xref: /linux/fs/xfs/xfs_icache.c (revision d91517839e5d95adc0cf4b28caa7af62a71de526)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_inum.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_inode.h"
28 #include "xfs_error.h"
29 #include "xfs_trans.h"
30 #include "xfs_trans_priv.h"
31 #include "xfs_inode_item.h"
32 #include "xfs_quota.h"
33 #include "xfs_trace.h"
34 #include "xfs_icache.h"
35 #include "xfs_bmap_util.h"
36 
37 #include <linux/kthread.h>
38 #include <linux/freezer.h>
39 
40 STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
41 				struct xfs_perag *pag, struct xfs_inode *ip);
42 
43 /*
44  * Allocate and initialise an xfs_inode.
45  */
46 struct xfs_inode *
47 xfs_inode_alloc(
48 	struct xfs_mount	*mp,
49 	xfs_ino_t		ino)
50 {
51 	struct xfs_inode	*ip;
52 
53 	/*
54 	 * if this didn't occur in transactions, we could use
55 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
56 	 * code up to do this anyway.
57 	 */
58 	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
59 	if (!ip)
60 		return NULL;
61 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
62 		kmem_zone_free(xfs_inode_zone, ip);
63 		return NULL;
64 	}
65 
66 	ASSERT(atomic_read(&ip->i_pincount) == 0);
67 	ASSERT(!spin_is_locked(&ip->i_flags_lock));
68 	ASSERT(!xfs_isiflocked(ip));
69 	ASSERT(ip->i_ino == 0);
70 
71 	mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
72 
73 	/* initialise the xfs inode */
74 	ip->i_ino = ino;
75 	ip->i_mount = mp;
76 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
77 	ip->i_afp = NULL;
78 	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
79 	ip->i_flags = 0;
80 	ip->i_delayed_blks = 0;
81 	memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
82 
83 	return ip;
84 }
85 
86 STATIC void
87 xfs_inode_free_callback(
88 	struct rcu_head		*head)
89 {
90 	struct inode		*inode = container_of(head, struct inode, i_rcu);
91 	struct xfs_inode	*ip = XFS_I(inode);
92 
93 	kmem_zone_free(xfs_inode_zone, ip);
94 }
95 
96 void
97 xfs_inode_free(
98 	struct xfs_inode	*ip)
99 {
100 	switch (ip->i_d.di_mode & S_IFMT) {
101 	case S_IFREG:
102 	case S_IFDIR:
103 	case S_IFLNK:
104 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
105 		break;
106 	}
107 
108 	if (ip->i_afp)
109 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
110 
111 	if (ip->i_itemp) {
112 		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
113 		xfs_inode_item_destroy(ip);
114 		ip->i_itemp = NULL;
115 	}
116 
117 	/*
118 	 * Because we use RCU freeing we need to ensure the inode always
119 	 * appears to be reclaimed with an invalid inode number when in the
120 	 * free state. The ip->i_flags_lock provides the barrier against lookup
121 	 * races.
122 	 */
123 	spin_lock(&ip->i_flags_lock);
124 	ip->i_flags = XFS_IRECLAIM;
125 	ip->i_ino = 0;
126 	spin_unlock(&ip->i_flags_lock);
127 
128 	/* asserts to verify all state is correct here */
129 	ASSERT(atomic_read(&ip->i_pincount) == 0);
130 	ASSERT(!xfs_isiflocked(ip));
131 
132 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
133 }
134 
135 /*
136  * Check the validity of the inode we just found it the cache
137  */
138 static int
139 xfs_iget_cache_hit(
140 	struct xfs_perag	*pag,
141 	struct xfs_inode	*ip,
142 	xfs_ino_t		ino,
143 	int			flags,
144 	int			lock_flags) __releases(RCU)
145 {
146 	struct inode		*inode = VFS_I(ip);
147 	struct xfs_mount	*mp = ip->i_mount;
148 	int			error;
149 
150 	/*
151 	 * check for re-use of an inode within an RCU grace period due to the
152 	 * radix tree nodes not being updated yet. We monitor for this by
153 	 * setting the inode number to zero before freeing the inode structure.
154 	 * If the inode has been reallocated and set up, then the inode number
155 	 * will not match, so check for that, too.
156 	 */
157 	spin_lock(&ip->i_flags_lock);
158 	if (ip->i_ino != ino) {
159 		trace_xfs_iget_skip(ip);
160 		XFS_STATS_INC(xs_ig_frecycle);
161 		error = EAGAIN;
162 		goto out_error;
163 	}
164 
165 
166 	/*
167 	 * If we are racing with another cache hit that is currently
168 	 * instantiating this inode or currently recycling it out of
169 	 * reclaimabe state, wait for the initialisation to complete
170 	 * before continuing.
171 	 *
172 	 * XXX(hch): eventually we should do something equivalent to
173 	 *	     wait_on_inode to wait for these flags to be cleared
174 	 *	     instead of polling for it.
175 	 */
176 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
177 		trace_xfs_iget_skip(ip);
178 		XFS_STATS_INC(xs_ig_frecycle);
179 		error = EAGAIN;
180 		goto out_error;
181 	}
182 
183 	/*
184 	 * If lookup is racing with unlink return an error immediately.
185 	 */
186 	if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
187 		error = ENOENT;
188 		goto out_error;
189 	}
190 
191 	/*
192 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
193 	 * Need to carefully get it back into useable state.
194 	 */
195 	if (ip->i_flags & XFS_IRECLAIMABLE) {
196 		trace_xfs_iget_reclaim(ip);
197 
198 		/*
199 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
200 		 * from stomping over us while we recycle the inode.  We can't
201 		 * clear the radix tree reclaimable tag yet as it requires
202 		 * pag_ici_lock to be held exclusive.
203 		 */
204 		ip->i_flags |= XFS_IRECLAIM;
205 
206 		spin_unlock(&ip->i_flags_lock);
207 		rcu_read_unlock();
208 
209 		error = -inode_init_always(mp->m_super, inode);
210 		if (error) {
211 			/*
212 			 * Re-initializing the inode failed, and we are in deep
213 			 * trouble.  Try to re-add it to the reclaim list.
214 			 */
215 			rcu_read_lock();
216 			spin_lock(&ip->i_flags_lock);
217 
218 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
219 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
220 			trace_xfs_iget_reclaim_fail(ip);
221 			goto out_error;
222 		}
223 
224 		spin_lock(&pag->pag_ici_lock);
225 		spin_lock(&ip->i_flags_lock);
226 
227 		/*
228 		 * Clear the per-lifetime state in the inode as we are now
229 		 * effectively a new inode and need to return to the initial
230 		 * state before reuse occurs.
231 		 */
232 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
233 		ip->i_flags |= XFS_INEW;
234 		__xfs_inode_clear_reclaim_tag(mp, pag, ip);
235 		inode->i_state = I_NEW;
236 
237 		ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
238 		mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
239 
240 		spin_unlock(&ip->i_flags_lock);
241 		spin_unlock(&pag->pag_ici_lock);
242 	} else {
243 		/* If the VFS inode is being torn down, pause and try again. */
244 		if (!igrab(inode)) {
245 			trace_xfs_iget_skip(ip);
246 			error = EAGAIN;
247 			goto out_error;
248 		}
249 
250 		/* We've got a live one. */
251 		spin_unlock(&ip->i_flags_lock);
252 		rcu_read_unlock();
253 		trace_xfs_iget_hit(ip);
254 	}
255 
256 	if (lock_flags != 0)
257 		xfs_ilock(ip, lock_flags);
258 
259 	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
260 	XFS_STATS_INC(xs_ig_found);
261 
262 	return 0;
263 
264 out_error:
265 	spin_unlock(&ip->i_flags_lock);
266 	rcu_read_unlock();
267 	return error;
268 }
269 
270 
271 static int
272 xfs_iget_cache_miss(
273 	struct xfs_mount	*mp,
274 	struct xfs_perag	*pag,
275 	xfs_trans_t		*tp,
276 	xfs_ino_t		ino,
277 	struct xfs_inode	**ipp,
278 	int			flags,
279 	int			lock_flags)
280 {
281 	struct xfs_inode	*ip;
282 	int			error;
283 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
284 	int			iflags;
285 
286 	ip = xfs_inode_alloc(mp, ino);
287 	if (!ip)
288 		return ENOMEM;
289 
290 	error = xfs_iread(mp, tp, ip, flags);
291 	if (error)
292 		goto out_destroy;
293 
294 	trace_xfs_iget_miss(ip);
295 
296 	if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
297 		error = ENOENT;
298 		goto out_destroy;
299 	}
300 
301 	/*
302 	 * Preload the radix tree so we can insert safely under the
303 	 * write spinlock. Note that we cannot sleep inside the preload
304 	 * region. Since we can be called from transaction context, don't
305 	 * recurse into the file system.
306 	 */
307 	if (radix_tree_preload(GFP_NOFS)) {
308 		error = EAGAIN;
309 		goto out_destroy;
310 	}
311 
312 	/*
313 	 * Because the inode hasn't been added to the radix-tree yet it can't
314 	 * be found by another thread, so we can do the non-sleeping lock here.
315 	 */
316 	if (lock_flags) {
317 		if (!xfs_ilock_nowait(ip, lock_flags))
318 			BUG();
319 	}
320 
321 	/*
322 	 * These values must be set before inserting the inode into the radix
323 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
324 	 * RCU locking mechanism) can find it and that lookup must see that this
325 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
326 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
327 	 * memory barrier that ensures this detection works correctly at lookup
328 	 * time.
329 	 */
330 	iflags = XFS_INEW;
331 	if (flags & XFS_IGET_DONTCACHE)
332 		iflags |= XFS_IDONTCACHE;
333 	ip->i_udquot = NULL;
334 	ip->i_gdquot = NULL;
335 	ip->i_pdquot = NULL;
336 	xfs_iflags_set(ip, iflags);
337 
338 	/* insert the new inode */
339 	spin_lock(&pag->pag_ici_lock);
340 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
341 	if (unlikely(error)) {
342 		WARN_ON(error != -EEXIST);
343 		XFS_STATS_INC(xs_ig_dup);
344 		error = EAGAIN;
345 		goto out_preload_end;
346 	}
347 	spin_unlock(&pag->pag_ici_lock);
348 	radix_tree_preload_end();
349 
350 	*ipp = ip;
351 	return 0;
352 
353 out_preload_end:
354 	spin_unlock(&pag->pag_ici_lock);
355 	radix_tree_preload_end();
356 	if (lock_flags)
357 		xfs_iunlock(ip, lock_flags);
358 out_destroy:
359 	__destroy_inode(VFS_I(ip));
360 	xfs_inode_free(ip);
361 	return error;
362 }
363 
364 /*
365  * Look up an inode by number in the given file system.
366  * The inode is looked up in the cache held in each AG.
367  * If the inode is found in the cache, initialise the vfs inode
368  * if necessary.
369  *
370  * If it is not in core, read it in from the file system's device,
371  * add it to the cache and initialise the vfs inode.
372  *
373  * The inode is locked according to the value of the lock_flags parameter.
374  * This flag parameter indicates how and if the inode's IO lock and inode lock
375  * should be taken.
376  *
377  * mp -- the mount point structure for the current file system.  It points
378  *       to the inode hash table.
379  * tp -- a pointer to the current transaction if there is one.  This is
380  *       simply passed through to the xfs_iread() call.
381  * ino -- the number of the inode desired.  This is the unique identifier
382  *        within the file system for the inode being requested.
383  * lock_flags -- flags indicating how to lock the inode.  See the comment
384  *		 for xfs_ilock() for a list of valid values.
385  */
386 int
387 xfs_iget(
388 	xfs_mount_t	*mp,
389 	xfs_trans_t	*tp,
390 	xfs_ino_t	ino,
391 	uint		flags,
392 	uint		lock_flags,
393 	xfs_inode_t	**ipp)
394 {
395 	xfs_inode_t	*ip;
396 	int		error;
397 	xfs_perag_t	*pag;
398 	xfs_agino_t	agino;
399 
400 	/*
401 	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
402 	 * doesn't get freed while it's being referenced during a
403 	 * radix tree traversal here.  It assumes this function
404 	 * aqcuires only the ILOCK (and therefore it has no need to
405 	 * involve the IOLOCK in this synchronization).
406 	 */
407 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
408 
409 	/* reject inode numbers outside existing AGs */
410 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
411 		return EINVAL;
412 
413 	/* get the perag structure and ensure that it's inode capable */
414 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
415 	agino = XFS_INO_TO_AGINO(mp, ino);
416 
417 again:
418 	error = 0;
419 	rcu_read_lock();
420 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
421 
422 	if (ip) {
423 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
424 		if (error)
425 			goto out_error_or_again;
426 	} else {
427 		rcu_read_unlock();
428 		XFS_STATS_INC(xs_ig_missed);
429 
430 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
431 							flags, lock_flags);
432 		if (error)
433 			goto out_error_or_again;
434 	}
435 	xfs_perag_put(pag);
436 
437 	*ipp = ip;
438 
439 	/*
440 	 * If we have a real type for an on-disk inode, we can set ops(&unlock)
441 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
442 	 */
443 	if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
444 		xfs_setup_inode(ip);
445 	return 0;
446 
447 out_error_or_again:
448 	if (error == EAGAIN) {
449 		delay(1);
450 		goto again;
451 	}
452 	xfs_perag_put(pag);
453 	return error;
454 }
455 
456 /*
457  * The inode lookup is done in batches to keep the amount of lock traffic and
458  * radix tree lookups to a minimum. The batch size is a trade off between
459  * lookup reduction and stack usage. This is in the reclaim path, so we can't
460  * be too greedy.
461  */
462 #define XFS_LOOKUP_BATCH	32
463 
464 STATIC int
465 xfs_inode_ag_walk_grab(
466 	struct xfs_inode	*ip)
467 {
468 	struct inode		*inode = VFS_I(ip);
469 
470 	ASSERT(rcu_read_lock_held());
471 
472 	/*
473 	 * check for stale RCU freed inode
474 	 *
475 	 * If the inode has been reallocated, it doesn't matter if it's not in
476 	 * the AG we are walking - we are walking for writeback, so if it
477 	 * passes all the "valid inode" checks and is dirty, then we'll write
478 	 * it back anyway.  If it has been reallocated and still being
479 	 * initialised, the XFS_INEW check below will catch it.
480 	 */
481 	spin_lock(&ip->i_flags_lock);
482 	if (!ip->i_ino)
483 		goto out_unlock_noent;
484 
485 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
486 	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
487 		goto out_unlock_noent;
488 	spin_unlock(&ip->i_flags_lock);
489 
490 	/* nothing to sync during shutdown */
491 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
492 		return EFSCORRUPTED;
493 
494 	/* If we can't grab the inode, it must on it's way to reclaim. */
495 	if (!igrab(inode))
496 		return ENOENT;
497 
498 	/* inode is valid */
499 	return 0;
500 
501 out_unlock_noent:
502 	spin_unlock(&ip->i_flags_lock);
503 	return ENOENT;
504 }
505 
506 STATIC int
507 xfs_inode_ag_walk(
508 	struct xfs_mount	*mp,
509 	struct xfs_perag	*pag,
510 	int			(*execute)(struct xfs_inode *ip,
511 					   struct xfs_perag *pag, int flags,
512 					   void *args),
513 	int			flags,
514 	void			*args,
515 	int			tag)
516 {
517 	uint32_t		first_index;
518 	int			last_error = 0;
519 	int			skipped;
520 	int			done;
521 	int			nr_found;
522 
523 restart:
524 	done = 0;
525 	skipped = 0;
526 	first_index = 0;
527 	nr_found = 0;
528 	do {
529 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
530 		int		error = 0;
531 		int		i;
532 
533 		rcu_read_lock();
534 
535 		if (tag == -1)
536 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
537 					(void **)batch, first_index,
538 					XFS_LOOKUP_BATCH);
539 		else
540 			nr_found = radix_tree_gang_lookup_tag(
541 					&pag->pag_ici_root,
542 					(void **) batch, first_index,
543 					XFS_LOOKUP_BATCH, tag);
544 
545 		if (!nr_found) {
546 			rcu_read_unlock();
547 			break;
548 		}
549 
550 		/*
551 		 * Grab the inodes before we drop the lock. if we found
552 		 * nothing, nr == 0 and the loop will be skipped.
553 		 */
554 		for (i = 0; i < nr_found; i++) {
555 			struct xfs_inode *ip = batch[i];
556 
557 			if (done || xfs_inode_ag_walk_grab(ip))
558 				batch[i] = NULL;
559 
560 			/*
561 			 * Update the index for the next lookup. Catch
562 			 * overflows into the next AG range which can occur if
563 			 * we have inodes in the last block of the AG and we
564 			 * are currently pointing to the last inode.
565 			 *
566 			 * Because we may see inodes that are from the wrong AG
567 			 * due to RCU freeing and reallocation, only update the
568 			 * index if it lies in this AG. It was a race that lead
569 			 * us to see this inode, so another lookup from the
570 			 * same index will not find it again.
571 			 */
572 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
573 				continue;
574 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
575 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
576 				done = 1;
577 		}
578 
579 		/* unlock now we've grabbed the inodes. */
580 		rcu_read_unlock();
581 
582 		for (i = 0; i < nr_found; i++) {
583 			if (!batch[i])
584 				continue;
585 			error = execute(batch[i], pag, flags, args);
586 			IRELE(batch[i]);
587 			if (error == EAGAIN) {
588 				skipped++;
589 				continue;
590 			}
591 			if (error && last_error != EFSCORRUPTED)
592 				last_error = error;
593 		}
594 
595 		/* bail out if the filesystem is corrupted.  */
596 		if (error == EFSCORRUPTED)
597 			break;
598 
599 		cond_resched();
600 
601 	} while (nr_found && !done);
602 
603 	if (skipped) {
604 		delay(1);
605 		goto restart;
606 	}
607 	return last_error;
608 }
609 
610 /*
611  * Background scanning to trim post-EOF preallocated space. This is queued
612  * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
613  */
614 STATIC void
615 xfs_queue_eofblocks(
616 	struct xfs_mount *mp)
617 {
618 	rcu_read_lock();
619 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
620 		queue_delayed_work(mp->m_eofblocks_workqueue,
621 				   &mp->m_eofblocks_work,
622 				   msecs_to_jiffies(xfs_eofb_secs * 1000));
623 	rcu_read_unlock();
624 }
625 
626 void
627 xfs_eofblocks_worker(
628 	struct work_struct *work)
629 {
630 	struct xfs_mount *mp = container_of(to_delayed_work(work),
631 				struct xfs_mount, m_eofblocks_work);
632 	xfs_icache_free_eofblocks(mp, NULL);
633 	xfs_queue_eofblocks(mp);
634 }
635 
636 int
637 xfs_inode_ag_iterator(
638 	struct xfs_mount	*mp,
639 	int			(*execute)(struct xfs_inode *ip,
640 					   struct xfs_perag *pag, int flags,
641 					   void *args),
642 	int			flags,
643 	void			*args)
644 {
645 	struct xfs_perag	*pag;
646 	int			error = 0;
647 	int			last_error = 0;
648 	xfs_agnumber_t		ag;
649 
650 	ag = 0;
651 	while ((pag = xfs_perag_get(mp, ag))) {
652 		ag = pag->pag_agno + 1;
653 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
654 		xfs_perag_put(pag);
655 		if (error) {
656 			last_error = error;
657 			if (error == EFSCORRUPTED)
658 				break;
659 		}
660 	}
661 	return XFS_ERROR(last_error);
662 }
663 
664 int
665 xfs_inode_ag_iterator_tag(
666 	struct xfs_mount	*mp,
667 	int			(*execute)(struct xfs_inode *ip,
668 					   struct xfs_perag *pag, int flags,
669 					   void *args),
670 	int			flags,
671 	void			*args,
672 	int			tag)
673 {
674 	struct xfs_perag	*pag;
675 	int			error = 0;
676 	int			last_error = 0;
677 	xfs_agnumber_t		ag;
678 
679 	ag = 0;
680 	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
681 		ag = pag->pag_agno + 1;
682 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
683 		xfs_perag_put(pag);
684 		if (error) {
685 			last_error = error;
686 			if (error == EFSCORRUPTED)
687 				break;
688 		}
689 	}
690 	return XFS_ERROR(last_error);
691 }
692 
693 /*
694  * Queue a new inode reclaim pass if there are reclaimable inodes and there
695  * isn't a reclaim pass already in progress. By default it runs every 5s based
696  * on the xfs periodic sync default of 30s. Perhaps this should have it's own
697  * tunable, but that can be done if this method proves to be ineffective or too
698  * aggressive.
699  */
700 static void
701 xfs_reclaim_work_queue(
702 	struct xfs_mount        *mp)
703 {
704 
705 	rcu_read_lock();
706 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
707 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
708 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
709 	}
710 	rcu_read_unlock();
711 }
712 
713 /*
714  * This is a fast pass over the inode cache to try to get reclaim moving on as
715  * many inodes as possible in a short period of time. It kicks itself every few
716  * seconds, as well as being kicked by the inode cache shrinker when memory
717  * goes low. It scans as quickly as possible avoiding locked inodes or those
718  * already being flushed, and once done schedules a future pass.
719  */
720 void
721 xfs_reclaim_worker(
722 	struct work_struct *work)
723 {
724 	struct xfs_mount *mp = container_of(to_delayed_work(work),
725 					struct xfs_mount, m_reclaim_work);
726 
727 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
728 	xfs_reclaim_work_queue(mp);
729 }
730 
731 static void
732 __xfs_inode_set_reclaim_tag(
733 	struct xfs_perag	*pag,
734 	struct xfs_inode	*ip)
735 {
736 	radix_tree_tag_set(&pag->pag_ici_root,
737 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
738 			   XFS_ICI_RECLAIM_TAG);
739 
740 	if (!pag->pag_ici_reclaimable) {
741 		/* propagate the reclaim tag up into the perag radix tree */
742 		spin_lock(&ip->i_mount->m_perag_lock);
743 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
744 				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
745 				XFS_ICI_RECLAIM_TAG);
746 		spin_unlock(&ip->i_mount->m_perag_lock);
747 
748 		/* schedule periodic background inode reclaim */
749 		xfs_reclaim_work_queue(ip->i_mount);
750 
751 		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
752 							-1, _RET_IP_);
753 	}
754 	pag->pag_ici_reclaimable++;
755 }
756 
757 /*
758  * We set the inode flag atomically with the radix tree tag.
759  * Once we get tag lookups on the radix tree, this inode flag
760  * can go away.
761  */
762 void
763 xfs_inode_set_reclaim_tag(
764 	xfs_inode_t	*ip)
765 {
766 	struct xfs_mount *mp = ip->i_mount;
767 	struct xfs_perag *pag;
768 
769 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
770 	spin_lock(&pag->pag_ici_lock);
771 	spin_lock(&ip->i_flags_lock);
772 	__xfs_inode_set_reclaim_tag(pag, ip);
773 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
774 	spin_unlock(&ip->i_flags_lock);
775 	spin_unlock(&pag->pag_ici_lock);
776 	xfs_perag_put(pag);
777 }
778 
779 STATIC void
780 __xfs_inode_clear_reclaim(
781 	xfs_perag_t	*pag,
782 	xfs_inode_t	*ip)
783 {
784 	pag->pag_ici_reclaimable--;
785 	if (!pag->pag_ici_reclaimable) {
786 		/* clear the reclaim tag from the perag radix tree */
787 		spin_lock(&ip->i_mount->m_perag_lock);
788 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
789 				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
790 				XFS_ICI_RECLAIM_TAG);
791 		spin_unlock(&ip->i_mount->m_perag_lock);
792 		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
793 							-1, _RET_IP_);
794 	}
795 }
796 
797 STATIC void
798 __xfs_inode_clear_reclaim_tag(
799 	xfs_mount_t	*mp,
800 	xfs_perag_t	*pag,
801 	xfs_inode_t	*ip)
802 {
803 	radix_tree_tag_clear(&pag->pag_ici_root,
804 			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
805 	__xfs_inode_clear_reclaim(pag, ip);
806 }
807 
808 /*
809  * Grab the inode for reclaim exclusively.
810  * Return 0 if we grabbed it, non-zero otherwise.
811  */
812 STATIC int
813 xfs_reclaim_inode_grab(
814 	struct xfs_inode	*ip,
815 	int			flags)
816 {
817 	ASSERT(rcu_read_lock_held());
818 
819 	/* quick check for stale RCU freed inode */
820 	if (!ip->i_ino)
821 		return 1;
822 
823 	/*
824 	 * If we are asked for non-blocking operation, do unlocked checks to
825 	 * see if the inode already is being flushed or in reclaim to avoid
826 	 * lock traffic.
827 	 */
828 	if ((flags & SYNC_TRYLOCK) &&
829 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
830 		return 1;
831 
832 	/*
833 	 * The radix tree lock here protects a thread in xfs_iget from racing
834 	 * with us starting reclaim on the inode.  Once we have the
835 	 * XFS_IRECLAIM flag set it will not touch us.
836 	 *
837 	 * Due to RCU lookup, we may find inodes that have been freed and only
838 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
839 	 * aren't candidates for reclaim at all, so we must check the
840 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
841 	 */
842 	spin_lock(&ip->i_flags_lock);
843 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
844 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
845 		/* not a reclaim candidate. */
846 		spin_unlock(&ip->i_flags_lock);
847 		return 1;
848 	}
849 	__xfs_iflags_set(ip, XFS_IRECLAIM);
850 	spin_unlock(&ip->i_flags_lock);
851 	return 0;
852 }
853 
854 /*
855  * Inodes in different states need to be treated differently. The following
856  * table lists the inode states and the reclaim actions necessary:
857  *
858  *	inode state	     iflush ret		required action
859  *      ---------------      ----------         ---------------
860  *	bad			-		reclaim
861  *	shutdown		EIO		unpin and reclaim
862  *	clean, unpinned		0		reclaim
863  *	stale, unpinned		0		reclaim
864  *	clean, pinned(*)	0		requeue
865  *	stale, pinned		EAGAIN		requeue
866  *	dirty, async		-		requeue
867  *	dirty, sync		0		reclaim
868  *
869  * (*) dgc: I don't think the clean, pinned state is possible but it gets
870  * handled anyway given the order of checks implemented.
871  *
872  * Also, because we get the flush lock first, we know that any inode that has
873  * been flushed delwri has had the flush completed by the time we check that
874  * the inode is clean.
875  *
876  * Note that because the inode is flushed delayed write by AIL pushing, the
877  * flush lock may already be held here and waiting on it can result in very
878  * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
879  * the caller should push the AIL first before trying to reclaim inodes to
880  * minimise the amount of time spent waiting.  For background relaim, we only
881  * bother to reclaim clean inodes anyway.
882  *
883  * Hence the order of actions after gaining the locks should be:
884  *	bad		=> reclaim
885  *	shutdown	=> unpin and reclaim
886  *	pinned, async	=> requeue
887  *	pinned, sync	=> unpin
888  *	stale		=> reclaim
889  *	clean		=> reclaim
890  *	dirty, async	=> requeue
891  *	dirty, sync	=> flush, wait and reclaim
892  */
893 STATIC int
894 xfs_reclaim_inode(
895 	struct xfs_inode	*ip,
896 	struct xfs_perag	*pag,
897 	int			sync_mode)
898 {
899 	struct xfs_buf		*bp = NULL;
900 	int			error;
901 
902 restart:
903 	error = 0;
904 	xfs_ilock(ip, XFS_ILOCK_EXCL);
905 	if (!xfs_iflock_nowait(ip)) {
906 		if (!(sync_mode & SYNC_WAIT))
907 			goto out;
908 		xfs_iflock(ip);
909 	}
910 
911 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
912 		xfs_iunpin_wait(ip);
913 		xfs_iflush_abort(ip, false);
914 		goto reclaim;
915 	}
916 	if (xfs_ipincount(ip)) {
917 		if (!(sync_mode & SYNC_WAIT))
918 			goto out_ifunlock;
919 		xfs_iunpin_wait(ip);
920 	}
921 	if (xfs_iflags_test(ip, XFS_ISTALE))
922 		goto reclaim;
923 	if (xfs_inode_clean(ip))
924 		goto reclaim;
925 
926 	/*
927 	 * Never flush out dirty data during non-blocking reclaim, as it would
928 	 * just contend with AIL pushing trying to do the same job.
929 	 */
930 	if (!(sync_mode & SYNC_WAIT))
931 		goto out_ifunlock;
932 
933 	/*
934 	 * Now we have an inode that needs flushing.
935 	 *
936 	 * Note that xfs_iflush will never block on the inode buffer lock, as
937 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
938 	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
939 	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
940 	 * result in an ABBA deadlock with xfs_ifree_cluster().
941 	 *
942 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
943 	 * cache to mark them stale, if we hit this case we don't actually want
944 	 * to do IO here - we want the inode marked stale so we can simply
945 	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
946 	 * inode, back off and try again.  Hopefully the next pass through will
947 	 * see the stale flag set on the inode.
948 	 */
949 	error = xfs_iflush(ip, &bp);
950 	if (error == EAGAIN) {
951 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
952 		/* backoff longer than in xfs_ifree_cluster */
953 		delay(2);
954 		goto restart;
955 	}
956 
957 	if (!error) {
958 		error = xfs_bwrite(bp);
959 		xfs_buf_relse(bp);
960 	}
961 
962 	xfs_iflock(ip);
963 reclaim:
964 	xfs_ifunlock(ip);
965 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
966 
967 	XFS_STATS_INC(xs_ig_reclaims);
968 	/*
969 	 * Remove the inode from the per-AG radix tree.
970 	 *
971 	 * Because radix_tree_delete won't complain even if the item was never
972 	 * added to the tree assert that it's been there before to catch
973 	 * problems with the inode life time early on.
974 	 */
975 	spin_lock(&pag->pag_ici_lock);
976 	if (!radix_tree_delete(&pag->pag_ici_root,
977 				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
978 		ASSERT(0);
979 	__xfs_inode_clear_reclaim(pag, ip);
980 	spin_unlock(&pag->pag_ici_lock);
981 
982 	/*
983 	 * Here we do an (almost) spurious inode lock in order to coordinate
984 	 * with inode cache radix tree lookups.  This is because the lookup
985 	 * can reference the inodes in the cache without taking references.
986 	 *
987 	 * We make that OK here by ensuring that we wait until the inode is
988 	 * unlocked after the lookup before we go ahead and free it.
989 	 */
990 	xfs_ilock(ip, XFS_ILOCK_EXCL);
991 	xfs_qm_dqdetach(ip);
992 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
993 
994 	xfs_inode_free(ip);
995 	return error;
996 
997 out_ifunlock:
998 	xfs_ifunlock(ip);
999 out:
1000 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1001 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1002 	/*
1003 	 * We could return EAGAIN here to make reclaim rescan the inode tree in
1004 	 * a short while. However, this just burns CPU time scanning the tree
1005 	 * waiting for IO to complete and the reclaim work never goes back to
1006 	 * the idle state. Instead, return 0 to let the next scheduled
1007 	 * background reclaim attempt to reclaim the inode again.
1008 	 */
1009 	return 0;
1010 }
1011 
1012 /*
1013  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1014  * corrupted, we still want to try to reclaim all the inodes. If we don't,
1015  * then a shut down during filesystem unmount reclaim walk leak all the
1016  * unreclaimed inodes.
1017  */
1018 STATIC int
1019 xfs_reclaim_inodes_ag(
1020 	struct xfs_mount	*mp,
1021 	int			flags,
1022 	int			*nr_to_scan)
1023 {
1024 	struct xfs_perag	*pag;
1025 	int			error = 0;
1026 	int			last_error = 0;
1027 	xfs_agnumber_t		ag;
1028 	int			trylock = flags & SYNC_TRYLOCK;
1029 	int			skipped;
1030 
1031 restart:
1032 	ag = 0;
1033 	skipped = 0;
1034 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1035 		unsigned long	first_index = 0;
1036 		int		done = 0;
1037 		int		nr_found = 0;
1038 
1039 		ag = pag->pag_agno + 1;
1040 
1041 		if (trylock) {
1042 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1043 				skipped++;
1044 				xfs_perag_put(pag);
1045 				continue;
1046 			}
1047 			first_index = pag->pag_ici_reclaim_cursor;
1048 		} else
1049 			mutex_lock(&pag->pag_ici_reclaim_lock);
1050 
1051 		do {
1052 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1053 			int	i;
1054 
1055 			rcu_read_lock();
1056 			nr_found = radix_tree_gang_lookup_tag(
1057 					&pag->pag_ici_root,
1058 					(void **)batch, first_index,
1059 					XFS_LOOKUP_BATCH,
1060 					XFS_ICI_RECLAIM_TAG);
1061 			if (!nr_found) {
1062 				done = 1;
1063 				rcu_read_unlock();
1064 				break;
1065 			}
1066 
1067 			/*
1068 			 * Grab the inodes before we drop the lock. if we found
1069 			 * nothing, nr == 0 and the loop will be skipped.
1070 			 */
1071 			for (i = 0; i < nr_found; i++) {
1072 				struct xfs_inode *ip = batch[i];
1073 
1074 				if (done || xfs_reclaim_inode_grab(ip, flags))
1075 					batch[i] = NULL;
1076 
1077 				/*
1078 				 * Update the index for the next lookup. Catch
1079 				 * overflows into the next AG range which can
1080 				 * occur if we have inodes in the last block of
1081 				 * the AG and we are currently pointing to the
1082 				 * last inode.
1083 				 *
1084 				 * Because we may see inodes that are from the
1085 				 * wrong AG due to RCU freeing and
1086 				 * reallocation, only update the index if it
1087 				 * lies in this AG. It was a race that lead us
1088 				 * to see this inode, so another lookup from
1089 				 * the same index will not find it again.
1090 				 */
1091 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1092 								pag->pag_agno)
1093 					continue;
1094 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1095 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1096 					done = 1;
1097 			}
1098 
1099 			/* unlock now we've grabbed the inodes. */
1100 			rcu_read_unlock();
1101 
1102 			for (i = 0; i < nr_found; i++) {
1103 				if (!batch[i])
1104 					continue;
1105 				error = xfs_reclaim_inode(batch[i], pag, flags);
1106 				if (error && last_error != EFSCORRUPTED)
1107 					last_error = error;
1108 			}
1109 
1110 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1111 
1112 			cond_resched();
1113 
1114 		} while (nr_found && !done && *nr_to_scan > 0);
1115 
1116 		if (trylock && !done)
1117 			pag->pag_ici_reclaim_cursor = first_index;
1118 		else
1119 			pag->pag_ici_reclaim_cursor = 0;
1120 		mutex_unlock(&pag->pag_ici_reclaim_lock);
1121 		xfs_perag_put(pag);
1122 	}
1123 
1124 	/*
1125 	 * if we skipped any AG, and we still have scan count remaining, do
1126 	 * another pass this time using blocking reclaim semantics (i.e
1127 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1128 	 * ensure that when we get more reclaimers than AGs we block rather
1129 	 * than spin trying to execute reclaim.
1130 	 */
1131 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1132 		trylock = 0;
1133 		goto restart;
1134 	}
1135 	return XFS_ERROR(last_error);
1136 }
1137 
1138 int
1139 xfs_reclaim_inodes(
1140 	xfs_mount_t	*mp,
1141 	int		mode)
1142 {
1143 	int		nr_to_scan = INT_MAX;
1144 
1145 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1146 }
1147 
1148 /*
1149  * Scan a certain number of inodes for reclaim.
1150  *
1151  * When called we make sure that there is a background (fast) inode reclaim in
1152  * progress, while we will throttle the speed of reclaim via doing synchronous
1153  * reclaim of inodes. That means if we come across dirty inodes, we wait for
1154  * them to be cleaned, which we hope will not be very long due to the
1155  * background walker having already kicked the IO off on those dirty inodes.
1156  */
1157 long
1158 xfs_reclaim_inodes_nr(
1159 	struct xfs_mount	*mp,
1160 	int			nr_to_scan)
1161 {
1162 	/* kick background reclaimer and push the AIL */
1163 	xfs_reclaim_work_queue(mp);
1164 	xfs_ail_push_all(mp->m_ail);
1165 
1166 	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1167 }
1168 
1169 /*
1170  * Return the number of reclaimable inodes in the filesystem for
1171  * the shrinker to determine how much to reclaim.
1172  */
1173 int
1174 xfs_reclaim_inodes_count(
1175 	struct xfs_mount	*mp)
1176 {
1177 	struct xfs_perag	*pag;
1178 	xfs_agnumber_t		ag = 0;
1179 	int			reclaimable = 0;
1180 
1181 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1182 		ag = pag->pag_agno + 1;
1183 		reclaimable += pag->pag_ici_reclaimable;
1184 		xfs_perag_put(pag);
1185 	}
1186 	return reclaimable;
1187 }
1188 
1189 STATIC int
1190 xfs_inode_match_id(
1191 	struct xfs_inode	*ip,
1192 	struct xfs_eofblocks	*eofb)
1193 {
1194 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1195 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1196 		return 0;
1197 
1198 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1199 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1200 		return 0;
1201 
1202 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1203 	    xfs_get_projid(ip) != eofb->eof_prid)
1204 		return 0;
1205 
1206 	return 1;
1207 }
1208 
1209 STATIC int
1210 xfs_inode_free_eofblocks(
1211 	struct xfs_inode	*ip,
1212 	struct xfs_perag	*pag,
1213 	int			flags,
1214 	void			*args)
1215 {
1216 	int ret;
1217 	struct xfs_eofblocks *eofb = args;
1218 
1219 	if (!xfs_can_free_eofblocks(ip, false)) {
1220 		/* inode could be preallocated or append-only */
1221 		trace_xfs_inode_free_eofblocks_invalid(ip);
1222 		xfs_inode_clear_eofblocks_tag(ip);
1223 		return 0;
1224 	}
1225 
1226 	/*
1227 	 * If the mapping is dirty the operation can block and wait for some
1228 	 * time. Unless we are waiting, skip it.
1229 	 */
1230 	if (!(flags & SYNC_WAIT) &&
1231 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1232 		return 0;
1233 
1234 	if (eofb) {
1235 		if (!xfs_inode_match_id(ip, eofb))
1236 			return 0;
1237 
1238 		/* skip the inode if the file size is too small */
1239 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1240 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1241 			return 0;
1242 	}
1243 
1244 	ret = xfs_free_eofblocks(ip->i_mount, ip, true);
1245 
1246 	/* don't revisit the inode if we're not waiting */
1247 	if (ret == EAGAIN && !(flags & SYNC_WAIT))
1248 		ret = 0;
1249 
1250 	return ret;
1251 }
1252 
1253 int
1254 xfs_icache_free_eofblocks(
1255 	struct xfs_mount	*mp,
1256 	struct xfs_eofblocks	*eofb)
1257 {
1258 	int flags = SYNC_TRYLOCK;
1259 
1260 	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1261 		flags = SYNC_WAIT;
1262 
1263 	return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1264 					 eofb, XFS_ICI_EOFBLOCKS_TAG);
1265 }
1266 
1267 void
1268 xfs_inode_set_eofblocks_tag(
1269 	xfs_inode_t	*ip)
1270 {
1271 	struct xfs_mount *mp = ip->i_mount;
1272 	struct xfs_perag *pag;
1273 	int tagged;
1274 
1275 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1276 	spin_lock(&pag->pag_ici_lock);
1277 	trace_xfs_inode_set_eofblocks_tag(ip);
1278 
1279 	tagged = radix_tree_tagged(&pag->pag_ici_root,
1280 				   XFS_ICI_EOFBLOCKS_TAG);
1281 	radix_tree_tag_set(&pag->pag_ici_root,
1282 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1283 			   XFS_ICI_EOFBLOCKS_TAG);
1284 	if (!tagged) {
1285 		/* propagate the eofblocks tag up into the perag radix tree */
1286 		spin_lock(&ip->i_mount->m_perag_lock);
1287 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1288 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1289 				   XFS_ICI_EOFBLOCKS_TAG);
1290 		spin_unlock(&ip->i_mount->m_perag_lock);
1291 
1292 		/* kick off background trimming */
1293 		xfs_queue_eofblocks(ip->i_mount);
1294 
1295 		trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1296 					      -1, _RET_IP_);
1297 	}
1298 
1299 	spin_unlock(&pag->pag_ici_lock);
1300 	xfs_perag_put(pag);
1301 }
1302 
1303 void
1304 xfs_inode_clear_eofblocks_tag(
1305 	xfs_inode_t	*ip)
1306 {
1307 	struct xfs_mount *mp = ip->i_mount;
1308 	struct xfs_perag *pag;
1309 
1310 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1311 	spin_lock(&pag->pag_ici_lock);
1312 	trace_xfs_inode_clear_eofblocks_tag(ip);
1313 
1314 	radix_tree_tag_clear(&pag->pag_ici_root,
1315 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1316 			     XFS_ICI_EOFBLOCKS_TAG);
1317 	if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1318 		/* clear the eofblocks tag from the perag radix tree */
1319 		spin_lock(&ip->i_mount->m_perag_lock);
1320 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1321 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1322 				     XFS_ICI_EOFBLOCKS_TAG);
1323 		spin_unlock(&ip->i_mount->m_perag_lock);
1324 		trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1325 					       -1, _RET_IP_);
1326 	}
1327 
1328 	spin_unlock(&pag->pag_ici_lock);
1329 	xfs_perag_put(pag);
1330 }
1331 
1332