1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_inode_item.h" 17 #include "xfs_quota.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_bmap_util.h" 21 #include "xfs_dquot_item.h" 22 #include "xfs_dquot.h" 23 #include "xfs_reflink.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_ag.h" 26 #include "xfs_log_priv.h" 27 28 #include <linux/iversion.h> 29 30 /* Radix tree tags for incore inode tree. */ 31 32 /* inode is to be reclaimed */ 33 #define XFS_ICI_RECLAIM_TAG 0 34 /* Inode has speculative preallocations (posteof or cow) to clean. */ 35 #define XFS_ICI_BLOCKGC_TAG 1 36 37 /* 38 * The goal for walking incore inodes. These can correspond with incore inode 39 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace. 40 */ 41 enum xfs_icwalk_goal { 42 /* Goals directly associated with tagged inodes. */ 43 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG, 44 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG, 45 }; 46 47 static int xfs_icwalk(struct xfs_mount *mp, 48 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 49 static int xfs_icwalk_ag(struct xfs_perag *pag, 50 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 51 52 /* 53 * Private inode cache walk flags for struct xfs_icwalk. Must not 54 * coincide with XFS_ICWALK_FLAGS_VALID. 55 */ 56 57 /* Stop scanning after icw_scan_limit inodes. */ 58 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28) 59 60 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27) 61 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */ 62 63 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \ 64 XFS_ICWALK_FLAG_RECLAIM_SICK | \ 65 XFS_ICWALK_FLAG_UNION) 66 67 /* 68 * Allocate and initialise an xfs_inode. 69 */ 70 struct xfs_inode * 71 xfs_inode_alloc( 72 struct xfs_mount *mp, 73 xfs_ino_t ino) 74 { 75 struct xfs_inode *ip; 76 77 /* 78 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL 79 * and return NULL here on ENOMEM. 80 */ 81 ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL); 82 83 if (inode_init_always(mp->m_super, VFS_I(ip))) { 84 kmem_cache_free(xfs_inode_cache, ip); 85 return NULL; 86 } 87 88 /* VFS doesn't initialise i_mode or i_state! */ 89 VFS_I(ip)->i_mode = 0; 90 VFS_I(ip)->i_state = 0; 91 mapping_set_large_folios(VFS_I(ip)->i_mapping); 92 93 XFS_STATS_INC(mp, vn_active); 94 ASSERT(atomic_read(&ip->i_pincount) == 0); 95 ASSERT(ip->i_ino == 0); 96 97 /* initialise the xfs inode */ 98 ip->i_ino = ino; 99 ip->i_mount = mp; 100 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 101 ip->i_cowfp = NULL; 102 memset(&ip->i_af, 0, sizeof(ip->i_af)); 103 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS; 104 memset(&ip->i_df, 0, sizeof(ip->i_df)); 105 ip->i_flags = 0; 106 ip->i_delayed_blks = 0; 107 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 108 ip->i_nblocks = 0; 109 ip->i_forkoff = 0; 110 ip->i_sick = 0; 111 ip->i_checked = 0; 112 INIT_WORK(&ip->i_ioend_work, xfs_end_io); 113 INIT_LIST_HEAD(&ip->i_ioend_list); 114 spin_lock_init(&ip->i_ioend_lock); 115 ip->i_next_unlinked = NULLAGINO; 116 ip->i_prev_unlinked = NULLAGINO; 117 118 return ip; 119 } 120 121 STATIC void 122 xfs_inode_free_callback( 123 struct rcu_head *head) 124 { 125 struct inode *inode = container_of(head, struct inode, i_rcu); 126 struct xfs_inode *ip = XFS_I(inode); 127 128 switch (VFS_I(ip)->i_mode & S_IFMT) { 129 case S_IFREG: 130 case S_IFDIR: 131 case S_IFLNK: 132 xfs_idestroy_fork(&ip->i_df); 133 break; 134 } 135 136 xfs_ifork_zap_attr(ip); 137 138 if (ip->i_cowfp) { 139 xfs_idestroy_fork(ip->i_cowfp); 140 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp); 141 } 142 if (ip->i_itemp) { 143 ASSERT(!test_bit(XFS_LI_IN_AIL, 144 &ip->i_itemp->ili_item.li_flags)); 145 xfs_inode_item_destroy(ip); 146 ip->i_itemp = NULL; 147 } 148 149 kmem_cache_free(xfs_inode_cache, ip); 150 } 151 152 static void 153 __xfs_inode_free( 154 struct xfs_inode *ip) 155 { 156 /* asserts to verify all state is correct here */ 157 ASSERT(atomic_read(&ip->i_pincount) == 0); 158 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list)); 159 XFS_STATS_DEC(ip->i_mount, vn_active); 160 161 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 162 } 163 164 void 165 xfs_inode_free( 166 struct xfs_inode *ip) 167 { 168 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING)); 169 170 /* 171 * Because we use RCU freeing we need to ensure the inode always 172 * appears to be reclaimed with an invalid inode number when in the 173 * free state. The ip->i_flags_lock provides the barrier against lookup 174 * races. 175 */ 176 spin_lock(&ip->i_flags_lock); 177 ip->i_flags = XFS_IRECLAIM; 178 ip->i_ino = 0; 179 spin_unlock(&ip->i_flags_lock); 180 181 __xfs_inode_free(ip); 182 } 183 184 /* 185 * Queue background inode reclaim work if there are reclaimable inodes and there 186 * isn't reclaim work already scheduled or in progress. 187 */ 188 static void 189 xfs_reclaim_work_queue( 190 struct xfs_mount *mp) 191 { 192 193 rcu_read_lock(); 194 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 195 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 196 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 197 } 198 rcu_read_unlock(); 199 } 200 201 /* 202 * Background scanning to trim preallocated space. This is queued based on the 203 * 'speculative_prealloc_lifetime' tunable (5m by default). 204 */ 205 static inline void 206 xfs_blockgc_queue( 207 struct xfs_perag *pag) 208 { 209 struct xfs_mount *mp = pag->pag_mount; 210 211 if (!xfs_is_blockgc_enabled(mp)) 212 return; 213 214 rcu_read_lock(); 215 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) 216 queue_delayed_work(pag->pag_mount->m_blockgc_wq, 217 &pag->pag_blockgc_work, 218 msecs_to_jiffies(xfs_blockgc_secs * 1000)); 219 rcu_read_unlock(); 220 } 221 222 /* Set a tag on both the AG incore inode tree and the AG radix tree. */ 223 static void 224 xfs_perag_set_inode_tag( 225 struct xfs_perag *pag, 226 xfs_agino_t agino, 227 unsigned int tag) 228 { 229 struct xfs_mount *mp = pag->pag_mount; 230 bool was_tagged; 231 232 lockdep_assert_held(&pag->pag_ici_lock); 233 234 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 235 radix_tree_tag_set(&pag->pag_ici_root, agino, tag); 236 237 if (tag == XFS_ICI_RECLAIM_TAG) 238 pag->pag_ici_reclaimable++; 239 240 if (was_tagged) 241 return; 242 243 /* propagate the tag up into the perag radix tree */ 244 spin_lock(&mp->m_perag_lock); 245 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag); 246 spin_unlock(&mp->m_perag_lock); 247 248 /* start background work */ 249 switch (tag) { 250 case XFS_ICI_RECLAIM_TAG: 251 xfs_reclaim_work_queue(mp); 252 break; 253 case XFS_ICI_BLOCKGC_TAG: 254 xfs_blockgc_queue(pag); 255 break; 256 } 257 258 trace_xfs_perag_set_inode_tag(pag, _RET_IP_); 259 } 260 261 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */ 262 static void 263 xfs_perag_clear_inode_tag( 264 struct xfs_perag *pag, 265 xfs_agino_t agino, 266 unsigned int tag) 267 { 268 struct xfs_mount *mp = pag->pag_mount; 269 270 lockdep_assert_held(&pag->pag_ici_lock); 271 272 /* 273 * Reclaim can signal (with a null agino) that it cleared its own tag 274 * by removing the inode from the radix tree. 275 */ 276 if (agino != NULLAGINO) 277 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag); 278 else 279 ASSERT(tag == XFS_ICI_RECLAIM_TAG); 280 281 if (tag == XFS_ICI_RECLAIM_TAG) 282 pag->pag_ici_reclaimable--; 283 284 if (radix_tree_tagged(&pag->pag_ici_root, tag)) 285 return; 286 287 /* clear the tag from the perag radix tree */ 288 spin_lock(&mp->m_perag_lock); 289 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag); 290 spin_unlock(&mp->m_perag_lock); 291 292 trace_xfs_perag_clear_inode_tag(pag, _RET_IP_); 293 } 294 295 /* 296 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 297 * part of the structure. This is made more complex by the fact we store 298 * information about the on-disk values in the VFS inode and so we can't just 299 * overwrite the values unconditionally. Hence we save the parameters we 300 * need to retain across reinitialisation, and rewrite them into the VFS inode 301 * after reinitialisation even if it fails. 302 */ 303 static int 304 xfs_reinit_inode( 305 struct xfs_mount *mp, 306 struct inode *inode) 307 { 308 int error; 309 uint32_t nlink = inode->i_nlink; 310 uint32_t generation = inode->i_generation; 311 uint64_t version = inode_peek_iversion(inode); 312 umode_t mode = inode->i_mode; 313 dev_t dev = inode->i_rdev; 314 kuid_t uid = inode->i_uid; 315 kgid_t gid = inode->i_gid; 316 317 error = inode_init_always(mp->m_super, inode); 318 319 set_nlink(inode, nlink); 320 inode->i_generation = generation; 321 inode_set_iversion_queried(inode, version); 322 inode->i_mode = mode; 323 inode->i_rdev = dev; 324 inode->i_uid = uid; 325 inode->i_gid = gid; 326 mapping_set_large_folios(inode->i_mapping); 327 return error; 328 } 329 330 /* 331 * Carefully nudge an inode whose VFS state has been torn down back into a 332 * usable state. Drops the i_flags_lock and the rcu read lock. 333 */ 334 static int 335 xfs_iget_recycle( 336 struct xfs_perag *pag, 337 struct xfs_inode *ip) __releases(&ip->i_flags_lock) 338 { 339 struct xfs_mount *mp = ip->i_mount; 340 struct inode *inode = VFS_I(ip); 341 int error; 342 343 trace_xfs_iget_recycle(ip); 344 345 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 346 return -EAGAIN; 347 348 /* 349 * We need to make it look like the inode is being reclaimed to prevent 350 * the actual reclaim workers from stomping over us while we recycle 351 * the inode. We can't clear the radix tree tag yet as it requires 352 * pag_ici_lock to be held exclusive. 353 */ 354 ip->i_flags |= XFS_IRECLAIM; 355 356 spin_unlock(&ip->i_flags_lock); 357 rcu_read_unlock(); 358 359 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 360 error = xfs_reinit_inode(mp, inode); 361 xfs_iunlock(ip, XFS_ILOCK_EXCL); 362 if (error) { 363 /* 364 * Re-initializing the inode failed, and we are in deep 365 * trouble. Try to re-add it to the reclaim list. 366 */ 367 rcu_read_lock(); 368 spin_lock(&ip->i_flags_lock); 369 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 370 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 371 spin_unlock(&ip->i_flags_lock); 372 rcu_read_unlock(); 373 374 trace_xfs_iget_recycle_fail(ip); 375 return error; 376 } 377 378 spin_lock(&pag->pag_ici_lock); 379 spin_lock(&ip->i_flags_lock); 380 381 /* 382 * Clear the per-lifetime state in the inode as we are now effectively 383 * a new inode and need to return to the initial state before reuse 384 * occurs. 385 */ 386 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 387 ip->i_flags |= XFS_INEW; 388 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 389 XFS_ICI_RECLAIM_TAG); 390 inode->i_state = I_NEW; 391 spin_unlock(&ip->i_flags_lock); 392 spin_unlock(&pag->pag_ici_lock); 393 394 return 0; 395 } 396 397 /* 398 * If we are allocating a new inode, then check what was returned is 399 * actually a free, empty inode. If we are not allocating an inode, 400 * then check we didn't find a free inode. 401 * 402 * Returns: 403 * 0 if the inode free state matches the lookup context 404 * -ENOENT if the inode is free and we are not allocating 405 * -EFSCORRUPTED if there is any state mismatch at all 406 */ 407 static int 408 xfs_iget_check_free_state( 409 struct xfs_inode *ip, 410 int flags) 411 { 412 if (flags & XFS_IGET_CREATE) { 413 /* should be a free inode */ 414 if (VFS_I(ip)->i_mode != 0) { 415 xfs_warn(ip->i_mount, 416 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", 417 ip->i_ino, VFS_I(ip)->i_mode); 418 return -EFSCORRUPTED; 419 } 420 421 if (ip->i_nblocks != 0) { 422 xfs_warn(ip->i_mount, 423 "Corruption detected! Free inode 0x%llx has blocks allocated!", 424 ip->i_ino); 425 return -EFSCORRUPTED; 426 } 427 return 0; 428 } 429 430 /* should be an allocated inode */ 431 if (VFS_I(ip)->i_mode == 0) 432 return -ENOENT; 433 434 return 0; 435 } 436 437 /* Make all pending inactivation work start immediately. */ 438 static bool 439 xfs_inodegc_queue_all( 440 struct xfs_mount *mp) 441 { 442 struct xfs_inodegc *gc; 443 int cpu; 444 bool ret = false; 445 446 for_each_online_cpu(cpu) { 447 gc = per_cpu_ptr(mp->m_inodegc, cpu); 448 if (!llist_empty(&gc->list)) { 449 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 450 ret = true; 451 } 452 } 453 454 return ret; 455 } 456 457 /* Wait for all queued work and collect errors */ 458 static int 459 xfs_inodegc_wait_all( 460 struct xfs_mount *mp) 461 { 462 int cpu; 463 int error = 0; 464 465 flush_workqueue(mp->m_inodegc_wq); 466 for_each_online_cpu(cpu) { 467 struct xfs_inodegc *gc; 468 469 gc = per_cpu_ptr(mp->m_inodegc, cpu); 470 if (gc->error && !error) 471 error = gc->error; 472 gc->error = 0; 473 } 474 475 return error; 476 } 477 478 /* 479 * Check the validity of the inode we just found it the cache 480 */ 481 static int 482 xfs_iget_cache_hit( 483 struct xfs_perag *pag, 484 struct xfs_inode *ip, 485 xfs_ino_t ino, 486 int flags, 487 int lock_flags) __releases(RCU) 488 { 489 struct inode *inode = VFS_I(ip); 490 struct xfs_mount *mp = ip->i_mount; 491 int error; 492 493 /* 494 * check for re-use of an inode within an RCU grace period due to the 495 * radix tree nodes not being updated yet. We monitor for this by 496 * setting the inode number to zero before freeing the inode structure. 497 * If the inode has been reallocated and set up, then the inode number 498 * will not match, so check for that, too. 499 */ 500 spin_lock(&ip->i_flags_lock); 501 if (ip->i_ino != ino) 502 goto out_skip; 503 504 /* 505 * If we are racing with another cache hit that is currently 506 * instantiating this inode or currently recycling it out of 507 * reclaimable state, wait for the initialisation to complete 508 * before continuing. 509 * 510 * If we're racing with the inactivation worker we also want to wait. 511 * If we're creating a new file, it's possible that the worker 512 * previously marked the inode as free on disk but hasn't finished 513 * updating the incore state yet. The AGI buffer will be dirty and 514 * locked to the icreate transaction, so a synchronous push of the 515 * inodegc workers would result in deadlock. For a regular iget, the 516 * worker is running already, so we might as well wait. 517 * 518 * XXX(hch): eventually we should do something equivalent to 519 * wait_on_inode to wait for these flags to be cleared 520 * instead of polling for it. 521 */ 522 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING)) 523 goto out_skip; 524 525 if (ip->i_flags & XFS_NEED_INACTIVE) { 526 /* Unlinked inodes cannot be re-grabbed. */ 527 if (VFS_I(ip)->i_nlink == 0) { 528 error = -ENOENT; 529 goto out_error; 530 } 531 goto out_inodegc_flush; 532 } 533 534 /* 535 * Check the inode free state is valid. This also detects lookup 536 * racing with unlinks. 537 */ 538 error = xfs_iget_check_free_state(ip, flags); 539 if (error) 540 goto out_error; 541 542 /* Skip inodes that have no vfs state. */ 543 if ((flags & XFS_IGET_INCORE) && 544 (ip->i_flags & XFS_IRECLAIMABLE)) 545 goto out_skip; 546 547 /* The inode fits the selection criteria; process it. */ 548 if (ip->i_flags & XFS_IRECLAIMABLE) { 549 /* Drops i_flags_lock and RCU read lock. */ 550 error = xfs_iget_recycle(pag, ip); 551 if (error == -EAGAIN) 552 goto out_skip; 553 if (error) 554 return error; 555 } else { 556 /* If the VFS inode is being torn down, pause and try again. */ 557 if (!igrab(inode)) 558 goto out_skip; 559 560 /* We've got a live one. */ 561 spin_unlock(&ip->i_flags_lock); 562 rcu_read_unlock(); 563 trace_xfs_iget_hit(ip); 564 } 565 566 if (lock_flags != 0) 567 xfs_ilock(ip, lock_flags); 568 569 if (!(flags & XFS_IGET_INCORE)) 570 xfs_iflags_clear(ip, XFS_ISTALE); 571 XFS_STATS_INC(mp, xs_ig_found); 572 573 return 0; 574 575 out_skip: 576 trace_xfs_iget_skip(ip); 577 XFS_STATS_INC(mp, xs_ig_frecycle); 578 error = -EAGAIN; 579 out_error: 580 spin_unlock(&ip->i_flags_lock); 581 rcu_read_unlock(); 582 return error; 583 584 out_inodegc_flush: 585 spin_unlock(&ip->i_flags_lock); 586 rcu_read_unlock(); 587 /* 588 * Do not wait for the workers, because the caller could hold an AGI 589 * buffer lock. We're just going to sleep in a loop anyway. 590 */ 591 if (xfs_is_inodegc_enabled(mp)) 592 xfs_inodegc_queue_all(mp); 593 return -EAGAIN; 594 } 595 596 static int 597 xfs_iget_cache_miss( 598 struct xfs_mount *mp, 599 struct xfs_perag *pag, 600 xfs_trans_t *tp, 601 xfs_ino_t ino, 602 struct xfs_inode **ipp, 603 int flags, 604 int lock_flags) 605 { 606 struct xfs_inode *ip; 607 int error; 608 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 609 int iflags; 610 611 ip = xfs_inode_alloc(mp, ino); 612 if (!ip) 613 return -ENOMEM; 614 615 error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags); 616 if (error) 617 goto out_destroy; 618 619 /* 620 * For version 5 superblocks, if we are initialising a new inode and we 621 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can 622 * simply build the new inode core with a random generation number. 623 * 624 * For version 4 (and older) superblocks, log recovery is dependent on 625 * the i_flushiter field being initialised from the current on-disk 626 * value and hence we must also read the inode off disk even when 627 * initializing new inodes. 628 */ 629 if (xfs_has_v3inodes(mp) && 630 (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) { 631 VFS_I(ip)->i_generation = get_random_u32(); 632 } else { 633 struct xfs_buf *bp; 634 635 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp); 636 if (error) 637 goto out_destroy; 638 639 error = xfs_inode_from_disk(ip, 640 xfs_buf_offset(bp, ip->i_imap.im_boffset)); 641 if (!error) 642 xfs_buf_set_ref(bp, XFS_INO_REF); 643 xfs_trans_brelse(tp, bp); 644 645 if (error) 646 goto out_destroy; 647 } 648 649 trace_xfs_iget_miss(ip); 650 651 /* 652 * Check the inode free state is valid. This also detects lookup 653 * racing with unlinks. 654 */ 655 error = xfs_iget_check_free_state(ip, flags); 656 if (error) 657 goto out_destroy; 658 659 /* 660 * Preload the radix tree so we can insert safely under the 661 * write spinlock. Note that we cannot sleep inside the preload 662 * region. Since we can be called from transaction context, don't 663 * recurse into the file system. 664 */ 665 if (radix_tree_preload(GFP_NOFS)) { 666 error = -EAGAIN; 667 goto out_destroy; 668 } 669 670 /* 671 * Because the inode hasn't been added to the radix-tree yet it can't 672 * be found by another thread, so we can do the non-sleeping lock here. 673 */ 674 if (lock_flags) { 675 if (!xfs_ilock_nowait(ip, lock_flags)) 676 BUG(); 677 } 678 679 /* 680 * These values must be set before inserting the inode into the radix 681 * tree as the moment it is inserted a concurrent lookup (allowed by the 682 * RCU locking mechanism) can find it and that lookup must see that this 683 * is an inode currently under construction (i.e. that XFS_INEW is set). 684 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 685 * memory barrier that ensures this detection works correctly at lookup 686 * time. 687 */ 688 iflags = XFS_INEW; 689 if (flags & XFS_IGET_DONTCACHE) 690 d_mark_dontcache(VFS_I(ip)); 691 ip->i_udquot = NULL; 692 ip->i_gdquot = NULL; 693 ip->i_pdquot = NULL; 694 xfs_iflags_set(ip, iflags); 695 696 /* insert the new inode */ 697 spin_lock(&pag->pag_ici_lock); 698 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 699 if (unlikely(error)) { 700 WARN_ON(error != -EEXIST); 701 XFS_STATS_INC(mp, xs_ig_dup); 702 error = -EAGAIN; 703 goto out_preload_end; 704 } 705 spin_unlock(&pag->pag_ici_lock); 706 radix_tree_preload_end(); 707 708 *ipp = ip; 709 return 0; 710 711 out_preload_end: 712 spin_unlock(&pag->pag_ici_lock); 713 radix_tree_preload_end(); 714 if (lock_flags) 715 xfs_iunlock(ip, lock_flags); 716 out_destroy: 717 __destroy_inode(VFS_I(ip)); 718 xfs_inode_free(ip); 719 return error; 720 } 721 722 /* 723 * Look up an inode by number in the given file system. The inode is looked up 724 * in the cache held in each AG. If the inode is found in the cache, initialise 725 * the vfs inode if necessary. 726 * 727 * If it is not in core, read it in from the file system's device, add it to the 728 * cache and initialise the vfs inode. 729 * 730 * The inode is locked according to the value of the lock_flags parameter. 731 * Inode lookup is only done during metadata operations and not as part of the 732 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup. 733 */ 734 int 735 xfs_iget( 736 struct xfs_mount *mp, 737 struct xfs_trans *tp, 738 xfs_ino_t ino, 739 uint flags, 740 uint lock_flags, 741 struct xfs_inode **ipp) 742 { 743 struct xfs_inode *ip; 744 struct xfs_perag *pag; 745 xfs_agino_t agino; 746 int error; 747 748 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 749 750 /* reject inode numbers outside existing AGs */ 751 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 752 return -EINVAL; 753 754 XFS_STATS_INC(mp, xs_ig_attempts); 755 756 /* get the perag structure and ensure that it's inode capable */ 757 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 758 agino = XFS_INO_TO_AGINO(mp, ino); 759 760 again: 761 error = 0; 762 rcu_read_lock(); 763 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 764 765 if (ip) { 766 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 767 if (error) 768 goto out_error_or_again; 769 } else { 770 rcu_read_unlock(); 771 if (flags & XFS_IGET_INCORE) { 772 error = -ENODATA; 773 goto out_error_or_again; 774 } 775 XFS_STATS_INC(mp, xs_ig_missed); 776 777 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 778 flags, lock_flags); 779 if (error) 780 goto out_error_or_again; 781 } 782 xfs_perag_put(pag); 783 784 *ipp = ip; 785 786 /* 787 * If we have a real type for an on-disk inode, we can setup the inode 788 * now. If it's a new inode being created, xfs_init_new_inode will 789 * handle it. 790 */ 791 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 792 xfs_setup_existing_inode(ip); 793 return 0; 794 795 out_error_or_again: 796 if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) && 797 error == -EAGAIN) { 798 delay(1); 799 goto again; 800 } 801 xfs_perag_put(pag); 802 return error; 803 } 804 805 /* 806 * "Is this a cached inode that's also allocated?" 807 * 808 * Look up an inode by number in the given file system. If the inode is 809 * in cache and isn't in purgatory, return 1 if the inode is allocated 810 * and 0 if it is not. For all other cases (not in cache, being torn 811 * down, etc.), return a negative error code. 812 * 813 * The caller has to prevent inode allocation and freeing activity, 814 * presumably by locking the AGI buffer. This is to ensure that an 815 * inode cannot transition from allocated to freed until the caller is 816 * ready to allow that. If the inode is in an intermediate state (new, 817 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the 818 * inode is not in the cache, -ENOENT will be returned. The caller must 819 * deal with these scenarios appropriately. 820 * 821 * This is a specialized use case for the online scrubber; if you're 822 * reading this, you probably want xfs_iget. 823 */ 824 int 825 xfs_icache_inode_is_allocated( 826 struct xfs_mount *mp, 827 struct xfs_trans *tp, 828 xfs_ino_t ino, 829 bool *inuse) 830 { 831 struct xfs_inode *ip; 832 int error; 833 834 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip); 835 if (error) 836 return error; 837 838 *inuse = !!(VFS_I(ip)->i_mode); 839 xfs_irele(ip); 840 return 0; 841 } 842 843 /* 844 * Grab the inode for reclaim exclusively. 845 * 846 * We have found this inode via a lookup under RCU, so the inode may have 847 * already been freed, or it may be in the process of being recycled by 848 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode 849 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE 850 * will not be set. Hence we need to check for both these flag conditions to 851 * avoid inodes that are no longer reclaim candidates. 852 * 853 * Note: checking for other state flags here, under the i_flags_lock or not, is 854 * racy and should be avoided. Those races should be resolved only after we have 855 * ensured that we are able to reclaim this inode and the world can see that we 856 * are going to reclaim it. 857 * 858 * Return true if we grabbed it, false otherwise. 859 */ 860 static bool 861 xfs_reclaim_igrab( 862 struct xfs_inode *ip, 863 struct xfs_icwalk *icw) 864 { 865 ASSERT(rcu_read_lock_held()); 866 867 spin_lock(&ip->i_flags_lock); 868 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 869 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 870 /* not a reclaim candidate. */ 871 spin_unlock(&ip->i_flags_lock); 872 return false; 873 } 874 875 /* Don't reclaim a sick inode unless the caller asked for it. */ 876 if (ip->i_sick && 877 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) { 878 spin_unlock(&ip->i_flags_lock); 879 return false; 880 } 881 882 __xfs_iflags_set(ip, XFS_IRECLAIM); 883 spin_unlock(&ip->i_flags_lock); 884 return true; 885 } 886 887 /* 888 * Inode reclaim is non-blocking, so the default action if progress cannot be 889 * made is to "requeue" the inode for reclaim by unlocking it and clearing the 890 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about 891 * blocking anymore and hence we can wait for the inode to be able to reclaim 892 * it. 893 * 894 * We do no IO here - if callers require inodes to be cleaned they must push the 895 * AIL first to trigger writeback of dirty inodes. This enables writeback to be 896 * done in the background in a non-blocking manner, and enables memory reclaim 897 * to make progress without blocking. 898 */ 899 static void 900 xfs_reclaim_inode( 901 struct xfs_inode *ip, 902 struct xfs_perag *pag) 903 { 904 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 905 906 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 907 goto out; 908 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING)) 909 goto out_iunlock; 910 911 /* 912 * Check for log shutdown because aborting the inode can move the log 913 * tail and corrupt in memory state. This is fine if the log is shut 914 * down, but if the log is still active and only the mount is shut down 915 * then the in-memory log tail movement caused by the abort can be 916 * incorrectly propagated to disk. 917 */ 918 if (xlog_is_shutdown(ip->i_mount->m_log)) { 919 xfs_iunpin_wait(ip); 920 xfs_iflush_shutdown_abort(ip); 921 goto reclaim; 922 } 923 if (xfs_ipincount(ip)) 924 goto out_clear_flush; 925 if (!xfs_inode_clean(ip)) 926 goto out_clear_flush; 927 928 xfs_iflags_clear(ip, XFS_IFLUSHING); 929 reclaim: 930 trace_xfs_inode_reclaiming(ip); 931 932 /* 933 * Because we use RCU freeing we need to ensure the inode always appears 934 * to be reclaimed with an invalid inode number when in the free state. 935 * We do this as early as possible under the ILOCK so that 936 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to 937 * detect races with us here. By doing this, we guarantee that once 938 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that 939 * it will see either a valid inode that will serialise correctly, or it 940 * will see an invalid inode that it can skip. 941 */ 942 spin_lock(&ip->i_flags_lock); 943 ip->i_flags = XFS_IRECLAIM; 944 ip->i_ino = 0; 945 ip->i_sick = 0; 946 ip->i_checked = 0; 947 spin_unlock(&ip->i_flags_lock); 948 949 ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL); 950 xfs_iunlock(ip, XFS_ILOCK_EXCL); 951 952 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 953 /* 954 * Remove the inode from the per-AG radix tree. 955 * 956 * Because radix_tree_delete won't complain even if the item was never 957 * added to the tree assert that it's been there before to catch 958 * problems with the inode life time early on. 959 */ 960 spin_lock(&pag->pag_ici_lock); 961 if (!radix_tree_delete(&pag->pag_ici_root, 962 XFS_INO_TO_AGINO(ip->i_mount, ino))) 963 ASSERT(0); 964 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG); 965 spin_unlock(&pag->pag_ici_lock); 966 967 /* 968 * Here we do an (almost) spurious inode lock in order to coordinate 969 * with inode cache radix tree lookups. This is because the lookup 970 * can reference the inodes in the cache without taking references. 971 * 972 * We make that OK here by ensuring that we wait until the inode is 973 * unlocked after the lookup before we go ahead and free it. 974 */ 975 xfs_ilock(ip, XFS_ILOCK_EXCL); 976 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot); 977 xfs_iunlock(ip, XFS_ILOCK_EXCL); 978 ASSERT(xfs_inode_clean(ip)); 979 980 __xfs_inode_free(ip); 981 return; 982 983 out_clear_flush: 984 xfs_iflags_clear(ip, XFS_IFLUSHING); 985 out_iunlock: 986 xfs_iunlock(ip, XFS_ILOCK_EXCL); 987 out: 988 xfs_iflags_clear(ip, XFS_IRECLAIM); 989 } 990 991 /* Reclaim sick inodes if we're unmounting or the fs went down. */ 992 static inline bool 993 xfs_want_reclaim_sick( 994 struct xfs_mount *mp) 995 { 996 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) || 997 xfs_is_shutdown(mp); 998 } 999 1000 void 1001 xfs_reclaim_inodes( 1002 struct xfs_mount *mp) 1003 { 1004 struct xfs_icwalk icw = { 1005 .icw_flags = 0, 1006 }; 1007 1008 if (xfs_want_reclaim_sick(mp)) 1009 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 1010 1011 while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 1012 xfs_ail_push_all_sync(mp->m_ail); 1013 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 1014 } 1015 } 1016 1017 /* 1018 * The shrinker infrastructure determines how many inodes we should scan for 1019 * reclaim. We want as many clean inodes ready to reclaim as possible, so we 1020 * push the AIL here. We also want to proactively free up memory if we can to 1021 * minimise the amount of work memory reclaim has to do so we kick the 1022 * background reclaim if it isn't already scheduled. 1023 */ 1024 long 1025 xfs_reclaim_inodes_nr( 1026 struct xfs_mount *mp, 1027 unsigned long nr_to_scan) 1028 { 1029 struct xfs_icwalk icw = { 1030 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT, 1031 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan), 1032 }; 1033 1034 if (xfs_want_reclaim_sick(mp)) 1035 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 1036 1037 /* kick background reclaimer and push the AIL */ 1038 xfs_reclaim_work_queue(mp); 1039 xfs_ail_push_all(mp->m_ail); 1040 1041 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 1042 return 0; 1043 } 1044 1045 /* 1046 * Return the number of reclaimable inodes in the filesystem for 1047 * the shrinker to determine how much to reclaim. 1048 */ 1049 long 1050 xfs_reclaim_inodes_count( 1051 struct xfs_mount *mp) 1052 { 1053 struct xfs_perag *pag; 1054 xfs_agnumber_t ag = 0; 1055 long reclaimable = 0; 1056 1057 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1058 ag = pag->pag_agno + 1; 1059 reclaimable += pag->pag_ici_reclaimable; 1060 xfs_perag_put(pag); 1061 } 1062 return reclaimable; 1063 } 1064 1065 STATIC bool 1066 xfs_icwalk_match_id( 1067 struct xfs_inode *ip, 1068 struct xfs_icwalk *icw) 1069 { 1070 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1071 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1072 return false; 1073 1074 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1075 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1076 return false; 1077 1078 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1079 ip->i_projid != icw->icw_prid) 1080 return false; 1081 1082 return true; 1083 } 1084 1085 /* 1086 * A union-based inode filtering algorithm. Process the inode if any of the 1087 * criteria match. This is for global/internal scans only. 1088 */ 1089 STATIC bool 1090 xfs_icwalk_match_id_union( 1091 struct xfs_inode *ip, 1092 struct xfs_icwalk *icw) 1093 { 1094 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1095 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1096 return true; 1097 1098 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1099 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1100 return true; 1101 1102 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1103 ip->i_projid == icw->icw_prid) 1104 return true; 1105 1106 return false; 1107 } 1108 1109 /* 1110 * Is this inode @ip eligible for eof/cow block reclamation, given some 1111 * filtering parameters @icw? The inode is eligible if @icw is null or 1112 * if the predicate functions match. 1113 */ 1114 static bool 1115 xfs_icwalk_match( 1116 struct xfs_inode *ip, 1117 struct xfs_icwalk *icw) 1118 { 1119 bool match; 1120 1121 if (!icw) 1122 return true; 1123 1124 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION) 1125 match = xfs_icwalk_match_id_union(ip, icw); 1126 else 1127 match = xfs_icwalk_match_id(ip, icw); 1128 if (!match) 1129 return false; 1130 1131 /* skip the inode if the file size is too small */ 1132 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) && 1133 XFS_ISIZE(ip) < icw->icw_min_file_size) 1134 return false; 1135 1136 return true; 1137 } 1138 1139 /* 1140 * This is a fast pass over the inode cache to try to get reclaim moving on as 1141 * many inodes as possible in a short period of time. It kicks itself every few 1142 * seconds, as well as being kicked by the inode cache shrinker when memory 1143 * goes low. 1144 */ 1145 void 1146 xfs_reclaim_worker( 1147 struct work_struct *work) 1148 { 1149 struct xfs_mount *mp = container_of(to_delayed_work(work), 1150 struct xfs_mount, m_reclaim_work); 1151 1152 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL); 1153 xfs_reclaim_work_queue(mp); 1154 } 1155 1156 STATIC int 1157 xfs_inode_free_eofblocks( 1158 struct xfs_inode *ip, 1159 struct xfs_icwalk *icw, 1160 unsigned int *lockflags) 1161 { 1162 bool wait; 1163 1164 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1165 1166 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS)) 1167 return 0; 1168 1169 /* 1170 * If the mapping is dirty the operation can block and wait for some 1171 * time. Unless we are waiting, skip it. 1172 */ 1173 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1174 return 0; 1175 1176 if (!xfs_icwalk_match(ip, icw)) 1177 return 0; 1178 1179 /* 1180 * If the caller is waiting, return -EAGAIN to keep the background 1181 * scanner moving and revisit the inode in a subsequent pass. 1182 */ 1183 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1184 if (wait) 1185 return -EAGAIN; 1186 return 0; 1187 } 1188 *lockflags |= XFS_IOLOCK_EXCL; 1189 1190 if (xfs_can_free_eofblocks(ip, false)) 1191 return xfs_free_eofblocks(ip); 1192 1193 /* inode could be preallocated or append-only */ 1194 trace_xfs_inode_free_eofblocks_invalid(ip); 1195 xfs_inode_clear_eofblocks_tag(ip); 1196 return 0; 1197 } 1198 1199 static void 1200 xfs_blockgc_set_iflag( 1201 struct xfs_inode *ip, 1202 unsigned long iflag) 1203 { 1204 struct xfs_mount *mp = ip->i_mount; 1205 struct xfs_perag *pag; 1206 1207 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1208 1209 /* 1210 * Don't bother locking the AG and looking up in the radix trees 1211 * if we already know that we have the tag set. 1212 */ 1213 if (ip->i_flags & iflag) 1214 return; 1215 spin_lock(&ip->i_flags_lock); 1216 ip->i_flags |= iflag; 1217 spin_unlock(&ip->i_flags_lock); 1218 1219 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1220 spin_lock(&pag->pag_ici_lock); 1221 1222 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1223 XFS_ICI_BLOCKGC_TAG); 1224 1225 spin_unlock(&pag->pag_ici_lock); 1226 xfs_perag_put(pag); 1227 } 1228 1229 void 1230 xfs_inode_set_eofblocks_tag( 1231 xfs_inode_t *ip) 1232 { 1233 trace_xfs_inode_set_eofblocks_tag(ip); 1234 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS); 1235 } 1236 1237 static void 1238 xfs_blockgc_clear_iflag( 1239 struct xfs_inode *ip, 1240 unsigned long iflag) 1241 { 1242 struct xfs_mount *mp = ip->i_mount; 1243 struct xfs_perag *pag; 1244 bool clear_tag; 1245 1246 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1247 1248 spin_lock(&ip->i_flags_lock); 1249 ip->i_flags &= ~iflag; 1250 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0; 1251 spin_unlock(&ip->i_flags_lock); 1252 1253 if (!clear_tag) 1254 return; 1255 1256 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1257 spin_lock(&pag->pag_ici_lock); 1258 1259 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1260 XFS_ICI_BLOCKGC_TAG); 1261 1262 spin_unlock(&pag->pag_ici_lock); 1263 xfs_perag_put(pag); 1264 } 1265 1266 void 1267 xfs_inode_clear_eofblocks_tag( 1268 xfs_inode_t *ip) 1269 { 1270 trace_xfs_inode_clear_eofblocks_tag(ip); 1271 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS); 1272 } 1273 1274 /* 1275 * Set ourselves up to free CoW blocks from this file. If it's already clean 1276 * then we can bail out quickly, but otherwise we must back off if the file 1277 * is undergoing some kind of write. 1278 */ 1279 static bool 1280 xfs_prep_free_cowblocks( 1281 struct xfs_inode *ip) 1282 { 1283 /* 1284 * Just clear the tag if we have an empty cow fork or none at all. It's 1285 * possible the inode was fully unshared since it was originally tagged. 1286 */ 1287 if (!xfs_inode_has_cow_data(ip)) { 1288 trace_xfs_inode_free_cowblocks_invalid(ip); 1289 xfs_inode_clear_cowblocks_tag(ip); 1290 return false; 1291 } 1292 1293 /* 1294 * If the mapping is dirty or under writeback we cannot touch the 1295 * CoW fork. Leave it alone if we're in the midst of a directio. 1296 */ 1297 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || 1298 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || 1299 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || 1300 atomic_read(&VFS_I(ip)->i_dio_count)) 1301 return false; 1302 1303 return true; 1304 } 1305 1306 /* 1307 * Automatic CoW Reservation Freeing 1308 * 1309 * These functions automatically garbage collect leftover CoW reservations 1310 * that were made on behalf of a cowextsize hint when we start to run out 1311 * of quota or when the reservations sit around for too long. If the file 1312 * has dirty pages or is undergoing writeback, its CoW reservations will 1313 * be retained. 1314 * 1315 * The actual garbage collection piggybacks off the same code that runs 1316 * the speculative EOF preallocation garbage collector. 1317 */ 1318 STATIC int 1319 xfs_inode_free_cowblocks( 1320 struct xfs_inode *ip, 1321 struct xfs_icwalk *icw, 1322 unsigned int *lockflags) 1323 { 1324 bool wait; 1325 int ret = 0; 1326 1327 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1328 1329 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS)) 1330 return 0; 1331 1332 if (!xfs_prep_free_cowblocks(ip)) 1333 return 0; 1334 1335 if (!xfs_icwalk_match(ip, icw)) 1336 return 0; 1337 1338 /* 1339 * If the caller is waiting, return -EAGAIN to keep the background 1340 * scanner moving and revisit the inode in a subsequent pass. 1341 */ 1342 if (!(*lockflags & XFS_IOLOCK_EXCL) && 1343 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1344 if (wait) 1345 return -EAGAIN; 1346 return 0; 1347 } 1348 *lockflags |= XFS_IOLOCK_EXCL; 1349 1350 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) { 1351 if (wait) 1352 return -EAGAIN; 1353 return 0; 1354 } 1355 *lockflags |= XFS_MMAPLOCK_EXCL; 1356 1357 /* 1358 * Check again, nobody else should be able to dirty blocks or change 1359 * the reflink iflag now that we have the first two locks held. 1360 */ 1361 if (xfs_prep_free_cowblocks(ip)) 1362 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1363 return ret; 1364 } 1365 1366 void 1367 xfs_inode_set_cowblocks_tag( 1368 xfs_inode_t *ip) 1369 { 1370 trace_xfs_inode_set_cowblocks_tag(ip); 1371 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS); 1372 } 1373 1374 void 1375 xfs_inode_clear_cowblocks_tag( 1376 xfs_inode_t *ip) 1377 { 1378 trace_xfs_inode_clear_cowblocks_tag(ip); 1379 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS); 1380 } 1381 1382 /* Disable post-EOF and CoW block auto-reclamation. */ 1383 void 1384 xfs_blockgc_stop( 1385 struct xfs_mount *mp) 1386 { 1387 struct xfs_perag *pag; 1388 xfs_agnumber_t agno; 1389 1390 if (!xfs_clear_blockgc_enabled(mp)) 1391 return; 1392 1393 for_each_perag(mp, agno, pag) 1394 cancel_delayed_work_sync(&pag->pag_blockgc_work); 1395 trace_xfs_blockgc_stop(mp, __return_address); 1396 } 1397 1398 /* Enable post-EOF and CoW block auto-reclamation. */ 1399 void 1400 xfs_blockgc_start( 1401 struct xfs_mount *mp) 1402 { 1403 struct xfs_perag *pag; 1404 xfs_agnumber_t agno; 1405 1406 if (xfs_set_blockgc_enabled(mp)) 1407 return; 1408 1409 trace_xfs_blockgc_start(mp, __return_address); 1410 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1411 xfs_blockgc_queue(pag); 1412 } 1413 1414 /* Don't try to run block gc on an inode that's in any of these states. */ 1415 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \ 1416 XFS_NEED_INACTIVE | \ 1417 XFS_INACTIVATING | \ 1418 XFS_IRECLAIMABLE | \ 1419 XFS_IRECLAIM) 1420 /* 1421 * Decide if the given @ip is eligible for garbage collection of speculative 1422 * preallocations, and grab it if so. Returns true if it's ready to go or 1423 * false if we should just ignore it. 1424 */ 1425 static bool 1426 xfs_blockgc_igrab( 1427 struct xfs_inode *ip) 1428 { 1429 struct inode *inode = VFS_I(ip); 1430 1431 ASSERT(rcu_read_lock_held()); 1432 1433 /* Check for stale RCU freed inode */ 1434 spin_lock(&ip->i_flags_lock); 1435 if (!ip->i_ino) 1436 goto out_unlock_noent; 1437 1438 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS) 1439 goto out_unlock_noent; 1440 spin_unlock(&ip->i_flags_lock); 1441 1442 /* nothing to sync during shutdown */ 1443 if (xfs_is_shutdown(ip->i_mount)) 1444 return false; 1445 1446 /* If we can't grab the inode, it must on it's way to reclaim. */ 1447 if (!igrab(inode)) 1448 return false; 1449 1450 /* inode is valid */ 1451 return true; 1452 1453 out_unlock_noent: 1454 spin_unlock(&ip->i_flags_lock); 1455 return false; 1456 } 1457 1458 /* Scan one incore inode for block preallocations that we can remove. */ 1459 static int 1460 xfs_blockgc_scan_inode( 1461 struct xfs_inode *ip, 1462 struct xfs_icwalk *icw) 1463 { 1464 unsigned int lockflags = 0; 1465 int error; 1466 1467 error = xfs_inode_free_eofblocks(ip, icw, &lockflags); 1468 if (error) 1469 goto unlock; 1470 1471 error = xfs_inode_free_cowblocks(ip, icw, &lockflags); 1472 unlock: 1473 if (lockflags) 1474 xfs_iunlock(ip, lockflags); 1475 xfs_irele(ip); 1476 return error; 1477 } 1478 1479 /* Background worker that trims preallocated space. */ 1480 void 1481 xfs_blockgc_worker( 1482 struct work_struct *work) 1483 { 1484 struct xfs_perag *pag = container_of(to_delayed_work(work), 1485 struct xfs_perag, pag_blockgc_work); 1486 struct xfs_mount *mp = pag->pag_mount; 1487 int error; 1488 1489 trace_xfs_blockgc_worker(mp, __return_address); 1490 1491 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL); 1492 if (error) 1493 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d", 1494 pag->pag_agno, error); 1495 xfs_blockgc_queue(pag); 1496 } 1497 1498 /* 1499 * Try to free space in the filesystem by purging inactive inodes, eofblocks 1500 * and cowblocks. 1501 */ 1502 int 1503 xfs_blockgc_free_space( 1504 struct xfs_mount *mp, 1505 struct xfs_icwalk *icw) 1506 { 1507 int error; 1508 1509 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_); 1510 1511 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw); 1512 if (error) 1513 return error; 1514 1515 return xfs_inodegc_flush(mp); 1516 } 1517 1518 /* 1519 * Reclaim all the free space that we can by scheduling the background blockgc 1520 * and inodegc workers immediately and waiting for them all to clear. 1521 */ 1522 int 1523 xfs_blockgc_flush_all( 1524 struct xfs_mount *mp) 1525 { 1526 struct xfs_perag *pag; 1527 xfs_agnumber_t agno; 1528 1529 trace_xfs_blockgc_flush_all(mp, __return_address); 1530 1531 /* 1532 * For each blockgc worker, move its queue time up to now. If it 1533 * wasn't queued, it will not be requeued. Then flush whatever's 1534 * left. 1535 */ 1536 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1537 mod_delayed_work(pag->pag_mount->m_blockgc_wq, 1538 &pag->pag_blockgc_work, 0); 1539 1540 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1541 flush_delayed_work(&pag->pag_blockgc_work); 1542 1543 return xfs_inodegc_flush(mp); 1544 } 1545 1546 /* 1547 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which 1548 * quota caused an allocation failure, so we make a best effort by including 1549 * each quota under low free space conditions (less than 1% free space) in the 1550 * scan. 1551 * 1552 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan 1553 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or 1554 * MMAPLOCK. 1555 */ 1556 int 1557 xfs_blockgc_free_dquots( 1558 struct xfs_mount *mp, 1559 struct xfs_dquot *udqp, 1560 struct xfs_dquot *gdqp, 1561 struct xfs_dquot *pdqp, 1562 unsigned int iwalk_flags) 1563 { 1564 struct xfs_icwalk icw = {0}; 1565 bool do_work = false; 1566 1567 if (!udqp && !gdqp && !pdqp) 1568 return 0; 1569 1570 /* 1571 * Run a scan to free blocks using the union filter to cover all 1572 * applicable quotas in a single scan. 1573 */ 1574 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags; 1575 1576 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) { 1577 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id); 1578 icw.icw_flags |= XFS_ICWALK_FLAG_UID; 1579 do_work = true; 1580 } 1581 1582 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) { 1583 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id); 1584 icw.icw_flags |= XFS_ICWALK_FLAG_GID; 1585 do_work = true; 1586 } 1587 1588 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) { 1589 icw.icw_prid = pdqp->q_id; 1590 icw.icw_flags |= XFS_ICWALK_FLAG_PRID; 1591 do_work = true; 1592 } 1593 1594 if (!do_work) 1595 return 0; 1596 1597 return xfs_blockgc_free_space(mp, &icw); 1598 } 1599 1600 /* Run cow/eofblocks scans on the quotas attached to the inode. */ 1601 int 1602 xfs_blockgc_free_quota( 1603 struct xfs_inode *ip, 1604 unsigned int iwalk_flags) 1605 { 1606 return xfs_blockgc_free_dquots(ip->i_mount, 1607 xfs_inode_dquot(ip, XFS_DQTYPE_USER), 1608 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP), 1609 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags); 1610 } 1611 1612 /* XFS Inode Cache Walking Code */ 1613 1614 /* 1615 * The inode lookup is done in batches to keep the amount of lock traffic and 1616 * radix tree lookups to a minimum. The batch size is a trade off between 1617 * lookup reduction and stack usage. This is in the reclaim path, so we can't 1618 * be too greedy. 1619 */ 1620 #define XFS_LOOKUP_BATCH 32 1621 1622 1623 /* 1624 * Decide if we want to grab this inode in anticipation of doing work towards 1625 * the goal. 1626 */ 1627 static inline bool 1628 xfs_icwalk_igrab( 1629 enum xfs_icwalk_goal goal, 1630 struct xfs_inode *ip, 1631 struct xfs_icwalk *icw) 1632 { 1633 switch (goal) { 1634 case XFS_ICWALK_BLOCKGC: 1635 return xfs_blockgc_igrab(ip); 1636 case XFS_ICWALK_RECLAIM: 1637 return xfs_reclaim_igrab(ip, icw); 1638 default: 1639 return false; 1640 } 1641 } 1642 1643 /* 1644 * Process an inode. Each processing function must handle any state changes 1645 * made by the icwalk igrab function. Return -EAGAIN to skip an inode. 1646 */ 1647 static inline int 1648 xfs_icwalk_process_inode( 1649 enum xfs_icwalk_goal goal, 1650 struct xfs_inode *ip, 1651 struct xfs_perag *pag, 1652 struct xfs_icwalk *icw) 1653 { 1654 int error = 0; 1655 1656 switch (goal) { 1657 case XFS_ICWALK_BLOCKGC: 1658 error = xfs_blockgc_scan_inode(ip, icw); 1659 break; 1660 case XFS_ICWALK_RECLAIM: 1661 xfs_reclaim_inode(ip, pag); 1662 break; 1663 } 1664 return error; 1665 } 1666 1667 /* 1668 * For a given per-AG structure @pag and a goal, grab qualifying inodes and 1669 * process them in some manner. 1670 */ 1671 static int 1672 xfs_icwalk_ag( 1673 struct xfs_perag *pag, 1674 enum xfs_icwalk_goal goal, 1675 struct xfs_icwalk *icw) 1676 { 1677 struct xfs_mount *mp = pag->pag_mount; 1678 uint32_t first_index; 1679 int last_error = 0; 1680 int skipped; 1681 bool done; 1682 int nr_found; 1683 1684 restart: 1685 done = false; 1686 skipped = 0; 1687 if (goal == XFS_ICWALK_RECLAIM) 1688 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor); 1689 else 1690 first_index = 0; 1691 nr_found = 0; 1692 do { 1693 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1694 int error = 0; 1695 int i; 1696 1697 rcu_read_lock(); 1698 1699 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, 1700 (void **) batch, first_index, 1701 XFS_LOOKUP_BATCH, goal); 1702 if (!nr_found) { 1703 done = true; 1704 rcu_read_unlock(); 1705 break; 1706 } 1707 1708 /* 1709 * Grab the inodes before we drop the lock. if we found 1710 * nothing, nr == 0 and the loop will be skipped. 1711 */ 1712 for (i = 0; i < nr_found; i++) { 1713 struct xfs_inode *ip = batch[i]; 1714 1715 if (done || !xfs_icwalk_igrab(goal, ip, icw)) 1716 batch[i] = NULL; 1717 1718 /* 1719 * Update the index for the next lookup. Catch 1720 * overflows into the next AG range which can occur if 1721 * we have inodes in the last block of the AG and we 1722 * are currently pointing to the last inode. 1723 * 1724 * Because we may see inodes that are from the wrong AG 1725 * due to RCU freeing and reallocation, only update the 1726 * index if it lies in this AG. It was a race that lead 1727 * us to see this inode, so another lookup from the 1728 * same index will not find it again. 1729 */ 1730 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 1731 continue; 1732 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1733 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1734 done = true; 1735 } 1736 1737 /* unlock now we've grabbed the inodes. */ 1738 rcu_read_unlock(); 1739 1740 for (i = 0; i < nr_found; i++) { 1741 if (!batch[i]) 1742 continue; 1743 error = xfs_icwalk_process_inode(goal, batch[i], pag, 1744 icw); 1745 if (error == -EAGAIN) { 1746 skipped++; 1747 continue; 1748 } 1749 if (error && last_error != -EFSCORRUPTED) 1750 last_error = error; 1751 } 1752 1753 /* bail out if the filesystem is corrupted. */ 1754 if (error == -EFSCORRUPTED) 1755 break; 1756 1757 cond_resched(); 1758 1759 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) { 1760 icw->icw_scan_limit -= XFS_LOOKUP_BATCH; 1761 if (icw->icw_scan_limit <= 0) 1762 break; 1763 } 1764 } while (nr_found && !done); 1765 1766 if (goal == XFS_ICWALK_RECLAIM) { 1767 if (done) 1768 first_index = 0; 1769 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index); 1770 } 1771 1772 if (skipped) { 1773 delay(1); 1774 goto restart; 1775 } 1776 return last_error; 1777 } 1778 1779 /* Walk all incore inodes to achieve a given goal. */ 1780 static int 1781 xfs_icwalk( 1782 struct xfs_mount *mp, 1783 enum xfs_icwalk_goal goal, 1784 struct xfs_icwalk *icw) 1785 { 1786 struct xfs_perag *pag; 1787 int error = 0; 1788 int last_error = 0; 1789 xfs_agnumber_t agno; 1790 1791 for_each_perag_tag(mp, agno, pag, goal) { 1792 error = xfs_icwalk_ag(pag, goal, icw); 1793 if (error) { 1794 last_error = error; 1795 if (error == -EFSCORRUPTED) { 1796 xfs_perag_rele(pag); 1797 break; 1798 } 1799 } 1800 } 1801 return last_error; 1802 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID); 1803 } 1804 1805 #ifdef DEBUG 1806 static void 1807 xfs_check_delalloc( 1808 struct xfs_inode *ip, 1809 int whichfork) 1810 { 1811 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 1812 struct xfs_bmbt_irec got; 1813 struct xfs_iext_cursor icur; 1814 1815 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 1816 return; 1817 do { 1818 if (isnullstartblock(got.br_startblock)) { 1819 xfs_warn(ip->i_mount, 1820 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 1821 ip->i_ino, 1822 whichfork == XFS_DATA_FORK ? "data" : "cow", 1823 got.br_startoff, got.br_blockcount); 1824 } 1825 } while (xfs_iext_next_extent(ifp, &icur, &got)); 1826 } 1827 #else 1828 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 1829 #endif 1830 1831 /* Schedule the inode for reclaim. */ 1832 static void 1833 xfs_inodegc_set_reclaimable( 1834 struct xfs_inode *ip) 1835 { 1836 struct xfs_mount *mp = ip->i_mount; 1837 struct xfs_perag *pag; 1838 1839 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) { 1840 xfs_check_delalloc(ip, XFS_DATA_FORK); 1841 xfs_check_delalloc(ip, XFS_COW_FORK); 1842 ASSERT(0); 1843 } 1844 1845 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1846 spin_lock(&pag->pag_ici_lock); 1847 spin_lock(&ip->i_flags_lock); 1848 1849 trace_xfs_inode_set_reclaimable(ip); 1850 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING); 1851 ip->i_flags |= XFS_IRECLAIMABLE; 1852 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1853 XFS_ICI_RECLAIM_TAG); 1854 1855 spin_unlock(&ip->i_flags_lock); 1856 spin_unlock(&pag->pag_ici_lock); 1857 xfs_perag_put(pag); 1858 } 1859 1860 /* 1861 * Free all speculative preallocations and possibly even the inode itself. 1862 * This is the last chance to make changes to an otherwise unreferenced file 1863 * before incore reclamation happens. 1864 */ 1865 static int 1866 xfs_inodegc_inactivate( 1867 struct xfs_inode *ip) 1868 { 1869 int error; 1870 1871 trace_xfs_inode_inactivating(ip); 1872 error = xfs_inactive(ip); 1873 xfs_inodegc_set_reclaimable(ip); 1874 return error; 1875 1876 } 1877 1878 void 1879 xfs_inodegc_worker( 1880 struct work_struct *work) 1881 { 1882 struct xfs_inodegc *gc = container_of(to_delayed_work(work), 1883 struct xfs_inodegc, work); 1884 struct llist_node *node = llist_del_all(&gc->list); 1885 struct xfs_inode *ip, *n; 1886 unsigned int nofs_flag; 1887 1888 ASSERT(gc->cpu == smp_processor_id()); 1889 1890 WRITE_ONCE(gc->items, 0); 1891 1892 if (!node) 1893 return; 1894 1895 /* 1896 * We can allocate memory here while doing writeback on behalf of 1897 * memory reclaim. To avoid memory allocation deadlocks set the 1898 * task-wide nofs context for the following operations. 1899 */ 1900 nofs_flag = memalloc_nofs_save(); 1901 1902 ip = llist_entry(node, struct xfs_inode, i_gclist); 1903 trace_xfs_inodegc_worker(ip->i_mount, READ_ONCE(gc->shrinker_hits)); 1904 1905 WRITE_ONCE(gc->shrinker_hits, 0); 1906 llist_for_each_entry_safe(ip, n, node, i_gclist) { 1907 int error; 1908 1909 xfs_iflags_set(ip, XFS_INACTIVATING); 1910 error = xfs_inodegc_inactivate(ip); 1911 if (error && !gc->error) 1912 gc->error = error; 1913 } 1914 1915 memalloc_nofs_restore(nofs_flag); 1916 } 1917 1918 /* 1919 * Expedite all pending inodegc work to run immediately. This does not wait for 1920 * completion of the work. 1921 */ 1922 void 1923 xfs_inodegc_push( 1924 struct xfs_mount *mp) 1925 { 1926 if (!xfs_is_inodegc_enabled(mp)) 1927 return; 1928 trace_xfs_inodegc_push(mp, __return_address); 1929 xfs_inodegc_queue_all(mp); 1930 } 1931 1932 /* 1933 * Force all currently queued inode inactivation work to run immediately and 1934 * wait for the work to finish. 1935 */ 1936 int 1937 xfs_inodegc_flush( 1938 struct xfs_mount *mp) 1939 { 1940 xfs_inodegc_push(mp); 1941 trace_xfs_inodegc_flush(mp, __return_address); 1942 return xfs_inodegc_wait_all(mp); 1943 } 1944 1945 /* 1946 * Flush all the pending work and then disable the inode inactivation background 1947 * workers and wait for them to stop. Caller must hold sb->s_umount to 1948 * coordinate changes in the inodegc_enabled state. 1949 */ 1950 void 1951 xfs_inodegc_stop( 1952 struct xfs_mount *mp) 1953 { 1954 bool rerun; 1955 1956 if (!xfs_clear_inodegc_enabled(mp)) 1957 return; 1958 1959 /* 1960 * Drain all pending inodegc work, including inodes that could be 1961 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan 1962 * threads that sample the inodegc state just prior to us clearing it. 1963 * The inodegc flag state prevents new threads from queuing more 1964 * inodes, so we queue pending work items and flush the workqueue until 1965 * all inodegc lists are empty. IOWs, we cannot use drain_workqueue 1966 * here because it does not allow other unserialized mechanisms to 1967 * reschedule inodegc work while this draining is in progress. 1968 */ 1969 xfs_inodegc_queue_all(mp); 1970 do { 1971 flush_workqueue(mp->m_inodegc_wq); 1972 rerun = xfs_inodegc_queue_all(mp); 1973 } while (rerun); 1974 1975 trace_xfs_inodegc_stop(mp, __return_address); 1976 } 1977 1978 /* 1979 * Enable the inode inactivation background workers and schedule deferred inode 1980 * inactivation work if there is any. Caller must hold sb->s_umount to 1981 * coordinate changes in the inodegc_enabled state. 1982 */ 1983 void 1984 xfs_inodegc_start( 1985 struct xfs_mount *mp) 1986 { 1987 if (xfs_set_inodegc_enabled(mp)) 1988 return; 1989 1990 trace_xfs_inodegc_start(mp, __return_address); 1991 xfs_inodegc_queue_all(mp); 1992 } 1993 1994 #ifdef CONFIG_XFS_RT 1995 static inline bool 1996 xfs_inodegc_want_queue_rt_file( 1997 struct xfs_inode *ip) 1998 { 1999 struct xfs_mount *mp = ip->i_mount; 2000 2001 if (!XFS_IS_REALTIME_INODE(ip)) 2002 return false; 2003 2004 if (__percpu_counter_compare(&mp->m_frextents, 2005 mp->m_low_rtexts[XFS_LOWSP_5_PCNT], 2006 XFS_FDBLOCKS_BATCH) < 0) 2007 return true; 2008 2009 return false; 2010 } 2011 #else 2012 # define xfs_inodegc_want_queue_rt_file(ip) (false) 2013 #endif /* CONFIG_XFS_RT */ 2014 2015 /* 2016 * Schedule the inactivation worker when: 2017 * 2018 * - We've accumulated more than one inode cluster buffer's worth of inodes. 2019 * - There is less than 5% free space left. 2020 * - Any of the quotas for this inode are near an enforcement limit. 2021 */ 2022 static inline bool 2023 xfs_inodegc_want_queue_work( 2024 struct xfs_inode *ip, 2025 unsigned int items) 2026 { 2027 struct xfs_mount *mp = ip->i_mount; 2028 2029 if (items > mp->m_ino_geo.inodes_per_cluster) 2030 return true; 2031 2032 if (__percpu_counter_compare(&mp->m_fdblocks, 2033 mp->m_low_space[XFS_LOWSP_5_PCNT], 2034 XFS_FDBLOCKS_BATCH) < 0) 2035 return true; 2036 2037 if (xfs_inodegc_want_queue_rt_file(ip)) 2038 return true; 2039 2040 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER)) 2041 return true; 2042 2043 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP)) 2044 return true; 2045 2046 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ)) 2047 return true; 2048 2049 return false; 2050 } 2051 2052 /* 2053 * Upper bound on the number of inodes in each AG that can be queued for 2054 * inactivation at any given time, to avoid monopolizing the workqueue. 2055 */ 2056 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK) 2057 2058 /* 2059 * Make the frontend wait for inactivations when: 2060 * 2061 * - Memory shrinkers queued the inactivation worker and it hasn't finished. 2062 * - The queue depth exceeds the maximum allowable percpu backlog. 2063 * 2064 * Note: If the current thread is running a transaction, we don't ever want to 2065 * wait for other transactions because that could introduce a deadlock. 2066 */ 2067 static inline bool 2068 xfs_inodegc_want_flush_work( 2069 struct xfs_inode *ip, 2070 unsigned int items, 2071 unsigned int shrinker_hits) 2072 { 2073 if (current->journal_info) 2074 return false; 2075 2076 if (shrinker_hits > 0) 2077 return true; 2078 2079 if (items > XFS_INODEGC_MAX_BACKLOG) 2080 return true; 2081 2082 return false; 2083 } 2084 2085 /* 2086 * Queue a background inactivation worker if there are inodes that need to be 2087 * inactivated and higher level xfs code hasn't disabled the background 2088 * workers. 2089 */ 2090 static void 2091 xfs_inodegc_queue( 2092 struct xfs_inode *ip) 2093 { 2094 struct xfs_mount *mp = ip->i_mount; 2095 struct xfs_inodegc *gc; 2096 int items; 2097 unsigned int shrinker_hits; 2098 unsigned long queue_delay = 1; 2099 2100 trace_xfs_inode_set_need_inactive(ip); 2101 spin_lock(&ip->i_flags_lock); 2102 ip->i_flags |= XFS_NEED_INACTIVE; 2103 spin_unlock(&ip->i_flags_lock); 2104 2105 gc = get_cpu_ptr(mp->m_inodegc); 2106 llist_add(&ip->i_gclist, &gc->list); 2107 items = READ_ONCE(gc->items); 2108 WRITE_ONCE(gc->items, items + 1); 2109 shrinker_hits = READ_ONCE(gc->shrinker_hits); 2110 2111 /* 2112 * We queue the work while holding the current CPU so that the work 2113 * is scheduled to run on this CPU. 2114 */ 2115 if (!xfs_is_inodegc_enabled(mp)) { 2116 put_cpu_ptr(gc); 2117 return; 2118 } 2119 2120 if (xfs_inodegc_want_queue_work(ip, items)) 2121 queue_delay = 0; 2122 2123 trace_xfs_inodegc_queue(mp, __return_address); 2124 mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work, 2125 queue_delay); 2126 put_cpu_ptr(gc); 2127 2128 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) { 2129 trace_xfs_inodegc_throttle(mp, __return_address); 2130 flush_delayed_work(&gc->work); 2131 } 2132 } 2133 2134 /* 2135 * Fold the dead CPU inodegc queue into the current CPUs queue. 2136 */ 2137 void 2138 xfs_inodegc_cpu_dead( 2139 struct xfs_mount *mp, 2140 unsigned int dead_cpu) 2141 { 2142 struct xfs_inodegc *dead_gc, *gc; 2143 struct llist_node *first, *last; 2144 unsigned int count = 0; 2145 2146 dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu); 2147 cancel_delayed_work_sync(&dead_gc->work); 2148 2149 if (llist_empty(&dead_gc->list)) 2150 return; 2151 2152 first = dead_gc->list.first; 2153 last = first; 2154 while (last->next) { 2155 last = last->next; 2156 count++; 2157 } 2158 dead_gc->list.first = NULL; 2159 dead_gc->items = 0; 2160 2161 /* Add pending work to current CPU */ 2162 gc = get_cpu_ptr(mp->m_inodegc); 2163 llist_add_batch(first, last, &gc->list); 2164 count += READ_ONCE(gc->items); 2165 WRITE_ONCE(gc->items, count); 2166 2167 if (xfs_is_inodegc_enabled(mp)) { 2168 trace_xfs_inodegc_queue(mp, __return_address); 2169 mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work, 2170 0); 2171 } 2172 put_cpu_ptr(gc); 2173 } 2174 2175 /* 2176 * We set the inode flag atomically with the radix tree tag. Once we get tag 2177 * lookups on the radix tree, this inode flag can go away. 2178 * 2179 * We always use background reclaim here because even if the inode is clean, it 2180 * still may be under IO and hence we have wait for IO completion to occur 2181 * before we can reclaim the inode. The background reclaim path handles this 2182 * more efficiently than we can here, so simply let background reclaim tear down 2183 * all inodes. 2184 */ 2185 void 2186 xfs_inode_mark_reclaimable( 2187 struct xfs_inode *ip) 2188 { 2189 struct xfs_mount *mp = ip->i_mount; 2190 bool need_inactive; 2191 2192 XFS_STATS_INC(mp, vn_reclaim); 2193 2194 /* 2195 * We should never get here with any of the reclaim flags already set. 2196 */ 2197 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS)); 2198 2199 need_inactive = xfs_inode_needs_inactive(ip); 2200 if (need_inactive) { 2201 xfs_inodegc_queue(ip); 2202 return; 2203 } 2204 2205 /* Going straight to reclaim, so drop the dquots. */ 2206 xfs_qm_dqdetach(ip); 2207 xfs_inodegc_set_reclaimable(ip); 2208 } 2209 2210 /* 2211 * Register a phony shrinker so that we can run background inodegc sooner when 2212 * there's memory pressure. Inactivation does not itself free any memory but 2213 * it does make inodes reclaimable, which eventually frees memory. 2214 * 2215 * The count function, seek value, and batch value are crafted to trigger the 2216 * scan function during the second round of scanning. Hopefully this means 2217 * that we reclaimed enough memory that initiating metadata transactions won't 2218 * make things worse. 2219 */ 2220 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY) 2221 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1) 2222 2223 static unsigned long 2224 xfs_inodegc_shrinker_count( 2225 struct shrinker *shrink, 2226 struct shrink_control *sc) 2227 { 2228 struct xfs_mount *mp = container_of(shrink, struct xfs_mount, 2229 m_inodegc_shrinker); 2230 struct xfs_inodegc *gc; 2231 int cpu; 2232 2233 if (!xfs_is_inodegc_enabled(mp)) 2234 return 0; 2235 2236 for_each_online_cpu(cpu) { 2237 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2238 if (!llist_empty(&gc->list)) 2239 return XFS_INODEGC_SHRINKER_COUNT; 2240 } 2241 2242 return 0; 2243 } 2244 2245 static unsigned long 2246 xfs_inodegc_shrinker_scan( 2247 struct shrinker *shrink, 2248 struct shrink_control *sc) 2249 { 2250 struct xfs_mount *mp = container_of(shrink, struct xfs_mount, 2251 m_inodegc_shrinker); 2252 struct xfs_inodegc *gc; 2253 int cpu; 2254 bool no_items = true; 2255 2256 if (!xfs_is_inodegc_enabled(mp)) 2257 return SHRINK_STOP; 2258 2259 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address); 2260 2261 for_each_online_cpu(cpu) { 2262 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2263 if (!llist_empty(&gc->list)) { 2264 unsigned int h = READ_ONCE(gc->shrinker_hits); 2265 2266 WRITE_ONCE(gc->shrinker_hits, h + 1); 2267 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 2268 no_items = false; 2269 } 2270 } 2271 2272 /* 2273 * If there are no inodes to inactivate, we don't want the shrinker 2274 * to think there's deferred work to call us back about. 2275 */ 2276 if (no_items) 2277 return LONG_MAX; 2278 2279 return SHRINK_STOP; 2280 } 2281 2282 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */ 2283 int 2284 xfs_inodegc_register_shrinker( 2285 struct xfs_mount *mp) 2286 { 2287 struct shrinker *shrink = &mp->m_inodegc_shrinker; 2288 2289 shrink->count_objects = xfs_inodegc_shrinker_count; 2290 shrink->scan_objects = xfs_inodegc_shrinker_scan; 2291 shrink->seeks = 0; 2292 shrink->flags = SHRINKER_NONSLAB; 2293 shrink->batch = XFS_INODEGC_SHRINKER_BATCH; 2294 2295 return register_shrinker(shrink, "xfs-inodegc:%s", mp->m_super->s_id); 2296 } 2297