xref: /linux/fs/xfs/xfs_icache.c (revision e04e2b760ddbe3d7b283a05898c3a029085cd8cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_ag.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_health.h"
28 
29 #include <linux/iversion.h>
30 
31 /* Radix tree tags for incore inode tree. */
32 
33 /* inode is to be reclaimed */
34 #define XFS_ICI_RECLAIM_TAG	0
35 /* Inode has speculative preallocations (posteof or cow) to clean. */
36 #define XFS_ICI_BLOCKGC_TAG	1
37 
38 /*
39  * The goal for walking incore inodes.  These can correspond with incore inode
40  * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
41  */
42 enum xfs_icwalk_goal {
43 	/* Goals directly associated with tagged inodes. */
44 	XFS_ICWALK_BLOCKGC	= XFS_ICI_BLOCKGC_TAG,
45 	XFS_ICWALK_RECLAIM	= XFS_ICI_RECLAIM_TAG,
46 };
47 
48 static int xfs_icwalk(struct xfs_mount *mp,
49 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
50 static int xfs_icwalk_ag(struct xfs_perag *pag,
51 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
52 
53 /*
54  * Private inode cache walk flags for struct xfs_icwalk.  Must not
55  * coincide with XFS_ICWALK_FLAGS_VALID.
56  */
57 
58 /* Stop scanning after icw_scan_limit inodes. */
59 #define XFS_ICWALK_FLAG_SCAN_LIMIT	(1U << 28)
60 
61 #define XFS_ICWALK_FLAG_RECLAIM_SICK	(1U << 27)
62 #define XFS_ICWALK_FLAG_UNION		(1U << 26) /* union filter algorithm */
63 
64 #define XFS_ICWALK_PRIVATE_FLAGS	(XFS_ICWALK_FLAG_SCAN_LIMIT | \
65 					 XFS_ICWALK_FLAG_RECLAIM_SICK | \
66 					 XFS_ICWALK_FLAG_UNION)
67 
68 /*
69  * Allocate and initialise an xfs_inode.
70  */
71 struct xfs_inode *
72 xfs_inode_alloc(
73 	struct xfs_mount	*mp,
74 	xfs_ino_t		ino)
75 {
76 	struct xfs_inode	*ip;
77 
78 	/*
79 	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
80 	 * and return NULL here on ENOMEM.
81 	 */
82 	ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
83 
84 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
85 		kmem_cache_free(xfs_inode_cache, ip);
86 		return NULL;
87 	}
88 
89 	/* VFS doesn't initialise i_mode! */
90 	VFS_I(ip)->i_mode = 0;
91 	mapping_set_large_folios(VFS_I(ip)->i_mapping);
92 
93 	XFS_STATS_INC(mp, vn_active);
94 	ASSERT(atomic_read(&ip->i_pincount) == 0);
95 	ASSERT(ip->i_ino == 0);
96 
97 	/* initialise the xfs inode */
98 	ip->i_ino = ino;
99 	ip->i_mount = mp;
100 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
101 	ip->i_cowfp = NULL;
102 	memset(&ip->i_af, 0, sizeof(ip->i_af));
103 	ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
104 	memset(&ip->i_df, 0, sizeof(ip->i_df));
105 	ip->i_flags = 0;
106 	ip->i_delayed_blks = 0;
107 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
108 	ip->i_nblocks = 0;
109 	ip->i_forkoff = 0;
110 	ip->i_sick = 0;
111 	ip->i_checked = 0;
112 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
113 	INIT_LIST_HEAD(&ip->i_ioend_list);
114 	spin_lock_init(&ip->i_ioend_lock);
115 	ip->i_next_unlinked = NULLAGINO;
116 	ip->i_prev_unlinked = 0;
117 
118 	return ip;
119 }
120 
121 STATIC void
122 xfs_inode_free_callback(
123 	struct rcu_head		*head)
124 {
125 	struct inode		*inode = container_of(head, struct inode, i_rcu);
126 	struct xfs_inode	*ip = XFS_I(inode);
127 
128 	switch (VFS_I(ip)->i_mode & S_IFMT) {
129 	case S_IFREG:
130 	case S_IFDIR:
131 	case S_IFLNK:
132 		xfs_idestroy_fork(&ip->i_df);
133 		break;
134 	}
135 
136 	xfs_ifork_zap_attr(ip);
137 
138 	if (ip->i_cowfp) {
139 		xfs_idestroy_fork(ip->i_cowfp);
140 		kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
141 	}
142 	if (ip->i_itemp) {
143 		ASSERT(!test_bit(XFS_LI_IN_AIL,
144 				 &ip->i_itemp->ili_item.li_flags));
145 		xfs_inode_item_destroy(ip);
146 		ip->i_itemp = NULL;
147 	}
148 
149 	kmem_cache_free(xfs_inode_cache, ip);
150 }
151 
152 static void
153 __xfs_inode_free(
154 	struct xfs_inode	*ip)
155 {
156 	/* asserts to verify all state is correct here */
157 	ASSERT(atomic_read(&ip->i_pincount) == 0);
158 	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
159 	XFS_STATS_DEC(ip->i_mount, vn_active);
160 
161 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
162 }
163 
164 void
165 xfs_inode_free(
166 	struct xfs_inode	*ip)
167 {
168 	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
169 
170 	/*
171 	 * Because we use RCU freeing we need to ensure the inode always
172 	 * appears to be reclaimed with an invalid inode number when in the
173 	 * free state. The ip->i_flags_lock provides the barrier against lookup
174 	 * races.
175 	 */
176 	spin_lock(&ip->i_flags_lock);
177 	ip->i_flags = XFS_IRECLAIM;
178 	ip->i_ino = 0;
179 	spin_unlock(&ip->i_flags_lock);
180 
181 	__xfs_inode_free(ip);
182 }
183 
184 /*
185  * Queue background inode reclaim work if there are reclaimable inodes and there
186  * isn't reclaim work already scheduled or in progress.
187  */
188 static void
189 xfs_reclaim_work_queue(
190 	struct xfs_mount        *mp)
191 {
192 
193 	rcu_read_lock();
194 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
195 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
196 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
197 	}
198 	rcu_read_unlock();
199 }
200 
201 /*
202  * Background scanning to trim preallocated space. This is queued based on the
203  * 'speculative_prealloc_lifetime' tunable (5m by default).
204  */
205 static inline void
206 xfs_blockgc_queue(
207 	struct xfs_perag	*pag)
208 {
209 	struct xfs_mount	*mp = pag->pag_mount;
210 
211 	if (!xfs_is_blockgc_enabled(mp))
212 		return;
213 
214 	rcu_read_lock();
215 	if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
216 		queue_delayed_work(pag->pag_mount->m_blockgc_wq,
217 				   &pag->pag_blockgc_work,
218 				   msecs_to_jiffies(xfs_blockgc_secs * 1000));
219 	rcu_read_unlock();
220 }
221 
222 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
223 static void
224 xfs_perag_set_inode_tag(
225 	struct xfs_perag	*pag,
226 	xfs_agino_t		agino,
227 	unsigned int		tag)
228 {
229 	struct xfs_mount	*mp = pag->pag_mount;
230 	bool			was_tagged;
231 
232 	lockdep_assert_held(&pag->pag_ici_lock);
233 
234 	was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
235 	radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
236 
237 	if (tag == XFS_ICI_RECLAIM_TAG)
238 		pag->pag_ici_reclaimable++;
239 
240 	if (was_tagged)
241 		return;
242 
243 	/* propagate the tag up into the perag radix tree */
244 	spin_lock(&mp->m_perag_lock);
245 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
246 	spin_unlock(&mp->m_perag_lock);
247 
248 	/* start background work */
249 	switch (tag) {
250 	case XFS_ICI_RECLAIM_TAG:
251 		xfs_reclaim_work_queue(mp);
252 		break;
253 	case XFS_ICI_BLOCKGC_TAG:
254 		xfs_blockgc_queue(pag);
255 		break;
256 	}
257 
258 	trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
259 }
260 
261 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
262 static void
263 xfs_perag_clear_inode_tag(
264 	struct xfs_perag	*pag,
265 	xfs_agino_t		agino,
266 	unsigned int		tag)
267 {
268 	struct xfs_mount	*mp = pag->pag_mount;
269 
270 	lockdep_assert_held(&pag->pag_ici_lock);
271 
272 	/*
273 	 * Reclaim can signal (with a null agino) that it cleared its own tag
274 	 * by removing the inode from the radix tree.
275 	 */
276 	if (agino != NULLAGINO)
277 		radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
278 	else
279 		ASSERT(tag == XFS_ICI_RECLAIM_TAG);
280 
281 	if (tag == XFS_ICI_RECLAIM_TAG)
282 		pag->pag_ici_reclaimable--;
283 
284 	if (radix_tree_tagged(&pag->pag_ici_root, tag))
285 		return;
286 
287 	/* clear the tag from the perag radix tree */
288 	spin_lock(&mp->m_perag_lock);
289 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
290 	spin_unlock(&mp->m_perag_lock);
291 
292 	trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
293 }
294 
295 /*
296  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
297  * part of the structure. This is made more complex by the fact we store
298  * information about the on-disk values in the VFS inode and so we can't just
299  * overwrite the values unconditionally. Hence we save the parameters we
300  * need to retain across reinitialisation, and rewrite them into the VFS inode
301  * after reinitialisation even if it fails.
302  */
303 static int
304 xfs_reinit_inode(
305 	struct xfs_mount	*mp,
306 	struct inode		*inode)
307 {
308 	int			error;
309 	uint32_t		nlink = inode->i_nlink;
310 	uint32_t		generation = inode->i_generation;
311 	uint64_t		version = inode_peek_iversion(inode);
312 	umode_t			mode = inode->i_mode;
313 	dev_t			dev = inode->i_rdev;
314 	kuid_t			uid = inode->i_uid;
315 	kgid_t			gid = inode->i_gid;
316 	unsigned long		state = inode->i_state;
317 
318 	error = inode_init_always(mp->m_super, inode);
319 
320 	set_nlink(inode, nlink);
321 	inode->i_generation = generation;
322 	inode_set_iversion_queried(inode, version);
323 	inode->i_mode = mode;
324 	inode->i_rdev = dev;
325 	inode->i_uid = uid;
326 	inode->i_gid = gid;
327 	inode->i_state = state;
328 	mapping_set_large_folios(inode->i_mapping);
329 	return error;
330 }
331 
332 /*
333  * Carefully nudge an inode whose VFS state has been torn down back into a
334  * usable state.  Drops the i_flags_lock and the rcu read lock.
335  */
336 static int
337 xfs_iget_recycle(
338 	struct xfs_perag	*pag,
339 	struct xfs_inode	*ip) __releases(&ip->i_flags_lock)
340 {
341 	struct xfs_mount	*mp = ip->i_mount;
342 	struct inode		*inode = VFS_I(ip);
343 	int			error;
344 
345 	trace_xfs_iget_recycle(ip);
346 
347 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
348 		return -EAGAIN;
349 
350 	/*
351 	 * We need to make it look like the inode is being reclaimed to prevent
352 	 * the actual reclaim workers from stomping over us while we recycle
353 	 * the inode.  We can't clear the radix tree tag yet as it requires
354 	 * pag_ici_lock to be held exclusive.
355 	 */
356 	ip->i_flags |= XFS_IRECLAIM;
357 
358 	spin_unlock(&ip->i_flags_lock);
359 	rcu_read_unlock();
360 
361 	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
362 	error = xfs_reinit_inode(mp, inode);
363 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
364 	if (error) {
365 		/*
366 		 * Re-initializing the inode failed, and we are in deep
367 		 * trouble.  Try to re-add it to the reclaim list.
368 		 */
369 		rcu_read_lock();
370 		spin_lock(&ip->i_flags_lock);
371 		ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
372 		ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
373 		spin_unlock(&ip->i_flags_lock);
374 		rcu_read_unlock();
375 
376 		trace_xfs_iget_recycle_fail(ip);
377 		return error;
378 	}
379 
380 	spin_lock(&pag->pag_ici_lock);
381 	spin_lock(&ip->i_flags_lock);
382 
383 	/*
384 	 * Clear the per-lifetime state in the inode as we are now effectively
385 	 * a new inode and need to return to the initial state before reuse
386 	 * occurs.
387 	 */
388 	ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
389 	ip->i_flags |= XFS_INEW;
390 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
391 			XFS_ICI_RECLAIM_TAG);
392 	inode->i_state = I_NEW;
393 	spin_unlock(&ip->i_flags_lock);
394 	spin_unlock(&pag->pag_ici_lock);
395 
396 	return 0;
397 }
398 
399 /*
400  * If we are allocating a new inode, then check what was returned is
401  * actually a free, empty inode. If we are not allocating an inode,
402  * then check we didn't find a free inode.
403  *
404  * Returns:
405  *	0		if the inode free state matches the lookup context
406  *	-ENOENT		if the inode is free and we are not allocating
407  *	-EFSCORRUPTED	if there is any state mismatch at all
408  */
409 static int
410 xfs_iget_check_free_state(
411 	struct xfs_inode	*ip,
412 	int			flags)
413 {
414 	if (flags & XFS_IGET_CREATE) {
415 		/* should be a free inode */
416 		if (VFS_I(ip)->i_mode != 0) {
417 			xfs_warn(ip->i_mount,
418 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
419 				ip->i_ino, VFS_I(ip)->i_mode);
420 			xfs_agno_mark_sick(ip->i_mount,
421 					XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
422 					XFS_SICK_AG_INOBT);
423 			return -EFSCORRUPTED;
424 		}
425 
426 		if (ip->i_nblocks != 0) {
427 			xfs_warn(ip->i_mount,
428 "Corruption detected! Free inode 0x%llx has blocks allocated!",
429 				ip->i_ino);
430 			xfs_agno_mark_sick(ip->i_mount,
431 					XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
432 					XFS_SICK_AG_INOBT);
433 			return -EFSCORRUPTED;
434 		}
435 		return 0;
436 	}
437 
438 	/* should be an allocated inode */
439 	if (VFS_I(ip)->i_mode == 0)
440 		return -ENOENT;
441 
442 	return 0;
443 }
444 
445 /* Make all pending inactivation work start immediately. */
446 static bool
447 xfs_inodegc_queue_all(
448 	struct xfs_mount	*mp)
449 {
450 	struct xfs_inodegc	*gc;
451 	int			cpu;
452 	bool			ret = false;
453 
454 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
455 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
456 		if (!llist_empty(&gc->list)) {
457 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
458 			ret = true;
459 		}
460 	}
461 
462 	return ret;
463 }
464 
465 /* Wait for all queued work and collect errors */
466 static int
467 xfs_inodegc_wait_all(
468 	struct xfs_mount	*mp)
469 {
470 	int			cpu;
471 	int			error = 0;
472 
473 	flush_workqueue(mp->m_inodegc_wq);
474 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
475 		struct xfs_inodegc	*gc;
476 
477 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
478 		if (gc->error && !error)
479 			error = gc->error;
480 		gc->error = 0;
481 	}
482 
483 	return error;
484 }
485 
486 /*
487  * Check the validity of the inode we just found it the cache
488  */
489 static int
490 xfs_iget_cache_hit(
491 	struct xfs_perag	*pag,
492 	struct xfs_inode	*ip,
493 	xfs_ino_t		ino,
494 	int			flags,
495 	int			lock_flags) __releases(RCU)
496 {
497 	struct inode		*inode = VFS_I(ip);
498 	struct xfs_mount	*mp = ip->i_mount;
499 	int			error;
500 
501 	/*
502 	 * check for re-use of an inode within an RCU grace period due to the
503 	 * radix tree nodes not being updated yet. We monitor for this by
504 	 * setting the inode number to zero before freeing the inode structure.
505 	 * If the inode has been reallocated and set up, then the inode number
506 	 * will not match, so check for that, too.
507 	 */
508 	spin_lock(&ip->i_flags_lock);
509 	if (ip->i_ino != ino)
510 		goto out_skip;
511 
512 	/*
513 	 * If we are racing with another cache hit that is currently
514 	 * instantiating this inode or currently recycling it out of
515 	 * reclaimable state, wait for the initialisation to complete
516 	 * before continuing.
517 	 *
518 	 * If we're racing with the inactivation worker we also want to wait.
519 	 * If we're creating a new file, it's possible that the worker
520 	 * previously marked the inode as free on disk but hasn't finished
521 	 * updating the incore state yet.  The AGI buffer will be dirty and
522 	 * locked to the icreate transaction, so a synchronous push of the
523 	 * inodegc workers would result in deadlock.  For a regular iget, the
524 	 * worker is running already, so we might as well wait.
525 	 *
526 	 * XXX(hch): eventually we should do something equivalent to
527 	 *	     wait_on_inode to wait for these flags to be cleared
528 	 *	     instead of polling for it.
529 	 */
530 	if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
531 		goto out_skip;
532 
533 	if (ip->i_flags & XFS_NEED_INACTIVE) {
534 		/* Unlinked inodes cannot be re-grabbed. */
535 		if (VFS_I(ip)->i_nlink == 0) {
536 			error = -ENOENT;
537 			goto out_error;
538 		}
539 		goto out_inodegc_flush;
540 	}
541 
542 	/*
543 	 * Check the inode free state is valid. This also detects lookup
544 	 * racing with unlinks.
545 	 */
546 	error = xfs_iget_check_free_state(ip, flags);
547 	if (error)
548 		goto out_error;
549 
550 	/* Skip inodes that have no vfs state. */
551 	if ((flags & XFS_IGET_INCORE) &&
552 	    (ip->i_flags & XFS_IRECLAIMABLE))
553 		goto out_skip;
554 
555 	/* The inode fits the selection criteria; process it. */
556 	if (ip->i_flags & XFS_IRECLAIMABLE) {
557 		/* Drops i_flags_lock and RCU read lock. */
558 		error = xfs_iget_recycle(pag, ip);
559 		if (error == -EAGAIN)
560 			goto out_skip;
561 		if (error)
562 			return error;
563 	} else {
564 		/* If the VFS inode is being torn down, pause and try again. */
565 		if (!igrab(inode))
566 			goto out_skip;
567 
568 		/* We've got a live one. */
569 		spin_unlock(&ip->i_flags_lock);
570 		rcu_read_unlock();
571 		trace_xfs_iget_hit(ip);
572 	}
573 
574 	if (lock_flags != 0)
575 		xfs_ilock(ip, lock_flags);
576 
577 	if (!(flags & XFS_IGET_INCORE))
578 		xfs_iflags_clear(ip, XFS_ISTALE);
579 	XFS_STATS_INC(mp, xs_ig_found);
580 
581 	return 0;
582 
583 out_skip:
584 	trace_xfs_iget_skip(ip);
585 	XFS_STATS_INC(mp, xs_ig_frecycle);
586 	error = -EAGAIN;
587 out_error:
588 	spin_unlock(&ip->i_flags_lock);
589 	rcu_read_unlock();
590 	return error;
591 
592 out_inodegc_flush:
593 	spin_unlock(&ip->i_flags_lock);
594 	rcu_read_unlock();
595 	/*
596 	 * Do not wait for the workers, because the caller could hold an AGI
597 	 * buffer lock.  We're just going to sleep in a loop anyway.
598 	 */
599 	if (xfs_is_inodegc_enabled(mp))
600 		xfs_inodegc_queue_all(mp);
601 	return -EAGAIN;
602 }
603 
604 static int
605 xfs_iget_cache_miss(
606 	struct xfs_mount	*mp,
607 	struct xfs_perag	*pag,
608 	xfs_trans_t		*tp,
609 	xfs_ino_t		ino,
610 	struct xfs_inode	**ipp,
611 	int			flags,
612 	int			lock_flags)
613 {
614 	struct xfs_inode	*ip;
615 	int			error;
616 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
617 
618 	ip = xfs_inode_alloc(mp, ino);
619 	if (!ip)
620 		return -ENOMEM;
621 
622 	error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
623 	if (error)
624 		goto out_destroy;
625 
626 	/*
627 	 * For version 5 superblocks, if we are initialising a new inode and we
628 	 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
629 	 * simply build the new inode core with a random generation number.
630 	 *
631 	 * For version 4 (and older) superblocks, log recovery is dependent on
632 	 * the i_flushiter field being initialised from the current on-disk
633 	 * value and hence we must also read the inode off disk even when
634 	 * initializing new inodes.
635 	 */
636 	if (xfs_has_v3inodes(mp) &&
637 	    (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
638 		VFS_I(ip)->i_generation = get_random_u32();
639 	} else {
640 		struct xfs_buf		*bp;
641 
642 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
643 		if (error)
644 			goto out_destroy;
645 
646 		error = xfs_inode_from_disk(ip,
647 				xfs_buf_offset(bp, ip->i_imap.im_boffset));
648 		if (!error)
649 			xfs_buf_set_ref(bp, XFS_INO_REF);
650 		else
651 			xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
652 		xfs_trans_brelse(tp, bp);
653 
654 		if (error)
655 			goto out_destroy;
656 	}
657 
658 	trace_xfs_iget_miss(ip);
659 
660 	/*
661 	 * Check the inode free state is valid. This also detects lookup
662 	 * racing with unlinks.
663 	 */
664 	error = xfs_iget_check_free_state(ip, flags);
665 	if (error)
666 		goto out_destroy;
667 
668 	/*
669 	 * Preload the radix tree so we can insert safely under the
670 	 * write spinlock. Note that we cannot sleep inside the preload
671 	 * region.
672 	 */
673 	if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) {
674 		error = -EAGAIN;
675 		goto out_destroy;
676 	}
677 
678 	/*
679 	 * Because the inode hasn't been added to the radix-tree yet it can't
680 	 * be found by another thread, so we can do the non-sleeping lock here.
681 	 */
682 	if (lock_flags) {
683 		if (!xfs_ilock_nowait(ip, lock_flags))
684 			BUG();
685 	}
686 
687 	/*
688 	 * These values must be set before inserting the inode into the radix
689 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
690 	 * RCU locking mechanism) can find it and that lookup must see that this
691 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
692 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
693 	 * memory barrier that ensures this detection works correctly at lookup
694 	 * time.
695 	 */
696 	if (flags & XFS_IGET_DONTCACHE)
697 		d_mark_dontcache(VFS_I(ip));
698 	ip->i_udquot = NULL;
699 	ip->i_gdquot = NULL;
700 	ip->i_pdquot = NULL;
701 	xfs_iflags_set(ip, XFS_INEW);
702 
703 	/* insert the new inode */
704 	spin_lock(&pag->pag_ici_lock);
705 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
706 	if (unlikely(error)) {
707 		WARN_ON(error != -EEXIST);
708 		XFS_STATS_INC(mp, xs_ig_dup);
709 		error = -EAGAIN;
710 		goto out_preload_end;
711 	}
712 	spin_unlock(&pag->pag_ici_lock);
713 	radix_tree_preload_end();
714 
715 	*ipp = ip;
716 	return 0;
717 
718 out_preload_end:
719 	spin_unlock(&pag->pag_ici_lock);
720 	radix_tree_preload_end();
721 	if (lock_flags)
722 		xfs_iunlock(ip, lock_flags);
723 out_destroy:
724 	__destroy_inode(VFS_I(ip));
725 	xfs_inode_free(ip);
726 	return error;
727 }
728 
729 /*
730  * Look up an inode by number in the given file system.  The inode is looked up
731  * in the cache held in each AG.  If the inode is found in the cache, initialise
732  * the vfs inode if necessary.
733  *
734  * If it is not in core, read it in from the file system's device, add it to the
735  * cache and initialise the vfs inode.
736  *
737  * The inode is locked according to the value of the lock_flags parameter.
738  * Inode lookup is only done during metadata operations and not as part of the
739  * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
740  */
741 int
742 xfs_iget(
743 	struct xfs_mount	*mp,
744 	struct xfs_trans	*tp,
745 	xfs_ino_t		ino,
746 	uint			flags,
747 	uint			lock_flags,
748 	struct xfs_inode	**ipp)
749 {
750 	struct xfs_inode	*ip;
751 	struct xfs_perag	*pag;
752 	xfs_agino_t		agino;
753 	int			error;
754 
755 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
756 
757 	/* reject inode numbers outside existing AGs */
758 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
759 		return -EINVAL;
760 
761 	XFS_STATS_INC(mp, xs_ig_attempts);
762 
763 	/* get the perag structure and ensure that it's inode capable */
764 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
765 	agino = XFS_INO_TO_AGINO(mp, ino);
766 
767 again:
768 	error = 0;
769 	rcu_read_lock();
770 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
771 
772 	if (ip) {
773 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
774 		if (error)
775 			goto out_error_or_again;
776 	} else {
777 		rcu_read_unlock();
778 		if (flags & XFS_IGET_INCORE) {
779 			error = -ENODATA;
780 			goto out_error_or_again;
781 		}
782 		XFS_STATS_INC(mp, xs_ig_missed);
783 
784 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
785 							flags, lock_flags);
786 		if (error)
787 			goto out_error_or_again;
788 	}
789 	xfs_perag_put(pag);
790 
791 	*ipp = ip;
792 
793 	/*
794 	 * If we have a real type for an on-disk inode, we can setup the inode
795 	 * now.	 If it's a new inode being created, xfs_init_new_inode will
796 	 * handle it.
797 	 */
798 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
799 		xfs_setup_existing_inode(ip);
800 	return 0;
801 
802 out_error_or_again:
803 	if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
804 	    error == -EAGAIN) {
805 		delay(1);
806 		goto again;
807 	}
808 	xfs_perag_put(pag);
809 	return error;
810 }
811 
812 /*
813  * Grab the inode for reclaim exclusively.
814  *
815  * We have found this inode via a lookup under RCU, so the inode may have
816  * already been freed, or it may be in the process of being recycled by
817  * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
818  * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
819  * will not be set. Hence we need to check for both these flag conditions to
820  * avoid inodes that are no longer reclaim candidates.
821  *
822  * Note: checking for other state flags here, under the i_flags_lock or not, is
823  * racy and should be avoided. Those races should be resolved only after we have
824  * ensured that we are able to reclaim this inode and the world can see that we
825  * are going to reclaim it.
826  *
827  * Return true if we grabbed it, false otherwise.
828  */
829 static bool
830 xfs_reclaim_igrab(
831 	struct xfs_inode	*ip,
832 	struct xfs_icwalk	*icw)
833 {
834 	ASSERT(rcu_read_lock_held());
835 
836 	spin_lock(&ip->i_flags_lock);
837 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
838 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
839 		/* not a reclaim candidate. */
840 		spin_unlock(&ip->i_flags_lock);
841 		return false;
842 	}
843 
844 	/* Don't reclaim a sick inode unless the caller asked for it. */
845 	if (ip->i_sick &&
846 	    (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
847 		spin_unlock(&ip->i_flags_lock);
848 		return false;
849 	}
850 
851 	__xfs_iflags_set(ip, XFS_IRECLAIM);
852 	spin_unlock(&ip->i_flags_lock);
853 	return true;
854 }
855 
856 /*
857  * Inode reclaim is non-blocking, so the default action if progress cannot be
858  * made is to "requeue" the inode for reclaim by unlocking it and clearing the
859  * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
860  * blocking anymore and hence we can wait for the inode to be able to reclaim
861  * it.
862  *
863  * We do no IO here - if callers require inodes to be cleaned they must push the
864  * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
865  * done in the background in a non-blocking manner, and enables memory reclaim
866  * to make progress without blocking.
867  */
868 static void
869 xfs_reclaim_inode(
870 	struct xfs_inode	*ip,
871 	struct xfs_perag	*pag)
872 {
873 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
874 
875 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
876 		goto out;
877 	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
878 		goto out_iunlock;
879 
880 	/*
881 	 * Check for log shutdown because aborting the inode can move the log
882 	 * tail and corrupt in memory state. This is fine if the log is shut
883 	 * down, but if the log is still active and only the mount is shut down
884 	 * then the in-memory log tail movement caused by the abort can be
885 	 * incorrectly propagated to disk.
886 	 */
887 	if (xlog_is_shutdown(ip->i_mount->m_log)) {
888 		xfs_iunpin_wait(ip);
889 		xfs_iflush_shutdown_abort(ip);
890 		goto reclaim;
891 	}
892 	if (xfs_ipincount(ip))
893 		goto out_clear_flush;
894 	if (!xfs_inode_clean(ip))
895 		goto out_clear_flush;
896 
897 	xfs_iflags_clear(ip, XFS_IFLUSHING);
898 reclaim:
899 	trace_xfs_inode_reclaiming(ip);
900 
901 	/*
902 	 * Because we use RCU freeing we need to ensure the inode always appears
903 	 * to be reclaimed with an invalid inode number when in the free state.
904 	 * We do this as early as possible under the ILOCK so that
905 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
906 	 * detect races with us here. By doing this, we guarantee that once
907 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
908 	 * it will see either a valid inode that will serialise correctly, or it
909 	 * will see an invalid inode that it can skip.
910 	 */
911 	spin_lock(&ip->i_flags_lock);
912 	ip->i_flags = XFS_IRECLAIM;
913 	ip->i_ino = 0;
914 	ip->i_sick = 0;
915 	ip->i_checked = 0;
916 	spin_unlock(&ip->i_flags_lock);
917 
918 	ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
919 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
920 
921 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
922 	/*
923 	 * Remove the inode from the per-AG radix tree.
924 	 *
925 	 * Because radix_tree_delete won't complain even if the item was never
926 	 * added to the tree assert that it's been there before to catch
927 	 * problems with the inode life time early on.
928 	 */
929 	spin_lock(&pag->pag_ici_lock);
930 	if (!radix_tree_delete(&pag->pag_ici_root,
931 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
932 		ASSERT(0);
933 	xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
934 	spin_unlock(&pag->pag_ici_lock);
935 
936 	/*
937 	 * Here we do an (almost) spurious inode lock in order to coordinate
938 	 * with inode cache radix tree lookups.  This is because the lookup
939 	 * can reference the inodes in the cache without taking references.
940 	 *
941 	 * We make that OK here by ensuring that we wait until the inode is
942 	 * unlocked after the lookup before we go ahead and free it.
943 	 */
944 	xfs_ilock(ip, XFS_ILOCK_EXCL);
945 	ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
946 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
947 	ASSERT(xfs_inode_clean(ip));
948 
949 	__xfs_inode_free(ip);
950 	return;
951 
952 out_clear_flush:
953 	xfs_iflags_clear(ip, XFS_IFLUSHING);
954 out_iunlock:
955 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
956 out:
957 	xfs_iflags_clear(ip, XFS_IRECLAIM);
958 }
959 
960 /* Reclaim sick inodes if we're unmounting or the fs went down. */
961 static inline bool
962 xfs_want_reclaim_sick(
963 	struct xfs_mount	*mp)
964 {
965 	return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
966 	       xfs_is_shutdown(mp);
967 }
968 
969 void
970 xfs_reclaim_inodes(
971 	struct xfs_mount	*mp)
972 {
973 	struct xfs_icwalk	icw = {
974 		.icw_flags	= 0,
975 	};
976 
977 	if (xfs_want_reclaim_sick(mp))
978 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
979 
980 	while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
981 		xfs_ail_push_all_sync(mp->m_ail);
982 		xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
983 	}
984 }
985 
986 /*
987  * The shrinker infrastructure determines how many inodes we should scan for
988  * reclaim. We want as many clean inodes ready to reclaim as possible, so we
989  * push the AIL here. We also want to proactively free up memory if we can to
990  * minimise the amount of work memory reclaim has to do so we kick the
991  * background reclaim if it isn't already scheduled.
992  */
993 long
994 xfs_reclaim_inodes_nr(
995 	struct xfs_mount	*mp,
996 	unsigned long		nr_to_scan)
997 {
998 	struct xfs_icwalk	icw = {
999 		.icw_flags	= XFS_ICWALK_FLAG_SCAN_LIMIT,
1000 		.icw_scan_limit	= min_t(unsigned long, LONG_MAX, nr_to_scan),
1001 	};
1002 
1003 	if (xfs_want_reclaim_sick(mp))
1004 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1005 
1006 	/* kick background reclaimer and push the AIL */
1007 	xfs_reclaim_work_queue(mp);
1008 	xfs_ail_push_all(mp->m_ail);
1009 
1010 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1011 	return 0;
1012 }
1013 
1014 /*
1015  * Return the number of reclaimable inodes in the filesystem for
1016  * the shrinker to determine how much to reclaim.
1017  */
1018 long
1019 xfs_reclaim_inodes_count(
1020 	struct xfs_mount	*mp)
1021 {
1022 	struct xfs_perag	*pag;
1023 	xfs_agnumber_t		ag = 0;
1024 	long			reclaimable = 0;
1025 
1026 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1027 		ag = pag->pag_agno + 1;
1028 		reclaimable += pag->pag_ici_reclaimable;
1029 		xfs_perag_put(pag);
1030 	}
1031 	return reclaimable;
1032 }
1033 
1034 STATIC bool
1035 xfs_icwalk_match_id(
1036 	struct xfs_inode	*ip,
1037 	struct xfs_icwalk	*icw)
1038 {
1039 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1040 	    !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1041 		return false;
1042 
1043 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1044 	    !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1045 		return false;
1046 
1047 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1048 	    ip->i_projid != icw->icw_prid)
1049 		return false;
1050 
1051 	return true;
1052 }
1053 
1054 /*
1055  * A union-based inode filtering algorithm. Process the inode if any of the
1056  * criteria match. This is for global/internal scans only.
1057  */
1058 STATIC bool
1059 xfs_icwalk_match_id_union(
1060 	struct xfs_inode	*ip,
1061 	struct xfs_icwalk	*icw)
1062 {
1063 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1064 	    uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1065 		return true;
1066 
1067 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1068 	    gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1069 		return true;
1070 
1071 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1072 	    ip->i_projid == icw->icw_prid)
1073 		return true;
1074 
1075 	return false;
1076 }
1077 
1078 /*
1079  * Is this inode @ip eligible for eof/cow block reclamation, given some
1080  * filtering parameters @icw?  The inode is eligible if @icw is null or
1081  * if the predicate functions match.
1082  */
1083 static bool
1084 xfs_icwalk_match(
1085 	struct xfs_inode	*ip,
1086 	struct xfs_icwalk	*icw)
1087 {
1088 	bool			match;
1089 
1090 	if (!icw)
1091 		return true;
1092 
1093 	if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1094 		match = xfs_icwalk_match_id_union(ip, icw);
1095 	else
1096 		match = xfs_icwalk_match_id(ip, icw);
1097 	if (!match)
1098 		return false;
1099 
1100 	/* skip the inode if the file size is too small */
1101 	if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1102 	    XFS_ISIZE(ip) < icw->icw_min_file_size)
1103 		return false;
1104 
1105 	return true;
1106 }
1107 
1108 /*
1109  * This is a fast pass over the inode cache to try to get reclaim moving on as
1110  * many inodes as possible in a short period of time. It kicks itself every few
1111  * seconds, as well as being kicked by the inode cache shrinker when memory
1112  * goes low.
1113  */
1114 void
1115 xfs_reclaim_worker(
1116 	struct work_struct *work)
1117 {
1118 	struct xfs_mount *mp = container_of(to_delayed_work(work),
1119 					struct xfs_mount, m_reclaim_work);
1120 
1121 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1122 	xfs_reclaim_work_queue(mp);
1123 }
1124 
1125 STATIC int
1126 xfs_inode_free_eofblocks(
1127 	struct xfs_inode	*ip,
1128 	struct xfs_icwalk	*icw,
1129 	unsigned int		*lockflags)
1130 {
1131 	bool			wait;
1132 
1133 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1134 
1135 	if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1136 		return 0;
1137 
1138 	/*
1139 	 * If the mapping is dirty the operation can block and wait for some
1140 	 * time. Unless we are waiting, skip it.
1141 	 */
1142 	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1143 		return 0;
1144 
1145 	if (!xfs_icwalk_match(ip, icw))
1146 		return 0;
1147 
1148 	/*
1149 	 * If the caller is waiting, return -EAGAIN to keep the background
1150 	 * scanner moving and revisit the inode in a subsequent pass.
1151 	 */
1152 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1153 		if (wait)
1154 			return -EAGAIN;
1155 		return 0;
1156 	}
1157 	*lockflags |= XFS_IOLOCK_EXCL;
1158 
1159 	if (xfs_can_free_eofblocks(ip))
1160 		return xfs_free_eofblocks(ip);
1161 
1162 	/* inode could be preallocated or append-only */
1163 	trace_xfs_inode_free_eofblocks_invalid(ip);
1164 	xfs_inode_clear_eofblocks_tag(ip);
1165 	return 0;
1166 }
1167 
1168 static void
1169 xfs_blockgc_set_iflag(
1170 	struct xfs_inode	*ip,
1171 	unsigned long		iflag)
1172 {
1173 	struct xfs_mount	*mp = ip->i_mount;
1174 	struct xfs_perag	*pag;
1175 
1176 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1177 
1178 	/*
1179 	 * Don't bother locking the AG and looking up in the radix trees
1180 	 * if we already know that we have the tag set.
1181 	 */
1182 	if (ip->i_flags & iflag)
1183 		return;
1184 	spin_lock(&ip->i_flags_lock);
1185 	ip->i_flags |= iflag;
1186 	spin_unlock(&ip->i_flags_lock);
1187 
1188 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1189 	spin_lock(&pag->pag_ici_lock);
1190 
1191 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1192 			XFS_ICI_BLOCKGC_TAG);
1193 
1194 	spin_unlock(&pag->pag_ici_lock);
1195 	xfs_perag_put(pag);
1196 }
1197 
1198 void
1199 xfs_inode_set_eofblocks_tag(
1200 	xfs_inode_t	*ip)
1201 {
1202 	trace_xfs_inode_set_eofblocks_tag(ip);
1203 	return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1204 }
1205 
1206 static void
1207 xfs_blockgc_clear_iflag(
1208 	struct xfs_inode	*ip,
1209 	unsigned long		iflag)
1210 {
1211 	struct xfs_mount	*mp = ip->i_mount;
1212 	struct xfs_perag	*pag;
1213 	bool			clear_tag;
1214 
1215 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1216 
1217 	spin_lock(&ip->i_flags_lock);
1218 	ip->i_flags &= ~iflag;
1219 	clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1220 	spin_unlock(&ip->i_flags_lock);
1221 
1222 	if (!clear_tag)
1223 		return;
1224 
1225 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1226 	spin_lock(&pag->pag_ici_lock);
1227 
1228 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1229 			XFS_ICI_BLOCKGC_TAG);
1230 
1231 	spin_unlock(&pag->pag_ici_lock);
1232 	xfs_perag_put(pag);
1233 }
1234 
1235 void
1236 xfs_inode_clear_eofblocks_tag(
1237 	xfs_inode_t	*ip)
1238 {
1239 	trace_xfs_inode_clear_eofblocks_tag(ip);
1240 	return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1241 }
1242 
1243 /*
1244  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1245  * then we can bail out quickly, but otherwise we must back off if the file
1246  * is undergoing some kind of write.
1247  */
1248 static bool
1249 xfs_prep_free_cowblocks(
1250 	struct xfs_inode	*ip)
1251 {
1252 	/*
1253 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1254 	 * possible the inode was fully unshared since it was originally tagged.
1255 	 */
1256 	if (!xfs_inode_has_cow_data(ip)) {
1257 		trace_xfs_inode_free_cowblocks_invalid(ip);
1258 		xfs_inode_clear_cowblocks_tag(ip);
1259 		return false;
1260 	}
1261 
1262 	/*
1263 	 * If the mapping is dirty or under writeback we cannot touch the
1264 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1265 	 */
1266 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1267 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1268 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1269 	    atomic_read(&VFS_I(ip)->i_dio_count))
1270 		return false;
1271 
1272 	return true;
1273 }
1274 
1275 /*
1276  * Automatic CoW Reservation Freeing
1277  *
1278  * These functions automatically garbage collect leftover CoW reservations
1279  * that were made on behalf of a cowextsize hint when we start to run out
1280  * of quota or when the reservations sit around for too long.  If the file
1281  * has dirty pages or is undergoing writeback, its CoW reservations will
1282  * be retained.
1283  *
1284  * The actual garbage collection piggybacks off the same code that runs
1285  * the speculative EOF preallocation garbage collector.
1286  */
1287 STATIC int
1288 xfs_inode_free_cowblocks(
1289 	struct xfs_inode	*ip,
1290 	struct xfs_icwalk	*icw,
1291 	unsigned int		*lockflags)
1292 {
1293 	bool			wait;
1294 	int			ret = 0;
1295 
1296 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1297 
1298 	if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1299 		return 0;
1300 
1301 	if (!xfs_prep_free_cowblocks(ip))
1302 		return 0;
1303 
1304 	if (!xfs_icwalk_match(ip, icw))
1305 		return 0;
1306 
1307 	/*
1308 	 * If the caller is waiting, return -EAGAIN to keep the background
1309 	 * scanner moving and revisit the inode in a subsequent pass.
1310 	 */
1311 	if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1312 	    !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1313 		if (wait)
1314 			return -EAGAIN;
1315 		return 0;
1316 	}
1317 	*lockflags |= XFS_IOLOCK_EXCL;
1318 
1319 	if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1320 		if (wait)
1321 			return -EAGAIN;
1322 		return 0;
1323 	}
1324 	*lockflags |= XFS_MMAPLOCK_EXCL;
1325 
1326 	/*
1327 	 * Check again, nobody else should be able to dirty blocks or change
1328 	 * the reflink iflag now that we have the first two locks held.
1329 	 */
1330 	if (xfs_prep_free_cowblocks(ip))
1331 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1332 	return ret;
1333 }
1334 
1335 void
1336 xfs_inode_set_cowblocks_tag(
1337 	xfs_inode_t	*ip)
1338 {
1339 	trace_xfs_inode_set_cowblocks_tag(ip);
1340 	return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1341 }
1342 
1343 void
1344 xfs_inode_clear_cowblocks_tag(
1345 	xfs_inode_t	*ip)
1346 {
1347 	trace_xfs_inode_clear_cowblocks_tag(ip);
1348 	return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1349 }
1350 
1351 /* Disable post-EOF and CoW block auto-reclamation. */
1352 void
1353 xfs_blockgc_stop(
1354 	struct xfs_mount	*mp)
1355 {
1356 	struct xfs_perag	*pag;
1357 	xfs_agnumber_t		agno;
1358 
1359 	if (!xfs_clear_blockgc_enabled(mp))
1360 		return;
1361 
1362 	for_each_perag(mp, agno, pag)
1363 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
1364 	trace_xfs_blockgc_stop(mp, __return_address);
1365 }
1366 
1367 /* Enable post-EOF and CoW block auto-reclamation. */
1368 void
1369 xfs_blockgc_start(
1370 	struct xfs_mount	*mp)
1371 {
1372 	struct xfs_perag	*pag;
1373 	xfs_agnumber_t		agno;
1374 
1375 	if (xfs_set_blockgc_enabled(mp))
1376 		return;
1377 
1378 	trace_xfs_blockgc_start(mp, __return_address);
1379 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1380 		xfs_blockgc_queue(pag);
1381 }
1382 
1383 /* Don't try to run block gc on an inode that's in any of these states. */
1384 #define XFS_BLOCKGC_NOGRAB_IFLAGS	(XFS_INEW | \
1385 					 XFS_NEED_INACTIVE | \
1386 					 XFS_INACTIVATING | \
1387 					 XFS_IRECLAIMABLE | \
1388 					 XFS_IRECLAIM)
1389 /*
1390  * Decide if the given @ip is eligible for garbage collection of speculative
1391  * preallocations, and grab it if so.  Returns true if it's ready to go or
1392  * false if we should just ignore it.
1393  */
1394 static bool
1395 xfs_blockgc_igrab(
1396 	struct xfs_inode	*ip)
1397 {
1398 	struct inode		*inode = VFS_I(ip);
1399 
1400 	ASSERT(rcu_read_lock_held());
1401 
1402 	/* Check for stale RCU freed inode */
1403 	spin_lock(&ip->i_flags_lock);
1404 	if (!ip->i_ino)
1405 		goto out_unlock_noent;
1406 
1407 	if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1408 		goto out_unlock_noent;
1409 	spin_unlock(&ip->i_flags_lock);
1410 
1411 	/* nothing to sync during shutdown */
1412 	if (xfs_is_shutdown(ip->i_mount))
1413 		return false;
1414 
1415 	/* If we can't grab the inode, it must on it's way to reclaim. */
1416 	if (!igrab(inode))
1417 		return false;
1418 
1419 	/* inode is valid */
1420 	return true;
1421 
1422 out_unlock_noent:
1423 	spin_unlock(&ip->i_flags_lock);
1424 	return false;
1425 }
1426 
1427 /* Scan one incore inode for block preallocations that we can remove. */
1428 static int
1429 xfs_blockgc_scan_inode(
1430 	struct xfs_inode	*ip,
1431 	struct xfs_icwalk	*icw)
1432 {
1433 	unsigned int		lockflags = 0;
1434 	int			error;
1435 
1436 	error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1437 	if (error)
1438 		goto unlock;
1439 
1440 	error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1441 unlock:
1442 	if (lockflags)
1443 		xfs_iunlock(ip, lockflags);
1444 	xfs_irele(ip);
1445 	return error;
1446 }
1447 
1448 /* Background worker that trims preallocated space. */
1449 void
1450 xfs_blockgc_worker(
1451 	struct work_struct	*work)
1452 {
1453 	struct xfs_perag	*pag = container_of(to_delayed_work(work),
1454 					struct xfs_perag, pag_blockgc_work);
1455 	struct xfs_mount	*mp = pag->pag_mount;
1456 	int			error;
1457 
1458 	trace_xfs_blockgc_worker(mp, __return_address);
1459 
1460 	error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1461 	if (error)
1462 		xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1463 				pag->pag_agno, error);
1464 	xfs_blockgc_queue(pag);
1465 }
1466 
1467 /*
1468  * Try to free space in the filesystem by purging inactive inodes, eofblocks
1469  * and cowblocks.
1470  */
1471 int
1472 xfs_blockgc_free_space(
1473 	struct xfs_mount	*mp,
1474 	struct xfs_icwalk	*icw)
1475 {
1476 	int			error;
1477 
1478 	trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1479 
1480 	error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1481 	if (error)
1482 		return error;
1483 
1484 	return xfs_inodegc_flush(mp);
1485 }
1486 
1487 /*
1488  * Reclaim all the free space that we can by scheduling the background blockgc
1489  * and inodegc workers immediately and waiting for them all to clear.
1490  */
1491 int
1492 xfs_blockgc_flush_all(
1493 	struct xfs_mount	*mp)
1494 {
1495 	struct xfs_perag	*pag;
1496 	xfs_agnumber_t		agno;
1497 
1498 	trace_xfs_blockgc_flush_all(mp, __return_address);
1499 
1500 	/*
1501 	 * For each blockgc worker, move its queue time up to now.  If it
1502 	 * wasn't queued, it will not be requeued.  Then flush whatever's
1503 	 * left.
1504 	 */
1505 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1506 		mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1507 				&pag->pag_blockgc_work, 0);
1508 
1509 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1510 		flush_delayed_work(&pag->pag_blockgc_work);
1511 
1512 	return xfs_inodegc_flush(mp);
1513 }
1514 
1515 /*
1516  * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
1517  * quota caused an allocation failure, so we make a best effort by including
1518  * each quota under low free space conditions (less than 1% free space) in the
1519  * scan.
1520  *
1521  * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
1522  * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1523  * MMAPLOCK.
1524  */
1525 int
1526 xfs_blockgc_free_dquots(
1527 	struct xfs_mount	*mp,
1528 	struct xfs_dquot	*udqp,
1529 	struct xfs_dquot	*gdqp,
1530 	struct xfs_dquot	*pdqp,
1531 	unsigned int		iwalk_flags)
1532 {
1533 	struct xfs_icwalk	icw = {0};
1534 	bool			do_work = false;
1535 
1536 	if (!udqp && !gdqp && !pdqp)
1537 		return 0;
1538 
1539 	/*
1540 	 * Run a scan to free blocks using the union filter to cover all
1541 	 * applicable quotas in a single scan.
1542 	 */
1543 	icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1544 
1545 	if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1546 		icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1547 		icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1548 		do_work = true;
1549 	}
1550 
1551 	if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1552 		icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1553 		icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1554 		do_work = true;
1555 	}
1556 
1557 	if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1558 		icw.icw_prid = pdqp->q_id;
1559 		icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1560 		do_work = true;
1561 	}
1562 
1563 	if (!do_work)
1564 		return 0;
1565 
1566 	return xfs_blockgc_free_space(mp, &icw);
1567 }
1568 
1569 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1570 int
1571 xfs_blockgc_free_quota(
1572 	struct xfs_inode	*ip,
1573 	unsigned int		iwalk_flags)
1574 {
1575 	return xfs_blockgc_free_dquots(ip->i_mount,
1576 			xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1577 			xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1578 			xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1579 }
1580 
1581 /* XFS Inode Cache Walking Code */
1582 
1583 /*
1584  * The inode lookup is done in batches to keep the amount of lock traffic and
1585  * radix tree lookups to a minimum. The batch size is a trade off between
1586  * lookup reduction and stack usage. This is in the reclaim path, so we can't
1587  * be too greedy.
1588  */
1589 #define XFS_LOOKUP_BATCH	32
1590 
1591 
1592 /*
1593  * Decide if we want to grab this inode in anticipation of doing work towards
1594  * the goal.
1595  */
1596 static inline bool
1597 xfs_icwalk_igrab(
1598 	enum xfs_icwalk_goal	goal,
1599 	struct xfs_inode	*ip,
1600 	struct xfs_icwalk	*icw)
1601 {
1602 	switch (goal) {
1603 	case XFS_ICWALK_BLOCKGC:
1604 		return xfs_blockgc_igrab(ip);
1605 	case XFS_ICWALK_RECLAIM:
1606 		return xfs_reclaim_igrab(ip, icw);
1607 	default:
1608 		return false;
1609 	}
1610 }
1611 
1612 /*
1613  * Process an inode.  Each processing function must handle any state changes
1614  * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
1615  */
1616 static inline int
1617 xfs_icwalk_process_inode(
1618 	enum xfs_icwalk_goal	goal,
1619 	struct xfs_inode	*ip,
1620 	struct xfs_perag	*pag,
1621 	struct xfs_icwalk	*icw)
1622 {
1623 	int			error = 0;
1624 
1625 	switch (goal) {
1626 	case XFS_ICWALK_BLOCKGC:
1627 		error = xfs_blockgc_scan_inode(ip, icw);
1628 		break;
1629 	case XFS_ICWALK_RECLAIM:
1630 		xfs_reclaim_inode(ip, pag);
1631 		break;
1632 	}
1633 	return error;
1634 }
1635 
1636 /*
1637  * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1638  * process them in some manner.
1639  */
1640 static int
1641 xfs_icwalk_ag(
1642 	struct xfs_perag	*pag,
1643 	enum xfs_icwalk_goal	goal,
1644 	struct xfs_icwalk	*icw)
1645 {
1646 	struct xfs_mount	*mp = pag->pag_mount;
1647 	uint32_t		first_index;
1648 	int			last_error = 0;
1649 	int			skipped;
1650 	bool			done;
1651 	int			nr_found;
1652 
1653 restart:
1654 	done = false;
1655 	skipped = 0;
1656 	if (goal == XFS_ICWALK_RECLAIM)
1657 		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1658 	else
1659 		first_index = 0;
1660 	nr_found = 0;
1661 	do {
1662 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1663 		int		error = 0;
1664 		int		i;
1665 
1666 		rcu_read_lock();
1667 
1668 		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1669 				(void **) batch, first_index,
1670 				XFS_LOOKUP_BATCH, goal);
1671 		if (!nr_found) {
1672 			done = true;
1673 			rcu_read_unlock();
1674 			break;
1675 		}
1676 
1677 		/*
1678 		 * Grab the inodes before we drop the lock. if we found
1679 		 * nothing, nr == 0 and the loop will be skipped.
1680 		 */
1681 		for (i = 0; i < nr_found; i++) {
1682 			struct xfs_inode *ip = batch[i];
1683 
1684 			if (done || !xfs_icwalk_igrab(goal, ip, icw))
1685 				batch[i] = NULL;
1686 
1687 			/*
1688 			 * Update the index for the next lookup. Catch
1689 			 * overflows into the next AG range which can occur if
1690 			 * we have inodes in the last block of the AG and we
1691 			 * are currently pointing to the last inode.
1692 			 *
1693 			 * Because we may see inodes that are from the wrong AG
1694 			 * due to RCU freeing and reallocation, only update the
1695 			 * index if it lies in this AG. It was a race that lead
1696 			 * us to see this inode, so another lookup from the
1697 			 * same index will not find it again.
1698 			 */
1699 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1700 				continue;
1701 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1702 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1703 				done = true;
1704 		}
1705 
1706 		/* unlock now we've grabbed the inodes. */
1707 		rcu_read_unlock();
1708 
1709 		for (i = 0; i < nr_found; i++) {
1710 			if (!batch[i])
1711 				continue;
1712 			error = xfs_icwalk_process_inode(goal, batch[i], pag,
1713 					icw);
1714 			if (error == -EAGAIN) {
1715 				skipped++;
1716 				continue;
1717 			}
1718 			if (error && last_error != -EFSCORRUPTED)
1719 				last_error = error;
1720 		}
1721 
1722 		/* bail out if the filesystem is corrupted.  */
1723 		if (error == -EFSCORRUPTED)
1724 			break;
1725 
1726 		cond_resched();
1727 
1728 		if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1729 			icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1730 			if (icw->icw_scan_limit <= 0)
1731 				break;
1732 		}
1733 	} while (nr_found && !done);
1734 
1735 	if (goal == XFS_ICWALK_RECLAIM) {
1736 		if (done)
1737 			first_index = 0;
1738 		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1739 	}
1740 
1741 	if (skipped) {
1742 		delay(1);
1743 		goto restart;
1744 	}
1745 	return last_error;
1746 }
1747 
1748 /* Walk all incore inodes to achieve a given goal. */
1749 static int
1750 xfs_icwalk(
1751 	struct xfs_mount	*mp,
1752 	enum xfs_icwalk_goal	goal,
1753 	struct xfs_icwalk	*icw)
1754 {
1755 	struct xfs_perag	*pag;
1756 	int			error = 0;
1757 	int			last_error = 0;
1758 	xfs_agnumber_t		agno;
1759 
1760 	for_each_perag_tag(mp, agno, pag, goal) {
1761 		error = xfs_icwalk_ag(pag, goal, icw);
1762 		if (error) {
1763 			last_error = error;
1764 			if (error == -EFSCORRUPTED) {
1765 				xfs_perag_rele(pag);
1766 				break;
1767 			}
1768 		}
1769 	}
1770 	return last_error;
1771 	BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1772 }
1773 
1774 #ifdef DEBUG
1775 static void
1776 xfs_check_delalloc(
1777 	struct xfs_inode	*ip,
1778 	int			whichfork)
1779 {
1780 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
1781 	struct xfs_bmbt_irec	got;
1782 	struct xfs_iext_cursor	icur;
1783 
1784 	if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1785 		return;
1786 	do {
1787 		if (isnullstartblock(got.br_startblock)) {
1788 			xfs_warn(ip->i_mount,
1789 	"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1790 				ip->i_ino,
1791 				whichfork == XFS_DATA_FORK ? "data" : "cow",
1792 				got.br_startoff, got.br_blockcount);
1793 		}
1794 	} while (xfs_iext_next_extent(ifp, &icur, &got));
1795 }
1796 #else
1797 #define xfs_check_delalloc(ip, whichfork)	do { } while (0)
1798 #endif
1799 
1800 /* Schedule the inode for reclaim. */
1801 static void
1802 xfs_inodegc_set_reclaimable(
1803 	struct xfs_inode	*ip)
1804 {
1805 	struct xfs_mount	*mp = ip->i_mount;
1806 	struct xfs_perag	*pag;
1807 
1808 	if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1809 		xfs_check_delalloc(ip, XFS_DATA_FORK);
1810 		xfs_check_delalloc(ip, XFS_COW_FORK);
1811 		ASSERT(0);
1812 	}
1813 
1814 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1815 	spin_lock(&pag->pag_ici_lock);
1816 	spin_lock(&ip->i_flags_lock);
1817 
1818 	trace_xfs_inode_set_reclaimable(ip);
1819 	ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1820 	ip->i_flags |= XFS_IRECLAIMABLE;
1821 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1822 			XFS_ICI_RECLAIM_TAG);
1823 
1824 	spin_unlock(&ip->i_flags_lock);
1825 	spin_unlock(&pag->pag_ici_lock);
1826 	xfs_perag_put(pag);
1827 }
1828 
1829 /*
1830  * Free all speculative preallocations and possibly even the inode itself.
1831  * This is the last chance to make changes to an otherwise unreferenced file
1832  * before incore reclamation happens.
1833  */
1834 static int
1835 xfs_inodegc_inactivate(
1836 	struct xfs_inode	*ip)
1837 {
1838 	int			error;
1839 
1840 	trace_xfs_inode_inactivating(ip);
1841 	error = xfs_inactive(ip);
1842 	xfs_inodegc_set_reclaimable(ip);
1843 	return error;
1844 
1845 }
1846 
1847 void
1848 xfs_inodegc_worker(
1849 	struct work_struct	*work)
1850 {
1851 	struct xfs_inodegc	*gc = container_of(to_delayed_work(work),
1852 						struct xfs_inodegc, work);
1853 	struct llist_node	*node = llist_del_all(&gc->list);
1854 	struct xfs_inode	*ip, *n;
1855 	struct xfs_mount	*mp = gc->mp;
1856 	unsigned int		nofs_flag;
1857 
1858 	/*
1859 	 * Clear the cpu mask bit and ensure that we have seen the latest
1860 	 * update of the gc structure associated with this CPU. This matches
1861 	 * with the release semantics used when setting the cpumask bit in
1862 	 * xfs_inodegc_queue.
1863 	 */
1864 	cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask);
1865 	smp_mb__after_atomic();
1866 
1867 	WRITE_ONCE(gc->items, 0);
1868 
1869 	if (!node)
1870 		return;
1871 
1872 	/*
1873 	 * We can allocate memory here while doing writeback on behalf of
1874 	 * memory reclaim.  To avoid memory allocation deadlocks set the
1875 	 * task-wide nofs context for the following operations.
1876 	 */
1877 	nofs_flag = memalloc_nofs_save();
1878 
1879 	ip = llist_entry(node, struct xfs_inode, i_gclist);
1880 	trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits));
1881 
1882 	WRITE_ONCE(gc->shrinker_hits, 0);
1883 	llist_for_each_entry_safe(ip, n, node, i_gclist) {
1884 		int	error;
1885 
1886 		xfs_iflags_set(ip, XFS_INACTIVATING);
1887 		error = xfs_inodegc_inactivate(ip);
1888 		if (error && !gc->error)
1889 			gc->error = error;
1890 	}
1891 
1892 	memalloc_nofs_restore(nofs_flag);
1893 }
1894 
1895 /*
1896  * Expedite all pending inodegc work to run immediately. This does not wait for
1897  * completion of the work.
1898  */
1899 void
1900 xfs_inodegc_push(
1901 	struct xfs_mount	*mp)
1902 {
1903 	if (!xfs_is_inodegc_enabled(mp))
1904 		return;
1905 	trace_xfs_inodegc_push(mp, __return_address);
1906 	xfs_inodegc_queue_all(mp);
1907 }
1908 
1909 /*
1910  * Force all currently queued inode inactivation work to run immediately and
1911  * wait for the work to finish.
1912  */
1913 int
1914 xfs_inodegc_flush(
1915 	struct xfs_mount	*mp)
1916 {
1917 	xfs_inodegc_push(mp);
1918 	trace_xfs_inodegc_flush(mp, __return_address);
1919 	return xfs_inodegc_wait_all(mp);
1920 }
1921 
1922 /*
1923  * Flush all the pending work and then disable the inode inactivation background
1924  * workers and wait for them to stop.  Caller must hold sb->s_umount to
1925  * coordinate changes in the inodegc_enabled state.
1926  */
1927 void
1928 xfs_inodegc_stop(
1929 	struct xfs_mount	*mp)
1930 {
1931 	bool			rerun;
1932 
1933 	if (!xfs_clear_inodegc_enabled(mp))
1934 		return;
1935 
1936 	/*
1937 	 * Drain all pending inodegc work, including inodes that could be
1938 	 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
1939 	 * threads that sample the inodegc state just prior to us clearing it.
1940 	 * The inodegc flag state prevents new threads from queuing more
1941 	 * inodes, so we queue pending work items and flush the workqueue until
1942 	 * all inodegc lists are empty.  IOWs, we cannot use drain_workqueue
1943 	 * here because it does not allow other unserialized mechanisms to
1944 	 * reschedule inodegc work while this draining is in progress.
1945 	 */
1946 	xfs_inodegc_queue_all(mp);
1947 	do {
1948 		flush_workqueue(mp->m_inodegc_wq);
1949 		rerun = xfs_inodegc_queue_all(mp);
1950 	} while (rerun);
1951 
1952 	trace_xfs_inodegc_stop(mp, __return_address);
1953 }
1954 
1955 /*
1956  * Enable the inode inactivation background workers and schedule deferred inode
1957  * inactivation work if there is any.  Caller must hold sb->s_umount to
1958  * coordinate changes in the inodegc_enabled state.
1959  */
1960 void
1961 xfs_inodegc_start(
1962 	struct xfs_mount	*mp)
1963 {
1964 	if (xfs_set_inodegc_enabled(mp))
1965 		return;
1966 
1967 	trace_xfs_inodegc_start(mp, __return_address);
1968 	xfs_inodegc_queue_all(mp);
1969 }
1970 
1971 #ifdef CONFIG_XFS_RT
1972 static inline bool
1973 xfs_inodegc_want_queue_rt_file(
1974 	struct xfs_inode	*ip)
1975 {
1976 	struct xfs_mount	*mp = ip->i_mount;
1977 
1978 	if (!XFS_IS_REALTIME_INODE(ip))
1979 		return false;
1980 
1981 	if (__percpu_counter_compare(&mp->m_frextents,
1982 				mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
1983 				XFS_FDBLOCKS_BATCH) < 0)
1984 		return true;
1985 
1986 	return false;
1987 }
1988 #else
1989 # define xfs_inodegc_want_queue_rt_file(ip)	(false)
1990 #endif /* CONFIG_XFS_RT */
1991 
1992 /*
1993  * Schedule the inactivation worker when:
1994  *
1995  *  - We've accumulated more than one inode cluster buffer's worth of inodes.
1996  *  - There is less than 5% free space left.
1997  *  - Any of the quotas for this inode are near an enforcement limit.
1998  */
1999 static inline bool
2000 xfs_inodegc_want_queue_work(
2001 	struct xfs_inode	*ip,
2002 	unsigned int		items)
2003 {
2004 	struct xfs_mount	*mp = ip->i_mount;
2005 
2006 	if (items > mp->m_ino_geo.inodes_per_cluster)
2007 		return true;
2008 
2009 	if (__percpu_counter_compare(&mp->m_fdblocks,
2010 				mp->m_low_space[XFS_LOWSP_5_PCNT],
2011 				XFS_FDBLOCKS_BATCH) < 0)
2012 		return true;
2013 
2014 	if (xfs_inodegc_want_queue_rt_file(ip))
2015 		return true;
2016 
2017 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
2018 		return true;
2019 
2020 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
2021 		return true;
2022 
2023 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
2024 		return true;
2025 
2026 	return false;
2027 }
2028 
2029 /*
2030  * Upper bound on the number of inodes in each AG that can be queued for
2031  * inactivation at any given time, to avoid monopolizing the workqueue.
2032  */
2033 #define XFS_INODEGC_MAX_BACKLOG		(4 * XFS_INODES_PER_CHUNK)
2034 
2035 /*
2036  * Make the frontend wait for inactivations when:
2037  *
2038  *  - Memory shrinkers queued the inactivation worker and it hasn't finished.
2039  *  - The queue depth exceeds the maximum allowable percpu backlog.
2040  *
2041  * Note: If we are in a NOFS context here (e.g. current thread is running a
2042  * transaction) the we don't want to block here as inodegc progress may require
2043  * filesystem resources we hold to make progress and that could result in a
2044  * deadlock. Hence we skip out of here if we are in a scoped NOFS context.
2045  */
2046 static inline bool
2047 xfs_inodegc_want_flush_work(
2048 	struct xfs_inode	*ip,
2049 	unsigned int		items,
2050 	unsigned int		shrinker_hits)
2051 {
2052 	if (current->flags & PF_MEMALLOC_NOFS)
2053 		return false;
2054 
2055 	if (shrinker_hits > 0)
2056 		return true;
2057 
2058 	if (items > XFS_INODEGC_MAX_BACKLOG)
2059 		return true;
2060 
2061 	return false;
2062 }
2063 
2064 /*
2065  * Queue a background inactivation worker if there are inodes that need to be
2066  * inactivated and higher level xfs code hasn't disabled the background
2067  * workers.
2068  */
2069 static void
2070 xfs_inodegc_queue(
2071 	struct xfs_inode	*ip)
2072 {
2073 	struct xfs_mount	*mp = ip->i_mount;
2074 	struct xfs_inodegc	*gc;
2075 	int			items;
2076 	unsigned int		shrinker_hits;
2077 	unsigned int		cpu_nr;
2078 	unsigned long		queue_delay = 1;
2079 
2080 	trace_xfs_inode_set_need_inactive(ip);
2081 	spin_lock(&ip->i_flags_lock);
2082 	ip->i_flags |= XFS_NEED_INACTIVE;
2083 	spin_unlock(&ip->i_flags_lock);
2084 
2085 	cpu_nr = get_cpu();
2086 	gc = this_cpu_ptr(mp->m_inodegc);
2087 	llist_add(&ip->i_gclist, &gc->list);
2088 	items = READ_ONCE(gc->items);
2089 	WRITE_ONCE(gc->items, items + 1);
2090 	shrinker_hits = READ_ONCE(gc->shrinker_hits);
2091 
2092 	/*
2093 	 * Ensure the list add is always seen by anyone who finds the cpumask
2094 	 * bit set. This effectively gives the cpumask bit set operation
2095 	 * release ordering semantics.
2096 	 */
2097 	smp_mb__before_atomic();
2098 	if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask))
2099 		cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask);
2100 
2101 	/*
2102 	 * We queue the work while holding the current CPU so that the work
2103 	 * is scheduled to run on this CPU.
2104 	 */
2105 	if (!xfs_is_inodegc_enabled(mp)) {
2106 		put_cpu();
2107 		return;
2108 	}
2109 
2110 	if (xfs_inodegc_want_queue_work(ip, items))
2111 		queue_delay = 0;
2112 
2113 	trace_xfs_inodegc_queue(mp, __return_address);
2114 	mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2115 			queue_delay);
2116 	put_cpu();
2117 
2118 	if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2119 		trace_xfs_inodegc_throttle(mp, __return_address);
2120 		flush_delayed_work(&gc->work);
2121 	}
2122 }
2123 
2124 /*
2125  * We set the inode flag atomically with the radix tree tag.  Once we get tag
2126  * lookups on the radix tree, this inode flag can go away.
2127  *
2128  * We always use background reclaim here because even if the inode is clean, it
2129  * still may be under IO and hence we have wait for IO completion to occur
2130  * before we can reclaim the inode. The background reclaim path handles this
2131  * more efficiently than we can here, so simply let background reclaim tear down
2132  * all inodes.
2133  */
2134 void
2135 xfs_inode_mark_reclaimable(
2136 	struct xfs_inode	*ip)
2137 {
2138 	struct xfs_mount	*mp = ip->i_mount;
2139 	bool			need_inactive;
2140 
2141 	XFS_STATS_INC(mp, vn_reclaim);
2142 
2143 	/*
2144 	 * We should never get here with any of the reclaim flags already set.
2145 	 */
2146 	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2147 
2148 	need_inactive = xfs_inode_needs_inactive(ip);
2149 	if (need_inactive) {
2150 		xfs_inodegc_queue(ip);
2151 		return;
2152 	}
2153 
2154 	/* Going straight to reclaim, so drop the dquots. */
2155 	xfs_qm_dqdetach(ip);
2156 	xfs_inodegc_set_reclaimable(ip);
2157 }
2158 
2159 /*
2160  * Register a phony shrinker so that we can run background inodegc sooner when
2161  * there's memory pressure.  Inactivation does not itself free any memory but
2162  * it does make inodes reclaimable, which eventually frees memory.
2163  *
2164  * The count function, seek value, and batch value are crafted to trigger the
2165  * scan function during the second round of scanning.  Hopefully this means
2166  * that we reclaimed enough memory that initiating metadata transactions won't
2167  * make things worse.
2168  */
2169 #define XFS_INODEGC_SHRINKER_COUNT	(1UL << DEF_PRIORITY)
2170 #define XFS_INODEGC_SHRINKER_BATCH	((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2171 
2172 static unsigned long
2173 xfs_inodegc_shrinker_count(
2174 	struct shrinker		*shrink,
2175 	struct shrink_control	*sc)
2176 {
2177 	struct xfs_mount	*mp = shrink->private_data;
2178 	struct xfs_inodegc	*gc;
2179 	int			cpu;
2180 
2181 	if (!xfs_is_inodegc_enabled(mp))
2182 		return 0;
2183 
2184 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2185 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2186 		if (!llist_empty(&gc->list))
2187 			return XFS_INODEGC_SHRINKER_COUNT;
2188 	}
2189 
2190 	return 0;
2191 }
2192 
2193 static unsigned long
2194 xfs_inodegc_shrinker_scan(
2195 	struct shrinker		*shrink,
2196 	struct shrink_control	*sc)
2197 {
2198 	struct xfs_mount	*mp = shrink->private_data;
2199 	struct xfs_inodegc	*gc;
2200 	int			cpu;
2201 	bool			no_items = true;
2202 
2203 	if (!xfs_is_inodegc_enabled(mp))
2204 		return SHRINK_STOP;
2205 
2206 	trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2207 
2208 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2209 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2210 		if (!llist_empty(&gc->list)) {
2211 			unsigned int	h = READ_ONCE(gc->shrinker_hits);
2212 
2213 			WRITE_ONCE(gc->shrinker_hits, h + 1);
2214 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2215 			no_items = false;
2216 		}
2217 	}
2218 
2219 	/*
2220 	 * If there are no inodes to inactivate, we don't want the shrinker
2221 	 * to think there's deferred work to call us back about.
2222 	 */
2223 	if (no_items)
2224 		return LONG_MAX;
2225 
2226 	return SHRINK_STOP;
2227 }
2228 
2229 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2230 int
2231 xfs_inodegc_register_shrinker(
2232 	struct xfs_mount	*mp)
2233 {
2234 	mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB,
2235 						"xfs-inodegc:%s",
2236 						mp->m_super->s_id);
2237 	if (!mp->m_inodegc_shrinker)
2238 		return -ENOMEM;
2239 
2240 	mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count;
2241 	mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan;
2242 	mp->m_inodegc_shrinker->seeks = 0;
2243 	mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH;
2244 	mp->m_inodegc_shrinker->private_data = mp;
2245 
2246 	shrinker_register(mp->m_inodegc_shrinker);
2247 
2248 	return 0;
2249 }
2250