xref: /linux/fs/xfs/xfs_icache.c (revision 4e0385dd7469d933c4adf84a617f872ca547aa07)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36 #include "xfs_reflink.h"
37 
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 
41 /*
42  * Allocate and initialise an xfs_inode.
43  */
44 struct xfs_inode *
45 xfs_inode_alloc(
46 	struct xfs_mount	*mp,
47 	xfs_ino_t		ino)
48 {
49 	struct xfs_inode	*ip;
50 
51 	/*
52 	 * if this didn't occur in transactions, we could use
53 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
54 	 * code up to do this anyway.
55 	 */
56 	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
57 	if (!ip)
58 		return NULL;
59 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
60 		kmem_zone_free(xfs_inode_zone, ip);
61 		return NULL;
62 	}
63 
64 	/* VFS doesn't initialise i_mode! */
65 	VFS_I(ip)->i_mode = 0;
66 
67 	XFS_STATS_INC(mp, vn_active);
68 	ASSERT(atomic_read(&ip->i_pincount) == 0);
69 	ASSERT(!spin_is_locked(&ip->i_flags_lock));
70 	ASSERT(!xfs_isiflocked(ip));
71 	ASSERT(ip->i_ino == 0);
72 
73 	/* initialise the xfs inode */
74 	ip->i_ino = ino;
75 	ip->i_mount = mp;
76 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
77 	ip->i_afp = NULL;
78 	ip->i_cowfp = NULL;
79 	ip->i_cnextents = 0;
80 	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
81 	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
82 	ip->i_flags = 0;
83 	ip->i_delayed_blks = 0;
84 	memset(&ip->i_d, 0, sizeof(ip->i_d));
85 
86 	return ip;
87 }
88 
89 STATIC void
90 xfs_inode_free_callback(
91 	struct rcu_head		*head)
92 {
93 	struct inode		*inode = container_of(head, struct inode, i_rcu);
94 	struct xfs_inode	*ip = XFS_I(inode);
95 
96 	switch (VFS_I(ip)->i_mode & S_IFMT) {
97 	case S_IFREG:
98 	case S_IFDIR:
99 	case S_IFLNK:
100 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
101 		break;
102 	}
103 
104 	if (ip->i_afp)
105 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
106 	if (ip->i_cowfp)
107 		xfs_idestroy_fork(ip, XFS_COW_FORK);
108 
109 	if (ip->i_itemp) {
110 		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
111 		xfs_inode_item_destroy(ip);
112 		ip->i_itemp = NULL;
113 	}
114 
115 	kmem_zone_free(xfs_inode_zone, ip);
116 }
117 
118 static void
119 __xfs_inode_free(
120 	struct xfs_inode	*ip)
121 {
122 	/* asserts to verify all state is correct here */
123 	ASSERT(atomic_read(&ip->i_pincount) == 0);
124 	XFS_STATS_DEC(ip->i_mount, vn_active);
125 
126 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
127 }
128 
129 void
130 xfs_inode_free(
131 	struct xfs_inode	*ip)
132 {
133 	ASSERT(!xfs_isiflocked(ip));
134 
135 	/*
136 	 * Because we use RCU freeing we need to ensure the inode always
137 	 * appears to be reclaimed with an invalid inode number when in the
138 	 * free state. The ip->i_flags_lock provides the barrier against lookup
139 	 * races.
140 	 */
141 	spin_lock(&ip->i_flags_lock);
142 	ip->i_flags = XFS_IRECLAIM;
143 	ip->i_ino = 0;
144 	spin_unlock(&ip->i_flags_lock);
145 
146 	__xfs_inode_free(ip);
147 }
148 
149 /*
150  * Queue a new inode reclaim pass if there are reclaimable inodes and there
151  * isn't a reclaim pass already in progress. By default it runs every 5s based
152  * on the xfs periodic sync default of 30s. Perhaps this should have it's own
153  * tunable, but that can be done if this method proves to be ineffective or too
154  * aggressive.
155  */
156 static void
157 xfs_reclaim_work_queue(
158 	struct xfs_mount        *mp)
159 {
160 
161 	rcu_read_lock();
162 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
163 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
164 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
165 	}
166 	rcu_read_unlock();
167 }
168 
169 /*
170  * This is a fast pass over the inode cache to try to get reclaim moving on as
171  * many inodes as possible in a short period of time. It kicks itself every few
172  * seconds, as well as being kicked by the inode cache shrinker when memory
173  * goes low. It scans as quickly as possible avoiding locked inodes or those
174  * already being flushed, and once done schedules a future pass.
175  */
176 void
177 xfs_reclaim_worker(
178 	struct work_struct *work)
179 {
180 	struct xfs_mount *mp = container_of(to_delayed_work(work),
181 					struct xfs_mount, m_reclaim_work);
182 
183 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
184 	xfs_reclaim_work_queue(mp);
185 }
186 
187 static void
188 xfs_perag_set_reclaim_tag(
189 	struct xfs_perag	*pag)
190 {
191 	struct xfs_mount	*mp = pag->pag_mount;
192 
193 	ASSERT(spin_is_locked(&pag->pag_ici_lock));
194 	if (pag->pag_ici_reclaimable++)
195 		return;
196 
197 	/* propagate the reclaim tag up into the perag radix tree */
198 	spin_lock(&mp->m_perag_lock);
199 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
200 			   XFS_ICI_RECLAIM_TAG);
201 	spin_unlock(&mp->m_perag_lock);
202 
203 	/* schedule periodic background inode reclaim */
204 	xfs_reclaim_work_queue(mp);
205 
206 	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
207 }
208 
209 static void
210 xfs_perag_clear_reclaim_tag(
211 	struct xfs_perag	*pag)
212 {
213 	struct xfs_mount	*mp = pag->pag_mount;
214 
215 	ASSERT(spin_is_locked(&pag->pag_ici_lock));
216 	if (--pag->pag_ici_reclaimable)
217 		return;
218 
219 	/* clear the reclaim tag from the perag radix tree */
220 	spin_lock(&mp->m_perag_lock);
221 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
222 			     XFS_ICI_RECLAIM_TAG);
223 	spin_unlock(&mp->m_perag_lock);
224 	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
225 }
226 
227 
228 /*
229  * We set the inode flag atomically with the radix tree tag.
230  * Once we get tag lookups on the radix tree, this inode flag
231  * can go away.
232  */
233 void
234 xfs_inode_set_reclaim_tag(
235 	struct xfs_inode	*ip)
236 {
237 	struct xfs_mount	*mp = ip->i_mount;
238 	struct xfs_perag	*pag;
239 
240 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
241 	spin_lock(&pag->pag_ici_lock);
242 	spin_lock(&ip->i_flags_lock);
243 
244 	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
245 			   XFS_ICI_RECLAIM_TAG);
246 	xfs_perag_set_reclaim_tag(pag);
247 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
248 
249 	spin_unlock(&ip->i_flags_lock);
250 	spin_unlock(&pag->pag_ici_lock);
251 	xfs_perag_put(pag);
252 }
253 
254 STATIC void
255 xfs_inode_clear_reclaim_tag(
256 	struct xfs_perag	*pag,
257 	xfs_ino_t		ino)
258 {
259 	radix_tree_tag_clear(&pag->pag_ici_root,
260 			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
261 			     XFS_ICI_RECLAIM_TAG);
262 	xfs_perag_clear_reclaim_tag(pag);
263 }
264 
265 /*
266  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
267  * part of the structure. This is made more complex by the fact we store
268  * information about the on-disk values in the VFS inode and so we can't just
269  * overwrite the values unconditionally. Hence we save the parameters we
270  * need to retain across reinitialisation, and rewrite them into the VFS inode
271  * after reinitialisation even if it fails.
272  */
273 static int
274 xfs_reinit_inode(
275 	struct xfs_mount	*mp,
276 	struct inode		*inode)
277 {
278 	int		error;
279 	uint32_t	nlink = inode->i_nlink;
280 	uint32_t	generation = inode->i_generation;
281 	uint64_t	version = inode->i_version;
282 	umode_t		mode = inode->i_mode;
283 
284 	error = inode_init_always(mp->m_super, inode);
285 
286 	set_nlink(inode, nlink);
287 	inode->i_generation = generation;
288 	inode->i_version = version;
289 	inode->i_mode = mode;
290 	return error;
291 }
292 
293 /*
294  * Check the validity of the inode we just found it the cache
295  */
296 static int
297 xfs_iget_cache_hit(
298 	struct xfs_perag	*pag,
299 	struct xfs_inode	*ip,
300 	xfs_ino_t		ino,
301 	int			flags,
302 	int			lock_flags) __releases(RCU)
303 {
304 	struct inode		*inode = VFS_I(ip);
305 	struct xfs_mount	*mp = ip->i_mount;
306 	int			error;
307 
308 	/*
309 	 * check for re-use of an inode within an RCU grace period due to the
310 	 * radix tree nodes not being updated yet. We monitor for this by
311 	 * setting the inode number to zero before freeing the inode structure.
312 	 * If the inode has been reallocated and set up, then the inode number
313 	 * will not match, so check for that, too.
314 	 */
315 	spin_lock(&ip->i_flags_lock);
316 	if (ip->i_ino != ino) {
317 		trace_xfs_iget_skip(ip);
318 		XFS_STATS_INC(mp, xs_ig_frecycle);
319 		error = -EAGAIN;
320 		goto out_error;
321 	}
322 
323 
324 	/*
325 	 * If we are racing with another cache hit that is currently
326 	 * instantiating this inode or currently recycling it out of
327 	 * reclaimabe state, wait for the initialisation to complete
328 	 * before continuing.
329 	 *
330 	 * XXX(hch): eventually we should do something equivalent to
331 	 *	     wait_on_inode to wait for these flags to be cleared
332 	 *	     instead of polling for it.
333 	 */
334 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
335 		trace_xfs_iget_skip(ip);
336 		XFS_STATS_INC(mp, xs_ig_frecycle);
337 		error = -EAGAIN;
338 		goto out_error;
339 	}
340 
341 	/*
342 	 * If lookup is racing with unlink return an error immediately.
343 	 */
344 	if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
345 		error = -ENOENT;
346 		goto out_error;
347 	}
348 
349 	/*
350 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
351 	 * Need to carefully get it back into useable state.
352 	 */
353 	if (ip->i_flags & XFS_IRECLAIMABLE) {
354 		trace_xfs_iget_reclaim(ip);
355 
356 		/*
357 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
358 		 * from stomping over us while we recycle the inode.  We can't
359 		 * clear the radix tree reclaimable tag yet as it requires
360 		 * pag_ici_lock to be held exclusive.
361 		 */
362 		ip->i_flags |= XFS_IRECLAIM;
363 
364 		spin_unlock(&ip->i_flags_lock);
365 		rcu_read_unlock();
366 
367 		error = xfs_reinit_inode(mp, inode);
368 		if (error) {
369 			/*
370 			 * Re-initializing the inode failed, and we are in deep
371 			 * trouble.  Try to re-add it to the reclaim list.
372 			 */
373 			rcu_read_lock();
374 			spin_lock(&ip->i_flags_lock);
375 
376 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
377 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
378 			trace_xfs_iget_reclaim_fail(ip);
379 			goto out_error;
380 		}
381 
382 		spin_lock(&pag->pag_ici_lock);
383 		spin_lock(&ip->i_flags_lock);
384 
385 		/*
386 		 * Clear the per-lifetime state in the inode as we are now
387 		 * effectively a new inode and need to return to the initial
388 		 * state before reuse occurs.
389 		 */
390 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
391 		ip->i_flags |= XFS_INEW;
392 		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
393 		inode->i_state = I_NEW;
394 
395 		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
396 		init_rwsem(&inode->i_rwsem);
397 
398 		spin_unlock(&ip->i_flags_lock);
399 		spin_unlock(&pag->pag_ici_lock);
400 	} else {
401 		/* If the VFS inode is being torn down, pause and try again. */
402 		if (!igrab(inode)) {
403 			trace_xfs_iget_skip(ip);
404 			error = -EAGAIN;
405 			goto out_error;
406 		}
407 
408 		/* We've got a live one. */
409 		spin_unlock(&ip->i_flags_lock);
410 		rcu_read_unlock();
411 		trace_xfs_iget_hit(ip);
412 	}
413 
414 	if (lock_flags != 0)
415 		xfs_ilock(ip, lock_flags);
416 
417 	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
418 	XFS_STATS_INC(mp, xs_ig_found);
419 
420 	return 0;
421 
422 out_error:
423 	spin_unlock(&ip->i_flags_lock);
424 	rcu_read_unlock();
425 	return error;
426 }
427 
428 
429 static int
430 xfs_iget_cache_miss(
431 	struct xfs_mount	*mp,
432 	struct xfs_perag	*pag,
433 	xfs_trans_t		*tp,
434 	xfs_ino_t		ino,
435 	struct xfs_inode	**ipp,
436 	int			flags,
437 	int			lock_flags)
438 {
439 	struct xfs_inode	*ip;
440 	int			error;
441 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
442 	int			iflags;
443 
444 	ip = xfs_inode_alloc(mp, ino);
445 	if (!ip)
446 		return -ENOMEM;
447 
448 	error = xfs_iread(mp, tp, ip, flags);
449 	if (error)
450 		goto out_destroy;
451 
452 	trace_xfs_iget_miss(ip);
453 
454 	if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
455 		error = -ENOENT;
456 		goto out_destroy;
457 	}
458 
459 	/*
460 	 * Preload the radix tree so we can insert safely under the
461 	 * write spinlock. Note that we cannot sleep inside the preload
462 	 * region. Since we can be called from transaction context, don't
463 	 * recurse into the file system.
464 	 */
465 	if (radix_tree_preload(GFP_NOFS)) {
466 		error = -EAGAIN;
467 		goto out_destroy;
468 	}
469 
470 	/*
471 	 * Because the inode hasn't been added to the radix-tree yet it can't
472 	 * be found by another thread, so we can do the non-sleeping lock here.
473 	 */
474 	if (lock_flags) {
475 		if (!xfs_ilock_nowait(ip, lock_flags))
476 			BUG();
477 	}
478 
479 	/*
480 	 * These values must be set before inserting the inode into the radix
481 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
482 	 * RCU locking mechanism) can find it and that lookup must see that this
483 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
484 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
485 	 * memory barrier that ensures this detection works correctly at lookup
486 	 * time.
487 	 */
488 	iflags = XFS_INEW;
489 	if (flags & XFS_IGET_DONTCACHE)
490 		iflags |= XFS_IDONTCACHE;
491 	ip->i_udquot = NULL;
492 	ip->i_gdquot = NULL;
493 	ip->i_pdquot = NULL;
494 	xfs_iflags_set(ip, iflags);
495 
496 	/* insert the new inode */
497 	spin_lock(&pag->pag_ici_lock);
498 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
499 	if (unlikely(error)) {
500 		WARN_ON(error != -EEXIST);
501 		XFS_STATS_INC(mp, xs_ig_dup);
502 		error = -EAGAIN;
503 		goto out_preload_end;
504 	}
505 	spin_unlock(&pag->pag_ici_lock);
506 	radix_tree_preload_end();
507 
508 	*ipp = ip;
509 	return 0;
510 
511 out_preload_end:
512 	spin_unlock(&pag->pag_ici_lock);
513 	radix_tree_preload_end();
514 	if (lock_flags)
515 		xfs_iunlock(ip, lock_flags);
516 out_destroy:
517 	__destroy_inode(VFS_I(ip));
518 	xfs_inode_free(ip);
519 	return error;
520 }
521 
522 /*
523  * Look up an inode by number in the given file system.
524  * The inode is looked up in the cache held in each AG.
525  * If the inode is found in the cache, initialise the vfs inode
526  * if necessary.
527  *
528  * If it is not in core, read it in from the file system's device,
529  * add it to the cache and initialise the vfs inode.
530  *
531  * The inode is locked according to the value of the lock_flags parameter.
532  * This flag parameter indicates how and if the inode's IO lock and inode lock
533  * should be taken.
534  *
535  * mp -- the mount point structure for the current file system.  It points
536  *       to the inode hash table.
537  * tp -- a pointer to the current transaction if there is one.  This is
538  *       simply passed through to the xfs_iread() call.
539  * ino -- the number of the inode desired.  This is the unique identifier
540  *        within the file system for the inode being requested.
541  * lock_flags -- flags indicating how to lock the inode.  See the comment
542  *		 for xfs_ilock() for a list of valid values.
543  */
544 int
545 xfs_iget(
546 	xfs_mount_t	*mp,
547 	xfs_trans_t	*tp,
548 	xfs_ino_t	ino,
549 	uint		flags,
550 	uint		lock_flags,
551 	xfs_inode_t	**ipp)
552 {
553 	xfs_inode_t	*ip;
554 	int		error;
555 	xfs_perag_t	*pag;
556 	xfs_agino_t	agino;
557 
558 	/*
559 	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
560 	 * doesn't get freed while it's being referenced during a
561 	 * radix tree traversal here.  It assumes this function
562 	 * aqcuires only the ILOCK (and therefore it has no need to
563 	 * involve the IOLOCK in this synchronization).
564 	 */
565 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
566 
567 	/* reject inode numbers outside existing AGs */
568 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
569 		return -EINVAL;
570 
571 	XFS_STATS_INC(mp, xs_ig_attempts);
572 
573 	/* get the perag structure and ensure that it's inode capable */
574 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
575 	agino = XFS_INO_TO_AGINO(mp, ino);
576 
577 again:
578 	error = 0;
579 	rcu_read_lock();
580 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
581 
582 	if (ip) {
583 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
584 		if (error)
585 			goto out_error_or_again;
586 	} else {
587 		rcu_read_unlock();
588 		XFS_STATS_INC(mp, xs_ig_missed);
589 
590 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
591 							flags, lock_flags);
592 		if (error)
593 			goto out_error_or_again;
594 	}
595 	xfs_perag_put(pag);
596 
597 	*ipp = ip;
598 
599 	/*
600 	 * If we have a real type for an on-disk inode, we can setup the inode
601 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
602 	 */
603 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
604 		xfs_setup_existing_inode(ip);
605 	return 0;
606 
607 out_error_or_again:
608 	if (error == -EAGAIN) {
609 		delay(1);
610 		goto again;
611 	}
612 	xfs_perag_put(pag);
613 	return error;
614 }
615 
616 /*
617  * The inode lookup is done in batches to keep the amount of lock traffic and
618  * radix tree lookups to a minimum. The batch size is a trade off between
619  * lookup reduction and stack usage. This is in the reclaim path, so we can't
620  * be too greedy.
621  */
622 #define XFS_LOOKUP_BATCH	32
623 
624 STATIC int
625 xfs_inode_ag_walk_grab(
626 	struct xfs_inode	*ip)
627 {
628 	struct inode		*inode = VFS_I(ip);
629 
630 	ASSERT(rcu_read_lock_held());
631 
632 	/*
633 	 * check for stale RCU freed inode
634 	 *
635 	 * If the inode has been reallocated, it doesn't matter if it's not in
636 	 * the AG we are walking - we are walking for writeback, so if it
637 	 * passes all the "valid inode" checks and is dirty, then we'll write
638 	 * it back anyway.  If it has been reallocated and still being
639 	 * initialised, the XFS_INEW check below will catch it.
640 	 */
641 	spin_lock(&ip->i_flags_lock);
642 	if (!ip->i_ino)
643 		goto out_unlock_noent;
644 
645 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
646 	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
647 		goto out_unlock_noent;
648 	spin_unlock(&ip->i_flags_lock);
649 
650 	/* nothing to sync during shutdown */
651 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
652 		return -EFSCORRUPTED;
653 
654 	/* If we can't grab the inode, it must on it's way to reclaim. */
655 	if (!igrab(inode))
656 		return -ENOENT;
657 
658 	/* inode is valid */
659 	return 0;
660 
661 out_unlock_noent:
662 	spin_unlock(&ip->i_flags_lock);
663 	return -ENOENT;
664 }
665 
666 STATIC int
667 xfs_inode_ag_walk(
668 	struct xfs_mount	*mp,
669 	struct xfs_perag	*pag,
670 	int			(*execute)(struct xfs_inode *ip, int flags,
671 					   void *args),
672 	int			flags,
673 	void			*args,
674 	int			tag)
675 {
676 	uint32_t		first_index;
677 	int			last_error = 0;
678 	int			skipped;
679 	int			done;
680 	int			nr_found;
681 
682 restart:
683 	done = 0;
684 	skipped = 0;
685 	first_index = 0;
686 	nr_found = 0;
687 	do {
688 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
689 		int		error = 0;
690 		int		i;
691 
692 		rcu_read_lock();
693 
694 		if (tag == -1)
695 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
696 					(void **)batch, first_index,
697 					XFS_LOOKUP_BATCH);
698 		else
699 			nr_found = radix_tree_gang_lookup_tag(
700 					&pag->pag_ici_root,
701 					(void **) batch, first_index,
702 					XFS_LOOKUP_BATCH, tag);
703 
704 		if (!nr_found) {
705 			rcu_read_unlock();
706 			break;
707 		}
708 
709 		/*
710 		 * Grab the inodes before we drop the lock. if we found
711 		 * nothing, nr == 0 and the loop will be skipped.
712 		 */
713 		for (i = 0; i < nr_found; i++) {
714 			struct xfs_inode *ip = batch[i];
715 
716 			if (done || xfs_inode_ag_walk_grab(ip))
717 				batch[i] = NULL;
718 
719 			/*
720 			 * Update the index for the next lookup. Catch
721 			 * overflows into the next AG range which can occur if
722 			 * we have inodes in the last block of the AG and we
723 			 * are currently pointing to the last inode.
724 			 *
725 			 * Because we may see inodes that are from the wrong AG
726 			 * due to RCU freeing and reallocation, only update the
727 			 * index if it lies in this AG. It was a race that lead
728 			 * us to see this inode, so another lookup from the
729 			 * same index will not find it again.
730 			 */
731 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
732 				continue;
733 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
734 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
735 				done = 1;
736 		}
737 
738 		/* unlock now we've grabbed the inodes. */
739 		rcu_read_unlock();
740 
741 		for (i = 0; i < nr_found; i++) {
742 			if (!batch[i])
743 				continue;
744 			error = execute(batch[i], flags, args);
745 			IRELE(batch[i]);
746 			if (error == -EAGAIN) {
747 				skipped++;
748 				continue;
749 			}
750 			if (error && last_error != -EFSCORRUPTED)
751 				last_error = error;
752 		}
753 
754 		/* bail out if the filesystem is corrupted.  */
755 		if (error == -EFSCORRUPTED)
756 			break;
757 
758 		cond_resched();
759 
760 	} while (nr_found && !done);
761 
762 	if (skipped) {
763 		delay(1);
764 		goto restart;
765 	}
766 	return last_error;
767 }
768 
769 /*
770  * Background scanning to trim post-EOF preallocated space. This is queued
771  * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
772  */
773 void
774 xfs_queue_eofblocks(
775 	struct xfs_mount *mp)
776 {
777 	rcu_read_lock();
778 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
779 		queue_delayed_work(mp->m_eofblocks_workqueue,
780 				   &mp->m_eofblocks_work,
781 				   msecs_to_jiffies(xfs_eofb_secs * 1000));
782 	rcu_read_unlock();
783 }
784 
785 void
786 xfs_eofblocks_worker(
787 	struct work_struct *work)
788 {
789 	struct xfs_mount *mp = container_of(to_delayed_work(work),
790 				struct xfs_mount, m_eofblocks_work);
791 	xfs_icache_free_eofblocks(mp, NULL);
792 	xfs_queue_eofblocks(mp);
793 }
794 
795 /*
796  * Background scanning to trim preallocated CoW space. This is queued
797  * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
798  * (We'll just piggyback on the post-EOF prealloc space workqueue.)
799  */
800 STATIC void
801 xfs_queue_cowblocks(
802 	struct xfs_mount *mp)
803 {
804 	rcu_read_lock();
805 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
806 		queue_delayed_work(mp->m_eofblocks_workqueue,
807 				   &mp->m_cowblocks_work,
808 				   msecs_to_jiffies(xfs_cowb_secs * 1000));
809 	rcu_read_unlock();
810 }
811 
812 void
813 xfs_cowblocks_worker(
814 	struct work_struct *work)
815 {
816 	struct xfs_mount *mp = container_of(to_delayed_work(work),
817 				struct xfs_mount, m_cowblocks_work);
818 	xfs_icache_free_cowblocks(mp, NULL);
819 	xfs_queue_cowblocks(mp);
820 }
821 
822 int
823 xfs_inode_ag_iterator(
824 	struct xfs_mount	*mp,
825 	int			(*execute)(struct xfs_inode *ip, int flags,
826 					   void *args),
827 	int			flags,
828 	void			*args)
829 {
830 	struct xfs_perag	*pag;
831 	int			error = 0;
832 	int			last_error = 0;
833 	xfs_agnumber_t		ag;
834 
835 	ag = 0;
836 	while ((pag = xfs_perag_get(mp, ag))) {
837 		ag = pag->pag_agno + 1;
838 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
839 		xfs_perag_put(pag);
840 		if (error) {
841 			last_error = error;
842 			if (error == -EFSCORRUPTED)
843 				break;
844 		}
845 	}
846 	return last_error;
847 }
848 
849 int
850 xfs_inode_ag_iterator_tag(
851 	struct xfs_mount	*mp,
852 	int			(*execute)(struct xfs_inode *ip, int flags,
853 					   void *args),
854 	int			flags,
855 	void			*args,
856 	int			tag)
857 {
858 	struct xfs_perag	*pag;
859 	int			error = 0;
860 	int			last_error = 0;
861 	xfs_agnumber_t		ag;
862 
863 	ag = 0;
864 	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
865 		ag = pag->pag_agno + 1;
866 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
867 		xfs_perag_put(pag);
868 		if (error) {
869 			last_error = error;
870 			if (error == -EFSCORRUPTED)
871 				break;
872 		}
873 	}
874 	return last_error;
875 }
876 
877 /*
878  * Grab the inode for reclaim exclusively.
879  * Return 0 if we grabbed it, non-zero otherwise.
880  */
881 STATIC int
882 xfs_reclaim_inode_grab(
883 	struct xfs_inode	*ip,
884 	int			flags)
885 {
886 	ASSERT(rcu_read_lock_held());
887 
888 	/* quick check for stale RCU freed inode */
889 	if (!ip->i_ino)
890 		return 1;
891 
892 	/*
893 	 * If we are asked for non-blocking operation, do unlocked checks to
894 	 * see if the inode already is being flushed or in reclaim to avoid
895 	 * lock traffic.
896 	 */
897 	if ((flags & SYNC_TRYLOCK) &&
898 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
899 		return 1;
900 
901 	/*
902 	 * The radix tree lock here protects a thread in xfs_iget from racing
903 	 * with us starting reclaim on the inode.  Once we have the
904 	 * XFS_IRECLAIM flag set it will not touch us.
905 	 *
906 	 * Due to RCU lookup, we may find inodes that have been freed and only
907 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
908 	 * aren't candidates for reclaim at all, so we must check the
909 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
910 	 */
911 	spin_lock(&ip->i_flags_lock);
912 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
913 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
914 		/* not a reclaim candidate. */
915 		spin_unlock(&ip->i_flags_lock);
916 		return 1;
917 	}
918 	__xfs_iflags_set(ip, XFS_IRECLAIM);
919 	spin_unlock(&ip->i_flags_lock);
920 	return 0;
921 }
922 
923 /*
924  * Inodes in different states need to be treated differently. The following
925  * table lists the inode states and the reclaim actions necessary:
926  *
927  *	inode state	     iflush ret		required action
928  *      ---------------      ----------         ---------------
929  *	bad			-		reclaim
930  *	shutdown		EIO		unpin and reclaim
931  *	clean, unpinned		0		reclaim
932  *	stale, unpinned		0		reclaim
933  *	clean, pinned(*)	0		requeue
934  *	stale, pinned		EAGAIN		requeue
935  *	dirty, async		-		requeue
936  *	dirty, sync		0		reclaim
937  *
938  * (*) dgc: I don't think the clean, pinned state is possible but it gets
939  * handled anyway given the order of checks implemented.
940  *
941  * Also, because we get the flush lock first, we know that any inode that has
942  * been flushed delwri has had the flush completed by the time we check that
943  * the inode is clean.
944  *
945  * Note that because the inode is flushed delayed write by AIL pushing, the
946  * flush lock may already be held here and waiting on it can result in very
947  * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
948  * the caller should push the AIL first before trying to reclaim inodes to
949  * minimise the amount of time spent waiting.  For background relaim, we only
950  * bother to reclaim clean inodes anyway.
951  *
952  * Hence the order of actions after gaining the locks should be:
953  *	bad		=> reclaim
954  *	shutdown	=> unpin and reclaim
955  *	pinned, async	=> requeue
956  *	pinned, sync	=> unpin
957  *	stale		=> reclaim
958  *	clean		=> reclaim
959  *	dirty, async	=> requeue
960  *	dirty, sync	=> flush, wait and reclaim
961  */
962 STATIC int
963 xfs_reclaim_inode(
964 	struct xfs_inode	*ip,
965 	struct xfs_perag	*pag,
966 	int			sync_mode)
967 {
968 	struct xfs_buf		*bp = NULL;
969 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
970 	int			error;
971 
972 restart:
973 	error = 0;
974 	xfs_ilock(ip, XFS_ILOCK_EXCL);
975 	if (!xfs_iflock_nowait(ip)) {
976 		if (!(sync_mode & SYNC_WAIT))
977 			goto out;
978 		xfs_iflock(ip);
979 	}
980 
981 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
982 		xfs_iunpin_wait(ip);
983 		/* xfs_iflush_abort() drops the flush lock */
984 		xfs_iflush_abort(ip, false);
985 		goto reclaim;
986 	}
987 	if (xfs_ipincount(ip)) {
988 		if (!(sync_mode & SYNC_WAIT))
989 			goto out_ifunlock;
990 		xfs_iunpin_wait(ip);
991 	}
992 	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
993 		xfs_ifunlock(ip);
994 		goto reclaim;
995 	}
996 
997 	/*
998 	 * Never flush out dirty data during non-blocking reclaim, as it would
999 	 * just contend with AIL pushing trying to do the same job.
1000 	 */
1001 	if (!(sync_mode & SYNC_WAIT))
1002 		goto out_ifunlock;
1003 
1004 	/*
1005 	 * Now we have an inode that needs flushing.
1006 	 *
1007 	 * Note that xfs_iflush will never block on the inode buffer lock, as
1008 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1009 	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1010 	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1011 	 * result in an ABBA deadlock with xfs_ifree_cluster().
1012 	 *
1013 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
1014 	 * cache to mark them stale, if we hit this case we don't actually want
1015 	 * to do IO here - we want the inode marked stale so we can simply
1016 	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
1017 	 * inode, back off and try again.  Hopefully the next pass through will
1018 	 * see the stale flag set on the inode.
1019 	 */
1020 	error = xfs_iflush(ip, &bp);
1021 	if (error == -EAGAIN) {
1022 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1023 		/* backoff longer than in xfs_ifree_cluster */
1024 		delay(2);
1025 		goto restart;
1026 	}
1027 
1028 	if (!error) {
1029 		error = xfs_bwrite(bp);
1030 		xfs_buf_relse(bp);
1031 	}
1032 
1033 reclaim:
1034 	ASSERT(!xfs_isiflocked(ip));
1035 
1036 	/*
1037 	 * Because we use RCU freeing we need to ensure the inode always appears
1038 	 * to be reclaimed with an invalid inode number when in the free state.
1039 	 * We do this as early as possible under the ILOCK so that
1040 	 * xfs_iflush_cluster() can be guaranteed to detect races with us here.
1041 	 * By doing this, we guarantee that once xfs_iflush_cluster has locked
1042 	 * XFS_ILOCK that it will see either a valid, flushable inode that will
1043 	 * serialise correctly, or it will see a clean (and invalid) inode that
1044 	 * it can skip.
1045 	 */
1046 	spin_lock(&ip->i_flags_lock);
1047 	ip->i_flags = XFS_IRECLAIM;
1048 	ip->i_ino = 0;
1049 	spin_unlock(&ip->i_flags_lock);
1050 
1051 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1052 
1053 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1054 	/*
1055 	 * Remove the inode from the per-AG radix tree.
1056 	 *
1057 	 * Because radix_tree_delete won't complain even if the item was never
1058 	 * added to the tree assert that it's been there before to catch
1059 	 * problems with the inode life time early on.
1060 	 */
1061 	spin_lock(&pag->pag_ici_lock);
1062 	if (!radix_tree_delete(&pag->pag_ici_root,
1063 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1064 		ASSERT(0);
1065 	xfs_perag_clear_reclaim_tag(pag);
1066 	spin_unlock(&pag->pag_ici_lock);
1067 
1068 	/*
1069 	 * Here we do an (almost) spurious inode lock in order to coordinate
1070 	 * with inode cache radix tree lookups.  This is because the lookup
1071 	 * can reference the inodes in the cache without taking references.
1072 	 *
1073 	 * We make that OK here by ensuring that we wait until the inode is
1074 	 * unlocked after the lookup before we go ahead and free it.
1075 	 */
1076 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1077 	xfs_qm_dqdetach(ip);
1078 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1079 
1080 	__xfs_inode_free(ip);
1081 	return error;
1082 
1083 out_ifunlock:
1084 	xfs_ifunlock(ip);
1085 out:
1086 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1087 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1088 	/*
1089 	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1090 	 * a short while. However, this just burns CPU time scanning the tree
1091 	 * waiting for IO to complete and the reclaim work never goes back to
1092 	 * the idle state. Instead, return 0 to let the next scheduled
1093 	 * background reclaim attempt to reclaim the inode again.
1094 	 */
1095 	return 0;
1096 }
1097 
1098 /*
1099  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1100  * corrupted, we still want to try to reclaim all the inodes. If we don't,
1101  * then a shut down during filesystem unmount reclaim walk leak all the
1102  * unreclaimed inodes.
1103  */
1104 STATIC int
1105 xfs_reclaim_inodes_ag(
1106 	struct xfs_mount	*mp,
1107 	int			flags,
1108 	int			*nr_to_scan)
1109 {
1110 	struct xfs_perag	*pag;
1111 	int			error = 0;
1112 	int			last_error = 0;
1113 	xfs_agnumber_t		ag;
1114 	int			trylock = flags & SYNC_TRYLOCK;
1115 	int			skipped;
1116 
1117 restart:
1118 	ag = 0;
1119 	skipped = 0;
1120 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1121 		unsigned long	first_index = 0;
1122 		int		done = 0;
1123 		int		nr_found = 0;
1124 
1125 		ag = pag->pag_agno + 1;
1126 
1127 		if (trylock) {
1128 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1129 				skipped++;
1130 				xfs_perag_put(pag);
1131 				continue;
1132 			}
1133 			first_index = pag->pag_ici_reclaim_cursor;
1134 		} else
1135 			mutex_lock(&pag->pag_ici_reclaim_lock);
1136 
1137 		do {
1138 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1139 			int	i;
1140 
1141 			rcu_read_lock();
1142 			nr_found = radix_tree_gang_lookup_tag(
1143 					&pag->pag_ici_root,
1144 					(void **)batch, first_index,
1145 					XFS_LOOKUP_BATCH,
1146 					XFS_ICI_RECLAIM_TAG);
1147 			if (!nr_found) {
1148 				done = 1;
1149 				rcu_read_unlock();
1150 				break;
1151 			}
1152 
1153 			/*
1154 			 * Grab the inodes before we drop the lock. if we found
1155 			 * nothing, nr == 0 and the loop will be skipped.
1156 			 */
1157 			for (i = 0; i < nr_found; i++) {
1158 				struct xfs_inode *ip = batch[i];
1159 
1160 				if (done || xfs_reclaim_inode_grab(ip, flags))
1161 					batch[i] = NULL;
1162 
1163 				/*
1164 				 * Update the index for the next lookup. Catch
1165 				 * overflows into the next AG range which can
1166 				 * occur if we have inodes in the last block of
1167 				 * the AG and we are currently pointing to the
1168 				 * last inode.
1169 				 *
1170 				 * Because we may see inodes that are from the
1171 				 * wrong AG due to RCU freeing and
1172 				 * reallocation, only update the index if it
1173 				 * lies in this AG. It was a race that lead us
1174 				 * to see this inode, so another lookup from
1175 				 * the same index will not find it again.
1176 				 */
1177 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1178 								pag->pag_agno)
1179 					continue;
1180 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1181 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1182 					done = 1;
1183 			}
1184 
1185 			/* unlock now we've grabbed the inodes. */
1186 			rcu_read_unlock();
1187 
1188 			for (i = 0; i < nr_found; i++) {
1189 				if (!batch[i])
1190 					continue;
1191 				error = xfs_reclaim_inode(batch[i], pag, flags);
1192 				if (error && last_error != -EFSCORRUPTED)
1193 					last_error = error;
1194 			}
1195 
1196 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1197 
1198 			cond_resched();
1199 
1200 		} while (nr_found && !done && *nr_to_scan > 0);
1201 
1202 		if (trylock && !done)
1203 			pag->pag_ici_reclaim_cursor = first_index;
1204 		else
1205 			pag->pag_ici_reclaim_cursor = 0;
1206 		mutex_unlock(&pag->pag_ici_reclaim_lock);
1207 		xfs_perag_put(pag);
1208 	}
1209 
1210 	/*
1211 	 * if we skipped any AG, and we still have scan count remaining, do
1212 	 * another pass this time using blocking reclaim semantics (i.e
1213 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1214 	 * ensure that when we get more reclaimers than AGs we block rather
1215 	 * than spin trying to execute reclaim.
1216 	 */
1217 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1218 		trylock = 0;
1219 		goto restart;
1220 	}
1221 	return last_error;
1222 }
1223 
1224 int
1225 xfs_reclaim_inodes(
1226 	xfs_mount_t	*mp,
1227 	int		mode)
1228 {
1229 	int		nr_to_scan = INT_MAX;
1230 
1231 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1232 }
1233 
1234 /*
1235  * Scan a certain number of inodes for reclaim.
1236  *
1237  * When called we make sure that there is a background (fast) inode reclaim in
1238  * progress, while we will throttle the speed of reclaim via doing synchronous
1239  * reclaim of inodes. That means if we come across dirty inodes, we wait for
1240  * them to be cleaned, which we hope will not be very long due to the
1241  * background walker having already kicked the IO off on those dirty inodes.
1242  */
1243 long
1244 xfs_reclaim_inodes_nr(
1245 	struct xfs_mount	*mp,
1246 	int			nr_to_scan)
1247 {
1248 	/* kick background reclaimer and push the AIL */
1249 	xfs_reclaim_work_queue(mp);
1250 	xfs_ail_push_all(mp->m_ail);
1251 
1252 	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1253 }
1254 
1255 /*
1256  * Return the number of reclaimable inodes in the filesystem for
1257  * the shrinker to determine how much to reclaim.
1258  */
1259 int
1260 xfs_reclaim_inodes_count(
1261 	struct xfs_mount	*mp)
1262 {
1263 	struct xfs_perag	*pag;
1264 	xfs_agnumber_t		ag = 0;
1265 	int			reclaimable = 0;
1266 
1267 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1268 		ag = pag->pag_agno + 1;
1269 		reclaimable += pag->pag_ici_reclaimable;
1270 		xfs_perag_put(pag);
1271 	}
1272 	return reclaimable;
1273 }
1274 
1275 STATIC int
1276 xfs_inode_match_id(
1277 	struct xfs_inode	*ip,
1278 	struct xfs_eofblocks	*eofb)
1279 {
1280 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1281 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1282 		return 0;
1283 
1284 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1285 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1286 		return 0;
1287 
1288 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1289 	    xfs_get_projid(ip) != eofb->eof_prid)
1290 		return 0;
1291 
1292 	return 1;
1293 }
1294 
1295 /*
1296  * A union-based inode filtering algorithm. Process the inode if any of the
1297  * criteria match. This is for global/internal scans only.
1298  */
1299 STATIC int
1300 xfs_inode_match_id_union(
1301 	struct xfs_inode	*ip,
1302 	struct xfs_eofblocks	*eofb)
1303 {
1304 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1305 	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1306 		return 1;
1307 
1308 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1309 	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1310 		return 1;
1311 
1312 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1313 	    xfs_get_projid(ip) == eofb->eof_prid)
1314 		return 1;
1315 
1316 	return 0;
1317 }
1318 
1319 STATIC int
1320 xfs_inode_free_eofblocks(
1321 	struct xfs_inode	*ip,
1322 	int			flags,
1323 	void			*args)
1324 {
1325 	int ret = 0;
1326 	struct xfs_eofblocks *eofb = args;
1327 	int match;
1328 
1329 	if (!xfs_can_free_eofblocks(ip, false)) {
1330 		/* inode could be preallocated or append-only */
1331 		trace_xfs_inode_free_eofblocks_invalid(ip);
1332 		xfs_inode_clear_eofblocks_tag(ip);
1333 		return 0;
1334 	}
1335 
1336 	/*
1337 	 * If the mapping is dirty the operation can block and wait for some
1338 	 * time. Unless we are waiting, skip it.
1339 	 */
1340 	if (!(flags & SYNC_WAIT) &&
1341 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1342 		return 0;
1343 
1344 	if (eofb) {
1345 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1346 			match = xfs_inode_match_id_union(ip, eofb);
1347 		else
1348 			match = xfs_inode_match_id(ip, eofb);
1349 		if (!match)
1350 			return 0;
1351 
1352 		/* skip the inode if the file size is too small */
1353 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1354 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1355 			return 0;
1356 	}
1357 
1358 	/*
1359 	 * If the caller is waiting, return -EAGAIN to keep the background
1360 	 * scanner moving and revisit the inode in a subsequent pass.
1361 	 */
1362 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1363 		if (flags & SYNC_WAIT)
1364 			ret = -EAGAIN;
1365 		return ret;
1366 	}
1367 	ret = xfs_free_eofblocks(ip);
1368 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1369 
1370 	return ret;
1371 }
1372 
1373 static int
1374 __xfs_icache_free_eofblocks(
1375 	struct xfs_mount	*mp,
1376 	struct xfs_eofblocks	*eofb,
1377 	int			(*execute)(struct xfs_inode *ip, int flags,
1378 					   void *args),
1379 	int			tag)
1380 {
1381 	int flags = SYNC_TRYLOCK;
1382 
1383 	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1384 		flags = SYNC_WAIT;
1385 
1386 	return xfs_inode_ag_iterator_tag(mp, execute, flags,
1387 					 eofb, tag);
1388 }
1389 
1390 int
1391 xfs_icache_free_eofblocks(
1392 	struct xfs_mount	*mp,
1393 	struct xfs_eofblocks	*eofb)
1394 {
1395 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1396 			XFS_ICI_EOFBLOCKS_TAG);
1397 }
1398 
1399 /*
1400  * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1401  * multiple quotas, we don't know exactly which quota caused an allocation
1402  * failure. We make a best effort by including each quota under low free space
1403  * conditions (less than 1% free space) in the scan.
1404  */
1405 static int
1406 __xfs_inode_free_quota_eofblocks(
1407 	struct xfs_inode	*ip,
1408 	int			(*execute)(struct xfs_mount *mp,
1409 					   struct xfs_eofblocks	*eofb))
1410 {
1411 	int scan = 0;
1412 	struct xfs_eofblocks eofb = {0};
1413 	struct xfs_dquot *dq;
1414 
1415 	/*
1416 	 * Run a sync scan to increase effectiveness and use the union filter to
1417 	 * cover all applicable quotas in a single scan.
1418 	 */
1419 	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1420 
1421 	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1422 		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1423 		if (dq && xfs_dquot_lowsp(dq)) {
1424 			eofb.eof_uid = VFS_I(ip)->i_uid;
1425 			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1426 			scan = 1;
1427 		}
1428 	}
1429 
1430 	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1431 		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1432 		if (dq && xfs_dquot_lowsp(dq)) {
1433 			eofb.eof_gid = VFS_I(ip)->i_gid;
1434 			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1435 			scan = 1;
1436 		}
1437 	}
1438 
1439 	if (scan)
1440 		execute(ip->i_mount, &eofb);
1441 
1442 	return scan;
1443 }
1444 
1445 int
1446 xfs_inode_free_quota_eofblocks(
1447 	struct xfs_inode *ip)
1448 {
1449 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1450 }
1451 
1452 static void
1453 __xfs_inode_set_eofblocks_tag(
1454 	xfs_inode_t	*ip,
1455 	void		(*execute)(struct xfs_mount *mp),
1456 	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1457 				  int error, unsigned long caller_ip),
1458 	int		tag)
1459 {
1460 	struct xfs_mount *mp = ip->i_mount;
1461 	struct xfs_perag *pag;
1462 	int tagged;
1463 
1464 	/*
1465 	 * Don't bother locking the AG and looking up in the radix trees
1466 	 * if we already know that we have the tag set.
1467 	 */
1468 	if (ip->i_flags & XFS_IEOFBLOCKS)
1469 		return;
1470 	spin_lock(&ip->i_flags_lock);
1471 	ip->i_flags |= XFS_IEOFBLOCKS;
1472 	spin_unlock(&ip->i_flags_lock);
1473 
1474 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1475 	spin_lock(&pag->pag_ici_lock);
1476 
1477 	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1478 	radix_tree_tag_set(&pag->pag_ici_root,
1479 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1480 	if (!tagged) {
1481 		/* propagate the eofblocks tag up into the perag radix tree */
1482 		spin_lock(&ip->i_mount->m_perag_lock);
1483 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1484 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1485 				   tag);
1486 		spin_unlock(&ip->i_mount->m_perag_lock);
1487 
1488 		/* kick off background trimming */
1489 		execute(ip->i_mount);
1490 
1491 		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1492 	}
1493 
1494 	spin_unlock(&pag->pag_ici_lock);
1495 	xfs_perag_put(pag);
1496 }
1497 
1498 void
1499 xfs_inode_set_eofblocks_tag(
1500 	xfs_inode_t	*ip)
1501 {
1502 	trace_xfs_inode_set_eofblocks_tag(ip);
1503 	return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_eofblocks,
1504 			trace_xfs_perag_set_eofblocks,
1505 			XFS_ICI_EOFBLOCKS_TAG);
1506 }
1507 
1508 static void
1509 __xfs_inode_clear_eofblocks_tag(
1510 	xfs_inode_t	*ip,
1511 	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1512 				    int error, unsigned long caller_ip),
1513 	int		tag)
1514 {
1515 	struct xfs_mount *mp = ip->i_mount;
1516 	struct xfs_perag *pag;
1517 
1518 	spin_lock(&ip->i_flags_lock);
1519 	ip->i_flags &= ~XFS_IEOFBLOCKS;
1520 	spin_unlock(&ip->i_flags_lock);
1521 
1522 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1523 	spin_lock(&pag->pag_ici_lock);
1524 
1525 	radix_tree_tag_clear(&pag->pag_ici_root,
1526 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1527 	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1528 		/* clear the eofblocks tag from the perag radix tree */
1529 		spin_lock(&ip->i_mount->m_perag_lock);
1530 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1531 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1532 				     tag);
1533 		spin_unlock(&ip->i_mount->m_perag_lock);
1534 		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1535 	}
1536 
1537 	spin_unlock(&pag->pag_ici_lock);
1538 	xfs_perag_put(pag);
1539 }
1540 
1541 void
1542 xfs_inode_clear_eofblocks_tag(
1543 	xfs_inode_t	*ip)
1544 {
1545 	trace_xfs_inode_clear_eofblocks_tag(ip);
1546 	return __xfs_inode_clear_eofblocks_tag(ip,
1547 			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1548 }
1549 
1550 /*
1551  * Automatic CoW Reservation Freeing
1552  *
1553  * These functions automatically garbage collect leftover CoW reservations
1554  * that were made on behalf of a cowextsize hint when we start to run out
1555  * of quota or when the reservations sit around for too long.  If the file
1556  * has dirty pages or is undergoing writeback, its CoW reservations will
1557  * be retained.
1558  *
1559  * The actual garbage collection piggybacks off the same code that runs
1560  * the speculative EOF preallocation garbage collector.
1561  */
1562 STATIC int
1563 xfs_inode_free_cowblocks(
1564 	struct xfs_inode	*ip,
1565 	int			flags,
1566 	void			*args)
1567 {
1568 	int ret;
1569 	struct xfs_eofblocks *eofb = args;
1570 	int match;
1571 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1572 
1573 	/*
1574 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1575 	 * possible the inode was fully unshared since it was originally tagged.
1576 	 */
1577 	if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
1578 		trace_xfs_inode_free_cowblocks_invalid(ip);
1579 		xfs_inode_clear_cowblocks_tag(ip);
1580 		return 0;
1581 	}
1582 
1583 	/*
1584 	 * If the mapping is dirty or under writeback we cannot touch the
1585 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1586 	 */
1587 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1588 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1589 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1590 	    atomic_read(&VFS_I(ip)->i_dio_count))
1591 		return 0;
1592 
1593 	if (eofb) {
1594 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1595 			match = xfs_inode_match_id_union(ip, eofb);
1596 		else
1597 			match = xfs_inode_match_id(ip, eofb);
1598 		if (!match)
1599 			return 0;
1600 
1601 		/* skip the inode if the file size is too small */
1602 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1603 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1604 			return 0;
1605 	}
1606 
1607 	/* Free the CoW blocks */
1608 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
1609 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1610 
1611 	ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF);
1612 
1613 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1614 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1615 
1616 	return ret;
1617 }
1618 
1619 int
1620 xfs_icache_free_cowblocks(
1621 	struct xfs_mount	*mp,
1622 	struct xfs_eofblocks	*eofb)
1623 {
1624 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1625 			XFS_ICI_COWBLOCKS_TAG);
1626 }
1627 
1628 int
1629 xfs_inode_free_quota_cowblocks(
1630 	struct xfs_inode *ip)
1631 {
1632 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1633 }
1634 
1635 void
1636 xfs_inode_set_cowblocks_tag(
1637 	xfs_inode_t	*ip)
1638 {
1639 	trace_xfs_inode_set_cowblocks_tag(ip);
1640 	return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_cowblocks,
1641 			trace_xfs_perag_set_cowblocks,
1642 			XFS_ICI_COWBLOCKS_TAG);
1643 }
1644 
1645 void
1646 xfs_inode_clear_cowblocks_tag(
1647 	xfs_inode_t	*ip)
1648 {
1649 	trace_xfs_inode_clear_cowblocks_tag(ip);
1650 	return __xfs_inode_clear_eofblocks_tag(ip,
1651 			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1652 }
1653