1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_inode_item.h" 17 #include "xfs_quota.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_bmap_util.h" 21 #include "xfs_dquot_item.h" 22 #include "xfs_dquot.h" 23 #include "xfs_reflink.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_ag.h" 26 #include "xfs_log_priv.h" 27 #include "xfs_health.h" 28 #include "xfs_da_format.h" 29 #include "xfs_dir2.h" 30 #include "xfs_metafile.h" 31 32 #include <linux/iversion.h> 33 34 /* Radix tree tags for incore inode tree. */ 35 36 /* inode is to be reclaimed */ 37 #define XFS_ICI_RECLAIM_TAG 0 38 /* Inode has speculative preallocations (posteof or cow) to clean. */ 39 #define XFS_ICI_BLOCKGC_TAG 1 40 41 /* 42 * The goal for walking incore inodes. These can correspond with incore inode 43 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace. 44 */ 45 enum xfs_icwalk_goal { 46 /* Goals directly associated with tagged inodes. */ 47 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG, 48 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG, 49 }; 50 51 static int xfs_icwalk(struct xfs_mount *mp, 52 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 53 static int xfs_icwalk_ag(struct xfs_perag *pag, 54 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 55 56 /* 57 * Private inode cache walk flags for struct xfs_icwalk. Must not 58 * coincide with XFS_ICWALK_FLAGS_VALID. 59 */ 60 61 /* Stop scanning after icw_scan_limit inodes. */ 62 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28) 63 64 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27) 65 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */ 66 67 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \ 68 XFS_ICWALK_FLAG_RECLAIM_SICK | \ 69 XFS_ICWALK_FLAG_UNION) 70 71 /* Marks for the perag xarray */ 72 #define XFS_PERAG_RECLAIM_MARK XA_MARK_0 73 #define XFS_PERAG_BLOCKGC_MARK XA_MARK_1 74 75 static inline xa_mark_t ici_tag_to_mark(unsigned int tag) 76 { 77 if (tag == XFS_ICI_RECLAIM_TAG) 78 return XFS_PERAG_RECLAIM_MARK; 79 ASSERT(tag == XFS_ICI_BLOCKGC_TAG); 80 return XFS_PERAG_BLOCKGC_MARK; 81 } 82 83 /* 84 * Allocate and initialise an xfs_inode. 85 */ 86 struct xfs_inode * 87 xfs_inode_alloc( 88 struct xfs_mount *mp, 89 xfs_ino_t ino) 90 { 91 struct xfs_inode *ip; 92 93 /* 94 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL 95 * and return NULL here on ENOMEM. 96 */ 97 ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL); 98 99 if (inode_init_always(mp->m_super, VFS_I(ip))) { 100 kmem_cache_free(xfs_inode_cache, ip); 101 return NULL; 102 } 103 104 /* VFS doesn't initialise i_mode! */ 105 VFS_I(ip)->i_mode = 0; 106 mapping_set_folio_min_order(VFS_I(ip)->i_mapping, 107 M_IGEO(mp)->min_folio_order); 108 109 XFS_STATS_INC(mp, vn_active); 110 ASSERT(atomic_read(&ip->i_pincount) == 0); 111 ASSERT(ip->i_ino == 0); 112 113 /* initialise the xfs inode */ 114 ip->i_ino = ino; 115 ip->i_mount = mp; 116 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 117 ip->i_cowfp = NULL; 118 memset(&ip->i_af, 0, sizeof(ip->i_af)); 119 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS; 120 memset(&ip->i_df, 0, sizeof(ip->i_df)); 121 ip->i_flags = 0; 122 ip->i_delayed_blks = 0; 123 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 124 ip->i_nblocks = 0; 125 ip->i_forkoff = 0; 126 ip->i_sick = 0; 127 ip->i_checked = 0; 128 INIT_WORK(&ip->i_ioend_work, xfs_end_io); 129 INIT_LIST_HEAD(&ip->i_ioend_list); 130 spin_lock_init(&ip->i_ioend_lock); 131 ip->i_next_unlinked = NULLAGINO; 132 ip->i_prev_unlinked = 0; 133 134 return ip; 135 } 136 137 STATIC void 138 xfs_inode_free_callback( 139 struct rcu_head *head) 140 { 141 struct inode *inode = container_of(head, struct inode, i_rcu); 142 struct xfs_inode *ip = XFS_I(inode); 143 144 switch (VFS_I(ip)->i_mode & S_IFMT) { 145 case S_IFREG: 146 case S_IFDIR: 147 case S_IFLNK: 148 xfs_idestroy_fork(&ip->i_df); 149 break; 150 } 151 152 xfs_ifork_zap_attr(ip); 153 154 if (ip->i_cowfp) { 155 xfs_idestroy_fork(ip->i_cowfp); 156 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp); 157 } 158 if (ip->i_itemp) { 159 ASSERT(!test_bit(XFS_LI_IN_AIL, 160 &ip->i_itemp->ili_item.li_flags)); 161 xfs_inode_item_destroy(ip); 162 ip->i_itemp = NULL; 163 } 164 165 kmem_cache_free(xfs_inode_cache, ip); 166 } 167 168 static void 169 __xfs_inode_free( 170 struct xfs_inode *ip) 171 { 172 /* asserts to verify all state is correct here */ 173 ASSERT(atomic_read(&ip->i_pincount) == 0); 174 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list)); 175 XFS_STATS_DEC(ip->i_mount, vn_active); 176 177 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 178 } 179 180 void 181 xfs_inode_free( 182 struct xfs_inode *ip) 183 { 184 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING)); 185 186 /* 187 * Because we use RCU freeing we need to ensure the inode always 188 * appears to be reclaimed with an invalid inode number when in the 189 * free state. The ip->i_flags_lock provides the barrier against lookup 190 * races. 191 */ 192 spin_lock(&ip->i_flags_lock); 193 ip->i_flags = XFS_IRECLAIM; 194 ip->i_ino = 0; 195 spin_unlock(&ip->i_flags_lock); 196 197 __xfs_inode_free(ip); 198 } 199 200 /* 201 * Queue background inode reclaim work if there are reclaimable inodes and there 202 * isn't reclaim work already scheduled or in progress. 203 */ 204 static void 205 xfs_reclaim_work_queue( 206 struct xfs_mount *mp) 207 { 208 209 rcu_read_lock(); 210 if (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) { 211 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 212 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 213 } 214 rcu_read_unlock(); 215 } 216 217 /* 218 * Background scanning to trim preallocated space. This is queued based on the 219 * 'speculative_prealloc_lifetime' tunable (5m by default). 220 */ 221 static inline void 222 xfs_blockgc_queue( 223 struct xfs_perag *pag) 224 { 225 struct xfs_mount *mp = pag_mount(pag); 226 227 if (!xfs_is_blockgc_enabled(mp)) 228 return; 229 230 rcu_read_lock(); 231 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) 232 queue_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work, 233 secs_to_jiffies(xfs_blockgc_secs)); 234 rcu_read_unlock(); 235 } 236 237 /* Set a tag on both the AG incore inode tree and the AG radix tree. */ 238 static void 239 xfs_perag_set_inode_tag( 240 struct xfs_perag *pag, 241 xfs_agino_t agino, 242 unsigned int tag) 243 { 244 bool was_tagged; 245 246 lockdep_assert_held(&pag->pag_ici_lock); 247 248 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 249 radix_tree_tag_set(&pag->pag_ici_root, agino, tag); 250 251 if (tag == XFS_ICI_RECLAIM_TAG) 252 pag->pag_ici_reclaimable++; 253 254 if (was_tagged) 255 return; 256 257 /* propagate the tag up into the pag xarray tree */ 258 xfs_group_set_mark(pag_group(pag), ici_tag_to_mark(tag)); 259 260 /* start background work */ 261 switch (tag) { 262 case XFS_ICI_RECLAIM_TAG: 263 xfs_reclaim_work_queue(pag_mount(pag)); 264 break; 265 case XFS_ICI_BLOCKGC_TAG: 266 xfs_blockgc_queue(pag); 267 break; 268 } 269 270 trace_xfs_perag_set_inode_tag(pag, _RET_IP_); 271 } 272 273 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */ 274 static void 275 xfs_perag_clear_inode_tag( 276 struct xfs_perag *pag, 277 xfs_agino_t agino, 278 unsigned int tag) 279 { 280 lockdep_assert_held(&pag->pag_ici_lock); 281 282 /* 283 * Reclaim can signal (with a null agino) that it cleared its own tag 284 * by removing the inode from the radix tree. 285 */ 286 if (agino != NULLAGINO) 287 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag); 288 else 289 ASSERT(tag == XFS_ICI_RECLAIM_TAG); 290 291 if (tag == XFS_ICI_RECLAIM_TAG) 292 pag->pag_ici_reclaimable--; 293 294 if (radix_tree_tagged(&pag->pag_ici_root, tag)) 295 return; 296 297 /* clear the tag from the pag xarray */ 298 xfs_group_clear_mark(pag_group(pag), ici_tag_to_mark(tag)); 299 trace_xfs_perag_clear_inode_tag(pag, _RET_IP_); 300 } 301 302 /* 303 * Find the next AG after @pag, or the first AG if @pag is NULL. 304 */ 305 static struct xfs_perag * 306 xfs_perag_grab_next_tag( 307 struct xfs_mount *mp, 308 struct xfs_perag *pag, 309 int tag) 310 { 311 return to_perag(xfs_group_grab_next_mark(mp, 312 pag ? pag_group(pag) : NULL, 313 ici_tag_to_mark(tag), XG_TYPE_AG)); 314 } 315 316 /* 317 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 318 * part of the structure. This is made more complex by the fact we store 319 * information about the on-disk values in the VFS inode and so we can't just 320 * overwrite the values unconditionally. Hence we save the parameters we 321 * need to retain across reinitialisation, and rewrite them into the VFS inode 322 * after reinitialisation even if it fails. 323 */ 324 static int 325 xfs_reinit_inode( 326 struct xfs_mount *mp, 327 struct inode *inode) 328 { 329 int error; 330 uint32_t nlink = inode->i_nlink; 331 uint32_t generation = inode->i_generation; 332 uint64_t version = inode_peek_iversion(inode); 333 umode_t mode = inode->i_mode; 334 dev_t dev = inode->i_rdev; 335 kuid_t uid = inode->i_uid; 336 kgid_t gid = inode->i_gid; 337 unsigned long state = inode->i_state; 338 339 error = inode_init_always(mp->m_super, inode); 340 341 set_nlink(inode, nlink); 342 inode->i_generation = generation; 343 inode_set_iversion_queried(inode, version); 344 inode->i_mode = mode; 345 inode->i_rdev = dev; 346 inode->i_uid = uid; 347 inode->i_gid = gid; 348 inode->i_state = state; 349 mapping_set_folio_min_order(inode->i_mapping, 350 M_IGEO(mp)->min_folio_order); 351 return error; 352 } 353 354 /* 355 * Carefully nudge an inode whose VFS state has been torn down back into a 356 * usable state. Drops the i_flags_lock and the rcu read lock. 357 */ 358 static int 359 xfs_iget_recycle( 360 struct xfs_perag *pag, 361 struct xfs_inode *ip) __releases(&ip->i_flags_lock) 362 { 363 struct xfs_mount *mp = ip->i_mount; 364 struct inode *inode = VFS_I(ip); 365 int error; 366 367 trace_xfs_iget_recycle(ip); 368 369 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 370 return -EAGAIN; 371 372 /* 373 * We need to make it look like the inode is being reclaimed to prevent 374 * the actual reclaim workers from stomping over us while we recycle 375 * the inode. We can't clear the radix tree tag yet as it requires 376 * pag_ici_lock to be held exclusive. 377 */ 378 ip->i_flags |= XFS_IRECLAIM; 379 380 spin_unlock(&ip->i_flags_lock); 381 rcu_read_unlock(); 382 383 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 384 error = xfs_reinit_inode(mp, inode); 385 xfs_iunlock(ip, XFS_ILOCK_EXCL); 386 if (error) { 387 /* 388 * Re-initializing the inode failed, and we are in deep 389 * trouble. Try to re-add it to the reclaim list. 390 */ 391 rcu_read_lock(); 392 spin_lock(&ip->i_flags_lock); 393 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 394 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 395 spin_unlock(&ip->i_flags_lock); 396 rcu_read_unlock(); 397 398 trace_xfs_iget_recycle_fail(ip); 399 return error; 400 } 401 402 spin_lock(&pag->pag_ici_lock); 403 spin_lock(&ip->i_flags_lock); 404 405 /* 406 * Clear the per-lifetime state in the inode as we are now effectively 407 * a new inode and need to return to the initial state before reuse 408 * occurs. 409 */ 410 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 411 ip->i_flags |= XFS_INEW; 412 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 413 XFS_ICI_RECLAIM_TAG); 414 inode->i_state = I_NEW; 415 spin_unlock(&ip->i_flags_lock); 416 spin_unlock(&pag->pag_ici_lock); 417 418 return 0; 419 } 420 421 /* 422 * If we are allocating a new inode, then check what was returned is 423 * actually a free, empty inode. If we are not allocating an inode, 424 * then check we didn't find a free inode. 425 * 426 * Returns: 427 * 0 if the inode free state matches the lookup context 428 * -ENOENT if the inode is free and we are not allocating 429 * -EFSCORRUPTED if there is any state mismatch at all 430 */ 431 static int 432 xfs_iget_check_free_state( 433 struct xfs_inode *ip, 434 int flags) 435 { 436 if (flags & XFS_IGET_CREATE) { 437 /* should be a free inode */ 438 if (VFS_I(ip)->i_mode != 0) { 439 xfs_warn(ip->i_mount, 440 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", 441 ip->i_ino, VFS_I(ip)->i_mode); 442 xfs_agno_mark_sick(ip->i_mount, 443 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 444 XFS_SICK_AG_INOBT); 445 return -EFSCORRUPTED; 446 } 447 448 if (ip->i_nblocks != 0) { 449 xfs_warn(ip->i_mount, 450 "Corruption detected! Free inode 0x%llx has blocks allocated!", 451 ip->i_ino); 452 xfs_agno_mark_sick(ip->i_mount, 453 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 454 XFS_SICK_AG_INOBT); 455 return -EFSCORRUPTED; 456 } 457 return 0; 458 } 459 460 /* should be an allocated inode */ 461 if (VFS_I(ip)->i_mode == 0) 462 return -ENOENT; 463 464 return 0; 465 } 466 467 /* Make all pending inactivation work start immediately. */ 468 static bool 469 xfs_inodegc_queue_all( 470 struct xfs_mount *mp) 471 { 472 struct xfs_inodegc *gc; 473 int cpu; 474 bool ret = false; 475 476 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 477 gc = per_cpu_ptr(mp->m_inodegc, cpu); 478 if (!llist_empty(&gc->list)) { 479 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 480 ret = true; 481 } 482 } 483 484 return ret; 485 } 486 487 /* Wait for all queued work and collect errors */ 488 static int 489 xfs_inodegc_wait_all( 490 struct xfs_mount *mp) 491 { 492 int cpu; 493 int error = 0; 494 495 flush_workqueue(mp->m_inodegc_wq); 496 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 497 struct xfs_inodegc *gc; 498 499 gc = per_cpu_ptr(mp->m_inodegc, cpu); 500 if (gc->error && !error) 501 error = gc->error; 502 gc->error = 0; 503 } 504 505 return error; 506 } 507 508 /* 509 * Check the validity of the inode we just found it the cache 510 */ 511 static int 512 xfs_iget_cache_hit( 513 struct xfs_perag *pag, 514 struct xfs_inode *ip, 515 xfs_ino_t ino, 516 int flags, 517 int lock_flags) __releases(RCU) 518 { 519 struct inode *inode = VFS_I(ip); 520 struct xfs_mount *mp = ip->i_mount; 521 int error; 522 523 /* 524 * check for re-use of an inode within an RCU grace period due to the 525 * radix tree nodes not being updated yet. We monitor for this by 526 * setting the inode number to zero before freeing the inode structure. 527 * If the inode has been reallocated and set up, then the inode number 528 * will not match, so check for that, too. 529 */ 530 spin_lock(&ip->i_flags_lock); 531 if (ip->i_ino != ino) 532 goto out_skip; 533 534 /* 535 * If we are racing with another cache hit that is currently 536 * instantiating this inode or currently recycling it out of 537 * reclaimable state, wait for the initialisation to complete 538 * before continuing. 539 * 540 * If we're racing with the inactivation worker we also want to wait. 541 * If we're creating a new file, it's possible that the worker 542 * previously marked the inode as free on disk but hasn't finished 543 * updating the incore state yet. The AGI buffer will be dirty and 544 * locked to the icreate transaction, so a synchronous push of the 545 * inodegc workers would result in deadlock. For a regular iget, the 546 * worker is running already, so we might as well wait. 547 * 548 * XXX(hch): eventually we should do something equivalent to 549 * wait_on_inode to wait for these flags to be cleared 550 * instead of polling for it. 551 */ 552 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING)) 553 goto out_skip; 554 555 if (ip->i_flags & XFS_NEED_INACTIVE) { 556 /* Unlinked inodes cannot be re-grabbed. */ 557 if (VFS_I(ip)->i_nlink == 0) { 558 error = -ENOENT; 559 goto out_error; 560 } 561 goto out_inodegc_flush; 562 } 563 564 /* 565 * Check the inode free state is valid. This also detects lookup 566 * racing with unlinks. 567 */ 568 error = xfs_iget_check_free_state(ip, flags); 569 if (error) 570 goto out_error; 571 572 /* Skip inodes that have no vfs state. */ 573 if ((flags & XFS_IGET_INCORE) && 574 (ip->i_flags & XFS_IRECLAIMABLE)) 575 goto out_skip; 576 577 /* The inode fits the selection criteria; process it. */ 578 if (ip->i_flags & XFS_IRECLAIMABLE) { 579 /* Drops i_flags_lock and RCU read lock. */ 580 error = xfs_iget_recycle(pag, ip); 581 if (error == -EAGAIN) 582 goto out_skip; 583 if (error) 584 return error; 585 } else { 586 /* If the VFS inode is being torn down, pause and try again. */ 587 if (!igrab(inode)) 588 goto out_skip; 589 590 /* We've got a live one. */ 591 spin_unlock(&ip->i_flags_lock); 592 rcu_read_unlock(); 593 trace_xfs_iget_hit(ip); 594 } 595 596 if (lock_flags != 0) 597 xfs_ilock(ip, lock_flags); 598 599 if (!(flags & XFS_IGET_INCORE)) 600 xfs_iflags_clear(ip, XFS_ISTALE); 601 XFS_STATS_INC(mp, xs_ig_found); 602 603 return 0; 604 605 out_skip: 606 trace_xfs_iget_skip(ip); 607 XFS_STATS_INC(mp, xs_ig_frecycle); 608 error = -EAGAIN; 609 out_error: 610 spin_unlock(&ip->i_flags_lock); 611 rcu_read_unlock(); 612 return error; 613 614 out_inodegc_flush: 615 spin_unlock(&ip->i_flags_lock); 616 rcu_read_unlock(); 617 /* 618 * Do not wait for the workers, because the caller could hold an AGI 619 * buffer lock. We're just going to sleep in a loop anyway. 620 */ 621 if (xfs_is_inodegc_enabled(mp)) 622 xfs_inodegc_queue_all(mp); 623 return -EAGAIN; 624 } 625 626 static int 627 xfs_iget_cache_miss( 628 struct xfs_mount *mp, 629 struct xfs_perag *pag, 630 xfs_trans_t *tp, 631 xfs_ino_t ino, 632 struct xfs_inode **ipp, 633 int flags, 634 int lock_flags) 635 { 636 struct xfs_inode *ip; 637 int error; 638 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 639 640 ip = xfs_inode_alloc(mp, ino); 641 if (!ip) 642 return -ENOMEM; 643 644 error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags); 645 if (error) 646 goto out_destroy; 647 648 /* 649 * For version 5 superblocks, if we are initialising a new inode and we 650 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can 651 * simply build the new inode core with a random generation number. 652 * 653 * For version 4 (and older) superblocks, log recovery is dependent on 654 * the i_flushiter field being initialised from the current on-disk 655 * value and hence we must also read the inode off disk even when 656 * initializing new inodes. 657 */ 658 if (xfs_has_v3inodes(mp) && 659 (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) { 660 VFS_I(ip)->i_generation = get_random_u32(); 661 } else { 662 struct xfs_buf *bp; 663 664 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp); 665 if (error) 666 goto out_destroy; 667 668 error = xfs_inode_from_disk(ip, 669 xfs_buf_offset(bp, ip->i_imap.im_boffset)); 670 if (!error) 671 xfs_buf_set_ref(bp, XFS_INO_REF); 672 else 673 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 674 xfs_trans_brelse(tp, bp); 675 676 if (error) 677 goto out_destroy; 678 } 679 680 trace_xfs_iget_miss(ip); 681 682 /* 683 * Check the inode free state is valid. This also detects lookup 684 * racing with unlinks. 685 */ 686 error = xfs_iget_check_free_state(ip, flags); 687 if (error) 688 goto out_destroy; 689 690 /* 691 * Preload the radix tree so we can insert safely under the 692 * write spinlock. Note that we cannot sleep inside the preload 693 * region. 694 */ 695 if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) { 696 error = -EAGAIN; 697 goto out_destroy; 698 } 699 700 /* 701 * Because the inode hasn't been added to the radix-tree yet it can't 702 * be found by another thread, so we can do the non-sleeping lock here. 703 */ 704 if (lock_flags) { 705 if (!xfs_ilock_nowait(ip, lock_flags)) 706 BUG(); 707 } 708 709 /* 710 * These values must be set before inserting the inode into the radix 711 * tree as the moment it is inserted a concurrent lookup (allowed by the 712 * RCU locking mechanism) can find it and that lookup must see that this 713 * is an inode currently under construction (i.e. that XFS_INEW is set). 714 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 715 * memory barrier that ensures this detection works correctly at lookup 716 * time. 717 */ 718 if (flags & XFS_IGET_DONTCACHE) 719 d_mark_dontcache(VFS_I(ip)); 720 ip->i_udquot = NULL; 721 ip->i_gdquot = NULL; 722 ip->i_pdquot = NULL; 723 xfs_iflags_set(ip, XFS_INEW); 724 725 /* insert the new inode */ 726 spin_lock(&pag->pag_ici_lock); 727 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 728 if (unlikely(error)) { 729 WARN_ON(error != -EEXIST); 730 XFS_STATS_INC(mp, xs_ig_dup); 731 error = -EAGAIN; 732 goto out_preload_end; 733 } 734 spin_unlock(&pag->pag_ici_lock); 735 radix_tree_preload_end(); 736 737 *ipp = ip; 738 return 0; 739 740 out_preload_end: 741 spin_unlock(&pag->pag_ici_lock); 742 radix_tree_preload_end(); 743 if (lock_flags) 744 xfs_iunlock(ip, lock_flags); 745 out_destroy: 746 __destroy_inode(VFS_I(ip)); 747 xfs_inode_free(ip); 748 return error; 749 } 750 751 /* 752 * Look up an inode by number in the given file system. The inode is looked up 753 * in the cache held in each AG. If the inode is found in the cache, initialise 754 * the vfs inode if necessary. 755 * 756 * If it is not in core, read it in from the file system's device, add it to the 757 * cache and initialise the vfs inode. 758 * 759 * The inode is locked according to the value of the lock_flags parameter. 760 * Inode lookup is only done during metadata operations and not as part of the 761 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup. 762 */ 763 int 764 xfs_iget( 765 struct xfs_mount *mp, 766 struct xfs_trans *tp, 767 xfs_ino_t ino, 768 uint flags, 769 uint lock_flags, 770 struct xfs_inode **ipp) 771 { 772 struct xfs_inode *ip; 773 struct xfs_perag *pag; 774 xfs_agino_t agino; 775 int error; 776 777 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 778 779 /* reject inode numbers outside existing AGs */ 780 if (!xfs_verify_ino(mp, ino)) 781 return -EINVAL; 782 783 XFS_STATS_INC(mp, xs_ig_attempts); 784 785 /* get the perag structure and ensure that it's inode capable */ 786 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 787 agino = XFS_INO_TO_AGINO(mp, ino); 788 789 again: 790 error = 0; 791 rcu_read_lock(); 792 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 793 794 if (ip) { 795 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 796 if (error) 797 goto out_error_or_again; 798 } else { 799 rcu_read_unlock(); 800 if (flags & XFS_IGET_INCORE) { 801 error = -ENODATA; 802 goto out_error_or_again; 803 } 804 XFS_STATS_INC(mp, xs_ig_missed); 805 806 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 807 flags, lock_flags); 808 if (error) 809 goto out_error_or_again; 810 } 811 xfs_perag_put(pag); 812 813 *ipp = ip; 814 815 /* 816 * If we have a real type for an on-disk inode, we can setup the inode 817 * now. If it's a new inode being created, xfs_init_new_inode will 818 * handle it. 819 */ 820 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 821 xfs_setup_existing_inode(ip); 822 return 0; 823 824 out_error_or_again: 825 if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) && 826 error == -EAGAIN) { 827 delay(1); 828 goto again; 829 } 830 xfs_perag_put(pag); 831 return error; 832 } 833 834 /* 835 * Get a metadata inode. 836 * 837 * The metafile type must match the file mode exactly, and for files in the 838 * metadata directory tree, it must match the inode's metatype exactly. 839 */ 840 int 841 xfs_trans_metafile_iget( 842 struct xfs_trans *tp, 843 xfs_ino_t ino, 844 enum xfs_metafile_type metafile_type, 845 struct xfs_inode **ipp) 846 { 847 struct xfs_mount *mp = tp->t_mountp; 848 struct xfs_inode *ip; 849 umode_t mode; 850 int error; 851 852 error = xfs_iget(mp, tp, ino, 0, 0, &ip); 853 if (error == -EFSCORRUPTED || error == -EINVAL) 854 goto whine; 855 if (error) 856 return error; 857 858 if (VFS_I(ip)->i_nlink == 0) 859 goto bad_rele; 860 861 if (metafile_type == XFS_METAFILE_DIR) 862 mode = S_IFDIR; 863 else 864 mode = S_IFREG; 865 if (inode_wrong_type(VFS_I(ip), mode)) 866 goto bad_rele; 867 if (xfs_has_metadir(mp)) { 868 if (!xfs_is_metadir_inode(ip)) 869 goto bad_rele; 870 if (metafile_type != ip->i_metatype) 871 goto bad_rele; 872 } 873 874 *ipp = ip; 875 return 0; 876 bad_rele: 877 xfs_irele(ip); 878 whine: 879 xfs_err(mp, "metadata inode 0x%llx type %u is corrupt", ino, 880 metafile_type); 881 xfs_fs_mark_sick(mp, XFS_SICK_FS_METADIR); 882 return -EFSCORRUPTED; 883 } 884 885 /* Grab a metadata file if the caller doesn't already have a transaction. */ 886 int 887 xfs_metafile_iget( 888 struct xfs_mount *mp, 889 xfs_ino_t ino, 890 enum xfs_metafile_type metafile_type, 891 struct xfs_inode **ipp) 892 { 893 struct xfs_trans *tp; 894 int error; 895 896 tp = xfs_trans_alloc_empty(mp); 897 error = xfs_trans_metafile_iget(tp, ino, metafile_type, ipp); 898 xfs_trans_cancel(tp); 899 return error; 900 } 901 902 /* 903 * Grab the inode for reclaim exclusively. 904 * 905 * We have found this inode via a lookup under RCU, so the inode may have 906 * already been freed, or it may be in the process of being recycled by 907 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode 908 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE 909 * will not be set. Hence we need to check for both these flag conditions to 910 * avoid inodes that are no longer reclaim candidates. 911 * 912 * Note: checking for other state flags here, under the i_flags_lock or not, is 913 * racy and should be avoided. Those races should be resolved only after we have 914 * ensured that we are able to reclaim this inode and the world can see that we 915 * are going to reclaim it. 916 * 917 * Return true if we grabbed it, false otherwise. 918 */ 919 static bool 920 xfs_reclaim_igrab( 921 struct xfs_inode *ip, 922 struct xfs_icwalk *icw) 923 { 924 ASSERT(rcu_read_lock_held()); 925 926 spin_lock(&ip->i_flags_lock); 927 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 928 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 929 /* not a reclaim candidate. */ 930 spin_unlock(&ip->i_flags_lock); 931 return false; 932 } 933 934 /* Don't reclaim a sick inode unless the caller asked for it. */ 935 if (ip->i_sick && 936 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) { 937 spin_unlock(&ip->i_flags_lock); 938 return false; 939 } 940 941 __xfs_iflags_set(ip, XFS_IRECLAIM); 942 spin_unlock(&ip->i_flags_lock); 943 return true; 944 } 945 946 /* 947 * Inode reclaim is non-blocking, so the default action if progress cannot be 948 * made is to "requeue" the inode for reclaim by unlocking it and clearing the 949 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about 950 * blocking anymore and hence we can wait for the inode to be able to reclaim 951 * it. 952 * 953 * We do no IO here - if callers require inodes to be cleaned they must push the 954 * AIL first to trigger writeback of dirty inodes. This enables writeback to be 955 * done in the background in a non-blocking manner, and enables memory reclaim 956 * to make progress without blocking. 957 */ 958 static void 959 xfs_reclaim_inode( 960 struct xfs_inode *ip, 961 struct xfs_perag *pag) 962 { 963 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 964 965 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 966 goto out; 967 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING)) 968 goto out_iunlock; 969 970 /* 971 * Check for log shutdown because aborting the inode can move the log 972 * tail and corrupt in memory state. This is fine if the log is shut 973 * down, but if the log is still active and only the mount is shut down 974 * then the in-memory log tail movement caused by the abort can be 975 * incorrectly propagated to disk. 976 */ 977 if (xlog_is_shutdown(ip->i_mount->m_log)) { 978 xfs_iunpin_wait(ip); 979 /* 980 * Avoid a ABBA deadlock on the inode cluster buffer vs 981 * concurrent xfs_ifree_cluster() trying to mark the inode 982 * stale. We don't need the inode locked to run the flush abort 983 * code, but the flush abort needs to lock the cluster buffer. 984 */ 985 xfs_iunlock(ip, XFS_ILOCK_EXCL); 986 xfs_iflush_shutdown_abort(ip); 987 xfs_ilock(ip, XFS_ILOCK_EXCL); 988 goto reclaim; 989 } 990 if (xfs_ipincount(ip)) 991 goto out_clear_flush; 992 if (!xfs_inode_clean(ip)) 993 goto out_clear_flush; 994 995 xfs_iflags_clear(ip, XFS_IFLUSHING); 996 reclaim: 997 trace_xfs_inode_reclaiming(ip); 998 999 /* 1000 * Because we use RCU freeing we need to ensure the inode always appears 1001 * to be reclaimed with an invalid inode number when in the free state. 1002 * We do this as early as possible under the ILOCK so that 1003 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to 1004 * detect races with us here. By doing this, we guarantee that once 1005 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that 1006 * it will see either a valid inode that will serialise correctly, or it 1007 * will see an invalid inode that it can skip. 1008 */ 1009 spin_lock(&ip->i_flags_lock); 1010 ip->i_flags = XFS_IRECLAIM; 1011 ip->i_ino = 0; 1012 ip->i_sick = 0; 1013 ip->i_checked = 0; 1014 spin_unlock(&ip->i_flags_lock); 1015 1016 ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL); 1017 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1018 1019 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 1020 /* 1021 * Remove the inode from the per-AG radix tree. 1022 * 1023 * Because radix_tree_delete won't complain even if the item was never 1024 * added to the tree assert that it's been there before to catch 1025 * problems with the inode life time early on. 1026 */ 1027 spin_lock(&pag->pag_ici_lock); 1028 if (!radix_tree_delete(&pag->pag_ici_root, 1029 XFS_INO_TO_AGINO(ip->i_mount, ino))) 1030 ASSERT(0); 1031 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG); 1032 spin_unlock(&pag->pag_ici_lock); 1033 1034 /* 1035 * Here we do an (almost) spurious inode lock in order to coordinate 1036 * with inode cache radix tree lookups. This is because the lookup 1037 * can reference the inodes in the cache without taking references. 1038 * 1039 * We make that OK here by ensuring that we wait until the inode is 1040 * unlocked after the lookup before we go ahead and free it. 1041 */ 1042 xfs_ilock(ip, XFS_ILOCK_EXCL); 1043 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot); 1044 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1045 ASSERT(xfs_inode_clean(ip)); 1046 1047 __xfs_inode_free(ip); 1048 return; 1049 1050 out_clear_flush: 1051 xfs_iflags_clear(ip, XFS_IFLUSHING); 1052 out_iunlock: 1053 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1054 out: 1055 xfs_iflags_clear(ip, XFS_IRECLAIM); 1056 } 1057 1058 /* Reclaim sick inodes if we're unmounting or the fs went down. */ 1059 static inline bool 1060 xfs_want_reclaim_sick( 1061 struct xfs_mount *mp) 1062 { 1063 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) || 1064 xfs_is_shutdown(mp); 1065 } 1066 1067 void 1068 xfs_reclaim_inodes( 1069 struct xfs_mount *mp) 1070 { 1071 struct xfs_icwalk icw = { 1072 .icw_flags = 0, 1073 }; 1074 1075 if (xfs_want_reclaim_sick(mp)) 1076 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 1077 1078 while (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) { 1079 xfs_ail_push_all_sync(mp->m_ail); 1080 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 1081 } 1082 } 1083 1084 /* 1085 * The shrinker infrastructure determines how many inodes we should scan for 1086 * reclaim. We want as many clean inodes ready to reclaim as possible, so we 1087 * push the AIL here. We also want to proactively free up memory if we can to 1088 * minimise the amount of work memory reclaim has to do so we kick the 1089 * background reclaim if it isn't already scheduled. 1090 */ 1091 long 1092 xfs_reclaim_inodes_nr( 1093 struct xfs_mount *mp, 1094 unsigned long nr_to_scan) 1095 { 1096 struct xfs_icwalk icw = { 1097 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT, 1098 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan), 1099 }; 1100 1101 if (xfs_want_reclaim_sick(mp)) 1102 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 1103 1104 /* kick background reclaimer and push the AIL */ 1105 xfs_reclaim_work_queue(mp); 1106 xfs_ail_push_all(mp->m_ail); 1107 1108 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 1109 return 0; 1110 } 1111 1112 /* 1113 * Return the number of reclaimable inodes in the filesystem for 1114 * the shrinker to determine how much to reclaim. 1115 */ 1116 long 1117 xfs_reclaim_inodes_count( 1118 struct xfs_mount *mp) 1119 { 1120 XA_STATE (xas, &mp->m_groups[XG_TYPE_AG].xa, 0); 1121 long reclaimable = 0; 1122 struct xfs_perag *pag; 1123 1124 rcu_read_lock(); 1125 xas_for_each_marked(&xas, pag, ULONG_MAX, XFS_PERAG_RECLAIM_MARK) { 1126 trace_xfs_reclaim_inodes_count(pag, _THIS_IP_); 1127 reclaimable += pag->pag_ici_reclaimable; 1128 } 1129 rcu_read_unlock(); 1130 1131 return reclaimable; 1132 } 1133 1134 STATIC bool 1135 xfs_icwalk_match_id( 1136 struct xfs_inode *ip, 1137 struct xfs_icwalk *icw) 1138 { 1139 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1140 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1141 return false; 1142 1143 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1144 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1145 return false; 1146 1147 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1148 ip->i_projid != icw->icw_prid) 1149 return false; 1150 1151 return true; 1152 } 1153 1154 /* 1155 * A union-based inode filtering algorithm. Process the inode if any of the 1156 * criteria match. This is for global/internal scans only. 1157 */ 1158 STATIC bool 1159 xfs_icwalk_match_id_union( 1160 struct xfs_inode *ip, 1161 struct xfs_icwalk *icw) 1162 { 1163 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1164 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1165 return true; 1166 1167 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1168 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1169 return true; 1170 1171 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1172 ip->i_projid == icw->icw_prid) 1173 return true; 1174 1175 return false; 1176 } 1177 1178 /* 1179 * Is this inode @ip eligible for eof/cow block reclamation, given some 1180 * filtering parameters @icw? The inode is eligible if @icw is null or 1181 * if the predicate functions match. 1182 */ 1183 static bool 1184 xfs_icwalk_match( 1185 struct xfs_inode *ip, 1186 struct xfs_icwalk *icw) 1187 { 1188 bool match; 1189 1190 if (!icw) 1191 return true; 1192 1193 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION) 1194 match = xfs_icwalk_match_id_union(ip, icw); 1195 else 1196 match = xfs_icwalk_match_id(ip, icw); 1197 if (!match) 1198 return false; 1199 1200 /* skip the inode if the file size is too small */ 1201 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) && 1202 XFS_ISIZE(ip) < icw->icw_min_file_size) 1203 return false; 1204 1205 return true; 1206 } 1207 1208 /* 1209 * This is a fast pass over the inode cache to try to get reclaim moving on as 1210 * many inodes as possible in a short period of time. It kicks itself every few 1211 * seconds, as well as being kicked by the inode cache shrinker when memory 1212 * goes low. 1213 */ 1214 void 1215 xfs_reclaim_worker( 1216 struct work_struct *work) 1217 { 1218 struct xfs_mount *mp = container_of(to_delayed_work(work), 1219 struct xfs_mount, m_reclaim_work); 1220 1221 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL); 1222 xfs_reclaim_work_queue(mp); 1223 } 1224 1225 STATIC int 1226 xfs_inode_free_eofblocks( 1227 struct xfs_inode *ip, 1228 struct xfs_icwalk *icw, 1229 unsigned int *lockflags) 1230 { 1231 bool wait; 1232 1233 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1234 1235 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS)) 1236 return 0; 1237 1238 /* 1239 * If the mapping is dirty the operation can block and wait for some 1240 * time. Unless we are waiting, skip it. 1241 */ 1242 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1243 return 0; 1244 1245 if (!xfs_icwalk_match(ip, icw)) 1246 return 0; 1247 1248 /* 1249 * If the caller is waiting, return -EAGAIN to keep the background 1250 * scanner moving and revisit the inode in a subsequent pass. 1251 */ 1252 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1253 if (wait) 1254 return -EAGAIN; 1255 return 0; 1256 } 1257 *lockflags |= XFS_IOLOCK_EXCL; 1258 1259 if (xfs_can_free_eofblocks(ip)) 1260 return xfs_free_eofblocks(ip); 1261 1262 /* inode could be preallocated */ 1263 trace_xfs_inode_free_eofblocks_invalid(ip); 1264 xfs_inode_clear_eofblocks_tag(ip); 1265 return 0; 1266 } 1267 1268 static void 1269 xfs_blockgc_set_iflag( 1270 struct xfs_inode *ip, 1271 unsigned long iflag) 1272 { 1273 struct xfs_mount *mp = ip->i_mount; 1274 struct xfs_perag *pag; 1275 1276 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1277 1278 /* 1279 * Don't bother locking the AG and looking up in the radix trees 1280 * if we already know that we have the tag set. 1281 */ 1282 if (ip->i_flags & iflag) 1283 return; 1284 spin_lock(&ip->i_flags_lock); 1285 ip->i_flags |= iflag; 1286 spin_unlock(&ip->i_flags_lock); 1287 1288 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1289 spin_lock(&pag->pag_ici_lock); 1290 1291 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1292 XFS_ICI_BLOCKGC_TAG); 1293 1294 spin_unlock(&pag->pag_ici_lock); 1295 xfs_perag_put(pag); 1296 } 1297 1298 void 1299 xfs_inode_set_eofblocks_tag( 1300 xfs_inode_t *ip) 1301 { 1302 trace_xfs_inode_set_eofblocks_tag(ip); 1303 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS); 1304 } 1305 1306 static void 1307 xfs_blockgc_clear_iflag( 1308 struct xfs_inode *ip, 1309 unsigned long iflag) 1310 { 1311 struct xfs_mount *mp = ip->i_mount; 1312 struct xfs_perag *pag; 1313 bool clear_tag; 1314 1315 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1316 1317 spin_lock(&ip->i_flags_lock); 1318 ip->i_flags &= ~iflag; 1319 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0; 1320 spin_unlock(&ip->i_flags_lock); 1321 1322 if (!clear_tag) 1323 return; 1324 1325 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1326 spin_lock(&pag->pag_ici_lock); 1327 1328 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1329 XFS_ICI_BLOCKGC_TAG); 1330 1331 spin_unlock(&pag->pag_ici_lock); 1332 xfs_perag_put(pag); 1333 } 1334 1335 void 1336 xfs_inode_clear_eofblocks_tag( 1337 xfs_inode_t *ip) 1338 { 1339 trace_xfs_inode_clear_eofblocks_tag(ip); 1340 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS); 1341 } 1342 1343 /* 1344 * Prepare to free COW fork blocks from an inode. 1345 */ 1346 static bool 1347 xfs_prep_free_cowblocks( 1348 struct xfs_inode *ip, 1349 struct xfs_icwalk *icw) 1350 { 1351 bool sync; 1352 1353 sync = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1354 1355 /* 1356 * Just clear the tag if we have an empty cow fork or none at all. It's 1357 * possible the inode was fully unshared since it was originally tagged. 1358 */ 1359 if (!xfs_inode_has_cow_data(ip)) { 1360 trace_xfs_inode_free_cowblocks_invalid(ip); 1361 xfs_inode_clear_cowblocks_tag(ip); 1362 return false; 1363 } 1364 1365 /* 1366 * A cowblocks trim of an inode can have a significant effect on 1367 * fragmentation even when a reasonable COW extent size hint is set. 1368 * Therefore, we prefer to not process cowblocks unless they are clean 1369 * and idle. We can never process a cowblocks inode that is dirty or has 1370 * in-flight I/O under any circumstances, because outstanding writeback 1371 * or dio expects targeted COW fork blocks exist through write 1372 * completion where they can be remapped into the data fork. 1373 * 1374 * Therefore, the heuristic used here is to never process inodes 1375 * currently opened for write from background (i.e. non-sync) scans. For 1376 * sync scans, use the pagecache/dio state of the inode to ensure we 1377 * never free COW fork blocks out from under pending I/O. 1378 */ 1379 if (!sync && inode_is_open_for_write(VFS_I(ip))) 1380 return false; 1381 return xfs_can_free_cowblocks(ip); 1382 } 1383 1384 /* 1385 * Automatic CoW Reservation Freeing 1386 * 1387 * These functions automatically garbage collect leftover CoW reservations 1388 * that were made on behalf of a cowextsize hint when we start to run out 1389 * of quota or when the reservations sit around for too long. If the file 1390 * has dirty pages or is undergoing writeback, its CoW reservations will 1391 * be retained. 1392 * 1393 * The actual garbage collection piggybacks off the same code that runs 1394 * the speculative EOF preallocation garbage collector. 1395 */ 1396 STATIC int 1397 xfs_inode_free_cowblocks( 1398 struct xfs_inode *ip, 1399 struct xfs_icwalk *icw, 1400 unsigned int *lockflags) 1401 { 1402 bool wait; 1403 int ret = 0; 1404 1405 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1406 1407 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS)) 1408 return 0; 1409 1410 if (!xfs_prep_free_cowblocks(ip, icw)) 1411 return 0; 1412 1413 if (!xfs_icwalk_match(ip, icw)) 1414 return 0; 1415 1416 /* 1417 * If the caller is waiting, return -EAGAIN to keep the background 1418 * scanner moving and revisit the inode in a subsequent pass. 1419 */ 1420 if (!(*lockflags & XFS_IOLOCK_EXCL) && 1421 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1422 if (wait) 1423 return -EAGAIN; 1424 return 0; 1425 } 1426 *lockflags |= XFS_IOLOCK_EXCL; 1427 1428 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) { 1429 if (wait) 1430 return -EAGAIN; 1431 return 0; 1432 } 1433 *lockflags |= XFS_MMAPLOCK_EXCL; 1434 1435 /* 1436 * Check again, nobody else should be able to dirty blocks or change 1437 * the reflink iflag now that we have the first two locks held. 1438 */ 1439 if (xfs_prep_free_cowblocks(ip, icw)) 1440 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1441 return ret; 1442 } 1443 1444 void 1445 xfs_inode_set_cowblocks_tag( 1446 xfs_inode_t *ip) 1447 { 1448 trace_xfs_inode_set_cowblocks_tag(ip); 1449 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS); 1450 } 1451 1452 void 1453 xfs_inode_clear_cowblocks_tag( 1454 xfs_inode_t *ip) 1455 { 1456 trace_xfs_inode_clear_cowblocks_tag(ip); 1457 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS); 1458 } 1459 1460 /* Disable post-EOF and CoW block auto-reclamation. */ 1461 void 1462 xfs_blockgc_stop( 1463 struct xfs_mount *mp) 1464 { 1465 struct xfs_perag *pag = NULL; 1466 1467 if (!xfs_clear_blockgc_enabled(mp)) 1468 return; 1469 1470 while ((pag = xfs_perag_next(mp, pag))) 1471 cancel_delayed_work_sync(&pag->pag_blockgc_work); 1472 trace_xfs_blockgc_stop(mp, __return_address); 1473 } 1474 1475 /* Enable post-EOF and CoW block auto-reclamation. */ 1476 void 1477 xfs_blockgc_start( 1478 struct xfs_mount *mp) 1479 { 1480 struct xfs_perag *pag = NULL; 1481 1482 if (xfs_set_blockgc_enabled(mp)) 1483 return; 1484 1485 trace_xfs_blockgc_start(mp, __return_address); 1486 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG))) 1487 xfs_blockgc_queue(pag); 1488 } 1489 1490 /* Don't try to run block gc on an inode that's in any of these states. */ 1491 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \ 1492 XFS_NEED_INACTIVE | \ 1493 XFS_INACTIVATING | \ 1494 XFS_IRECLAIMABLE | \ 1495 XFS_IRECLAIM) 1496 /* 1497 * Decide if the given @ip is eligible for garbage collection of speculative 1498 * preallocations, and grab it if so. Returns true if it's ready to go or 1499 * false if we should just ignore it. 1500 */ 1501 static bool 1502 xfs_blockgc_igrab( 1503 struct xfs_inode *ip) 1504 { 1505 struct inode *inode = VFS_I(ip); 1506 1507 ASSERT(rcu_read_lock_held()); 1508 1509 /* Check for stale RCU freed inode */ 1510 spin_lock(&ip->i_flags_lock); 1511 if (!ip->i_ino) 1512 goto out_unlock_noent; 1513 1514 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS) 1515 goto out_unlock_noent; 1516 spin_unlock(&ip->i_flags_lock); 1517 1518 /* nothing to sync during shutdown */ 1519 if (xfs_is_shutdown(ip->i_mount)) 1520 return false; 1521 1522 /* If we can't grab the inode, it must on it's way to reclaim. */ 1523 if (!igrab(inode)) 1524 return false; 1525 1526 /* inode is valid */ 1527 return true; 1528 1529 out_unlock_noent: 1530 spin_unlock(&ip->i_flags_lock); 1531 return false; 1532 } 1533 1534 /* Scan one incore inode for block preallocations that we can remove. */ 1535 static int 1536 xfs_blockgc_scan_inode( 1537 struct xfs_inode *ip, 1538 struct xfs_icwalk *icw) 1539 { 1540 unsigned int lockflags = 0; 1541 int error; 1542 1543 error = xfs_inode_free_eofblocks(ip, icw, &lockflags); 1544 if (error) 1545 goto unlock; 1546 1547 error = xfs_inode_free_cowblocks(ip, icw, &lockflags); 1548 unlock: 1549 if (lockflags) 1550 xfs_iunlock(ip, lockflags); 1551 xfs_irele(ip); 1552 return error; 1553 } 1554 1555 /* Background worker that trims preallocated space. */ 1556 void 1557 xfs_blockgc_worker( 1558 struct work_struct *work) 1559 { 1560 struct xfs_perag *pag = container_of(to_delayed_work(work), 1561 struct xfs_perag, pag_blockgc_work); 1562 struct xfs_mount *mp = pag_mount(pag); 1563 int error; 1564 1565 trace_xfs_blockgc_worker(mp, __return_address); 1566 1567 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL); 1568 if (error) 1569 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d", 1570 pag_agno(pag), error); 1571 xfs_blockgc_queue(pag); 1572 } 1573 1574 /* 1575 * Try to free space in the filesystem by purging inactive inodes, eofblocks 1576 * and cowblocks. 1577 */ 1578 int 1579 xfs_blockgc_free_space( 1580 struct xfs_mount *mp, 1581 struct xfs_icwalk *icw) 1582 { 1583 int error; 1584 1585 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_); 1586 1587 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw); 1588 if (error) 1589 return error; 1590 1591 return xfs_inodegc_flush(mp); 1592 } 1593 1594 /* 1595 * Reclaim all the free space that we can by scheduling the background blockgc 1596 * and inodegc workers immediately and waiting for them all to clear. 1597 */ 1598 int 1599 xfs_blockgc_flush_all( 1600 struct xfs_mount *mp) 1601 { 1602 struct xfs_perag *pag = NULL; 1603 1604 trace_xfs_blockgc_flush_all(mp, __return_address); 1605 1606 /* 1607 * For each blockgc worker, move its queue time up to now. If it wasn't 1608 * queued, it will not be requeued. Then flush whatever is left. 1609 */ 1610 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG))) 1611 mod_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work, 0); 1612 1613 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG))) 1614 flush_delayed_work(&pag->pag_blockgc_work); 1615 1616 return xfs_inodegc_flush(mp); 1617 } 1618 1619 /* 1620 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which 1621 * quota caused an allocation failure, so we make a best effort by including 1622 * each quota under low free space conditions (less than 1% free space) in the 1623 * scan. 1624 * 1625 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan 1626 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or 1627 * MMAPLOCK. 1628 */ 1629 int 1630 xfs_blockgc_free_dquots( 1631 struct xfs_mount *mp, 1632 struct xfs_dquot *udqp, 1633 struct xfs_dquot *gdqp, 1634 struct xfs_dquot *pdqp, 1635 unsigned int iwalk_flags) 1636 { 1637 struct xfs_icwalk icw = {0}; 1638 bool do_work = false; 1639 1640 if (!udqp && !gdqp && !pdqp) 1641 return 0; 1642 1643 /* 1644 * Run a scan to free blocks using the union filter to cover all 1645 * applicable quotas in a single scan. 1646 */ 1647 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags; 1648 1649 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) { 1650 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id); 1651 icw.icw_flags |= XFS_ICWALK_FLAG_UID; 1652 do_work = true; 1653 } 1654 1655 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) { 1656 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id); 1657 icw.icw_flags |= XFS_ICWALK_FLAG_GID; 1658 do_work = true; 1659 } 1660 1661 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) { 1662 icw.icw_prid = pdqp->q_id; 1663 icw.icw_flags |= XFS_ICWALK_FLAG_PRID; 1664 do_work = true; 1665 } 1666 1667 if (!do_work) 1668 return 0; 1669 1670 return xfs_blockgc_free_space(mp, &icw); 1671 } 1672 1673 /* Run cow/eofblocks scans on the quotas attached to the inode. */ 1674 int 1675 xfs_blockgc_free_quota( 1676 struct xfs_inode *ip, 1677 unsigned int iwalk_flags) 1678 { 1679 return xfs_blockgc_free_dquots(ip->i_mount, 1680 xfs_inode_dquot(ip, XFS_DQTYPE_USER), 1681 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP), 1682 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags); 1683 } 1684 1685 /* XFS Inode Cache Walking Code */ 1686 1687 /* 1688 * The inode lookup is done in batches to keep the amount of lock traffic and 1689 * radix tree lookups to a minimum. The batch size is a trade off between 1690 * lookup reduction and stack usage. This is in the reclaim path, so we can't 1691 * be too greedy. 1692 */ 1693 #define XFS_LOOKUP_BATCH 32 1694 1695 1696 /* 1697 * Decide if we want to grab this inode in anticipation of doing work towards 1698 * the goal. 1699 */ 1700 static inline bool 1701 xfs_icwalk_igrab( 1702 enum xfs_icwalk_goal goal, 1703 struct xfs_inode *ip, 1704 struct xfs_icwalk *icw) 1705 { 1706 switch (goal) { 1707 case XFS_ICWALK_BLOCKGC: 1708 return xfs_blockgc_igrab(ip); 1709 case XFS_ICWALK_RECLAIM: 1710 return xfs_reclaim_igrab(ip, icw); 1711 default: 1712 return false; 1713 } 1714 } 1715 1716 /* 1717 * Process an inode. Each processing function must handle any state changes 1718 * made by the icwalk igrab function. Return -EAGAIN to skip an inode. 1719 */ 1720 static inline int 1721 xfs_icwalk_process_inode( 1722 enum xfs_icwalk_goal goal, 1723 struct xfs_inode *ip, 1724 struct xfs_perag *pag, 1725 struct xfs_icwalk *icw) 1726 { 1727 int error = 0; 1728 1729 switch (goal) { 1730 case XFS_ICWALK_BLOCKGC: 1731 error = xfs_blockgc_scan_inode(ip, icw); 1732 break; 1733 case XFS_ICWALK_RECLAIM: 1734 xfs_reclaim_inode(ip, pag); 1735 break; 1736 } 1737 return error; 1738 } 1739 1740 /* 1741 * For a given per-AG structure @pag and a goal, grab qualifying inodes and 1742 * process them in some manner. 1743 */ 1744 static int 1745 xfs_icwalk_ag( 1746 struct xfs_perag *pag, 1747 enum xfs_icwalk_goal goal, 1748 struct xfs_icwalk *icw) 1749 { 1750 struct xfs_mount *mp = pag_mount(pag); 1751 uint32_t first_index; 1752 int last_error = 0; 1753 int skipped; 1754 bool done; 1755 int nr_found; 1756 1757 restart: 1758 done = false; 1759 skipped = 0; 1760 if (goal == XFS_ICWALK_RECLAIM) 1761 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor); 1762 else 1763 first_index = 0; 1764 nr_found = 0; 1765 do { 1766 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1767 int error = 0; 1768 int i; 1769 1770 rcu_read_lock(); 1771 1772 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, 1773 (void **) batch, first_index, 1774 XFS_LOOKUP_BATCH, goal); 1775 if (!nr_found) { 1776 done = true; 1777 rcu_read_unlock(); 1778 break; 1779 } 1780 1781 /* 1782 * Grab the inodes before we drop the lock. if we found 1783 * nothing, nr == 0 and the loop will be skipped. 1784 */ 1785 for (i = 0; i < nr_found; i++) { 1786 struct xfs_inode *ip = batch[i]; 1787 1788 if (done || !xfs_icwalk_igrab(goal, ip, icw)) 1789 batch[i] = NULL; 1790 1791 /* 1792 * Update the index for the next lookup. Catch 1793 * overflows into the next AG range which can occur if 1794 * we have inodes in the last block of the AG and we 1795 * are currently pointing to the last inode. 1796 * 1797 * Because we may see inodes that are from the wrong AG 1798 * due to RCU freeing and reallocation, only update the 1799 * index if it lies in this AG. It was a race that lead 1800 * us to see this inode, so another lookup from the 1801 * same index will not find it again. 1802 */ 1803 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag_agno(pag)) 1804 continue; 1805 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1806 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1807 done = true; 1808 } 1809 1810 /* unlock now we've grabbed the inodes. */ 1811 rcu_read_unlock(); 1812 1813 for (i = 0; i < nr_found; i++) { 1814 if (!batch[i]) 1815 continue; 1816 error = xfs_icwalk_process_inode(goal, batch[i], pag, 1817 icw); 1818 if (error == -EAGAIN) { 1819 skipped++; 1820 continue; 1821 } 1822 if (error && last_error != -EFSCORRUPTED) 1823 last_error = error; 1824 } 1825 1826 /* bail out if the filesystem is corrupted. */ 1827 if (error == -EFSCORRUPTED) 1828 break; 1829 1830 cond_resched(); 1831 1832 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) { 1833 icw->icw_scan_limit -= XFS_LOOKUP_BATCH; 1834 if (icw->icw_scan_limit <= 0) 1835 break; 1836 } 1837 } while (nr_found && !done); 1838 1839 if (goal == XFS_ICWALK_RECLAIM) { 1840 if (done) 1841 first_index = 0; 1842 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index); 1843 } 1844 1845 if (skipped) { 1846 delay(1); 1847 goto restart; 1848 } 1849 return last_error; 1850 } 1851 1852 /* Walk all incore inodes to achieve a given goal. */ 1853 static int 1854 xfs_icwalk( 1855 struct xfs_mount *mp, 1856 enum xfs_icwalk_goal goal, 1857 struct xfs_icwalk *icw) 1858 { 1859 struct xfs_perag *pag = NULL; 1860 int error = 0; 1861 int last_error = 0; 1862 1863 while ((pag = xfs_perag_grab_next_tag(mp, pag, goal))) { 1864 error = xfs_icwalk_ag(pag, goal, icw); 1865 if (error) { 1866 last_error = error; 1867 if (error == -EFSCORRUPTED) { 1868 xfs_perag_rele(pag); 1869 break; 1870 } 1871 } 1872 } 1873 return last_error; 1874 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID); 1875 } 1876 1877 #ifdef DEBUG 1878 static void 1879 xfs_check_delalloc( 1880 struct xfs_inode *ip, 1881 int whichfork) 1882 { 1883 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 1884 struct xfs_bmbt_irec got; 1885 struct xfs_iext_cursor icur; 1886 1887 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 1888 return; 1889 do { 1890 if (isnullstartblock(got.br_startblock)) { 1891 xfs_warn(ip->i_mount, 1892 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 1893 ip->i_ino, 1894 whichfork == XFS_DATA_FORK ? "data" : "cow", 1895 got.br_startoff, got.br_blockcount); 1896 } 1897 } while (xfs_iext_next_extent(ifp, &icur, &got)); 1898 } 1899 #else 1900 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 1901 #endif 1902 1903 /* Schedule the inode for reclaim. */ 1904 static void 1905 xfs_inodegc_set_reclaimable( 1906 struct xfs_inode *ip) 1907 { 1908 struct xfs_mount *mp = ip->i_mount; 1909 struct xfs_perag *pag; 1910 1911 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) { 1912 xfs_check_delalloc(ip, XFS_DATA_FORK); 1913 xfs_check_delalloc(ip, XFS_COW_FORK); 1914 ASSERT(0); 1915 } 1916 1917 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1918 spin_lock(&pag->pag_ici_lock); 1919 spin_lock(&ip->i_flags_lock); 1920 1921 trace_xfs_inode_set_reclaimable(ip); 1922 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING); 1923 ip->i_flags |= XFS_IRECLAIMABLE; 1924 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1925 XFS_ICI_RECLAIM_TAG); 1926 1927 spin_unlock(&ip->i_flags_lock); 1928 spin_unlock(&pag->pag_ici_lock); 1929 xfs_perag_put(pag); 1930 } 1931 1932 /* 1933 * Free all speculative preallocations and possibly even the inode itself. 1934 * This is the last chance to make changes to an otherwise unreferenced file 1935 * before incore reclamation happens. 1936 */ 1937 static int 1938 xfs_inodegc_inactivate( 1939 struct xfs_inode *ip) 1940 { 1941 int error; 1942 1943 trace_xfs_inode_inactivating(ip); 1944 error = xfs_inactive(ip); 1945 xfs_inodegc_set_reclaimable(ip); 1946 return error; 1947 1948 } 1949 1950 void 1951 xfs_inodegc_worker( 1952 struct work_struct *work) 1953 { 1954 struct xfs_inodegc *gc = container_of(to_delayed_work(work), 1955 struct xfs_inodegc, work); 1956 struct llist_node *node = llist_del_all(&gc->list); 1957 struct xfs_inode *ip, *n; 1958 struct xfs_mount *mp = gc->mp; 1959 unsigned int nofs_flag; 1960 1961 /* 1962 * Clear the cpu mask bit and ensure that we have seen the latest 1963 * update of the gc structure associated with this CPU. This matches 1964 * with the release semantics used when setting the cpumask bit in 1965 * xfs_inodegc_queue. 1966 */ 1967 cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask); 1968 smp_mb__after_atomic(); 1969 1970 WRITE_ONCE(gc->items, 0); 1971 1972 if (!node) 1973 return; 1974 1975 /* 1976 * We can allocate memory here while doing writeback on behalf of 1977 * memory reclaim. To avoid memory allocation deadlocks set the 1978 * task-wide nofs context for the following operations. 1979 */ 1980 nofs_flag = memalloc_nofs_save(); 1981 1982 ip = llist_entry(node, struct xfs_inode, i_gclist); 1983 trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits)); 1984 1985 WRITE_ONCE(gc->shrinker_hits, 0); 1986 llist_for_each_entry_safe(ip, n, node, i_gclist) { 1987 int error; 1988 1989 xfs_iflags_set(ip, XFS_INACTIVATING); 1990 error = xfs_inodegc_inactivate(ip); 1991 if (error && !gc->error) 1992 gc->error = error; 1993 } 1994 1995 memalloc_nofs_restore(nofs_flag); 1996 } 1997 1998 /* 1999 * Expedite all pending inodegc work to run immediately. This does not wait for 2000 * completion of the work. 2001 */ 2002 void 2003 xfs_inodegc_push( 2004 struct xfs_mount *mp) 2005 { 2006 if (!xfs_is_inodegc_enabled(mp)) 2007 return; 2008 trace_xfs_inodegc_push(mp, __return_address); 2009 xfs_inodegc_queue_all(mp); 2010 } 2011 2012 /* 2013 * Force all currently queued inode inactivation work to run immediately and 2014 * wait for the work to finish. 2015 */ 2016 int 2017 xfs_inodegc_flush( 2018 struct xfs_mount *mp) 2019 { 2020 xfs_inodegc_push(mp); 2021 trace_xfs_inodegc_flush(mp, __return_address); 2022 return xfs_inodegc_wait_all(mp); 2023 } 2024 2025 /* 2026 * Flush all the pending work and then disable the inode inactivation background 2027 * workers and wait for them to stop. Caller must hold sb->s_umount to 2028 * coordinate changes in the inodegc_enabled state. 2029 */ 2030 void 2031 xfs_inodegc_stop( 2032 struct xfs_mount *mp) 2033 { 2034 bool rerun; 2035 2036 if (!xfs_clear_inodegc_enabled(mp)) 2037 return; 2038 2039 /* 2040 * Drain all pending inodegc work, including inodes that could be 2041 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan 2042 * threads that sample the inodegc state just prior to us clearing it. 2043 * The inodegc flag state prevents new threads from queuing more 2044 * inodes, so we queue pending work items and flush the workqueue until 2045 * all inodegc lists are empty. IOWs, we cannot use drain_workqueue 2046 * here because it does not allow other unserialized mechanisms to 2047 * reschedule inodegc work while this draining is in progress. 2048 */ 2049 xfs_inodegc_queue_all(mp); 2050 do { 2051 flush_workqueue(mp->m_inodegc_wq); 2052 rerun = xfs_inodegc_queue_all(mp); 2053 } while (rerun); 2054 2055 trace_xfs_inodegc_stop(mp, __return_address); 2056 } 2057 2058 /* 2059 * Enable the inode inactivation background workers and schedule deferred inode 2060 * inactivation work if there is any. Caller must hold sb->s_umount to 2061 * coordinate changes in the inodegc_enabled state. 2062 */ 2063 void 2064 xfs_inodegc_start( 2065 struct xfs_mount *mp) 2066 { 2067 if (xfs_set_inodegc_enabled(mp)) 2068 return; 2069 2070 trace_xfs_inodegc_start(mp, __return_address); 2071 xfs_inodegc_queue_all(mp); 2072 } 2073 2074 #ifdef CONFIG_XFS_RT 2075 static inline bool 2076 xfs_inodegc_want_queue_rt_file( 2077 struct xfs_inode *ip) 2078 { 2079 struct xfs_mount *mp = ip->i_mount; 2080 2081 if (!XFS_IS_REALTIME_INODE(ip) || xfs_has_zoned(mp)) 2082 return false; 2083 2084 if (xfs_compare_freecounter(mp, XC_FREE_RTEXTENTS, 2085 mp->m_low_rtexts[XFS_LOWSP_5_PCNT], 2086 XFS_FDBLOCKS_BATCH) < 0) 2087 return true; 2088 2089 return false; 2090 } 2091 #else 2092 # define xfs_inodegc_want_queue_rt_file(ip) (false) 2093 #endif /* CONFIG_XFS_RT */ 2094 2095 /* 2096 * Schedule the inactivation worker when: 2097 * 2098 * - We've accumulated more than one inode cluster buffer's worth of inodes. 2099 * - There is less than 5% free space left. 2100 * - Any of the quotas for this inode are near an enforcement limit. 2101 */ 2102 static inline bool 2103 xfs_inodegc_want_queue_work( 2104 struct xfs_inode *ip, 2105 unsigned int items) 2106 { 2107 struct xfs_mount *mp = ip->i_mount; 2108 2109 if (items > mp->m_ino_geo.inodes_per_cluster) 2110 return true; 2111 2112 if (xfs_compare_freecounter(mp, XC_FREE_BLOCKS, 2113 mp->m_low_space[XFS_LOWSP_5_PCNT], 2114 XFS_FDBLOCKS_BATCH) < 0) 2115 return true; 2116 2117 if (xfs_inodegc_want_queue_rt_file(ip)) 2118 return true; 2119 2120 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER)) 2121 return true; 2122 2123 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP)) 2124 return true; 2125 2126 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ)) 2127 return true; 2128 2129 return false; 2130 } 2131 2132 /* 2133 * Upper bound on the number of inodes in each AG that can be queued for 2134 * inactivation at any given time, to avoid monopolizing the workqueue. 2135 */ 2136 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK) 2137 2138 /* 2139 * Make the frontend wait for inactivations when: 2140 * 2141 * - Memory shrinkers queued the inactivation worker and it hasn't finished. 2142 * - The queue depth exceeds the maximum allowable percpu backlog. 2143 * 2144 * Note: If we are in a NOFS context here (e.g. current thread is running a 2145 * transaction) the we don't want to block here as inodegc progress may require 2146 * filesystem resources we hold to make progress and that could result in a 2147 * deadlock. Hence we skip out of here if we are in a scoped NOFS context. 2148 */ 2149 static inline bool 2150 xfs_inodegc_want_flush_work( 2151 struct xfs_inode *ip, 2152 unsigned int items, 2153 unsigned int shrinker_hits) 2154 { 2155 if (current->flags & PF_MEMALLOC_NOFS) 2156 return false; 2157 2158 if (shrinker_hits > 0) 2159 return true; 2160 2161 if (items > XFS_INODEGC_MAX_BACKLOG) 2162 return true; 2163 2164 return false; 2165 } 2166 2167 /* 2168 * Queue a background inactivation worker if there are inodes that need to be 2169 * inactivated and higher level xfs code hasn't disabled the background 2170 * workers. 2171 */ 2172 static void 2173 xfs_inodegc_queue( 2174 struct xfs_inode *ip) 2175 { 2176 struct xfs_mount *mp = ip->i_mount; 2177 struct xfs_inodegc *gc; 2178 int items; 2179 unsigned int shrinker_hits; 2180 unsigned int cpu_nr; 2181 unsigned long queue_delay = 1; 2182 2183 trace_xfs_inode_set_need_inactive(ip); 2184 spin_lock(&ip->i_flags_lock); 2185 ip->i_flags |= XFS_NEED_INACTIVE; 2186 spin_unlock(&ip->i_flags_lock); 2187 2188 cpu_nr = get_cpu(); 2189 gc = this_cpu_ptr(mp->m_inodegc); 2190 llist_add(&ip->i_gclist, &gc->list); 2191 items = READ_ONCE(gc->items); 2192 WRITE_ONCE(gc->items, items + 1); 2193 shrinker_hits = READ_ONCE(gc->shrinker_hits); 2194 2195 /* 2196 * Ensure the list add is always seen by anyone who finds the cpumask 2197 * bit set. This effectively gives the cpumask bit set operation 2198 * release ordering semantics. 2199 */ 2200 smp_mb__before_atomic(); 2201 if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask)) 2202 cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask); 2203 2204 /* 2205 * We queue the work while holding the current CPU so that the work 2206 * is scheduled to run on this CPU. 2207 */ 2208 if (!xfs_is_inodegc_enabled(mp)) { 2209 put_cpu(); 2210 return; 2211 } 2212 2213 if (xfs_inodegc_want_queue_work(ip, items)) 2214 queue_delay = 0; 2215 2216 trace_xfs_inodegc_queue(mp, __return_address); 2217 mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work, 2218 queue_delay); 2219 put_cpu(); 2220 2221 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) { 2222 trace_xfs_inodegc_throttle(mp, __return_address); 2223 flush_delayed_work(&gc->work); 2224 } 2225 } 2226 2227 /* 2228 * We set the inode flag atomically with the radix tree tag. Once we get tag 2229 * lookups on the radix tree, this inode flag can go away. 2230 * 2231 * We always use background reclaim here because even if the inode is clean, it 2232 * still may be under IO and hence we have wait for IO completion to occur 2233 * before we can reclaim the inode. The background reclaim path handles this 2234 * more efficiently than we can here, so simply let background reclaim tear down 2235 * all inodes. 2236 */ 2237 void 2238 xfs_inode_mark_reclaimable( 2239 struct xfs_inode *ip) 2240 { 2241 struct xfs_mount *mp = ip->i_mount; 2242 bool need_inactive; 2243 2244 XFS_STATS_INC(mp, vn_reclaim); 2245 2246 /* 2247 * We should never get here with any of the reclaim flags already set. 2248 */ 2249 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS)); 2250 2251 need_inactive = xfs_inode_needs_inactive(ip); 2252 if (need_inactive) { 2253 xfs_inodegc_queue(ip); 2254 return; 2255 } 2256 2257 /* Going straight to reclaim, so drop the dquots. */ 2258 xfs_qm_dqdetach(ip); 2259 xfs_inodegc_set_reclaimable(ip); 2260 } 2261 2262 /* 2263 * Register a phony shrinker so that we can run background inodegc sooner when 2264 * there's memory pressure. Inactivation does not itself free any memory but 2265 * it does make inodes reclaimable, which eventually frees memory. 2266 * 2267 * The count function, seek value, and batch value are crafted to trigger the 2268 * scan function during the second round of scanning. Hopefully this means 2269 * that we reclaimed enough memory that initiating metadata transactions won't 2270 * make things worse. 2271 */ 2272 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY) 2273 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1) 2274 2275 static unsigned long 2276 xfs_inodegc_shrinker_count( 2277 struct shrinker *shrink, 2278 struct shrink_control *sc) 2279 { 2280 struct xfs_mount *mp = shrink->private_data; 2281 struct xfs_inodegc *gc; 2282 int cpu; 2283 2284 if (!xfs_is_inodegc_enabled(mp)) 2285 return 0; 2286 2287 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 2288 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2289 if (!llist_empty(&gc->list)) 2290 return XFS_INODEGC_SHRINKER_COUNT; 2291 } 2292 2293 return 0; 2294 } 2295 2296 static unsigned long 2297 xfs_inodegc_shrinker_scan( 2298 struct shrinker *shrink, 2299 struct shrink_control *sc) 2300 { 2301 struct xfs_mount *mp = shrink->private_data; 2302 struct xfs_inodegc *gc; 2303 int cpu; 2304 bool no_items = true; 2305 2306 if (!xfs_is_inodegc_enabled(mp)) 2307 return SHRINK_STOP; 2308 2309 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address); 2310 2311 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 2312 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2313 if (!llist_empty(&gc->list)) { 2314 unsigned int h = READ_ONCE(gc->shrinker_hits); 2315 2316 WRITE_ONCE(gc->shrinker_hits, h + 1); 2317 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 2318 no_items = false; 2319 } 2320 } 2321 2322 /* 2323 * If there are no inodes to inactivate, we don't want the shrinker 2324 * to think there's deferred work to call us back about. 2325 */ 2326 if (no_items) 2327 return LONG_MAX; 2328 2329 return SHRINK_STOP; 2330 } 2331 2332 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */ 2333 int 2334 xfs_inodegc_register_shrinker( 2335 struct xfs_mount *mp) 2336 { 2337 mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB, 2338 "xfs-inodegc:%s", 2339 mp->m_super->s_id); 2340 if (!mp->m_inodegc_shrinker) 2341 return -ENOMEM; 2342 2343 mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count; 2344 mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan; 2345 mp->m_inodegc_shrinker->seeks = 0; 2346 mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH; 2347 mp->m_inodegc_shrinker->private_data = mp; 2348 2349 shrinker_register(mp->m_inodegc_shrinker); 2350 2351 return 0; 2352 } 2353