1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_sb.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_inode_item.h" 18 #include "xfs_quota.h" 19 #include "xfs_trace.h" 20 #include "xfs_icache.h" 21 #include "xfs_bmap_util.h" 22 #include "xfs_dquot_item.h" 23 #include "xfs_dquot.h" 24 #include "xfs_reflink.h" 25 #include "xfs_ialloc.h" 26 27 #include <linux/iversion.h> 28 29 /* 30 * Allocate and initialise an xfs_inode. 31 */ 32 struct xfs_inode * 33 xfs_inode_alloc( 34 struct xfs_mount *mp, 35 xfs_ino_t ino) 36 { 37 struct xfs_inode *ip; 38 39 /* 40 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL 41 * and return NULL here on ENOMEM. 42 */ 43 ip = kmem_cache_alloc(xfs_inode_zone, GFP_KERNEL | __GFP_NOFAIL); 44 45 if (inode_init_always(mp->m_super, VFS_I(ip))) { 46 kmem_cache_free(xfs_inode_zone, ip); 47 return NULL; 48 } 49 50 /* VFS doesn't initialise i_mode! */ 51 VFS_I(ip)->i_mode = 0; 52 53 XFS_STATS_INC(mp, vn_active); 54 ASSERT(atomic_read(&ip->i_pincount) == 0); 55 ASSERT(ip->i_ino == 0); 56 57 /* initialise the xfs inode */ 58 ip->i_ino = ino; 59 ip->i_mount = mp; 60 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 61 ip->i_afp = NULL; 62 ip->i_cowfp = NULL; 63 memset(&ip->i_df, 0, sizeof(ip->i_df)); 64 ip->i_flags = 0; 65 ip->i_delayed_blks = 0; 66 memset(&ip->i_d, 0, sizeof(ip->i_d)); 67 ip->i_sick = 0; 68 ip->i_checked = 0; 69 INIT_WORK(&ip->i_ioend_work, xfs_end_io); 70 INIT_LIST_HEAD(&ip->i_ioend_list); 71 spin_lock_init(&ip->i_ioend_lock); 72 73 return ip; 74 } 75 76 STATIC void 77 xfs_inode_free_callback( 78 struct rcu_head *head) 79 { 80 struct inode *inode = container_of(head, struct inode, i_rcu); 81 struct xfs_inode *ip = XFS_I(inode); 82 83 switch (VFS_I(ip)->i_mode & S_IFMT) { 84 case S_IFREG: 85 case S_IFDIR: 86 case S_IFLNK: 87 xfs_idestroy_fork(&ip->i_df); 88 break; 89 } 90 91 if (ip->i_afp) { 92 xfs_idestroy_fork(ip->i_afp); 93 kmem_cache_free(xfs_ifork_zone, ip->i_afp); 94 } 95 if (ip->i_cowfp) { 96 xfs_idestroy_fork(ip->i_cowfp); 97 kmem_cache_free(xfs_ifork_zone, ip->i_cowfp); 98 } 99 if (ip->i_itemp) { 100 ASSERT(!test_bit(XFS_LI_IN_AIL, 101 &ip->i_itemp->ili_item.li_flags)); 102 xfs_inode_item_destroy(ip); 103 ip->i_itemp = NULL; 104 } 105 106 kmem_cache_free(xfs_inode_zone, ip); 107 } 108 109 static void 110 __xfs_inode_free( 111 struct xfs_inode *ip) 112 { 113 /* asserts to verify all state is correct here */ 114 ASSERT(atomic_read(&ip->i_pincount) == 0); 115 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list)); 116 XFS_STATS_DEC(ip->i_mount, vn_active); 117 118 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 119 } 120 121 void 122 xfs_inode_free( 123 struct xfs_inode *ip) 124 { 125 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING)); 126 127 /* 128 * Because we use RCU freeing we need to ensure the inode always 129 * appears to be reclaimed with an invalid inode number when in the 130 * free state. The ip->i_flags_lock provides the barrier against lookup 131 * races. 132 */ 133 spin_lock(&ip->i_flags_lock); 134 ip->i_flags = XFS_IRECLAIM; 135 ip->i_ino = 0; 136 spin_unlock(&ip->i_flags_lock); 137 138 __xfs_inode_free(ip); 139 } 140 141 /* 142 * Queue background inode reclaim work if there are reclaimable inodes and there 143 * isn't reclaim work already scheduled or in progress. 144 */ 145 static void 146 xfs_reclaim_work_queue( 147 struct xfs_mount *mp) 148 { 149 150 rcu_read_lock(); 151 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 152 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 153 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 154 } 155 rcu_read_unlock(); 156 } 157 158 static void 159 xfs_perag_set_reclaim_tag( 160 struct xfs_perag *pag) 161 { 162 struct xfs_mount *mp = pag->pag_mount; 163 164 lockdep_assert_held(&pag->pag_ici_lock); 165 if (pag->pag_ici_reclaimable++) 166 return; 167 168 /* propagate the reclaim tag up into the perag radix tree */ 169 spin_lock(&mp->m_perag_lock); 170 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, 171 XFS_ICI_RECLAIM_TAG); 172 spin_unlock(&mp->m_perag_lock); 173 174 /* schedule periodic background inode reclaim */ 175 xfs_reclaim_work_queue(mp); 176 177 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_); 178 } 179 180 static void 181 xfs_perag_clear_reclaim_tag( 182 struct xfs_perag *pag) 183 { 184 struct xfs_mount *mp = pag->pag_mount; 185 186 lockdep_assert_held(&pag->pag_ici_lock); 187 if (--pag->pag_ici_reclaimable) 188 return; 189 190 /* clear the reclaim tag from the perag radix tree */ 191 spin_lock(&mp->m_perag_lock); 192 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, 193 XFS_ICI_RECLAIM_TAG); 194 spin_unlock(&mp->m_perag_lock); 195 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_); 196 } 197 198 199 /* 200 * We set the inode flag atomically with the radix tree tag. 201 * Once we get tag lookups on the radix tree, this inode flag 202 * can go away. 203 */ 204 void 205 xfs_inode_set_reclaim_tag( 206 struct xfs_inode *ip) 207 { 208 struct xfs_mount *mp = ip->i_mount; 209 struct xfs_perag *pag; 210 211 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 212 spin_lock(&pag->pag_ici_lock); 213 spin_lock(&ip->i_flags_lock); 214 215 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino), 216 XFS_ICI_RECLAIM_TAG); 217 xfs_perag_set_reclaim_tag(pag); 218 __xfs_iflags_set(ip, XFS_IRECLAIMABLE); 219 220 spin_unlock(&ip->i_flags_lock); 221 spin_unlock(&pag->pag_ici_lock); 222 xfs_perag_put(pag); 223 } 224 225 STATIC void 226 xfs_inode_clear_reclaim_tag( 227 struct xfs_perag *pag, 228 xfs_ino_t ino) 229 { 230 radix_tree_tag_clear(&pag->pag_ici_root, 231 XFS_INO_TO_AGINO(pag->pag_mount, ino), 232 XFS_ICI_RECLAIM_TAG); 233 xfs_perag_clear_reclaim_tag(pag); 234 } 235 236 static void 237 xfs_inew_wait( 238 struct xfs_inode *ip) 239 { 240 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT); 241 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT); 242 243 do { 244 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 245 if (!xfs_iflags_test(ip, XFS_INEW)) 246 break; 247 schedule(); 248 } while (true); 249 finish_wait(wq, &wait.wq_entry); 250 } 251 252 /* 253 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 254 * part of the structure. This is made more complex by the fact we store 255 * information about the on-disk values in the VFS inode and so we can't just 256 * overwrite the values unconditionally. Hence we save the parameters we 257 * need to retain across reinitialisation, and rewrite them into the VFS inode 258 * after reinitialisation even if it fails. 259 */ 260 static int 261 xfs_reinit_inode( 262 struct xfs_mount *mp, 263 struct inode *inode) 264 { 265 int error; 266 uint32_t nlink = inode->i_nlink; 267 uint32_t generation = inode->i_generation; 268 uint64_t version = inode_peek_iversion(inode); 269 umode_t mode = inode->i_mode; 270 dev_t dev = inode->i_rdev; 271 kuid_t uid = inode->i_uid; 272 kgid_t gid = inode->i_gid; 273 274 error = inode_init_always(mp->m_super, inode); 275 276 set_nlink(inode, nlink); 277 inode->i_generation = generation; 278 inode_set_iversion_queried(inode, version); 279 inode->i_mode = mode; 280 inode->i_rdev = dev; 281 inode->i_uid = uid; 282 inode->i_gid = gid; 283 return error; 284 } 285 286 /* 287 * If we are allocating a new inode, then check what was returned is 288 * actually a free, empty inode. If we are not allocating an inode, 289 * then check we didn't find a free inode. 290 * 291 * Returns: 292 * 0 if the inode free state matches the lookup context 293 * -ENOENT if the inode is free and we are not allocating 294 * -EFSCORRUPTED if there is any state mismatch at all 295 */ 296 static int 297 xfs_iget_check_free_state( 298 struct xfs_inode *ip, 299 int flags) 300 { 301 if (flags & XFS_IGET_CREATE) { 302 /* should be a free inode */ 303 if (VFS_I(ip)->i_mode != 0) { 304 xfs_warn(ip->i_mount, 305 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", 306 ip->i_ino, VFS_I(ip)->i_mode); 307 return -EFSCORRUPTED; 308 } 309 310 if (ip->i_d.di_nblocks != 0) { 311 xfs_warn(ip->i_mount, 312 "Corruption detected! Free inode 0x%llx has blocks allocated!", 313 ip->i_ino); 314 return -EFSCORRUPTED; 315 } 316 return 0; 317 } 318 319 /* should be an allocated inode */ 320 if (VFS_I(ip)->i_mode == 0) 321 return -ENOENT; 322 323 return 0; 324 } 325 326 /* 327 * Check the validity of the inode we just found it the cache 328 */ 329 static int 330 xfs_iget_cache_hit( 331 struct xfs_perag *pag, 332 struct xfs_inode *ip, 333 xfs_ino_t ino, 334 int flags, 335 int lock_flags) __releases(RCU) 336 { 337 struct inode *inode = VFS_I(ip); 338 struct xfs_mount *mp = ip->i_mount; 339 int error; 340 341 /* 342 * check for re-use of an inode within an RCU grace period due to the 343 * radix tree nodes not being updated yet. We monitor for this by 344 * setting the inode number to zero before freeing the inode structure. 345 * If the inode has been reallocated and set up, then the inode number 346 * will not match, so check for that, too. 347 */ 348 spin_lock(&ip->i_flags_lock); 349 if (ip->i_ino != ino) { 350 trace_xfs_iget_skip(ip); 351 XFS_STATS_INC(mp, xs_ig_frecycle); 352 error = -EAGAIN; 353 goto out_error; 354 } 355 356 357 /* 358 * If we are racing with another cache hit that is currently 359 * instantiating this inode or currently recycling it out of 360 * reclaimabe state, wait for the initialisation to complete 361 * before continuing. 362 * 363 * XXX(hch): eventually we should do something equivalent to 364 * wait_on_inode to wait for these flags to be cleared 365 * instead of polling for it. 366 */ 367 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { 368 trace_xfs_iget_skip(ip); 369 XFS_STATS_INC(mp, xs_ig_frecycle); 370 error = -EAGAIN; 371 goto out_error; 372 } 373 374 /* 375 * Check the inode free state is valid. This also detects lookup 376 * racing with unlinks. 377 */ 378 error = xfs_iget_check_free_state(ip, flags); 379 if (error) 380 goto out_error; 381 382 /* 383 * If IRECLAIMABLE is set, we've torn down the VFS inode already. 384 * Need to carefully get it back into useable state. 385 */ 386 if (ip->i_flags & XFS_IRECLAIMABLE) { 387 trace_xfs_iget_reclaim(ip); 388 389 if (flags & XFS_IGET_INCORE) { 390 error = -EAGAIN; 391 goto out_error; 392 } 393 394 /* 395 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode 396 * from stomping over us while we recycle the inode. We can't 397 * clear the radix tree reclaimable tag yet as it requires 398 * pag_ici_lock to be held exclusive. 399 */ 400 ip->i_flags |= XFS_IRECLAIM; 401 402 spin_unlock(&ip->i_flags_lock); 403 rcu_read_unlock(); 404 405 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 406 error = xfs_reinit_inode(mp, inode); 407 if (error) { 408 bool wake; 409 /* 410 * Re-initializing the inode failed, and we are in deep 411 * trouble. Try to re-add it to the reclaim list. 412 */ 413 rcu_read_lock(); 414 spin_lock(&ip->i_flags_lock); 415 wake = !!__xfs_iflags_test(ip, XFS_INEW); 416 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 417 if (wake) 418 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT); 419 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 420 trace_xfs_iget_reclaim_fail(ip); 421 goto out_error; 422 } 423 424 spin_lock(&pag->pag_ici_lock); 425 spin_lock(&ip->i_flags_lock); 426 427 /* 428 * Clear the per-lifetime state in the inode as we are now 429 * effectively a new inode and need to return to the initial 430 * state before reuse occurs. 431 */ 432 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 433 ip->i_flags |= XFS_INEW; 434 xfs_inode_clear_reclaim_tag(pag, ip->i_ino); 435 inode->i_state = I_NEW; 436 ip->i_sick = 0; 437 ip->i_checked = 0; 438 439 spin_unlock(&ip->i_flags_lock); 440 spin_unlock(&pag->pag_ici_lock); 441 } else { 442 /* If the VFS inode is being torn down, pause and try again. */ 443 if (!igrab(inode)) { 444 trace_xfs_iget_skip(ip); 445 error = -EAGAIN; 446 goto out_error; 447 } 448 449 /* We've got a live one. */ 450 spin_unlock(&ip->i_flags_lock); 451 rcu_read_unlock(); 452 trace_xfs_iget_hit(ip); 453 } 454 455 if (lock_flags != 0) 456 xfs_ilock(ip, lock_flags); 457 458 if (!(flags & XFS_IGET_INCORE)) 459 xfs_iflags_clear(ip, XFS_ISTALE); 460 XFS_STATS_INC(mp, xs_ig_found); 461 462 return 0; 463 464 out_error: 465 spin_unlock(&ip->i_flags_lock); 466 rcu_read_unlock(); 467 return error; 468 } 469 470 471 static int 472 xfs_iget_cache_miss( 473 struct xfs_mount *mp, 474 struct xfs_perag *pag, 475 xfs_trans_t *tp, 476 xfs_ino_t ino, 477 struct xfs_inode **ipp, 478 int flags, 479 int lock_flags) 480 { 481 struct xfs_inode *ip; 482 int error; 483 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 484 int iflags; 485 486 ip = xfs_inode_alloc(mp, ino); 487 if (!ip) 488 return -ENOMEM; 489 490 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags); 491 if (error) 492 goto out_destroy; 493 494 /* 495 * For version 5 superblocks, if we are initialising a new inode and we 496 * are not utilising the XFS_MOUNT_IKEEP inode cluster mode, we can 497 * simply build the new inode core with a random generation number. 498 * 499 * For version 4 (and older) superblocks, log recovery is dependent on 500 * the di_flushiter field being initialised from the current on-disk 501 * value and hence we must also read the inode off disk even when 502 * initializing new inodes. 503 */ 504 if (xfs_sb_version_has_v3inode(&mp->m_sb) && 505 (flags & XFS_IGET_CREATE) && !(mp->m_flags & XFS_MOUNT_IKEEP)) { 506 VFS_I(ip)->i_generation = prandom_u32(); 507 } else { 508 struct xfs_dinode *dip; 509 struct xfs_buf *bp; 510 511 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0); 512 if (error) 513 goto out_destroy; 514 515 error = xfs_inode_from_disk(ip, dip); 516 if (!error) 517 xfs_buf_set_ref(bp, XFS_INO_REF); 518 xfs_trans_brelse(tp, bp); 519 520 if (error) 521 goto out_destroy; 522 } 523 524 trace_xfs_iget_miss(ip); 525 526 /* 527 * Check the inode free state is valid. This also detects lookup 528 * racing with unlinks. 529 */ 530 error = xfs_iget_check_free_state(ip, flags); 531 if (error) 532 goto out_destroy; 533 534 /* 535 * Preload the radix tree so we can insert safely under the 536 * write spinlock. Note that we cannot sleep inside the preload 537 * region. Since we can be called from transaction context, don't 538 * recurse into the file system. 539 */ 540 if (radix_tree_preload(GFP_NOFS)) { 541 error = -EAGAIN; 542 goto out_destroy; 543 } 544 545 /* 546 * Because the inode hasn't been added to the radix-tree yet it can't 547 * be found by another thread, so we can do the non-sleeping lock here. 548 */ 549 if (lock_flags) { 550 if (!xfs_ilock_nowait(ip, lock_flags)) 551 BUG(); 552 } 553 554 /* 555 * These values must be set before inserting the inode into the radix 556 * tree as the moment it is inserted a concurrent lookup (allowed by the 557 * RCU locking mechanism) can find it and that lookup must see that this 558 * is an inode currently under construction (i.e. that XFS_INEW is set). 559 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 560 * memory barrier that ensures this detection works correctly at lookup 561 * time. 562 */ 563 iflags = XFS_INEW; 564 if (flags & XFS_IGET_DONTCACHE) 565 d_mark_dontcache(VFS_I(ip)); 566 ip->i_udquot = NULL; 567 ip->i_gdquot = NULL; 568 ip->i_pdquot = NULL; 569 xfs_iflags_set(ip, iflags); 570 571 /* insert the new inode */ 572 spin_lock(&pag->pag_ici_lock); 573 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 574 if (unlikely(error)) { 575 WARN_ON(error != -EEXIST); 576 XFS_STATS_INC(mp, xs_ig_dup); 577 error = -EAGAIN; 578 goto out_preload_end; 579 } 580 spin_unlock(&pag->pag_ici_lock); 581 radix_tree_preload_end(); 582 583 *ipp = ip; 584 return 0; 585 586 out_preload_end: 587 spin_unlock(&pag->pag_ici_lock); 588 radix_tree_preload_end(); 589 if (lock_flags) 590 xfs_iunlock(ip, lock_flags); 591 out_destroy: 592 __destroy_inode(VFS_I(ip)); 593 xfs_inode_free(ip); 594 return error; 595 } 596 597 /* 598 * Look up an inode by number in the given file system. The inode is looked up 599 * in the cache held in each AG. If the inode is found in the cache, initialise 600 * the vfs inode if necessary. 601 * 602 * If it is not in core, read it in from the file system's device, add it to the 603 * cache and initialise the vfs inode. 604 * 605 * The inode is locked according to the value of the lock_flags parameter. 606 * Inode lookup is only done during metadata operations and not as part of the 607 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup. 608 */ 609 int 610 xfs_iget( 611 struct xfs_mount *mp, 612 struct xfs_trans *tp, 613 xfs_ino_t ino, 614 uint flags, 615 uint lock_flags, 616 struct xfs_inode **ipp) 617 { 618 struct xfs_inode *ip; 619 struct xfs_perag *pag; 620 xfs_agino_t agino; 621 int error; 622 623 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 624 625 /* reject inode numbers outside existing AGs */ 626 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 627 return -EINVAL; 628 629 XFS_STATS_INC(mp, xs_ig_attempts); 630 631 /* get the perag structure and ensure that it's inode capable */ 632 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 633 agino = XFS_INO_TO_AGINO(mp, ino); 634 635 again: 636 error = 0; 637 rcu_read_lock(); 638 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 639 640 if (ip) { 641 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 642 if (error) 643 goto out_error_or_again; 644 } else { 645 rcu_read_unlock(); 646 if (flags & XFS_IGET_INCORE) { 647 error = -ENODATA; 648 goto out_error_or_again; 649 } 650 XFS_STATS_INC(mp, xs_ig_missed); 651 652 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 653 flags, lock_flags); 654 if (error) 655 goto out_error_or_again; 656 } 657 xfs_perag_put(pag); 658 659 *ipp = ip; 660 661 /* 662 * If we have a real type for an on-disk inode, we can setup the inode 663 * now. If it's a new inode being created, xfs_ialloc will handle it. 664 */ 665 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 666 xfs_setup_existing_inode(ip); 667 return 0; 668 669 out_error_or_again: 670 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) { 671 delay(1); 672 goto again; 673 } 674 xfs_perag_put(pag); 675 return error; 676 } 677 678 /* 679 * "Is this a cached inode that's also allocated?" 680 * 681 * Look up an inode by number in the given file system. If the inode is 682 * in cache and isn't in purgatory, return 1 if the inode is allocated 683 * and 0 if it is not. For all other cases (not in cache, being torn 684 * down, etc.), return a negative error code. 685 * 686 * The caller has to prevent inode allocation and freeing activity, 687 * presumably by locking the AGI buffer. This is to ensure that an 688 * inode cannot transition from allocated to freed until the caller is 689 * ready to allow that. If the inode is in an intermediate state (new, 690 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the 691 * inode is not in the cache, -ENOENT will be returned. The caller must 692 * deal with these scenarios appropriately. 693 * 694 * This is a specialized use case for the online scrubber; if you're 695 * reading this, you probably want xfs_iget. 696 */ 697 int 698 xfs_icache_inode_is_allocated( 699 struct xfs_mount *mp, 700 struct xfs_trans *tp, 701 xfs_ino_t ino, 702 bool *inuse) 703 { 704 struct xfs_inode *ip; 705 int error; 706 707 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip); 708 if (error) 709 return error; 710 711 *inuse = !!(VFS_I(ip)->i_mode); 712 xfs_irele(ip); 713 return 0; 714 } 715 716 /* 717 * The inode lookup is done in batches to keep the amount of lock traffic and 718 * radix tree lookups to a minimum. The batch size is a trade off between 719 * lookup reduction and stack usage. This is in the reclaim path, so we can't 720 * be too greedy. 721 */ 722 #define XFS_LOOKUP_BATCH 32 723 724 /* 725 * Decide if the given @ip is eligible to be a part of the inode walk, and 726 * grab it if so. Returns true if it's ready to go or false if we should just 727 * ignore it. 728 */ 729 STATIC bool 730 xfs_inode_walk_ag_grab( 731 struct xfs_inode *ip, 732 int flags) 733 { 734 struct inode *inode = VFS_I(ip); 735 bool newinos = !!(flags & XFS_INODE_WALK_INEW_WAIT); 736 737 ASSERT(rcu_read_lock_held()); 738 739 /* Check for stale RCU freed inode */ 740 spin_lock(&ip->i_flags_lock); 741 if (!ip->i_ino) 742 goto out_unlock_noent; 743 744 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ 745 if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) || 746 __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)) 747 goto out_unlock_noent; 748 spin_unlock(&ip->i_flags_lock); 749 750 /* nothing to sync during shutdown */ 751 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 752 return false; 753 754 /* If we can't grab the inode, it must on it's way to reclaim. */ 755 if (!igrab(inode)) 756 return false; 757 758 /* inode is valid */ 759 return true; 760 761 out_unlock_noent: 762 spin_unlock(&ip->i_flags_lock); 763 return false; 764 } 765 766 /* 767 * For a given per-AG structure @pag, grab, @execute, and rele all incore 768 * inodes with the given radix tree @tag. 769 */ 770 STATIC int 771 xfs_inode_walk_ag( 772 struct xfs_perag *pag, 773 int iter_flags, 774 int (*execute)(struct xfs_inode *ip, void *args), 775 void *args, 776 int tag) 777 { 778 struct xfs_mount *mp = pag->pag_mount; 779 uint32_t first_index; 780 int last_error = 0; 781 int skipped; 782 bool done; 783 int nr_found; 784 785 restart: 786 done = false; 787 skipped = 0; 788 first_index = 0; 789 nr_found = 0; 790 do { 791 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 792 int error = 0; 793 int i; 794 795 rcu_read_lock(); 796 797 if (tag == XFS_ICI_NO_TAG) 798 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, 799 (void **)batch, first_index, 800 XFS_LOOKUP_BATCH); 801 else 802 nr_found = radix_tree_gang_lookup_tag( 803 &pag->pag_ici_root, 804 (void **) batch, first_index, 805 XFS_LOOKUP_BATCH, tag); 806 807 if (!nr_found) { 808 rcu_read_unlock(); 809 break; 810 } 811 812 /* 813 * Grab the inodes before we drop the lock. if we found 814 * nothing, nr == 0 and the loop will be skipped. 815 */ 816 for (i = 0; i < nr_found; i++) { 817 struct xfs_inode *ip = batch[i]; 818 819 if (done || !xfs_inode_walk_ag_grab(ip, iter_flags)) 820 batch[i] = NULL; 821 822 /* 823 * Update the index for the next lookup. Catch 824 * overflows into the next AG range which can occur if 825 * we have inodes in the last block of the AG and we 826 * are currently pointing to the last inode. 827 * 828 * Because we may see inodes that are from the wrong AG 829 * due to RCU freeing and reallocation, only update the 830 * index if it lies in this AG. It was a race that lead 831 * us to see this inode, so another lookup from the 832 * same index will not find it again. 833 */ 834 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 835 continue; 836 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 837 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 838 done = true; 839 } 840 841 /* unlock now we've grabbed the inodes. */ 842 rcu_read_unlock(); 843 844 for (i = 0; i < nr_found; i++) { 845 if (!batch[i]) 846 continue; 847 if ((iter_flags & XFS_INODE_WALK_INEW_WAIT) && 848 xfs_iflags_test(batch[i], XFS_INEW)) 849 xfs_inew_wait(batch[i]); 850 error = execute(batch[i], args); 851 xfs_irele(batch[i]); 852 if (error == -EAGAIN) { 853 skipped++; 854 continue; 855 } 856 if (error && last_error != -EFSCORRUPTED) 857 last_error = error; 858 } 859 860 /* bail out if the filesystem is corrupted. */ 861 if (error == -EFSCORRUPTED) 862 break; 863 864 cond_resched(); 865 866 } while (nr_found && !done); 867 868 if (skipped) { 869 delay(1); 870 goto restart; 871 } 872 return last_error; 873 } 874 875 /* Fetch the next (possibly tagged) per-AG structure. */ 876 static inline struct xfs_perag * 877 xfs_inode_walk_get_perag( 878 struct xfs_mount *mp, 879 xfs_agnumber_t agno, 880 int tag) 881 { 882 if (tag == XFS_ICI_NO_TAG) 883 return xfs_perag_get(mp, agno); 884 return xfs_perag_get_tag(mp, agno, tag); 885 } 886 887 /* 888 * Call the @execute function on all incore inodes matching the radix tree 889 * @tag. 890 */ 891 int 892 xfs_inode_walk( 893 struct xfs_mount *mp, 894 int iter_flags, 895 int (*execute)(struct xfs_inode *ip, void *args), 896 void *args, 897 int tag) 898 { 899 struct xfs_perag *pag; 900 int error = 0; 901 int last_error = 0; 902 xfs_agnumber_t ag; 903 904 ag = 0; 905 while ((pag = xfs_inode_walk_get_perag(mp, ag, tag))) { 906 ag = pag->pag_agno + 1; 907 error = xfs_inode_walk_ag(pag, iter_flags, execute, args, tag); 908 xfs_perag_put(pag); 909 if (error) { 910 last_error = error; 911 if (error == -EFSCORRUPTED) 912 break; 913 } 914 } 915 return last_error; 916 } 917 918 /* 919 * Grab the inode for reclaim exclusively. 920 * 921 * We have found this inode via a lookup under RCU, so the inode may have 922 * already been freed, or it may be in the process of being recycled by 923 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode 924 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE 925 * will not be set. Hence we need to check for both these flag conditions to 926 * avoid inodes that are no longer reclaim candidates. 927 * 928 * Note: checking for other state flags here, under the i_flags_lock or not, is 929 * racy and should be avoided. Those races should be resolved only after we have 930 * ensured that we are able to reclaim this inode and the world can see that we 931 * are going to reclaim it. 932 * 933 * Return true if we grabbed it, false otherwise. 934 */ 935 static bool 936 xfs_reclaim_inode_grab( 937 struct xfs_inode *ip) 938 { 939 ASSERT(rcu_read_lock_held()); 940 941 spin_lock(&ip->i_flags_lock); 942 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 943 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 944 /* not a reclaim candidate. */ 945 spin_unlock(&ip->i_flags_lock); 946 return false; 947 } 948 __xfs_iflags_set(ip, XFS_IRECLAIM); 949 spin_unlock(&ip->i_flags_lock); 950 return true; 951 } 952 953 /* 954 * Inode reclaim is non-blocking, so the default action if progress cannot be 955 * made is to "requeue" the inode for reclaim by unlocking it and clearing the 956 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about 957 * blocking anymore and hence we can wait for the inode to be able to reclaim 958 * it. 959 * 960 * We do no IO here - if callers require inodes to be cleaned they must push the 961 * AIL first to trigger writeback of dirty inodes. This enables writeback to be 962 * done in the background in a non-blocking manner, and enables memory reclaim 963 * to make progress without blocking. 964 */ 965 static void 966 xfs_reclaim_inode( 967 struct xfs_inode *ip, 968 struct xfs_perag *pag) 969 { 970 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 971 972 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 973 goto out; 974 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING)) 975 goto out_iunlock; 976 977 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 978 xfs_iunpin_wait(ip); 979 xfs_iflush_abort(ip); 980 goto reclaim; 981 } 982 if (xfs_ipincount(ip)) 983 goto out_clear_flush; 984 if (!xfs_inode_clean(ip)) 985 goto out_clear_flush; 986 987 xfs_iflags_clear(ip, XFS_IFLUSHING); 988 reclaim: 989 990 /* 991 * Because we use RCU freeing we need to ensure the inode always appears 992 * to be reclaimed with an invalid inode number when in the free state. 993 * We do this as early as possible under the ILOCK so that 994 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to 995 * detect races with us here. By doing this, we guarantee that once 996 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that 997 * it will see either a valid inode that will serialise correctly, or it 998 * will see an invalid inode that it can skip. 999 */ 1000 spin_lock(&ip->i_flags_lock); 1001 ip->i_flags = XFS_IRECLAIM; 1002 ip->i_ino = 0; 1003 spin_unlock(&ip->i_flags_lock); 1004 1005 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1006 1007 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 1008 /* 1009 * Remove the inode from the per-AG radix tree. 1010 * 1011 * Because radix_tree_delete won't complain even if the item was never 1012 * added to the tree assert that it's been there before to catch 1013 * problems with the inode life time early on. 1014 */ 1015 spin_lock(&pag->pag_ici_lock); 1016 if (!radix_tree_delete(&pag->pag_ici_root, 1017 XFS_INO_TO_AGINO(ip->i_mount, ino))) 1018 ASSERT(0); 1019 xfs_perag_clear_reclaim_tag(pag); 1020 spin_unlock(&pag->pag_ici_lock); 1021 1022 /* 1023 * Here we do an (almost) spurious inode lock in order to coordinate 1024 * with inode cache radix tree lookups. This is because the lookup 1025 * can reference the inodes in the cache without taking references. 1026 * 1027 * We make that OK here by ensuring that we wait until the inode is 1028 * unlocked after the lookup before we go ahead and free it. 1029 */ 1030 xfs_ilock(ip, XFS_ILOCK_EXCL); 1031 xfs_qm_dqdetach(ip); 1032 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1033 ASSERT(xfs_inode_clean(ip)); 1034 1035 __xfs_inode_free(ip); 1036 return; 1037 1038 out_clear_flush: 1039 xfs_iflags_clear(ip, XFS_IFLUSHING); 1040 out_iunlock: 1041 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1042 out: 1043 xfs_iflags_clear(ip, XFS_IRECLAIM); 1044 } 1045 1046 /* 1047 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is 1048 * corrupted, we still want to try to reclaim all the inodes. If we don't, 1049 * then a shut down during filesystem unmount reclaim walk leak all the 1050 * unreclaimed inodes. 1051 * 1052 * Returns non-zero if any AGs or inodes were skipped in the reclaim pass 1053 * so that callers that want to block until all dirty inodes are written back 1054 * and reclaimed can sanely loop. 1055 */ 1056 static void 1057 xfs_reclaim_inodes_ag( 1058 struct xfs_mount *mp, 1059 int *nr_to_scan) 1060 { 1061 struct xfs_perag *pag; 1062 xfs_agnumber_t ag = 0; 1063 1064 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1065 unsigned long first_index = 0; 1066 int done = 0; 1067 int nr_found = 0; 1068 1069 ag = pag->pag_agno + 1; 1070 1071 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor); 1072 do { 1073 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1074 int i; 1075 1076 rcu_read_lock(); 1077 nr_found = radix_tree_gang_lookup_tag( 1078 &pag->pag_ici_root, 1079 (void **)batch, first_index, 1080 XFS_LOOKUP_BATCH, 1081 XFS_ICI_RECLAIM_TAG); 1082 if (!nr_found) { 1083 done = 1; 1084 rcu_read_unlock(); 1085 break; 1086 } 1087 1088 /* 1089 * Grab the inodes before we drop the lock. if we found 1090 * nothing, nr == 0 and the loop will be skipped. 1091 */ 1092 for (i = 0; i < nr_found; i++) { 1093 struct xfs_inode *ip = batch[i]; 1094 1095 if (done || !xfs_reclaim_inode_grab(ip)) 1096 batch[i] = NULL; 1097 1098 /* 1099 * Update the index for the next lookup. Catch 1100 * overflows into the next AG range which can 1101 * occur if we have inodes in the last block of 1102 * the AG and we are currently pointing to the 1103 * last inode. 1104 * 1105 * Because we may see inodes that are from the 1106 * wrong AG due to RCU freeing and 1107 * reallocation, only update the index if it 1108 * lies in this AG. It was a race that lead us 1109 * to see this inode, so another lookup from 1110 * the same index will not find it again. 1111 */ 1112 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != 1113 pag->pag_agno) 1114 continue; 1115 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1116 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1117 done = 1; 1118 } 1119 1120 /* unlock now we've grabbed the inodes. */ 1121 rcu_read_unlock(); 1122 1123 for (i = 0; i < nr_found; i++) { 1124 if (batch[i]) 1125 xfs_reclaim_inode(batch[i], pag); 1126 } 1127 1128 *nr_to_scan -= XFS_LOOKUP_BATCH; 1129 cond_resched(); 1130 } while (nr_found && !done && *nr_to_scan > 0); 1131 1132 if (done) 1133 first_index = 0; 1134 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index); 1135 xfs_perag_put(pag); 1136 } 1137 } 1138 1139 void 1140 xfs_reclaim_inodes( 1141 struct xfs_mount *mp) 1142 { 1143 int nr_to_scan = INT_MAX; 1144 1145 while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 1146 xfs_ail_push_all_sync(mp->m_ail); 1147 xfs_reclaim_inodes_ag(mp, &nr_to_scan); 1148 } 1149 } 1150 1151 /* 1152 * The shrinker infrastructure determines how many inodes we should scan for 1153 * reclaim. We want as many clean inodes ready to reclaim as possible, so we 1154 * push the AIL here. We also want to proactively free up memory if we can to 1155 * minimise the amount of work memory reclaim has to do so we kick the 1156 * background reclaim if it isn't already scheduled. 1157 */ 1158 long 1159 xfs_reclaim_inodes_nr( 1160 struct xfs_mount *mp, 1161 int nr_to_scan) 1162 { 1163 /* kick background reclaimer and push the AIL */ 1164 xfs_reclaim_work_queue(mp); 1165 xfs_ail_push_all(mp->m_ail); 1166 1167 xfs_reclaim_inodes_ag(mp, &nr_to_scan); 1168 return 0; 1169 } 1170 1171 /* 1172 * Return the number of reclaimable inodes in the filesystem for 1173 * the shrinker to determine how much to reclaim. 1174 */ 1175 int 1176 xfs_reclaim_inodes_count( 1177 struct xfs_mount *mp) 1178 { 1179 struct xfs_perag *pag; 1180 xfs_agnumber_t ag = 0; 1181 int reclaimable = 0; 1182 1183 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1184 ag = pag->pag_agno + 1; 1185 reclaimable += pag->pag_ici_reclaimable; 1186 xfs_perag_put(pag); 1187 } 1188 return reclaimable; 1189 } 1190 1191 STATIC bool 1192 xfs_inode_match_id( 1193 struct xfs_inode *ip, 1194 struct xfs_eofblocks *eofb) 1195 { 1196 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1197 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1198 return false; 1199 1200 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1201 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1202 return false; 1203 1204 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1205 ip->i_d.di_projid != eofb->eof_prid) 1206 return false; 1207 1208 return true; 1209 } 1210 1211 /* 1212 * A union-based inode filtering algorithm. Process the inode if any of the 1213 * criteria match. This is for global/internal scans only. 1214 */ 1215 STATIC bool 1216 xfs_inode_match_id_union( 1217 struct xfs_inode *ip, 1218 struct xfs_eofblocks *eofb) 1219 { 1220 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1221 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1222 return true; 1223 1224 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1225 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1226 return true; 1227 1228 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1229 ip->i_d.di_projid == eofb->eof_prid) 1230 return true; 1231 1232 return false; 1233 } 1234 1235 /* 1236 * Is this inode @ip eligible for eof/cow block reclamation, given some 1237 * filtering parameters @eofb? The inode is eligible if @eofb is null or 1238 * if the predicate functions match. 1239 */ 1240 static bool 1241 xfs_inode_matches_eofb( 1242 struct xfs_inode *ip, 1243 struct xfs_eofblocks *eofb) 1244 { 1245 bool match; 1246 1247 if (!eofb) 1248 return true; 1249 1250 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) 1251 match = xfs_inode_match_id_union(ip, eofb); 1252 else 1253 match = xfs_inode_match_id(ip, eofb); 1254 if (!match) 1255 return false; 1256 1257 /* skip the inode if the file size is too small */ 1258 if ((eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE) && 1259 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1260 return false; 1261 1262 return true; 1263 } 1264 1265 /* 1266 * This is a fast pass over the inode cache to try to get reclaim moving on as 1267 * many inodes as possible in a short period of time. It kicks itself every few 1268 * seconds, as well as being kicked by the inode cache shrinker when memory 1269 * goes low. 1270 */ 1271 void 1272 xfs_reclaim_worker( 1273 struct work_struct *work) 1274 { 1275 struct xfs_mount *mp = container_of(to_delayed_work(work), 1276 struct xfs_mount, m_reclaim_work); 1277 int nr_to_scan = INT_MAX; 1278 1279 xfs_reclaim_inodes_ag(mp, &nr_to_scan); 1280 xfs_reclaim_work_queue(mp); 1281 } 1282 1283 STATIC int 1284 xfs_inode_free_eofblocks( 1285 struct xfs_inode *ip, 1286 void *args, 1287 unsigned int *lockflags) 1288 { 1289 struct xfs_eofblocks *eofb = args; 1290 bool wait; 1291 1292 wait = eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC); 1293 1294 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS)) 1295 return 0; 1296 1297 if (!xfs_can_free_eofblocks(ip, false)) { 1298 /* inode could be preallocated or append-only */ 1299 trace_xfs_inode_free_eofblocks_invalid(ip); 1300 xfs_inode_clear_eofblocks_tag(ip); 1301 return 0; 1302 } 1303 1304 /* 1305 * If the mapping is dirty the operation can block and wait for some 1306 * time. Unless we are waiting, skip it. 1307 */ 1308 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1309 return 0; 1310 1311 if (!xfs_inode_matches_eofb(ip, eofb)) 1312 return 0; 1313 1314 /* 1315 * If the caller is waiting, return -EAGAIN to keep the background 1316 * scanner moving and revisit the inode in a subsequent pass. 1317 */ 1318 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1319 if (wait) 1320 return -EAGAIN; 1321 return 0; 1322 } 1323 *lockflags |= XFS_IOLOCK_EXCL; 1324 1325 return xfs_free_eofblocks(ip); 1326 } 1327 1328 /* 1329 * Background scanning to trim preallocated space. This is queued based on the 1330 * 'speculative_prealloc_lifetime' tunable (5m by default). 1331 */ 1332 static inline void 1333 xfs_blockgc_queue( 1334 struct xfs_perag *pag) 1335 { 1336 rcu_read_lock(); 1337 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) 1338 queue_delayed_work(pag->pag_mount->m_blockgc_workqueue, 1339 &pag->pag_blockgc_work, 1340 msecs_to_jiffies(xfs_blockgc_secs * 1000)); 1341 rcu_read_unlock(); 1342 } 1343 1344 static void 1345 xfs_blockgc_set_iflag( 1346 struct xfs_inode *ip, 1347 unsigned long iflag) 1348 { 1349 struct xfs_mount *mp = ip->i_mount; 1350 struct xfs_perag *pag; 1351 int tagged; 1352 1353 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1354 1355 /* 1356 * Don't bother locking the AG and looking up in the radix trees 1357 * if we already know that we have the tag set. 1358 */ 1359 if (ip->i_flags & iflag) 1360 return; 1361 spin_lock(&ip->i_flags_lock); 1362 ip->i_flags |= iflag; 1363 spin_unlock(&ip->i_flags_lock); 1364 1365 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1366 spin_lock(&pag->pag_ici_lock); 1367 1368 tagged = radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG); 1369 radix_tree_tag_set(&pag->pag_ici_root, 1370 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 1371 XFS_ICI_BLOCKGC_TAG); 1372 if (!tagged) { 1373 /* propagate the blockgc tag up into the perag radix tree */ 1374 spin_lock(&ip->i_mount->m_perag_lock); 1375 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 1376 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1377 XFS_ICI_BLOCKGC_TAG); 1378 spin_unlock(&ip->i_mount->m_perag_lock); 1379 1380 /* kick off background trimming */ 1381 xfs_blockgc_queue(pag); 1382 1383 trace_xfs_perag_set_blockgc(ip->i_mount, pag->pag_agno, -1, 1384 _RET_IP_); 1385 } 1386 1387 spin_unlock(&pag->pag_ici_lock); 1388 xfs_perag_put(pag); 1389 } 1390 1391 void 1392 xfs_inode_set_eofblocks_tag( 1393 xfs_inode_t *ip) 1394 { 1395 trace_xfs_inode_set_eofblocks_tag(ip); 1396 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS); 1397 } 1398 1399 static void 1400 xfs_blockgc_clear_iflag( 1401 struct xfs_inode *ip, 1402 unsigned long iflag) 1403 { 1404 struct xfs_mount *mp = ip->i_mount; 1405 struct xfs_perag *pag; 1406 bool clear_tag; 1407 1408 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1409 1410 spin_lock(&ip->i_flags_lock); 1411 ip->i_flags &= ~iflag; 1412 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0; 1413 spin_unlock(&ip->i_flags_lock); 1414 1415 if (!clear_tag) 1416 return; 1417 1418 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1419 spin_lock(&pag->pag_ici_lock); 1420 1421 radix_tree_tag_clear(&pag->pag_ici_root, 1422 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 1423 XFS_ICI_BLOCKGC_TAG); 1424 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) { 1425 /* clear the blockgc tag from the perag radix tree */ 1426 spin_lock(&ip->i_mount->m_perag_lock); 1427 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 1428 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1429 XFS_ICI_BLOCKGC_TAG); 1430 spin_unlock(&ip->i_mount->m_perag_lock); 1431 trace_xfs_perag_clear_blockgc(ip->i_mount, pag->pag_agno, -1, 1432 _RET_IP_); 1433 } 1434 1435 spin_unlock(&pag->pag_ici_lock); 1436 xfs_perag_put(pag); 1437 } 1438 1439 void 1440 xfs_inode_clear_eofblocks_tag( 1441 xfs_inode_t *ip) 1442 { 1443 trace_xfs_inode_clear_eofblocks_tag(ip); 1444 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS); 1445 } 1446 1447 /* 1448 * Set ourselves up to free CoW blocks from this file. If it's already clean 1449 * then we can bail out quickly, but otherwise we must back off if the file 1450 * is undergoing some kind of write. 1451 */ 1452 static bool 1453 xfs_prep_free_cowblocks( 1454 struct xfs_inode *ip) 1455 { 1456 /* 1457 * Just clear the tag if we have an empty cow fork or none at all. It's 1458 * possible the inode was fully unshared since it was originally tagged. 1459 */ 1460 if (!xfs_inode_has_cow_data(ip)) { 1461 trace_xfs_inode_free_cowblocks_invalid(ip); 1462 xfs_inode_clear_cowblocks_tag(ip); 1463 return false; 1464 } 1465 1466 /* 1467 * If the mapping is dirty or under writeback we cannot touch the 1468 * CoW fork. Leave it alone if we're in the midst of a directio. 1469 */ 1470 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || 1471 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || 1472 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || 1473 atomic_read(&VFS_I(ip)->i_dio_count)) 1474 return false; 1475 1476 return true; 1477 } 1478 1479 /* 1480 * Automatic CoW Reservation Freeing 1481 * 1482 * These functions automatically garbage collect leftover CoW reservations 1483 * that were made on behalf of a cowextsize hint when we start to run out 1484 * of quota or when the reservations sit around for too long. If the file 1485 * has dirty pages or is undergoing writeback, its CoW reservations will 1486 * be retained. 1487 * 1488 * The actual garbage collection piggybacks off the same code that runs 1489 * the speculative EOF preallocation garbage collector. 1490 */ 1491 STATIC int 1492 xfs_inode_free_cowblocks( 1493 struct xfs_inode *ip, 1494 void *args, 1495 unsigned int *lockflags) 1496 { 1497 struct xfs_eofblocks *eofb = args; 1498 bool wait; 1499 int ret = 0; 1500 1501 wait = eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC); 1502 1503 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS)) 1504 return 0; 1505 1506 if (!xfs_prep_free_cowblocks(ip)) 1507 return 0; 1508 1509 if (!xfs_inode_matches_eofb(ip, eofb)) 1510 return 0; 1511 1512 /* 1513 * If the caller is waiting, return -EAGAIN to keep the background 1514 * scanner moving and revisit the inode in a subsequent pass. 1515 */ 1516 if (!(*lockflags & XFS_IOLOCK_EXCL) && 1517 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1518 if (wait) 1519 return -EAGAIN; 1520 return 0; 1521 } 1522 *lockflags |= XFS_IOLOCK_EXCL; 1523 1524 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) { 1525 if (wait) 1526 return -EAGAIN; 1527 return 0; 1528 } 1529 *lockflags |= XFS_MMAPLOCK_EXCL; 1530 1531 /* 1532 * Check again, nobody else should be able to dirty blocks or change 1533 * the reflink iflag now that we have the first two locks held. 1534 */ 1535 if (xfs_prep_free_cowblocks(ip)) 1536 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1537 return ret; 1538 } 1539 1540 void 1541 xfs_inode_set_cowblocks_tag( 1542 xfs_inode_t *ip) 1543 { 1544 trace_xfs_inode_set_cowblocks_tag(ip); 1545 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS); 1546 } 1547 1548 void 1549 xfs_inode_clear_cowblocks_tag( 1550 xfs_inode_t *ip) 1551 { 1552 trace_xfs_inode_clear_cowblocks_tag(ip); 1553 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS); 1554 } 1555 1556 #define for_each_perag_tag(mp, next_agno, pag, tag) \ 1557 for ((next_agno) = 0, (pag) = xfs_perag_get_tag((mp), 0, (tag)); \ 1558 (pag) != NULL; \ 1559 (next_agno) = (pag)->pag_agno + 1, \ 1560 xfs_perag_put(pag), \ 1561 (pag) = xfs_perag_get_tag((mp), (next_agno), (tag))) 1562 1563 1564 /* Disable post-EOF and CoW block auto-reclamation. */ 1565 void 1566 xfs_blockgc_stop( 1567 struct xfs_mount *mp) 1568 { 1569 struct xfs_perag *pag; 1570 xfs_agnumber_t agno; 1571 1572 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1573 cancel_delayed_work_sync(&pag->pag_blockgc_work); 1574 } 1575 1576 /* Enable post-EOF and CoW block auto-reclamation. */ 1577 void 1578 xfs_blockgc_start( 1579 struct xfs_mount *mp) 1580 { 1581 struct xfs_perag *pag; 1582 xfs_agnumber_t agno; 1583 1584 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1585 xfs_blockgc_queue(pag); 1586 } 1587 1588 /* Scan one incore inode for block preallocations that we can remove. */ 1589 static int 1590 xfs_blockgc_scan_inode( 1591 struct xfs_inode *ip, 1592 void *args) 1593 { 1594 unsigned int lockflags = 0; 1595 int error; 1596 1597 error = xfs_inode_free_eofblocks(ip, args, &lockflags); 1598 if (error) 1599 goto unlock; 1600 1601 error = xfs_inode_free_cowblocks(ip, args, &lockflags); 1602 unlock: 1603 if (lockflags) 1604 xfs_iunlock(ip, lockflags); 1605 return error; 1606 } 1607 1608 /* Background worker that trims preallocated space. */ 1609 void 1610 xfs_blockgc_worker( 1611 struct work_struct *work) 1612 { 1613 struct xfs_perag *pag = container_of(to_delayed_work(work), 1614 struct xfs_perag, pag_blockgc_work); 1615 struct xfs_mount *mp = pag->pag_mount; 1616 int error; 1617 1618 if (!sb_start_write_trylock(mp->m_super)) 1619 return; 1620 error = xfs_inode_walk_ag(pag, 0, xfs_blockgc_scan_inode, NULL, 1621 XFS_ICI_BLOCKGC_TAG); 1622 if (error) 1623 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d", 1624 pag->pag_agno, error); 1625 sb_end_write(mp->m_super); 1626 xfs_blockgc_queue(pag); 1627 } 1628 1629 /* 1630 * Try to free space in the filesystem by purging eofblocks and cowblocks. 1631 */ 1632 int 1633 xfs_blockgc_free_space( 1634 struct xfs_mount *mp, 1635 struct xfs_eofblocks *eofb) 1636 { 1637 trace_xfs_blockgc_free_space(mp, eofb, _RET_IP_); 1638 1639 return xfs_inode_walk(mp, 0, xfs_blockgc_scan_inode, eofb, 1640 XFS_ICI_BLOCKGC_TAG); 1641 } 1642 1643 /* 1644 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which 1645 * quota caused an allocation failure, so we make a best effort by including 1646 * each quota under low free space conditions (less than 1% free space) in the 1647 * scan. 1648 * 1649 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan 1650 * (XFS_EOF_FLAGS_SYNC), the caller also must not hold any inode's IOLOCK or 1651 * MMAPLOCK. 1652 */ 1653 int 1654 xfs_blockgc_free_dquots( 1655 struct xfs_mount *mp, 1656 struct xfs_dquot *udqp, 1657 struct xfs_dquot *gdqp, 1658 struct xfs_dquot *pdqp, 1659 unsigned int eof_flags) 1660 { 1661 struct xfs_eofblocks eofb = {0}; 1662 bool do_work = false; 1663 1664 if (!udqp && !gdqp && !pdqp) 1665 return 0; 1666 1667 /* 1668 * Run a scan to free blocks using the union filter to cover all 1669 * applicable quotas in a single scan. 1670 */ 1671 eofb.eof_flags = XFS_EOF_FLAGS_UNION | eof_flags; 1672 1673 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) { 1674 eofb.eof_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id); 1675 eofb.eof_flags |= XFS_EOF_FLAGS_UID; 1676 do_work = true; 1677 } 1678 1679 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) { 1680 eofb.eof_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id); 1681 eofb.eof_flags |= XFS_EOF_FLAGS_GID; 1682 do_work = true; 1683 } 1684 1685 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) { 1686 eofb.eof_prid = pdqp->q_id; 1687 eofb.eof_flags |= XFS_EOF_FLAGS_PRID; 1688 do_work = true; 1689 } 1690 1691 if (!do_work) 1692 return 0; 1693 1694 return xfs_blockgc_free_space(mp, &eofb); 1695 } 1696 1697 /* Run cow/eofblocks scans on the quotas attached to the inode. */ 1698 int 1699 xfs_blockgc_free_quota( 1700 struct xfs_inode *ip, 1701 unsigned int eof_flags) 1702 { 1703 return xfs_blockgc_free_dquots(ip->i_mount, 1704 xfs_inode_dquot(ip, XFS_DQTYPE_USER), 1705 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP), 1706 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), eof_flags); 1707 } 1708