1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_inode_item.h" 17 #include "xfs_quota.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_bmap_util.h" 21 #include "xfs_dquot_item.h" 22 #include "xfs_dquot.h" 23 #include "xfs_reflink.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_ag.h" 26 #include "xfs_log_priv.h" 27 #include "xfs_health.h" 28 #include "xfs_da_format.h" 29 #include "xfs_dir2.h" 30 #include "xfs_metafile.h" 31 32 #include <linux/iversion.h> 33 34 /* Radix tree tags for incore inode tree. */ 35 36 /* inode is to be reclaimed */ 37 #define XFS_ICI_RECLAIM_TAG 0 38 /* Inode has speculative preallocations (posteof or cow) to clean. */ 39 #define XFS_ICI_BLOCKGC_TAG 1 40 41 /* 42 * The goal for walking incore inodes. These can correspond with incore inode 43 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace. 44 */ 45 enum xfs_icwalk_goal { 46 /* Goals directly associated with tagged inodes. */ 47 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG, 48 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG, 49 }; 50 51 static int xfs_icwalk(struct xfs_mount *mp, 52 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 53 static int xfs_icwalk_ag(struct xfs_perag *pag, 54 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 55 56 /* 57 * Private inode cache walk flags for struct xfs_icwalk. Must not 58 * coincide with XFS_ICWALK_FLAGS_VALID. 59 */ 60 61 /* Stop scanning after icw_scan_limit inodes. */ 62 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28) 63 64 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27) 65 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */ 66 67 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \ 68 XFS_ICWALK_FLAG_RECLAIM_SICK | \ 69 XFS_ICWALK_FLAG_UNION) 70 71 /* Marks for the perag xarray */ 72 #define XFS_PERAG_RECLAIM_MARK XA_MARK_0 73 #define XFS_PERAG_BLOCKGC_MARK XA_MARK_1 74 75 static inline xa_mark_t ici_tag_to_mark(unsigned int tag) 76 { 77 if (tag == XFS_ICI_RECLAIM_TAG) 78 return XFS_PERAG_RECLAIM_MARK; 79 ASSERT(tag == XFS_ICI_BLOCKGC_TAG); 80 return XFS_PERAG_BLOCKGC_MARK; 81 } 82 83 /* 84 * Allocate and initialise an xfs_inode. 85 */ 86 struct xfs_inode * 87 xfs_inode_alloc( 88 struct xfs_mount *mp, 89 xfs_ino_t ino) 90 { 91 struct xfs_inode *ip; 92 93 /* 94 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL 95 * and return NULL here on ENOMEM. 96 */ 97 ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL); 98 99 if (inode_init_always(mp->m_super, VFS_I(ip))) { 100 kmem_cache_free(xfs_inode_cache, ip); 101 return NULL; 102 } 103 104 /* VFS doesn't initialise i_mode! */ 105 VFS_I(ip)->i_mode = 0; 106 mapping_set_folio_min_order(VFS_I(ip)->i_mapping, 107 M_IGEO(mp)->min_folio_order); 108 109 XFS_STATS_INC(mp, vn_active); 110 ASSERT(atomic_read(&ip->i_pincount) == 0); 111 ASSERT(ip->i_ino == 0); 112 113 /* initialise the xfs inode */ 114 ip->i_ino = ino; 115 ip->i_mount = mp; 116 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 117 ip->i_cowfp = NULL; 118 memset(&ip->i_af, 0, sizeof(ip->i_af)); 119 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS; 120 memset(&ip->i_df, 0, sizeof(ip->i_df)); 121 ip->i_flags = 0; 122 ip->i_delayed_blks = 0; 123 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 124 ip->i_nblocks = 0; 125 ip->i_forkoff = 0; 126 ip->i_sick = 0; 127 ip->i_checked = 0; 128 INIT_WORK(&ip->i_ioend_work, xfs_end_io); 129 INIT_LIST_HEAD(&ip->i_ioend_list); 130 spin_lock_init(&ip->i_ioend_lock); 131 ip->i_next_unlinked = NULLAGINO; 132 ip->i_prev_unlinked = 0; 133 134 return ip; 135 } 136 137 STATIC void 138 xfs_inode_free_callback( 139 struct rcu_head *head) 140 { 141 struct inode *inode = container_of(head, struct inode, i_rcu); 142 struct xfs_inode *ip = XFS_I(inode); 143 144 switch (VFS_I(ip)->i_mode & S_IFMT) { 145 case S_IFREG: 146 case S_IFDIR: 147 case S_IFLNK: 148 xfs_idestroy_fork(&ip->i_df); 149 break; 150 } 151 152 xfs_ifork_zap_attr(ip); 153 154 if (ip->i_cowfp) { 155 xfs_idestroy_fork(ip->i_cowfp); 156 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp); 157 } 158 if (ip->i_itemp) { 159 ASSERT(!test_bit(XFS_LI_IN_AIL, 160 &ip->i_itemp->ili_item.li_flags)); 161 xfs_inode_item_destroy(ip); 162 ip->i_itemp = NULL; 163 } 164 165 kmem_cache_free(xfs_inode_cache, ip); 166 } 167 168 static void 169 __xfs_inode_free( 170 struct xfs_inode *ip) 171 { 172 /* asserts to verify all state is correct here */ 173 ASSERT(atomic_read(&ip->i_pincount) == 0); 174 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list)); 175 XFS_STATS_DEC(ip->i_mount, vn_active); 176 177 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 178 } 179 180 void 181 xfs_inode_free( 182 struct xfs_inode *ip) 183 { 184 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING)); 185 186 /* 187 * Because we use RCU freeing we need to ensure the inode always 188 * appears to be reclaimed with an invalid inode number when in the 189 * free state. The ip->i_flags_lock provides the barrier against lookup 190 * races. 191 */ 192 spin_lock(&ip->i_flags_lock); 193 ip->i_flags = XFS_IRECLAIM; 194 ip->i_ino = 0; 195 spin_unlock(&ip->i_flags_lock); 196 197 __xfs_inode_free(ip); 198 } 199 200 /* 201 * Queue background inode reclaim work if there are reclaimable inodes and there 202 * isn't reclaim work already scheduled or in progress. 203 */ 204 static void 205 xfs_reclaim_work_queue( 206 struct xfs_mount *mp) 207 { 208 209 rcu_read_lock(); 210 if (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) { 211 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 212 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 213 } 214 rcu_read_unlock(); 215 } 216 217 /* 218 * Background scanning to trim preallocated space. This is queued based on the 219 * 'speculative_prealloc_lifetime' tunable (5m by default). 220 */ 221 static inline void 222 xfs_blockgc_queue( 223 struct xfs_perag *pag) 224 { 225 struct xfs_mount *mp = pag_mount(pag); 226 227 if (!xfs_is_blockgc_enabled(mp)) 228 return; 229 230 rcu_read_lock(); 231 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) 232 queue_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work, 233 secs_to_jiffies(xfs_blockgc_secs)); 234 rcu_read_unlock(); 235 } 236 237 /* Set a tag on both the AG incore inode tree and the AG radix tree. */ 238 static void 239 xfs_perag_set_inode_tag( 240 struct xfs_perag *pag, 241 xfs_agino_t agino, 242 unsigned int tag) 243 { 244 bool was_tagged; 245 246 lockdep_assert_held(&pag->pag_ici_lock); 247 248 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 249 radix_tree_tag_set(&pag->pag_ici_root, agino, tag); 250 251 if (tag == XFS_ICI_RECLAIM_TAG) 252 pag->pag_ici_reclaimable++; 253 254 if (was_tagged) 255 return; 256 257 /* propagate the tag up into the pag xarray tree */ 258 xfs_group_set_mark(pag_group(pag), ici_tag_to_mark(tag)); 259 260 /* start background work */ 261 switch (tag) { 262 case XFS_ICI_RECLAIM_TAG: 263 xfs_reclaim_work_queue(pag_mount(pag)); 264 break; 265 case XFS_ICI_BLOCKGC_TAG: 266 xfs_blockgc_queue(pag); 267 break; 268 } 269 270 trace_xfs_perag_set_inode_tag(pag, _RET_IP_); 271 } 272 273 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */ 274 static void 275 xfs_perag_clear_inode_tag( 276 struct xfs_perag *pag, 277 xfs_agino_t agino, 278 unsigned int tag) 279 { 280 lockdep_assert_held(&pag->pag_ici_lock); 281 282 /* 283 * Reclaim can signal (with a null agino) that it cleared its own tag 284 * by removing the inode from the radix tree. 285 */ 286 if (agino != NULLAGINO) 287 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag); 288 else 289 ASSERT(tag == XFS_ICI_RECLAIM_TAG); 290 291 if (tag == XFS_ICI_RECLAIM_TAG) 292 pag->pag_ici_reclaimable--; 293 294 if (radix_tree_tagged(&pag->pag_ici_root, tag)) 295 return; 296 297 /* clear the tag from the pag xarray */ 298 xfs_group_clear_mark(pag_group(pag), ici_tag_to_mark(tag)); 299 trace_xfs_perag_clear_inode_tag(pag, _RET_IP_); 300 } 301 302 /* 303 * Find the next AG after @pag, or the first AG if @pag is NULL. 304 */ 305 static struct xfs_perag * 306 xfs_perag_grab_next_tag( 307 struct xfs_mount *mp, 308 struct xfs_perag *pag, 309 int tag) 310 { 311 return to_perag(xfs_group_grab_next_mark(mp, 312 pag ? pag_group(pag) : NULL, 313 ici_tag_to_mark(tag), XG_TYPE_AG)); 314 } 315 316 /* 317 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 318 * part of the structure. This is made more complex by the fact we store 319 * information about the on-disk values in the VFS inode and so we can't just 320 * overwrite the values unconditionally. Hence we save the parameters we 321 * need to retain across reinitialisation, and rewrite them into the VFS inode 322 * after reinitialisation even if it fails. 323 */ 324 static int 325 xfs_reinit_inode( 326 struct xfs_mount *mp, 327 struct inode *inode) 328 { 329 int error; 330 uint32_t nlink = inode->i_nlink; 331 uint32_t generation = inode->i_generation; 332 uint64_t version = inode_peek_iversion(inode); 333 umode_t mode = inode->i_mode; 334 dev_t dev = inode->i_rdev; 335 kuid_t uid = inode->i_uid; 336 kgid_t gid = inode->i_gid; 337 unsigned long state = inode->i_state; 338 339 error = inode_init_always(mp->m_super, inode); 340 341 set_nlink(inode, nlink); 342 inode->i_generation = generation; 343 inode_set_iversion_queried(inode, version); 344 inode->i_mode = mode; 345 inode->i_rdev = dev; 346 inode->i_uid = uid; 347 inode->i_gid = gid; 348 inode->i_state = state; 349 mapping_set_folio_min_order(inode->i_mapping, 350 M_IGEO(mp)->min_folio_order); 351 return error; 352 } 353 354 /* 355 * Carefully nudge an inode whose VFS state has been torn down back into a 356 * usable state. Drops the i_flags_lock and the rcu read lock. 357 */ 358 static int 359 xfs_iget_recycle( 360 struct xfs_perag *pag, 361 struct xfs_inode *ip) __releases(&ip->i_flags_lock) 362 { 363 struct xfs_mount *mp = ip->i_mount; 364 struct inode *inode = VFS_I(ip); 365 int error; 366 367 trace_xfs_iget_recycle(ip); 368 369 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 370 return -EAGAIN; 371 372 /* 373 * We need to make it look like the inode is being reclaimed to prevent 374 * the actual reclaim workers from stomping over us while we recycle 375 * the inode. We can't clear the radix tree tag yet as it requires 376 * pag_ici_lock to be held exclusive. 377 */ 378 ip->i_flags |= XFS_IRECLAIM; 379 380 spin_unlock(&ip->i_flags_lock); 381 rcu_read_unlock(); 382 383 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 384 error = xfs_reinit_inode(mp, inode); 385 xfs_iunlock(ip, XFS_ILOCK_EXCL); 386 if (error) { 387 /* 388 * Re-initializing the inode failed, and we are in deep 389 * trouble. Try to re-add it to the reclaim list. 390 */ 391 rcu_read_lock(); 392 spin_lock(&ip->i_flags_lock); 393 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 394 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 395 spin_unlock(&ip->i_flags_lock); 396 rcu_read_unlock(); 397 398 trace_xfs_iget_recycle_fail(ip); 399 return error; 400 } 401 402 spin_lock(&pag->pag_ici_lock); 403 spin_lock(&ip->i_flags_lock); 404 405 /* 406 * Clear the per-lifetime state in the inode as we are now effectively 407 * a new inode and need to return to the initial state before reuse 408 * occurs. 409 */ 410 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 411 ip->i_flags |= XFS_INEW; 412 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 413 XFS_ICI_RECLAIM_TAG); 414 inode->i_state = I_NEW; 415 spin_unlock(&ip->i_flags_lock); 416 spin_unlock(&pag->pag_ici_lock); 417 418 return 0; 419 } 420 421 /* 422 * If we are allocating a new inode, then check what was returned is 423 * actually a free, empty inode. If we are not allocating an inode, 424 * then check we didn't find a free inode. 425 * 426 * Returns: 427 * 0 if the inode free state matches the lookup context 428 * -ENOENT if the inode is free and we are not allocating 429 * -EFSCORRUPTED if there is any state mismatch at all 430 */ 431 static int 432 xfs_iget_check_free_state( 433 struct xfs_inode *ip, 434 int flags) 435 { 436 if (flags & XFS_IGET_CREATE) { 437 /* should be a free inode */ 438 if (VFS_I(ip)->i_mode != 0) { 439 xfs_warn(ip->i_mount, 440 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", 441 ip->i_ino, VFS_I(ip)->i_mode); 442 xfs_agno_mark_sick(ip->i_mount, 443 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 444 XFS_SICK_AG_INOBT); 445 return -EFSCORRUPTED; 446 } 447 448 if (ip->i_nblocks != 0) { 449 xfs_warn(ip->i_mount, 450 "Corruption detected! Free inode 0x%llx has blocks allocated!", 451 ip->i_ino); 452 xfs_agno_mark_sick(ip->i_mount, 453 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 454 XFS_SICK_AG_INOBT); 455 return -EFSCORRUPTED; 456 } 457 return 0; 458 } 459 460 /* should be an allocated inode */ 461 if (VFS_I(ip)->i_mode == 0) 462 return -ENOENT; 463 464 return 0; 465 } 466 467 /* Make all pending inactivation work start immediately. */ 468 static bool 469 xfs_inodegc_queue_all( 470 struct xfs_mount *mp) 471 { 472 struct xfs_inodegc *gc; 473 int cpu; 474 bool ret = false; 475 476 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 477 gc = per_cpu_ptr(mp->m_inodegc, cpu); 478 if (!llist_empty(&gc->list)) { 479 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 480 ret = true; 481 } 482 } 483 484 return ret; 485 } 486 487 /* Wait for all queued work and collect errors */ 488 static int 489 xfs_inodegc_wait_all( 490 struct xfs_mount *mp) 491 { 492 int cpu; 493 int error = 0; 494 495 flush_workqueue(mp->m_inodegc_wq); 496 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 497 struct xfs_inodegc *gc; 498 499 gc = per_cpu_ptr(mp->m_inodegc, cpu); 500 if (gc->error && !error) 501 error = gc->error; 502 gc->error = 0; 503 } 504 505 return error; 506 } 507 508 /* 509 * Check the validity of the inode we just found it the cache 510 */ 511 static int 512 xfs_iget_cache_hit( 513 struct xfs_perag *pag, 514 struct xfs_inode *ip, 515 xfs_ino_t ino, 516 int flags, 517 int lock_flags) __releases(RCU) 518 { 519 struct inode *inode = VFS_I(ip); 520 struct xfs_mount *mp = ip->i_mount; 521 int error; 522 523 /* 524 * check for re-use of an inode within an RCU grace period due to the 525 * radix tree nodes not being updated yet. We monitor for this by 526 * setting the inode number to zero before freeing the inode structure. 527 * If the inode has been reallocated and set up, then the inode number 528 * will not match, so check for that, too. 529 */ 530 spin_lock(&ip->i_flags_lock); 531 if (ip->i_ino != ino) 532 goto out_skip; 533 534 /* 535 * If we are racing with another cache hit that is currently 536 * instantiating this inode or currently recycling it out of 537 * reclaimable state, wait for the initialisation to complete 538 * before continuing. 539 * 540 * If we're racing with the inactivation worker we also want to wait. 541 * If we're creating a new file, it's possible that the worker 542 * previously marked the inode as free on disk but hasn't finished 543 * updating the incore state yet. The AGI buffer will be dirty and 544 * locked to the icreate transaction, so a synchronous push of the 545 * inodegc workers would result in deadlock. For a regular iget, the 546 * worker is running already, so we might as well wait. 547 * 548 * XXX(hch): eventually we should do something equivalent to 549 * wait_on_inode to wait for these flags to be cleared 550 * instead of polling for it. 551 */ 552 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING)) 553 goto out_skip; 554 555 if (ip->i_flags & XFS_NEED_INACTIVE) { 556 /* Unlinked inodes cannot be re-grabbed. */ 557 if (VFS_I(ip)->i_nlink == 0) { 558 error = -ENOENT; 559 goto out_error; 560 } 561 goto out_inodegc_flush; 562 } 563 564 /* 565 * Check the inode free state is valid. This also detects lookup 566 * racing with unlinks. 567 */ 568 error = xfs_iget_check_free_state(ip, flags); 569 if (error) 570 goto out_error; 571 572 /* Skip inodes that have no vfs state. */ 573 if ((flags & XFS_IGET_INCORE) && 574 (ip->i_flags & XFS_IRECLAIMABLE)) 575 goto out_skip; 576 577 /* The inode fits the selection criteria; process it. */ 578 if (ip->i_flags & XFS_IRECLAIMABLE) { 579 /* Drops i_flags_lock and RCU read lock. */ 580 error = xfs_iget_recycle(pag, ip); 581 if (error == -EAGAIN) 582 goto out_skip; 583 if (error) 584 return error; 585 } else { 586 /* If the VFS inode is being torn down, pause and try again. */ 587 if (!igrab(inode)) 588 goto out_skip; 589 590 /* We've got a live one. */ 591 spin_unlock(&ip->i_flags_lock); 592 rcu_read_unlock(); 593 trace_xfs_iget_hit(ip); 594 } 595 596 if (lock_flags != 0) 597 xfs_ilock(ip, lock_flags); 598 599 if (!(flags & XFS_IGET_INCORE)) 600 xfs_iflags_clear(ip, XFS_ISTALE); 601 XFS_STATS_INC(mp, xs_ig_found); 602 603 return 0; 604 605 out_skip: 606 trace_xfs_iget_skip(ip); 607 XFS_STATS_INC(mp, xs_ig_frecycle); 608 error = -EAGAIN; 609 out_error: 610 spin_unlock(&ip->i_flags_lock); 611 rcu_read_unlock(); 612 return error; 613 614 out_inodegc_flush: 615 spin_unlock(&ip->i_flags_lock); 616 rcu_read_unlock(); 617 /* 618 * Do not wait for the workers, because the caller could hold an AGI 619 * buffer lock. We're just going to sleep in a loop anyway. 620 */ 621 if (xfs_is_inodegc_enabled(mp)) 622 xfs_inodegc_queue_all(mp); 623 return -EAGAIN; 624 } 625 626 static int 627 xfs_iget_cache_miss( 628 struct xfs_mount *mp, 629 struct xfs_perag *pag, 630 xfs_trans_t *tp, 631 xfs_ino_t ino, 632 struct xfs_inode **ipp, 633 int flags, 634 int lock_flags) 635 { 636 struct xfs_inode *ip; 637 int error; 638 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 639 640 ip = xfs_inode_alloc(mp, ino); 641 if (!ip) 642 return -ENOMEM; 643 644 error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags); 645 if (error) 646 goto out_destroy; 647 648 /* 649 * For version 5 superblocks, if we are initialising a new inode and we 650 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can 651 * simply build the new inode core with a random generation number. 652 * 653 * For version 4 (and older) superblocks, log recovery is dependent on 654 * the i_flushiter field being initialised from the current on-disk 655 * value and hence we must also read the inode off disk even when 656 * initializing new inodes. 657 */ 658 if (xfs_has_v3inodes(mp) && 659 (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) { 660 VFS_I(ip)->i_generation = get_random_u32(); 661 } else { 662 struct xfs_buf *bp; 663 664 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp); 665 if (error) 666 goto out_destroy; 667 668 error = xfs_inode_from_disk(ip, 669 xfs_buf_offset(bp, ip->i_imap.im_boffset)); 670 if (!error) 671 xfs_buf_set_ref(bp, XFS_INO_REF); 672 else 673 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 674 xfs_trans_brelse(tp, bp); 675 676 if (error) 677 goto out_destroy; 678 } 679 680 trace_xfs_iget_miss(ip); 681 682 /* 683 * Check the inode free state is valid. This also detects lookup 684 * racing with unlinks. 685 */ 686 error = xfs_iget_check_free_state(ip, flags); 687 if (error) 688 goto out_destroy; 689 690 /* 691 * Preload the radix tree so we can insert safely under the 692 * write spinlock. Note that we cannot sleep inside the preload 693 * region. 694 */ 695 if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) { 696 error = -EAGAIN; 697 goto out_destroy; 698 } 699 700 /* 701 * Because the inode hasn't been added to the radix-tree yet it can't 702 * be found by another thread, so we can do the non-sleeping lock here. 703 */ 704 if (lock_flags) { 705 if (!xfs_ilock_nowait(ip, lock_flags)) 706 BUG(); 707 } 708 709 /* 710 * These values must be set before inserting the inode into the radix 711 * tree as the moment it is inserted a concurrent lookup (allowed by the 712 * RCU locking mechanism) can find it and that lookup must see that this 713 * is an inode currently under construction (i.e. that XFS_INEW is set). 714 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 715 * memory barrier that ensures this detection works correctly at lookup 716 * time. 717 */ 718 if (flags & XFS_IGET_DONTCACHE) 719 d_mark_dontcache(VFS_I(ip)); 720 ip->i_udquot = NULL; 721 ip->i_gdquot = NULL; 722 ip->i_pdquot = NULL; 723 xfs_iflags_set(ip, XFS_INEW); 724 725 /* insert the new inode */ 726 spin_lock(&pag->pag_ici_lock); 727 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 728 if (unlikely(error)) { 729 WARN_ON(error != -EEXIST); 730 XFS_STATS_INC(mp, xs_ig_dup); 731 error = -EAGAIN; 732 goto out_preload_end; 733 } 734 spin_unlock(&pag->pag_ici_lock); 735 radix_tree_preload_end(); 736 737 *ipp = ip; 738 return 0; 739 740 out_preload_end: 741 spin_unlock(&pag->pag_ici_lock); 742 radix_tree_preload_end(); 743 if (lock_flags) 744 xfs_iunlock(ip, lock_flags); 745 out_destroy: 746 __destroy_inode(VFS_I(ip)); 747 xfs_inode_free(ip); 748 return error; 749 } 750 751 /* 752 * Look up an inode by number in the given file system. The inode is looked up 753 * in the cache held in each AG. If the inode is found in the cache, initialise 754 * the vfs inode if necessary. 755 * 756 * If it is not in core, read it in from the file system's device, add it to the 757 * cache and initialise the vfs inode. 758 * 759 * The inode is locked according to the value of the lock_flags parameter. 760 * Inode lookup is only done during metadata operations and not as part of the 761 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup. 762 */ 763 int 764 xfs_iget( 765 struct xfs_mount *mp, 766 struct xfs_trans *tp, 767 xfs_ino_t ino, 768 uint flags, 769 uint lock_flags, 770 struct xfs_inode **ipp) 771 { 772 struct xfs_inode *ip; 773 struct xfs_perag *pag; 774 xfs_agino_t agino; 775 int error; 776 777 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 778 779 /* reject inode numbers outside existing AGs */ 780 if (!xfs_verify_ino(mp, ino)) 781 return -EINVAL; 782 783 XFS_STATS_INC(mp, xs_ig_attempts); 784 785 /* get the perag structure and ensure that it's inode capable */ 786 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 787 agino = XFS_INO_TO_AGINO(mp, ino); 788 789 again: 790 error = 0; 791 rcu_read_lock(); 792 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 793 794 if (ip) { 795 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 796 if (error) 797 goto out_error_or_again; 798 } else { 799 rcu_read_unlock(); 800 if (flags & XFS_IGET_INCORE) { 801 error = -ENODATA; 802 goto out_error_or_again; 803 } 804 XFS_STATS_INC(mp, xs_ig_missed); 805 806 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 807 flags, lock_flags); 808 if (error) 809 goto out_error_or_again; 810 } 811 xfs_perag_put(pag); 812 813 *ipp = ip; 814 815 /* 816 * If we have a real type for an on-disk inode, we can setup the inode 817 * now. If it's a new inode being created, xfs_init_new_inode will 818 * handle it. 819 */ 820 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 821 xfs_setup_existing_inode(ip); 822 return 0; 823 824 out_error_or_again: 825 if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) && 826 error == -EAGAIN) { 827 delay(1); 828 goto again; 829 } 830 xfs_perag_put(pag); 831 return error; 832 } 833 834 /* 835 * Get a metadata inode. 836 * 837 * The metafile type must match the file mode exactly, and for files in the 838 * metadata directory tree, it must match the inode's metatype exactly. 839 */ 840 int 841 xfs_trans_metafile_iget( 842 struct xfs_trans *tp, 843 xfs_ino_t ino, 844 enum xfs_metafile_type metafile_type, 845 struct xfs_inode **ipp) 846 { 847 struct xfs_mount *mp = tp->t_mountp; 848 struct xfs_inode *ip; 849 umode_t mode; 850 int error; 851 852 error = xfs_iget(mp, tp, ino, 0, 0, &ip); 853 if (error == -EFSCORRUPTED || error == -EINVAL) 854 goto whine; 855 if (error) 856 return error; 857 858 if (VFS_I(ip)->i_nlink == 0) 859 goto bad_rele; 860 861 if (metafile_type == XFS_METAFILE_DIR) 862 mode = S_IFDIR; 863 else 864 mode = S_IFREG; 865 if (inode_wrong_type(VFS_I(ip), mode)) 866 goto bad_rele; 867 if (xfs_has_metadir(mp)) { 868 if (!xfs_is_metadir_inode(ip)) 869 goto bad_rele; 870 if (metafile_type != ip->i_metatype) 871 goto bad_rele; 872 } 873 874 *ipp = ip; 875 return 0; 876 bad_rele: 877 xfs_irele(ip); 878 whine: 879 xfs_err(mp, "metadata inode 0x%llx type %u is corrupt", ino, 880 metafile_type); 881 xfs_fs_mark_sick(mp, XFS_SICK_FS_METADIR); 882 return -EFSCORRUPTED; 883 } 884 885 /* Grab a metadata file if the caller doesn't already have a transaction. */ 886 int 887 xfs_metafile_iget( 888 struct xfs_mount *mp, 889 xfs_ino_t ino, 890 enum xfs_metafile_type metafile_type, 891 struct xfs_inode **ipp) 892 { 893 struct xfs_trans *tp; 894 int error; 895 896 error = xfs_trans_alloc_empty(mp, &tp); 897 if (error) 898 return error; 899 900 error = xfs_trans_metafile_iget(tp, ino, metafile_type, ipp); 901 xfs_trans_cancel(tp); 902 return error; 903 } 904 905 /* 906 * Grab the inode for reclaim exclusively. 907 * 908 * We have found this inode via a lookup under RCU, so the inode may have 909 * already been freed, or it may be in the process of being recycled by 910 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode 911 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE 912 * will not be set. Hence we need to check for both these flag conditions to 913 * avoid inodes that are no longer reclaim candidates. 914 * 915 * Note: checking for other state flags here, under the i_flags_lock or not, is 916 * racy and should be avoided. Those races should be resolved only after we have 917 * ensured that we are able to reclaim this inode and the world can see that we 918 * are going to reclaim it. 919 * 920 * Return true if we grabbed it, false otherwise. 921 */ 922 static bool 923 xfs_reclaim_igrab( 924 struct xfs_inode *ip, 925 struct xfs_icwalk *icw) 926 { 927 ASSERT(rcu_read_lock_held()); 928 929 spin_lock(&ip->i_flags_lock); 930 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 931 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 932 /* not a reclaim candidate. */ 933 spin_unlock(&ip->i_flags_lock); 934 return false; 935 } 936 937 /* Don't reclaim a sick inode unless the caller asked for it. */ 938 if (ip->i_sick && 939 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) { 940 spin_unlock(&ip->i_flags_lock); 941 return false; 942 } 943 944 __xfs_iflags_set(ip, XFS_IRECLAIM); 945 spin_unlock(&ip->i_flags_lock); 946 return true; 947 } 948 949 /* 950 * Inode reclaim is non-blocking, so the default action if progress cannot be 951 * made is to "requeue" the inode for reclaim by unlocking it and clearing the 952 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about 953 * blocking anymore and hence we can wait for the inode to be able to reclaim 954 * it. 955 * 956 * We do no IO here - if callers require inodes to be cleaned they must push the 957 * AIL first to trigger writeback of dirty inodes. This enables writeback to be 958 * done in the background in a non-blocking manner, and enables memory reclaim 959 * to make progress without blocking. 960 */ 961 static void 962 xfs_reclaim_inode( 963 struct xfs_inode *ip, 964 struct xfs_perag *pag) 965 { 966 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 967 968 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 969 goto out; 970 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING)) 971 goto out_iunlock; 972 973 /* 974 * Check for log shutdown because aborting the inode can move the log 975 * tail and corrupt in memory state. This is fine if the log is shut 976 * down, but if the log is still active and only the mount is shut down 977 * then the in-memory log tail movement caused by the abort can be 978 * incorrectly propagated to disk. 979 */ 980 if (xlog_is_shutdown(ip->i_mount->m_log)) { 981 xfs_iunpin_wait(ip); 982 /* 983 * Avoid a ABBA deadlock on the inode cluster buffer vs 984 * concurrent xfs_ifree_cluster() trying to mark the inode 985 * stale. We don't need the inode locked to run the flush abort 986 * code, but the flush abort needs to lock the cluster buffer. 987 */ 988 xfs_iunlock(ip, XFS_ILOCK_EXCL); 989 xfs_iflush_shutdown_abort(ip); 990 xfs_ilock(ip, XFS_ILOCK_EXCL); 991 goto reclaim; 992 } 993 if (xfs_ipincount(ip)) 994 goto out_clear_flush; 995 if (!xfs_inode_clean(ip)) 996 goto out_clear_flush; 997 998 xfs_iflags_clear(ip, XFS_IFLUSHING); 999 reclaim: 1000 trace_xfs_inode_reclaiming(ip); 1001 1002 /* 1003 * Because we use RCU freeing we need to ensure the inode always appears 1004 * to be reclaimed with an invalid inode number when in the free state. 1005 * We do this as early as possible under the ILOCK so that 1006 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to 1007 * detect races with us here. By doing this, we guarantee that once 1008 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that 1009 * it will see either a valid inode that will serialise correctly, or it 1010 * will see an invalid inode that it can skip. 1011 */ 1012 spin_lock(&ip->i_flags_lock); 1013 ip->i_flags = XFS_IRECLAIM; 1014 ip->i_ino = 0; 1015 ip->i_sick = 0; 1016 ip->i_checked = 0; 1017 spin_unlock(&ip->i_flags_lock); 1018 1019 ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL); 1020 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1021 1022 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 1023 /* 1024 * Remove the inode from the per-AG radix tree. 1025 * 1026 * Because radix_tree_delete won't complain even if the item was never 1027 * added to the tree assert that it's been there before to catch 1028 * problems with the inode life time early on. 1029 */ 1030 spin_lock(&pag->pag_ici_lock); 1031 if (!radix_tree_delete(&pag->pag_ici_root, 1032 XFS_INO_TO_AGINO(ip->i_mount, ino))) 1033 ASSERT(0); 1034 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG); 1035 spin_unlock(&pag->pag_ici_lock); 1036 1037 /* 1038 * Here we do an (almost) spurious inode lock in order to coordinate 1039 * with inode cache radix tree lookups. This is because the lookup 1040 * can reference the inodes in the cache without taking references. 1041 * 1042 * We make that OK here by ensuring that we wait until the inode is 1043 * unlocked after the lookup before we go ahead and free it. 1044 */ 1045 xfs_ilock(ip, XFS_ILOCK_EXCL); 1046 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot); 1047 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1048 ASSERT(xfs_inode_clean(ip)); 1049 1050 __xfs_inode_free(ip); 1051 return; 1052 1053 out_clear_flush: 1054 xfs_iflags_clear(ip, XFS_IFLUSHING); 1055 out_iunlock: 1056 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1057 out: 1058 xfs_iflags_clear(ip, XFS_IRECLAIM); 1059 } 1060 1061 /* Reclaim sick inodes if we're unmounting or the fs went down. */ 1062 static inline bool 1063 xfs_want_reclaim_sick( 1064 struct xfs_mount *mp) 1065 { 1066 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) || 1067 xfs_is_shutdown(mp); 1068 } 1069 1070 void 1071 xfs_reclaim_inodes( 1072 struct xfs_mount *mp) 1073 { 1074 struct xfs_icwalk icw = { 1075 .icw_flags = 0, 1076 }; 1077 1078 if (xfs_want_reclaim_sick(mp)) 1079 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 1080 1081 while (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) { 1082 xfs_ail_push_all_sync(mp->m_ail); 1083 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 1084 } 1085 } 1086 1087 /* 1088 * The shrinker infrastructure determines how many inodes we should scan for 1089 * reclaim. We want as many clean inodes ready to reclaim as possible, so we 1090 * push the AIL here. We also want to proactively free up memory if we can to 1091 * minimise the amount of work memory reclaim has to do so we kick the 1092 * background reclaim if it isn't already scheduled. 1093 */ 1094 long 1095 xfs_reclaim_inodes_nr( 1096 struct xfs_mount *mp, 1097 unsigned long nr_to_scan) 1098 { 1099 struct xfs_icwalk icw = { 1100 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT, 1101 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan), 1102 }; 1103 1104 if (xfs_want_reclaim_sick(mp)) 1105 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 1106 1107 /* kick background reclaimer and push the AIL */ 1108 xfs_reclaim_work_queue(mp); 1109 xfs_ail_push_all(mp->m_ail); 1110 1111 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 1112 return 0; 1113 } 1114 1115 /* 1116 * Return the number of reclaimable inodes in the filesystem for 1117 * the shrinker to determine how much to reclaim. 1118 */ 1119 long 1120 xfs_reclaim_inodes_count( 1121 struct xfs_mount *mp) 1122 { 1123 XA_STATE (xas, &mp->m_groups[XG_TYPE_AG].xa, 0); 1124 long reclaimable = 0; 1125 struct xfs_perag *pag; 1126 1127 rcu_read_lock(); 1128 xas_for_each_marked(&xas, pag, ULONG_MAX, XFS_PERAG_RECLAIM_MARK) { 1129 trace_xfs_reclaim_inodes_count(pag, _THIS_IP_); 1130 reclaimable += pag->pag_ici_reclaimable; 1131 } 1132 rcu_read_unlock(); 1133 1134 return reclaimable; 1135 } 1136 1137 STATIC bool 1138 xfs_icwalk_match_id( 1139 struct xfs_inode *ip, 1140 struct xfs_icwalk *icw) 1141 { 1142 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1143 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1144 return false; 1145 1146 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1147 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1148 return false; 1149 1150 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1151 ip->i_projid != icw->icw_prid) 1152 return false; 1153 1154 return true; 1155 } 1156 1157 /* 1158 * A union-based inode filtering algorithm. Process the inode if any of the 1159 * criteria match. This is for global/internal scans only. 1160 */ 1161 STATIC bool 1162 xfs_icwalk_match_id_union( 1163 struct xfs_inode *ip, 1164 struct xfs_icwalk *icw) 1165 { 1166 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1167 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1168 return true; 1169 1170 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1171 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1172 return true; 1173 1174 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1175 ip->i_projid == icw->icw_prid) 1176 return true; 1177 1178 return false; 1179 } 1180 1181 /* 1182 * Is this inode @ip eligible for eof/cow block reclamation, given some 1183 * filtering parameters @icw? The inode is eligible if @icw is null or 1184 * if the predicate functions match. 1185 */ 1186 static bool 1187 xfs_icwalk_match( 1188 struct xfs_inode *ip, 1189 struct xfs_icwalk *icw) 1190 { 1191 bool match; 1192 1193 if (!icw) 1194 return true; 1195 1196 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION) 1197 match = xfs_icwalk_match_id_union(ip, icw); 1198 else 1199 match = xfs_icwalk_match_id(ip, icw); 1200 if (!match) 1201 return false; 1202 1203 /* skip the inode if the file size is too small */ 1204 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) && 1205 XFS_ISIZE(ip) < icw->icw_min_file_size) 1206 return false; 1207 1208 return true; 1209 } 1210 1211 /* 1212 * This is a fast pass over the inode cache to try to get reclaim moving on as 1213 * many inodes as possible in a short period of time. It kicks itself every few 1214 * seconds, as well as being kicked by the inode cache shrinker when memory 1215 * goes low. 1216 */ 1217 void 1218 xfs_reclaim_worker( 1219 struct work_struct *work) 1220 { 1221 struct xfs_mount *mp = container_of(to_delayed_work(work), 1222 struct xfs_mount, m_reclaim_work); 1223 1224 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL); 1225 xfs_reclaim_work_queue(mp); 1226 } 1227 1228 STATIC int 1229 xfs_inode_free_eofblocks( 1230 struct xfs_inode *ip, 1231 struct xfs_icwalk *icw, 1232 unsigned int *lockflags) 1233 { 1234 bool wait; 1235 1236 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1237 1238 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS)) 1239 return 0; 1240 1241 /* 1242 * If the mapping is dirty the operation can block and wait for some 1243 * time. Unless we are waiting, skip it. 1244 */ 1245 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1246 return 0; 1247 1248 if (!xfs_icwalk_match(ip, icw)) 1249 return 0; 1250 1251 /* 1252 * If the caller is waiting, return -EAGAIN to keep the background 1253 * scanner moving and revisit the inode in a subsequent pass. 1254 */ 1255 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1256 if (wait) 1257 return -EAGAIN; 1258 return 0; 1259 } 1260 *lockflags |= XFS_IOLOCK_EXCL; 1261 1262 if (xfs_can_free_eofblocks(ip)) 1263 return xfs_free_eofblocks(ip); 1264 1265 /* inode could be preallocated */ 1266 trace_xfs_inode_free_eofblocks_invalid(ip); 1267 xfs_inode_clear_eofblocks_tag(ip); 1268 return 0; 1269 } 1270 1271 static void 1272 xfs_blockgc_set_iflag( 1273 struct xfs_inode *ip, 1274 unsigned long iflag) 1275 { 1276 struct xfs_mount *mp = ip->i_mount; 1277 struct xfs_perag *pag; 1278 1279 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1280 1281 /* 1282 * Don't bother locking the AG and looking up in the radix trees 1283 * if we already know that we have the tag set. 1284 */ 1285 if (ip->i_flags & iflag) 1286 return; 1287 spin_lock(&ip->i_flags_lock); 1288 ip->i_flags |= iflag; 1289 spin_unlock(&ip->i_flags_lock); 1290 1291 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1292 spin_lock(&pag->pag_ici_lock); 1293 1294 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1295 XFS_ICI_BLOCKGC_TAG); 1296 1297 spin_unlock(&pag->pag_ici_lock); 1298 xfs_perag_put(pag); 1299 } 1300 1301 void 1302 xfs_inode_set_eofblocks_tag( 1303 xfs_inode_t *ip) 1304 { 1305 trace_xfs_inode_set_eofblocks_tag(ip); 1306 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS); 1307 } 1308 1309 static void 1310 xfs_blockgc_clear_iflag( 1311 struct xfs_inode *ip, 1312 unsigned long iflag) 1313 { 1314 struct xfs_mount *mp = ip->i_mount; 1315 struct xfs_perag *pag; 1316 bool clear_tag; 1317 1318 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1319 1320 spin_lock(&ip->i_flags_lock); 1321 ip->i_flags &= ~iflag; 1322 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0; 1323 spin_unlock(&ip->i_flags_lock); 1324 1325 if (!clear_tag) 1326 return; 1327 1328 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1329 spin_lock(&pag->pag_ici_lock); 1330 1331 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1332 XFS_ICI_BLOCKGC_TAG); 1333 1334 spin_unlock(&pag->pag_ici_lock); 1335 xfs_perag_put(pag); 1336 } 1337 1338 void 1339 xfs_inode_clear_eofblocks_tag( 1340 xfs_inode_t *ip) 1341 { 1342 trace_xfs_inode_clear_eofblocks_tag(ip); 1343 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS); 1344 } 1345 1346 /* 1347 * Prepare to free COW fork blocks from an inode. 1348 */ 1349 static bool 1350 xfs_prep_free_cowblocks( 1351 struct xfs_inode *ip, 1352 struct xfs_icwalk *icw) 1353 { 1354 bool sync; 1355 1356 sync = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1357 1358 /* 1359 * Just clear the tag if we have an empty cow fork or none at all. It's 1360 * possible the inode was fully unshared since it was originally tagged. 1361 */ 1362 if (!xfs_inode_has_cow_data(ip)) { 1363 trace_xfs_inode_free_cowblocks_invalid(ip); 1364 xfs_inode_clear_cowblocks_tag(ip); 1365 return false; 1366 } 1367 1368 /* 1369 * A cowblocks trim of an inode can have a significant effect on 1370 * fragmentation even when a reasonable COW extent size hint is set. 1371 * Therefore, we prefer to not process cowblocks unless they are clean 1372 * and idle. We can never process a cowblocks inode that is dirty or has 1373 * in-flight I/O under any circumstances, because outstanding writeback 1374 * or dio expects targeted COW fork blocks exist through write 1375 * completion where they can be remapped into the data fork. 1376 * 1377 * Therefore, the heuristic used here is to never process inodes 1378 * currently opened for write from background (i.e. non-sync) scans. For 1379 * sync scans, use the pagecache/dio state of the inode to ensure we 1380 * never free COW fork blocks out from under pending I/O. 1381 */ 1382 if (!sync && inode_is_open_for_write(VFS_I(ip))) 1383 return false; 1384 return xfs_can_free_cowblocks(ip); 1385 } 1386 1387 /* 1388 * Automatic CoW Reservation Freeing 1389 * 1390 * These functions automatically garbage collect leftover CoW reservations 1391 * that were made on behalf of a cowextsize hint when we start to run out 1392 * of quota or when the reservations sit around for too long. If the file 1393 * has dirty pages or is undergoing writeback, its CoW reservations will 1394 * be retained. 1395 * 1396 * The actual garbage collection piggybacks off the same code that runs 1397 * the speculative EOF preallocation garbage collector. 1398 */ 1399 STATIC int 1400 xfs_inode_free_cowblocks( 1401 struct xfs_inode *ip, 1402 struct xfs_icwalk *icw, 1403 unsigned int *lockflags) 1404 { 1405 bool wait; 1406 int ret = 0; 1407 1408 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1409 1410 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS)) 1411 return 0; 1412 1413 if (!xfs_prep_free_cowblocks(ip, icw)) 1414 return 0; 1415 1416 if (!xfs_icwalk_match(ip, icw)) 1417 return 0; 1418 1419 /* 1420 * If the caller is waiting, return -EAGAIN to keep the background 1421 * scanner moving and revisit the inode in a subsequent pass. 1422 */ 1423 if (!(*lockflags & XFS_IOLOCK_EXCL) && 1424 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1425 if (wait) 1426 return -EAGAIN; 1427 return 0; 1428 } 1429 *lockflags |= XFS_IOLOCK_EXCL; 1430 1431 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) { 1432 if (wait) 1433 return -EAGAIN; 1434 return 0; 1435 } 1436 *lockflags |= XFS_MMAPLOCK_EXCL; 1437 1438 /* 1439 * Check again, nobody else should be able to dirty blocks or change 1440 * the reflink iflag now that we have the first two locks held. 1441 */ 1442 if (xfs_prep_free_cowblocks(ip, icw)) 1443 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1444 return ret; 1445 } 1446 1447 void 1448 xfs_inode_set_cowblocks_tag( 1449 xfs_inode_t *ip) 1450 { 1451 trace_xfs_inode_set_cowblocks_tag(ip); 1452 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS); 1453 } 1454 1455 void 1456 xfs_inode_clear_cowblocks_tag( 1457 xfs_inode_t *ip) 1458 { 1459 trace_xfs_inode_clear_cowblocks_tag(ip); 1460 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS); 1461 } 1462 1463 /* Disable post-EOF and CoW block auto-reclamation. */ 1464 void 1465 xfs_blockgc_stop( 1466 struct xfs_mount *mp) 1467 { 1468 struct xfs_perag *pag = NULL; 1469 1470 if (!xfs_clear_blockgc_enabled(mp)) 1471 return; 1472 1473 while ((pag = xfs_perag_next(mp, pag))) 1474 cancel_delayed_work_sync(&pag->pag_blockgc_work); 1475 trace_xfs_blockgc_stop(mp, __return_address); 1476 } 1477 1478 /* Enable post-EOF and CoW block auto-reclamation. */ 1479 void 1480 xfs_blockgc_start( 1481 struct xfs_mount *mp) 1482 { 1483 struct xfs_perag *pag = NULL; 1484 1485 if (xfs_set_blockgc_enabled(mp)) 1486 return; 1487 1488 trace_xfs_blockgc_start(mp, __return_address); 1489 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG))) 1490 xfs_blockgc_queue(pag); 1491 } 1492 1493 /* Don't try to run block gc on an inode that's in any of these states. */ 1494 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \ 1495 XFS_NEED_INACTIVE | \ 1496 XFS_INACTIVATING | \ 1497 XFS_IRECLAIMABLE | \ 1498 XFS_IRECLAIM) 1499 /* 1500 * Decide if the given @ip is eligible for garbage collection of speculative 1501 * preallocations, and grab it if so. Returns true if it's ready to go or 1502 * false if we should just ignore it. 1503 */ 1504 static bool 1505 xfs_blockgc_igrab( 1506 struct xfs_inode *ip) 1507 { 1508 struct inode *inode = VFS_I(ip); 1509 1510 ASSERT(rcu_read_lock_held()); 1511 1512 /* Check for stale RCU freed inode */ 1513 spin_lock(&ip->i_flags_lock); 1514 if (!ip->i_ino) 1515 goto out_unlock_noent; 1516 1517 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS) 1518 goto out_unlock_noent; 1519 spin_unlock(&ip->i_flags_lock); 1520 1521 /* nothing to sync during shutdown */ 1522 if (xfs_is_shutdown(ip->i_mount)) 1523 return false; 1524 1525 /* If we can't grab the inode, it must on it's way to reclaim. */ 1526 if (!igrab(inode)) 1527 return false; 1528 1529 /* inode is valid */ 1530 return true; 1531 1532 out_unlock_noent: 1533 spin_unlock(&ip->i_flags_lock); 1534 return false; 1535 } 1536 1537 /* Scan one incore inode for block preallocations that we can remove. */ 1538 static int 1539 xfs_blockgc_scan_inode( 1540 struct xfs_inode *ip, 1541 struct xfs_icwalk *icw) 1542 { 1543 unsigned int lockflags = 0; 1544 int error; 1545 1546 error = xfs_inode_free_eofblocks(ip, icw, &lockflags); 1547 if (error) 1548 goto unlock; 1549 1550 error = xfs_inode_free_cowblocks(ip, icw, &lockflags); 1551 unlock: 1552 if (lockflags) 1553 xfs_iunlock(ip, lockflags); 1554 xfs_irele(ip); 1555 return error; 1556 } 1557 1558 /* Background worker that trims preallocated space. */ 1559 void 1560 xfs_blockgc_worker( 1561 struct work_struct *work) 1562 { 1563 struct xfs_perag *pag = container_of(to_delayed_work(work), 1564 struct xfs_perag, pag_blockgc_work); 1565 struct xfs_mount *mp = pag_mount(pag); 1566 int error; 1567 1568 trace_xfs_blockgc_worker(mp, __return_address); 1569 1570 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL); 1571 if (error) 1572 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d", 1573 pag_agno(pag), error); 1574 xfs_blockgc_queue(pag); 1575 } 1576 1577 /* 1578 * Try to free space in the filesystem by purging inactive inodes, eofblocks 1579 * and cowblocks. 1580 */ 1581 int 1582 xfs_blockgc_free_space( 1583 struct xfs_mount *mp, 1584 struct xfs_icwalk *icw) 1585 { 1586 int error; 1587 1588 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_); 1589 1590 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw); 1591 if (error) 1592 return error; 1593 1594 return xfs_inodegc_flush(mp); 1595 } 1596 1597 /* 1598 * Reclaim all the free space that we can by scheduling the background blockgc 1599 * and inodegc workers immediately and waiting for them all to clear. 1600 */ 1601 int 1602 xfs_blockgc_flush_all( 1603 struct xfs_mount *mp) 1604 { 1605 struct xfs_perag *pag = NULL; 1606 1607 trace_xfs_blockgc_flush_all(mp, __return_address); 1608 1609 /* 1610 * For each blockgc worker, move its queue time up to now. If it wasn't 1611 * queued, it will not be requeued. Then flush whatever is left. 1612 */ 1613 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG))) 1614 mod_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work, 0); 1615 1616 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG))) 1617 flush_delayed_work(&pag->pag_blockgc_work); 1618 1619 return xfs_inodegc_flush(mp); 1620 } 1621 1622 /* 1623 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which 1624 * quota caused an allocation failure, so we make a best effort by including 1625 * each quota under low free space conditions (less than 1% free space) in the 1626 * scan. 1627 * 1628 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan 1629 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or 1630 * MMAPLOCK. 1631 */ 1632 int 1633 xfs_blockgc_free_dquots( 1634 struct xfs_mount *mp, 1635 struct xfs_dquot *udqp, 1636 struct xfs_dquot *gdqp, 1637 struct xfs_dquot *pdqp, 1638 unsigned int iwalk_flags) 1639 { 1640 struct xfs_icwalk icw = {0}; 1641 bool do_work = false; 1642 1643 if (!udqp && !gdqp && !pdqp) 1644 return 0; 1645 1646 /* 1647 * Run a scan to free blocks using the union filter to cover all 1648 * applicable quotas in a single scan. 1649 */ 1650 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags; 1651 1652 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) { 1653 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id); 1654 icw.icw_flags |= XFS_ICWALK_FLAG_UID; 1655 do_work = true; 1656 } 1657 1658 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) { 1659 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id); 1660 icw.icw_flags |= XFS_ICWALK_FLAG_GID; 1661 do_work = true; 1662 } 1663 1664 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) { 1665 icw.icw_prid = pdqp->q_id; 1666 icw.icw_flags |= XFS_ICWALK_FLAG_PRID; 1667 do_work = true; 1668 } 1669 1670 if (!do_work) 1671 return 0; 1672 1673 return xfs_blockgc_free_space(mp, &icw); 1674 } 1675 1676 /* Run cow/eofblocks scans on the quotas attached to the inode. */ 1677 int 1678 xfs_blockgc_free_quota( 1679 struct xfs_inode *ip, 1680 unsigned int iwalk_flags) 1681 { 1682 return xfs_blockgc_free_dquots(ip->i_mount, 1683 xfs_inode_dquot(ip, XFS_DQTYPE_USER), 1684 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP), 1685 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags); 1686 } 1687 1688 /* XFS Inode Cache Walking Code */ 1689 1690 /* 1691 * The inode lookup is done in batches to keep the amount of lock traffic and 1692 * radix tree lookups to a minimum. The batch size is a trade off between 1693 * lookup reduction and stack usage. This is in the reclaim path, so we can't 1694 * be too greedy. 1695 */ 1696 #define XFS_LOOKUP_BATCH 32 1697 1698 1699 /* 1700 * Decide if we want to grab this inode in anticipation of doing work towards 1701 * the goal. 1702 */ 1703 static inline bool 1704 xfs_icwalk_igrab( 1705 enum xfs_icwalk_goal goal, 1706 struct xfs_inode *ip, 1707 struct xfs_icwalk *icw) 1708 { 1709 switch (goal) { 1710 case XFS_ICWALK_BLOCKGC: 1711 return xfs_blockgc_igrab(ip); 1712 case XFS_ICWALK_RECLAIM: 1713 return xfs_reclaim_igrab(ip, icw); 1714 default: 1715 return false; 1716 } 1717 } 1718 1719 /* 1720 * Process an inode. Each processing function must handle any state changes 1721 * made by the icwalk igrab function. Return -EAGAIN to skip an inode. 1722 */ 1723 static inline int 1724 xfs_icwalk_process_inode( 1725 enum xfs_icwalk_goal goal, 1726 struct xfs_inode *ip, 1727 struct xfs_perag *pag, 1728 struct xfs_icwalk *icw) 1729 { 1730 int error = 0; 1731 1732 switch (goal) { 1733 case XFS_ICWALK_BLOCKGC: 1734 error = xfs_blockgc_scan_inode(ip, icw); 1735 break; 1736 case XFS_ICWALK_RECLAIM: 1737 xfs_reclaim_inode(ip, pag); 1738 break; 1739 } 1740 return error; 1741 } 1742 1743 /* 1744 * For a given per-AG structure @pag and a goal, grab qualifying inodes and 1745 * process them in some manner. 1746 */ 1747 static int 1748 xfs_icwalk_ag( 1749 struct xfs_perag *pag, 1750 enum xfs_icwalk_goal goal, 1751 struct xfs_icwalk *icw) 1752 { 1753 struct xfs_mount *mp = pag_mount(pag); 1754 uint32_t first_index; 1755 int last_error = 0; 1756 int skipped; 1757 bool done; 1758 int nr_found; 1759 1760 restart: 1761 done = false; 1762 skipped = 0; 1763 if (goal == XFS_ICWALK_RECLAIM) 1764 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor); 1765 else 1766 first_index = 0; 1767 nr_found = 0; 1768 do { 1769 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1770 int error = 0; 1771 int i; 1772 1773 rcu_read_lock(); 1774 1775 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, 1776 (void **) batch, first_index, 1777 XFS_LOOKUP_BATCH, goal); 1778 if (!nr_found) { 1779 done = true; 1780 rcu_read_unlock(); 1781 break; 1782 } 1783 1784 /* 1785 * Grab the inodes before we drop the lock. if we found 1786 * nothing, nr == 0 and the loop will be skipped. 1787 */ 1788 for (i = 0; i < nr_found; i++) { 1789 struct xfs_inode *ip = batch[i]; 1790 1791 if (done || !xfs_icwalk_igrab(goal, ip, icw)) 1792 batch[i] = NULL; 1793 1794 /* 1795 * Update the index for the next lookup. Catch 1796 * overflows into the next AG range which can occur if 1797 * we have inodes in the last block of the AG and we 1798 * are currently pointing to the last inode. 1799 * 1800 * Because we may see inodes that are from the wrong AG 1801 * due to RCU freeing and reallocation, only update the 1802 * index if it lies in this AG. It was a race that lead 1803 * us to see this inode, so another lookup from the 1804 * same index will not find it again. 1805 */ 1806 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag_agno(pag)) 1807 continue; 1808 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1809 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1810 done = true; 1811 } 1812 1813 /* unlock now we've grabbed the inodes. */ 1814 rcu_read_unlock(); 1815 1816 for (i = 0; i < nr_found; i++) { 1817 if (!batch[i]) 1818 continue; 1819 error = xfs_icwalk_process_inode(goal, batch[i], pag, 1820 icw); 1821 if (error == -EAGAIN) { 1822 skipped++; 1823 continue; 1824 } 1825 if (error && last_error != -EFSCORRUPTED) 1826 last_error = error; 1827 } 1828 1829 /* bail out if the filesystem is corrupted. */ 1830 if (error == -EFSCORRUPTED) 1831 break; 1832 1833 cond_resched(); 1834 1835 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) { 1836 icw->icw_scan_limit -= XFS_LOOKUP_BATCH; 1837 if (icw->icw_scan_limit <= 0) 1838 break; 1839 } 1840 } while (nr_found && !done); 1841 1842 if (goal == XFS_ICWALK_RECLAIM) { 1843 if (done) 1844 first_index = 0; 1845 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index); 1846 } 1847 1848 if (skipped) { 1849 delay(1); 1850 goto restart; 1851 } 1852 return last_error; 1853 } 1854 1855 /* Walk all incore inodes to achieve a given goal. */ 1856 static int 1857 xfs_icwalk( 1858 struct xfs_mount *mp, 1859 enum xfs_icwalk_goal goal, 1860 struct xfs_icwalk *icw) 1861 { 1862 struct xfs_perag *pag = NULL; 1863 int error = 0; 1864 int last_error = 0; 1865 1866 while ((pag = xfs_perag_grab_next_tag(mp, pag, goal))) { 1867 error = xfs_icwalk_ag(pag, goal, icw); 1868 if (error) { 1869 last_error = error; 1870 if (error == -EFSCORRUPTED) { 1871 xfs_perag_rele(pag); 1872 break; 1873 } 1874 } 1875 } 1876 return last_error; 1877 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID); 1878 } 1879 1880 #ifdef DEBUG 1881 static void 1882 xfs_check_delalloc( 1883 struct xfs_inode *ip, 1884 int whichfork) 1885 { 1886 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 1887 struct xfs_bmbt_irec got; 1888 struct xfs_iext_cursor icur; 1889 1890 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 1891 return; 1892 do { 1893 if (isnullstartblock(got.br_startblock)) { 1894 xfs_warn(ip->i_mount, 1895 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 1896 ip->i_ino, 1897 whichfork == XFS_DATA_FORK ? "data" : "cow", 1898 got.br_startoff, got.br_blockcount); 1899 } 1900 } while (xfs_iext_next_extent(ifp, &icur, &got)); 1901 } 1902 #else 1903 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 1904 #endif 1905 1906 /* Schedule the inode for reclaim. */ 1907 static void 1908 xfs_inodegc_set_reclaimable( 1909 struct xfs_inode *ip) 1910 { 1911 struct xfs_mount *mp = ip->i_mount; 1912 struct xfs_perag *pag; 1913 1914 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) { 1915 xfs_check_delalloc(ip, XFS_DATA_FORK); 1916 xfs_check_delalloc(ip, XFS_COW_FORK); 1917 ASSERT(0); 1918 } 1919 1920 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1921 spin_lock(&pag->pag_ici_lock); 1922 spin_lock(&ip->i_flags_lock); 1923 1924 trace_xfs_inode_set_reclaimable(ip); 1925 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING); 1926 ip->i_flags |= XFS_IRECLAIMABLE; 1927 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1928 XFS_ICI_RECLAIM_TAG); 1929 1930 spin_unlock(&ip->i_flags_lock); 1931 spin_unlock(&pag->pag_ici_lock); 1932 xfs_perag_put(pag); 1933 } 1934 1935 /* 1936 * Free all speculative preallocations and possibly even the inode itself. 1937 * This is the last chance to make changes to an otherwise unreferenced file 1938 * before incore reclamation happens. 1939 */ 1940 static int 1941 xfs_inodegc_inactivate( 1942 struct xfs_inode *ip) 1943 { 1944 int error; 1945 1946 trace_xfs_inode_inactivating(ip); 1947 error = xfs_inactive(ip); 1948 xfs_inodegc_set_reclaimable(ip); 1949 return error; 1950 1951 } 1952 1953 void 1954 xfs_inodegc_worker( 1955 struct work_struct *work) 1956 { 1957 struct xfs_inodegc *gc = container_of(to_delayed_work(work), 1958 struct xfs_inodegc, work); 1959 struct llist_node *node = llist_del_all(&gc->list); 1960 struct xfs_inode *ip, *n; 1961 struct xfs_mount *mp = gc->mp; 1962 unsigned int nofs_flag; 1963 1964 /* 1965 * Clear the cpu mask bit and ensure that we have seen the latest 1966 * update of the gc structure associated with this CPU. This matches 1967 * with the release semantics used when setting the cpumask bit in 1968 * xfs_inodegc_queue. 1969 */ 1970 cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask); 1971 smp_mb__after_atomic(); 1972 1973 WRITE_ONCE(gc->items, 0); 1974 1975 if (!node) 1976 return; 1977 1978 /* 1979 * We can allocate memory here while doing writeback on behalf of 1980 * memory reclaim. To avoid memory allocation deadlocks set the 1981 * task-wide nofs context for the following operations. 1982 */ 1983 nofs_flag = memalloc_nofs_save(); 1984 1985 ip = llist_entry(node, struct xfs_inode, i_gclist); 1986 trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits)); 1987 1988 WRITE_ONCE(gc->shrinker_hits, 0); 1989 llist_for_each_entry_safe(ip, n, node, i_gclist) { 1990 int error; 1991 1992 xfs_iflags_set(ip, XFS_INACTIVATING); 1993 error = xfs_inodegc_inactivate(ip); 1994 if (error && !gc->error) 1995 gc->error = error; 1996 } 1997 1998 memalloc_nofs_restore(nofs_flag); 1999 } 2000 2001 /* 2002 * Expedite all pending inodegc work to run immediately. This does not wait for 2003 * completion of the work. 2004 */ 2005 void 2006 xfs_inodegc_push( 2007 struct xfs_mount *mp) 2008 { 2009 if (!xfs_is_inodegc_enabled(mp)) 2010 return; 2011 trace_xfs_inodegc_push(mp, __return_address); 2012 xfs_inodegc_queue_all(mp); 2013 } 2014 2015 /* 2016 * Force all currently queued inode inactivation work to run immediately and 2017 * wait for the work to finish. 2018 */ 2019 int 2020 xfs_inodegc_flush( 2021 struct xfs_mount *mp) 2022 { 2023 xfs_inodegc_push(mp); 2024 trace_xfs_inodegc_flush(mp, __return_address); 2025 return xfs_inodegc_wait_all(mp); 2026 } 2027 2028 /* 2029 * Flush all the pending work and then disable the inode inactivation background 2030 * workers and wait for them to stop. Caller must hold sb->s_umount to 2031 * coordinate changes in the inodegc_enabled state. 2032 */ 2033 void 2034 xfs_inodegc_stop( 2035 struct xfs_mount *mp) 2036 { 2037 bool rerun; 2038 2039 if (!xfs_clear_inodegc_enabled(mp)) 2040 return; 2041 2042 /* 2043 * Drain all pending inodegc work, including inodes that could be 2044 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan 2045 * threads that sample the inodegc state just prior to us clearing it. 2046 * The inodegc flag state prevents new threads from queuing more 2047 * inodes, so we queue pending work items and flush the workqueue until 2048 * all inodegc lists are empty. IOWs, we cannot use drain_workqueue 2049 * here because it does not allow other unserialized mechanisms to 2050 * reschedule inodegc work while this draining is in progress. 2051 */ 2052 xfs_inodegc_queue_all(mp); 2053 do { 2054 flush_workqueue(mp->m_inodegc_wq); 2055 rerun = xfs_inodegc_queue_all(mp); 2056 } while (rerun); 2057 2058 trace_xfs_inodegc_stop(mp, __return_address); 2059 } 2060 2061 /* 2062 * Enable the inode inactivation background workers and schedule deferred inode 2063 * inactivation work if there is any. Caller must hold sb->s_umount to 2064 * coordinate changes in the inodegc_enabled state. 2065 */ 2066 void 2067 xfs_inodegc_start( 2068 struct xfs_mount *mp) 2069 { 2070 if (xfs_set_inodegc_enabled(mp)) 2071 return; 2072 2073 trace_xfs_inodegc_start(mp, __return_address); 2074 xfs_inodegc_queue_all(mp); 2075 } 2076 2077 #ifdef CONFIG_XFS_RT 2078 static inline bool 2079 xfs_inodegc_want_queue_rt_file( 2080 struct xfs_inode *ip) 2081 { 2082 struct xfs_mount *mp = ip->i_mount; 2083 2084 if (!XFS_IS_REALTIME_INODE(ip) || xfs_has_zoned(mp)) 2085 return false; 2086 2087 if (xfs_compare_freecounter(mp, XC_FREE_RTEXTENTS, 2088 mp->m_low_rtexts[XFS_LOWSP_5_PCNT], 2089 XFS_FDBLOCKS_BATCH) < 0) 2090 return true; 2091 2092 return false; 2093 } 2094 #else 2095 # define xfs_inodegc_want_queue_rt_file(ip) (false) 2096 #endif /* CONFIG_XFS_RT */ 2097 2098 /* 2099 * Schedule the inactivation worker when: 2100 * 2101 * - We've accumulated more than one inode cluster buffer's worth of inodes. 2102 * - There is less than 5% free space left. 2103 * - Any of the quotas for this inode are near an enforcement limit. 2104 */ 2105 static inline bool 2106 xfs_inodegc_want_queue_work( 2107 struct xfs_inode *ip, 2108 unsigned int items) 2109 { 2110 struct xfs_mount *mp = ip->i_mount; 2111 2112 if (items > mp->m_ino_geo.inodes_per_cluster) 2113 return true; 2114 2115 if (xfs_compare_freecounter(mp, XC_FREE_BLOCKS, 2116 mp->m_low_space[XFS_LOWSP_5_PCNT], 2117 XFS_FDBLOCKS_BATCH) < 0) 2118 return true; 2119 2120 if (xfs_inodegc_want_queue_rt_file(ip)) 2121 return true; 2122 2123 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER)) 2124 return true; 2125 2126 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP)) 2127 return true; 2128 2129 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ)) 2130 return true; 2131 2132 return false; 2133 } 2134 2135 /* 2136 * Upper bound on the number of inodes in each AG that can be queued for 2137 * inactivation at any given time, to avoid monopolizing the workqueue. 2138 */ 2139 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK) 2140 2141 /* 2142 * Make the frontend wait for inactivations when: 2143 * 2144 * - Memory shrinkers queued the inactivation worker and it hasn't finished. 2145 * - The queue depth exceeds the maximum allowable percpu backlog. 2146 * 2147 * Note: If we are in a NOFS context here (e.g. current thread is running a 2148 * transaction) the we don't want to block here as inodegc progress may require 2149 * filesystem resources we hold to make progress and that could result in a 2150 * deadlock. Hence we skip out of here if we are in a scoped NOFS context. 2151 */ 2152 static inline bool 2153 xfs_inodegc_want_flush_work( 2154 struct xfs_inode *ip, 2155 unsigned int items, 2156 unsigned int shrinker_hits) 2157 { 2158 if (current->flags & PF_MEMALLOC_NOFS) 2159 return false; 2160 2161 if (shrinker_hits > 0) 2162 return true; 2163 2164 if (items > XFS_INODEGC_MAX_BACKLOG) 2165 return true; 2166 2167 return false; 2168 } 2169 2170 /* 2171 * Queue a background inactivation worker if there are inodes that need to be 2172 * inactivated and higher level xfs code hasn't disabled the background 2173 * workers. 2174 */ 2175 static void 2176 xfs_inodegc_queue( 2177 struct xfs_inode *ip) 2178 { 2179 struct xfs_mount *mp = ip->i_mount; 2180 struct xfs_inodegc *gc; 2181 int items; 2182 unsigned int shrinker_hits; 2183 unsigned int cpu_nr; 2184 unsigned long queue_delay = 1; 2185 2186 trace_xfs_inode_set_need_inactive(ip); 2187 spin_lock(&ip->i_flags_lock); 2188 ip->i_flags |= XFS_NEED_INACTIVE; 2189 spin_unlock(&ip->i_flags_lock); 2190 2191 cpu_nr = get_cpu(); 2192 gc = this_cpu_ptr(mp->m_inodegc); 2193 llist_add(&ip->i_gclist, &gc->list); 2194 items = READ_ONCE(gc->items); 2195 WRITE_ONCE(gc->items, items + 1); 2196 shrinker_hits = READ_ONCE(gc->shrinker_hits); 2197 2198 /* 2199 * Ensure the list add is always seen by anyone who finds the cpumask 2200 * bit set. This effectively gives the cpumask bit set operation 2201 * release ordering semantics. 2202 */ 2203 smp_mb__before_atomic(); 2204 if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask)) 2205 cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask); 2206 2207 /* 2208 * We queue the work while holding the current CPU so that the work 2209 * is scheduled to run on this CPU. 2210 */ 2211 if (!xfs_is_inodegc_enabled(mp)) { 2212 put_cpu(); 2213 return; 2214 } 2215 2216 if (xfs_inodegc_want_queue_work(ip, items)) 2217 queue_delay = 0; 2218 2219 trace_xfs_inodegc_queue(mp, __return_address); 2220 mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work, 2221 queue_delay); 2222 put_cpu(); 2223 2224 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) { 2225 trace_xfs_inodegc_throttle(mp, __return_address); 2226 flush_delayed_work(&gc->work); 2227 } 2228 } 2229 2230 /* 2231 * We set the inode flag atomically with the radix tree tag. Once we get tag 2232 * lookups on the radix tree, this inode flag can go away. 2233 * 2234 * We always use background reclaim here because even if the inode is clean, it 2235 * still may be under IO and hence we have wait for IO completion to occur 2236 * before we can reclaim the inode. The background reclaim path handles this 2237 * more efficiently than we can here, so simply let background reclaim tear down 2238 * all inodes. 2239 */ 2240 void 2241 xfs_inode_mark_reclaimable( 2242 struct xfs_inode *ip) 2243 { 2244 struct xfs_mount *mp = ip->i_mount; 2245 bool need_inactive; 2246 2247 XFS_STATS_INC(mp, vn_reclaim); 2248 2249 /* 2250 * We should never get here with any of the reclaim flags already set. 2251 */ 2252 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS)); 2253 2254 need_inactive = xfs_inode_needs_inactive(ip); 2255 if (need_inactive) { 2256 xfs_inodegc_queue(ip); 2257 return; 2258 } 2259 2260 /* Going straight to reclaim, so drop the dquots. */ 2261 xfs_qm_dqdetach(ip); 2262 xfs_inodegc_set_reclaimable(ip); 2263 } 2264 2265 /* 2266 * Register a phony shrinker so that we can run background inodegc sooner when 2267 * there's memory pressure. Inactivation does not itself free any memory but 2268 * it does make inodes reclaimable, which eventually frees memory. 2269 * 2270 * The count function, seek value, and batch value are crafted to trigger the 2271 * scan function during the second round of scanning. Hopefully this means 2272 * that we reclaimed enough memory that initiating metadata transactions won't 2273 * make things worse. 2274 */ 2275 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY) 2276 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1) 2277 2278 static unsigned long 2279 xfs_inodegc_shrinker_count( 2280 struct shrinker *shrink, 2281 struct shrink_control *sc) 2282 { 2283 struct xfs_mount *mp = shrink->private_data; 2284 struct xfs_inodegc *gc; 2285 int cpu; 2286 2287 if (!xfs_is_inodegc_enabled(mp)) 2288 return 0; 2289 2290 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 2291 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2292 if (!llist_empty(&gc->list)) 2293 return XFS_INODEGC_SHRINKER_COUNT; 2294 } 2295 2296 return 0; 2297 } 2298 2299 static unsigned long 2300 xfs_inodegc_shrinker_scan( 2301 struct shrinker *shrink, 2302 struct shrink_control *sc) 2303 { 2304 struct xfs_mount *mp = shrink->private_data; 2305 struct xfs_inodegc *gc; 2306 int cpu; 2307 bool no_items = true; 2308 2309 if (!xfs_is_inodegc_enabled(mp)) 2310 return SHRINK_STOP; 2311 2312 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address); 2313 2314 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 2315 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2316 if (!llist_empty(&gc->list)) { 2317 unsigned int h = READ_ONCE(gc->shrinker_hits); 2318 2319 WRITE_ONCE(gc->shrinker_hits, h + 1); 2320 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 2321 no_items = false; 2322 } 2323 } 2324 2325 /* 2326 * If there are no inodes to inactivate, we don't want the shrinker 2327 * to think there's deferred work to call us back about. 2328 */ 2329 if (no_items) 2330 return LONG_MAX; 2331 2332 return SHRINK_STOP; 2333 } 2334 2335 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */ 2336 int 2337 xfs_inodegc_register_shrinker( 2338 struct xfs_mount *mp) 2339 { 2340 mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB, 2341 "xfs-inodegc:%s", 2342 mp->m_super->s_id); 2343 if (!mp->m_inodegc_shrinker) 2344 return -ENOMEM; 2345 2346 mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count; 2347 mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan; 2348 mp->m_inodegc_shrinker->seeks = 0; 2349 mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH; 2350 mp->m_inodegc_shrinker->private_data = mp; 2351 2352 shrinker_register(mp->m_inodegc_shrinker); 2353 2354 return 0; 2355 } 2356