xref: /linux/fs/xfs/xfs_icache.c (revision bea00fab2b0e5359ee88a2b127f15a35cd48872b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_ag.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_health.h"
28 
29 #include <linux/iversion.h>
30 
31 /* Radix tree tags for incore inode tree. */
32 
33 /* inode is to be reclaimed */
34 #define XFS_ICI_RECLAIM_TAG	0
35 /* Inode has speculative preallocations (posteof or cow) to clean. */
36 #define XFS_ICI_BLOCKGC_TAG	1
37 
38 /*
39  * The goal for walking incore inodes.  These can correspond with incore inode
40  * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
41  */
42 enum xfs_icwalk_goal {
43 	/* Goals directly associated with tagged inodes. */
44 	XFS_ICWALK_BLOCKGC	= XFS_ICI_BLOCKGC_TAG,
45 	XFS_ICWALK_RECLAIM	= XFS_ICI_RECLAIM_TAG,
46 };
47 
48 static int xfs_icwalk(struct xfs_mount *mp,
49 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
50 static int xfs_icwalk_ag(struct xfs_perag *pag,
51 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
52 
53 /*
54  * Private inode cache walk flags for struct xfs_icwalk.  Must not
55  * coincide with XFS_ICWALK_FLAGS_VALID.
56  */
57 
58 /* Stop scanning after icw_scan_limit inodes. */
59 #define XFS_ICWALK_FLAG_SCAN_LIMIT	(1U << 28)
60 
61 #define XFS_ICWALK_FLAG_RECLAIM_SICK	(1U << 27)
62 #define XFS_ICWALK_FLAG_UNION		(1U << 26) /* union filter algorithm */
63 
64 #define XFS_ICWALK_PRIVATE_FLAGS	(XFS_ICWALK_FLAG_SCAN_LIMIT | \
65 					 XFS_ICWALK_FLAG_RECLAIM_SICK | \
66 					 XFS_ICWALK_FLAG_UNION)
67 
68 /*
69  * Allocate and initialise an xfs_inode.
70  */
71 struct xfs_inode *
72 xfs_inode_alloc(
73 	struct xfs_mount	*mp,
74 	xfs_ino_t		ino)
75 {
76 	struct xfs_inode	*ip;
77 
78 	/*
79 	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
80 	 * and return NULL here on ENOMEM.
81 	 */
82 	ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
83 
84 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
85 		kmem_cache_free(xfs_inode_cache, ip);
86 		return NULL;
87 	}
88 
89 	/* VFS doesn't initialise i_mode or i_state! */
90 	VFS_I(ip)->i_mode = 0;
91 	VFS_I(ip)->i_state = 0;
92 	mapping_set_large_folios(VFS_I(ip)->i_mapping);
93 
94 	XFS_STATS_INC(mp, vn_active);
95 	ASSERT(atomic_read(&ip->i_pincount) == 0);
96 	ASSERT(ip->i_ino == 0);
97 
98 	/* initialise the xfs inode */
99 	ip->i_ino = ino;
100 	ip->i_mount = mp;
101 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
102 	ip->i_cowfp = NULL;
103 	memset(&ip->i_af, 0, sizeof(ip->i_af));
104 	ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
105 	memset(&ip->i_df, 0, sizeof(ip->i_df));
106 	ip->i_flags = 0;
107 	ip->i_delayed_blks = 0;
108 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
109 	ip->i_nblocks = 0;
110 	ip->i_forkoff = 0;
111 	ip->i_sick = 0;
112 	ip->i_checked = 0;
113 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
114 	INIT_LIST_HEAD(&ip->i_ioend_list);
115 	spin_lock_init(&ip->i_ioend_lock);
116 	ip->i_next_unlinked = NULLAGINO;
117 	ip->i_prev_unlinked = 0;
118 
119 	return ip;
120 }
121 
122 STATIC void
123 xfs_inode_free_callback(
124 	struct rcu_head		*head)
125 {
126 	struct inode		*inode = container_of(head, struct inode, i_rcu);
127 	struct xfs_inode	*ip = XFS_I(inode);
128 
129 	switch (VFS_I(ip)->i_mode & S_IFMT) {
130 	case S_IFREG:
131 	case S_IFDIR:
132 	case S_IFLNK:
133 		xfs_idestroy_fork(&ip->i_df);
134 		break;
135 	}
136 
137 	xfs_ifork_zap_attr(ip);
138 
139 	if (ip->i_cowfp) {
140 		xfs_idestroy_fork(ip->i_cowfp);
141 		kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
142 	}
143 	if (ip->i_itemp) {
144 		ASSERT(!test_bit(XFS_LI_IN_AIL,
145 				 &ip->i_itemp->ili_item.li_flags));
146 		xfs_inode_item_destroy(ip);
147 		ip->i_itemp = NULL;
148 	}
149 
150 	kmem_cache_free(xfs_inode_cache, ip);
151 }
152 
153 static void
154 __xfs_inode_free(
155 	struct xfs_inode	*ip)
156 {
157 	/* asserts to verify all state is correct here */
158 	ASSERT(atomic_read(&ip->i_pincount) == 0);
159 	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
160 	XFS_STATS_DEC(ip->i_mount, vn_active);
161 
162 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
163 }
164 
165 void
166 xfs_inode_free(
167 	struct xfs_inode	*ip)
168 {
169 	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
170 
171 	/*
172 	 * Because we use RCU freeing we need to ensure the inode always
173 	 * appears to be reclaimed with an invalid inode number when in the
174 	 * free state. The ip->i_flags_lock provides the barrier against lookup
175 	 * races.
176 	 */
177 	spin_lock(&ip->i_flags_lock);
178 	ip->i_flags = XFS_IRECLAIM;
179 	ip->i_ino = 0;
180 	spin_unlock(&ip->i_flags_lock);
181 
182 	__xfs_inode_free(ip);
183 }
184 
185 /*
186  * Queue background inode reclaim work if there are reclaimable inodes and there
187  * isn't reclaim work already scheduled or in progress.
188  */
189 static void
190 xfs_reclaim_work_queue(
191 	struct xfs_mount        *mp)
192 {
193 
194 	rcu_read_lock();
195 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
196 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
197 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
198 	}
199 	rcu_read_unlock();
200 }
201 
202 /*
203  * Background scanning to trim preallocated space. This is queued based on the
204  * 'speculative_prealloc_lifetime' tunable (5m by default).
205  */
206 static inline void
207 xfs_blockgc_queue(
208 	struct xfs_perag	*pag)
209 {
210 	struct xfs_mount	*mp = pag->pag_mount;
211 
212 	if (!xfs_is_blockgc_enabled(mp))
213 		return;
214 
215 	rcu_read_lock();
216 	if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
217 		queue_delayed_work(pag->pag_mount->m_blockgc_wq,
218 				   &pag->pag_blockgc_work,
219 				   msecs_to_jiffies(xfs_blockgc_secs * 1000));
220 	rcu_read_unlock();
221 }
222 
223 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
224 static void
225 xfs_perag_set_inode_tag(
226 	struct xfs_perag	*pag,
227 	xfs_agino_t		agino,
228 	unsigned int		tag)
229 {
230 	struct xfs_mount	*mp = pag->pag_mount;
231 	bool			was_tagged;
232 
233 	lockdep_assert_held(&pag->pag_ici_lock);
234 
235 	was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
236 	radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
237 
238 	if (tag == XFS_ICI_RECLAIM_TAG)
239 		pag->pag_ici_reclaimable++;
240 
241 	if (was_tagged)
242 		return;
243 
244 	/* propagate the tag up into the perag radix tree */
245 	spin_lock(&mp->m_perag_lock);
246 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
247 	spin_unlock(&mp->m_perag_lock);
248 
249 	/* start background work */
250 	switch (tag) {
251 	case XFS_ICI_RECLAIM_TAG:
252 		xfs_reclaim_work_queue(mp);
253 		break;
254 	case XFS_ICI_BLOCKGC_TAG:
255 		xfs_blockgc_queue(pag);
256 		break;
257 	}
258 
259 	trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
260 }
261 
262 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
263 static void
264 xfs_perag_clear_inode_tag(
265 	struct xfs_perag	*pag,
266 	xfs_agino_t		agino,
267 	unsigned int		tag)
268 {
269 	struct xfs_mount	*mp = pag->pag_mount;
270 
271 	lockdep_assert_held(&pag->pag_ici_lock);
272 
273 	/*
274 	 * Reclaim can signal (with a null agino) that it cleared its own tag
275 	 * by removing the inode from the radix tree.
276 	 */
277 	if (agino != NULLAGINO)
278 		radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
279 	else
280 		ASSERT(tag == XFS_ICI_RECLAIM_TAG);
281 
282 	if (tag == XFS_ICI_RECLAIM_TAG)
283 		pag->pag_ici_reclaimable--;
284 
285 	if (radix_tree_tagged(&pag->pag_ici_root, tag))
286 		return;
287 
288 	/* clear the tag from the perag radix tree */
289 	spin_lock(&mp->m_perag_lock);
290 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
291 	spin_unlock(&mp->m_perag_lock);
292 
293 	trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
294 }
295 
296 /*
297  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
298  * part of the structure. This is made more complex by the fact we store
299  * information about the on-disk values in the VFS inode and so we can't just
300  * overwrite the values unconditionally. Hence we save the parameters we
301  * need to retain across reinitialisation, and rewrite them into the VFS inode
302  * after reinitialisation even if it fails.
303  */
304 static int
305 xfs_reinit_inode(
306 	struct xfs_mount	*mp,
307 	struct inode		*inode)
308 {
309 	int			error;
310 	uint32_t		nlink = inode->i_nlink;
311 	uint32_t		generation = inode->i_generation;
312 	uint64_t		version = inode_peek_iversion(inode);
313 	umode_t			mode = inode->i_mode;
314 	dev_t			dev = inode->i_rdev;
315 	kuid_t			uid = inode->i_uid;
316 	kgid_t			gid = inode->i_gid;
317 
318 	error = inode_init_always(mp->m_super, inode);
319 
320 	set_nlink(inode, nlink);
321 	inode->i_generation = generation;
322 	inode_set_iversion_queried(inode, version);
323 	inode->i_mode = mode;
324 	inode->i_rdev = dev;
325 	inode->i_uid = uid;
326 	inode->i_gid = gid;
327 	mapping_set_large_folios(inode->i_mapping);
328 	return error;
329 }
330 
331 /*
332  * Carefully nudge an inode whose VFS state has been torn down back into a
333  * usable state.  Drops the i_flags_lock and the rcu read lock.
334  */
335 static int
336 xfs_iget_recycle(
337 	struct xfs_perag	*pag,
338 	struct xfs_inode	*ip) __releases(&ip->i_flags_lock)
339 {
340 	struct xfs_mount	*mp = ip->i_mount;
341 	struct inode		*inode = VFS_I(ip);
342 	int			error;
343 
344 	trace_xfs_iget_recycle(ip);
345 
346 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
347 		return -EAGAIN;
348 
349 	/*
350 	 * We need to make it look like the inode is being reclaimed to prevent
351 	 * the actual reclaim workers from stomping over us while we recycle
352 	 * the inode.  We can't clear the radix tree tag yet as it requires
353 	 * pag_ici_lock to be held exclusive.
354 	 */
355 	ip->i_flags |= XFS_IRECLAIM;
356 
357 	spin_unlock(&ip->i_flags_lock);
358 	rcu_read_unlock();
359 
360 	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
361 	error = xfs_reinit_inode(mp, inode);
362 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
363 	if (error) {
364 		/*
365 		 * Re-initializing the inode failed, and we are in deep
366 		 * trouble.  Try to re-add it to the reclaim list.
367 		 */
368 		rcu_read_lock();
369 		spin_lock(&ip->i_flags_lock);
370 		ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
371 		ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
372 		spin_unlock(&ip->i_flags_lock);
373 		rcu_read_unlock();
374 
375 		trace_xfs_iget_recycle_fail(ip);
376 		return error;
377 	}
378 
379 	spin_lock(&pag->pag_ici_lock);
380 	spin_lock(&ip->i_flags_lock);
381 
382 	/*
383 	 * Clear the per-lifetime state in the inode as we are now effectively
384 	 * a new inode and need to return to the initial state before reuse
385 	 * occurs.
386 	 */
387 	ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
388 	ip->i_flags |= XFS_INEW;
389 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
390 			XFS_ICI_RECLAIM_TAG);
391 	inode->i_state = I_NEW;
392 	spin_unlock(&ip->i_flags_lock);
393 	spin_unlock(&pag->pag_ici_lock);
394 
395 	return 0;
396 }
397 
398 /*
399  * If we are allocating a new inode, then check what was returned is
400  * actually a free, empty inode. If we are not allocating an inode,
401  * then check we didn't find a free inode.
402  *
403  * Returns:
404  *	0		if the inode free state matches the lookup context
405  *	-ENOENT		if the inode is free and we are not allocating
406  *	-EFSCORRUPTED	if there is any state mismatch at all
407  */
408 static int
409 xfs_iget_check_free_state(
410 	struct xfs_inode	*ip,
411 	int			flags)
412 {
413 	if (flags & XFS_IGET_CREATE) {
414 		/* should be a free inode */
415 		if (VFS_I(ip)->i_mode != 0) {
416 			xfs_warn(ip->i_mount,
417 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
418 				ip->i_ino, VFS_I(ip)->i_mode);
419 			xfs_agno_mark_sick(ip->i_mount,
420 					XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
421 					XFS_SICK_AG_INOBT);
422 			return -EFSCORRUPTED;
423 		}
424 
425 		if (ip->i_nblocks != 0) {
426 			xfs_warn(ip->i_mount,
427 "Corruption detected! Free inode 0x%llx has blocks allocated!",
428 				ip->i_ino);
429 			xfs_agno_mark_sick(ip->i_mount,
430 					XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
431 					XFS_SICK_AG_INOBT);
432 			return -EFSCORRUPTED;
433 		}
434 		return 0;
435 	}
436 
437 	/* should be an allocated inode */
438 	if (VFS_I(ip)->i_mode == 0)
439 		return -ENOENT;
440 
441 	return 0;
442 }
443 
444 /* Make all pending inactivation work start immediately. */
445 static bool
446 xfs_inodegc_queue_all(
447 	struct xfs_mount	*mp)
448 {
449 	struct xfs_inodegc	*gc;
450 	int			cpu;
451 	bool			ret = false;
452 
453 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
454 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
455 		if (!llist_empty(&gc->list)) {
456 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
457 			ret = true;
458 		}
459 	}
460 
461 	return ret;
462 }
463 
464 /* Wait for all queued work and collect errors */
465 static int
466 xfs_inodegc_wait_all(
467 	struct xfs_mount	*mp)
468 {
469 	int			cpu;
470 	int			error = 0;
471 
472 	flush_workqueue(mp->m_inodegc_wq);
473 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
474 		struct xfs_inodegc	*gc;
475 
476 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
477 		if (gc->error && !error)
478 			error = gc->error;
479 		gc->error = 0;
480 	}
481 
482 	return error;
483 }
484 
485 /*
486  * Check the validity of the inode we just found it the cache
487  */
488 static int
489 xfs_iget_cache_hit(
490 	struct xfs_perag	*pag,
491 	struct xfs_inode	*ip,
492 	xfs_ino_t		ino,
493 	int			flags,
494 	int			lock_flags) __releases(RCU)
495 {
496 	struct inode		*inode = VFS_I(ip);
497 	struct xfs_mount	*mp = ip->i_mount;
498 	int			error;
499 
500 	/*
501 	 * check for re-use of an inode within an RCU grace period due to the
502 	 * radix tree nodes not being updated yet. We monitor for this by
503 	 * setting the inode number to zero before freeing the inode structure.
504 	 * If the inode has been reallocated and set up, then the inode number
505 	 * will not match, so check for that, too.
506 	 */
507 	spin_lock(&ip->i_flags_lock);
508 	if (ip->i_ino != ino)
509 		goto out_skip;
510 
511 	/*
512 	 * If we are racing with another cache hit that is currently
513 	 * instantiating this inode or currently recycling it out of
514 	 * reclaimable state, wait for the initialisation to complete
515 	 * before continuing.
516 	 *
517 	 * If we're racing with the inactivation worker we also want to wait.
518 	 * If we're creating a new file, it's possible that the worker
519 	 * previously marked the inode as free on disk but hasn't finished
520 	 * updating the incore state yet.  The AGI buffer will be dirty and
521 	 * locked to the icreate transaction, so a synchronous push of the
522 	 * inodegc workers would result in deadlock.  For a regular iget, the
523 	 * worker is running already, so we might as well wait.
524 	 *
525 	 * XXX(hch): eventually we should do something equivalent to
526 	 *	     wait_on_inode to wait for these flags to be cleared
527 	 *	     instead of polling for it.
528 	 */
529 	if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
530 		goto out_skip;
531 
532 	if (ip->i_flags & XFS_NEED_INACTIVE) {
533 		/* Unlinked inodes cannot be re-grabbed. */
534 		if (VFS_I(ip)->i_nlink == 0) {
535 			error = -ENOENT;
536 			goto out_error;
537 		}
538 		goto out_inodegc_flush;
539 	}
540 
541 	/*
542 	 * Check the inode free state is valid. This also detects lookup
543 	 * racing with unlinks.
544 	 */
545 	error = xfs_iget_check_free_state(ip, flags);
546 	if (error)
547 		goto out_error;
548 
549 	/* Skip inodes that have no vfs state. */
550 	if ((flags & XFS_IGET_INCORE) &&
551 	    (ip->i_flags & XFS_IRECLAIMABLE))
552 		goto out_skip;
553 
554 	/* The inode fits the selection criteria; process it. */
555 	if (ip->i_flags & XFS_IRECLAIMABLE) {
556 		/* Drops i_flags_lock and RCU read lock. */
557 		error = xfs_iget_recycle(pag, ip);
558 		if (error == -EAGAIN)
559 			goto out_skip;
560 		if (error)
561 			return error;
562 	} else {
563 		/* If the VFS inode is being torn down, pause and try again. */
564 		if (!igrab(inode))
565 			goto out_skip;
566 
567 		/* We've got a live one. */
568 		spin_unlock(&ip->i_flags_lock);
569 		rcu_read_unlock();
570 		trace_xfs_iget_hit(ip);
571 	}
572 
573 	if (lock_flags != 0)
574 		xfs_ilock(ip, lock_flags);
575 
576 	if (!(flags & XFS_IGET_INCORE))
577 		xfs_iflags_clear(ip, XFS_ISTALE);
578 	XFS_STATS_INC(mp, xs_ig_found);
579 
580 	return 0;
581 
582 out_skip:
583 	trace_xfs_iget_skip(ip);
584 	XFS_STATS_INC(mp, xs_ig_frecycle);
585 	error = -EAGAIN;
586 out_error:
587 	spin_unlock(&ip->i_flags_lock);
588 	rcu_read_unlock();
589 	return error;
590 
591 out_inodegc_flush:
592 	spin_unlock(&ip->i_flags_lock);
593 	rcu_read_unlock();
594 	/*
595 	 * Do not wait for the workers, because the caller could hold an AGI
596 	 * buffer lock.  We're just going to sleep in a loop anyway.
597 	 */
598 	if (xfs_is_inodegc_enabled(mp))
599 		xfs_inodegc_queue_all(mp);
600 	return -EAGAIN;
601 }
602 
603 static int
604 xfs_iget_cache_miss(
605 	struct xfs_mount	*mp,
606 	struct xfs_perag	*pag,
607 	xfs_trans_t		*tp,
608 	xfs_ino_t		ino,
609 	struct xfs_inode	**ipp,
610 	int			flags,
611 	int			lock_flags)
612 {
613 	struct xfs_inode	*ip;
614 	int			error;
615 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
616 	int			iflags;
617 
618 	ip = xfs_inode_alloc(mp, ino);
619 	if (!ip)
620 		return -ENOMEM;
621 
622 	error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
623 	if (error)
624 		goto out_destroy;
625 
626 	/*
627 	 * For version 5 superblocks, if we are initialising a new inode and we
628 	 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
629 	 * simply build the new inode core with a random generation number.
630 	 *
631 	 * For version 4 (and older) superblocks, log recovery is dependent on
632 	 * the i_flushiter field being initialised from the current on-disk
633 	 * value and hence we must also read the inode off disk even when
634 	 * initializing new inodes.
635 	 */
636 	if (xfs_has_v3inodes(mp) &&
637 	    (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
638 		VFS_I(ip)->i_generation = get_random_u32();
639 	} else {
640 		struct xfs_buf		*bp;
641 
642 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
643 		if (error)
644 			goto out_destroy;
645 
646 		error = xfs_inode_from_disk(ip,
647 				xfs_buf_offset(bp, ip->i_imap.im_boffset));
648 		if (!error)
649 			xfs_buf_set_ref(bp, XFS_INO_REF);
650 		else
651 			xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
652 		xfs_trans_brelse(tp, bp);
653 
654 		if (error)
655 			goto out_destroy;
656 	}
657 
658 	trace_xfs_iget_miss(ip);
659 
660 	/*
661 	 * Check the inode free state is valid. This also detects lookup
662 	 * racing with unlinks.
663 	 */
664 	error = xfs_iget_check_free_state(ip, flags);
665 	if (error)
666 		goto out_destroy;
667 
668 	/*
669 	 * Preload the radix tree so we can insert safely under the
670 	 * write spinlock. Note that we cannot sleep inside the preload
671 	 * region.
672 	 */
673 	if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) {
674 		error = -EAGAIN;
675 		goto out_destroy;
676 	}
677 
678 	/*
679 	 * Because the inode hasn't been added to the radix-tree yet it can't
680 	 * be found by another thread, so we can do the non-sleeping lock here.
681 	 */
682 	if (lock_flags) {
683 		if (!xfs_ilock_nowait(ip, lock_flags))
684 			BUG();
685 	}
686 
687 	/*
688 	 * These values must be set before inserting the inode into the radix
689 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
690 	 * RCU locking mechanism) can find it and that lookup must see that this
691 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
692 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
693 	 * memory barrier that ensures this detection works correctly at lookup
694 	 * time.
695 	 */
696 	iflags = XFS_INEW;
697 	if (flags & XFS_IGET_DONTCACHE)
698 		d_mark_dontcache(VFS_I(ip));
699 	ip->i_udquot = NULL;
700 	ip->i_gdquot = NULL;
701 	ip->i_pdquot = NULL;
702 	xfs_iflags_set(ip, iflags);
703 
704 	/* insert the new inode */
705 	spin_lock(&pag->pag_ici_lock);
706 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
707 	if (unlikely(error)) {
708 		WARN_ON(error != -EEXIST);
709 		XFS_STATS_INC(mp, xs_ig_dup);
710 		error = -EAGAIN;
711 		goto out_preload_end;
712 	}
713 	spin_unlock(&pag->pag_ici_lock);
714 	radix_tree_preload_end();
715 
716 	*ipp = ip;
717 	return 0;
718 
719 out_preload_end:
720 	spin_unlock(&pag->pag_ici_lock);
721 	radix_tree_preload_end();
722 	if (lock_flags)
723 		xfs_iunlock(ip, lock_flags);
724 out_destroy:
725 	__destroy_inode(VFS_I(ip));
726 	xfs_inode_free(ip);
727 	return error;
728 }
729 
730 /*
731  * Look up an inode by number in the given file system.  The inode is looked up
732  * in the cache held in each AG.  If the inode is found in the cache, initialise
733  * the vfs inode if necessary.
734  *
735  * If it is not in core, read it in from the file system's device, add it to the
736  * cache and initialise the vfs inode.
737  *
738  * The inode is locked according to the value of the lock_flags parameter.
739  * Inode lookup is only done during metadata operations and not as part of the
740  * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
741  */
742 int
743 xfs_iget(
744 	struct xfs_mount	*mp,
745 	struct xfs_trans	*tp,
746 	xfs_ino_t		ino,
747 	uint			flags,
748 	uint			lock_flags,
749 	struct xfs_inode	**ipp)
750 {
751 	struct xfs_inode	*ip;
752 	struct xfs_perag	*pag;
753 	xfs_agino_t		agino;
754 	int			error;
755 
756 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
757 
758 	/* reject inode numbers outside existing AGs */
759 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
760 		return -EINVAL;
761 
762 	XFS_STATS_INC(mp, xs_ig_attempts);
763 
764 	/* get the perag structure and ensure that it's inode capable */
765 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
766 	agino = XFS_INO_TO_AGINO(mp, ino);
767 
768 again:
769 	error = 0;
770 	rcu_read_lock();
771 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
772 
773 	if (ip) {
774 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
775 		if (error)
776 			goto out_error_or_again;
777 	} else {
778 		rcu_read_unlock();
779 		if (flags & XFS_IGET_INCORE) {
780 			error = -ENODATA;
781 			goto out_error_or_again;
782 		}
783 		XFS_STATS_INC(mp, xs_ig_missed);
784 
785 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
786 							flags, lock_flags);
787 		if (error)
788 			goto out_error_or_again;
789 	}
790 	xfs_perag_put(pag);
791 
792 	*ipp = ip;
793 
794 	/*
795 	 * If we have a real type for an on-disk inode, we can setup the inode
796 	 * now.	 If it's a new inode being created, xfs_init_new_inode will
797 	 * handle it.
798 	 */
799 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
800 		xfs_setup_existing_inode(ip);
801 	return 0;
802 
803 out_error_or_again:
804 	if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
805 	    error == -EAGAIN) {
806 		delay(1);
807 		goto again;
808 	}
809 	xfs_perag_put(pag);
810 	return error;
811 }
812 
813 /*
814  * Grab the inode for reclaim exclusively.
815  *
816  * We have found this inode via a lookup under RCU, so the inode may have
817  * already been freed, or it may be in the process of being recycled by
818  * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
819  * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
820  * will not be set. Hence we need to check for both these flag conditions to
821  * avoid inodes that are no longer reclaim candidates.
822  *
823  * Note: checking for other state flags here, under the i_flags_lock or not, is
824  * racy and should be avoided. Those races should be resolved only after we have
825  * ensured that we are able to reclaim this inode and the world can see that we
826  * are going to reclaim it.
827  *
828  * Return true if we grabbed it, false otherwise.
829  */
830 static bool
831 xfs_reclaim_igrab(
832 	struct xfs_inode	*ip,
833 	struct xfs_icwalk	*icw)
834 {
835 	ASSERT(rcu_read_lock_held());
836 
837 	spin_lock(&ip->i_flags_lock);
838 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
839 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
840 		/* not a reclaim candidate. */
841 		spin_unlock(&ip->i_flags_lock);
842 		return false;
843 	}
844 
845 	/* Don't reclaim a sick inode unless the caller asked for it. */
846 	if (ip->i_sick &&
847 	    (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
848 		spin_unlock(&ip->i_flags_lock);
849 		return false;
850 	}
851 
852 	__xfs_iflags_set(ip, XFS_IRECLAIM);
853 	spin_unlock(&ip->i_flags_lock);
854 	return true;
855 }
856 
857 /*
858  * Inode reclaim is non-blocking, so the default action if progress cannot be
859  * made is to "requeue" the inode for reclaim by unlocking it and clearing the
860  * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
861  * blocking anymore and hence we can wait for the inode to be able to reclaim
862  * it.
863  *
864  * We do no IO here - if callers require inodes to be cleaned they must push the
865  * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
866  * done in the background in a non-blocking manner, and enables memory reclaim
867  * to make progress without blocking.
868  */
869 static void
870 xfs_reclaim_inode(
871 	struct xfs_inode	*ip,
872 	struct xfs_perag	*pag)
873 {
874 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
875 
876 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
877 		goto out;
878 	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
879 		goto out_iunlock;
880 
881 	/*
882 	 * Check for log shutdown because aborting the inode can move the log
883 	 * tail and corrupt in memory state. This is fine if the log is shut
884 	 * down, but if the log is still active and only the mount is shut down
885 	 * then the in-memory log tail movement caused by the abort can be
886 	 * incorrectly propagated to disk.
887 	 */
888 	if (xlog_is_shutdown(ip->i_mount->m_log)) {
889 		xfs_iunpin_wait(ip);
890 		xfs_iflush_shutdown_abort(ip);
891 		goto reclaim;
892 	}
893 	if (xfs_ipincount(ip))
894 		goto out_clear_flush;
895 	if (!xfs_inode_clean(ip))
896 		goto out_clear_flush;
897 
898 	xfs_iflags_clear(ip, XFS_IFLUSHING);
899 reclaim:
900 	trace_xfs_inode_reclaiming(ip);
901 
902 	/*
903 	 * Because we use RCU freeing we need to ensure the inode always appears
904 	 * to be reclaimed with an invalid inode number when in the free state.
905 	 * We do this as early as possible under the ILOCK so that
906 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
907 	 * detect races with us here. By doing this, we guarantee that once
908 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
909 	 * it will see either a valid inode that will serialise correctly, or it
910 	 * will see an invalid inode that it can skip.
911 	 */
912 	spin_lock(&ip->i_flags_lock);
913 	ip->i_flags = XFS_IRECLAIM;
914 	ip->i_ino = 0;
915 	ip->i_sick = 0;
916 	ip->i_checked = 0;
917 	spin_unlock(&ip->i_flags_lock);
918 
919 	ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
920 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
921 
922 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
923 	/*
924 	 * Remove the inode from the per-AG radix tree.
925 	 *
926 	 * Because radix_tree_delete won't complain even if the item was never
927 	 * added to the tree assert that it's been there before to catch
928 	 * problems with the inode life time early on.
929 	 */
930 	spin_lock(&pag->pag_ici_lock);
931 	if (!radix_tree_delete(&pag->pag_ici_root,
932 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
933 		ASSERT(0);
934 	xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
935 	spin_unlock(&pag->pag_ici_lock);
936 
937 	/*
938 	 * Here we do an (almost) spurious inode lock in order to coordinate
939 	 * with inode cache radix tree lookups.  This is because the lookup
940 	 * can reference the inodes in the cache without taking references.
941 	 *
942 	 * We make that OK here by ensuring that we wait until the inode is
943 	 * unlocked after the lookup before we go ahead and free it.
944 	 */
945 	xfs_ilock(ip, XFS_ILOCK_EXCL);
946 	ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
947 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
948 	ASSERT(xfs_inode_clean(ip));
949 
950 	__xfs_inode_free(ip);
951 	return;
952 
953 out_clear_flush:
954 	xfs_iflags_clear(ip, XFS_IFLUSHING);
955 out_iunlock:
956 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
957 out:
958 	xfs_iflags_clear(ip, XFS_IRECLAIM);
959 }
960 
961 /* Reclaim sick inodes if we're unmounting or the fs went down. */
962 static inline bool
963 xfs_want_reclaim_sick(
964 	struct xfs_mount	*mp)
965 {
966 	return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
967 	       xfs_is_shutdown(mp);
968 }
969 
970 void
971 xfs_reclaim_inodes(
972 	struct xfs_mount	*mp)
973 {
974 	struct xfs_icwalk	icw = {
975 		.icw_flags	= 0,
976 	};
977 
978 	if (xfs_want_reclaim_sick(mp))
979 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
980 
981 	while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
982 		xfs_ail_push_all_sync(mp->m_ail);
983 		xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
984 	}
985 }
986 
987 /*
988  * The shrinker infrastructure determines how many inodes we should scan for
989  * reclaim. We want as many clean inodes ready to reclaim as possible, so we
990  * push the AIL here. We also want to proactively free up memory if we can to
991  * minimise the amount of work memory reclaim has to do so we kick the
992  * background reclaim if it isn't already scheduled.
993  */
994 long
995 xfs_reclaim_inodes_nr(
996 	struct xfs_mount	*mp,
997 	unsigned long		nr_to_scan)
998 {
999 	struct xfs_icwalk	icw = {
1000 		.icw_flags	= XFS_ICWALK_FLAG_SCAN_LIMIT,
1001 		.icw_scan_limit	= min_t(unsigned long, LONG_MAX, nr_to_scan),
1002 	};
1003 
1004 	if (xfs_want_reclaim_sick(mp))
1005 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1006 
1007 	/* kick background reclaimer and push the AIL */
1008 	xfs_reclaim_work_queue(mp);
1009 	xfs_ail_push_all(mp->m_ail);
1010 
1011 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1012 	return 0;
1013 }
1014 
1015 /*
1016  * Return the number of reclaimable inodes in the filesystem for
1017  * the shrinker to determine how much to reclaim.
1018  */
1019 long
1020 xfs_reclaim_inodes_count(
1021 	struct xfs_mount	*mp)
1022 {
1023 	struct xfs_perag	*pag;
1024 	xfs_agnumber_t		ag = 0;
1025 	long			reclaimable = 0;
1026 
1027 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1028 		ag = pag->pag_agno + 1;
1029 		reclaimable += pag->pag_ici_reclaimable;
1030 		xfs_perag_put(pag);
1031 	}
1032 	return reclaimable;
1033 }
1034 
1035 STATIC bool
1036 xfs_icwalk_match_id(
1037 	struct xfs_inode	*ip,
1038 	struct xfs_icwalk	*icw)
1039 {
1040 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1041 	    !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1042 		return false;
1043 
1044 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1045 	    !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1046 		return false;
1047 
1048 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1049 	    ip->i_projid != icw->icw_prid)
1050 		return false;
1051 
1052 	return true;
1053 }
1054 
1055 /*
1056  * A union-based inode filtering algorithm. Process the inode if any of the
1057  * criteria match. This is for global/internal scans only.
1058  */
1059 STATIC bool
1060 xfs_icwalk_match_id_union(
1061 	struct xfs_inode	*ip,
1062 	struct xfs_icwalk	*icw)
1063 {
1064 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1065 	    uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1066 		return true;
1067 
1068 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1069 	    gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1070 		return true;
1071 
1072 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1073 	    ip->i_projid == icw->icw_prid)
1074 		return true;
1075 
1076 	return false;
1077 }
1078 
1079 /*
1080  * Is this inode @ip eligible for eof/cow block reclamation, given some
1081  * filtering parameters @icw?  The inode is eligible if @icw is null or
1082  * if the predicate functions match.
1083  */
1084 static bool
1085 xfs_icwalk_match(
1086 	struct xfs_inode	*ip,
1087 	struct xfs_icwalk	*icw)
1088 {
1089 	bool			match;
1090 
1091 	if (!icw)
1092 		return true;
1093 
1094 	if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1095 		match = xfs_icwalk_match_id_union(ip, icw);
1096 	else
1097 		match = xfs_icwalk_match_id(ip, icw);
1098 	if (!match)
1099 		return false;
1100 
1101 	/* skip the inode if the file size is too small */
1102 	if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1103 	    XFS_ISIZE(ip) < icw->icw_min_file_size)
1104 		return false;
1105 
1106 	return true;
1107 }
1108 
1109 /*
1110  * This is a fast pass over the inode cache to try to get reclaim moving on as
1111  * many inodes as possible in a short period of time. It kicks itself every few
1112  * seconds, as well as being kicked by the inode cache shrinker when memory
1113  * goes low.
1114  */
1115 void
1116 xfs_reclaim_worker(
1117 	struct work_struct *work)
1118 {
1119 	struct xfs_mount *mp = container_of(to_delayed_work(work),
1120 					struct xfs_mount, m_reclaim_work);
1121 
1122 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1123 	xfs_reclaim_work_queue(mp);
1124 }
1125 
1126 STATIC int
1127 xfs_inode_free_eofblocks(
1128 	struct xfs_inode	*ip,
1129 	struct xfs_icwalk	*icw,
1130 	unsigned int		*lockflags)
1131 {
1132 	bool			wait;
1133 
1134 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1135 
1136 	if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1137 		return 0;
1138 
1139 	/*
1140 	 * If the mapping is dirty the operation can block and wait for some
1141 	 * time. Unless we are waiting, skip it.
1142 	 */
1143 	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1144 		return 0;
1145 
1146 	if (!xfs_icwalk_match(ip, icw))
1147 		return 0;
1148 
1149 	/*
1150 	 * If the caller is waiting, return -EAGAIN to keep the background
1151 	 * scanner moving and revisit the inode in a subsequent pass.
1152 	 */
1153 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1154 		if (wait)
1155 			return -EAGAIN;
1156 		return 0;
1157 	}
1158 	*lockflags |= XFS_IOLOCK_EXCL;
1159 
1160 	if (xfs_can_free_eofblocks(ip, false))
1161 		return xfs_free_eofblocks(ip);
1162 
1163 	/* inode could be preallocated or append-only */
1164 	trace_xfs_inode_free_eofblocks_invalid(ip);
1165 	xfs_inode_clear_eofblocks_tag(ip);
1166 	return 0;
1167 }
1168 
1169 static void
1170 xfs_blockgc_set_iflag(
1171 	struct xfs_inode	*ip,
1172 	unsigned long		iflag)
1173 {
1174 	struct xfs_mount	*mp = ip->i_mount;
1175 	struct xfs_perag	*pag;
1176 
1177 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1178 
1179 	/*
1180 	 * Don't bother locking the AG and looking up in the radix trees
1181 	 * if we already know that we have the tag set.
1182 	 */
1183 	if (ip->i_flags & iflag)
1184 		return;
1185 	spin_lock(&ip->i_flags_lock);
1186 	ip->i_flags |= iflag;
1187 	spin_unlock(&ip->i_flags_lock);
1188 
1189 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1190 	spin_lock(&pag->pag_ici_lock);
1191 
1192 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1193 			XFS_ICI_BLOCKGC_TAG);
1194 
1195 	spin_unlock(&pag->pag_ici_lock);
1196 	xfs_perag_put(pag);
1197 }
1198 
1199 void
1200 xfs_inode_set_eofblocks_tag(
1201 	xfs_inode_t	*ip)
1202 {
1203 	trace_xfs_inode_set_eofblocks_tag(ip);
1204 	return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1205 }
1206 
1207 static void
1208 xfs_blockgc_clear_iflag(
1209 	struct xfs_inode	*ip,
1210 	unsigned long		iflag)
1211 {
1212 	struct xfs_mount	*mp = ip->i_mount;
1213 	struct xfs_perag	*pag;
1214 	bool			clear_tag;
1215 
1216 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1217 
1218 	spin_lock(&ip->i_flags_lock);
1219 	ip->i_flags &= ~iflag;
1220 	clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1221 	spin_unlock(&ip->i_flags_lock);
1222 
1223 	if (!clear_tag)
1224 		return;
1225 
1226 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1227 	spin_lock(&pag->pag_ici_lock);
1228 
1229 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1230 			XFS_ICI_BLOCKGC_TAG);
1231 
1232 	spin_unlock(&pag->pag_ici_lock);
1233 	xfs_perag_put(pag);
1234 }
1235 
1236 void
1237 xfs_inode_clear_eofblocks_tag(
1238 	xfs_inode_t	*ip)
1239 {
1240 	trace_xfs_inode_clear_eofblocks_tag(ip);
1241 	return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1242 }
1243 
1244 /*
1245  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1246  * then we can bail out quickly, but otherwise we must back off if the file
1247  * is undergoing some kind of write.
1248  */
1249 static bool
1250 xfs_prep_free_cowblocks(
1251 	struct xfs_inode	*ip)
1252 {
1253 	/*
1254 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1255 	 * possible the inode was fully unshared since it was originally tagged.
1256 	 */
1257 	if (!xfs_inode_has_cow_data(ip)) {
1258 		trace_xfs_inode_free_cowblocks_invalid(ip);
1259 		xfs_inode_clear_cowblocks_tag(ip);
1260 		return false;
1261 	}
1262 
1263 	/*
1264 	 * If the mapping is dirty or under writeback we cannot touch the
1265 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1266 	 */
1267 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1268 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1269 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1270 	    atomic_read(&VFS_I(ip)->i_dio_count))
1271 		return false;
1272 
1273 	return true;
1274 }
1275 
1276 /*
1277  * Automatic CoW Reservation Freeing
1278  *
1279  * These functions automatically garbage collect leftover CoW reservations
1280  * that were made on behalf of a cowextsize hint when we start to run out
1281  * of quota or when the reservations sit around for too long.  If the file
1282  * has dirty pages or is undergoing writeback, its CoW reservations will
1283  * be retained.
1284  *
1285  * The actual garbage collection piggybacks off the same code that runs
1286  * the speculative EOF preallocation garbage collector.
1287  */
1288 STATIC int
1289 xfs_inode_free_cowblocks(
1290 	struct xfs_inode	*ip,
1291 	struct xfs_icwalk	*icw,
1292 	unsigned int		*lockflags)
1293 {
1294 	bool			wait;
1295 	int			ret = 0;
1296 
1297 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1298 
1299 	if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1300 		return 0;
1301 
1302 	if (!xfs_prep_free_cowblocks(ip))
1303 		return 0;
1304 
1305 	if (!xfs_icwalk_match(ip, icw))
1306 		return 0;
1307 
1308 	/*
1309 	 * If the caller is waiting, return -EAGAIN to keep the background
1310 	 * scanner moving and revisit the inode in a subsequent pass.
1311 	 */
1312 	if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1313 	    !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1314 		if (wait)
1315 			return -EAGAIN;
1316 		return 0;
1317 	}
1318 	*lockflags |= XFS_IOLOCK_EXCL;
1319 
1320 	if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1321 		if (wait)
1322 			return -EAGAIN;
1323 		return 0;
1324 	}
1325 	*lockflags |= XFS_MMAPLOCK_EXCL;
1326 
1327 	/*
1328 	 * Check again, nobody else should be able to dirty blocks or change
1329 	 * the reflink iflag now that we have the first two locks held.
1330 	 */
1331 	if (xfs_prep_free_cowblocks(ip))
1332 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1333 	return ret;
1334 }
1335 
1336 void
1337 xfs_inode_set_cowblocks_tag(
1338 	xfs_inode_t	*ip)
1339 {
1340 	trace_xfs_inode_set_cowblocks_tag(ip);
1341 	return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1342 }
1343 
1344 void
1345 xfs_inode_clear_cowblocks_tag(
1346 	xfs_inode_t	*ip)
1347 {
1348 	trace_xfs_inode_clear_cowblocks_tag(ip);
1349 	return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1350 }
1351 
1352 /* Disable post-EOF and CoW block auto-reclamation. */
1353 void
1354 xfs_blockgc_stop(
1355 	struct xfs_mount	*mp)
1356 {
1357 	struct xfs_perag	*pag;
1358 	xfs_agnumber_t		agno;
1359 
1360 	if (!xfs_clear_blockgc_enabled(mp))
1361 		return;
1362 
1363 	for_each_perag(mp, agno, pag)
1364 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
1365 	trace_xfs_blockgc_stop(mp, __return_address);
1366 }
1367 
1368 /* Enable post-EOF and CoW block auto-reclamation. */
1369 void
1370 xfs_blockgc_start(
1371 	struct xfs_mount	*mp)
1372 {
1373 	struct xfs_perag	*pag;
1374 	xfs_agnumber_t		agno;
1375 
1376 	if (xfs_set_blockgc_enabled(mp))
1377 		return;
1378 
1379 	trace_xfs_blockgc_start(mp, __return_address);
1380 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1381 		xfs_blockgc_queue(pag);
1382 }
1383 
1384 /* Don't try to run block gc on an inode that's in any of these states. */
1385 #define XFS_BLOCKGC_NOGRAB_IFLAGS	(XFS_INEW | \
1386 					 XFS_NEED_INACTIVE | \
1387 					 XFS_INACTIVATING | \
1388 					 XFS_IRECLAIMABLE | \
1389 					 XFS_IRECLAIM)
1390 /*
1391  * Decide if the given @ip is eligible for garbage collection of speculative
1392  * preallocations, and grab it if so.  Returns true if it's ready to go or
1393  * false if we should just ignore it.
1394  */
1395 static bool
1396 xfs_blockgc_igrab(
1397 	struct xfs_inode	*ip)
1398 {
1399 	struct inode		*inode = VFS_I(ip);
1400 
1401 	ASSERT(rcu_read_lock_held());
1402 
1403 	/* Check for stale RCU freed inode */
1404 	spin_lock(&ip->i_flags_lock);
1405 	if (!ip->i_ino)
1406 		goto out_unlock_noent;
1407 
1408 	if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1409 		goto out_unlock_noent;
1410 	spin_unlock(&ip->i_flags_lock);
1411 
1412 	/* nothing to sync during shutdown */
1413 	if (xfs_is_shutdown(ip->i_mount))
1414 		return false;
1415 
1416 	/* If we can't grab the inode, it must on it's way to reclaim. */
1417 	if (!igrab(inode))
1418 		return false;
1419 
1420 	/* inode is valid */
1421 	return true;
1422 
1423 out_unlock_noent:
1424 	spin_unlock(&ip->i_flags_lock);
1425 	return false;
1426 }
1427 
1428 /* Scan one incore inode for block preallocations that we can remove. */
1429 static int
1430 xfs_blockgc_scan_inode(
1431 	struct xfs_inode	*ip,
1432 	struct xfs_icwalk	*icw)
1433 {
1434 	unsigned int		lockflags = 0;
1435 	int			error;
1436 
1437 	error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1438 	if (error)
1439 		goto unlock;
1440 
1441 	error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1442 unlock:
1443 	if (lockflags)
1444 		xfs_iunlock(ip, lockflags);
1445 	xfs_irele(ip);
1446 	return error;
1447 }
1448 
1449 /* Background worker that trims preallocated space. */
1450 void
1451 xfs_blockgc_worker(
1452 	struct work_struct	*work)
1453 {
1454 	struct xfs_perag	*pag = container_of(to_delayed_work(work),
1455 					struct xfs_perag, pag_blockgc_work);
1456 	struct xfs_mount	*mp = pag->pag_mount;
1457 	int			error;
1458 
1459 	trace_xfs_blockgc_worker(mp, __return_address);
1460 
1461 	error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1462 	if (error)
1463 		xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1464 				pag->pag_agno, error);
1465 	xfs_blockgc_queue(pag);
1466 }
1467 
1468 /*
1469  * Try to free space in the filesystem by purging inactive inodes, eofblocks
1470  * and cowblocks.
1471  */
1472 int
1473 xfs_blockgc_free_space(
1474 	struct xfs_mount	*mp,
1475 	struct xfs_icwalk	*icw)
1476 {
1477 	int			error;
1478 
1479 	trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1480 
1481 	error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1482 	if (error)
1483 		return error;
1484 
1485 	return xfs_inodegc_flush(mp);
1486 }
1487 
1488 /*
1489  * Reclaim all the free space that we can by scheduling the background blockgc
1490  * and inodegc workers immediately and waiting for them all to clear.
1491  */
1492 int
1493 xfs_blockgc_flush_all(
1494 	struct xfs_mount	*mp)
1495 {
1496 	struct xfs_perag	*pag;
1497 	xfs_agnumber_t		agno;
1498 
1499 	trace_xfs_blockgc_flush_all(mp, __return_address);
1500 
1501 	/*
1502 	 * For each blockgc worker, move its queue time up to now.  If it
1503 	 * wasn't queued, it will not be requeued.  Then flush whatever's
1504 	 * left.
1505 	 */
1506 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1507 		mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1508 				&pag->pag_blockgc_work, 0);
1509 
1510 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1511 		flush_delayed_work(&pag->pag_blockgc_work);
1512 
1513 	return xfs_inodegc_flush(mp);
1514 }
1515 
1516 /*
1517  * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
1518  * quota caused an allocation failure, so we make a best effort by including
1519  * each quota under low free space conditions (less than 1% free space) in the
1520  * scan.
1521  *
1522  * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
1523  * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1524  * MMAPLOCK.
1525  */
1526 int
1527 xfs_blockgc_free_dquots(
1528 	struct xfs_mount	*mp,
1529 	struct xfs_dquot	*udqp,
1530 	struct xfs_dquot	*gdqp,
1531 	struct xfs_dquot	*pdqp,
1532 	unsigned int		iwalk_flags)
1533 {
1534 	struct xfs_icwalk	icw = {0};
1535 	bool			do_work = false;
1536 
1537 	if (!udqp && !gdqp && !pdqp)
1538 		return 0;
1539 
1540 	/*
1541 	 * Run a scan to free blocks using the union filter to cover all
1542 	 * applicable quotas in a single scan.
1543 	 */
1544 	icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1545 
1546 	if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1547 		icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1548 		icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1549 		do_work = true;
1550 	}
1551 
1552 	if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1553 		icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1554 		icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1555 		do_work = true;
1556 	}
1557 
1558 	if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1559 		icw.icw_prid = pdqp->q_id;
1560 		icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1561 		do_work = true;
1562 	}
1563 
1564 	if (!do_work)
1565 		return 0;
1566 
1567 	return xfs_blockgc_free_space(mp, &icw);
1568 }
1569 
1570 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1571 int
1572 xfs_blockgc_free_quota(
1573 	struct xfs_inode	*ip,
1574 	unsigned int		iwalk_flags)
1575 {
1576 	return xfs_blockgc_free_dquots(ip->i_mount,
1577 			xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1578 			xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1579 			xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1580 }
1581 
1582 /* XFS Inode Cache Walking Code */
1583 
1584 /*
1585  * The inode lookup is done in batches to keep the amount of lock traffic and
1586  * radix tree lookups to a minimum. The batch size is a trade off between
1587  * lookup reduction and stack usage. This is in the reclaim path, so we can't
1588  * be too greedy.
1589  */
1590 #define XFS_LOOKUP_BATCH	32
1591 
1592 
1593 /*
1594  * Decide if we want to grab this inode in anticipation of doing work towards
1595  * the goal.
1596  */
1597 static inline bool
1598 xfs_icwalk_igrab(
1599 	enum xfs_icwalk_goal	goal,
1600 	struct xfs_inode	*ip,
1601 	struct xfs_icwalk	*icw)
1602 {
1603 	switch (goal) {
1604 	case XFS_ICWALK_BLOCKGC:
1605 		return xfs_blockgc_igrab(ip);
1606 	case XFS_ICWALK_RECLAIM:
1607 		return xfs_reclaim_igrab(ip, icw);
1608 	default:
1609 		return false;
1610 	}
1611 }
1612 
1613 /*
1614  * Process an inode.  Each processing function must handle any state changes
1615  * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
1616  */
1617 static inline int
1618 xfs_icwalk_process_inode(
1619 	enum xfs_icwalk_goal	goal,
1620 	struct xfs_inode	*ip,
1621 	struct xfs_perag	*pag,
1622 	struct xfs_icwalk	*icw)
1623 {
1624 	int			error = 0;
1625 
1626 	switch (goal) {
1627 	case XFS_ICWALK_BLOCKGC:
1628 		error = xfs_blockgc_scan_inode(ip, icw);
1629 		break;
1630 	case XFS_ICWALK_RECLAIM:
1631 		xfs_reclaim_inode(ip, pag);
1632 		break;
1633 	}
1634 	return error;
1635 }
1636 
1637 /*
1638  * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1639  * process them in some manner.
1640  */
1641 static int
1642 xfs_icwalk_ag(
1643 	struct xfs_perag	*pag,
1644 	enum xfs_icwalk_goal	goal,
1645 	struct xfs_icwalk	*icw)
1646 {
1647 	struct xfs_mount	*mp = pag->pag_mount;
1648 	uint32_t		first_index;
1649 	int			last_error = 0;
1650 	int			skipped;
1651 	bool			done;
1652 	int			nr_found;
1653 
1654 restart:
1655 	done = false;
1656 	skipped = 0;
1657 	if (goal == XFS_ICWALK_RECLAIM)
1658 		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1659 	else
1660 		first_index = 0;
1661 	nr_found = 0;
1662 	do {
1663 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1664 		int		error = 0;
1665 		int		i;
1666 
1667 		rcu_read_lock();
1668 
1669 		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1670 				(void **) batch, first_index,
1671 				XFS_LOOKUP_BATCH, goal);
1672 		if (!nr_found) {
1673 			done = true;
1674 			rcu_read_unlock();
1675 			break;
1676 		}
1677 
1678 		/*
1679 		 * Grab the inodes before we drop the lock. if we found
1680 		 * nothing, nr == 0 and the loop will be skipped.
1681 		 */
1682 		for (i = 0; i < nr_found; i++) {
1683 			struct xfs_inode *ip = batch[i];
1684 
1685 			if (done || !xfs_icwalk_igrab(goal, ip, icw))
1686 				batch[i] = NULL;
1687 
1688 			/*
1689 			 * Update the index for the next lookup. Catch
1690 			 * overflows into the next AG range which can occur if
1691 			 * we have inodes in the last block of the AG and we
1692 			 * are currently pointing to the last inode.
1693 			 *
1694 			 * Because we may see inodes that are from the wrong AG
1695 			 * due to RCU freeing and reallocation, only update the
1696 			 * index if it lies in this AG. It was a race that lead
1697 			 * us to see this inode, so another lookup from the
1698 			 * same index will not find it again.
1699 			 */
1700 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1701 				continue;
1702 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1703 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1704 				done = true;
1705 		}
1706 
1707 		/* unlock now we've grabbed the inodes. */
1708 		rcu_read_unlock();
1709 
1710 		for (i = 0; i < nr_found; i++) {
1711 			if (!batch[i])
1712 				continue;
1713 			error = xfs_icwalk_process_inode(goal, batch[i], pag,
1714 					icw);
1715 			if (error == -EAGAIN) {
1716 				skipped++;
1717 				continue;
1718 			}
1719 			if (error && last_error != -EFSCORRUPTED)
1720 				last_error = error;
1721 		}
1722 
1723 		/* bail out if the filesystem is corrupted.  */
1724 		if (error == -EFSCORRUPTED)
1725 			break;
1726 
1727 		cond_resched();
1728 
1729 		if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1730 			icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1731 			if (icw->icw_scan_limit <= 0)
1732 				break;
1733 		}
1734 	} while (nr_found && !done);
1735 
1736 	if (goal == XFS_ICWALK_RECLAIM) {
1737 		if (done)
1738 			first_index = 0;
1739 		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1740 	}
1741 
1742 	if (skipped) {
1743 		delay(1);
1744 		goto restart;
1745 	}
1746 	return last_error;
1747 }
1748 
1749 /* Walk all incore inodes to achieve a given goal. */
1750 static int
1751 xfs_icwalk(
1752 	struct xfs_mount	*mp,
1753 	enum xfs_icwalk_goal	goal,
1754 	struct xfs_icwalk	*icw)
1755 {
1756 	struct xfs_perag	*pag;
1757 	int			error = 0;
1758 	int			last_error = 0;
1759 	xfs_agnumber_t		agno;
1760 
1761 	for_each_perag_tag(mp, agno, pag, goal) {
1762 		error = xfs_icwalk_ag(pag, goal, icw);
1763 		if (error) {
1764 			last_error = error;
1765 			if (error == -EFSCORRUPTED) {
1766 				xfs_perag_rele(pag);
1767 				break;
1768 			}
1769 		}
1770 	}
1771 	return last_error;
1772 	BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1773 }
1774 
1775 #ifdef DEBUG
1776 static void
1777 xfs_check_delalloc(
1778 	struct xfs_inode	*ip,
1779 	int			whichfork)
1780 {
1781 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
1782 	struct xfs_bmbt_irec	got;
1783 	struct xfs_iext_cursor	icur;
1784 
1785 	if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1786 		return;
1787 	do {
1788 		if (isnullstartblock(got.br_startblock)) {
1789 			xfs_warn(ip->i_mount,
1790 	"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1791 				ip->i_ino,
1792 				whichfork == XFS_DATA_FORK ? "data" : "cow",
1793 				got.br_startoff, got.br_blockcount);
1794 		}
1795 	} while (xfs_iext_next_extent(ifp, &icur, &got));
1796 }
1797 #else
1798 #define xfs_check_delalloc(ip, whichfork)	do { } while (0)
1799 #endif
1800 
1801 /* Schedule the inode for reclaim. */
1802 static void
1803 xfs_inodegc_set_reclaimable(
1804 	struct xfs_inode	*ip)
1805 {
1806 	struct xfs_mount	*mp = ip->i_mount;
1807 	struct xfs_perag	*pag;
1808 
1809 	if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1810 		xfs_check_delalloc(ip, XFS_DATA_FORK);
1811 		xfs_check_delalloc(ip, XFS_COW_FORK);
1812 		ASSERT(0);
1813 	}
1814 
1815 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1816 	spin_lock(&pag->pag_ici_lock);
1817 	spin_lock(&ip->i_flags_lock);
1818 
1819 	trace_xfs_inode_set_reclaimable(ip);
1820 	ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1821 	ip->i_flags |= XFS_IRECLAIMABLE;
1822 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1823 			XFS_ICI_RECLAIM_TAG);
1824 
1825 	spin_unlock(&ip->i_flags_lock);
1826 	spin_unlock(&pag->pag_ici_lock);
1827 	xfs_perag_put(pag);
1828 }
1829 
1830 /*
1831  * Free all speculative preallocations and possibly even the inode itself.
1832  * This is the last chance to make changes to an otherwise unreferenced file
1833  * before incore reclamation happens.
1834  */
1835 static int
1836 xfs_inodegc_inactivate(
1837 	struct xfs_inode	*ip)
1838 {
1839 	int			error;
1840 
1841 	trace_xfs_inode_inactivating(ip);
1842 	error = xfs_inactive(ip);
1843 	xfs_inodegc_set_reclaimable(ip);
1844 	return error;
1845 
1846 }
1847 
1848 void
1849 xfs_inodegc_worker(
1850 	struct work_struct	*work)
1851 {
1852 	struct xfs_inodegc	*gc = container_of(to_delayed_work(work),
1853 						struct xfs_inodegc, work);
1854 	struct llist_node	*node = llist_del_all(&gc->list);
1855 	struct xfs_inode	*ip, *n;
1856 	struct xfs_mount	*mp = gc->mp;
1857 	unsigned int		nofs_flag;
1858 
1859 	/*
1860 	 * Clear the cpu mask bit and ensure that we have seen the latest
1861 	 * update of the gc structure associated with this CPU. This matches
1862 	 * with the release semantics used when setting the cpumask bit in
1863 	 * xfs_inodegc_queue.
1864 	 */
1865 	cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask);
1866 	smp_mb__after_atomic();
1867 
1868 	WRITE_ONCE(gc->items, 0);
1869 
1870 	if (!node)
1871 		return;
1872 
1873 	/*
1874 	 * We can allocate memory here while doing writeback on behalf of
1875 	 * memory reclaim.  To avoid memory allocation deadlocks set the
1876 	 * task-wide nofs context for the following operations.
1877 	 */
1878 	nofs_flag = memalloc_nofs_save();
1879 
1880 	ip = llist_entry(node, struct xfs_inode, i_gclist);
1881 	trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits));
1882 
1883 	WRITE_ONCE(gc->shrinker_hits, 0);
1884 	llist_for_each_entry_safe(ip, n, node, i_gclist) {
1885 		int	error;
1886 
1887 		xfs_iflags_set(ip, XFS_INACTIVATING);
1888 		error = xfs_inodegc_inactivate(ip);
1889 		if (error && !gc->error)
1890 			gc->error = error;
1891 	}
1892 
1893 	memalloc_nofs_restore(nofs_flag);
1894 }
1895 
1896 /*
1897  * Expedite all pending inodegc work to run immediately. This does not wait for
1898  * completion of the work.
1899  */
1900 void
1901 xfs_inodegc_push(
1902 	struct xfs_mount	*mp)
1903 {
1904 	if (!xfs_is_inodegc_enabled(mp))
1905 		return;
1906 	trace_xfs_inodegc_push(mp, __return_address);
1907 	xfs_inodegc_queue_all(mp);
1908 }
1909 
1910 /*
1911  * Force all currently queued inode inactivation work to run immediately and
1912  * wait for the work to finish.
1913  */
1914 int
1915 xfs_inodegc_flush(
1916 	struct xfs_mount	*mp)
1917 {
1918 	xfs_inodegc_push(mp);
1919 	trace_xfs_inodegc_flush(mp, __return_address);
1920 	return xfs_inodegc_wait_all(mp);
1921 }
1922 
1923 /*
1924  * Flush all the pending work and then disable the inode inactivation background
1925  * workers and wait for them to stop.  Caller must hold sb->s_umount to
1926  * coordinate changes in the inodegc_enabled state.
1927  */
1928 void
1929 xfs_inodegc_stop(
1930 	struct xfs_mount	*mp)
1931 {
1932 	bool			rerun;
1933 
1934 	if (!xfs_clear_inodegc_enabled(mp))
1935 		return;
1936 
1937 	/*
1938 	 * Drain all pending inodegc work, including inodes that could be
1939 	 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
1940 	 * threads that sample the inodegc state just prior to us clearing it.
1941 	 * The inodegc flag state prevents new threads from queuing more
1942 	 * inodes, so we queue pending work items and flush the workqueue until
1943 	 * all inodegc lists are empty.  IOWs, we cannot use drain_workqueue
1944 	 * here because it does not allow other unserialized mechanisms to
1945 	 * reschedule inodegc work while this draining is in progress.
1946 	 */
1947 	xfs_inodegc_queue_all(mp);
1948 	do {
1949 		flush_workqueue(mp->m_inodegc_wq);
1950 		rerun = xfs_inodegc_queue_all(mp);
1951 	} while (rerun);
1952 
1953 	trace_xfs_inodegc_stop(mp, __return_address);
1954 }
1955 
1956 /*
1957  * Enable the inode inactivation background workers and schedule deferred inode
1958  * inactivation work if there is any.  Caller must hold sb->s_umount to
1959  * coordinate changes in the inodegc_enabled state.
1960  */
1961 void
1962 xfs_inodegc_start(
1963 	struct xfs_mount	*mp)
1964 {
1965 	if (xfs_set_inodegc_enabled(mp))
1966 		return;
1967 
1968 	trace_xfs_inodegc_start(mp, __return_address);
1969 	xfs_inodegc_queue_all(mp);
1970 }
1971 
1972 #ifdef CONFIG_XFS_RT
1973 static inline bool
1974 xfs_inodegc_want_queue_rt_file(
1975 	struct xfs_inode	*ip)
1976 {
1977 	struct xfs_mount	*mp = ip->i_mount;
1978 
1979 	if (!XFS_IS_REALTIME_INODE(ip))
1980 		return false;
1981 
1982 	if (__percpu_counter_compare(&mp->m_frextents,
1983 				mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
1984 				XFS_FDBLOCKS_BATCH) < 0)
1985 		return true;
1986 
1987 	return false;
1988 }
1989 #else
1990 # define xfs_inodegc_want_queue_rt_file(ip)	(false)
1991 #endif /* CONFIG_XFS_RT */
1992 
1993 /*
1994  * Schedule the inactivation worker when:
1995  *
1996  *  - We've accumulated more than one inode cluster buffer's worth of inodes.
1997  *  - There is less than 5% free space left.
1998  *  - Any of the quotas for this inode are near an enforcement limit.
1999  */
2000 static inline bool
2001 xfs_inodegc_want_queue_work(
2002 	struct xfs_inode	*ip,
2003 	unsigned int		items)
2004 {
2005 	struct xfs_mount	*mp = ip->i_mount;
2006 
2007 	if (items > mp->m_ino_geo.inodes_per_cluster)
2008 		return true;
2009 
2010 	if (__percpu_counter_compare(&mp->m_fdblocks,
2011 				mp->m_low_space[XFS_LOWSP_5_PCNT],
2012 				XFS_FDBLOCKS_BATCH) < 0)
2013 		return true;
2014 
2015 	if (xfs_inodegc_want_queue_rt_file(ip))
2016 		return true;
2017 
2018 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
2019 		return true;
2020 
2021 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
2022 		return true;
2023 
2024 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
2025 		return true;
2026 
2027 	return false;
2028 }
2029 
2030 /*
2031  * Upper bound on the number of inodes in each AG that can be queued for
2032  * inactivation at any given time, to avoid monopolizing the workqueue.
2033  */
2034 #define XFS_INODEGC_MAX_BACKLOG		(4 * XFS_INODES_PER_CHUNK)
2035 
2036 /*
2037  * Make the frontend wait for inactivations when:
2038  *
2039  *  - Memory shrinkers queued the inactivation worker and it hasn't finished.
2040  *  - The queue depth exceeds the maximum allowable percpu backlog.
2041  *
2042  * Note: If we are in a NOFS context here (e.g. current thread is running a
2043  * transaction) the we don't want to block here as inodegc progress may require
2044  * filesystem resources we hold to make progress and that could result in a
2045  * deadlock. Hence we skip out of here if we are in a scoped NOFS context.
2046  */
2047 static inline bool
2048 xfs_inodegc_want_flush_work(
2049 	struct xfs_inode	*ip,
2050 	unsigned int		items,
2051 	unsigned int		shrinker_hits)
2052 {
2053 	if (current->flags & PF_MEMALLOC_NOFS)
2054 		return false;
2055 
2056 	if (shrinker_hits > 0)
2057 		return true;
2058 
2059 	if (items > XFS_INODEGC_MAX_BACKLOG)
2060 		return true;
2061 
2062 	return false;
2063 }
2064 
2065 /*
2066  * Queue a background inactivation worker if there are inodes that need to be
2067  * inactivated and higher level xfs code hasn't disabled the background
2068  * workers.
2069  */
2070 static void
2071 xfs_inodegc_queue(
2072 	struct xfs_inode	*ip)
2073 {
2074 	struct xfs_mount	*mp = ip->i_mount;
2075 	struct xfs_inodegc	*gc;
2076 	int			items;
2077 	unsigned int		shrinker_hits;
2078 	unsigned int		cpu_nr;
2079 	unsigned long		queue_delay = 1;
2080 
2081 	trace_xfs_inode_set_need_inactive(ip);
2082 	spin_lock(&ip->i_flags_lock);
2083 	ip->i_flags |= XFS_NEED_INACTIVE;
2084 	spin_unlock(&ip->i_flags_lock);
2085 
2086 	cpu_nr = get_cpu();
2087 	gc = this_cpu_ptr(mp->m_inodegc);
2088 	llist_add(&ip->i_gclist, &gc->list);
2089 	items = READ_ONCE(gc->items);
2090 	WRITE_ONCE(gc->items, items + 1);
2091 	shrinker_hits = READ_ONCE(gc->shrinker_hits);
2092 
2093 	/*
2094 	 * Ensure the list add is always seen by anyone who finds the cpumask
2095 	 * bit set. This effectively gives the cpumask bit set operation
2096 	 * release ordering semantics.
2097 	 */
2098 	smp_mb__before_atomic();
2099 	if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask))
2100 		cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask);
2101 
2102 	/*
2103 	 * We queue the work while holding the current CPU so that the work
2104 	 * is scheduled to run on this CPU.
2105 	 */
2106 	if (!xfs_is_inodegc_enabled(mp)) {
2107 		put_cpu();
2108 		return;
2109 	}
2110 
2111 	if (xfs_inodegc_want_queue_work(ip, items))
2112 		queue_delay = 0;
2113 
2114 	trace_xfs_inodegc_queue(mp, __return_address);
2115 	mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2116 			queue_delay);
2117 	put_cpu();
2118 
2119 	if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2120 		trace_xfs_inodegc_throttle(mp, __return_address);
2121 		flush_delayed_work(&gc->work);
2122 	}
2123 }
2124 
2125 /*
2126  * We set the inode flag atomically with the radix tree tag.  Once we get tag
2127  * lookups on the radix tree, this inode flag can go away.
2128  *
2129  * We always use background reclaim here because even if the inode is clean, it
2130  * still may be under IO and hence we have wait for IO completion to occur
2131  * before we can reclaim the inode. The background reclaim path handles this
2132  * more efficiently than we can here, so simply let background reclaim tear down
2133  * all inodes.
2134  */
2135 void
2136 xfs_inode_mark_reclaimable(
2137 	struct xfs_inode	*ip)
2138 {
2139 	struct xfs_mount	*mp = ip->i_mount;
2140 	bool			need_inactive;
2141 
2142 	XFS_STATS_INC(mp, vn_reclaim);
2143 
2144 	/*
2145 	 * We should never get here with any of the reclaim flags already set.
2146 	 */
2147 	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2148 
2149 	need_inactive = xfs_inode_needs_inactive(ip);
2150 	if (need_inactive) {
2151 		xfs_inodegc_queue(ip);
2152 		return;
2153 	}
2154 
2155 	/* Going straight to reclaim, so drop the dquots. */
2156 	xfs_qm_dqdetach(ip);
2157 	xfs_inodegc_set_reclaimable(ip);
2158 }
2159 
2160 /*
2161  * Register a phony shrinker so that we can run background inodegc sooner when
2162  * there's memory pressure.  Inactivation does not itself free any memory but
2163  * it does make inodes reclaimable, which eventually frees memory.
2164  *
2165  * The count function, seek value, and batch value are crafted to trigger the
2166  * scan function during the second round of scanning.  Hopefully this means
2167  * that we reclaimed enough memory that initiating metadata transactions won't
2168  * make things worse.
2169  */
2170 #define XFS_INODEGC_SHRINKER_COUNT	(1UL << DEF_PRIORITY)
2171 #define XFS_INODEGC_SHRINKER_BATCH	((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2172 
2173 static unsigned long
2174 xfs_inodegc_shrinker_count(
2175 	struct shrinker		*shrink,
2176 	struct shrink_control	*sc)
2177 {
2178 	struct xfs_mount	*mp = shrink->private_data;
2179 	struct xfs_inodegc	*gc;
2180 	int			cpu;
2181 
2182 	if (!xfs_is_inodegc_enabled(mp))
2183 		return 0;
2184 
2185 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2186 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2187 		if (!llist_empty(&gc->list))
2188 			return XFS_INODEGC_SHRINKER_COUNT;
2189 	}
2190 
2191 	return 0;
2192 }
2193 
2194 static unsigned long
2195 xfs_inodegc_shrinker_scan(
2196 	struct shrinker		*shrink,
2197 	struct shrink_control	*sc)
2198 {
2199 	struct xfs_mount	*mp = shrink->private_data;
2200 	struct xfs_inodegc	*gc;
2201 	int			cpu;
2202 	bool			no_items = true;
2203 
2204 	if (!xfs_is_inodegc_enabled(mp))
2205 		return SHRINK_STOP;
2206 
2207 	trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2208 
2209 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2210 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2211 		if (!llist_empty(&gc->list)) {
2212 			unsigned int	h = READ_ONCE(gc->shrinker_hits);
2213 
2214 			WRITE_ONCE(gc->shrinker_hits, h + 1);
2215 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2216 			no_items = false;
2217 		}
2218 	}
2219 
2220 	/*
2221 	 * If there are no inodes to inactivate, we don't want the shrinker
2222 	 * to think there's deferred work to call us back about.
2223 	 */
2224 	if (no_items)
2225 		return LONG_MAX;
2226 
2227 	return SHRINK_STOP;
2228 }
2229 
2230 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2231 int
2232 xfs_inodegc_register_shrinker(
2233 	struct xfs_mount	*mp)
2234 {
2235 	mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB,
2236 						"xfs-inodegc:%s",
2237 						mp->m_super->s_id);
2238 	if (!mp->m_inodegc_shrinker)
2239 		return -ENOMEM;
2240 
2241 	mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count;
2242 	mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan;
2243 	mp->m_inodegc_shrinker->seeks = 0;
2244 	mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH;
2245 	mp->m_inodegc_shrinker->private_data = mp;
2246 
2247 	shrinker_register(mp->m_inodegc_shrinker);
2248 
2249 	return 0;
2250 }
2251