xref: /linux/fs/xfs/xfs_icache.c (revision 8137a49e1567726eb10fcf55ad141ac19804ca6b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_ag.h"
26 
27 #include <linux/iversion.h>
28 
29 /* Radix tree tags for incore inode tree. */
30 
31 /* inode is to be reclaimed */
32 #define XFS_ICI_RECLAIM_TAG	0
33 /* Inode has speculative preallocations (posteof or cow) to clean. */
34 #define XFS_ICI_BLOCKGC_TAG	1
35 
36 /*
37  * The goal for walking incore inodes.  These can correspond with incore inode
38  * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
39  */
40 enum xfs_icwalk_goal {
41 	/* Goals that are not related to tags; these must be < 0. */
42 	XFS_ICWALK_DQRELE	= -1,
43 
44 	/* Goals directly associated with tagged inodes. */
45 	XFS_ICWALK_BLOCKGC	= XFS_ICI_BLOCKGC_TAG,
46 	XFS_ICWALK_RECLAIM	= XFS_ICI_RECLAIM_TAG,
47 };
48 
49 #define XFS_ICWALK_NULL_TAG	(-1U)
50 
51 /* Compute the inode radix tree tag for this goal. */
52 static inline unsigned int
53 xfs_icwalk_tag(enum xfs_icwalk_goal goal)
54 {
55 	return goal < 0 ? XFS_ICWALK_NULL_TAG : goal;
56 }
57 
58 static int xfs_icwalk(struct xfs_mount *mp,
59 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
60 static int xfs_icwalk_ag(struct xfs_perag *pag,
61 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
62 
63 /*
64  * Private inode cache walk flags for struct xfs_icwalk.  Must not
65  * coincide with XFS_ICWALK_FLAGS_VALID.
66  */
67 #define XFS_ICWALK_FLAG_DROP_UDQUOT	(1U << 31)
68 #define XFS_ICWALK_FLAG_DROP_GDQUOT	(1U << 30)
69 #define XFS_ICWALK_FLAG_DROP_PDQUOT	(1U << 29)
70 
71 /* Stop scanning after icw_scan_limit inodes. */
72 #define XFS_ICWALK_FLAG_SCAN_LIMIT	(1U << 28)
73 
74 #define XFS_ICWALK_FLAG_RECLAIM_SICK	(1U << 27)
75 #define XFS_ICWALK_FLAG_UNION		(1U << 26) /* union filter algorithm */
76 
77 #define XFS_ICWALK_PRIVATE_FLAGS	(XFS_ICWALK_FLAG_DROP_UDQUOT | \
78 					 XFS_ICWALK_FLAG_DROP_GDQUOT | \
79 					 XFS_ICWALK_FLAG_DROP_PDQUOT | \
80 					 XFS_ICWALK_FLAG_SCAN_LIMIT | \
81 					 XFS_ICWALK_FLAG_RECLAIM_SICK | \
82 					 XFS_ICWALK_FLAG_UNION)
83 
84 /*
85  * Allocate and initialise an xfs_inode.
86  */
87 struct xfs_inode *
88 xfs_inode_alloc(
89 	struct xfs_mount	*mp,
90 	xfs_ino_t		ino)
91 {
92 	struct xfs_inode	*ip;
93 
94 	/*
95 	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
96 	 * and return NULL here on ENOMEM.
97 	 */
98 	ip = kmem_cache_alloc(xfs_inode_zone, GFP_KERNEL | __GFP_NOFAIL);
99 
100 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
101 		kmem_cache_free(xfs_inode_zone, ip);
102 		return NULL;
103 	}
104 
105 	/* VFS doesn't initialise i_mode! */
106 	VFS_I(ip)->i_mode = 0;
107 
108 	XFS_STATS_INC(mp, vn_active);
109 	ASSERT(atomic_read(&ip->i_pincount) == 0);
110 	ASSERT(ip->i_ino == 0);
111 
112 	/* initialise the xfs inode */
113 	ip->i_ino = ino;
114 	ip->i_mount = mp;
115 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
116 	ip->i_afp = NULL;
117 	ip->i_cowfp = NULL;
118 	memset(&ip->i_df, 0, sizeof(ip->i_df));
119 	ip->i_flags = 0;
120 	ip->i_delayed_blks = 0;
121 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
122 	ip->i_nblocks = 0;
123 	ip->i_forkoff = 0;
124 	ip->i_sick = 0;
125 	ip->i_checked = 0;
126 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
127 	INIT_LIST_HEAD(&ip->i_ioend_list);
128 	spin_lock_init(&ip->i_ioend_lock);
129 
130 	return ip;
131 }
132 
133 STATIC void
134 xfs_inode_free_callback(
135 	struct rcu_head		*head)
136 {
137 	struct inode		*inode = container_of(head, struct inode, i_rcu);
138 	struct xfs_inode	*ip = XFS_I(inode);
139 
140 	switch (VFS_I(ip)->i_mode & S_IFMT) {
141 	case S_IFREG:
142 	case S_IFDIR:
143 	case S_IFLNK:
144 		xfs_idestroy_fork(&ip->i_df);
145 		break;
146 	}
147 
148 	if (ip->i_afp) {
149 		xfs_idestroy_fork(ip->i_afp);
150 		kmem_cache_free(xfs_ifork_zone, ip->i_afp);
151 	}
152 	if (ip->i_cowfp) {
153 		xfs_idestroy_fork(ip->i_cowfp);
154 		kmem_cache_free(xfs_ifork_zone, ip->i_cowfp);
155 	}
156 	if (ip->i_itemp) {
157 		ASSERT(!test_bit(XFS_LI_IN_AIL,
158 				 &ip->i_itemp->ili_item.li_flags));
159 		xfs_inode_item_destroy(ip);
160 		ip->i_itemp = NULL;
161 	}
162 
163 	kmem_cache_free(xfs_inode_zone, ip);
164 }
165 
166 static void
167 __xfs_inode_free(
168 	struct xfs_inode	*ip)
169 {
170 	/* asserts to verify all state is correct here */
171 	ASSERT(atomic_read(&ip->i_pincount) == 0);
172 	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
173 	XFS_STATS_DEC(ip->i_mount, vn_active);
174 
175 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
176 }
177 
178 void
179 xfs_inode_free(
180 	struct xfs_inode	*ip)
181 {
182 	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
183 
184 	/*
185 	 * Because we use RCU freeing we need to ensure the inode always
186 	 * appears to be reclaimed with an invalid inode number when in the
187 	 * free state. The ip->i_flags_lock provides the barrier against lookup
188 	 * races.
189 	 */
190 	spin_lock(&ip->i_flags_lock);
191 	ip->i_flags = XFS_IRECLAIM;
192 	ip->i_ino = 0;
193 	spin_unlock(&ip->i_flags_lock);
194 
195 	__xfs_inode_free(ip);
196 }
197 
198 /*
199  * Queue background inode reclaim work if there are reclaimable inodes and there
200  * isn't reclaim work already scheduled or in progress.
201  */
202 static void
203 xfs_reclaim_work_queue(
204 	struct xfs_mount        *mp)
205 {
206 
207 	rcu_read_lock();
208 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
209 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
210 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
211 	}
212 	rcu_read_unlock();
213 }
214 
215 /*
216  * Background scanning to trim preallocated space. This is queued based on the
217  * 'speculative_prealloc_lifetime' tunable (5m by default).
218  */
219 static inline void
220 xfs_blockgc_queue(
221 	struct xfs_perag	*pag)
222 {
223 	rcu_read_lock();
224 	if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
225 		queue_delayed_work(pag->pag_mount->m_gc_workqueue,
226 				   &pag->pag_blockgc_work,
227 				   msecs_to_jiffies(xfs_blockgc_secs * 1000));
228 	rcu_read_unlock();
229 }
230 
231 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
232 static void
233 xfs_perag_set_inode_tag(
234 	struct xfs_perag	*pag,
235 	xfs_agino_t		agino,
236 	unsigned int		tag)
237 {
238 	struct xfs_mount	*mp = pag->pag_mount;
239 	bool			was_tagged;
240 
241 	lockdep_assert_held(&pag->pag_ici_lock);
242 
243 	was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
244 	radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
245 
246 	if (tag == XFS_ICI_RECLAIM_TAG)
247 		pag->pag_ici_reclaimable++;
248 
249 	if (was_tagged)
250 		return;
251 
252 	/* propagate the tag up into the perag radix tree */
253 	spin_lock(&mp->m_perag_lock);
254 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
255 	spin_unlock(&mp->m_perag_lock);
256 
257 	/* start background work */
258 	switch (tag) {
259 	case XFS_ICI_RECLAIM_TAG:
260 		xfs_reclaim_work_queue(mp);
261 		break;
262 	case XFS_ICI_BLOCKGC_TAG:
263 		xfs_blockgc_queue(pag);
264 		break;
265 	}
266 
267 	trace_xfs_perag_set_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
268 }
269 
270 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
271 static void
272 xfs_perag_clear_inode_tag(
273 	struct xfs_perag	*pag,
274 	xfs_agino_t		agino,
275 	unsigned int		tag)
276 {
277 	struct xfs_mount	*mp = pag->pag_mount;
278 
279 	lockdep_assert_held(&pag->pag_ici_lock);
280 
281 	/*
282 	 * Reclaim can signal (with a null agino) that it cleared its own tag
283 	 * by removing the inode from the radix tree.
284 	 */
285 	if (agino != NULLAGINO)
286 		radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
287 	else
288 		ASSERT(tag == XFS_ICI_RECLAIM_TAG);
289 
290 	if (tag == XFS_ICI_RECLAIM_TAG)
291 		pag->pag_ici_reclaimable--;
292 
293 	if (radix_tree_tagged(&pag->pag_ici_root, tag))
294 		return;
295 
296 	/* clear the tag from the perag radix tree */
297 	spin_lock(&mp->m_perag_lock);
298 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
299 	spin_unlock(&mp->m_perag_lock);
300 
301 	trace_xfs_perag_clear_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
302 }
303 
304 /*
305  * We set the inode flag atomically with the radix tree tag.
306  * Once we get tag lookups on the radix tree, this inode flag
307  * can go away.
308  */
309 void
310 xfs_inode_mark_reclaimable(
311 	struct xfs_inode	*ip)
312 {
313 	struct xfs_mount	*mp = ip->i_mount;
314 	struct xfs_perag	*pag;
315 
316 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
317 	spin_lock(&pag->pag_ici_lock);
318 	spin_lock(&ip->i_flags_lock);
319 
320 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
321 			XFS_ICI_RECLAIM_TAG);
322 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
323 
324 	spin_unlock(&ip->i_flags_lock);
325 	spin_unlock(&pag->pag_ici_lock);
326 	xfs_perag_put(pag);
327 }
328 
329 static inline void
330 xfs_inew_wait(
331 	struct xfs_inode	*ip)
332 {
333 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
334 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
335 
336 	do {
337 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
338 		if (!xfs_iflags_test(ip, XFS_INEW))
339 			break;
340 		schedule();
341 	} while (true);
342 	finish_wait(wq, &wait.wq_entry);
343 }
344 
345 /*
346  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
347  * part of the structure. This is made more complex by the fact we store
348  * information about the on-disk values in the VFS inode and so we can't just
349  * overwrite the values unconditionally. Hence we save the parameters we
350  * need to retain across reinitialisation, and rewrite them into the VFS inode
351  * after reinitialisation even if it fails.
352  */
353 static int
354 xfs_reinit_inode(
355 	struct xfs_mount	*mp,
356 	struct inode		*inode)
357 {
358 	int			error;
359 	uint32_t		nlink = inode->i_nlink;
360 	uint32_t		generation = inode->i_generation;
361 	uint64_t		version = inode_peek_iversion(inode);
362 	umode_t			mode = inode->i_mode;
363 	dev_t			dev = inode->i_rdev;
364 	kuid_t			uid = inode->i_uid;
365 	kgid_t			gid = inode->i_gid;
366 
367 	error = inode_init_always(mp->m_super, inode);
368 
369 	set_nlink(inode, nlink);
370 	inode->i_generation = generation;
371 	inode_set_iversion_queried(inode, version);
372 	inode->i_mode = mode;
373 	inode->i_rdev = dev;
374 	inode->i_uid = uid;
375 	inode->i_gid = gid;
376 	return error;
377 }
378 
379 /*
380  * Carefully nudge an inode whose VFS state has been torn down back into a
381  * usable state.  Drops the i_flags_lock and the rcu read lock.
382  */
383 static int
384 xfs_iget_recycle(
385 	struct xfs_perag	*pag,
386 	struct xfs_inode	*ip) __releases(&ip->i_flags_lock)
387 {
388 	struct xfs_mount	*mp = ip->i_mount;
389 	struct inode		*inode = VFS_I(ip);
390 	int			error;
391 
392 	trace_xfs_iget_recycle(ip);
393 
394 	/*
395 	 * We need to make it look like the inode is being reclaimed to prevent
396 	 * the actual reclaim workers from stomping over us while we recycle
397 	 * the inode.  We can't clear the radix tree tag yet as it requires
398 	 * pag_ici_lock to be held exclusive.
399 	 */
400 	ip->i_flags |= XFS_IRECLAIM;
401 
402 	spin_unlock(&ip->i_flags_lock);
403 	rcu_read_unlock();
404 
405 	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
406 	error = xfs_reinit_inode(mp, inode);
407 	if (error) {
408 		bool	wake;
409 
410 		/*
411 		 * Re-initializing the inode failed, and we are in deep
412 		 * trouble.  Try to re-add it to the reclaim list.
413 		 */
414 		rcu_read_lock();
415 		spin_lock(&ip->i_flags_lock);
416 		wake = !!__xfs_iflags_test(ip, XFS_INEW);
417 		ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
418 		if (wake)
419 			wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
420 		ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
421 		spin_unlock(&ip->i_flags_lock);
422 		rcu_read_unlock();
423 
424 		trace_xfs_iget_recycle_fail(ip);
425 		return error;
426 	}
427 
428 	spin_lock(&pag->pag_ici_lock);
429 	spin_lock(&ip->i_flags_lock);
430 
431 	/*
432 	 * Clear the per-lifetime state in the inode as we are now effectively
433 	 * a new inode and need to return to the initial state before reuse
434 	 * occurs.
435 	 */
436 	ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
437 	ip->i_flags |= XFS_INEW;
438 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
439 			XFS_ICI_RECLAIM_TAG);
440 	inode->i_state = I_NEW;
441 	spin_unlock(&ip->i_flags_lock);
442 	spin_unlock(&pag->pag_ici_lock);
443 
444 	return 0;
445 }
446 
447 /*
448  * If we are allocating a new inode, then check what was returned is
449  * actually a free, empty inode. If we are not allocating an inode,
450  * then check we didn't find a free inode.
451  *
452  * Returns:
453  *	0		if the inode free state matches the lookup context
454  *	-ENOENT		if the inode is free and we are not allocating
455  *	-EFSCORRUPTED	if there is any state mismatch at all
456  */
457 static int
458 xfs_iget_check_free_state(
459 	struct xfs_inode	*ip,
460 	int			flags)
461 {
462 	if (flags & XFS_IGET_CREATE) {
463 		/* should be a free inode */
464 		if (VFS_I(ip)->i_mode != 0) {
465 			xfs_warn(ip->i_mount,
466 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
467 				ip->i_ino, VFS_I(ip)->i_mode);
468 			return -EFSCORRUPTED;
469 		}
470 
471 		if (ip->i_nblocks != 0) {
472 			xfs_warn(ip->i_mount,
473 "Corruption detected! Free inode 0x%llx has blocks allocated!",
474 				ip->i_ino);
475 			return -EFSCORRUPTED;
476 		}
477 		return 0;
478 	}
479 
480 	/* should be an allocated inode */
481 	if (VFS_I(ip)->i_mode == 0)
482 		return -ENOENT;
483 
484 	return 0;
485 }
486 
487 /*
488  * Check the validity of the inode we just found it the cache
489  */
490 static int
491 xfs_iget_cache_hit(
492 	struct xfs_perag	*pag,
493 	struct xfs_inode	*ip,
494 	xfs_ino_t		ino,
495 	int			flags,
496 	int			lock_flags) __releases(RCU)
497 {
498 	struct inode		*inode = VFS_I(ip);
499 	struct xfs_mount	*mp = ip->i_mount;
500 	int			error;
501 
502 	/*
503 	 * check for re-use of an inode within an RCU grace period due to the
504 	 * radix tree nodes not being updated yet. We monitor for this by
505 	 * setting the inode number to zero before freeing the inode structure.
506 	 * If the inode has been reallocated and set up, then the inode number
507 	 * will not match, so check for that, too.
508 	 */
509 	spin_lock(&ip->i_flags_lock);
510 	if (ip->i_ino != ino)
511 		goto out_skip;
512 
513 	/*
514 	 * If we are racing with another cache hit that is currently
515 	 * instantiating this inode or currently recycling it out of
516 	 * reclaimable state, wait for the initialisation to complete
517 	 * before continuing.
518 	 *
519 	 * XXX(hch): eventually we should do something equivalent to
520 	 *	     wait_on_inode to wait for these flags to be cleared
521 	 *	     instead of polling for it.
522 	 */
523 	if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM))
524 		goto out_skip;
525 
526 	/*
527 	 * Check the inode free state is valid. This also detects lookup
528 	 * racing with unlinks.
529 	 */
530 	error = xfs_iget_check_free_state(ip, flags);
531 	if (error)
532 		goto out_error;
533 
534 	/* Skip inodes that have no vfs state. */
535 	if ((flags & XFS_IGET_INCORE) &&
536 	    (ip->i_flags & XFS_IRECLAIMABLE))
537 		goto out_skip;
538 
539 	/* The inode fits the selection criteria; process it. */
540 	if (ip->i_flags & XFS_IRECLAIMABLE) {
541 		/* Drops i_flags_lock and RCU read lock. */
542 		error = xfs_iget_recycle(pag, ip);
543 		if (error)
544 			return error;
545 	} else {
546 		/* If the VFS inode is being torn down, pause and try again. */
547 		if (!igrab(inode))
548 			goto out_skip;
549 
550 		/* We've got a live one. */
551 		spin_unlock(&ip->i_flags_lock);
552 		rcu_read_unlock();
553 		trace_xfs_iget_hit(ip);
554 	}
555 
556 	if (lock_flags != 0)
557 		xfs_ilock(ip, lock_flags);
558 
559 	if (!(flags & XFS_IGET_INCORE))
560 		xfs_iflags_clear(ip, XFS_ISTALE);
561 	XFS_STATS_INC(mp, xs_ig_found);
562 
563 	return 0;
564 
565 out_skip:
566 	trace_xfs_iget_skip(ip);
567 	XFS_STATS_INC(mp, xs_ig_frecycle);
568 	error = -EAGAIN;
569 out_error:
570 	spin_unlock(&ip->i_flags_lock);
571 	rcu_read_unlock();
572 	return error;
573 }
574 
575 static int
576 xfs_iget_cache_miss(
577 	struct xfs_mount	*mp,
578 	struct xfs_perag	*pag,
579 	xfs_trans_t		*tp,
580 	xfs_ino_t		ino,
581 	struct xfs_inode	**ipp,
582 	int			flags,
583 	int			lock_flags)
584 {
585 	struct xfs_inode	*ip;
586 	int			error;
587 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
588 	int			iflags;
589 
590 	ip = xfs_inode_alloc(mp, ino);
591 	if (!ip)
592 		return -ENOMEM;
593 
594 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
595 	if (error)
596 		goto out_destroy;
597 
598 	/*
599 	 * For version 5 superblocks, if we are initialising a new inode and we
600 	 * are not utilising the XFS_MOUNT_IKEEP inode cluster mode, we can
601 	 * simply build the new inode core with a random generation number.
602 	 *
603 	 * For version 4 (and older) superblocks, log recovery is dependent on
604 	 * the i_flushiter field being initialised from the current on-disk
605 	 * value and hence we must also read the inode off disk even when
606 	 * initializing new inodes.
607 	 */
608 	if (xfs_sb_version_has_v3inode(&mp->m_sb) &&
609 	    (flags & XFS_IGET_CREATE) && !(mp->m_flags & XFS_MOUNT_IKEEP)) {
610 		VFS_I(ip)->i_generation = prandom_u32();
611 	} else {
612 		struct xfs_buf		*bp;
613 
614 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
615 		if (error)
616 			goto out_destroy;
617 
618 		error = xfs_inode_from_disk(ip,
619 				xfs_buf_offset(bp, ip->i_imap.im_boffset));
620 		if (!error)
621 			xfs_buf_set_ref(bp, XFS_INO_REF);
622 		xfs_trans_brelse(tp, bp);
623 
624 		if (error)
625 			goto out_destroy;
626 	}
627 
628 	trace_xfs_iget_miss(ip);
629 
630 	/*
631 	 * Check the inode free state is valid. This also detects lookup
632 	 * racing with unlinks.
633 	 */
634 	error = xfs_iget_check_free_state(ip, flags);
635 	if (error)
636 		goto out_destroy;
637 
638 	/*
639 	 * Preload the radix tree so we can insert safely under the
640 	 * write spinlock. Note that we cannot sleep inside the preload
641 	 * region. Since we can be called from transaction context, don't
642 	 * recurse into the file system.
643 	 */
644 	if (radix_tree_preload(GFP_NOFS)) {
645 		error = -EAGAIN;
646 		goto out_destroy;
647 	}
648 
649 	/*
650 	 * Because the inode hasn't been added to the radix-tree yet it can't
651 	 * be found by another thread, so we can do the non-sleeping lock here.
652 	 */
653 	if (lock_flags) {
654 		if (!xfs_ilock_nowait(ip, lock_flags))
655 			BUG();
656 	}
657 
658 	/*
659 	 * These values must be set before inserting the inode into the radix
660 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
661 	 * RCU locking mechanism) can find it and that lookup must see that this
662 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
663 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
664 	 * memory barrier that ensures this detection works correctly at lookup
665 	 * time.
666 	 */
667 	iflags = XFS_INEW;
668 	if (flags & XFS_IGET_DONTCACHE)
669 		d_mark_dontcache(VFS_I(ip));
670 	ip->i_udquot = NULL;
671 	ip->i_gdquot = NULL;
672 	ip->i_pdquot = NULL;
673 	xfs_iflags_set(ip, iflags);
674 
675 	/* insert the new inode */
676 	spin_lock(&pag->pag_ici_lock);
677 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
678 	if (unlikely(error)) {
679 		WARN_ON(error != -EEXIST);
680 		XFS_STATS_INC(mp, xs_ig_dup);
681 		error = -EAGAIN;
682 		goto out_preload_end;
683 	}
684 	spin_unlock(&pag->pag_ici_lock);
685 	radix_tree_preload_end();
686 
687 	*ipp = ip;
688 	return 0;
689 
690 out_preload_end:
691 	spin_unlock(&pag->pag_ici_lock);
692 	radix_tree_preload_end();
693 	if (lock_flags)
694 		xfs_iunlock(ip, lock_flags);
695 out_destroy:
696 	__destroy_inode(VFS_I(ip));
697 	xfs_inode_free(ip);
698 	return error;
699 }
700 
701 /*
702  * Look up an inode by number in the given file system.  The inode is looked up
703  * in the cache held in each AG.  If the inode is found in the cache, initialise
704  * the vfs inode if necessary.
705  *
706  * If it is not in core, read it in from the file system's device, add it to the
707  * cache and initialise the vfs inode.
708  *
709  * The inode is locked according to the value of the lock_flags parameter.
710  * Inode lookup is only done during metadata operations and not as part of the
711  * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
712  */
713 int
714 xfs_iget(
715 	struct xfs_mount	*mp,
716 	struct xfs_trans	*tp,
717 	xfs_ino_t		ino,
718 	uint			flags,
719 	uint			lock_flags,
720 	struct xfs_inode	**ipp)
721 {
722 	struct xfs_inode	*ip;
723 	struct xfs_perag	*pag;
724 	xfs_agino_t		agino;
725 	int			error;
726 
727 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
728 
729 	/* reject inode numbers outside existing AGs */
730 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
731 		return -EINVAL;
732 
733 	XFS_STATS_INC(mp, xs_ig_attempts);
734 
735 	/* get the perag structure and ensure that it's inode capable */
736 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
737 	agino = XFS_INO_TO_AGINO(mp, ino);
738 
739 again:
740 	error = 0;
741 	rcu_read_lock();
742 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
743 
744 	if (ip) {
745 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
746 		if (error)
747 			goto out_error_or_again;
748 	} else {
749 		rcu_read_unlock();
750 		if (flags & XFS_IGET_INCORE) {
751 			error = -ENODATA;
752 			goto out_error_or_again;
753 		}
754 		XFS_STATS_INC(mp, xs_ig_missed);
755 
756 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
757 							flags, lock_flags);
758 		if (error)
759 			goto out_error_or_again;
760 	}
761 	xfs_perag_put(pag);
762 
763 	*ipp = ip;
764 
765 	/*
766 	 * If we have a real type for an on-disk inode, we can setup the inode
767 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
768 	 */
769 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
770 		xfs_setup_existing_inode(ip);
771 	return 0;
772 
773 out_error_or_again:
774 	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
775 		delay(1);
776 		goto again;
777 	}
778 	xfs_perag_put(pag);
779 	return error;
780 }
781 
782 /*
783  * "Is this a cached inode that's also allocated?"
784  *
785  * Look up an inode by number in the given file system.  If the inode is
786  * in cache and isn't in purgatory, return 1 if the inode is allocated
787  * and 0 if it is not.  For all other cases (not in cache, being torn
788  * down, etc.), return a negative error code.
789  *
790  * The caller has to prevent inode allocation and freeing activity,
791  * presumably by locking the AGI buffer.   This is to ensure that an
792  * inode cannot transition from allocated to freed until the caller is
793  * ready to allow that.  If the inode is in an intermediate state (new,
794  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
795  * inode is not in the cache, -ENOENT will be returned.  The caller must
796  * deal with these scenarios appropriately.
797  *
798  * This is a specialized use case for the online scrubber; if you're
799  * reading this, you probably want xfs_iget.
800  */
801 int
802 xfs_icache_inode_is_allocated(
803 	struct xfs_mount	*mp,
804 	struct xfs_trans	*tp,
805 	xfs_ino_t		ino,
806 	bool			*inuse)
807 {
808 	struct xfs_inode	*ip;
809 	int			error;
810 
811 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
812 	if (error)
813 		return error;
814 
815 	*inuse = !!(VFS_I(ip)->i_mode);
816 	xfs_irele(ip);
817 	return 0;
818 }
819 
820 #ifdef CONFIG_XFS_QUOTA
821 /* Decide if we want to grab this inode to drop its dquots. */
822 static bool
823 xfs_dqrele_igrab(
824 	struct xfs_inode	*ip)
825 {
826 	bool			ret = false;
827 
828 	ASSERT(rcu_read_lock_held());
829 
830 	/* Check for stale RCU freed inode */
831 	spin_lock(&ip->i_flags_lock);
832 	if (!ip->i_ino)
833 		goto out_unlock;
834 
835 	/*
836 	 * Skip inodes that are anywhere in the reclaim machinery because we
837 	 * drop dquots before tagging an inode for reclamation.
838 	 */
839 	if (ip->i_flags & (XFS_IRECLAIM | XFS_IRECLAIMABLE))
840 		goto out_unlock;
841 
842 	/*
843 	 * The inode looks alive; try to grab a VFS reference so that it won't
844 	 * get destroyed.  If we got the reference, return true to say that
845 	 * we grabbed the inode.
846 	 *
847 	 * If we can't get the reference, then we know the inode had its VFS
848 	 * state torn down and hasn't yet entered the reclaim machinery.  Since
849 	 * we also know that dquots are detached from an inode before it enters
850 	 * reclaim, we can skip the inode.
851 	 */
852 	ret = igrab(VFS_I(ip)) != NULL;
853 
854 out_unlock:
855 	spin_unlock(&ip->i_flags_lock);
856 	return ret;
857 }
858 
859 /* Drop this inode's dquots. */
860 static void
861 xfs_dqrele_inode(
862 	struct xfs_inode	*ip,
863 	struct xfs_icwalk	*icw)
864 {
865 	if (xfs_iflags_test(ip, XFS_INEW))
866 		xfs_inew_wait(ip);
867 
868 	xfs_ilock(ip, XFS_ILOCK_EXCL);
869 	if (icw->icw_flags & XFS_ICWALK_FLAG_DROP_UDQUOT) {
870 		xfs_qm_dqrele(ip->i_udquot);
871 		ip->i_udquot = NULL;
872 	}
873 	if (icw->icw_flags & XFS_ICWALK_FLAG_DROP_GDQUOT) {
874 		xfs_qm_dqrele(ip->i_gdquot);
875 		ip->i_gdquot = NULL;
876 	}
877 	if (icw->icw_flags & XFS_ICWALK_FLAG_DROP_PDQUOT) {
878 		xfs_qm_dqrele(ip->i_pdquot);
879 		ip->i_pdquot = NULL;
880 	}
881 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
882 	xfs_irele(ip);
883 }
884 
885 /*
886  * Detach all dquots from incore inodes if we can.  The caller must already
887  * have dropped the relevant XFS_[UGP]QUOTA_ACTIVE flags so that dquots will
888  * not get reattached.
889  */
890 int
891 xfs_dqrele_all_inodes(
892 	struct xfs_mount	*mp,
893 	unsigned int		qflags)
894 {
895 	struct xfs_icwalk	icw = { .icw_flags = 0 };
896 
897 	if (qflags & XFS_UQUOTA_ACCT)
898 		icw.icw_flags |= XFS_ICWALK_FLAG_DROP_UDQUOT;
899 	if (qflags & XFS_GQUOTA_ACCT)
900 		icw.icw_flags |= XFS_ICWALK_FLAG_DROP_GDQUOT;
901 	if (qflags & XFS_PQUOTA_ACCT)
902 		icw.icw_flags |= XFS_ICWALK_FLAG_DROP_PDQUOT;
903 
904 	return xfs_icwalk(mp, XFS_ICWALK_DQRELE, &icw);
905 }
906 #else
907 # define xfs_dqrele_igrab(ip)		(false)
908 # define xfs_dqrele_inode(ip, priv)	((void)0)
909 #endif /* CONFIG_XFS_QUOTA */
910 
911 /*
912  * Grab the inode for reclaim exclusively.
913  *
914  * We have found this inode via a lookup under RCU, so the inode may have
915  * already been freed, or it may be in the process of being recycled by
916  * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
917  * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
918  * will not be set. Hence we need to check for both these flag conditions to
919  * avoid inodes that are no longer reclaim candidates.
920  *
921  * Note: checking for other state flags here, under the i_flags_lock or not, is
922  * racy and should be avoided. Those races should be resolved only after we have
923  * ensured that we are able to reclaim this inode and the world can see that we
924  * are going to reclaim it.
925  *
926  * Return true if we grabbed it, false otherwise.
927  */
928 static bool
929 xfs_reclaim_igrab(
930 	struct xfs_inode	*ip,
931 	struct xfs_icwalk	*icw)
932 {
933 	ASSERT(rcu_read_lock_held());
934 
935 	spin_lock(&ip->i_flags_lock);
936 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
937 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
938 		/* not a reclaim candidate. */
939 		spin_unlock(&ip->i_flags_lock);
940 		return false;
941 	}
942 
943 	/* Don't reclaim a sick inode unless the caller asked for it. */
944 	if (ip->i_sick &&
945 	    (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
946 		spin_unlock(&ip->i_flags_lock);
947 		return false;
948 	}
949 
950 	__xfs_iflags_set(ip, XFS_IRECLAIM);
951 	spin_unlock(&ip->i_flags_lock);
952 	return true;
953 }
954 
955 /*
956  * Inode reclaim is non-blocking, so the default action if progress cannot be
957  * made is to "requeue" the inode for reclaim by unlocking it and clearing the
958  * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
959  * blocking anymore and hence we can wait for the inode to be able to reclaim
960  * it.
961  *
962  * We do no IO here - if callers require inodes to be cleaned they must push the
963  * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
964  * done in the background in a non-blocking manner, and enables memory reclaim
965  * to make progress without blocking.
966  */
967 static void
968 xfs_reclaim_inode(
969 	struct xfs_inode	*ip,
970 	struct xfs_perag	*pag)
971 {
972 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
973 
974 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
975 		goto out;
976 	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
977 		goto out_iunlock;
978 
979 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
980 		xfs_iunpin_wait(ip);
981 		xfs_iflush_abort(ip);
982 		goto reclaim;
983 	}
984 	if (xfs_ipincount(ip))
985 		goto out_clear_flush;
986 	if (!xfs_inode_clean(ip))
987 		goto out_clear_flush;
988 
989 	xfs_iflags_clear(ip, XFS_IFLUSHING);
990 reclaim:
991 
992 	/*
993 	 * Because we use RCU freeing we need to ensure the inode always appears
994 	 * to be reclaimed with an invalid inode number when in the free state.
995 	 * We do this as early as possible under the ILOCK so that
996 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
997 	 * detect races with us here. By doing this, we guarantee that once
998 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
999 	 * it will see either a valid inode that will serialise correctly, or it
1000 	 * will see an invalid inode that it can skip.
1001 	 */
1002 	spin_lock(&ip->i_flags_lock);
1003 	ip->i_flags = XFS_IRECLAIM;
1004 	ip->i_ino = 0;
1005 	ip->i_sick = 0;
1006 	ip->i_checked = 0;
1007 	spin_unlock(&ip->i_flags_lock);
1008 
1009 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1010 
1011 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1012 	/*
1013 	 * Remove the inode from the per-AG radix tree.
1014 	 *
1015 	 * Because radix_tree_delete won't complain even if the item was never
1016 	 * added to the tree assert that it's been there before to catch
1017 	 * problems with the inode life time early on.
1018 	 */
1019 	spin_lock(&pag->pag_ici_lock);
1020 	if (!radix_tree_delete(&pag->pag_ici_root,
1021 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1022 		ASSERT(0);
1023 	xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
1024 	spin_unlock(&pag->pag_ici_lock);
1025 
1026 	/*
1027 	 * Here we do an (almost) spurious inode lock in order to coordinate
1028 	 * with inode cache radix tree lookups.  This is because the lookup
1029 	 * can reference the inodes in the cache without taking references.
1030 	 *
1031 	 * We make that OK here by ensuring that we wait until the inode is
1032 	 * unlocked after the lookup before we go ahead and free it.
1033 	 */
1034 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1035 	ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
1036 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1037 	ASSERT(xfs_inode_clean(ip));
1038 
1039 	__xfs_inode_free(ip);
1040 	return;
1041 
1042 out_clear_flush:
1043 	xfs_iflags_clear(ip, XFS_IFLUSHING);
1044 out_iunlock:
1045 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1046 out:
1047 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1048 }
1049 
1050 /* Reclaim sick inodes if we're unmounting or the fs went down. */
1051 static inline bool
1052 xfs_want_reclaim_sick(
1053 	struct xfs_mount	*mp)
1054 {
1055 	return (mp->m_flags & XFS_MOUNT_UNMOUNTING) ||
1056 	       (mp->m_flags & XFS_MOUNT_NORECOVERY) ||
1057 	       XFS_FORCED_SHUTDOWN(mp);
1058 }
1059 
1060 void
1061 xfs_reclaim_inodes(
1062 	struct xfs_mount	*mp)
1063 {
1064 	struct xfs_icwalk	icw = {
1065 		.icw_flags	= 0,
1066 	};
1067 
1068 	if (xfs_want_reclaim_sick(mp))
1069 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1070 
1071 	while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
1072 		xfs_ail_push_all_sync(mp->m_ail);
1073 		xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1074 	}
1075 }
1076 
1077 /*
1078  * The shrinker infrastructure determines how many inodes we should scan for
1079  * reclaim. We want as many clean inodes ready to reclaim as possible, so we
1080  * push the AIL here. We also want to proactively free up memory if we can to
1081  * minimise the amount of work memory reclaim has to do so we kick the
1082  * background reclaim if it isn't already scheduled.
1083  */
1084 long
1085 xfs_reclaim_inodes_nr(
1086 	struct xfs_mount	*mp,
1087 	unsigned long		nr_to_scan)
1088 {
1089 	struct xfs_icwalk	icw = {
1090 		.icw_flags	= XFS_ICWALK_FLAG_SCAN_LIMIT,
1091 		.icw_scan_limit	= min_t(unsigned long, LONG_MAX, nr_to_scan),
1092 	};
1093 
1094 	if (xfs_want_reclaim_sick(mp))
1095 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1096 
1097 	/* kick background reclaimer and push the AIL */
1098 	xfs_reclaim_work_queue(mp);
1099 	xfs_ail_push_all(mp->m_ail);
1100 
1101 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1102 	return 0;
1103 }
1104 
1105 /*
1106  * Return the number of reclaimable inodes in the filesystem for
1107  * the shrinker to determine how much to reclaim.
1108  */
1109 long
1110 xfs_reclaim_inodes_count(
1111 	struct xfs_mount	*mp)
1112 {
1113 	struct xfs_perag	*pag;
1114 	xfs_agnumber_t		ag = 0;
1115 	long			reclaimable = 0;
1116 
1117 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1118 		ag = pag->pag_agno + 1;
1119 		reclaimable += pag->pag_ici_reclaimable;
1120 		xfs_perag_put(pag);
1121 	}
1122 	return reclaimable;
1123 }
1124 
1125 STATIC bool
1126 xfs_icwalk_match_id(
1127 	struct xfs_inode	*ip,
1128 	struct xfs_icwalk	*icw)
1129 {
1130 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1131 	    !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1132 		return false;
1133 
1134 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1135 	    !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1136 		return false;
1137 
1138 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1139 	    ip->i_projid != icw->icw_prid)
1140 		return false;
1141 
1142 	return true;
1143 }
1144 
1145 /*
1146  * A union-based inode filtering algorithm. Process the inode if any of the
1147  * criteria match. This is for global/internal scans only.
1148  */
1149 STATIC bool
1150 xfs_icwalk_match_id_union(
1151 	struct xfs_inode	*ip,
1152 	struct xfs_icwalk	*icw)
1153 {
1154 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1155 	    uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1156 		return true;
1157 
1158 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1159 	    gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1160 		return true;
1161 
1162 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1163 	    ip->i_projid == icw->icw_prid)
1164 		return true;
1165 
1166 	return false;
1167 }
1168 
1169 /*
1170  * Is this inode @ip eligible for eof/cow block reclamation, given some
1171  * filtering parameters @icw?  The inode is eligible if @icw is null or
1172  * if the predicate functions match.
1173  */
1174 static bool
1175 xfs_icwalk_match(
1176 	struct xfs_inode	*ip,
1177 	struct xfs_icwalk	*icw)
1178 {
1179 	bool			match;
1180 
1181 	if (!icw)
1182 		return true;
1183 
1184 	if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1185 		match = xfs_icwalk_match_id_union(ip, icw);
1186 	else
1187 		match = xfs_icwalk_match_id(ip, icw);
1188 	if (!match)
1189 		return false;
1190 
1191 	/* skip the inode if the file size is too small */
1192 	if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1193 	    XFS_ISIZE(ip) < icw->icw_min_file_size)
1194 		return false;
1195 
1196 	return true;
1197 }
1198 
1199 /*
1200  * This is a fast pass over the inode cache to try to get reclaim moving on as
1201  * many inodes as possible in a short period of time. It kicks itself every few
1202  * seconds, as well as being kicked by the inode cache shrinker when memory
1203  * goes low.
1204  */
1205 void
1206 xfs_reclaim_worker(
1207 	struct work_struct *work)
1208 {
1209 	struct xfs_mount *mp = container_of(to_delayed_work(work),
1210 					struct xfs_mount, m_reclaim_work);
1211 
1212 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1213 	xfs_reclaim_work_queue(mp);
1214 }
1215 
1216 STATIC int
1217 xfs_inode_free_eofblocks(
1218 	struct xfs_inode	*ip,
1219 	struct xfs_icwalk	*icw,
1220 	unsigned int		*lockflags)
1221 {
1222 	bool			wait;
1223 
1224 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1225 
1226 	if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1227 		return 0;
1228 
1229 	/*
1230 	 * If the mapping is dirty the operation can block and wait for some
1231 	 * time. Unless we are waiting, skip it.
1232 	 */
1233 	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1234 		return 0;
1235 
1236 	if (!xfs_icwalk_match(ip, icw))
1237 		return 0;
1238 
1239 	/*
1240 	 * If the caller is waiting, return -EAGAIN to keep the background
1241 	 * scanner moving and revisit the inode in a subsequent pass.
1242 	 */
1243 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1244 		if (wait)
1245 			return -EAGAIN;
1246 		return 0;
1247 	}
1248 	*lockflags |= XFS_IOLOCK_EXCL;
1249 
1250 	if (xfs_can_free_eofblocks(ip, false))
1251 		return xfs_free_eofblocks(ip);
1252 
1253 	/* inode could be preallocated or append-only */
1254 	trace_xfs_inode_free_eofblocks_invalid(ip);
1255 	xfs_inode_clear_eofblocks_tag(ip);
1256 	return 0;
1257 }
1258 
1259 static void
1260 xfs_blockgc_set_iflag(
1261 	struct xfs_inode	*ip,
1262 	unsigned long		iflag)
1263 {
1264 	struct xfs_mount	*mp = ip->i_mount;
1265 	struct xfs_perag	*pag;
1266 
1267 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1268 
1269 	/*
1270 	 * Don't bother locking the AG and looking up in the radix trees
1271 	 * if we already know that we have the tag set.
1272 	 */
1273 	if (ip->i_flags & iflag)
1274 		return;
1275 	spin_lock(&ip->i_flags_lock);
1276 	ip->i_flags |= iflag;
1277 	spin_unlock(&ip->i_flags_lock);
1278 
1279 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1280 	spin_lock(&pag->pag_ici_lock);
1281 
1282 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1283 			XFS_ICI_BLOCKGC_TAG);
1284 
1285 	spin_unlock(&pag->pag_ici_lock);
1286 	xfs_perag_put(pag);
1287 }
1288 
1289 void
1290 xfs_inode_set_eofblocks_tag(
1291 	xfs_inode_t	*ip)
1292 {
1293 	trace_xfs_inode_set_eofblocks_tag(ip);
1294 	return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1295 }
1296 
1297 static void
1298 xfs_blockgc_clear_iflag(
1299 	struct xfs_inode	*ip,
1300 	unsigned long		iflag)
1301 {
1302 	struct xfs_mount	*mp = ip->i_mount;
1303 	struct xfs_perag	*pag;
1304 	bool			clear_tag;
1305 
1306 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1307 
1308 	spin_lock(&ip->i_flags_lock);
1309 	ip->i_flags &= ~iflag;
1310 	clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1311 	spin_unlock(&ip->i_flags_lock);
1312 
1313 	if (!clear_tag)
1314 		return;
1315 
1316 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1317 	spin_lock(&pag->pag_ici_lock);
1318 
1319 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1320 			XFS_ICI_BLOCKGC_TAG);
1321 
1322 	spin_unlock(&pag->pag_ici_lock);
1323 	xfs_perag_put(pag);
1324 }
1325 
1326 void
1327 xfs_inode_clear_eofblocks_tag(
1328 	xfs_inode_t	*ip)
1329 {
1330 	trace_xfs_inode_clear_eofblocks_tag(ip);
1331 	return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1332 }
1333 
1334 /*
1335  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1336  * then we can bail out quickly, but otherwise we must back off if the file
1337  * is undergoing some kind of write.
1338  */
1339 static bool
1340 xfs_prep_free_cowblocks(
1341 	struct xfs_inode	*ip)
1342 {
1343 	/*
1344 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1345 	 * possible the inode was fully unshared since it was originally tagged.
1346 	 */
1347 	if (!xfs_inode_has_cow_data(ip)) {
1348 		trace_xfs_inode_free_cowblocks_invalid(ip);
1349 		xfs_inode_clear_cowblocks_tag(ip);
1350 		return false;
1351 	}
1352 
1353 	/*
1354 	 * If the mapping is dirty or under writeback we cannot touch the
1355 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1356 	 */
1357 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1358 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1359 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1360 	    atomic_read(&VFS_I(ip)->i_dio_count))
1361 		return false;
1362 
1363 	return true;
1364 }
1365 
1366 /*
1367  * Automatic CoW Reservation Freeing
1368  *
1369  * These functions automatically garbage collect leftover CoW reservations
1370  * that were made on behalf of a cowextsize hint when we start to run out
1371  * of quota or when the reservations sit around for too long.  If the file
1372  * has dirty pages or is undergoing writeback, its CoW reservations will
1373  * be retained.
1374  *
1375  * The actual garbage collection piggybacks off the same code that runs
1376  * the speculative EOF preallocation garbage collector.
1377  */
1378 STATIC int
1379 xfs_inode_free_cowblocks(
1380 	struct xfs_inode	*ip,
1381 	struct xfs_icwalk	*icw,
1382 	unsigned int		*lockflags)
1383 {
1384 	bool			wait;
1385 	int			ret = 0;
1386 
1387 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1388 
1389 	if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1390 		return 0;
1391 
1392 	if (!xfs_prep_free_cowblocks(ip))
1393 		return 0;
1394 
1395 	if (!xfs_icwalk_match(ip, icw))
1396 		return 0;
1397 
1398 	/*
1399 	 * If the caller is waiting, return -EAGAIN to keep the background
1400 	 * scanner moving and revisit the inode in a subsequent pass.
1401 	 */
1402 	if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1403 	    !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1404 		if (wait)
1405 			return -EAGAIN;
1406 		return 0;
1407 	}
1408 	*lockflags |= XFS_IOLOCK_EXCL;
1409 
1410 	if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1411 		if (wait)
1412 			return -EAGAIN;
1413 		return 0;
1414 	}
1415 	*lockflags |= XFS_MMAPLOCK_EXCL;
1416 
1417 	/*
1418 	 * Check again, nobody else should be able to dirty blocks or change
1419 	 * the reflink iflag now that we have the first two locks held.
1420 	 */
1421 	if (xfs_prep_free_cowblocks(ip))
1422 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1423 	return ret;
1424 }
1425 
1426 void
1427 xfs_inode_set_cowblocks_tag(
1428 	xfs_inode_t	*ip)
1429 {
1430 	trace_xfs_inode_set_cowblocks_tag(ip);
1431 	return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1432 }
1433 
1434 void
1435 xfs_inode_clear_cowblocks_tag(
1436 	xfs_inode_t	*ip)
1437 {
1438 	trace_xfs_inode_clear_cowblocks_tag(ip);
1439 	return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1440 }
1441 
1442 /* Disable post-EOF and CoW block auto-reclamation. */
1443 void
1444 xfs_blockgc_stop(
1445 	struct xfs_mount	*mp)
1446 {
1447 	struct xfs_perag	*pag;
1448 	xfs_agnumber_t		agno;
1449 
1450 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1451 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
1452 }
1453 
1454 /* Enable post-EOF and CoW block auto-reclamation. */
1455 void
1456 xfs_blockgc_start(
1457 	struct xfs_mount	*mp)
1458 {
1459 	struct xfs_perag	*pag;
1460 	xfs_agnumber_t		agno;
1461 
1462 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1463 		xfs_blockgc_queue(pag);
1464 }
1465 
1466 /* Don't try to run block gc on an inode that's in any of these states. */
1467 #define XFS_BLOCKGC_NOGRAB_IFLAGS	(XFS_INEW | \
1468 					 XFS_IRECLAIMABLE | \
1469 					 XFS_IRECLAIM)
1470 /*
1471  * Decide if the given @ip is eligible for garbage collection of speculative
1472  * preallocations, and grab it if so.  Returns true if it's ready to go or
1473  * false if we should just ignore it.
1474  */
1475 static bool
1476 xfs_blockgc_igrab(
1477 	struct xfs_inode	*ip)
1478 {
1479 	struct inode		*inode = VFS_I(ip);
1480 
1481 	ASSERT(rcu_read_lock_held());
1482 
1483 	/* Check for stale RCU freed inode */
1484 	spin_lock(&ip->i_flags_lock);
1485 	if (!ip->i_ino)
1486 		goto out_unlock_noent;
1487 
1488 	if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1489 		goto out_unlock_noent;
1490 	spin_unlock(&ip->i_flags_lock);
1491 
1492 	/* nothing to sync during shutdown */
1493 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
1494 		return false;
1495 
1496 	/* If we can't grab the inode, it must on it's way to reclaim. */
1497 	if (!igrab(inode))
1498 		return false;
1499 
1500 	/* inode is valid */
1501 	return true;
1502 
1503 out_unlock_noent:
1504 	spin_unlock(&ip->i_flags_lock);
1505 	return false;
1506 }
1507 
1508 /* Scan one incore inode for block preallocations that we can remove. */
1509 static int
1510 xfs_blockgc_scan_inode(
1511 	struct xfs_inode	*ip,
1512 	struct xfs_icwalk	*icw)
1513 {
1514 	unsigned int		lockflags = 0;
1515 	int			error;
1516 
1517 	error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1518 	if (error)
1519 		goto unlock;
1520 
1521 	error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1522 unlock:
1523 	if (lockflags)
1524 		xfs_iunlock(ip, lockflags);
1525 	xfs_irele(ip);
1526 	return error;
1527 }
1528 
1529 /* Background worker that trims preallocated space. */
1530 void
1531 xfs_blockgc_worker(
1532 	struct work_struct	*work)
1533 {
1534 	struct xfs_perag	*pag = container_of(to_delayed_work(work),
1535 					struct xfs_perag, pag_blockgc_work);
1536 	struct xfs_mount	*mp = pag->pag_mount;
1537 	int			error;
1538 
1539 	if (!sb_start_write_trylock(mp->m_super))
1540 		return;
1541 	error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1542 	if (error)
1543 		xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1544 				pag->pag_agno, error);
1545 	sb_end_write(mp->m_super);
1546 	xfs_blockgc_queue(pag);
1547 }
1548 
1549 /*
1550  * Try to free space in the filesystem by purging eofblocks and cowblocks.
1551  */
1552 int
1553 xfs_blockgc_free_space(
1554 	struct xfs_mount	*mp,
1555 	struct xfs_icwalk	*icw)
1556 {
1557 	trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1558 
1559 	return xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1560 }
1561 
1562 /*
1563  * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
1564  * quota caused an allocation failure, so we make a best effort by including
1565  * each quota under low free space conditions (less than 1% free space) in the
1566  * scan.
1567  *
1568  * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
1569  * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1570  * MMAPLOCK.
1571  */
1572 int
1573 xfs_blockgc_free_dquots(
1574 	struct xfs_mount	*mp,
1575 	struct xfs_dquot	*udqp,
1576 	struct xfs_dquot	*gdqp,
1577 	struct xfs_dquot	*pdqp,
1578 	unsigned int		iwalk_flags)
1579 {
1580 	struct xfs_icwalk	icw = {0};
1581 	bool			do_work = false;
1582 
1583 	if (!udqp && !gdqp && !pdqp)
1584 		return 0;
1585 
1586 	/*
1587 	 * Run a scan to free blocks using the union filter to cover all
1588 	 * applicable quotas in a single scan.
1589 	 */
1590 	icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1591 
1592 	if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1593 		icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1594 		icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1595 		do_work = true;
1596 	}
1597 
1598 	if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1599 		icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1600 		icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1601 		do_work = true;
1602 	}
1603 
1604 	if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1605 		icw.icw_prid = pdqp->q_id;
1606 		icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1607 		do_work = true;
1608 	}
1609 
1610 	if (!do_work)
1611 		return 0;
1612 
1613 	return xfs_blockgc_free_space(mp, &icw);
1614 }
1615 
1616 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1617 int
1618 xfs_blockgc_free_quota(
1619 	struct xfs_inode	*ip,
1620 	unsigned int		iwalk_flags)
1621 {
1622 	return xfs_blockgc_free_dquots(ip->i_mount,
1623 			xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1624 			xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1625 			xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1626 }
1627 
1628 /* XFS Inode Cache Walking Code */
1629 
1630 /*
1631  * The inode lookup is done in batches to keep the amount of lock traffic and
1632  * radix tree lookups to a minimum. The batch size is a trade off between
1633  * lookup reduction and stack usage. This is in the reclaim path, so we can't
1634  * be too greedy.
1635  */
1636 #define XFS_LOOKUP_BATCH	32
1637 
1638 
1639 /*
1640  * Decide if we want to grab this inode in anticipation of doing work towards
1641  * the goal.
1642  */
1643 static inline bool
1644 xfs_icwalk_igrab(
1645 	enum xfs_icwalk_goal	goal,
1646 	struct xfs_inode	*ip,
1647 	struct xfs_icwalk	*icw)
1648 {
1649 	switch (goal) {
1650 	case XFS_ICWALK_DQRELE:
1651 		return xfs_dqrele_igrab(ip);
1652 	case XFS_ICWALK_BLOCKGC:
1653 		return xfs_blockgc_igrab(ip);
1654 	case XFS_ICWALK_RECLAIM:
1655 		return xfs_reclaim_igrab(ip, icw);
1656 	default:
1657 		return false;
1658 	}
1659 }
1660 
1661 /*
1662  * Process an inode.  Each processing function must handle any state changes
1663  * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
1664  */
1665 static inline int
1666 xfs_icwalk_process_inode(
1667 	enum xfs_icwalk_goal	goal,
1668 	struct xfs_inode	*ip,
1669 	struct xfs_perag	*pag,
1670 	struct xfs_icwalk	*icw)
1671 {
1672 	int			error = 0;
1673 
1674 	switch (goal) {
1675 	case XFS_ICWALK_DQRELE:
1676 		xfs_dqrele_inode(ip, icw);
1677 		break;
1678 	case XFS_ICWALK_BLOCKGC:
1679 		error = xfs_blockgc_scan_inode(ip, icw);
1680 		break;
1681 	case XFS_ICWALK_RECLAIM:
1682 		xfs_reclaim_inode(ip, pag);
1683 		break;
1684 	}
1685 	return error;
1686 }
1687 
1688 /*
1689  * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1690  * process them in some manner.
1691  */
1692 static int
1693 xfs_icwalk_ag(
1694 	struct xfs_perag	*pag,
1695 	enum xfs_icwalk_goal	goal,
1696 	struct xfs_icwalk	*icw)
1697 {
1698 	struct xfs_mount	*mp = pag->pag_mount;
1699 	uint32_t		first_index;
1700 	int			last_error = 0;
1701 	int			skipped;
1702 	bool			done;
1703 	int			nr_found;
1704 
1705 restart:
1706 	done = false;
1707 	skipped = 0;
1708 	if (goal == XFS_ICWALK_RECLAIM)
1709 		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1710 	else
1711 		first_index = 0;
1712 	nr_found = 0;
1713 	do {
1714 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1715 		unsigned int	tag = xfs_icwalk_tag(goal);
1716 		int		error = 0;
1717 		int		i;
1718 
1719 		rcu_read_lock();
1720 
1721 		if (tag == XFS_ICWALK_NULL_TAG)
1722 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
1723 					(void **)batch, first_index,
1724 					XFS_LOOKUP_BATCH);
1725 		else
1726 			nr_found = radix_tree_gang_lookup_tag(
1727 					&pag->pag_ici_root,
1728 					(void **) batch, first_index,
1729 					XFS_LOOKUP_BATCH, tag);
1730 
1731 		if (!nr_found) {
1732 			done = true;
1733 			rcu_read_unlock();
1734 			break;
1735 		}
1736 
1737 		/*
1738 		 * Grab the inodes before we drop the lock. if we found
1739 		 * nothing, nr == 0 and the loop will be skipped.
1740 		 */
1741 		for (i = 0; i < nr_found; i++) {
1742 			struct xfs_inode *ip = batch[i];
1743 
1744 			if (done || !xfs_icwalk_igrab(goal, ip, icw))
1745 				batch[i] = NULL;
1746 
1747 			/*
1748 			 * Update the index for the next lookup. Catch
1749 			 * overflows into the next AG range which can occur if
1750 			 * we have inodes in the last block of the AG and we
1751 			 * are currently pointing to the last inode.
1752 			 *
1753 			 * Because we may see inodes that are from the wrong AG
1754 			 * due to RCU freeing and reallocation, only update the
1755 			 * index if it lies in this AG. It was a race that lead
1756 			 * us to see this inode, so another lookup from the
1757 			 * same index will not find it again.
1758 			 */
1759 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1760 				continue;
1761 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1762 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1763 				done = true;
1764 		}
1765 
1766 		/* unlock now we've grabbed the inodes. */
1767 		rcu_read_unlock();
1768 
1769 		for (i = 0; i < nr_found; i++) {
1770 			if (!batch[i])
1771 				continue;
1772 			error = xfs_icwalk_process_inode(goal, batch[i], pag,
1773 					icw);
1774 			if (error == -EAGAIN) {
1775 				skipped++;
1776 				continue;
1777 			}
1778 			if (error && last_error != -EFSCORRUPTED)
1779 				last_error = error;
1780 		}
1781 
1782 		/* bail out if the filesystem is corrupted.  */
1783 		if (error == -EFSCORRUPTED)
1784 			break;
1785 
1786 		cond_resched();
1787 
1788 		if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1789 			icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1790 			if (icw->icw_scan_limit <= 0)
1791 				break;
1792 		}
1793 	} while (nr_found && !done);
1794 
1795 	if (goal == XFS_ICWALK_RECLAIM) {
1796 		if (done)
1797 			first_index = 0;
1798 		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1799 	}
1800 
1801 	if (skipped) {
1802 		delay(1);
1803 		goto restart;
1804 	}
1805 	return last_error;
1806 }
1807 
1808 /* Fetch the next (possibly tagged) per-AG structure. */
1809 static inline struct xfs_perag *
1810 xfs_icwalk_get_perag(
1811 	struct xfs_mount	*mp,
1812 	xfs_agnumber_t		agno,
1813 	enum xfs_icwalk_goal	goal)
1814 {
1815 	unsigned int		tag = xfs_icwalk_tag(goal);
1816 
1817 	if (tag == XFS_ICWALK_NULL_TAG)
1818 		return xfs_perag_get(mp, agno);
1819 	return xfs_perag_get_tag(mp, agno, tag);
1820 }
1821 
1822 /* Walk all incore inodes to achieve a given goal. */
1823 static int
1824 xfs_icwalk(
1825 	struct xfs_mount	*mp,
1826 	enum xfs_icwalk_goal	goal,
1827 	struct xfs_icwalk	*icw)
1828 {
1829 	struct xfs_perag	*pag;
1830 	int			error = 0;
1831 	int			last_error = 0;
1832 	xfs_agnumber_t		agno = 0;
1833 
1834 	while ((pag = xfs_icwalk_get_perag(mp, agno, goal))) {
1835 		agno = pag->pag_agno + 1;
1836 		error = xfs_icwalk_ag(pag, goal, icw);
1837 		xfs_perag_put(pag);
1838 		if (error) {
1839 			last_error = error;
1840 			if (error == -EFSCORRUPTED)
1841 				break;
1842 		}
1843 	}
1844 	return last_error;
1845 	BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1846 }
1847