lock); 246 spin_unlock(&pag->pag_ici_lock); 247 } else { 248 /* If the VFS inode is being torn down, pause and try again. */ 249 if (!igrab(inode)) { 250 trace_xfs_iget_skip(ip); 251 error = EAGAIN; 252 goto out_error; 253 } 254 255 /* We've got a live one. */ 256 spin_unlock(&ip->i_flags_lock); 257 rcu_read_unlock(); 258 trace_xfs_iget_hit(ip); 259 } 260 261 if (lock_flags != 0) 262 xfs_ilock(ip, lock_flags); 263 264 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE); 265 XFS_STATS_INC(xs_ig_found); 266 267 return 0; 268 269 out_error: 270 spin_unlock(&ip->i_flags_lock); 271 rcu_read_unlock(); 272 return error; 273 } 274 275 276 static int 277 xfs_iget_cache_miss( 278 struct xfs_mount *mp, 279 struct xfs_perag *pag, 280 xfs_trans_t *tp, 281 xfs_ino_t ino, 282 struct xfs_inode **ipp, 283 int flags, 284 int lock_flags) 285 { 286 struct xfs_inode *ip; 287 int error; 288 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 289 int iflags; 290 291 ip = xfs_inode_alloc(mp, ino); 292 if (!ip) 293 return ENOMEM; 294 295 error = xfs_iread(mp, tp, ip, flags); 296 if (error) 297 goto out_destroy; 298 299 trace_xfs_iget_miss(ip); 300 301 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) { 302 error = ENOENT; 303 goto out_destroy; 304 } 305 306 /* 307 * Preload the radix tree so we can insert safely under the 308 * write spinlock. Note that we cannot sleep inside the preload 309 * region. Since we can be called from transaction context, don't 310 * recurse into the file system. 311 */ 312 if (radix_tree_preload(GFP_NOFS)) { 313 error = EAGAIN; 314 goto out_destroy; 315 } 316 317 /* 318 * Because the inode hasn't been added to the radix-tree yet it can't 319 * be found by another thread, so we can do the non-sleeping lock here. 320 */ 321 if (lock_flags) { 322 if (!xfs_ilock_nowait(ip, lock_flags)) 323 BUG(); 324 } 325 326 /* 327 * These values must be set before inserting the inode into the radix 328 * tree as the moment it is inserted a concurrent lookup (allowed by the 329 * RCU locking mechanism) can find it and that lookup must see that this 330 * is an inode currently under construction (i.e. that XFS_INEW is set). 331 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 332 * memory barrier that ensures this detection works correctly at lookup 333 * time. 334 */ 335 iflags = XFS_INEW; 336 if (flags & XFS_IGET_DONTCACHE) 337 iflags |= XFS_IDONTCACHE; 338 ip->i_udquot = ip->i_gdquot = NULL; 339 xfs_iflags_set(ip, iflags); 340 341 /* insert the new inode */ 342 spin_lock(&pag->pag_ici_lock); 343 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 344 if (unlikely(error)) { 345 WARN_ON(error != -EEXIST); 346 XFS_STATS_INC(xs_ig_dup); 347 error = EAGAIN; 348 goto out_preload_end; 349 } 350 spin_unlock(&pag->pag_ici_lock); 351 radix_tree_preload_end(); 352 353 *ipp = ip; 354 return 0; 355 356 out_preload_end: 357 spin_unlock(&pag->pag_ici_lock); 358 radix_tree_preload_end(); 359 if (lock_flags) 360 xfs_iunlock(ip, lock_flags); 361 out_destroy: 362 __destroy_inode(VFS_I(ip)); 363 xfs_inode_free(ip); 364 return error; 365 } 366 367 /* 368 * Look up an inode by number in the given file system. 369 * The inode is looked up in the cache held in each AG. 370 * If the inode is found in the cache, initialise the vfs inode 371 * if necessary. 372 * 373 * If it is not in core, read it in from the file system's device, 374 * add it to the cache and initialise the vfs inode. 375 * 376 * The inode is locked according to the value of the lock_flags parameter. 377 * This flag parameter indicates how and if the inode's IO lock and inode lock 378 * should be taken. 379 * 380 * mp -- the mount point structure for the current file system. It points 381 * to the inode hash table. 382 * tp -- a pointer to the current transaction if there is one. This is 383 * simply passed through to the xfs_iread() call. 384 * ino -- the number of the inode desired. This is the unique identifier 385 * within the file system for the inode being requested. 386 * lock_flags -- flags indicating how to lock the inode. See the comment 387 * for xfs_ilock() for a list of valid values. 388 */ 389 int 390 xfs_iget( 391 xfs_mount_t *mp, 392 xfs_trans_t *tp, 393 xfs_ino_t ino, 394 uint flags, 395 uint lock_flags, 396 xfs_inode_t **ipp) 397 { 398 xfs_inode_t *ip; 399 int error; 400 xfs_perag_t *pag; 401 xfs_agino_t agino; 402 403 /* 404 * xfs_reclaim_inode() uses the ILOCK to ensure an inode 405 * doesn't get freed while it's being referenced during a 406 * radix tree traversal here. It assumes this function 407 * aqcuires only the ILOCK (and therefore it has no need to 408 * involve the IOLOCK in this synchronization). 409 */ 410 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 411 412 /* reject inode numbers outside existing AGs */ 413 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 414 return EINVAL; 415 416 /* get the perag structure and ensure that it's inode capable */ 417 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 418 agino = XFS_INO_TO_AGINO(mp, ino); 419 420 again: 421 error = 0; 422 rcu_read_lock(); 423 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 424 425 if (ip) { 426 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 427 if (error) 428 goto out_error_or_again; 429 } else { 430 rcu_read_unlock(); 431 XFS_STATS_INC(xs_ig_missed); 432 433 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 434 flags, lock_flags); 435 if (error) 436 goto out_error_or_again; 437 } 438 xfs_perag_put(pag); 439 440 *ipp = ip; 441 442 /* 443 * If we have a real type for an on-disk inode, we can set ops(&unlock) 444 * now. If it's a new inode being created, xfs_ialloc will handle it. 445 */ 446 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0) 447 xfs_setup_inode(ip); 448 return 0; 449 450 out_error_or_again: 451 if (error == EAGAIN) { 452 delay(1); 453 goto again; 454 } 455 xfs_perag_put(pag); 456 return error; 457 } 458 459 /* 460 * The inode lookup is done in batches to keep the amount of lock traffic and 461 * radix tree lookups to a minimum. The batch size is a trade off between 462 * lookup reduction and stack usage. This is in the reclaim path, so we can't 463 * be too greedy. 464 */ 465 #define XFS_LOOKUP_BATCH 32 466 467 STATIC int 468 xfs_inode_ag_walk_grab( 469 struct xfs_inode *ip) 470 { 471 struct inode *inode = VFS_I(ip); 472 473 ASSERT(rcu_read_lock_held()); 474 475 /* 476 * check for stale RCU freed inode 477 * 478 * If the inode has been reallocated, it doesn't matter if it's not in 479 * the AG we are walking - we are walking for writeback, so if it 480 * passes all the "valid inode" checks and is dirty, then we'll write 481 * it back anyway. If it has been reallocated and still being 482 * initialised, the XFS_INEW check below will catch it. 483 */ 484 spin_lock(&ip->i_flags_lock); 485 if (!ip->i_ino) 486 goto out_unlock_noent; 487 488 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ 489 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM)) 490 goto out_unlock_noent; 491 spin_unlock(&ip->i_flags_lock); 492 493 /* nothing to sync during shutdown */ 494 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 495 return EFSCORRUPTED; 496 497 /* If we can't grab the inode, it must on it's way to reclaim. */ 498 if (!igrab(inode)) 499 return ENOENT; 500 501 if (is_bad_inode(inode)) { 502 IRELE(ip); 503 return ENOENT; 504 } 505 506 /* inode is valid */ 507 return 0; 508 509 out_unlock_noent: 510 spin_unlock(&ip->i_flags_lock); 511 return ENOENT; 512 } 513 514 STATIC int 515 xfs_inode_ag_walk( 516 struct xfs_mount *mp, 517 struct xfs_perag *pag, 518 int (*execute)(struct xfs_inode *ip, 519 struct xfs_perag *pag, int flags, 520 void *args), 521 int flags, 522 void *args, 523 int tag) 524 { 525 uint32_t first_index; 526 int last_error = 0; 527 int skipped; 528 int done; 529 int nr_found; 530 531 restart: 532 done = 0; 533 skipped = 0; 534 first_index = 0; 535 nr_found = 0; 536 do { 537 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 538 int error = 0; 539 int i; 540 541 rcu_read_lock(); 542 543 if (tag == -1) 544 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, 545 (void **)batch, first_index, 546 XFS_LOOKUP_BATCH); 547 else 548 nr_found = radix_tree_gang_lookup_tag( 549 &pag->pag_ici_root, 550 (void **) batch, first_index, 551 XFS_LOOKUP_BATCH, tag); 552 553 if (!nr_found) { 554 rcu_read_unlock(); 555 break; 556 } 557 558 /* 559 * Grab the inodes before we drop the lock. if we found 560 * nothing, nr == 0 and the loop will be skipped. 561 */ 562 for (i = 0; i < nr_found; i++) { 563 struct xfs_inode *ip = batch[i]; 564 565 if (done || xfs_inode_ag_walk_grab(ip)) 566 batch[i] = NULL; 567 568 /* 569 * Update the index for the next lookup. Catch 570 * overflows into the next AG range which can occur if 571 * we have inodes in the last block of the AG and we 572 * are currently pointing to the last inode. 573 * 574 * Because we may see inodes that are from the wrong AG 575 * due to RCU freeing and reallocation, only update the 576 * index if it lies in this AG. It was a race that lead 577 * us to see this inode, so another lookup from the 578 * same index will not find it again. 579 */ 580 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 581 continue; 582 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 583 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 584 done = 1; 585 } 586 587 /* unlock now we've grabbed the inodes. */ 588 rcu_read_unlock(); 589 590 for (i = 0; i < nr_found; i++) { 591 if (!batch[i]) 592 continue; 593 error = execute(batch[i], pag, flags, args); 594 IRELE(batch[i]); 595 if (error == EAGAIN) { 596 skipped++; 597 continue; 598 } 599 if (error && last_error != EFSCORRUPTED) 600 last_error = error; 601 } 602 603 /* bail out if the filesystem is corrupted. */ 604 if (error == EFSCORRUPTED) 605 break; 606 607 cond_resched(); 608 609 } while (nr_found && !done); 610 611 if (skipped) { 612 delay(1); 613 goto restart; 614 } 615 return last_error; 616 } 617 618 /* 619 * Background scanning to trim post-EOF preallocated space. This is queued 620 * based on the 'background_prealloc_discard_period' tunable (5m by default). 621 */ 622 STATIC void 623 xfs_queue_eofblocks( 624 struct xfs_mount *mp) 625 { 626 rcu_read_lock(); 627 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG)) 628 queue_delayed_work(mp->m_eofblocks_workqueue, 629 &mp->m_eofblocks_work, 630 msecs_to_jiffies(xfs_eofb_secs * 1000)); 631 rcu_read_unlock(); 632 } 633 634 void 635 xfs_eofblocks_worker( 636 struct work_struct *work) 637 { 638 struct xfs_mount *mp = container_of(to_delayed_work(work), 639 struct xfs_mount, m_eofblocks_work); 640 xfs_icache_free_eofblocks(mp, NULL); 641 xfs_queue_eofblocks(mp); 642 } 643 644 int 645 xfs_inode_ag_iterator( 646 struct xfs_mount *mp, 647 int (*execute)(struct xfs_inode *ip, 648 struct xfs_perag *pag, int flags, 649 void *args), 650 int flags, 651 void *args) 652 { 653 struct xfs_perag *pag; 654 int error = 0; 655 int last_error = 0; 656 xfs_agnumber_t ag; 657 658 ag = 0; 659 while ((pag = xfs_perag_get(mp, ag))) { 660 ag = pag->pag_agno + 1; 661 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1); 662 xfs_perag_put(pag); 663 if (error) { 664 last_error = error; 665 if (error == EFSCORRUPTED) 666 break; 667 } 668 } 669 return XFS_ERROR(last_error); 670 } 671 672 int 673 xfs_inode_ag_iterator_tag( 674 struct xfs_mount *mp, 675 int (*execute)(struct xfs_inode *ip, 676 struct xfs_perag *pag, int flags, 677 void *args), 678 int flags, 679 void *args, 680 int tag) 681 { 682 struct xfs_perag *pag; 683 int error = 0; 684 int last_error = 0; 685 xfs_agnumber_t ag; 686 687 ag = 0; 688 while ((pag = xfs_perag_get_tag(mp, ag, tag))) { 689 ag = pag->pag_agno + 1; 690 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag); 691 xfs_perag_put(pag); 692 if (error) { 693 last_error = error; 694 if (error == EFSCORRUPTED) 695 break; 696 } 697 } 698 return XFS_ERROR(last_error); 699 } 700 701 /* 702 * Queue a new inode reclaim pass if there are reclaimable inodes and there 703 * isn't a reclaim pass already in progress. By default it runs every 5s based 704 * on the xfs periodic sync default of 30s. Perhaps this should have it's own 705 * tunable, but that can be done if this method proves to be ineffective or too 706 * aggressive. 707 */ 708 static void 709 xfs_reclaim_work_queue( 710 struct xfs_mount *mp) 711 { 712 713 rcu_read_lock(); 714 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 715 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 716 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 717 } 718 rcu_read_unlock(); 719 } 720 721 /* 722 * This is a fast pass over the inode cache to try to get reclaim moving on as 723 * many inodes as possible in a short period of time. It kicks itself every few 724 * seconds, as well as being kicked by the inode cache shrinker when memory 725 * goes low. It scans as quickly as possible avoiding locked inodes or those 726 * already being flushed, and once done schedules a future pass. 727 */ 728 void 729 xfs_reclaim_worker( 730 struct work_struct *work) 731 { 732 struct xfs_mount *mp = container_of(to_delayed_work(work), 733 struct xfs_mount, m_reclaim_work); 734 735 xfs_reclaim_inodes(mp, SYNC_TRYLOCK); 736 xfs_reclaim_work_queue(mp); 737 } 738 739 static void 740 __xfs_inode_set_reclaim_tag( 741 struct xfs_perag *pag, 742 struct xfs_inode *ip) 743 { 744 radix_tree_tag_set(&pag->pag_ici_root, 745 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 746 XFS_ICI_RECLAIM_TAG); 747 748 if (!pag->pag_ici_reclaimable) { 749 /* propagate the reclaim tag up into the perag radix tree */ 750 spin_lock(&ip->i_mount->m_perag_lock); 751 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 752 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 753 XFS_ICI_RECLAIM_TAG); 754 spin_unlock(&ip->i_mount->m_perag_lock); 755 756 /* schedule periodic background inode reclaim */ 757 xfs_reclaim_work_queue(ip->i_mount); 758 759 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno, 760 -1, _RET_IP_); 761 } 762 pag->pag_ici_reclaimable++; 763 } 764 765 /* 766 * We set the inode flag atomically with the radix tree tag. 767 * Once we get tag lookups on the radix tree, this inode flag 768 * can go away. 769 */ 770 void 771 xfs_inode_set_reclaim_tag( 772 xfs_inode_t *ip) 773 { 774 struct xfs_mount *mp = ip->i_mount; 775 struct xfs_perag *pag; 776 777 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 778 spin_lock(&pag->pag_ici_lock); 779 spin_lock(&ip->i_flags_lock); 780 __xfs_inode_set_reclaim_tag(pag, ip); 781 __xfs_iflags_set(ip, XFS_IRECLAIMABLE); 782 spin_unlock(&ip->i_flags_lock); 783 spin_unlock(&pag->pag_ici_lock); 784 xfs_perag_put(pag); 785 } 786 787 STATIC void 788 __xfs_inode_clear_reclaim( 789 xfs_perag_t *pag, 790 xfs_inode_t *ip) 791 { 792 pag->pag_ici_reclaimable--; 793 if (!pag->pag_ici_reclaimable) { 794 /* clear the reclaim tag from the perag radix tree */ 795 spin_lock(&ip->i_mount->m_perag_lock); 796 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 797 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 798 XFS_ICI_RECLAIM_TAG); 799 spin_unlock(&ip->i_mount->m_perag_lock); 800 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno, 801 -1, _RET_IP_); 802 } 803 } 804 805 STATIC void 806 __xfs_inode_clear_reclaim_tag( 807 xfs_mount_t *mp, 808 xfs_perag_t *pag, 809 xfs_inode_t *ip) 810 { 811 radix_tree_tag_clear(&pag->pag_ici_root, 812 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); 813 __xfs_inode_clear_reclaim(pag, ip); 814 } 815 816 /* 817 * Grab the inode for reclaim exclusively. 818 * Return 0 if we grabbed it, non-zero otherwise. 819 */ 820 STATIC int 821 xfs_reclaim_inode_grab( 822 struct xfs_inode *ip, 823 int flags) 824 { 825 ASSERT(rcu_read_lock_held()); 826 827 /* quick check for stale RCU freed inode */ 828 if (!ip->i_ino) 829 return 1; 830 831 /* 832 * If we are asked for non-blocking operation, do unlocked checks to 833 * see if the inode already is being flushed or in reclaim to avoid 834 * lock traffic. 835 */ 836 if ((flags & SYNC_TRYLOCK) && 837 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) 838 return 1; 839 840 /* 841 * The radix tree lock here protects a thread in xfs_iget from racing 842 * with us starting reclaim on the inode. Once we have the 843 * XFS_IRECLAIM flag set it will not touch us. 844 * 845 * Due to RCU lookup, we may find inodes that have been freed and only 846 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that 847 * aren't candidates for reclaim at all, so we must check the 848 * XFS_IRECLAIMABLE is set first before proceeding to reclaim. 849 */ 850 spin_lock(&ip->i_flags_lock); 851 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 852 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 853 /* not a reclaim candidate. */ 854 spin_unlock(&ip->i_flags_lock); 855 return 1; 856 } 857 __xfs_iflags_set(ip, XFS_IRECLAIM); 858 spin_unlock(&ip->i_flags_lock); 859 return 0; 860 } 861 862 /* 863 * Inodes in different states need to be treated differently. The following 864 * table lists the inode states and the reclaim actions necessary: 865 * 866 * inode state iflush ret required action 867 * --------------- ---------- --------------- 868 * bad - reclaim 869 * shutdown EIO unpin and reclaim 870 * clean, unpinned 0 reclaim 871 * stale, unpinned 0 reclaim 872 * clean, pinned(*) 0 requeue 873 * stale, pinned EAGAIN requeue 874 * dirty, async - requeue 875 * dirty, sync 0 reclaim 876 * 877 * (*) dgc: I don't think the clean, pinned state is possible but it gets 878 * handled anyway given the order of checks implemented. 879 * 880 * Also, because we get the flush lock first, we know that any inode that has 881 * been flushed delwri has had the flush completed by the time we check that 882 * the inode is clean. 883 * 884 * Note that because the inode is flushed delayed write by AIL pushing, the 885 * flush lock may already be held here and waiting on it can result in very 886 * long latencies. Hence for sync reclaims, where we wait on the flush lock, 887 * the caller should push the AIL first before trying to reclaim inodes to 888 * minimise the amount of time spent waiting. For background relaim, we only 889 * bother to reclaim clean inodes anyway. 890 * 891 * Hence the order of actions after gaining the locks should be: 892 * bad => reclaim 893 * shutdown => unpin and reclaim 894 * pinned, async => requeue 895 * pinned, sync => unpin 896 * stale => reclaim 897 * clean => reclaim 898 * dirty, async => requeue 899 * dirty, sync => flush, wait and reclaim 900 */ 901 STATIC int 902 xfs_reclaim_inode( 903 struct xfs_inode *ip, 904 struct xfs_perag *pag, 905 int sync_mode) 906 { 907 struct xfs_buf *bp = NULL; 908 int error; 909 910 restart: 911 error = 0; 912 xfs_ilock(ip, XFS_ILOCK_EXCL); 913 if (!xfs_iflock_nowait(ip)) { 914 if (!(sync_mode & SYNC_WAIT)) 915 goto out; 916 xfs_iflock(ip); 917 } 918 919 if (is_bad_inode(VFS_I(ip))) 920 goto reclaim; 921 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 922 xfs_iunpin_wait(ip); 923 xfs_iflush_abort(ip, false); 924 goto reclaim; 925 } 926 if (xfs_ipincount(ip)) { 927 if (!(sync_mode & SYNC_WAIT)) 928 goto out_ifunlock; 929 xfs_iunpin_wait(ip); 930 } 931 if (xfs_iflags_test(ip, XFS_ISTALE)) 932 goto reclaim; 933 if (xfs_inode_clean(ip)) 934 goto reclaim; 935 936 /* 937 * Never flush out dirty data during non-blocking reclaim, as it would 938 * just contend with AIL pushing trying to do the same job. 939 */ 940 if (!(sync_mode & SYNC_WAIT)) 941 goto out_ifunlock; 942 943 /* 944 * Now we have an inode that needs flushing. 945 * 946 * Note that xfs_iflush will never block on the inode buffer lock, as 947 * xfs_ifree_cluster() can lock the inode buffer before it locks the 948 * ip->i_lock, and we are doing the exact opposite here. As a result, 949 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would 950 * result in an ABBA deadlock with xfs_ifree_cluster(). 951 * 952 * As xfs_ifree_cluser() must gather all inodes that are active in the 953 * cache to mark them stale, if we hit this case we don't actually want 954 * to do IO here - we want the inode marked stale so we can simply 955 * reclaim it. Hence if we get an EAGAIN error here, just unlock the 956 * inode, back off and try again. Hopefully the next pass through will 957 * see the stale flag set on the inode. 958 */ 959 error = xfs_iflush(ip, &bp); 960 if (error == EAGAIN) { 961 xfs_iunlock(ip, XFS_ILOCK_EXCL); 962 /* backoff longer than in xfs_ifree_cluster */ 963 delay(2); 964 goto restart; 965 } 966 967 if (!error) { 968 error = xfs_bwrite(bp); 969 xfs_buf_relse(bp); 970 } 971 972 xfs_iflock(ip); 973 reclaim: 974 xfs_ifunlock(ip); 975 xfs_iunlock(ip, XFS_ILOCK_EXCL); 976 977 XFS_STATS_INC(xs_ig_reclaims); 978 /* 979 * Remove the inode from the per-AG radix tree. 980 * 981 * Because radix_tree_delete won't complain even if the item was never 982 * added to the tree assert that it's been there before to catch 983 * problems with the inode life time early on. 984 */ 985 spin_lock(&pag->pag_ici_lock); 986 if (!radix_tree_delete(&pag->pag_ici_root, 987 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino))) 988 ASSERT(0); 989 __xfs_inode_clear_reclaim(pag, ip); 990 spin_unlock(&pag->pag_ici_lock); 991 992 /* 993 * Here we do an (almost) spurious inode lock in order to coordinate 994 * with inode cache radix tree lookups. This is because the lookup 995 * can reference the inodes in the cache without taking references. 996 * 997 * We make that OK here by ensuring that we wait until the inode is 998 * unlocked after the lookup before we go ahead and free it. 999 */ 1000 xfs_ilock(ip, XFS_ILOCK_EXCL); 1001 xfs_qm_dqdetach(ip); 1002 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1003 1004 xfs_inode_free(ip); 1005 return error; 1006 1007 out_ifunlock: 1008 xfs_ifunlock(ip); 1009 out: 1010 xfs_iflags_clear(ip, XFS_IRECLAIM); 1011 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1012 /* 1013 * We could return EAGAIN here to make reclaim rescan the inode tree in 1014 * a short while. However, this just burns CPU time scanning the tree 1015 * waiting for IO to complete and the reclaim work never goes back to 1016 * the idle state. Instead, return 0 to let the next scheduled 1017 * background reclaim attempt to reclaim the inode again. 1018 */ 1019 return 0; 1020 } 1021 1022 /* 1023 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is 1024 * corrupted, we still want to try to reclaim all the inodes. If we don't, 1025 * then a shut down during filesystem unmount reclaim walk leak all the 1026 * unreclaimed inodes. 1027 */ 1028 STATIC int 1029 xfs_reclaim_inodes_ag( 1030 struct xfs_mount *mp, 1031 int flags, 1032 int *nr_to_scan) 1033 { 1034 struct xfs_perag *pag; 1035 int error = 0; 1036 int last_error = 0; 1037 xfs_agnumber_t ag; 1038 int trylock = flags & SYNC_TRYLOCK; 1039 int skipped; 1040 1041 restart: 1042 ag = 0; 1043 skipped = 0; 1044 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1045 unsigned long first_index = 0; 1046 int done = 0; 1047 int nr_found = 0; 1048 1049 ag = pag->pag_agno + 1; 1050 1051 if (trylock) { 1052 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { 1053 skipped++; 1054 xfs_perag_put(pag); 1055 continue; 1056 } 1057 first_index = pag->pag_ici_reclaim_cursor; 1058 } else 1059 mutex_lock(&pag->pag_ici_reclaim_lock); 1060 1061 do { 1062 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1063 int i; 1064 1065 rcu_read_lock(); 1066 nr_found = radix_tree_gang_lookup_tag( 1067 &pag->pag_ici_root, 1068 (void **)batch, first_index, 1069 XFS_LOOKUP_BATCH, 1070 XFS_ICI_RECLAIM_TAG); 1071 if (!nr_found) { 1072 done = 1; 1073 rcu_read_unlock(); 1074 break; 1075 } 1076 1077 /* 1078 * Grab the inodes before we drop the lock. if we found 1079 * nothing, nr == 0 and the loop will be skipped. 1080 */ 1081 for (i = 0; i < nr_found; i++) { 1082 struct xfs_inode *ip = batch[i]; 1083 1084 if (done || xfs_reclaim_inode_grab(ip, flags)) 1085 batch[i] = NULL; 1086 1087 /* 1088 * Update the index for the next lookup. Catch 1089 * overflows into the next AG range which can 1090 * occur if we have inodes in the last block of 1091 * the AG and we are currently pointing to the 1092 * last inode. 1093 * 1094 * Because we may see inodes that are from the 1095 * wrong AG due to RCU freeing and 1096 * reallocation, only update the index if it 1097 * lies in this AG. It was a race that lead us 1098 * to see this inode, so another lookup from 1099 * the same index will not find it again. 1100 */ 1101 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != 1102 pag->pag_agno) 1103 continue; 1104 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1105 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1106 done = 1; 1107 } 1108 1109 /* unlock now we've grabbed the inodes. */ 1110 rcu_read_unlock(); 1111 1112 for (i = 0; i < nr_found; i++) { 1113 if (!batch[i]) 1114 continue; 1115 error = xfs_reclaim_inode(batch[i], pag, flags); 1116 if (error && last_error != EFSCORRUPTED) 1117 last_error = error; 1118 } 1119 1120 *nr_to_scan -= XFS_LOOKUP_BATCH; 1121 1122 cond_resched(); 1123 1124 } while (nr_found && !done && *nr_to_scan > 0); 1125 1126 if (trylock && !done) 1127 pag->pag_ici_reclaim_cursor = first_index; 1128 else 1129 pag->pag_ici_reclaim_cursor = 0; 1130 mutex_unlock(&pag->pag_ici_reclaim_lock); 1131 xfs_perag_put(pag); 1132 } 1133 1134 /* 1135 * if we skipped any AG, and we still have scan count remaining, do 1136 * another pass this time using blocking reclaim semantics (i.e 1137 * waiting on the reclaim locks and ignoring the reclaim cursors). This 1138 * ensure that when we get more reclaimers than AGs we block rather 1139 * than spin trying to execute reclaim. 1140 */ 1141 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { 1142 trylock = 0; 1143 goto restart; 1144 } 1145 return XFS_ERROR(last_error); 1146 } 1147 1148 int 1149 xfs_reclaim_inodes( 1150 xfs_mount_t *mp, 1151 int mode) 1152 { 1153 int nr_to_scan = INT_MAX; 1154 1155 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); 1156 } 1157 1158 /* 1159 * Scan a certain number of inodes for reclaim. 1160 * 1161 * When called we make sure that there is a background (fast) inode reclaim in 1162 * progress, while we will throttle the speed of reclaim via doing synchronous 1163 * reclaim of inodes. That means if we come across dirty inodes, we wait for 1164 * them to be cleaned, which we hope will not be very long due to the 1165 * background walker having already kicked the IO off on those dirty inodes. 1166 */ 1167 void 1168 xfs_reclaim_inodes_nr( 1169 struct xfs_mount *mp, 1170 int nr_to_scan) 1171 { 1172 /* kick background reclaimer and push the AIL */ 1173 xfs_reclaim_work_queue(mp); 1174 xfs_ail_push_all(mp->m_ail); 1175 1176 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); 1177 } 1178 1179 /* 1180 * Return the number of reclaimable inodes in the filesystem for 1181 * the shrinker to determine how much to reclaim. 1182 */ 1183 int 1184 xfs_reclaim_inodes_count( 1185 struct xfs_mount *mp) 1186 { 1187 struct xfs_perag *pag; 1188 xfs_agnumber_t ag = 0; 1189 int reclaimable = 0; 1190 1191 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1192 ag = pag->pag_agno + 1; 1193 reclaimable += pag->pag_ici_reclaimable; 1194 xfs_perag_put(pag); 1195 } 1196 return reclaimable; 1197 } 1198 1199 STATIC int 1200 xfs_inode_match_id( 1201 struct xfs_inode *ip, 1202 struct xfs_eofblocks *eofb) 1203 { 1204 if (eofb->eof_flags & XFS_EOF_FLAGS_UID && 1205 ip->i_d.di_uid != eofb->eof_uid) 1206 return 0; 1207 1208 if (eofb->eof_flags & XFS_EOF_FLAGS_GID && 1209 ip->i_d.di_gid != eofb->eof_gid) 1210 return 0; 1211 1212 if (eofb->eof_flags & XFS_EOF_FLAGS_PRID && 1213 xfs_get_projid(ip) != eofb->eof_prid) 1214 return 0; 1215 1216 return 1; 1217 } 1218 1219 STATIC int 1220 xfs_inode_free_eofblocks( 1221 struct xfs_inode *ip, 1222 struct xfs_perag *pag, 1223 int flags, 1224 void *args) 1225 { 1226 int ret; 1227 struct xfs_eofblocks *eofb = args; 1228 1229 if (!xfs_can_free_eofblocks(ip, false)) { 1230 /* inode could be preallocated or append-only */ 1231 trace_xfs_inode_free_eofblocks_invalid(ip); 1232 xfs_inode_clear_eofblocks_tag(ip); 1233 return 0; 1234 } 1235 1236 /* 1237 * If the mapping is dirty the operation can block and wait for some 1238 * time. Unless we are waiting, skip it. 1239 */ 1240 if (!(flags & SYNC_WAIT) && 1241 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1242 return 0; 1243 1244 if (eofb) { 1245 if (!xfs_inode_match_id(ip, eofb)) 1246 return 0; 1247 1248 /* skip the inode if the file size is too small */ 1249 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && 1250 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1251 return 0; 1252 } 1253 1254 ret = xfs_free_eofblocks(ip->i_mount, ip, true); 1255 1256 /* don't revisit the inode if we're not waiting */ 1257 if (ret == EAGAIN && !(flags & SYNC_WAIT)) 1258 ret = 0; 1259 1260 return ret; 1261 } 1262 1263 int 1264 xfs_icache_free_eofblocks( 1265 struct xfs_mount *mp, 1266 struct xfs_eofblocks *eofb) 1267 { 1268 int flags = SYNC_TRYLOCK; 1269 1270 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC)) 1271 flags = SYNC_WAIT; 1272 1273 return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags, 1274 eofb, XFS_ICI_EOFBLOCKS_TAG); 1275 } 1276 1277 void 1278 xfs_inode_set_eofblocks_tag( 1279 xfs_inode_t *ip) 1280 { 1281 struct xfs_mount *mp = ip->i_mount; 1282 struct xfs_perag *pag; 1283 int tagged; 1284 1285 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1286 spin_lock(&pag->pag_ici_lock); 1287 trace_xfs_inode_set_eofblocks_tag(ip); 1288 1289 tagged = radix_tree_tagged(&pag->pag_ici_root, 1290 XFS_ICI_EOFBLOCKS_TAG); 1291 radix_tree_tag_set(&pag->pag_ici_root, 1292 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 1293 XFS_ICI_EOFBLOCKS_TAG); 1294 if (!tagged) { 1295 /* propagate the eofblocks tag up into the perag radix tree */ 1296 spin_lock(&ip->i_mount->m_perag_lock); 1297 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 1298 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1299 XFS_ICI_EOFBLOCKS_TAG); 1300 spin_unlock(&ip->i_mount->m_perag_lock); 1301 1302 /* kick off background trimming */ 1303 xfs_queue_eofblocks(ip->i_mount); 1304 1305 trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno, 1306 -1, _RET_IP_); 1307 } 1308 1309 spin_unlock(&pag->pag_ici_lock); 1310 xfs_perag_put(pag); 1311 } 1312 1313 void 1314 xfs_inode_clear_eofblocks_tag( 1315 xfs_inode_t *ip) 1316 { 1317 struct xfs_mount *mp = ip->i_mount; 1318 struct xfs_perag *pag; 1319 1320 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1321 spin_lock(&pag->pag_ici_lock); 1322 trace_xfs_inode_clear_eofblocks_tag(ip); 1323 1324 radix_tree_tag_clear(&pag->pag_ici_root, 1325 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 1326 XFS_ICI_EOFBLOCKS_TAG); 1327 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) { 1328 /* clear the eofblocks tag from the perag radix tree */ 1329 spin_lock(&ip->i_mount->m_perag_lock); 1330 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 1331 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1332 XFS_ICI_EOFBLOCKS_TAG); 1333 spin_unlock(&ip->i_mount->m_perag_lock); 1334 trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno, 1335 -1, _RET_IP_); 1336 } 1337 1338 spin_unlock(&pag->pag_ici_lock); 1339 xfs_perag_put(pag); 1340 } 1341 1342