1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_inode_item.h" 17 #include "xfs_quota.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_bmap_util.h" 21 #include "xfs_dquot_item.h" 22 #include "xfs_dquot.h" 23 #include "xfs_reflink.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_ag.h" 26 #include "xfs_log_priv.h" 27 28 #include <linux/iversion.h> 29 30 /* Radix tree tags for incore inode tree. */ 31 32 /* inode is to be reclaimed */ 33 #define XFS_ICI_RECLAIM_TAG 0 34 /* Inode has speculative preallocations (posteof or cow) to clean. */ 35 #define XFS_ICI_BLOCKGC_TAG 1 36 37 /* 38 * The goal for walking incore inodes. These can correspond with incore inode 39 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace. 40 */ 41 enum xfs_icwalk_goal { 42 /* Goals directly associated with tagged inodes. */ 43 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG, 44 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG, 45 }; 46 47 static int xfs_icwalk(struct xfs_mount *mp, 48 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 49 static int xfs_icwalk_ag(struct xfs_perag *pag, 50 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 51 52 /* 53 * Private inode cache walk flags for struct xfs_icwalk. Must not 54 * coincide with XFS_ICWALK_FLAGS_VALID. 55 */ 56 57 /* Stop scanning after icw_scan_limit inodes. */ 58 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28) 59 60 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27) 61 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */ 62 63 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \ 64 XFS_ICWALK_FLAG_RECLAIM_SICK | \ 65 XFS_ICWALK_FLAG_UNION) 66 67 /* 68 * Allocate and initialise an xfs_inode. 69 */ 70 struct xfs_inode * 71 xfs_inode_alloc( 72 struct xfs_mount *mp, 73 xfs_ino_t ino) 74 { 75 struct xfs_inode *ip; 76 77 /* 78 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL 79 * and return NULL here on ENOMEM. 80 */ 81 ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL); 82 83 if (inode_init_always(mp->m_super, VFS_I(ip))) { 84 kmem_cache_free(xfs_inode_cache, ip); 85 return NULL; 86 } 87 88 /* VFS doesn't initialise i_mode or i_state! */ 89 VFS_I(ip)->i_mode = 0; 90 VFS_I(ip)->i_state = 0; 91 mapping_set_large_folios(VFS_I(ip)->i_mapping); 92 93 XFS_STATS_INC(mp, vn_active); 94 ASSERT(atomic_read(&ip->i_pincount) == 0); 95 ASSERT(ip->i_ino == 0); 96 97 /* initialise the xfs inode */ 98 ip->i_ino = ino; 99 ip->i_mount = mp; 100 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 101 ip->i_afp = NULL; 102 ip->i_cowfp = NULL; 103 memset(&ip->i_df, 0, sizeof(ip->i_df)); 104 ip->i_flags = 0; 105 ip->i_delayed_blks = 0; 106 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 107 ip->i_nblocks = 0; 108 ip->i_forkoff = 0; 109 ip->i_sick = 0; 110 ip->i_checked = 0; 111 INIT_WORK(&ip->i_ioend_work, xfs_end_io); 112 INIT_LIST_HEAD(&ip->i_ioend_list); 113 spin_lock_init(&ip->i_ioend_lock); 114 115 return ip; 116 } 117 118 STATIC void 119 xfs_inode_free_callback( 120 struct rcu_head *head) 121 { 122 struct inode *inode = container_of(head, struct inode, i_rcu); 123 struct xfs_inode *ip = XFS_I(inode); 124 125 switch (VFS_I(ip)->i_mode & S_IFMT) { 126 case S_IFREG: 127 case S_IFDIR: 128 case S_IFLNK: 129 xfs_idestroy_fork(&ip->i_df); 130 break; 131 } 132 133 if (ip->i_afp) { 134 xfs_idestroy_fork(ip->i_afp); 135 kmem_cache_free(xfs_ifork_cache, ip->i_afp); 136 } 137 if (ip->i_cowfp) { 138 xfs_idestroy_fork(ip->i_cowfp); 139 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp); 140 } 141 if (ip->i_itemp) { 142 ASSERT(!test_bit(XFS_LI_IN_AIL, 143 &ip->i_itemp->ili_item.li_flags)); 144 xfs_inode_item_destroy(ip); 145 ip->i_itemp = NULL; 146 } 147 148 kmem_cache_free(xfs_inode_cache, ip); 149 } 150 151 static void 152 __xfs_inode_free( 153 struct xfs_inode *ip) 154 { 155 /* asserts to verify all state is correct here */ 156 ASSERT(atomic_read(&ip->i_pincount) == 0); 157 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list)); 158 XFS_STATS_DEC(ip->i_mount, vn_active); 159 160 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 161 } 162 163 void 164 xfs_inode_free( 165 struct xfs_inode *ip) 166 { 167 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING)); 168 169 /* 170 * Because we use RCU freeing we need to ensure the inode always 171 * appears to be reclaimed with an invalid inode number when in the 172 * free state. The ip->i_flags_lock provides the barrier against lookup 173 * races. 174 */ 175 spin_lock(&ip->i_flags_lock); 176 ip->i_flags = XFS_IRECLAIM; 177 ip->i_ino = 0; 178 spin_unlock(&ip->i_flags_lock); 179 180 __xfs_inode_free(ip); 181 } 182 183 /* 184 * Queue background inode reclaim work if there are reclaimable inodes and there 185 * isn't reclaim work already scheduled or in progress. 186 */ 187 static void 188 xfs_reclaim_work_queue( 189 struct xfs_mount *mp) 190 { 191 192 rcu_read_lock(); 193 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 194 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 195 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 196 } 197 rcu_read_unlock(); 198 } 199 200 /* 201 * Background scanning to trim preallocated space. This is queued based on the 202 * 'speculative_prealloc_lifetime' tunable (5m by default). 203 */ 204 static inline void 205 xfs_blockgc_queue( 206 struct xfs_perag *pag) 207 { 208 struct xfs_mount *mp = pag->pag_mount; 209 210 if (!xfs_is_blockgc_enabled(mp)) 211 return; 212 213 rcu_read_lock(); 214 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) 215 queue_delayed_work(pag->pag_mount->m_blockgc_wq, 216 &pag->pag_blockgc_work, 217 msecs_to_jiffies(xfs_blockgc_secs * 1000)); 218 rcu_read_unlock(); 219 } 220 221 /* Set a tag on both the AG incore inode tree and the AG radix tree. */ 222 static void 223 xfs_perag_set_inode_tag( 224 struct xfs_perag *pag, 225 xfs_agino_t agino, 226 unsigned int tag) 227 { 228 struct xfs_mount *mp = pag->pag_mount; 229 bool was_tagged; 230 231 lockdep_assert_held(&pag->pag_ici_lock); 232 233 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 234 radix_tree_tag_set(&pag->pag_ici_root, agino, tag); 235 236 if (tag == XFS_ICI_RECLAIM_TAG) 237 pag->pag_ici_reclaimable++; 238 239 if (was_tagged) 240 return; 241 242 /* propagate the tag up into the perag radix tree */ 243 spin_lock(&mp->m_perag_lock); 244 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag); 245 spin_unlock(&mp->m_perag_lock); 246 247 /* start background work */ 248 switch (tag) { 249 case XFS_ICI_RECLAIM_TAG: 250 xfs_reclaim_work_queue(mp); 251 break; 252 case XFS_ICI_BLOCKGC_TAG: 253 xfs_blockgc_queue(pag); 254 break; 255 } 256 257 trace_xfs_perag_set_inode_tag(mp, pag->pag_agno, tag, _RET_IP_); 258 } 259 260 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */ 261 static void 262 xfs_perag_clear_inode_tag( 263 struct xfs_perag *pag, 264 xfs_agino_t agino, 265 unsigned int tag) 266 { 267 struct xfs_mount *mp = pag->pag_mount; 268 269 lockdep_assert_held(&pag->pag_ici_lock); 270 271 /* 272 * Reclaim can signal (with a null agino) that it cleared its own tag 273 * by removing the inode from the radix tree. 274 */ 275 if (agino != NULLAGINO) 276 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag); 277 else 278 ASSERT(tag == XFS_ICI_RECLAIM_TAG); 279 280 if (tag == XFS_ICI_RECLAIM_TAG) 281 pag->pag_ici_reclaimable--; 282 283 if (radix_tree_tagged(&pag->pag_ici_root, tag)) 284 return; 285 286 /* clear the tag from the perag radix tree */ 287 spin_lock(&mp->m_perag_lock); 288 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag); 289 spin_unlock(&mp->m_perag_lock); 290 291 trace_xfs_perag_clear_inode_tag(mp, pag->pag_agno, tag, _RET_IP_); 292 } 293 294 /* 295 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 296 * part of the structure. This is made more complex by the fact we store 297 * information about the on-disk values in the VFS inode and so we can't just 298 * overwrite the values unconditionally. Hence we save the parameters we 299 * need to retain across reinitialisation, and rewrite them into the VFS inode 300 * after reinitialisation even if it fails. 301 */ 302 static int 303 xfs_reinit_inode( 304 struct xfs_mount *mp, 305 struct inode *inode) 306 { 307 int error; 308 uint32_t nlink = inode->i_nlink; 309 uint32_t generation = inode->i_generation; 310 uint64_t version = inode_peek_iversion(inode); 311 umode_t mode = inode->i_mode; 312 dev_t dev = inode->i_rdev; 313 kuid_t uid = inode->i_uid; 314 kgid_t gid = inode->i_gid; 315 316 error = inode_init_always(mp->m_super, inode); 317 318 set_nlink(inode, nlink); 319 inode->i_generation = generation; 320 inode_set_iversion_queried(inode, version); 321 inode->i_mode = mode; 322 inode->i_rdev = dev; 323 inode->i_uid = uid; 324 inode->i_gid = gid; 325 mapping_set_large_folios(inode->i_mapping); 326 return error; 327 } 328 329 /* 330 * Carefully nudge an inode whose VFS state has been torn down back into a 331 * usable state. Drops the i_flags_lock and the rcu read lock. 332 */ 333 static int 334 xfs_iget_recycle( 335 struct xfs_perag *pag, 336 struct xfs_inode *ip) __releases(&ip->i_flags_lock) 337 { 338 struct xfs_mount *mp = ip->i_mount; 339 struct inode *inode = VFS_I(ip); 340 int error; 341 342 trace_xfs_iget_recycle(ip); 343 344 /* 345 * We need to make it look like the inode is being reclaimed to prevent 346 * the actual reclaim workers from stomping over us while we recycle 347 * the inode. We can't clear the radix tree tag yet as it requires 348 * pag_ici_lock to be held exclusive. 349 */ 350 ip->i_flags |= XFS_IRECLAIM; 351 352 spin_unlock(&ip->i_flags_lock); 353 rcu_read_unlock(); 354 355 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 356 error = xfs_reinit_inode(mp, inode); 357 if (error) { 358 /* 359 * Re-initializing the inode failed, and we are in deep 360 * trouble. Try to re-add it to the reclaim list. 361 */ 362 rcu_read_lock(); 363 spin_lock(&ip->i_flags_lock); 364 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 365 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 366 spin_unlock(&ip->i_flags_lock); 367 rcu_read_unlock(); 368 369 trace_xfs_iget_recycle_fail(ip); 370 return error; 371 } 372 373 spin_lock(&pag->pag_ici_lock); 374 spin_lock(&ip->i_flags_lock); 375 376 /* 377 * Clear the per-lifetime state in the inode as we are now effectively 378 * a new inode and need to return to the initial state before reuse 379 * occurs. 380 */ 381 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 382 ip->i_flags |= XFS_INEW; 383 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 384 XFS_ICI_RECLAIM_TAG); 385 inode->i_state = I_NEW; 386 spin_unlock(&ip->i_flags_lock); 387 spin_unlock(&pag->pag_ici_lock); 388 389 return 0; 390 } 391 392 /* 393 * If we are allocating a new inode, then check what was returned is 394 * actually a free, empty inode. If we are not allocating an inode, 395 * then check we didn't find a free inode. 396 * 397 * Returns: 398 * 0 if the inode free state matches the lookup context 399 * -ENOENT if the inode is free and we are not allocating 400 * -EFSCORRUPTED if there is any state mismatch at all 401 */ 402 static int 403 xfs_iget_check_free_state( 404 struct xfs_inode *ip, 405 int flags) 406 { 407 if (flags & XFS_IGET_CREATE) { 408 /* should be a free inode */ 409 if (VFS_I(ip)->i_mode != 0) { 410 xfs_warn(ip->i_mount, 411 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", 412 ip->i_ino, VFS_I(ip)->i_mode); 413 return -EFSCORRUPTED; 414 } 415 416 if (ip->i_nblocks != 0) { 417 xfs_warn(ip->i_mount, 418 "Corruption detected! Free inode 0x%llx has blocks allocated!", 419 ip->i_ino); 420 return -EFSCORRUPTED; 421 } 422 return 0; 423 } 424 425 /* should be an allocated inode */ 426 if (VFS_I(ip)->i_mode == 0) 427 return -ENOENT; 428 429 return 0; 430 } 431 432 /* Make all pending inactivation work start immediately. */ 433 static void 434 xfs_inodegc_queue_all( 435 struct xfs_mount *mp) 436 { 437 struct xfs_inodegc *gc; 438 int cpu; 439 440 for_each_online_cpu(cpu) { 441 gc = per_cpu_ptr(mp->m_inodegc, cpu); 442 if (!llist_empty(&gc->list)) 443 queue_work_on(cpu, mp->m_inodegc_wq, &gc->work); 444 } 445 } 446 447 /* 448 * Check the validity of the inode we just found it the cache 449 */ 450 static int 451 xfs_iget_cache_hit( 452 struct xfs_perag *pag, 453 struct xfs_inode *ip, 454 xfs_ino_t ino, 455 int flags, 456 int lock_flags) __releases(RCU) 457 { 458 struct inode *inode = VFS_I(ip); 459 struct xfs_mount *mp = ip->i_mount; 460 int error; 461 462 /* 463 * check for re-use of an inode within an RCU grace period due to the 464 * radix tree nodes not being updated yet. We monitor for this by 465 * setting the inode number to zero before freeing the inode structure. 466 * If the inode has been reallocated and set up, then the inode number 467 * will not match, so check for that, too. 468 */ 469 spin_lock(&ip->i_flags_lock); 470 if (ip->i_ino != ino) 471 goto out_skip; 472 473 /* 474 * If we are racing with another cache hit that is currently 475 * instantiating this inode or currently recycling it out of 476 * reclaimable state, wait for the initialisation to complete 477 * before continuing. 478 * 479 * If we're racing with the inactivation worker we also want to wait. 480 * If we're creating a new file, it's possible that the worker 481 * previously marked the inode as free on disk but hasn't finished 482 * updating the incore state yet. The AGI buffer will be dirty and 483 * locked to the icreate transaction, so a synchronous push of the 484 * inodegc workers would result in deadlock. For a regular iget, the 485 * worker is running already, so we might as well wait. 486 * 487 * XXX(hch): eventually we should do something equivalent to 488 * wait_on_inode to wait for these flags to be cleared 489 * instead of polling for it. 490 */ 491 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING)) 492 goto out_skip; 493 494 if (ip->i_flags & XFS_NEED_INACTIVE) { 495 /* Unlinked inodes cannot be re-grabbed. */ 496 if (VFS_I(ip)->i_nlink == 0) { 497 error = -ENOENT; 498 goto out_error; 499 } 500 goto out_inodegc_flush; 501 } 502 503 /* 504 * Check the inode free state is valid. This also detects lookup 505 * racing with unlinks. 506 */ 507 error = xfs_iget_check_free_state(ip, flags); 508 if (error) 509 goto out_error; 510 511 /* Skip inodes that have no vfs state. */ 512 if ((flags & XFS_IGET_INCORE) && 513 (ip->i_flags & XFS_IRECLAIMABLE)) 514 goto out_skip; 515 516 /* The inode fits the selection criteria; process it. */ 517 if (ip->i_flags & XFS_IRECLAIMABLE) { 518 /* Drops i_flags_lock and RCU read lock. */ 519 error = xfs_iget_recycle(pag, ip); 520 if (error) 521 return error; 522 } else { 523 /* If the VFS inode is being torn down, pause and try again. */ 524 if (!igrab(inode)) 525 goto out_skip; 526 527 /* We've got a live one. */ 528 spin_unlock(&ip->i_flags_lock); 529 rcu_read_unlock(); 530 trace_xfs_iget_hit(ip); 531 } 532 533 if (lock_flags != 0) 534 xfs_ilock(ip, lock_flags); 535 536 if (!(flags & XFS_IGET_INCORE)) 537 xfs_iflags_clear(ip, XFS_ISTALE); 538 XFS_STATS_INC(mp, xs_ig_found); 539 540 return 0; 541 542 out_skip: 543 trace_xfs_iget_skip(ip); 544 XFS_STATS_INC(mp, xs_ig_frecycle); 545 error = -EAGAIN; 546 out_error: 547 spin_unlock(&ip->i_flags_lock); 548 rcu_read_unlock(); 549 return error; 550 551 out_inodegc_flush: 552 spin_unlock(&ip->i_flags_lock); 553 rcu_read_unlock(); 554 /* 555 * Do not wait for the workers, because the caller could hold an AGI 556 * buffer lock. We're just going to sleep in a loop anyway. 557 */ 558 if (xfs_is_inodegc_enabled(mp)) 559 xfs_inodegc_queue_all(mp); 560 return -EAGAIN; 561 } 562 563 static int 564 xfs_iget_cache_miss( 565 struct xfs_mount *mp, 566 struct xfs_perag *pag, 567 xfs_trans_t *tp, 568 xfs_ino_t ino, 569 struct xfs_inode **ipp, 570 int flags, 571 int lock_flags) 572 { 573 struct xfs_inode *ip; 574 int error; 575 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 576 int iflags; 577 578 ip = xfs_inode_alloc(mp, ino); 579 if (!ip) 580 return -ENOMEM; 581 582 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags); 583 if (error) 584 goto out_destroy; 585 586 /* 587 * For version 5 superblocks, if we are initialising a new inode and we 588 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can 589 * simply build the new inode core with a random generation number. 590 * 591 * For version 4 (and older) superblocks, log recovery is dependent on 592 * the i_flushiter field being initialised from the current on-disk 593 * value and hence we must also read the inode off disk even when 594 * initializing new inodes. 595 */ 596 if (xfs_has_v3inodes(mp) && 597 (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) { 598 VFS_I(ip)->i_generation = prandom_u32(); 599 } else { 600 struct xfs_buf *bp; 601 602 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp); 603 if (error) 604 goto out_destroy; 605 606 error = xfs_inode_from_disk(ip, 607 xfs_buf_offset(bp, ip->i_imap.im_boffset)); 608 if (!error) 609 xfs_buf_set_ref(bp, XFS_INO_REF); 610 xfs_trans_brelse(tp, bp); 611 612 if (error) 613 goto out_destroy; 614 } 615 616 trace_xfs_iget_miss(ip); 617 618 /* 619 * Check the inode free state is valid. This also detects lookup 620 * racing with unlinks. 621 */ 622 error = xfs_iget_check_free_state(ip, flags); 623 if (error) 624 goto out_destroy; 625 626 /* 627 * Preload the radix tree so we can insert safely under the 628 * write spinlock. Note that we cannot sleep inside the preload 629 * region. Since we can be called from transaction context, don't 630 * recurse into the file system. 631 */ 632 if (radix_tree_preload(GFP_NOFS)) { 633 error = -EAGAIN; 634 goto out_destroy; 635 } 636 637 /* 638 * Because the inode hasn't been added to the radix-tree yet it can't 639 * be found by another thread, so we can do the non-sleeping lock here. 640 */ 641 if (lock_flags) { 642 if (!xfs_ilock_nowait(ip, lock_flags)) 643 BUG(); 644 } 645 646 /* 647 * These values must be set before inserting the inode into the radix 648 * tree as the moment it is inserted a concurrent lookup (allowed by the 649 * RCU locking mechanism) can find it and that lookup must see that this 650 * is an inode currently under construction (i.e. that XFS_INEW is set). 651 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 652 * memory barrier that ensures this detection works correctly at lookup 653 * time. 654 */ 655 iflags = XFS_INEW; 656 if (flags & XFS_IGET_DONTCACHE) 657 d_mark_dontcache(VFS_I(ip)); 658 ip->i_udquot = NULL; 659 ip->i_gdquot = NULL; 660 ip->i_pdquot = NULL; 661 xfs_iflags_set(ip, iflags); 662 663 /* insert the new inode */ 664 spin_lock(&pag->pag_ici_lock); 665 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 666 if (unlikely(error)) { 667 WARN_ON(error != -EEXIST); 668 XFS_STATS_INC(mp, xs_ig_dup); 669 error = -EAGAIN; 670 goto out_preload_end; 671 } 672 spin_unlock(&pag->pag_ici_lock); 673 radix_tree_preload_end(); 674 675 *ipp = ip; 676 return 0; 677 678 out_preload_end: 679 spin_unlock(&pag->pag_ici_lock); 680 radix_tree_preload_end(); 681 if (lock_flags) 682 xfs_iunlock(ip, lock_flags); 683 out_destroy: 684 __destroy_inode(VFS_I(ip)); 685 xfs_inode_free(ip); 686 return error; 687 } 688 689 /* 690 * Look up an inode by number in the given file system. The inode is looked up 691 * in the cache held in each AG. If the inode is found in the cache, initialise 692 * the vfs inode if necessary. 693 * 694 * If it is not in core, read it in from the file system's device, add it to the 695 * cache and initialise the vfs inode. 696 * 697 * The inode is locked according to the value of the lock_flags parameter. 698 * Inode lookup is only done during metadata operations and not as part of the 699 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup. 700 */ 701 int 702 xfs_iget( 703 struct xfs_mount *mp, 704 struct xfs_trans *tp, 705 xfs_ino_t ino, 706 uint flags, 707 uint lock_flags, 708 struct xfs_inode **ipp) 709 { 710 struct xfs_inode *ip; 711 struct xfs_perag *pag; 712 xfs_agino_t agino; 713 int error; 714 715 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 716 717 /* reject inode numbers outside existing AGs */ 718 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 719 return -EINVAL; 720 721 XFS_STATS_INC(mp, xs_ig_attempts); 722 723 /* get the perag structure and ensure that it's inode capable */ 724 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 725 agino = XFS_INO_TO_AGINO(mp, ino); 726 727 again: 728 error = 0; 729 rcu_read_lock(); 730 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 731 732 if (ip) { 733 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 734 if (error) 735 goto out_error_or_again; 736 } else { 737 rcu_read_unlock(); 738 if (flags & XFS_IGET_INCORE) { 739 error = -ENODATA; 740 goto out_error_or_again; 741 } 742 XFS_STATS_INC(mp, xs_ig_missed); 743 744 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 745 flags, lock_flags); 746 if (error) 747 goto out_error_or_again; 748 } 749 xfs_perag_put(pag); 750 751 *ipp = ip; 752 753 /* 754 * If we have a real type for an on-disk inode, we can setup the inode 755 * now. If it's a new inode being created, xfs_init_new_inode will 756 * handle it. 757 */ 758 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 759 xfs_setup_existing_inode(ip); 760 return 0; 761 762 out_error_or_again: 763 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) { 764 delay(1); 765 goto again; 766 } 767 xfs_perag_put(pag); 768 return error; 769 } 770 771 /* 772 * "Is this a cached inode that's also allocated?" 773 * 774 * Look up an inode by number in the given file system. If the inode is 775 * in cache and isn't in purgatory, return 1 if the inode is allocated 776 * and 0 if it is not. For all other cases (not in cache, being torn 777 * down, etc.), return a negative error code. 778 * 779 * The caller has to prevent inode allocation and freeing activity, 780 * presumably by locking the AGI buffer. This is to ensure that an 781 * inode cannot transition from allocated to freed until the caller is 782 * ready to allow that. If the inode is in an intermediate state (new, 783 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the 784 * inode is not in the cache, -ENOENT will be returned. The caller must 785 * deal with these scenarios appropriately. 786 * 787 * This is a specialized use case for the online scrubber; if you're 788 * reading this, you probably want xfs_iget. 789 */ 790 int 791 xfs_icache_inode_is_allocated( 792 struct xfs_mount *mp, 793 struct xfs_trans *tp, 794 xfs_ino_t ino, 795 bool *inuse) 796 { 797 struct xfs_inode *ip; 798 int error; 799 800 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip); 801 if (error) 802 return error; 803 804 *inuse = !!(VFS_I(ip)->i_mode); 805 xfs_irele(ip); 806 return 0; 807 } 808 809 /* 810 * Grab the inode for reclaim exclusively. 811 * 812 * We have found this inode via a lookup under RCU, so the inode may have 813 * already been freed, or it may be in the process of being recycled by 814 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode 815 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE 816 * will not be set. Hence we need to check for both these flag conditions to 817 * avoid inodes that are no longer reclaim candidates. 818 * 819 * Note: checking for other state flags here, under the i_flags_lock or not, is 820 * racy and should be avoided. Those races should be resolved only after we have 821 * ensured that we are able to reclaim this inode and the world can see that we 822 * are going to reclaim it. 823 * 824 * Return true if we grabbed it, false otherwise. 825 */ 826 static bool 827 xfs_reclaim_igrab( 828 struct xfs_inode *ip, 829 struct xfs_icwalk *icw) 830 { 831 ASSERT(rcu_read_lock_held()); 832 833 spin_lock(&ip->i_flags_lock); 834 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 835 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 836 /* not a reclaim candidate. */ 837 spin_unlock(&ip->i_flags_lock); 838 return false; 839 } 840 841 /* Don't reclaim a sick inode unless the caller asked for it. */ 842 if (ip->i_sick && 843 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) { 844 spin_unlock(&ip->i_flags_lock); 845 return false; 846 } 847 848 __xfs_iflags_set(ip, XFS_IRECLAIM); 849 spin_unlock(&ip->i_flags_lock); 850 return true; 851 } 852 853 /* 854 * Inode reclaim is non-blocking, so the default action if progress cannot be 855 * made is to "requeue" the inode for reclaim by unlocking it and clearing the 856 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about 857 * blocking anymore and hence we can wait for the inode to be able to reclaim 858 * it. 859 * 860 * We do no IO here - if callers require inodes to be cleaned they must push the 861 * AIL first to trigger writeback of dirty inodes. This enables writeback to be 862 * done in the background in a non-blocking manner, and enables memory reclaim 863 * to make progress without blocking. 864 */ 865 static void 866 xfs_reclaim_inode( 867 struct xfs_inode *ip, 868 struct xfs_perag *pag) 869 { 870 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 871 872 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 873 goto out; 874 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING)) 875 goto out_iunlock; 876 877 /* 878 * Check for log shutdown because aborting the inode can move the log 879 * tail and corrupt in memory state. This is fine if the log is shut 880 * down, but if the log is still active and only the mount is shut down 881 * then the in-memory log tail movement caused by the abort can be 882 * incorrectly propagated to disk. 883 */ 884 if (xlog_is_shutdown(ip->i_mount->m_log)) { 885 xfs_iunpin_wait(ip); 886 xfs_iflush_shutdown_abort(ip); 887 goto reclaim; 888 } 889 if (xfs_ipincount(ip)) 890 goto out_clear_flush; 891 if (!xfs_inode_clean(ip)) 892 goto out_clear_flush; 893 894 xfs_iflags_clear(ip, XFS_IFLUSHING); 895 reclaim: 896 trace_xfs_inode_reclaiming(ip); 897 898 /* 899 * Because we use RCU freeing we need to ensure the inode always appears 900 * to be reclaimed with an invalid inode number when in the free state. 901 * We do this as early as possible under the ILOCK so that 902 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to 903 * detect races with us here. By doing this, we guarantee that once 904 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that 905 * it will see either a valid inode that will serialise correctly, or it 906 * will see an invalid inode that it can skip. 907 */ 908 spin_lock(&ip->i_flags_lock); 909 ip->i_flags = XFS_IRECLAIM; 910 ip->i_ino = 0; 911 ip->i_sick = 0; 912 ip->i_checked = 0; 913 spin_unlock(&ip->i_flags_lock); 914 915 xfs_iunlock(ip, XFS_ILOCK_EXCL); 916 917 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 918 /* 919 * Remove the inode from the per-AG radix tree. 920 * 921 * Because radix_tree_delete won't complain even if the item was never 922 * added to the tree assert that it's been there before to catch 923 * problems with the inode life time early on. 924 */ 925 spin_lock(&pag->pag_ici_lock); 926 if (!radix_tree_delete(&pag->pag_ici_root, 927 XFS_INO_TO_AGINO(ip->i_mount, ino))) 928 ASSERT(0); 929 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG); 930 spin_unlock(&pag->pag_ici_lock); 931 932 /* 933 * Here we do an (almost) spurious inode lock in order to coordinate 934 * with inode cache radix tree lookups. This is because the lookup 935 * can reference the inodes in the cache without taking references. 936 * 937 * We make that OK here by ensuring that we wait until the inode is 938 * unlocked after the lookup before we go ahead and free it. 939 */ 940 xfs_ilock(ip, XFS_ILOCK_EXCL); 941 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot); 942 xfs_iunlock(ip, XFS_ILOCK_EXCL); 943 ASSERT(xfs_inode_clean(ip)); 944 945 __xfs_inode_free(ip); 946 return; 947 948 out_clear_flush: 949 xfs_iflags_clear(ip, XFS_IFLUSHING); 950 out_iunlock: 951 xfs_iunlock(ip, XFS_ILOCK_EXCL); 952 out: 953 xfs_iflags_clear(ip, XFS_IRECLAIM); 954 } 955 956 /* Reclaim sick inodes if we're unmounting or the fs went down. */ 957 static inline bool 958 xfs_want_reclaim_sick( 959 struct xfs_mount *mp) 960 { 961 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) || 962 xfs_is_shutdown(mp); 963 } 964 965 void 966 xfs_reclaim_inodes( 967 struct xfs_mount *mp) 968 { 969 struct xfs_icwalk icw = { 970 .icw_flags = 0, 971 }; 972 973 if (xfs_want_reclaim_sick(mp)) 974 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 975 976 while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 977 xfs_ail_push_all_sync(mp->m_ail); 978 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 979 } 980 } 981 982 /* 983 * The shrinker infrastructure determines how many inodes we should scan for 984 * reclaim. We want as many clean inodes ready to reclaim as possible, so we 985 * push the AIL here. We also want to proactively free up memory if we can to 986 * minimise the amount of work memory reclaim has to do so we kick the 987 * background reclaim if it isn't already scheduled. 988 */ 989 long 990 xfs_reclaim_inodes_nr( 991 struct xfs_mount *mp, 992 unsigned long nr_to_scan) 993 { 994 struct xfs_icwalk icw = { 995 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT, 996 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan), 997 }; 998 999 if (xfs_want_reclaim_sick(mp)) 1000 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 1001 1002 /* kick background reclaimer and push the AIL */ 1003 xfs_reclaim_work_queue(mp); 1004 xfs_ail_push_all(mp->m_ail); 1005 1006 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 1007 return 0; 1008 } 1009 1010 /* 1011 * Return the number of reclaimable inodes in the filesystem for 1012 * the shrinker to determine how much to reclaim. 1013 */ 1014 long 1015 xfs_reclaim_inodes_count( 1016 struct xfs_mount *mp) 1017 { 1018 struct xfs_perag *pag; 1019 xfs_agnumber_t ag = 0; 1020 long reclaimable = 0; 1021 1022 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1023 ag = pag->pag_agno + 1; 1024 reclaimable += pag->pag_ici_reclaimable; 1025 xfs_perag_put(pag); 1026 } 1027 return reclaimable; 1028 } 1029 1030 STATIC bool 1031 xfs_icwalk_match_id( 1032 struct xfs_inode *ip, 1033 struct xfs_icwalk *icw) 1034 { 1035 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1036 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1037 return false; 1038 1039 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1040 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1041 return false; 1042 1043 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1044 ip->i_projid != icw->icw_prid) 1045 return false; 1046 1047 return true; 1048 } 1049 1050 /* 1051 * A union-based inode filtering algorithm. Process the inode if any of the 1052 * criteria match. This is for global/internal scans only. 1053 */ 1054 STATIC bool 1055 xfs_icwalk_match_id_union( 1056 struct xfs_inode *ip, 1057 struct xfs_icwalk *icw) 1058 { 1059 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1060 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1061 return true; 1062 1063 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1064 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1065 return true; 1066 1067 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1068 ip->i_projid == icw->icw_prid) 1069 return true; 1070 1071 return false; 1072 } 1073 1074 /* 1075 * Is this inode @ip eligible for eof/cow block reclamation, given some 1076 * filtering parameters @icw? The inode is eligible if @icw is null or 1077 * if the predicate functions match. 1078 */ 1079 static bool 1080 xfs_icwalk_match( 1081 struct xfs_inode *ip, 1082 struct xfs_icwalk *icw) 1083 { 1084 bool match; 1085 1086 if (!icw) 1087 return true; 1088 1089 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION) 1090 match = xfs_icwalk_match_id_union(ip, icw); 1091 else 1092 match = xfs_icwalk_match_id(ip, icw); 1093 if (!match) 1094 return false; 1095 1096 /* skip the inode if the file size is too small */ 1097 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) && 1098 XFS_ISIZE(ip) < icw->icw_min_file_size) 1099 return false; 1100 1101 return true; 1102 } 1103 1104 /* 1105 * This is a fast pass over the inode cache to try to get reclaim moving on as 1106 * many inodes as possible in a short period of time. It kicks itself every few 1107 * seconds, as well as being kicked by the inode cache shrinker when memory 1108 * goes low. 1109 */ 1110 void 1111 xfs_reclaim_worker( 1112 struct work_struct *work) 1113 { 1114 struct xfs_mount *mp = container_of(to_delayed_work(work), 1115 struct xfs_mount, m_reclaim_work); 1116 1117 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL); 1118 xfs_reclaim_work_queue(mp); 1119 } 1120 1121 STATIC int 1122 xfs_inode_free_eofblocks( 1123 struct xfs_inode *ip, 1124 struct xfs_icwalk *icw, 1125 unsigned int *lockflags) 1126 { 1127 bool wait; 1128 1129 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1130 1131 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS)) 1132 return 0; 1133 1134 /* 1135 * If the mapping is dirty the operation can block and wait for some 1136 * time. Unless we are waiting, skip it. 1137 */ 1138 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1139 return 0; 1140 1141 if (!xfs_icwalk_match(ip, icw)) 1142 return 0; 1143 1144 /* 1145 * If the caller is waiting, return -EAGAIN to keep the background 1146 * scanner moving and revisit the inode in a subsequent pass. 1147 */ 1148 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1149 if (wait) 1150 return -EAGAIN; 1151 return 0; 1152 } 1153 *lockflags |= XFS_IOLOCK_EXCL; 1154 1155 if (xfs_can_free_eofblocks(ip, false)) 1156 return xfs_free_eofblocks(ip); 1157 1158 /* inode could be preallocated or append-only */ 1159 trace_xfs_inode_free_eofblocks_invalid(ip); 1160 xfs_inode_clear_eofblocks_tag(ip); 1161 return 0; 1162 } 1163 1164 static void 1165 xfs_blockgc_set_iflag( 1166 struct xfs_inode *ip, 1167 unsigned long iflag) 1168 { 1169 struct xfs_mount *mp = ip->i_mount; 1170 struct xfs_perag *pag; 1171 1172 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1173 1174 /* 1175 * Don't bother locking the AG and looking up in the radix trees 1176 * if we already know that we have the tag set. 1177 */ 1178 if (ip->i_flags & iflag) 1179 return; 1180 spin_lock(&ip->i_flags_lock); 1181 ip->i_flags |= iflag; 1182 spin_unlock(&ip->i_flags_lock); 1183 1184 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1185 spin_lock(&pag->pag_ici_lock); 1186 1187 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1188 XFS_ICI_BLOCKGC_TAG); 1189 1190 spin_unlock(&pag->pag_ici_lock); 1191 xfs_perag_put(pag); 1192 } 1193 1194 void 1195 xfs_inode_set_eofblocks_tag( 1196 xfs_inode_t *ip) 1197 { 1198 trace_xfs_inode_set_eofblocks_tag(ip); 1199 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS); 1200 } 1201 1202 static void 1203 xfs_blockgc_clear_iflag( 1204 struct xfs_inode *ip, 1205 unsigned long iflag) 1206 { 1207 struct xfs_mount *mp = ip->i_mount; 1208 struct xfs_perag *pag; 1209 bool clear_tag; 1210 1211 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1212 1213 spin_lock(&ip->i_flags_lock); 1214 ip->i_flags &= ~iflag; 1215 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0; 1216 spin_unlock(&ip->i_flags_lock); 1217 1218 if (!clear_tag) 1219 return; 1220 1221 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1222 spin_lock(&pag->pag_ici_lock); 1223 1224 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1225 XFS_ICI_BLOCKGC_TAG); 1226 1227 spin_unlock(&pag->pag_ici_lock); 1228 xfs_perag_put(pag); 1229 } 1230 1231 void 1232 xfs_inode_clear_eofblocks_tag( 1233 xfs_inode_t *ip) 1234 { 1235 trace_xfs_inode_clear_eofblocks_tag(ip); 1236 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS); 1237 } 1238 1239 /* 1240 * Set ourselves up to free CoW blocks from this file. If it's already clean 1241 * then we can bail out quickly, but otherwise we must back off if the file 1242 * is undergoing some kind of write. 1243 */ 1244 static bool 1245 xfs_prep_free_cowblocks( 1246 struct xfs_inode *ip) 1247 { 1248 /* 1249 * Just clear the tag if we have an empty cow fork or none at all. It's 1250 * possible the inode was fully unshared since it was originally tagged. 1251 */ 1252 if (!xfs_inode_has_cow_data(ip)) { 1253 trace_xfs_inode_free_cowblocks_invalid(ip); 1254 xfs_inode_clear_cowblocks_tag(ip); 1255 return false; 1256 } 1257 1258 /* 1259 * If the mapping is dirty or under writeback we cannot touch the 1260 * CoW fork. Leave it alone if we're in the midst of a directio. 1261 */ 1262 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || 1263 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || 1264 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || 1265 atomic_read(&VFS_I(ip)->i_dio_count)) 1266 return false; 1267 1268 return true; 1269 } 1270 1271 /* 1272 * Automatic CoW Reservation Freeing 1273 * 1274 * These functions automatically garbage collect leftover CoW reservations 1275 * that were made on behalf of a cowextsize hint when we start to run out 1276 * of quota or when the reservations sit around for too long. If the file 1277 * has dirty pages or is undergoing writeback, its CoW reservations will 1278 * be retained. 1279 * 1280 * The actual garbage collection piggybacks off the same code that runs 1281 * the speculative EOF preallocation garbage collector. 1282 */ 1283 STATIC int 1284 xfs_inode_free_cowblocks( 1285 struct xfs_inode *ip, 1286 struct xfs_icwalk *icw, 1287 unsigned int *lockflags) 1288 { 1289 bool wait; 1290 int ret = 0; 1291 1292 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1293 1294 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS)) 1295 return 0; 1296 1297 if (!xfs_prep_free_cowblocks(ip)) 1298 return 0; 1299 1300 if (!xfs_icwalk_match(ip, icw)) 1301 return 0; 1302 1303 /* 1304 * If the caller is waiting, return -EAGAIN to keep the background 1305 * scanner moving and revisit the inode in a subsequent pass. 1306 */ 1307 if (!(*lockflags & XFS_IOLOCK_EXCL) && 1308 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1309 if (wait) 1310 return -EAGAIN; 1311 return 0; 1312 } 1313 *lockflags |= XFS_IOLOCK_EXCL; 1314 1315 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) { 1316 if (wait) 1317 return -EAGAIN; 1318 return 0; 1319 } 1320 *lockflags |= XFS_MMAPLOCK_EXCL; 1321 1322 /* 1323 * Check again, nobody else should be able to dirty blocks or change 1324 * the reflink iflag now that we have the first two locks held. 1325 */ 1326 if (xfs_prep_free_cowblocks(ip)) 1327 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1328 return ret; 1329 } 1330 1331 void 1332 xfs_inode_set_cowblocks_tag( 1333 xfs_inode_t *ip) 1334 { 1335 trace_xfs_inode_set_cowblocks_tag(ip); 1336 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS); 1337 } 1338 1339 void 1340 xfs_inode_clear_cowblocks_tag( 1341 xfs_inode_t *ip) 1342 { 1343 trace_xfs_inode_clear_cowblocks_tag(ip); 1344 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS); 1345 } 1346 1347 /* Disable post-EOF and CoW block auto-reclamation. */ 1348 void 1349 xfs_blockgc_stop( 1350 struct xfs_mount *mp) 1351 { 1352 struct xfs_perag *pag; 1353 xfs_agnumber_t agno; 1354 1355 if (!xfs_clear_blockgc_enabled(mp)) 1356 return; 1357 1358 for_each_perag(mp, agno, pag) 1359 cancel_delayed_work_sync(&pag->pag_blockgc_work); 1360 trace_xfs_blockgc_stop(mp, __return_address); 1361 } 1362 1363 /* Enable post-EOF and CoW block auto-reclamation. */ 1364 void 1365 xfs_blockgc_start( 1366 struct xfs_mount *mp) 1367 { 1368 struct xfs_perag *pag; 1369 xfs_agnumber_t agno; 1370 1371 if (xfs_set_blockgc_enabled(mp)) 1372 return; 1373 1374 trace_xfs_blockgc_start(mp, __return_address); 1375 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1376 xfs_blockgc_queue(pag); 1377 } 1378 1379 /* Don't try to run block gc on an inode that's in any of these states. */ 1380 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \ 1381 XFS_NEED_INACTIVE | \ 1382 XFS_INACTIVATING | \ 1383 XFS_IRECLAIMABLE | \ 1384 XFS_IRECLAIM) 1385 /* 1386 * Decide if the given @ip is eligible for garbage collection of speculative 1387 * preallocations, and grab it if so. Returns true if it's ready to go or 1388 * false if we should just ignore it. 1389 */ 1390 static bool 1391 xfs_blockgc_igrab( 1392 struct xfs_inode *ip) 1393 { 1394 struct inode *inode = VFS_I(ip); 1395 1396 ASSERT(rcu_read_lock_held()); 1397 1398 /* Check for stale RCU freed inode */ 1399 spin_lock(&ip->i_flags_lock); 1400 if (!ip->i_ino) 1401 goto out_unlock_noent; 1402 1403 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS) 1404 goto out_unlock_noent; 1405 spin_unlock(&ip->i_flags_lock); 1406 1407 /* nothing to sync during shutdown */ 1408 if (xfs_is_shutdown(ip->i_mount)) 1409 return false; 1410 1411 /* If we can't grab the inode, it must on it's way to reclaim. */ 1412 if (!igrab(inode)) 1413 return false; 1414 1415 /* inode is valid */ 1416 return true; 1417 1418 out_unlock_noent: 1419 spin_unlock(&ip->i_flags_lock); 1420 return false; 1421 } 1422 1423 /* Scan one incore inode for block preallocations that we can remove. */ 1424 static int 1425 xfs_blockgc_scan_inode( 1426 struct xfs_inode *ip, 1427 struct xfs_icwalk *icw) 1428 { 1429 unsigned int lockflags = 0; 1430 int error; 1431 1432 error = xfs_inode_free_eofblocks(ip, icw, &lockflags); 1433 if (error) 1434 goto unlock; 1435 1436 error = xfs_inode_free_cowblocks(ip, icw, &lockflags); 1437 unlock: 1438 if (lockflags) 1439 xfs_iunlock(ip, lockflags); 1440 xfs_irele(ip); 1441 return error; 1442 } 1443 1444 /* Background worker that trims preallocated space. */ 1445 void 1446 xfs_blockgc_worker( 1447 struct work_struct *work) 1448 { 1449 struct xfs_perag *pag = container_of(to_delayed_work(work), 1450 struct xfs_perag, pag_blockgc_work); 1451 struct xfs_mount *mp = pag->pag_mount; 1452 int error; 1453 1454 trace_xfs_blockgc_worker(mp, __return_address); 1455 1456 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL); 1457 if (error) 1458 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d", 1459 pag->pag_agno, error); 1460 xfs_blockgc_queue(pag); 1461 } 1462 1463 /* 1464 * Try to free space in the filesystem by purging inactive inodes, eofblocks 1465 * and cowblocks. 1466 */ 1467 int 1468 xfs_blockgc_free_space( 1469 struct xfs_mount *mp, 1470 struct xfs_icwalk *icw) 1471 { 1472 int error; 1473 1474 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_); 1475 1476 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw); 1477 if (error) 1478 return error; 1479 1480 xfs_inodegc_flush(mp); 1481 return 0; 1482 } 1483 1484 /* 1485 * Reclaim all the free space that we can by scheduling the background blockgc 1486 * and inodegc workers immediately and waiting for them all to clear. 1487 */ 1488 void 1489 xfs_blockgc_flush_all( 1490 struct xfs_mount *mp) 1491 { 1492 struct xfs_perag *pag; 1493 xfs_agnumber_t agno; 1494 1495 trace_xfs_blockgc_flush_all(mp, __return_address); 1496 1497 /* 1498 * For each blockgc worker, move its queue time up to now. If it 1499 * wasn't queued, it will not be requeued. Then flush whatever's 1500 * left. 1501 */ 1502 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1503 mod_delayed_work(pag->pag_mount->m_blockgc_wq, 1504 &pag->pag_blockgc_work, 0); 1505 1506 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1507 flush_delayed_work(&pag->pag_blockgc_work); 1508 1509 xfs_inodegc_flush(mp); 1510 } 1511 1512 /* 1513 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which 1514 * quota caused an allocation failure, so we make a best effort by including 1515 * each quota under low free space conditions (less than 1% free space) in the 1516 * scan. 1517 * 1518 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan 1519 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or 1520 * MMAPLOCK. 1521 */ 1522 int 1523 xfs_blockgc_free_dquots( 1524 struct xfs_mount *mp, 1525 struct xfs_dquot *udqp, 1526 struct xfs_dquot *gdqp, 1527 struct xfs_dquot *pdqp, 1528 unsigned int iwalk_flags) 1529 { 1530 struct xfs_icwalk icw = {0}; 1531 bool do_work = false; 1532 1533 if (!udqp && !gdqp && !pdqp) 1534 return 0; 1535 1536 /* 1537 * Run a scan to free blocks using the union filter to cover all 1538 * applicable quotas in a single scan. 1539 */ 1540 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags; 1541 1542 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) { 1543 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id); 1544 icw.icw_flags |= XFS_ICWALK_FLAG_UID; 1545 do_work = true; 1546 } 1547 1548 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) { 1549 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id); 1550 icw.icw_flags |= XFS_ICWALK_FLAG_GID; 1551 do_work = true; 1552 } 1553 1554 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) { 1555 icw.icw_prid = pdqp->q_id; 1556 icw.icw_flags |= XFS_ICWALK_FLAG_PRID; 1557 do_work = true; 1558 } 1559 1560 if (!do_work) 1561 return 0; 1562 1563 return xfs_blockgc_free_space(mp, &icw); 1564 } 1565 1566 /* Run cow/eofblocks scans on the quotas attached to the inode. */ 1567 int 1568 xfs_blockgc_free_quota( 1569 struct xfs_inode *ip, 1570 unsigned int iwalk_flags) 1571 { 1572 return xfs_blockgc_free_dquots(ip->i_mount, 1573 xfs_inode_dquot(ip, XFS_DQTYPE_USER), 1574 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP), 1575 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags); 1576 } 1577 1578 /* XFS Inode Cache Walking Code */ 1579 1580 /* 1581 * The inode lookup is done in batches to keep the amount of lock traffic and 1582 * radix tree lookups to a minimum. The batch size is a trade off between 1583 * lookup reduction and stack usage. This is in the reclaim path, so we can't 1584 * be too greedy. 1585 */ 1586 #define XFS_LOOKUP_BATCH 32 1587 1588 1589 /* 1590 * Decide if we want to grab this inode in anticipation of doing work towards 1591 * the goal. 1592 */ 1593 static inline bool 1594 xfs_icwalk_igrab( 1595 enum xfs_icwalk_goal goal, 1596 struct xfs_inode *ip, 1597 struct xfs_icwalk *icw) 1598 { 1599 switch (goal) { 1600 case XFS_ICWALK_BLOCKGC: 1601 return xfs_blockgc_igrab(ip); 1602 case XFS_ICWALK_RECLAIM: 1603 return xfs_reclaim_igrab(ip, icw); 1604 default: 1605 return false; 1606 } 1607 } 1608 1609 /* 1610 * Process an inode. Each processing function must handle any state changes 1611 * made by the icwalk igrab function. Return -EAGAIN to skip an inode. 1612 */ 1613 static inline int 1614 xfs_icwalk_process_inode( 1615 enum xfs_icwalk_goal goal, 1616 struct xfs_inode *ip, 1617 struct xfs_perag *pag, 1618 struct xfs_icwalk *icw) 1619 { 1620 int error = 0; 1621 1622 switch (goal) { 1623 case XFS_ICWALK_BLOCKGC: 1624 error = xfs_blockgc_scan_inode(ip, icw); 1625 break; 1626 case XFS_ICWALK_RECLAIM: 1627 xfs_reclaim_inode(ip, pag); 1628 break; 1629 } 1630 return error; 1631 } 1632 1633 /* 1634 * For a given per-AG structure @pag and a goal, grab qualifying inodes and 1635 * process them in some manner. 1636 */ 1637 static int 1638 xfs_icwalk_ag( 1639 struct xfs_perag *pag, 1640 enum xfs_icwalk_goal goal, 1641 struct xfs_icwalk *icw) 1642 { 1643 struct xfs_mount *mp = pag->pag_mount; 1644 uint32_t first_index; 1645 int last_error = 0; 1646 int skipped; 1647 bool done; 1648 int nr_found; 1649 1650 restart: 1651 done = false; 1652 skipped = 0; 1653 if (goal == XFS_ICWALK_RECLAIM) 1654 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor); 1655 else 1656 first_index = 0; 1657 nr_found = 0; 1658 do { 1659 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1660 int error = 0; 1661 int i; 1662 1663 rcu_read_lock(); 1664 1665 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, 1666 (void **) batch, first_index, 1667 XFS_LOOKUP_BATCH, goal); 1668 if (!nr_found) { 1669 done = true; 1670 rcu_read_unlock(); 1671 break; 1672 } 1673 1674 /* 1675 * Grab the inodes before we drop the lock. if we found 1676 * nothing, nr == 0 and the loop will be skipped. 1677 */ 1678 for (i = 0; i < nr_found; i++) { 1679 struct xfs_inode *ip = batch[i]; 1680 1681 if (done || !xfs_icwalk_igrab(goal, ip, icw)) 1682 batch[i] = NULL; 1683 1684 /* 1685 * Update the index for the next lookup. Catch 1686 * overflows into the next AG range which can occur if 1687 * we have inodes in the last block of the AG and we 1688 * are currently pointing to the last inode. 1689 * 1690 * Because we may see inodes that are from the wrong AG 1691 * due to RCU freeing and reallocation, only update the 1692 * index if it lies in this AG. It was a race that lead 1693 * us to see this inode, so another lookup from the 1694 * same index will not find it again. 1695 */ 1696 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 1697 continue; 1698 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1699 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1700 done = true; 1701 } 1702 1703 /* unlock now we've grabbed the inodes. */ 1704 rcu_read_unlock(); 1705 1706 for (i = 0; i < nr_found; i++) { 1707 if (!batch[i]) 1708 continue; 1709 error = xfs_icwalk_process_inode(goal, batch[i], pag, 1710 icw); 1711 if (error == -EAGAIN) { 1712 skipped++; 1713 continue; 1714 } 1715 if (error && last_error != -EFSCORRUPTED) 1716 last_error = error; 1717 } 1718 1719 /* bail out if the filesystem is corrupted. */ 1720 if (error == -EFSCORRUPTED) 1721 break; 1722 1723 cond_resched(); 1724 1725 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) { 1726 icw->icw_scan_limit -= XFS_LOOKUP_BATCH; 1727 if (icw->icw_scan_limit <= 0) 1728 break; 1729 } 1730 } while (nr_found && !done); 1731 1732 if (goal == XFS_ICWALK_RECLAIM) { 1733 if (done) 1734 first_index = 0; 1735 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index); 1736 } 1737 1738 if (skipped) { 1739 delay(1); 1740 goto restart; 1741 } 1742 return last_error; 1743 } 1744 1745 /* Walk all incore inodes to achieve a given goal. */ 1746 static int 1747 xfs_icwalk( 1748 struct xfs_mount *mp, 1749 enum xfs_icwalk_goal goal, 1750 struct xfs_icwalk *icw) 1751 { 1752 struct xfs_perag *pag; 1753 int error = 0; 1754 int last_error = 0; 1755 xfs_agnumber_t agno; 1756 1757 for_each_perag_tag(mp, agno, pag, goal) { 1758 error = xfs_icwalk_ag(pag, goal, icw); 1759 if (error) { 1760 last_error = error; 1761 if (error == -EFSCORRUPTED) { 1762 xfs_perag_put(pag); 1763 break; 1764 } 1765 } 1766 } 1767 return last_error; 1768 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID); 1769 } 1770 1771 #ifdef DEBUG 1772 static void 1773 xfs_check_delalloc( 1774 struct xfs_inode *ip, 1775 int whichfork) 1776 { 1777 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 1778 struct xfs_bmbt_irec got; 1779 struct xfs_iext_cursor icur; 1780 1781 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 1782 return; 1783 do { 1784 if (isnullstartblock(got.br_startblock)) { 1785 xfs_warn(ip->i_mount, 1786 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 1787 ip->i_ino, 1788 whichfork == XFS_DATA_FORK ? "data" : "cow", 1789 got.br_startoff, got.br_blockcount); 1790 } 1791 } while (xfs_iext_next_extent(ifp, &icur, &got)); 1792 } 1793 #else 1794 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 1795 #endif 1796 1797 /* Schedule the inode for reclaim. */ 1798 static void 1799 xfs_inodegc_set_reclaimable( 1800 struct xfs_inode *ip) 1801 { 1802 struct xfs_mount *mp = ip->i_mount; 1803 struct xfs_perag *pag; 1804 1805 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) { 1806 xfs_check_delalloc(ip, XFS_DATA_FORK); 1807 xfs_check_delalloc(ip, XFS_COW_FORK); 1808 ASSERT(0); 1809 } 1810 1811 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1812 spin_lock(&pag->pag_ici_lock); 1813 spin_lock(&ip->i_flags_lock); 1814 1815 trace_xfs_inode_set_reclaimable(ip); 1816 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING); 1817 ip->i_flags |= XFS_IRECLAIMABLE; 1818 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1819 XFS_ICI_RECLAIM_TAG); 1820 1821 spin_unlock(&ip->i_flags_lock); 1822 spin_unlock(&pag->pag_ici_lock); 1823 xfs_perag_put(pag); 1824 } 1825 1826 /* 1827 * Free all speculative preallocations and possibly even the inode itself. 1828 * This is the last chance to make changes to an otherwise unreferenced file 1829 * before incore reclamation happens. 1830 */ 1831 static void 1832 xfs_inodegc_inactivate( 1833 struct xfs_inode *ip) 1834 { 1835 trace_xfs_inode_inactivating(ip); 1836 xfs_inactive(ip); 1837 xfs_inodegc_set_reclaimable(ip); 1838 } 1839 1840 void 1841 xfs_inodegc_worker( 1842 struct work_struct *work) 1843 { 1844 struct xfs_inodegc *gc = container_of(work, struct xfs_inodegc, 1845 work); 1846 struct llist_node *node = llist_del_all(&gc->list); 1847 struct xfs_inode *ip, *n; 1848 1849 WRITE_ONCE(gc->items, 0); 1850 1851 if (!node) 1852 return; 1853 1854 ip = llist_entry(node, struct xfs_inode, i_gclist); 1855 trace_xfs_inodegc_worker(ip->i_mount, READ_ONCE(gc->shrinker_hits)); 1856 1857 WRITE_ONCE(gc->shrinker_hits, 0); 1858 llist_for_each_entry_safe(ip, n, node, i_gclist) { 1859 xfs_iflags_set(ip, XFS_INACTIVATING); 1860 xfs_inodegc_inactivate(ip); 1861 } 1862 } 1863 1864 /* 1865 * Force all currently queued inode inactivation work to run immediately and 1866 * wait for the work to finish. 1867 */ 1868 void 1869 xfs_inodegc_flush( 1870 struct xfs_mount *mp) 1871 { 1872 if (!xfs_is_inodegc_enabled(mp)) 1873 return; 1874 1875 trace_xfs_inodegc_flush(mp, __return_address); 1876 1877 xfs_inodegc_queue_all(mp); 1878 flush_workqueue(mp->m_inodegc_wq); 1879 } 1880 1881 /* 1882 * Flush all the pending work and then disable the inode inactivation background 1883 * workers and wait for them to stop. 1884 */ 1885 void 1886 xfs_inodegc_stop( 1887 struct xfs_mount *mp) 1888 { 1889 if (!xfs_clear_inodegc_enabled(mp)) 1890 return; 1891 1892 xfs_inodegc_queue_all(mp); 1893 drain_workqueue(mp->m_inodegc_wq); 1894 1895 trace_xfs_inodegc_stop(mp, __return_address); 1896 } 1897 1898 /* 1899 * Enable the inode inactivation background workers and schedule deferred inode 1900 * inactivation work if there is any. 1901 */ 1902 void 1903 xfs_inodegc_start( 1904 struct xfs_mount *mp) 1905 { 1906 if (xfs_set_inodegc_enabled(mp)) 1907 return; 1908 1909 trace_xfs_inodegc_start(mp, __return_address); 1910 xfs_inodegc_queue_all(mp); 1911 } 1912 1913 #ifdef CONFIG_XFS_RT 1914 static inline bool 1915 xfs_inodegc_want_queue_rt_file( 1916 struct xfs_inode *ip) 1917 { 1918 struct xfs_mount *mp = ip->i_mount; 1919 uint64_t freertx; 1920 1921 if (!XFS_IS_REALTIME_INODE(ip)) 1922 return false; 1923 1924 freertx = READ_ONCE(mp->m_sb.sb_frextents); 1925 return freertx < mp->m_low_rtexts[XFS_LOWSP_5_PCNT]; 1926 } 1927 #else 1928 # define xfs_inodegc_want_queue_rt_file(ip) (false) 1929 #endif /* CONFIG_XFS_RT */ 1930 1931 /* 1932 * Schedule the inactivation worker when: 1933 * 1934 * - We've accumulated more than one inode cluster buffer's worth of inodes. 1935 * - There is less than 5% free space left. 1936 * - Any of the quotas for this inode are near an enforcement limit. 1937 */ 1938 static inline bool 1939 xfs_inodegc_want_queue_work( 1940 struct xfs_inode *ip, 1941 unsigned int items) 1942 { 1943 struct xfs_mount *mp = ip->i_mount; 1944 1945 if (items > mp->m_ino_geo.inodes_per_cluster) 1946 return true; 1947 1948 if (__percpu_counter_compare(&mp->m_fdblocks, 1949 mp->m_low_space[XFS_LOWSP_5_PCNT], 1950 XFS_FDBLOCKS_BATCH) < 0) 1951 return true; 1952 1953 if (xfs_inodegc_want_queue_rt_file(ip)) 1954 return true; 1955 1956 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER)) 1957 return true; 1958 1959 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP)) 1960 return true; 1961 1962 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ)) 1963 return true; 1964 1965 return false; 1966 } 1967 1968 /* 1969 * Upper bound on the number of inodes in each AG that can be queued for 1970 * inactivation at any given time, to avoid monopolizing the workqueue. 1971 */ 1972 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK) 1973 1974 /* 1975 * Make the frontend wait for inactivations when: 1976 * 1977 * - Memory shrinkers queued the inactivation worker and it hasn't finished. 1978 * - The queue depth exceeds the maximum allowable percpu backlog. 1979 * 1980 * Note: If the current thread is running a transaction, we don't ever want to 1981 * wait for other transactions because that could introduce a deadlock. 1982 */ 1983 static inline bool 1984 xfs_inodegc_want_flush_work( 1985 struct xfs_inode *ip, 1986 unsigned int items, 1987 unsigned int shrinker_hits) 1988 { 1989 if (current->journal_info) 1990 return false; 1991 1992 if (shrinker_hits > 0) 1993 return true; 1994 1995 if (items > XFS_INODEGC_MAX_BACKLOG) 1996 return true; 1997 1998 return false; 1999 } 2000 2001 /* 2002 * Queue a background inactivation worker if there are inodes that need to be 2003 * inactivated and higher level xfs code hasn't disabled the background 2004 * workers. 2005 */ 2006 static void 2007 xfs_inodegc_queue( 2008 struct xfs_inode *ip) 2009 { 2010 struct xfs_mount *mp = ip->i_mount; 2011 struct xfs_inodegc *gc; 2012 int items; 2013 unsigned int shrinker_hits; 2014 2015 trace_xfs_inode_set_need_inactive(ip); 2016 spin_lock(&ip->i_flags_lock); 2017 ip->i_flags |= XFS_NEED_INACTIVE; 2018 spin_unlock(&ip->i_flags_lock); 2019 2020 gc = get_cpu_ptr(mp->m_inodegc); 2021 llist_add(&ip->i_gclist, &gc->list); 2022 items = READ_ONCE(gc->items); 2023 WRITE_ONCE(gc->items, items + 1); 2024 shrinker_hits = READ_ONCE(gc->shrinker_hits); 2025 put_cpu_ptr(gc); 2026 2027 if (!xfs_is_inodegc_enabled(mp)) 2028 return; 2029 2030 if (xfs_inodegc_want_queue_work(ip, items)) { 2031 trace_xfs_inodegc_queue(mp, __return_address); 2032 queue_work(mp->m_inodegc_wq, &gc->work); 2033 } 2034 2035 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) { 2036 trace_xfs_inodegc_throttle(mp, __return_address); 2037 flush_work(&gc->work); 2038 } 2039 } 2040 2041 /* 2042 * Fold the dead CPU inodegc queue into the current CPUs queue. 2043 */ 2044 void 2045 xfs_inodegc_cpu_dead( 2046 struct xfs_mount *mp, 2047 unsigned int dead_cpu) 2048 { 2049 struct xfs_inodegc *dead_gc, *gc; 2050 struct llist_node *first, *last; 2051 unsigned int count = 0; 2052 2053 dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu); 2054 cancel_work_sync(&dead_gc->work); 2055 2056 if (llist_empty(&dead_gc->list)) 2057 return; 2058 2059 first = dead_gc->list.first; 2060 last = first; 2061 while (last->next) { 2062 last = last->next; 2063 count++; 2064 } 2065 dead_gc->list.first = NULL; 2066 dead_gc->items = 0; 2067 2068 /* Add pending work to current CPU */ 2069 gc = get_cpu_ptr(mp->m_inodegc); 2070 llist_add_batch(first, last, &gc->list); 2071 count += READ_ONCE(gc->items); 2072 WRITE_ONCE(gc->items, count); 2073 put_cpu_ptr(gc); 2074 2075 if (xfs_is_inodegc_enabled(mp)) { 2076 trace_xfs_inodegc_queue(mp, __return_address); 2077 queue_work(mp->m_inodegc_wq, &gc->work); 2078 } 2079 } 2080 2081 /* 2082 * We set the inode flag atomically with the radix tree tag. Once we get tag 2083 * lookups on the radix tree, this inode flag can go away. 2084 * 2085 * We always use background reclaim here because even if the inode is clean, it 2086 * still may be under IO and hence we have wait for IO completion to occur 2087 * before we can reclaim the inode. The background reclaim path handles this 2088 * more efficiently than we can here, so simply let background reclaim tear down 2089 * all inodes. 2090 */ 2091 void 2092 xfs_inode_mark_reclaimable( 2093 struct xfs_inode *ip) 2094 { 2095 struct xfs_mount *mp = ip->i_mount; 2096 bool need_inactive; 2097 2098 XFS_STATS_INC(mp, vn_reclaim); 2099 2100 /* 2101 * We should never get here with any of the reclaim flags already set. 2102 */ 2103 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS)); 2104 2105 need_inactive = xfs_inode_needs_inactive(ip); 2106 if (need_inactive) { 2107 xfs_inodegc_queue(ip); 2108 return; 2109 } 2110 2111 /* Going straight to reclaim, so drop the dquots. */ 2112 xfs_qm_dqdetach(ip); 2113 xfs_inodegc_set_reclaimable(ip); 2114 } 2115 2116 /* 2117 * Register a phony shrinker so that we can run background inodegc sooner when 2118 * there's memory pressure. Inactivation does not itself free any memory but 2119 * it does make inodes reclaimable, which eventually frees memory. 2120 * 2121 * The count function, seek value, and batch value are crafted to trigger the 2122 * scan function during the second round of scanning. Hopefully this means 2123 * that we reclaimed enough memory that initiating metadata transactions won't 2124 * make things worse. 2125 */ 2126 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY) 2127 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1) 2128 2129 static unsigned long 2130 xfs_inodegc_shrinker_count( 2131 struct shrinker *shrink, 2132 struct shrink_control *sc) 2133 { 2134 struct xfs_mount *mp = container_of(shrink, struct xfs_mount, 2135 m_inodegc_shrinker); 2136 struct xfs_inodegc *gc; 2137 int cpu; 2138 2139 if (!xfs_is_inodegc_enabled(mp)) 2140 return 0; 2141 2142 for_each_online_cpu(cpu) { 2143 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2144 if (!llist_empty(&gc->list)) 2145 return XFS_INODEGC_SHRINKER_COUNT; 2146 } 2147 2148 return 0; 2149 } 2150 2151 static unsigned long 2152 xfs_inodegc_shrinker_scan( 2153 struct shrinker *shrink, 2154 struct shrink_control *sc) 2155 { 2156 struct xfs_mount *mp = container_of(shrink, struct xfs_mount, 2157 m_inodegc_shrinker); 2158 struct xfs_inodegc *gc; 2159 int cpu; 2160 bool no_items = true; 2161 2162 if (!xfs_is_inodegc_enabled(mp)) 2163 return SHRINK_STOP; 2164 2165 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address); 2166 2167 for_each_online_cpu(cpu) { 2168 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2169 if (!llist_empty(&gc->list)) { 2170 unsigned int h = READ_ONCE(gc->shrinker_hits); 2171 2172 WRITE_ONCE(gc->shrinker_hits, h + 1); 2173 queue_work_on(cpu, mp->m_inodegc_wq, &gc->work); 2174 no_items = false; 2175 } 2176 } 2177 2178 /* 2179 * If there are no inodes to inactivate, we don't want the shrinker 2180 * to think there's deferred work to call us back about. 2181 */ 2182 if (no_items) 2183 return LONG_MAX; 2184 2185 return SHRINK_STOP; 2186 } 2187 2188 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */ 2189 int 2190 xfs_inodegc_register_shrinker( 2191 struct xfs_mount *mp) 2192 { 2193 struct shrinker *shrink = &mp->m_inodegc_shrinker; 2194 2195 shrink->count_objects = xfs_inodegc_shrinker_count; 2196 shrink->scan_objects = xfs_inodegc_shrinker_scan; 2197 shrink->seeks = 0; 2198 shrink->flags = SHRINKER_NONSLAB; 2199 shrink->batch = XFS_INODEGC_SHRINKER_BATCH; 2200 2201 return register_shrinker(shrink); 2202 } 2203