1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_inode_item.h" 17 #include "xfs_quota.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_bmap_util.h" 21 #include "xfs_dquot_item.h" 22 #include "xfs_dquot.h" 23 #include "xfs_reflink.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_ag.h" 26 27 #include <linux/iversion.h> 28 29 /* Radix tree tags for incore inode tree. */ 30 31 /* inode is to be reclaimed */ 32 #define XFS_ICI_RECLAIM_TAG 0 33 /* Inode has speculative preallocations (posteof or cow) to clean. */ 34 #define XFS_ICI_BLOCKGC_TAG 1 35 36 /* 37 * The goal for walking incore inodes. These can correspond with incore inode 38 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace. 39 */ 40 enum xfs_icwalk_goal { 41 /* Goals that are not related to tags; these must be < 0. */ 42 XFS_ICWALK_DQRELE = -1, 43 44 /* Goals directly associated with tagged inodes. */ 45 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG, 46 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG, 47 }; 48 49 #define XFS_ICWALK_NULL_TAG (-1U) 50 51 /* Compute the inode radix tree tag for this goal. */ 52 static inline unsigned int 53 xfs_icwalk_tag(enum xfs_icwalk_goal goal) 54 { 55 return goal < 0 ? XFS_ICWALK_NULL_TAG : goal; 56 } 57 58 static int xfs_icwalk(struct xfs_mount *mp, 59 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 60 static int xfs_icwalk_ag(struct xfs_perag *pag, 61 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 62 63 /* 64 * Private inode cache walk flags for struct xfs_icwalk. Must not 65 * coincide with XFS_ICWALK_FLAGS_VALID. 66 */ 67 #define XFS_ICWALK_FLAG_DROP_UDQUOT (1U << 31) 68 #define XFS_ICWALK_FLAG_DROP_GDQUOT (1U << 30) 69 #define XFS_ICWALK_FLAG_DROP_PDQUOT (1U << 29) 70 71 /* Stop scanning after icw_scan_limit inodes. */ 72 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28) 73 74 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27) 75 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */ 76 77 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_DROP_UDQUOT | \ 78 XFS_ICWALK_FLAG_DROP_GDQUOT | \ 79 XFS_ICWALK_FLAG_DROP_PDQUOT | \ 80 XFS_ICWALK_FLAG_SCAN_LIMIT | \ 81 XFS_ICWALK_FLAG_RECLAIM_SICK | \ 82 XFS_ICWALK_FLAG_UNION) 83 84 /* 85 * Allocate and initialise an xfs_inode. 86 */ 87 struct xfs_inode * 88 xfs_inode_alloc( 89 struct xfs_mount *mp, 90 xfs_ino_t ino) 91 { 92 struct xfs_inode *ip; 93 94 /* 95 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL 96 * and return NULL here on ENOMEM. 97 */ 98 ip = kmem_cache_alloc(xfs_inode_zone, GFP_KERNEL | __GFP_NOFAIL); 99 100 if (inode_init_always(mp->m_super, VFS_I(ip))) { 101 kmem_cache_free(xfs_inode_zone, ip); 102 return NULL; 103 } 104 105 /* VFS doesn't initialise i_mode! */ 106 VFS_I(ip)->i_mode = 0; 107 108 XFS_STATS_INC(mp, vn_active); 109 ASSERT(atomic_read(&ip->i_pincount) == 0); 110 ASSERT(ip->i_ino == 0); 111 112 /* initialise the xfs inode */ 113 ip->i_ino = ino; 114 ip->i_mount = mp; 115 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 116 ip->i_afp = NULL; 117 ip->i_cowfp = NULL; 118 memset(&ip->i_df, 0, sizeof(ip->i_df)); 119 ip->i_flags = 0; 120 ip->i_delayed_blks = 0; 121 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 122 ip->i_nblocks = 0; 123 ip->i_forkoff = 0; 124 ip->i_sick = 0; 125 ip->i_checked = 0; 126 INIT_WORK(&ip->i_ioend_work, xfs_end_io); 127 INIT_LIST_HEAD(&ip->i_ioend_list); 128 spin_lock_init(&ip->i_ioend_lock); 129 130 return ip; 131 } 132 133 STATIC void 134 xfs_inode_free_callback( 135 struct rcu_head *head) 136 { 137 struct inode *inode = container_of(head, struct inode, i_rcu); 138 struct xfs_inode *ip = XFS_I(inode); 139 140 switch (VFS_I(ip)->i_mode & S_IFMT) { 141 case S_IFREG: 142 case S_IFDIR: 143 case S_IFLNK: 144 xfs_idestroy_fork(&ip->i_df); 145 break; 146 } 147 148 if (ip->i_afp) { 149 xfs_idestroy_fork(ip->i_afp); 150 kmem_cache_free(xfs_ifork_zone, ip->i_afp); 151 } 152 if (ip->i_cowfp) { 153 xfs_idestroy_fork(ip->i_cowfp); 154 kmem_cache_free(xfs_ifork_zone, ip->i_cowfp); 155 } 156 if (ip->i_itemp) { 157 ASSERT(!test_bit(XFS_LI_IN_AIL, 158 &ip->i_itemp->ili_item.li_flags)); 159 xfs_inode_item_destroy(ip); 160 ip->i_itemp = NULL; 161 } 162 163 kmem_cache_free(xfs_inode_zone, ip); 164 } 165 166 static void 167 __xfs_inode_free( 168 struct xfs_inode *ip) 169 { 170 /* asserts to verify all state is correct here */ 171 ASSERT(atomic_read(&ip->i_pincount) == 0); 172 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list)); 173 XFS_STATS_DEC(ip->i_mount, vn_active); 174 175 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 176 } 177 178 void 179 xfs_inode_free( 180 struct xfs_inode *ip) 181 { 182 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING)); 183 184 /* 185 * Because we use RCU freeing we need to ensure the inode always 186 * appears to be reclaimed with an invalid inode number when in the 187 * free state. The ip->i_flags_lock provides the barrier against lookup 188 * races. 189 */ 190 spin_lock(&ip->i_flags_lock); 191 ip->i_flags = XFS_IRECLAIM; 192 ip->i_ino = 0; 193 spin_unlock(&ip->i_flags_lock); 194 195 __xfs_inode_free(ip); 196 } 197 198 /* 199 * Queue background inode reclaim work if there are reclaimable inodes and there 200 * isn't reclaim work already scheduled or in progress. 201 */ 202 static void 203 xfs_reclaim_work_queue( 204 struct xfs_mount *mp) 205 { 206 207 rcu_read_lock(); 208 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 209 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 210 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 211 } 212 rcu_read_unlock(); 213 } 214 215 /* 216 * Background scanning to trim preallocated space. This is queued based on the 217 * 'speculative_prealloc_lifetime' tunable (5m by default). 218 */ 219 static inline void 220 xfs_blockgc_queue( 221 struct xfs_perag *pag) 222 { 223 rcu_read_lock(); 224 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) 225 queue_delayed_work(pag->pag_mount->m_gc_workqueue, 226 &pag->pag_blockgc_work, 227 msecs_to_jiffies(xfs_blockgc_secs * 1000)); 228 rcu_read_unlock(); 229 } 230 231 /* Set a tag on both the AG incore inode tree and the AG radix tree. */ 232 static void 233 xfs_perag_set_inode_tag( 234 struct xfs_perag *pag, 235 xfs_agino_t agino, 236 unsigned int tag) 237 { 238 struct xfs_mount *mp = pag->pag_mount; 239 bool was_tagged; 240 241 lockdep_assert_held(&pag->pag_ici_lock); 242 243 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 244 radix_tree_tag_set(&pag->pag_ici_root, agino, tag); 245 246 if (tag == XFS_ICI_RECLAIM_TAG) 247 pag->pag_ici_reclaimable++; 248 249 if (was_tagged) 250 return; 251 252 /* propagate the tag up into the perag radix tree */ 253 spin_lock(&mp->m_perag_lock); 254 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag); 255 spin_unlock(&mp->m_perag_lock); 256 257 /* start background work */ 258 switch (tag) { 259 case XFS_ICI_RECLAIM_TAG: 260 xfs_reclaim_work_queue(mp); 261 break; 262 case XFS_ICI_BLOCKGC_TAG: 263 xfs_blockgc_queue(pag); 264 break; 265 } 266 267 trace_xfs_perag_set_inode_tag(mp, pag->pag_agno, tag, _RET_IP_); 268 } 269 270 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */ 271 static void 272 xfs_perag_clear_inode_tag( 273 struct xfs_perag *pag, 274 xfs_agino_t agino, 275 unsigned int tag) 276 { 277 struct xfs_mount *mp = pag->pag_mount; 278 279 lockdep_assert_held(&pag->pag_ici_lock); 280 281 /* 282 * Reclaim can signal (with a null agino) that it cleared its own tag 283 * by removing the inode from the radix tree. 284 */ 285 if (agino != NULLAGINO) 286 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag); 287 else 288 ASSERT(tag == XFS_ICI_RECLAIM_TAG); 289 290 if (tag == XFS_ICI_RECLAIM_TAG) 291 pag->pag_ici_reclaimable--; 292 293 if (radix_tree_tagged(&pag->pag_ici_root, tag)) 294 return; 295 296 /* clear the tag from the perag radix tree */ 297 spin_lock(&mp->m_perag_lock); 298 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag); 299 spin_unlock(&mp->m_perag_lock); 300 301 trace_xfs_perag_clear_inode_tag(mp, pag->pag_agno, tag, _RET_IP_); 302 } 303 304 /* 305 * We set the inode flag atomically with the radix tree tag. 306 * Once we get tag lookups on the radix tree, this inode flag 307 * can go away. 308 */ 309 void 310 xfs_inode_mark_reclaimable( 311 struct xfs_inode *ip) 312 { 313 struct xfs_mount *mp = ip->i_mount; 314 struct xfs_perag *pag; 315 316 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 317 spin_lock(&pag->pag_ici_lock); 318 spin_lock(&ip->i_flags_lock); 319 320 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 321 XFS_ICI_RECLAIM_TAG); 322 __xfs_iflags_set(ip, XFS_IRECLAIMABLE); 323 324 spin_unlock(&ip->i_flags_lock); 325 spin_unlock(&pag->pag_ici_lock); 326 xfs_perag_put(pag); 327 } 328 329 static inline void 330 xfs_inew_wait( 331 struct xfs_inode *ip) 332 { 333 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT); 334 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT); 335 336 do { 337 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 338 if (!xfs_iflags_test(ip, XFS_INEW)) 339 break; 340 schedule(); 341 } while (true); 342 finish_wait(wq, &wait.wq_entry); 343 } 344 345 /* 346 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 347 * part of the structure. This is made more complex by the fact we store 348 * information about the on-disk values in the VFS inode and so we can't just 349 * overwrite the values unconditionally. Hence we save the parameters we 350 * need to retain across reinitialisation, and rewrite them into the VFS inode 351 * after reinitialisation even if it fails. 352 */ 353 static int 354 xfs_reinit_inode( 355 struct xfs_mount *mp, 356 struct inode *inode) 357 { 358 int error; 359 uint32_t nlink = inode->i_nlink; 360 uint32_t generation = inode->i_generation; 361 uint64_t version = inode_peek_iversion(inode); 362 umode_t mode = inode->i_mode; 363 dev_t dev = inode->i_rdev; 364 kuid_t uid = inode->i_uid; 365 kgid_t gid = inode->i_gid; 366 367 error = inode_init_always(mp->m_super, inode); 368 369 set_nlink(inode, nlink); 370 inode->i_generation = generation; 371 inode_set_iversion_queried(inode, version); 372 inode->i_mode = mode; 373 inode->i_rdev = dev; 374 inode->i_uid = uid; 375 inode->i_gid = gid; 376 return error; 377 } 378 379 /* 380 * Carefully nudge an inode whose VFS state has been torn down back into a 381 * usable state. Drops the i_flags_lock and the rcu read lock. 382 */ 383 static int 384 xfs_iget_recycle( 385 struct xfs_perag *pag, 386 struct xfs_inode *ip) __releases(&ip->i_flags_lock) 387 { 388 struct xfs_mount *mp = ip->i_mount; 389 struct inode *inode = VFS_I(ip); 390 int error; 391 392 trace_xfs_iget_recycle(ip); 393 394 /* 395 * We need to make it look like the inode is being reclaimed to prevent 396 * the actual reclaim workers from stomping over us while we recycle 397 * the inode. We can't clear the radix tree tag yet as it requires 398 * pag_ici_lock to be held exclusive. 399 */ 400 ip->i_flags |= XFS_IRECLAIM; 401 402 spin_unlock(&ip->i_flags_lock); 403 rcu_read_unlock(); 404 405 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 406 error = xfs_reinit_inode(mp, inode); 407 if (error) { 408 bool wake; 409 410 /* 411 * Re-initializing the inode failed, and we are in deep 412 * trouble. Try to re-add it to the reclaim list. 413 */ 414 rcu_read_lock(); 415 spin_lock(&ip->i_flags_lock); 416 wake = !!__xfs_iflags_test(ip, XFS_INEW); 417 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 418 if (wake) 419 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT); 420 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 421 spin_unlock(&ip->i_flags_lock); 422 rcu_read_unlock(); 423 424 trace_xfs_iget_recycle_fail(ip); 425 return error; 426 } 427 428 spin_lock(&pag->pag_ici_lock); 429 spin_lock(&ip->i_flags_lock); 430 431 /* 432 * Clear the per-lifetime state in the inode as we are now effectively 433 * a new inode and need to return to the initial state before reuse 434 * occurs. 435 */ 436 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 437 ip->i_flags |= XFS_INEW; 438 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 439 XFS_ICI_RECLAIM_TAG); 440 inode->i_state = I_NEW; 441 spin_unlock(&ip->i_flags_lock); 442 spin_unlock(&pag->pag_ici_lock); 443 444 return 0; 445 } 446 447 /* 448 * If we are allocating a new inode, then check what was returned is 449 * actually a free, empty inode. If we are not allocating an inode, 450 * then check we didn't find a free inode. 451 * 452 * Returns: 453 * 0 if the inode free state matches the lookup context 454 * -ENOENT if the inode is free and we are not allocating 455 * -EFSCORRUPTED if there is any state mismatch at all 456 */ 457 static int 458 xfs_iget_check_free_state( 459 struct xfs_inode *ip, 460 int flags) 461 { 462 if (flags & XFS_IGET_CREATE) { 463 /* should be a free inode */ 464 if (VFS_I(ip)->i_mode != 0) { 465 xfs_warn(ip->i_mount, 466 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", 467 ip->i_ino, VFS_I(ip)->i_mode); 468 return -EFSCORRUPTED; 469 } 470 471 if (ip->i_nblocks != 0) { 472 xfs_warn(ip->i_mount, 473 "Corruption detected! Free inode 0x%llx has blocks allocated!", 474 ip->i_ino); 475 return -EFSCORRUPTED; 476 } 477 return 0; 478 } 479 480 /* should be an allocated inode */ 481 if (VFS_I(ip)->i_mode == 0) 482 return -ENOENT; 483 484 return 0; 485 } 486 487 /* 488 * Check the validity of the inode we just found it the cache 489 */ 490 static int 491 xfs_iget_cache_hit( 492 struct xfs_perag *pag, 493 struct xfs_inode *ip, 494 xfs_ino_t ino, 495 int flags, 496 int lock_flags) __releases(RCU) 497 { 498 struct inode *inode = VFS_I(ip); 499 struct xfs_mount *mp = ip->i_mount; 500 int error; 501 502 /* 503 * check for re-use of an inode within an RCU grace period due to the 504 * radix tree nodes not being updated yet. We monitor for this by 505 * setting the inode number to zero before freeing the inode structure. 506 * If the inode has been reallocated and set up, then the inode number 507 * will not match, so check for that, too. 508 */ 509 spin_lock(&ip->i_flags_lock); 510 if (ip->i_ino != ino) 511 goto out_skip; 512 513 /* 514 * If we are racing with another cache hit that is currently 515 * instantiating this inode or currently recycling it out of 516 * reclaimable state, wait for the initialisation to complete 517 * before continuing. 518 * 519 * XXX(hch): eventually we should do something equivalent to 520 * wait_on_inode to wait for these flags to be cleared 521 * instead of polling for it. 522 */ 523 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM)) 524 goto out_skip; 525 526 /* 527 * Check the inode free state is valid. This also detects lookup 528 * racing with unlinks. 529 */ 530 error = xfs_iget_check_free_state(ip, flags); 531 if (error) 532 goto out_error; 533 534 /* Skip inodes that have no vfs state. */ 535 if ((flags & XFS_IGET_INCORE) && 536 (ip->i_flags & XFS_IRECLAIMABLE)) 537 goto out_skip; 538 539 /* The inode fits the selection criteria; process it. */ 540 if (ip->i_flags & XFS_IRECLAIMABLE) { 541 /* Drops i_flags_lock and RCU read lock. */ 542 error = xfs_iget_recycle(pag, ip); 543 if (error) 544 return error; 545 } else { 546 /* If the VFS inode is being torn down, pause and try again. */ 547 if (!igrab(inode)) 548 goto out_skip; 549 550 /* We've got a live one. */ 551 spin_unlock(&ip->i_flags_lock); 552 rcu_read_unlock(); 553 trace_xfs_iget_hit(ip); 554 } 555 556 if (lock_flags != 0) 557 xfs_ilock(ip, lock_flags); 558 559 if (!(flags & XFS_IGET_INCORE)) 560 xfs_iflags_clear(ip, XFS_ISTALE); 561 XFS_STATS_INC(mp, xs_ig_found); 562 563 return 0; 564 565 out_skip: 566 trace_xfs_iget_skip(ip); 567 XFS_STATS_INC(mp, xs_ig_frecycle); 568 error = -EAGAIN; 569 out_error: 570 spin_unlock(&ip->i_flags_lock); 571 rcu_read_unlock(); 572 return error; 573 } 574 575 static int 576 xfs_iget_cache_miss( 577 struct xfs_mount *mp, 578 struct xfs_perag *pag, 579 xfs_trans_t *tp, 580 xfs_ino_t ino, 581 struct xfs_inode **ipp, 582 int flags, 583 int lock_flags) 584 { 585 struct xfs_inode *ip; 586 int error; 587 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 588 int iflags; 589 590 ip = xfs_inode_alloc(mp, ino); 591 if (!ip) 592 return -ENOMEM; 593 594 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags); 595 if (error) 596 goto out_destroy; 597 598 /* 599 * For version 5 superblocks, if we are initialising a new inode and we 600 * are not utilising the XFS_MOUNT_IKEEP inode cluster mode, we can 601 * simply build the new inode core with a random generation number. 602 * 603 * For version 4 (and older) superblocks, log recovery is dependent on 604 * the i_flushiter field being initialised from the current on-disk 605 * value and hence we must also read the inode off disk even when 606 * initializing new inodes. 607 */ 608 if (xfs_sb_version_has_v3inode(&mp->m_sb) && 609 (flags & XFS_IGET_CREATE) && !(mp->m_flags & XFS_MOUNT_IKEEP)) { 610 VFS_I(ip)->i_generation = prandom_u32(); 611 } else { 612 struct xfs_buf *bp; 613 614 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp); 615 if (error) 616 goto out_destroy; 617 618 error = xfs_inode_from_disk(ip, 619 xfs_buf_offset(bp, ip->i_imap.im_boffset)); 620 if (!error) 621 xfs_buf_set_ref(bp, XFS_INO_REF); 622 xfs_trans_brelse(tp, bp); 623 624 if (error) 625 goto out_destroy; 626 } 627 628 trace_xfs_iget_miss(ip); 629 630 /* 631 * Check the inode free state is valid. This also detects lookup 632 * racing with unlinks. 633 */ 634 error = xfs_iget_check_free_state(ip, flags); 635 if (error) 636 goto out_destroy; 637 638 /* 639 * Preload the radix tree so we can insert safely under the 640 * write spinlock. Note that we cannot sleep inside the preload 641 * region. Since we can be called from transaction context, don't 642 * recurse into the file system. 643 */ 644 if (radix_tree_preload(GFP_NOFS)) { 645 error = -EAGAIN; 646 goto out_destroy; 647 } 648 649 /* 650 * Because the inode hasn't been added to the radix-tree yet it can't 651 * be found by another thread, so we can do the non-sleeping lock here. 652 */ 653 if (lock_flags) { 654 if (!xfs_ilock_nowait(ip, lock_flags)) 655 BUG(); 656 } 657 658 /* 659 * These values must be set before inserting the inode into the radix 660 * tree as the moment it is inserted a concurrent lookup (allowed by the 661 * RCU locking mechanism) can find it and that lookup must see that this 662 * is an inode currently under construction (i.e. that XFS_INEW is set). 663 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 664 * memory barrier that ensures this detection works correctly at lookup 665 * time. 666 */ 667 iflags = XFS_INEW; 668 if (flags & XFS_IGET_DONTCACHE) 669 d_mark_dontcache(VFS_I(ip)); 670 ip->i_udquot = NULL; 671 ip->i_gdquot = NULL; 672 ip->i_pdquot = NULL; 673 xfs_iflags_set(ip, iflags); 674 675 /* insert the new inode */ 676 spin_lock(&pag->pag_ici_lock); 677 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 678 if (unlikely(error)) { 679 WARN_ON(error != -EEXIST); 680 XFS_STATS_INC(mp, xs_ig_dup); 681 error = -EAGAIN; 682 goto out_preload_end; 683 } 684 spin_unlock(&pag->pag_ici_lock); 685 radix_tree_preload_end(); 686 687 *ipp = ip; 688 return 0; 689 690 out_preload_end: 691 spin_unlock(&pag->pag_ici_lock); 692 radix_tree_preload_end(); 693 if (lock_flags) 694 xfs_iunlock(ip, lock_flags); 695 out_destroy: 696 __destroy_inode(VFS_I(ip)); 697 xfs_inode_free(ip); 698 return error; 699 } 700 701 /* 702 * Look up an inode by number in the given file system. The inode is looked up 703 * in the cache held in each AG. If the inode is found in the cache, initialise 704 * the vfs inode if necessary. 705 * 706 * If it is not in core, read it in from the file system's device, add it to the 707 * cache and initialise the vfs inode. 708 * 709 * The inode is locked according to the value of the lock_flags parameter. 710 * Inode lookup is only done during metadata operations and not as part of the 711 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup. 712 */ 713 int 714 xfs_iget( 715 struct xfs_mount *mp, 716 struct xfs_trans *tp, 717 xfs_ino_t ino, 718 uint flags, 719 uint lock_flags, 720 struct xfs_inode **ipp) 721 { 722 struct xfs_inode *ip; 723 struct xfs_perag *pag; 724 xfs_agino_t agino; 725 int error; 726 727 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 728 729 /* reject inode numbers outside existing AGs */ 730 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 731 return -EINVAL; 732 733 XFS_STATS_INC(mp, xs_ig_attempts); 734 735 /* get the perag structure and ensure that it's inode capable */ 736 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 737 agino = XFS_INO_TO_AGINO(mp, ino); 738 739 again: 740 error = 0; 741 rcu_read_lock(); 742 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 743 744 if (ip) { 745 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 746 if (error) 747 goto out_error_or_again; 748 } else { 749 rcu_read_unlock(); 750 if (flags & XFS_IGET_INCORE) { 751 error = -ENODATA; 752 goto out_error_or_again; 753 } 754 XFS_STATS_INC(mp, xs_ig_missed); 755 756 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 757 flags, lock_flags); 758 if (error) 759 goto out_error_or_again; 760 } 761 xfs_perag_put(pag); 762 763 *ipp = ip; 764 765 /* 766 * If we have a real type for an on-disk inode, we can setup the inode 767 * now. If it's a new inode being created, xfs_ialloc will handle it. 768 */ 769 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 770 xfs_setup_existing_inode(ip); 771 return 0; 772 773 out_error_or_again: 774 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) { 775 delay(1); 776 goto again; 777 } 778 xfs_perag_put(pag); 779 return error; 780 } 781 782 /* 783 * "Is this a cached inode that's also allocated?" 784 * 785 * Look up an inode by number in the given file system. If the inode is 786 * in cache and isn't in purgatory, return 1 if the inode is allocated 787 * and 0 if it is not. For all other cases (not in cache, being torn 788 * down, etc.), return a negative error code. 789 * 790 * The caller has to prevent inode allocation and freeing activity, 791 * presumably by locking the AGI buffer. This is to ensure that an 792 * inode cannot transition from allocated to freed until the caller is 793 * ready to allow that. If the inode is in an intermediate state (new, 794 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the 795 * inode is not in the cache, -ENOENT will be returned. The caller must 796 * deal with these scenarios appropriately. 797 * 798 * This is a specialized use case for the online scrubber; if you're 799 * reading this, you probably want xfs_iget. 800 */ 801 int 802 xfs_icache_inode_is_allocated( 803 struct xfs_mount *mp, 804 struct xfs_trans *tp, 805 xfs_ino_t ino, 806 bool *inuse) 807 { 808 struct xfs_inode *ip; 809 int error; 810 811 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip); 812 if (error) 813 return error; 814 815 *inuse = !!(VFS_I(ip)->i_mode); 816 xfs_irele(ip); 817 return 0; 818 } 819 820 #ifdef CONFIG_XFS_QUOTA 821 /* Decide if we want to grab this inode to drop its dquots. */ 822 static bool 823 xfs_dqrele_igrab( 824 struct xfs_inode *ip) 825 { 826 bool ret = false; 827 828 ASSERT(rcu_read_lock_held()); 829 830 /* Check for stale RCU freed inode */ 831 spin_lock(&ip->i_flags_lock); 832 if (!ip->i_ino) 833 goto out_unlock; 834 835 /* 836 * Skip inodes that are anywhere in the reclaim machinery because we 837 * drop dquots before tagging an inode for reclamation. 838 */ 839 if (ip->i_flags & (XFS_IRECLAIM | XFS_IRECLAIMABLE)) 840 goto out_unlock; 841 842 /* 843 * The inode looks alive; try to grab a VFS reference so that it won't 844 * get destroyed. If we got the reference, return true to say that 845 * we grabbed the inode. 846 * 847 * If we can't get the reference, then we know the inode had its VFS 848 * state torn down and hasn't yet entered the reclaim machinery. Since 849 * we also know that dquots are detached from an inode before it enters 850 * reclaim, we can skip the inode. 851 */ 852 ret = igrab(VFS_I(ip)) != NULL; 853 854 out_unlock: 855 spin_unlock(&ip->i_flags_lock); 856 return ret; 857 } 858 859 /* Drop this inode's dquots. */ 860 static void 861 xfs_dqrele_inode( 862 struct xfs_inode *ip, 863 struct xfs_icwalk *icw) 864 { 865 if (xfs_iflags_test(ip, XFS_INEW)) 866 xfs_inew_wait(ip); 867 868 xfs_ilock(ip, XFS_ILOCK_EXCL); 869 if (icw->icw_flags & XFS_ICWALK_FLAG_DROP_UDQUOT) { 870 xfs_qm_dqrele(ip->i_udquot); 871 ip->i_udquot = NULL; 872 } 873 if (icw->icw_flags & XFS_ICWALK_FLAG_DROP_GDQUOT) { 874 xfs_qm_dqrele(ip->i_gdquot); 875 ip->i_gdquot = NULL; 876 } 877 if (icw->icw_flags & XFS_ICWALK_FLAG_DROP_PDQUOT) { 878 xfs_qm_dqrele(ip->i_pdquot); 879 ip->i_pdquot = NULL; 880 } 881 xfs_iunlock(ip, XFS_ILOCK_EXCL); 882 xfs_irele(ip); 883 } 884 885 /* 886 * Detach all dquots from incore inodes if we can. The caller must already 887 * have dropped the relevant XFS_[UGP]QUOTA_ACTIVE flags so that dquots will 888 * not get reattached. 889 */ 890 int 891 xfs_dqrele_all_inodes( 892 struct xfs_mount *mp, 893 unsigned int qflags) 894 { 895 struct xfs_icwalk icw = { .icw_flags = 0 }; 896 897 if (qflags & XFS_UQUOTA_ACCT) 898 icw.icw_flags |= XFS_ICWALK_FLAG_DROP_UDQUOT; 899 if (qflags & XFS_GQUOTA_ACCT) 900 icw.icw_flags |= XFS_ICWALK_FLAG_DROP_GDQUOT; 901 if (qflags & XFS_PQUOTA_ACCT) 902 icw.icw_flags |= XFS_ICWALK_FLAG_DROP_PDQUOT; 903 904 return xfs_icwalk(mp, XFS_ICWALK_DQRELE, &icw); 905 } 906 #else 907 # define xfs_dqrele_igrab(ip) (false) 908 # define xfs_dqrele_inode(ip, priv) ((void)0) 909 #endif /* CONFIG_XFS_QUOTA */ 910 911 /* 912 * Grab the inode for reclaim exclusively. 913 * 914 * We have found this inode via a lookup under RCU, so the inode may have 915 * already been freed, or it may be in the process of being recycled by 916 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode 917 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE 918 * will not be set. Hence we need to check for both these flag conditions to 919 * avoid inodes that are no longer reclaim candidates. 920 * 921 * Note: checking for other state flags here, under the i_flags_lock or not, is 922 * racy and should be avoided. Those races should be resolved only after we have 923 * ensured that we are able to reclaim this inode and the world can see that we 924 * are going to reclaim it. 925 * 926 * Return true if we grabbed it, false otherwise. 927 */ 928 static bool 929 xfs_reclaim_igrab( 930 struct xfs_inode *ip, 931 struct xfs_icwalk *icw) 932 { 933 ASSERT(rcu_read_lock_held()); 934 935 spin_lock(&ip->i_flags_lock); 936 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 937 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 938 /* not a reclaim candidate. */ 939 spin_unlock(&ip->i_flags_lock); 940 return false; 941 } 942 943 /* Don't reclaim a sick inode unless the caller asked for it. */ 944 if (ip->i_sick && 945 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) { 946 spin_unlock(&ip->i_flags_lock); 947 return false; 948 } 949 950 __xfs_iflags_set(ip, XFS_IRECLAIM); 951 spin_unlock(&ip->i_flags_lock); 952 return true; 953 } 954 955 /* 956 * Inode reclaim is non-blocking, so the default action if progress cannot be 957 * made is to "requeue" the inode for reclaim by unlocking it and clearing the 958 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about 959 * blocking anymore and hence we can wait for the inode to be able to reclaim 960 * it. 961 * 962 * We do no IO here - if callers require inodes to be cleaned they must push the 963 * AIL first to trigger writeback of dirty inodes. This enables writeback to be 964 * done in the background in a non-blocking manner, and enables memory reclaim 965 * to make progress without blocking. 966 */ 967 static void 968 xfs_reclaim_inode( 969 struct xfs_inode *ip, 970 struct xfs_perag *pag) 971 { 972 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 973 974 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 975 goto out; 976 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING)) 977 goto out_iunlock; 978 979 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 980 xfs_iunpin_wait(ip); 981 xfs_iflush_abort(ip); 982 goto reclaim; 983 } 984 if (xfs_ipincount(ip)) 985 goto out_clear_flush; 986 if (!xfs_inode_clean(ip)) 987 goto out_clear_flush; 988 989 xfs_iflags_clear(ip, XFS_IFLUSHING); 990 reclaim: 991 992 /* 993 * Because we use RCU freeing we need to ensure the inode always appears 994 * to be reclaimed with an invalid inode number when in the free state. 995 * We do this as early as possible under the ILOCK so that 996 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to 997 * detect races with us here. By doing this, we guarantee that once 998 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that 999 * it will see either a valid inode that will serialise correctly, or it 1000 * will see an invalid inode that it can skip. 1001 */ 1002 spin_lock(&ip->i_flags_lock); 1003 ip->i_flags = XFS_IRECLAIM; 1004 ip->i_ino = 0; 1005 ip->i_sick = 0; 1006 ip->i_checked = 0; 1007 spin_unlock(&ip->i_flags_lock); 1008 1009 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1010 1011 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 1012 /* 1013 * Remove the inode from the per-AG radix tree. 1014 * 1015 * Because radix_tree_delete won't complain even if the item was never 1016 * added to the tree assert that it's been there before to catch 1017 * problems with the inode life time early on. 1018 */ 1019 spin_lock(&pag->pag_ici_lock); 1020 if (!radix_tree_delete(&pag->pag_ici_root, 1021 XFS_INO_TO_AGINO(ip->i_mount, ino))) 1022 ASSERT(0); 1023 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG); 1024 spin_unlock(&pag->pag_ici_lock); 1025 1026 /* 1027 * Here we do an (almost) spurious inode lock in order to coordinate 1028 * with inode cache radix tree lookups. This is because the lookup 1029 * can reference the inodes in the cache without taking references. 1030 * 1031 * We make that OK here by ensuring that we wait until the inode is 1032 * unlocked after the lookup before we go ahead and free it. 1033 */ 1034 xfs_ilock(ip, XFS_ILOCK_EXCL); 1035 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot); 1036 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1037 ASSERT(xfs_inode_clean(ip)); 1038 1039 __xfs_inode_free(ip); 1040 return; 1041 1042 out_clear_flush: 1043 xfs_iflags_clear(ip, XFS_IFLUSHING); 1044 out_iunlock: 1045 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1046 out: 1047 xfs_iflags_clear(ip, XFS_IRECLAIM); 1048 } 1049 1050 /* Reclaim sick inodes if we're unmounting or the fs went down. */ 1051 static inline bool 1052 xfs_want_reclaim_sick( 1053 struct xfs_mount *mp) 1054 { 1055 return (mp->m_flags & XFS_MOUNT_UNMOUNTING) || 1056 (mp->m_flags & XFS_MOUNT_NORECOVERY) || 1057 XFS_FORCED_SHUTDOWN(mp); 1058 } 1059 1060 void 1061 xfs_reclaim_inodes( 1062 struct xfs_mount *mp) 1063 { 1064 struct xfs_icwalk icw = { 1065 .icw_flags = 0, 1066 }; 1067 1068 if (xfs_want_reclaim_sick(mp)) 1069 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 1070 1071 while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 1072 xfs_ail_push_all_sync(mp->m_ail); 1073 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 1074 } 1075 } 1076 1077 /* 1078 * The shrinker infrastructure determines how many inodes we should scan for 1079 * reclaim. We want as many clean inodes ready to reclaim as possible, so we 1080 * push the AIL here. We also want to proactively free up memory if we can to 1081 * minimise the amount of work memory reclaim has to do so we kick the 1082 * background reclaim if it isn't already scheduled. 1083 */ 1084 long 1085 xfs_reclaim_inodes_nr( 1086 struct xfs_mount *mp, 1087 unsigned long nr_to_scan) 1088 { 1089 struct xfs_icwalk icw = { 1090 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT, 1091 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan), 1092 }; 1093 1094 if (xfs_want_reclaim_sick(mp)) 1095 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 1096 1097 /* kick background reclaimer and push the AIL */ 1098 xfs_reclaim_work_queue(mp); 1099 xfs_ail_push_all(mp->m_ail); 1100 1101 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 1102 return 0; 1103 } 1104 1105 /* 1106 * Return the number of reclaimable inodes in the filesystem for 1107 * the shrinker to determine how much to reclaim. 1108 */ 1109 long 1110 xfs_reclaim_inodes_count( 1111 struct xfs_mount *mp) 1112 { 1113 struct xfs_perag *pag; 1114 xfs_agnumber_t ag = 0; 1115 long reclaimable = 0; 1116 1117 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1118 ag = pag->pag_agno + 1; 1119 reclaimable += pag->pag_ici_reclaimable; 1120 xfs_perag_put(pag); 1121 } 1122 return reclaimable; 1123 } 1124 1125 STATIC bool 1126 xfs_icwalk_match_id( 1127 struct xfs_inode *ip, 1128 struct xfs_icwalk *icw) 1129 { 1130 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1131 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1132 return false; 1133 1134 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1135 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1136 return false; 1137 1138 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1139 ip->i_projid != icw->icw_prid) 1140 return false; 1141 1142 return true; 1143 } 1144 1145 /* 1146 * A union-based inode filtering algorithm. Process the inode if any of the 1147 * criteria match. This is for global/internal scans only. 1148 */ 1149 STATIC bool 1150 xfs_icwalk_match_id_union( 1151 struct xfs_inode *ip, 1152 struct xfs_icwalk *icw) 1153 { 1154 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1155 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1156 return true; 1157 1158 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1159 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1160 return true; 1161 1162 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1163 ip->i_projid == icw->icw_prid) 1164 return true; 1165 1166 return false; 1167 } 1168 1169 /* 1170 * Is this inode @ip eligible for eof/cow block reclamation, given some 1171 * filtering parameters @icw? The inode is eligible if @icw is null or 1172 * if the predicate functions match. 1173 */ 1174 static bool 1175 xfs_icwalk_match( 1176 struct xfs_inode *ip, 1177 struct xfs_icwalk *icw) 1178 { 1179 bool match; 1180 1181 if (!icw) 1182 return true; 1183 1184 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION) 1185 match = xfs_icwalk_match_id_union(ip, icw); 1186 else 1187 match = xfs_icwalk_match_id(ip, icw); 1188 if (!match) 1189 return false; 1190 1191 /* skip the inode if the file size is too small */ 1192 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) && 1193 XFS_ISIZE(ip) < icw->icw_min_file_size) 1194 return false; 1195 1196 return true; 1197 } 1198 1199 /* 1200 * This is a fast pass over the inode cache to try to get reclaim moving on as 1201 * many inodes as possible in a short period of time. It kicks itself every few 1202 * seconds, as well as being kicked by the inode cache shrinker when memory 1203 * goes low. 1204 */ 1205 void 1206 xfs_reclaim_worker( 1207 struct work_struct *work) 1208 { 1209 struct xfs_mount *mp = container_of(to_delayed_work(work), 1210 struct xfs_mount, m_reclaim_work); 1211 1212 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL); 1213 xfs_reclaim_work_queue(mp); 1214 } 1215 1216 STATIC int 1217 xfs_inode_free_eofblocks( 1218 struct xfs_inode *ip, 1219 struct xfs_icwalk *icw, 1220 unsigned int *lockflags) 1221 { 1222 bool wait; 1223 1224 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1225 1226 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS)) 1227 return 0; 1228 1229 /* 1230 * If the mapping is dirty the operation can block and wait for some 1231 * time. Unless we are waiting, skip it. 1232 */ 1233 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1234 return 0; 1235 1236 if (!xfs_icwalk_match(ip, icw)) 1237 return 0; 1238 1239 /* 1240 * If the caller is waiting, return -EAGAIN to keep the background 1241 * scanner moving and revisit the inode in a subsequent pass. 1242 */ 1243 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1244 if (wait) 1245 return -EAGAIN; 1246 return 0; 1247 } 1248 *lockflags |= XFS_IOLOCK_EXCL; 1249 1250 if (xfs_can_free_eofblocks(ip, false)) 1251 return xfs_free_eofblocks(ip); 1252 1253 /* inode could be preallocated or append-only */ 1254 trace_xfs_inode_free_eofblocks_invalid(ip); 1255 xfs_inode_clear_eofblocks_tag(ip); 1256 return 0; 1257 } 1258 1259 static void 1260 xfs_blockgc_set_iflag( 1261 struct xfs_inode *ip, 1262 unsigned long iflag) 1263 { 1264 struct xfs_mount *mp = ip->i_mount; 1265 struct xfs_perag *pag; 1266 1267 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1268 1269 /* 1270 * Don't bother locking the AG and looking up in the radix trees 1271 * if we already know that we have the tag set. 1272 */ 1273 if (ip->i_flags & iflag) 1274 return; 1275 spin_lock(&ip->i_flags_lock); 1276 ip->i_flags |= iflag; 1277 spin_unlock(&ip->i_flags_lock); 1278 1279 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1280 spin_lock(&pag->pag_ici_lock); 1281 1282 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1283 XFS_ICI_BLOCKGC_TAG); 1284 1285 spin_unlock(&pag->pag_ici_lock); 1286 xfs_perag_put(pag); 1287 } 1288 1289 void 1290 xfs_inode_set_eofblocks_tag( 1291 xfs_inode_t *ip) 1292 { 1293 trace_xfs_inode_set_eofblocks_tag(ip); 1294 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS); 1295 } 1296 1297 static void 1298 xfs_blockgc_clear_iflag( 1299 struct xfs_inode *ip, 1300 unsigned long iflag) 1301 { 1302 struct xfs_mount *mp = ip->i_mount; 1303 struct xfs_perag *pag; 1304 bool clear_tag; 1305 1306 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1307 1308 spin_lock(&ip->i_flags_lock); 1309 ip->i_flags &= ~iflag; 1310 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0; 1311 spin_unlock(&ip->i_flags_lock); 1312 1313 if (!clear_tag) 1314 return; 1315 1316 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1317 spin_lock(&pag->pag_ici_lock); 1318 1319 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1320 XFS_ICI_BLOCKGC_TAG); 1321 1322 spin_unlock(&pag->pag_ici_lock); 1323 xfs_perag_put(pag); 1324 } 1325 1326 void 1327 xfs_inode_clear_eofblocks_tag( 1328 xfs_inode_t *ip) 1329 { 1330 trace_xfs_inode_clear_eofblocks_tag(ip); 1331 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS); 1332 } 1333 1334 /* 1335 * Set ourselves up to free CoW blocks from this file. If it's already clean 1336 * then we can bail out quickly, but otherwise we must back off if the file 1337 * is undergoing some kind of write. 1338 */ 1339 static bool 1340 xfs_prep_free_cowblocks( 1341 struct xfs_inode *ip) 1342 { 1343 /* 1344 * Just clear the tag if we have an empty cow fork or none at all. It's 1345 * possible the inode was fully unshared since it was originally tagged. 1346 */ 1347 if (!xfs_inode_has_cow_data(ip)) { 1348 trace_xfs_inode_free_cowblocks_invalid(ip); 1349 xfs_inode_clear_cowblocks_tag(ip); 1350 return false; 1351 } 1352 1353 /* 1354 * If the mapping is dirty or under writeback we cannot touch the 1355 * CoW fork. Leave it alone if we're in the midst of a directio. 1356 */ 1357 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || 1358 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || 1359 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || 1360 atomic_read(&VFS_I(ip)->i_dio_count)) 1361 return false; 1362 1363 return true; 1364 } 1365 1366 /* 1367 * Automatic CoW Reservation Freeing 1368 * 1369 * These functions automatically garbage collect leftover CoW reservations 1370 * that were made on behalf of a cowextsize hint when we start to run out 1371 * of quota or when the reservations sit around for too long. If the file 1372 * has dirty pages or is undergoing writeback, its CoW reservations will 1373 * be retained. 1374 * 1375 * The actual garbage collection piggybacks off the same code that runs 1376 * the speculative EOF preallocation garbage collector. 1377 */ 1378 STATIC int 1379 xfs_inode_free_cowblocks( 1380 struct xfs_inode *ip, 1381 struct xfs_icwalk *icw, 1382 unsigned int *lockflags) 1383 { 1384 bool wait; 1385 int ret = 0; 1386 1387 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1388 1389 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS)) 1390 return 0; 1391 1392 if (!xfs_prep_free_cowblocks(ip)) 1393 return 0; 1394 1395 if (!xfs_icwalk_match(ip, icw)) 1396 return 0; 1397 1398 /* 1399 * If the caller is waiting, return -EAGAIN to keep the background 1400 * scanner moving and revisit the inode in a subsequent pass. 1401 */ 1402 if (!(*lockflags & XFS_IOLOCK_EXCL) && 1403 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1404 if (wait) 1405 return -EAGAIN; 1406 return 0; 1407 } 1408 *lockflags |= XFS_IOLOCK_EXCL; 1409 1410 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) { 1411 if (wait) 1412 return -EAGAIN; 1413 return 0; 1414 } 1415 *lockflags |= XFS_MMAPLOCK_EXCL; 1416 1417 /* 1418 * Check again, nobody else should be able to dirty blocks or change 1419 * the reflink iflag now that we have the first two locks held. 1420 */ 1421 if (xfs_prep_free_cowblocks(ip)) 1422 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1423 return ret; 1424 } 1425 1426 void 1427 xfs_inode_set_cowblocks_tag( 1428 xfs_inode_t *ip) 1429 { 1430 trace_xfs_inode_set_cowblocks_tag(ip); 1431 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS); 1432 } 1433 1434 void 1435 xfs_inode_clear_cowblocks_tag( 1436 xfs_inode_t *ip) 1437 { 1438 trace_xfs_inode_clear_cowblocks_tag(ip); 1439 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS); 1440 } 1441 1442 /* Disable post-EOF and CoW block auto-reclamation. */ 1443 void 1444 xfs_blockgc_stop( 1445 struct xfs_mount *mp) 1446 { 1447 struct xfs_perag *pag; 1448 xfs_agnumber_t agno; 1449 1450 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1451 cancel_delayed_work_sync(&pag->pag_blockgc_work); 1452 } 1453 1454 /* Enable post-EOF and CoW block auto-reclamation. */ 1455 void 1456 xfs_blockgc_start( 1457 struct xfs_mount *mp) 1458 { 1459 struct xfs_perag *pag; 1460 xfs_agnumber_t agno; 1461 1462 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1463 xfs_blockgc_queue(pag); 1464 } 1465 1466 /* Don't try to run block gc on an inode that's in any of these states. */ 1467 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \ 1468 XFS_IRECLAIMABLE | \ 1469 XFS_IRECLAIM) 1470 /* 1471 * Decide if the given @ip is eligible for garbage collection of speculative 1472 * preallocations, and grab it if so. Returns true if it's ready to go or 1473 * false if we should just ignore it. 1474 */ 1475 static bool 1476 xfs_blockgc_igrab( 1477 struct xfs_inode *ip) 1478 { 1479 struct inode *inode = VFS_I(ip); 1480 1481 ASSERT(rcu_read_lock_held()); 1482 1483 /* Check for stale RCU freed inode */ 1484 spin_lock(&ip->i_flags_lock); 1485 if (!ip->i_ino) 1486 goto out_unlock_noent; 1487 1488 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS) 1489 goto out_unlock_noent; 1490 spin_unlock(&ip->i_flags_lock); 1491 1492 /* nothing to sync during shutdown */ 1493 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 1494 return false; 1495 1496 /* If we can't grab the inode, it must on it's way to reclaim. */ 1497 if (!igrab(inode)) 1498 return false; 1499 1500 /* inode is valid */ 1501 return true; 1502 1503 out_unlock_noent: 1504 spin_unlock(&ip->i_flags_lock); 1505 return false; 1506 } 1507 1508 /* Scan one incore inode for block preallocations that we can remove. */ 1509 static int 1510 xfs_blockgc_scan_inode( 1511 struct xfs_inode *ip, 1512 struct xfs_icwalk *icw) 1513 { 1514 unsigned int lockflags = 0; 1515 int error; 1516 1517 error = xfs_inode_free_eofblocks(ip, icw, &lockflags); 1518 if (error) 1519 goto unlock; 1520 1521 error = xfs_inode_free_cowblocks(ip, icw, &lockflags); 1522 unlock: 1523 if (lockflags) 1524 xfs_iunlock(ip, lockflags); 1525 xfs_irele(ip); 1526 return error; 1527 } 1528 1529 /* Background worker that trims preallocated space. */ 1530 void 1531 xfs_blockgc_worker( 1532 struct work_struct *work) 1533 { 1534 struct xfs_perag *pag = container_of(to_delayed_work(work), 1535 struct xfs_perag, pag_blockgc_work); 1536 struct xfs_mount *mp = pag->pag_mount; 1537 int error; 1538 1539 if (!sb_start_write_trylock(mp->m_super)) 1540 return; 1541 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL); 1542 if (error) 1543 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d", 1544 pag->pag_agno, error); 1545 sb_end_write(mp->m_super); 1546 xfs_blockgc_queue(pag); 1547 } 1548 1549 /* 1550 * Try to free space in the filesystem by purging eofblocks and cowblocks. 1551 */ 1552 int 1553 xfs_blockgc_free_space( 1554 struct xfs_mount *mp, 1555 struct xfs_icwalk *icw) 1556 { 1557 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_); 1558 1559 return xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw); 1560 } 1561 1562 /* 1563 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which 1564 * quota caused an allocation failure, so we make a best effort by including 1565 * each quota under low free space conditions (less than 1% free space) in the 1566 * scan. 1567 * 1568 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan 1569 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or 1570 * MMAPLOCK. 1571 */ 1572 int 1573 xfs_blockgc_free_dquots( 1574 struct xfs_mount *mp, 1575 struct xfs_dquot *udqp, 1576 struct xfs_dquot *gdqp, 1577 struct xfs_dquot *pdqp, 1578 unsigned int iwalk_flags) 1579 { 1580 struct xfs_icwalk icw = {0}; 1581 bool do_work = false; 1582 1583 if (!udqp && !gdqp && !pdqp) 1584 return 0; 1585 1586 /* 1587 * Run a scan to free blocks using the union filter to cover all 1588 * applicable quotas in a single scan. 1589 */ 1590 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags; 1591 1592 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) { 1593 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id); 1594 icw.icw_flags |= XFS_ICWALK_FLAG_UID; 1595 do_work = true; 1596 } 1597 1598 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) { 1599 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id); 1600 icw.icw_flags |= XFS_ICWALK_FLAG_GID; 1601 do_work = true; 1602 } 1603 1604 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) { 1605 icw.icw_prid = pdqp->q_id; 1606 icw.icw_flags |= XFS_ICWALK_FLAG_PRID; 1607 do_work = true; 1608 } 1609 1610 if (!do_work) 1611 return 0; 1612 1613 return xfs_blockgc_free_space(mp, &icw); 1614 } 1615 1616 /* Run cow/eofblocks scans on the quotas attached to the inode. */ 1617 int 1618 xfs_blockgc_free_quota( 1619 struct xfs_inode *ip, 1620 unsigned int iwalk_flags) 1621 { 1622 return xfs_blockgc_free_dquots(ip->i_mount, 1623 xfs_inode_dquot(ip, XFS_DQTYPE_USER), 1624 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP), 1625 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags); 1626 } 1627 1628 /* XFS Inode Cache Walking Code */ 1629 1630 /* 1631 * The inode lookup is done in batches to keep the amount of lock traffic and 1632 * radix tree lookups to a minimum. The batch size is a trade off between 1633 * lookup reduction and stack usage. This is in the reclaim path, so we can't 1634 * be too greedy. 1635 */ 1636 #define XFS_LOOKUP_BATCH 32 1637 1638 1639 /* 1640 * Decide if we want to grab this inode in anticipation of doing work towards 1641 * the goal. 1642 */ 1643 static inline bool 1644 xfs_icwalk_igrab( 1645 enum xfs_icwalk_goal goal, 1646 struct xfs_inode *ip, 1647 struct xfs_icwalk *icw) 1648 { 1649 switch (goal) { 1650 case XFS_ICWALK_DQRELE: 1651 return xfs_dqrele_igrab(ip); 1652 case XFS_ICWALK_BLOCKGC: 1653 return xfs_blockgc_igrab(ip); 1654 case XFS_ICWALK_RECLAIM: 1655 return xfs_reclaim_igrab(ip, icw); 1656 default: 1657 return false; 1658 } 1659 } 1660 1661 /* 1662 * Process an inode. Each processing function must handle any state changes 1663 * made by the icwalk igrab function. Return -EAGAIN to skip an inode. 1664 */ 1665 static inline int 1666 xfs_icwalk_process_inode( 1667 enum xfs_icwalk_goal goal, 1668 struct xfs_inode *ip, 1669 struct xfs_perag *pag, 1670 struct xfs_icwalk *icw) 1671 { 1672 int error = 0; 1673 1674 switch (goal) { 1675 case XFS_ICWALK_DQRELE: 1676 xfs_dqrele_inode(ip, icw); 1677 break; 1678 case XFS_ICWALK_BLOCKGC: 1679 error = xfs_blockgc_scan_inode(ip, icw); 1680 break; 1681 case XFS_ICWALK_RECLAIM: 1682 xfs_reclaim_inode(ip, pag); 1683 break; 1684 } 1685 return error; 1686 } 1687 1688 /* 1689 * For a given per-AG structure @pag and a goal, grab qualifying inodes and 1690 * process them in some manner. 1691 */ 1692 static int 1693 xfs_icwalk_ag( 1694 struct xfs_perag *pag, 1695 enum xfs_icwalk_goal goal, 1696 struct xfs_icwalk *icw) 1697 { 1698 struct xfs_mount *mp = pag->pag_mount; 1699 uint32_t first_index; 1700 int last_error = 0; 1701 int skipped; 1702 bool done; 1703 int nr_found; 1704 1705 restart: 1706 done = false; 1707 skipped = 0; 1708 if (goal == XFS_ICWALK_RECLAIM) 1709 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor); 1710 else 1711 first_index = 0; 1712 nr_found = 0; 1713 do { 1714 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1715 unsigned int tag = xfs_icwalk_tag(goal); 1716 int error = 0; 1717 int i; 1718 1719 rcu_read_lock(); 1720 1721 if (tag == XFS_ICWALK_NULL_TAG) 1722 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, 1723 (void **)batch, first_index, 1724 XFS_LOOKUP_BATCH); 1725 else 1726 nr_found = radix_tree_gang_lookup_tag( 1727 &pag->pag_ici_root, 1728 (void **) batch, first_index, 1729 XFS_LOOKUP_BATCH, tag); 1730 1731 if (!nr_found) { 1732 done = true; 1733 rcu_read_unlock(); 1734 break; 1735 } 1736 1737 /* 1738 * Grab the inodes before we drop the lock. if we found 1739 * nothing, nr == 0 and the loop will be skipped. 1740 */ 1741 for (i = 0; i < nr_found; i++) { 1742 struct xfs_inode *ip = batch[i]; 1743 1744 if (done || !xfs_icwalk_igrab(goal, ip, icw)) 1745 batch[i] = NULL; 1746 1747 /* 1748 * Update the index for the next lookup. Catch 1749 * overflows into the next AG range which can occur if 1750 * we have inodes in the last block of the AG and we 1751 * are currently pointing to the last inode. 1752 * 1753 * Because we may see inodes that are from the wrong AG 1754 * due to RCU freeing and reallocation, only update the 1755 * index if it lies in this AG. It was a race that lead 1756 * us to see this inode, so another lookup from the 1757 * same index will not find it again. 1758 */ 1759 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 1760 continue; 1761 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1762 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1763 done = true; 1764 } 1765 1766 /* unlock now we've grabbed the inodes. */ 1767 rcu_read_unlock(); 1768 1769 for (i = 0; i < nr_found; i++) { 1770 if (!batch[i]) 1771 continue; 1772 error = xfs_icwalk_process_inode(goal, batch[i], pag, 1773 icw); 1774 if (error == -EAGAIN) { 1775 skipped++; 1776 continue; 1777 } 1778 if (error && last_error != -EFSCORRUPTED) 1779 last_error = error; 1780 } 1781 1782 /* bail out if the filesystem is corrupted. */ 1783 if (error == -EFSCORRUPTED) 1784 break; 1785 1786 cond_resched(); 1787 1788 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) { 1789 icw->icw_scan_limit -= XFS_LOOKUP_BATCH; 1790 if (icw->icw_scan_limit <= 0) 1791 break; 1792 } 1793 } while (nr_found && !done); 1794 1795 if (goal == XFS_ICWALK_RECLAIM) { 1796 if (done) 1797 first_index = 0; 1798 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index); 1799 } 1800 1801 if (skipped) { 1802 delay(1); 1803 goto restart; 1804 } 1805 return last_error; 1806 } 1807 1808 /* Fetch the next (possibly tagged) per-AG structure. */ 1809 static inline struct xfs_perag * 1810 xfs_icwalk_get_perag( 1811 struct xfs_mount *mp, 1812 xfs_agnumber_t agno, 1813 enum xfs_icwalk_goal goal) 1814 { 1815 unsigned int tag = xfs_icwalk_tag(goal); 1816 1817 if (tag == XFS_ICWALK_NULL_TAG) 1818 return xfs_perag_get(mp, agno); 1819 return xfs_perag_get_tag(mp, agno, tag); 1820 } 1821 1822 /* Walk all incore inodes to achieve a given goal. */ 1823 static int 1824 xfs_icwalk( 1825 struct xfs_mount *mp, 1826 enum xfs_icwalk_goal goal, 1827 struct xfs_icwalk *icw) 1828 { 1829 struct xfs_perag *pag; 1830 int error = 0; 1831 int last_error = 0; 1832 xfs_agnumber_t agno = 0; 1833 1834 while ((pag = xfs_icwalk_get_perag(mp, agno, goal))) { 1835 agno = pag->pag_agno + 1; 1836 error = xfs_icwalk_ag(pag, goal, icw); 1837 xfs_perag_put(pag); 1838 if (error) { 1839 last_error = error; 1840 if (error == -EFSCORRUPTED) 1841 break; 1842 } 1843 } 1844 return last_error; 1845 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID); 1846 } 1847