1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_inode_item.h" 17 #include "xfs_quota.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_bmap_util.h" 21 #include "xfs_dquot_item.h" 22 #include "xfs_dquot.h" 23 #include "xfs_reflink.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_ag.h" 26 #include "xfs_log_priv.h" 27 #include "xfs_health.h" 28 29 #include <linux/iversion.h> 30 31 /* Radix tree tags for incore inode tree. */ 32 33 /* inode is to be reclaimed */ 34 #define XFS_ICI_RECLAIM_TAG 0 35 /* Inode has speculative preallocations (posteof or cow) to clean. */ 36 #define XFS_ICI_BLOCKGC_TAG 1 37 38 /* 39 * The goal for walking incore inodes. These can correspond with incore inode 40 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace. 41 */ 42 enum xfs_icwalk_goal { 43 /* Goals directly associated with tagged inodes. */ 44 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG, 45 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG, 46 }; 47 48 static int xfs_icwalk(struct xfs_mount *mp, 49 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 50 static int xfs_icwalk_ag(struct xfs_perag *pag, 51 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 52 53 /* 54 * Private inode cache walk flags for struct xfs_icwalk. Must not 55 * coincide with XFS_ICWALK_FLAGS_VALID. 56 */ 57 58 /* Stop scanning after icw_scan_limit inodes. */ 59 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28) 60 61 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27) 62 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */ 63 64 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \ 65 XFS_ICWALK_FLAG_RECLAIM_SICK | \ 66 XFS_ICWALK_FLAG_UNION) 67 68 /* Marks for the perag xarray */ 69 #define XFS_PERAG_RECLAIM_MARK XA_MARK_0 70 #define XFS_PERAG_BLOCKGC_MARK XA_MARK_1 71 72 static inline xa_mark_t ici_tag_to_mark(unsigned int tag) 73 { 74 if (tag == XFS_ICI_RECLAIM_TAG) 75 return XFS_PERAG_RECLAIM_MARK; 76 ASSERT(tag == XFS_ICI_BLOCKGC_TAG); 77 return XFS_PERAG_BLOCKGC_MARK; 78 } 79 80 /* 81 * Allocate and initialise an xfs_inode. 82 */ 83 struct xfs_inode * 84 xfs_inode_alloc( 85 struct xfs_mount *mp, 86 xfs_ino_t ino) 87 { 88 struct xfs_inode *ip; 89 90 /* 91 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL 92 * and return NULL here on ENOMEM. 93 */ 94 ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL); 95 96 if (inode_init_always(mp->m_super, VFS_I(ip))) { 97 kmem_cache_free(xfs_inode_cache, ip); 98 return NULL; 99 } 100 101 /* VFS doesn't initialise i_mode! */ 102 VFS_I(ip)->i_mode = 0; 103 mapping_set_folio_min_order(VFS_I(ip)->i_mapping, 104 M_IGEO(mp)->min_folio_order); 105 106 XFS_STATS_INC(mp, vn_active); 107 ASSERT(atomic_read(&ip->i_pincount) == 0); 108 ASSERT(ip->i_ino == 0); 109 110 /* initialise the xfs inode */ 111 ip->i_ino = ino; 112 ip->i_mount = mp; 113 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 114 ip->i_cowfp = NULL; 115 memset(&ip->i_af, 0, sizeof(ip->i_af)); 116 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS; 117 memset(&ip->i_df, 0, sizeof(ip->i_df)); 118 ip->i_flags = 0; 119 ip->i_delayed_blks = 0; 120 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 121 ip->i_nblocks = 0; 122 ip->i_forkoff = 0; 123 ip->i_sick = 0; 124 ip->i_checked = 0; 125 INIT_WORK(&ip->i_ioend_work, xfs_end_io); 126 INIT_LIST_HEAD(&ip->i_ioend_list); 127 spin_lock_init(&ip->i_ioend_lock); 128 ip->i_next_unlinked = NULLAGINO; 129 ip->i_prev_unlinked = 0; 130 131 return ip; 132 } 133 134 STATIC void 135 xfs_inode_free_callback( 136 struct rcu_head *head) 137 { 138 struct inode *inode = container_of(head, struct inode, i_rcu); 139 struct xfs_inode *ip = XFS_I(inode); 140 141 switch (VFS_I(ip)->i_mode & S_IFMT) { 142 case S_IFREG: 143 case S_IFDIR: 144 case S_IFLNK: 145 xfs_idestroy_fork(&ip->i_df); 146 break; 147 } 148 149 xfs_ifork_zap_attr(ip); 150 151 if (ip->i_cowfp) { 152 xfs_idestroy_fork(ip->i_cowfp); 153 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp); 154 } 155 if (ip->i_itemp) { 156 ASSERT(!test_bit(XFS_LI_IN_AIL, 157 &ip->i_itemp->ili_item.li_flags)); 158 xfs_inode_item_destroy(ip); 159 ip->i_itemp = NULL; 160 } 161 162 kmem_cache_free(xfs_inode_cache, ip); 163 } 164 165 static void 166 __xfs_inode_free( 167 struct xfs_inode *ip) 168 { 169 /* asserts to verify all state is correct here */ 170 ASSERT(atomic_read(&ip->i_pincount) == 0); 171 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list)); 172 XFS_STATS_DEC(ip->i_mount, vn_active); 173 174 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 175 } 176 177 void 178 xfs_inode_free( 179 struct xfs_inode *ip) 180 { 181 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING)); 182 183 /* 184 * Because we use RCU freeing we need to ensure the inode always 185 * appears to be reclaimed with an invalid inode number when in the 186 * free state. The ip->i_flags_lock provides the barrier against lookup 187 * races. 188 */ 189 spin_lock(&ip->i_flags_lock); 190 ip->i_flags = XFS_IRECLAIM; 191 ip->i_ino = 0; 192 spin_unlock(&ip->i_flags_lock); 193 194 __xfs_inode_free(ip); 195 } 196 197 /* 198 * Queue background inode reclaim work if there are reclaimable inodes and there 199 * isn't reclaim work already scheduled or in progress. 200 */ 201 static void 202 xfs_reclaim_work_queue( 203 struct xfs_mount *mp) 204 { 205 206 rcu_read_lock(); 207 if (xa_marked(&mp->m_perags, XFS_PERAG_RECLAIM_MARK)) { 208 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 209 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 210 } 211 rcu_read_unlock(); 212 } 213 214 /* 215 * Background scanning to trim preallocated space. This is queued based on the 216 * 'speculative_prealloc_lifetime' tunable (5m by default). 217 */ 218 static inline void 219 xfs_blockgc_queue( 220 struct xfs_perag *pag) 221 { 222 struct xfs_mount *mp = pag->pag_mount; 223 224 if (!xfs_is_blockgc_enabled(mp)) 225 return; 226 227 rcu_read_lock(); 228 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) 229 queue_delayed_work(pag->pag_mount->m_blockgc_wq, 230 &pag->pag_blockgc_work, 231 msecs_to_jiffies(xfs_blockgc_secs * 1000)); 232 rcu_read_unlock(); 233 } 234 235 /* Set a tag on both the AG incore inode tree and the AG radix tree. */ 236 static void 237 xfs_perag_set_inode_tag( 238 struct xfs_perag *pag, 239 xfs_agino_t agino, 240 unsigned int tag) 241 { 242 struct xfs_mount *mp = pag->pag_mount; 243 bool was_tagged; 244 245 lockdep_assert_held(&pag->pag_ici_lock); 246 247 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 248 radix_tree_tag_set(&pag->pag_ici_root, agino, tag); 249 250 if (tag == XFS_ICI_RECLAIM_TAG) 251 pag->pag_ici_reclaimable++; 252 253 if (was_tagged) 254 return; 255 256 /* propagate the tag up into the perag radix tree */ 257 xa_set_mark(&mp->m_perags, pag->pag_agno, ici_tag_to_mark(tag)); 258 259 /* start background work */ 260 switch (tag) { 261 case XFS_ICI_RECLAIM_TAG: 262 xfs_reclaim_work_queue(mp); 263 break; 264 case XFS_ICI_BLOCKGC_TAG: 265 xfs_blockgc_queue(pag); 266 break; 267 } 268 269 trace_xfs_perag_set_inode_tag(pag, _RET_IP_); 270 } 271 272 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */ 273 static void 274 xfs_perag_clear_inode_tag( 275 struct xfs_perag *pag, 276 xfs_agino_t agino, 277 unsigned int tag) 278 { 279 struct xfs_mount *mp = pag->pag_mount; 280 281 lockdep_assert_held(&pag->pag_ici_lock); 282 283 /* 284 * Reclaim can signal (with a null agino) that it cleared its own tag 285 * by removing the inode from the radix tree. 286 */ 287 if (agino != NULLAGINO) 288 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag); 289 else 290 ASSERT(tag == XFS_ICI_RECLAIM_TAG); 291 292 if (tag == XFS_ICI_RECLAIM_TAG) 293 pag->pag_ici_reclaimable--; 294 295 if (radix_tree_tagged(&pag->pag_ici_root, tag)) 296 return; 297 298 /* clear the tag from the perag radix tree */ 299 xa_clear_mark(&mp->m_perags, pag->pag_agno, ici_tag_to_mark(tag)); 300 301 trace_xfs_perag_clear_inode_tag(pag, _RET_IP_); 302 } 303 304 /* 305 * Find the next AG after @pag, or the first AG if @pag is NULL. 306 */ 307 static struct xfs_perag * 308 xfs_perag_grab_next_tag( 309 struct xfs_mount *mp, 310 struct xfs_perag *pag, 311 int tag) 312 { 313 unsigned long index = 0; 314 315 if (pag) { 316 index = pag->pag_agno + 1; 317 xfs_perag_rele(pag); 318 } 319 320 rcu_read_lock(); 321 pag = xa_find(&mp->m_perags, &index, ULONG_MAX, ici_tag_to_mark(tag)); 322 if (pag) { 323 trace_xfs_perag_grab_next_tag(pag, _RET_IP_); 324 if (!atomic_inc_not_zero(&pag->pag_active_ref)) 325 pag = NULL; 326 } 327 rcu_read_unlock(); 328 return pag; 329 } 330 331 /* 332 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 333 * part of the structure. This is made more complex by the fact we store 334 * information about the on-disk values in the VFS inode and so we can't just 335 * overwrite the values unconditionally. Hence we save the parameters we 336 * need to retain across reinitialisation, and rewrite them into the VFS inode 337 * after reinitialisation even if it fails. 338 */ 339 static int 340 xfs_reinit_inode( 341 struct xfs_mount *mp, 342 struct inode *inode) 343 { 344 int error; 345 uint32_t nlink = inode->i_nlink; 346 uint32_t generation = inode->i_generation; 347 uint64_t version = inode_peek_iversion(inode); 348 umode_t mode = inode->i_mode; 349 dev_t dev = inode->i_rdev; 350 kuid_t uid = inode->i_uid; 351 kgid_t gid = inode->i_gid; 352 unsigned long state = inode->i_state; 353 354 error = inode_init_always(mp->m_super, inode); 355 356 set_nlink(inode, nlink); 357 inode->i_generation = generation; 358 inode_set_iversion_queried(inode, version); 359 inode->i_mode = mode; 360 inode->i_rdev = dev; 361 inode->i_uid = uid; 362 inode->i_gid = gid; 363 inode->i_state = state; 364 mapping_set_folio_min_order(inode->i_mapping, 365 M_IGEO(mp)->min_folio_order); 366 return error; 367 } 368 369 /* 370 * Carefully nudge an inode whose VFS state has been torn down back into a 371 * usable state. Drops the i_flags_lock and the rcu read lock. 372 */ 373 static int 374 xfs_iget_recycle( 375 struct xfs_perag *pag, 376 struct xfs_inode *ip) __releases(&ip->i_flags_lock) 377 { 378 struct xfs_mount *mp = ip->i_mount; 379 struct inode *inode = VFS_I(ip); 380 int error; 381 382 trace_xfs_iget_recycle(ip); 383 384 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 385 return -EAGAIN; 386 387 /* 388 * We need to make it look like the inode is being reclaimed to prevent 389 * the actual reclaim workers from stomping over us while we recycle 390 * the inode. We can't clear the radix tree tag yet as it requires 391 * pag_ici_lock to be held exclusive. 392 */ 393 ip->i_flags |= XFS_IRECLAIM; 394 395 spin_unlock(&ip->i_flags_lock); 396 rcu_read_unlock(); 397 398 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 399 error = xfs_reinit_inode(mp, inode); 400 xfs_iunlock(ip, XFS_ILOCK_EXCL); 401 if (error) { 402 /* 403 * Re-initializing the inode failed, and we are in deep 404 * trouble. Try to re-add it to the reclaim list. 405 */ 406 rcu_read_lock(); 407 spin_lock(&ip->i_flags_lock); 408 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 409 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 410 spin_unlock(&ip->i_flags_lock); 411 rcu_read_unlock(); 412 413 trace_xfs_iget_recycle_fail(ip); 414 return error; 415 } 416 417 spin_lock(&pag->pag_ici_lock); 418 spin_lock(&ip->i_flags_lock); 419 420 /* 421 * Clear the per-lifetime state in the inode as we are now effectively 422 * a new inode and need to return to the initial state before reuse 423 * occurs. 424 */ 425 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 426 ip->i_flags |= XFS_INEW; 427 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 428 XFS_ICI_RECLAIM_TAG); 429 inode->i_state = I_NEW; 430 spin_unlock(&ip->i_flags_lock); 431 spin_unlock(&pag->pag_ici_lock); 432 433 return 0; 434 } 435 436 /* 437 * If we are allocating a new inode, then check what was returned is 438 * actually a free, empty inode. If we are not allocating an inode, 439 * then check we didn't find a free inode. 440 * 441 * Returns: 442 * 0 if the inode free state matches the lookup context 443 * -ENOENT if the inode is free and we are not allocating 444 * -EFSCORRUPTED if there is any state mismatch at all 445 */ 446 static int 447 xfs_iget_check_free_state( 448 struct xfs_inode *ip, 449 int flags) 450 { 451 if (flags & XFS_IGET_CREATE) { 452 /* should be a free inode */ 453 if (VFS_I(ip)->i_mode != 0) { 454 xfs_warn(ip->i_mount, 455 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", 456 ip->i_ino, VFS_I(ip)->i_mode); 457 xfs_agno_mark_sick(ip->i_mount, 458 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 459 XFS_SICK_AG_INOBT); 460 return -EFSCORRUPTED; 461 } 462 463 if (ip->i_nblocks != 0) { 464 xfs_warn(ip->i_mount, 465 "Corruption detected! Free inode 0x%llx has blocks allocated!", 466 ip->i_ino); 467 xfs_agno_mark_sick(ip->i_mount, 468 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 469 XFS_SICK_AG_INOBT); 470 return -EFSCORRUPTED; 471 } 472 return 0; 473 } 474 475 /* should be an allocated inode */ 476 if (VFS_I(ip)->i_mode == 0) 477 return -ENOENT; 478 479 return 0; 480 } 481 482 /* Make all pending inactivation work start immediately. */ 483 static bool 484 xfs_inodegc_queue_all( 485 struct xfs_mount *mp) 486 { 487 struct xfs_inodegc *gc; 488 int cpu; 489 bool ret = false; 490 491 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 492 gc = per_cpu_ptr(mp->m_inodegc, cpu); 493 if (!llist_empty(&gc->list)) { 494 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 495 ret = true; 496 } 497 } 498 499 return ret; 500 } 501 502 /* Wait for all queued work and collect errors */ 503 static int 504 xfs_inodegc_wait_all( 505 struct xfs_mount *mp) 506 { 507 int cpu; 508 int error = 0; 509 510 flush_workqueue(mp->m_inodegc_wq); 511 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 512 struct xfs_inodegc *gc; 513 514 gc = per_cpu_ptr(mp->m_inodegc, cpu); 515 if (gc->error && !error) 516 error = gc->error; 517 gc->error = 0; 518 } 519 520 return error; 521 } 522 523 /* 524 * Check the validity of the inode we just found it the cache 525 */ 526 static int 527 xfs_iget_cache_hit( 528 struct xfs_perag *pag, 529 struct xfs_inode *ip, 530 xfs_ino_t ino, 531 int flags, 532 int lock_flags) __releases(RCU) 533 { 534 struct inode *inode = VFS_I(ip); 535 struct xfs_mount *mp = ip->i_mount; 536 int error; 537 538 /* 539 * check for re-use of an inode within an RCU grace period due to the 540 * radix tree nodes not being updated yet. We monitor for this by 541 * setting the inode number to zero before freeing the inode structure. 542 * If the inode has been reallocated and set up, then the inode number 543 * will not match, so check for that, too. 544 */ 545 spin_lock(&ip->i_flags_lock); 546 if (ip->i_ino != ino) 547 goto out_skip; 548 549 /* 550 * If we are racing with another cache hit that is currently 551 * instantiating this inode or currently recycling it out of 552 * reclaimable state, wait for the initialisation to complete 553 * before continuing. 554 * 555 * If we're racing with the inactivation worker we also want to wait. 556 * If we're creating a new file, it's possible that the worker 557 * previously marked the inode as free on disk but hasn't finished 558 * updating the incore state yet. The AGI buffer will be dirty and 559 * locked to the icreate transaction, so a synchronous push of the 560 * inodegc workers would result in deadlock. For a regular iget, the 561 * worker is running already, so we might as well wait. 562 * 563 * XXX(hch): eventually we should do something equivalent to 564 * wait_on_inode to wait for these flags to be cleared 565 * instead of polling for it. 566 */ 567 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING)) 568 goto out_skip; 569 570 if (ip->i_flags & XFS_NEED_INACTIVE) { 571 /* Unlinked inodes cannot be re-grabbed. */ 572 if (VFS_I(ip)->i_nlink == 0) { 573 error = -ENOENT; 574 goto out_error; 575 } 576 goto out_inodegc_flush; 577 } 578 579 /* 580 * Check the inode free state is valid. This also detects lookup 581 * racing with unlinks. 582 */ 583 error = xfs_iget_check_free_state(ip, flags); 584 if (error) 585 goto out_error; 586 587 /* Skip inodes that have no vfs state. */ 588 if ((flags & XFS_IGET_INCORE) && 589 (ip->i_flags & XFS_IRECLAIMABLE)) 590 goto out_skip; 591 592 /* The inode fits the selection criteria; process it. */ 593 if (ip->i_flags & XFS_IRECLAIMABLE) { 594 /* Drops i_flags_lock and RCU read lock. */ 595 error = xfs_iget_recycle(pag, ip); 596 if (error == -EAGAIN) 597 goto out_skip; 598 if (error) 599 return error; 600 } else { 601 /* If the VFS inode is being torn down, pause and try again. */ 602 if (!igrab(inode)) 603 goto out_skip; 604 605 /* We've got a live one. */ 606 spin_unlock(&ip->i_flags_lock); 607 rcu_read_unlock(); 608 trace_xfs_iget_hit(ip); 609 } 610 611 if (lock_flags != 0) 612 xfs_ilock(ip, lock_flags); 613 614 if (!(flags & XFS_IGET_INCORE)) 615 xfs_iflags_clear(ip, XFS_ISTALE); 616 XFS_STATS_INC(mp, xs_ig_found); 617 618 return 0; 619 620 out_skip: 621 trace_xfs_iget_skip(ip); 622 XFS_STATS_INC(mp, xs_ig_frecycle); 623 error = -EAGAIN; 624 out_error: 625 spin_unlock(&ip->i_flags_lock); 626 rcu_read_unlock(); 627 return error; 628 629 out_inodegc_flush: 630 spin_unlock(&ip->i_flags_lock); 631 rcu_read_unlock(); 632 /* 633 * Do not wait for the workers, because the caller could hold an AGI 634 * buffer lock. We're just going to sleep in a loop anyway. 635 */ 636 if (xfs_is_inodegc_enabled(mp)) 637 xfs_inodegc_queue_all(mp); 638 return -EAGAIN; 639 } 640 641 static int 642 xfs_iget_cache_miss( 643 struct xfs_mount *mp, 644 struct xfs_perag *pag, 645 xfs_trans_t *tp, 646 xfs_ino_t ino, 647 struct xfs_inode **ipp, 648 int flags, 649 int lock_flags) 650 { 651 struct xfs_inode *ip; 652 int error; 653 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 654 655 ip = xfs_inode_alloc(mp, ino); 656 if (!ip) 657 return -ENOMEM; 658 659 error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags); 660 if (error) 661 goto out_destroy; 662 663 /* 664 * For version 5 superblocks, if we are initialising a new inode and we 665 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can 666 * simply build the new inode core with a random generation number. 667 * 668 * For version 4 (and older) superblocks, log recovery is dependent on 669 * the i_flushiter field being initialised from the current on-disk 670 * value and hence we must also read the inode off disk even when 671 * initializing new inodes. 672 */ 673 if (xfs_has_v3inodes(mp) && 674 (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) { 675 VFS_I(ip)->i_generation = get_random_u32(); 676 } else { 677 struct xfs_buf *bp; 678 679 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp); 680 if (error) 681 goto out_destroy; 682 683 error = xfs_inode_from_disk(ip, 684 xfs_buf_offset(bp, ip->i_imap.im_boffset)); 685 if (!error) 686 xfs_buf_set_ref(bp, XFS_INO_REF); 687 else 688 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 689 xfs_trans_brelse(tp, bp); 690 691 if (error) 692 goto out_destroy; 693 } 694 695 trace_xfs_iget_miss(ip); 696 697 /* 698 * Check the inode free state is valid. This also detects lookup 699 * racing with unlinks. 700 */ 701 error = xfs_iget_check_free_state(ip, flags); 702 if (error) 703 goto out_destroy; 704 705 /* 706 * Preload the radix tree so we can insert safely under the 707 * write spinlock. Note that we cannot sleep inside the preload 708 * region. 709 */ 710 if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) { 711 error = -EAGAIN; 712 goto out_destroy; 713 } 714 715 /* 716 * Because the inode hasn't been added to the radix-tree yet it can't 717 * be found by another thread, so we can do the non-sleeping lock here. 718 */ 719 if (lock_flags) { 720 if (!xfs_ilock_nowait(ip, lock_flags)) 721 BUG(); 722 } 723 724 /* 725 * These values must be set before inserting the inode into the radix 726 * tree as the moment it is inserted a concurrent lookup (allowed by the 727 * RCU locking mechanism) can find it and that lookup must see that this 728 * is an inode currently under construction (i.e. that XFS_INEW is set). 729 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 730 * memory barrier that ensures this detection works correctly at lookup 731 * time. 732 */ 733 if (flags & XFS_IGET_DONTCACHE) 734 d_mark_dontcache(VFS_I(ip)); 735 ip->i_udquot = NULL; 736 ip->i_gdquot = NULL; 737 ip->i_pdquot = NULL; 738 xfs_iflags_set(ip, XFS_INEW); 739 740 /* insert the new inode */ 741 spin_lock(&pag->pag_ici_lock); 742 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 743 if (unlikely(error)) { 744 WARN_ON(error != -EEXIST); 745 XFS_STATS_INC(mp, xs_ig_dup); 746 error = -EAGAIN; 747 goto out_preload_end; 748 } 749 spin_unlock(&pag->pag_ici_lock); 750 radix_tree_preload_end(); 751 752 *ipp = ip; 753 return 0; 754 755 out_preload_end: 756 spin_unlock(&pag->pag_ici_lock); 757 radix_tree_preload_end(); 758 if (lock_flags) 759 xfs_iunlock(ip, lock_flags); 760 out_destroy: 761 __destroy_inode(VFS_I(ip)); 762 xfs_inode_free(ip); 763 return error; 764 } 765 766 /* 767 * Look up an inode by number in the given file system. The inode is looked up 768 * in the cache held in each AG. If the inode is found in the cache, initialise 769 * the vfs inode if necessary. 770 * 771 * If it is not in core, read it in from the file system's device, add it to the 772 * cache and initialise the vfs inode. 773 * 774 * The inode is locked according to the value of the lock_flags parameter. 775 * Inode lookup is only done during metadata operations and not as part of the 776 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup. 777 */ 778 int 779 xfs_iget( 780 struct xfs_mount *mp, 781 struct xfs_trans *tp, 782 xfs_ino_t ino, 783 uint flags, 784 uint lock_flags, 785 struct xfs_inode **ipp) 786 { 787 struct xfs_inode *ip; 788 struct xfs_perag *pag; 789 xfs_agino_t agino; 790 int error; 791 792 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 793 794 /* reject inode numbers outside existing AGs */ 795 if (!xfs_verify_ino(mp, ino)) 796 return -EINVAL; 797 798 XFS_STATS_INC(mp, xs_ig_attempts); 799 800 /* get the perag structure and ensure that it's inode capable */ 801 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 802 agino = XFS_INO_TO_AGINO(mp, ino); 803 804 again: 805 error = 0; 806 rcu_read_lock(); 807 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 808 809 if (ip) { 810 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 811 if (error) 812 goto out_error_or_again; 813 } else { 814 rcu_read_unlock(); 815 if (flags & XFS_IGET_INCORE) { 816 error = -ENODATA; 817 goto out_error_or_again; 818 } 819 XFS_STATS_INC(mp, xs_ig_missed); 820 821 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 822 flags, lock_flags); 823 if (error) 824 goto out_error_or_again; 825 } 826 xfs_perag_put(pag); 827 828 *ipp = ip; 829 830 /* 831 * If we have a real type for an on-disk inode, we can setup the inode 832 * now. If it's a new inode being created, xfs_init_new_inode will 833 * handle it. 834 */ 835 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 836 xfs_setup_existing_inode(ip); 837 return 0; 838 839 out_error_or_again: 840 if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) && 841 error == -EAGAIN) { 842 delay(1); 843 goto again; 844 } 845 xfs_perag_put(pag); 846 return error; 847 } 848 849 /* 850 * Grab the inode for reclaim exclusively. 851 * 852 * We have found this inode via a lookup under RCU, so the inode may have 853 * already been freed, or it may be in the process of being recycled by 854 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode 855 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE 856 * will not be set. Hence we need to check for both these flag conditions to 857 * avoid inodes that are no longer reclaim candidates. 858 * 859 * Note: checking for other state flags here, under the i_flags_lock or not, is 860 * racy and should be avoided. Those races should be resolved only after we have 861 * ensured that we are able to reclaim this inode and the world can see that we 862 * are going to reclaim it. 863 * 864 * Return true if we grabbed it, false otherwise. 865 */ 866 static bool 867 xfs_reclaim_igrab( 868 struct xfs_inode *ip, 869 struct xfs_icwalk *icw) 870 { 871 ASSERT(rcu_read_lock_held()); 872 873 spin_lock(&ip->i_flags_lock); 874 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 875 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 876 /* not a reclaim candidate. */ 877 spin_unlock(&ip->i_flags_lock); 878 return false; 879 } 880 881 /* Don't reclaim a sick inode unless the caller asked for it. */ 882 if (ip->i_sick && 883 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) { 884 spin_unlock(&ip->i_flags_lock); 885 return false; 886 } 887 888 __xfs_iflags_set(ip, XFS_IRECLAIM); 889 spin_unlock(&ip->i_flags_lock); 890 return true; 891 } 892 893 /* 894 * Inode reclaim is non-blocking, so the default action if progress cannot be 895 * made is to "requeue" the inode for reclaim by unlocking it and clearing the 896 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about 897 * blocking anymore and hence we can wait for the inode to be able to reclaim 898 * it. 899 * 900 * We do no IO here - if callers require inodes to be cleaned they must push the 901 * AIL first to trigger writeback of dirty inodes. This enables writeback to be 902 * done in the background in a non-blocking manner, and enables memory reclaim 903 * to make progress without blocking. 904 */ 905 static void 906 xfs_reclaim_inode( 907 struct xfs_inode *ip, 908 struct xfs_perag *pag) 909 { 910 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 911 912 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 913 goto out; 914 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING)) 915 goto out_iunlock; 916 917 /* 918 * Check for log shutdown because aborting the inode can move the log 919 * tail and corrupt in memory state. This is fine if the log is shut 920 * down, but if the log is still active and only the mount is shut down 921 * then the in-memory log tail movement caused by the abort can be 922 * incorrectly propagated to disk. 923 */ 924 if (xlog_is_shutdown(ip->i_mount->m_log)) { 925 xfs_iunpin_wait(ip); 926 xfs_iflush_shutdown_abort(ip); 927 goto reclaim; 928 } 929 if (xfs_ipincount(ip)) 930 goto out_clear_flush; 931 if (!xfs_inode_clean(ip)) 932 goto out_clear_flush; 933 934 xfs_iflags_clear(ip, XFS_IFLUSHING); 935 reclaim: 936 trace_xfs_inode_reclaiming(ip); 937 938 /* 939 * Because we use RCU freeing we need to ensure the inode always appears 940 * to be reclaimed with an invalid inode number when in the free state. 941 * We do this as early as possible under the ILOCK so that 942 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to 943 * detect races with us here. By doing this, we guarantee that once 944 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that 945 * it will see either a valid inode that will serialise correctly, or it 946 * will see an invalid inode that it can skip. 947 */ 948 spin_lock(&ip->i_flags_lock); 949 ip->i_flags = XFS_IRECLAIM; 950 ip->i_ino = 0; 951 ip->i_sick = 0; 952 ip->i_checked = 0; 953 spin_unlock(&ip->i_flags_lock); 954 955 ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL); 956 xfs_iunlock(ip, XFS_ILOCK_EXCL); 957 958 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 959 /* 960 * Remove the inode from the per-AG radix tree. 961 * 962 * Because radix_tree_delete won't complain even if the item was never 963 * added to the tree assert that it's been there before to catch 964 * problems with the inode life time early on. 965 */ 966 spin_lock(&pag->pag_ici_lock); 967 if (!radix_tree_delete(&pag->pag_ici_root, 968 XFS_INO_TO_AGINO(ip->i_mount, ino))) 969 ASSERT(0); 970 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG); 971 spin_unlock(&pag->pag_ici_lock); 972 973 /* 974 * Here we do an (almost) spurious inode lock in order to coordinate 975 * with inode cache radix tree lookups. This is because the lookup 976 * can reference the inodes in the cache without taking references. 977 * 978 * We make that OK here by ensuring that we wait until the inode is 979 * unlocked after the lookup before we go ahead and free it. 980 */ 981 xfs_ilock(ip, XFS_ILOCK_EXCL); 982 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot); 983 xfs_iunlock(ip, XFS_ILOCK_EXCL); 984 ASSERT(xfs_inode_clean(ip)); 985 986 __xfs_inode_free(ip); 987 return; 988 989 out_clear_flush: 990 xfs_iflags_clear(ip, XFS_IFLUSHING); 991 out_iunlock: 992 xfs_iunlock(ip, XFS_ILOCK_EXCL); 993 out: 994 xfs_iflags_clear(ip, XFS_IRECLAIM); 995 } 996 997 /* Reclaim sick inodes if we're unmounting or the fs went down. */ 998 static inline bool 999 xfs_want_reclaim_sick( 1000 struct xfs_mount *mp) 1001 { 1002 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) || 1003 xfs_is_shutdown(mp); 1004 } 1005 1006 void 1007 xfs_reclaim_inodes( 1008 struct xfs_mount *mp) 1009 { 1010 struct xfs_icwalk icw = { 1011 .icw_flags = 0, 1012 }; 1013 1014 if (xfs_want_reclaim_sick(mp)) 1015 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 1016 1017 while (xa_marked(&mp->m_perags, XFS_PERAG_RECLAIM_MARK)) { 1018 xfs_ail_push_all_sync(mp->m_ail); 1019 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 1020 } 1021 } 1022 1023 /* 1024 * The shrinker infrastructure determines how many inodes we should scan for 1025 * reclaim. We want as many clean inodes ready to reclaim as possible, so we 1026 * push the AIL here. We also want to proactively free up memory if we can to 1027 * minimise the amount of work memory reclaim has to do so we kick the 1028 * background reclaim if it isn't already scheduled. 1029 */ 1030 long 1031 xfs_reclaim_inodes_nr( 1032 struct xfs_mount *mp, 1033 unsigned long nr_to_scan) 1034 { 1035 struct xfs_icwalk icw = { 1036 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT, 1037 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan), 1038 }; 1039 1040 if (xfs_want_reclaim_sick(mp)) 1041 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 1042 1043 /* kick background reclaimer and push the AIL */ 1044 xfs_reclaim_work_queue(mp); 1045 xfs_ail_push_all(mp->m_ail); 1046 1047 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 1048 return 0; 1049 } 1050 1051 /* 1052 * Return the number of reclaimable inodes in the filesystem for 1053 * the shrinker to determine how much to reclaim. 1054 */ 1055 long 1056 xfs_reclaim_inodes_count( 1057 struct xfs_mount *mp) 1058 { 1059 XA_STATE (xas, &mp->m_perags, 0); 1060 long reclaimable = 0; 1061 struct xfs_perag *pag; 1062 1063 rcu_read_lock(); 1064 xas_for_each_marked(&xas, pag, ULONG_MAX, XFS_PERAG_RECLAIM_MARK) { 1065 trace_xfs_reclaim_inodes_count(pag, _THIS_IP_); 1066 reclaimable += pag->pag_ici_reclaimable; 1067 } 1068 rcu_read_unlock(); 1069 1070 return reclaimable; 1071 } 1072 1073 STATIC bool 1074 xfs_icwalk_match_id( 1075 struct xfs_inode *ip, 1076 struct xfs_icwalk *icw) 1077 { 1078 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1079 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1080 return false; 1081 1082 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1083 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1084 return false; 1085 1086 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1087 ip->i_projid != icw->icw_prid) 1088 return false; 1089 1090 return true; 1091 } 1092 1093 /* 1094 * A union-based inode filtering algorithm. Process the inode if any of the 1095 * criteria match. This is for global/internal scans only. 1096 */ 1097 STATIC bool 1098 xfs_icwalk_match_id_union( 1099 struct xfs_inode *ip, 1100 struct xfs_icwalk *icw) 1101 { 1102 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1103 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1104 return true; 1105 1106 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1107 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1108 return true; 1109 1110 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1111 ip->i_projid == icw->icw_prid) 1112 return true; 1113 1114 return false; 1115 } 1116 1117 /* 1118 * Is this inode @ip eligible for eof/cow block reclamation, given some 1119 * filtering parameters @icw? The inode is eligible if @icw is null or 1120 * if the predicate functions match. 1121 */ 1122 static bool 1123 xfs_icwalk_match( 1124 struct xfs_inode *ip, 1125 struct xfs_icwalk *icw) 1126 { 1127 bool match; 1128 1129 if (!icw) 1130 return true; 1131 1132 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION) 1133 match = xfs_icwalk_match_id_union(ip, icw); 1134 else 1135 match = xfs_icwalk_match_id(ip, icw); 1136 if (!match) 1137 return false; 1138 1139 /* skip the inode if the file size is too small */ 1140 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) && 1141 XFS_ISIZE(ip) < icw->icw_min_file_size) 1142 return false; 1143 1144 return true; 1145 } 1146 1147 /* 1148 * This is a fast pass over the inode cache to try to get reclaim moving on as 1149 * many inodes as possible in a short period of time. It kicks itself every few 1150 * seconds, as well as being kicked by the inode cache shrinker when memory 1151 * goes low. 1152 */ 1153 void 1154 xfs_reclaim_worker( 1155 struct work_struct *work) 1156 { 1157 struct xfs_mount *mp = container_of(to_delayed_work(work), 1158 struct xfs_mount, m_reclaim_work); 1159 1160 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL); 1161 xfs_reclaim_work_queue(mp); 1162 } 1163 1164 STATIC int 1165 xfs_inode_free_eofblocks( 1166 struct xfs_inode *ip, 1167 struct xfs_icwalk *icw, 1168 unsigned int *lockflags) 1169 { 1170 bool wait; 1171 1172 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1173 1174 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS)) 1175 return 0; 1176 1177 /* 1178 * If the mapping is dirty the operation can block and wait for some 1179 * time. Unless we are waiting, skip it. 1180 */ 1181 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1182 return 0; 1183 1184 if (!xfs_icwalk_match(ip, icw)) 1185 return 0; 1186 1187 /* 1188 * If the caller is waiting, return -EAGAIN to keep the background 1189 * scanner moving and revisit the inode in a subsequent pass. 1190 */ 1191 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1192 if (wait) 1193 return -EAGAIN; 1194 return 0; 1195 } 1196 *lockflags |= XFS_IOLOCK_EXCL; 1197 1198 if (xfs_can_free_eofblocks(ip)) 1199 return xfs_free_eofblocks(ip); 1200 1201 /* inode could be preallocated */ 1202 trace_xfs_inode_free_eofblocks_invalid(ip); 1203 xfs_inode_clear_eofblocks_tag(ip); 1204 return 0; 1205 } 1206 1207 static void 1208 xfs_blockgc_set_iflag( 1209 struct xfs_inode *ip, 1210 unsigned long iflag) 1211 { 1212 struct xfs_mount *mp = ip->i_mount; 1213 struct xfs_perag *pag; 1214 1215 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1216 1217 /* 1218 * Don't bother locking the AG and looking up in the radix trees 1219 * if we already know that we have the tag set. 1220 */ 1221 if (ip->i_flags & iflag) 1222 return; 1223 spin_lock(&ip->i_flags_lock); 1224 ip->i_flags |= iflag; 1225 spin_unlock(&ip->i_flags_lock); 1226 1227 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1228 spin_lock(&pag->pag_ici_lock); 1229 1230 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1231 XFS_ICI_BLOCKGC_TAG); 1232 1233 spin_unlock(&pag->pag_ici_lock); 1234 xfs_perag_put(pag); 1235 } 1236 1237 void 1238 xfs_inode_set_eofblocks_tag( 1239 xfs_inode_t *ip) 1240 { 1241 trace_xfs_inode_set_eofblocks_tag(ip); 1242 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS); 1243 } 1244 1245 static void 1246 xfs_blockgc_clear_iflag( 1247 struct xfs_inode *ip, 1248 unsigned long iflag) 1249 { 1250 struct xfs_mount *mp = ip->i_mount; 1251 struct xfs_perag *pag; 1252 bool clear_tag; 1253 1254 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1255 1256 spin_lock(&ip->i_flags_lock); 1257 ip->i_flags &= ~iflag; 1258 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0; 1259 spin_unlock(&ip->i_flags_lock); 1260 1261 if (!clear_tag) 1262 return; 1263 1264 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1265 spin_lock(&pag->pag_ici_lock); 1266 1267 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1268 XFS_ICI_BLOCKGC_TAG); 1269 1270 spin_unlock(&pag->pag_ici_lock); 1271 xfs_perag_put(pag); 1272 } 1273 1274 void 1275 xfs_inode_clear_eofblocks_tag( 1276 xfs_inode_t *ip) 1277 { 1278 trace_xfs_inode_clear_eofblocks_tag(ip); 1279 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS); 1280 } 1281 1282 /* 1283 * Set ourselves up to free CoW blocks from this file. If it's already clean 1284 * then we can bail out quickly, but otherwise we must back off if the file 1285 * is undergoing some kind of write. 1286 */ 1287 static bool 1288 xfs_prep_free_cowblocks( 1289 struct xfs_inode *ip) 1290 { 1291 /* 1292 * Just clear the tag if we have an empty cow fork or none at all. It's 1293 * possible the inode was fully unshared since it was originally tagged. 1294 */ 1295 if (!xfs_inode_has_cow_data(ip)) { 1296 trace_xfs_inode_free_cowblocks_invalid(ip); 1297 xfs_inode_clear_cowblocks_tag(ip); 1298 return false; 1299 } 1300 1301 /* 1302 * If the mapping is dirty or under writeback we cannot touch the 1303 * CoW fork. Leave it alone if we're in the midst of a directio. 1304 */ 1305 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || 1306 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || 1307 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || 1308 atomic_read(&VFS_I(ip)->i_dio_count)) 1309 return false; 1310 1311 return true; 1312 } 1313 1314 /* 1315 * Automatic CoW Reservation Freeing 1316 * 1317 * These functions automatically garbage collect leftover CoW reservations 1318 * that were made on behalf of a cowextsize hint when we start to run out 1319 * of quota or when the reservations sit around for too long. If the file 1320 * has dirty pages or is undergoing writeback, its CoW reservations will 1321 * be retained. 1322 * 1323 * The actual garbage collection piggybacks off the same code that runs 1324 * the speculative EOF preallocation garbage collector. 1325 */ 1326 STATIC int 1327 xfs_inode_free_cowblocks( 1328 struct xfs_inode *ip, 1329 struct xfs_icwalk *icw, 1330 unsigned int *lockflags) 1331 { 1332 bool wait; 1333 int ret = 0; 1334 1335 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1336 1337 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS)) 1338 return 0; 1339 1340 if (!xfs_prep_free_cowblocks(ip)) 1341 return 0; 1342 1343 if (!xfs_icwalk_match(ip, icw)) 1344 return 0; 1345 1346 /* 1347 * If the caller is waiting, return -EAGAIN to keep the background 1348 * scanner moving and revisit the inode in a subsequent pass. 1349 */ 1350 if (!(*lockflags & XFS_IOLOCK_EXCL) && 1351 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1352 if (wait) 1353 return -EAGAIN; 1354 return 0; 1355 } 1356 *lockflags |= XFS_IOLOCK_EXCL; 1357 1358 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) { 1359 if (wait) 1360 return -EAGAIN; 1361 return 0; 1362 } 1363 *lockflags |= XFS_MMAPLOCK_EXCL; 1364 1365 /* 1366 * Check again, nobody else should be able to dirty blocks or change 1367 * the reflink iflag now that we have the first two locks held. 1368 */ 1369 if (xfs_prep_free_cowblocks(ip)) 1370 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1371 return ret; 1372 } 1373 1374 void 1375 xfs_inode_set_cowblocks_tag( 1376 xfs_inode_t *ip) 1377 { 1378 trace_xfs_inode_set_cowblocks_tag(ip); 1379 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS); 1380 } 1381 1382 void 1383 xfs_inode_clear_cowblocks_tag( 1384 xfs_inode_t *ip) 1385 { 1386 trace_xfs_inode_clear_cowblocks_tag(ip); 1387 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS); 1388 } 1389 1390 /* Disable post-EOF and CoW block auto-reclamation. */ 1391 void 1392 xfs_blockgc_stop( 1393 struct xfs_mount *mp) 1394 { 1395 struct xfs_perag *pag; 1396 xfs_agnumber_t agno; 1397 1398 if (!xfs_clear_blockgc_enabled(mp)) 1399 return; 1400 1401 for_each_perag(mp, agno, pag) 1402 cancel_delayed_work_sync(&pag->pag_blockgc_work); 1403 trace_xfs_blockgc_stop(mp, __return_address); 1404 } 1405 1406 /* Enable post-EOF and CoW block auto-reclamation. */ 1407 void 1408 xfs_blockgc_start( 1409 struct xfs_mount *mp) 1410 { 1411 struct xfs_perag *pag = NULL; 1412 1413 if (xfs_set_blockgc_enabled(mp)) 1414 return; 1415 1416 trace_xfs_blockgc_start(mp, __return_address); 1417 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG))) 1418 xfs_blockgc_queue(pag); 1419 } 1420 1421 /* Don't try to run block gc on an inode that's in any of these states. */ 1422 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \ 1423 XFS_NEED_INACTIVE | \ 1424 XFS_INACTIVATING | \ 1425 XFS_IRECLAIMABLE | \ 1426 XFS_IRECLAIM) 1427 /* 1428 * Decide if the given @ip is eligible for garbage collection of speculative 1429 * preallocations, and grab it if so. Returns true if it's ready to go or 1430 * false if we should just ignore it. 1431 */ 1432 static bool 1433 xfs_blockgc_igrab( 1434 struct xfs_inode *ip) 1435 { 1436 struct inode *inode = VFS_I(ip); 1437 1438 ASSERT(rcu_read_lock_held()); 1439 1440 /* Check for stale RCU freed inode */ 1441 spin_lock(&ip->i_flags_lock); 1442 if (!ip->i_ino) 1443 goto out_unlock_noent; 1444 1445 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS) 1446 goto out_unlock_noent; 1447 spin_unlock(&ip->i_flags_lock); 1448 1449 /* nothing to sync during shutdown */ 1450 if (xfs_is_shutdown(ip->i_mount)) 1451 return false; 1452 1453 /* If we can't grab the inode, it must on it's way to reclaim. */ 1454 if (!igrab(inode)) 1455 return false; 1456 1457 /* inode is valid */ 1458 return true; 1459 1460 out_unlock_noent: 1461 spin_unlock(&ip->i_flags_lock); 1462 return false; 1463 } 1464 1465 /* Scan one incore inode for block preallocations that we can remove. */ 1466 static int 1467 xfs_blockgc_scan_inode( 1468 struct xfs_inode *ip, 1469 struct xfs_icwalk *icw) 1470 { 1471 unsigned int lockflags = 0; 1472 int error; 1473 1474 error = xfs_inode_free_eofblocks(ip, icw, &lockflags); 1475 if (error) 1476 goto unlock; 1477 1478 error = xfs_inode_free_cowblocks(ip, icw, &lockflags); 1479 unlock: 1480 if (lockflags) 1481 xfs_iunlock(ip, lockflags); 1482 xfs_irele(ip); 1483 return error; 1484 } 1485 1486 /* Background worker that trims preallocated space. */ 1487 void 1488 xfs_blockgc_worker( 1489 struct work_struct *work) 1490 { 1491 struct xfs_perag *pag = container_of(to_delayed_work(work), 1492 struct xfs_perag, pag_blockgc_work); 1493 struct xfs_mount *mp = pag->pag_mount; 1494 int error; 1495 1496 trace_xfs_blockgc_worker(mp, __return_address); 1497 1498 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL); 1499 if (error) 1500 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d", 1501 pag->pag_agno, error); 1502 xfs_blockgc_queue(pag); 1503 } 1504 1505 /* 1506 * Try to free space in the filesystem by purging inactive inodes, eofblocks 1507 * and cowblocks. 1508 */ 1509 int 1510 xfs_blockgc_free_space( 1511 struct xfs_mount *mp, 1512 struct xfs_icwalk *icw) 1513 { 1514 int error; 1515 1516 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_); 1517 1518 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw); 1519 if (error) 1520 return error; 1521 1522 return xfs_inodegc_flush(mp); 1523 } 1524 1525 /* 1526 * Reclaim all the free space that we can by scheduling the background blockgc 1527 * and inodegc workers immediately and waiting for them all to clear. 1528 */ 1529 int 1530 xfs_blockgc_flush_all( 1531 struct xfs_mount *mp) 1532 { 1533 struct xfs_perag *pag = NULL; 1534 1535 trace_xfs_blockgc_flush_all(mp, __return_address); 1536 1537 /* 1538 * For each blockgc worker, move its queue time up to now. If it wasn't 1539 * queued, it will not be requeued. Then flush whatever is left. 1540 */ 1541 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG))) 1542 mod_delayed_work(pag->pag_mount->m_blockgc_wq, 1543 &pag->pag_blockgc_work, 0); 1544 1545 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG))) 1546 flush_delayed_work(&pag->pag_blockgc_work); 1547 1548 return xfs_inodegc_flush(mp); 1549 } 1550 1551 /* 1552 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which 1553 * quota caused an allocation failure, so we make a best effort by including 1554 * each quota under low free space conditions (less than 1% free space) in the 1555 * scan. 1556 * 1557 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan 1558 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or 1559 * MMAPLOCK. 1560 */ 1561 int 1562 xfs_blockgc_free_dquots( 1563 struct xfs_mount *mp, 1564 struct xfs_dquot *udqp, 1565 struct xfs_dquot *gdqp, 1566 struct xfs_dquot *pdqp, 1567 unsigned int iwalk_flags) 1568 { 1569 struct xfs_icwalk icw = {0}; 1570 bool do_work = false; 1571 1572 if (!udqp && !gdqp && !pdqp) 1573 return 0; 1574 1575 /* 1576 * Run a scan to free blocks using the union filter to cover all 1577 * applicable quotas in a single scan. 1578 */ 1579 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags; 1580 1581 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) { 1582 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id); 1583 icw.icw_flags |= XFS_ICWALK_FLAG_UID; 1584 do_work = true; 1585 } 1586 1587 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) { 1588 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id); 1589 icw.icw_flags |= XFS_ICWALK_FLAG_GID; 1590 do_work = true; 1591 } 1592 1593 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) { 1594 icw.icw_prid = pdqp->q_id; 1595 icw.icw_flags |= XFS_ICWALK_FLAG_PRID; 1596 do_work = true; 1597 } 1598 1599 if (!do_work) 1600 return 0; 1601 1602 return xfs_blockgc_free_space(mp, &icw); 1603 } 1604 1605 /* Run cow/eofblocks scans on the quotas attached to the inode. */ 1606 int 1607 xfs_blockgc_free_quota( 1608 struct xfs_inode *ip, 1609 unsigned int iwalk_flags) 1610 { 1611 return xfs_blockgc_free_dquots(ip->i_mount, 1612 xfs_inode_dquot(ip, XFS_DQTYPE_USER), 1613 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP), 1614 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags); 1615 } 1616 1617 /* XFS Inode Cache Walking Code */ 1618 1619 /* 1620 * The inode lookup is done in batches to keep the amount of lock traffic and 1621 * radix tree lookups to a minimum. The batch size is a trade off between 1622 * lookup reduction and stack usage. This is in the reclaim path, so we can't 1623 * be too greedy. 1624 */ 1625 #define XFS_LOOKUP_BATCH 32 1626 1627 1628 /* 1629 * Decide if we want to grab this inode in anticipation of doing work towards 1630 * the goal. 1631 */ 1632 static inline bool 1633 xfs_icwalk_igrab( 1634 enum xfs_icwalk_goal goal, 1635 struct xfs_inode *ip, 1636 struct xfs_icwalk *icw) 1637 { 1638 switch (goal) { 1639 case XFS_ICWALK_BLOCKGC: 1640 return xfs_blockgc_igrab(ip); 1641 case XFS_ICWALK_RECLAIM: 1642 return xfs_reclaim_igrab(ip, icw); 1643 default: 1644 return false; 1645 } 1646 } 1647 1648 /* 1649 * Process an inode. Each processing function must handle any state changes 1650 * made by the icwalk igrab function. Return -EAGAIN to skip an inode. 1651 */ 1652 static inline int 1653 xfs_icwalk_process_inode( 1654 enum xfs_icwalk_goal goal, 1655 struct xfs_inode *ip, 1656 struct xfs_perag *pag, 1657 struct xfs_icwalk *icw) 1658 { 1659 int error = 0; 1660 1661 switch (goal) { 1662 case XFS_ICWALK_BLOCKGC: 1663 error = xfs_blockgc_scan_inode(ip, icw); 1664 break; 1665 case XFS_ICWALK_RECLAIM: 1666 xfs_reclaim_inode(ip, pag); 1667 break; 1668 } 1669 return error; 1670 } 1671 1672 /* 1673 * For a given per-AG structure @pag and a goal, grab qualifying inodes and 1674 * process them in some manner. 1675 */ 1676 static int 1677 xfs_icwalk_ag( 1678 struct xfs_perag *pag, 1679 enum xfs_icwalk_goal goal, 1680 struct xfs_icwalk *icw) 1681 { 1682 struct xfs_mount *mp = pag->pag_mount; 1683 uint32_t first_index; 1684 int last_error = 0; 1685 int skipped; 1686 bool done; 1687 int nr_found; 1688 1689 restart: 1690 done = false; 1691 skipped = 0; 1692 if (goal == XFS_ICWALK_RECLAIM) 1693 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor); 1694 else 1695 first_index = 0; 1696 nr_found = 0; 1697 do { 1698 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1699 int error = 0; 1700 int i; 1701 1702 rcu_read_lock(); 1703 1704 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, 1705 (void **) batch, first_index, 1706 XFS_LOOKUP_BATCH, goal); 1707 if (!nr_found) { 1708 done = true; 1709 rcu_read_unlock(); 1710 break; 1711 } 1712 1713 /* 1714 * Grab the inodes before we drop the lock. if we found 1715 * nothing, nr == 0 and the loop will be skipped. 1716 */ 1717 for (i = 0; i < nr_found; i++) { 1718 struct xfs_inode *ip = batch[i]; 1719 1720 if (done || !xfs_icwalk_igrab(goal, ip, icw)) 1721 batch[i] = NULL; 1722 1723 /* 1724 * Update the index for the next lookup. Catch 1725 * overflows into the next AG range which can occur if 1726 * we have inodes in the last block of the AG and we 1727 * are currently pointing to the last inode. 1728 * 1729 * Because we may see inodes that are from the wrong AG 1730 * due to RCU freeing and reallocation, only update the 1731 * index if it lies in this AG. It was a race that lead 1732 * us to see this inode, so another lookup from the 1733 * same index will not find it again. 1734 */ 1735 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 1736 continue; 1737 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1738 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1739 done = true; 1740 } 1741 1742 /* unlock now we've grabbed the inodes. */ 1743 rcu_read_unlock(); 1744 1745 for (i = 0; i < nr_found; i++) { 1746 if (!batch[i]) 1747 continue; 1748 error = xfs_icwalk_process_inode(goal, batch[i], pag, 1749 icw); 1750 if (error == -EAGAIN) { 1751 skipped++; 1752 continue; 1753 } 1754 if (error && last_error != -EFSCORRUPTED) 1755 last_error = error; 1756 } 1757 1758 /* bail out if the filesystem is corrupted. */ 1759 if (error == -EFSCORRUPTED) 1760 break; 1761 1762 cond_resched(); 1763 1764 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) { 1765 icw->icw_scan_limit -= XFS_LOOKUP_BATCH; 1766 if (icw->icw_scan_limit <= 0) 1767 break; 1768 } 1769 } while (nr_found && !done); 1770 1771 if (goal == XFS_ICWALK_RECLAIM) { 1772 if (done) 1773 first_index = 0; 1774 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index); 1775 } 1776 1777 if (skipped) { 1778 delay(1); 1779 goto restart; 1780 } 1781 return last_error; 1782 } 1783 1784 /* Walk all incore inodes to achieve a given goal. */ 1785 static int 1786 xfs_icwalk( 1787 struct xfs_mount *mp, 1788 enum xfs_icwalk_goal goal, 1789 struct xfs_icwalk *icw) 1790 { 1791 struct xfs_perag *pag = NULL; 1792 int error = 0; 1793 int last_error = 0; 1794 1795 while ((pag = xfs_perag_grab_next_tag(mp, pag, goal))) { 1796 error = xfs_icwalk_ag(pag, goal, icw); 1797 if (error) { 1798 last_error = error; 1799 if (error == -EFSCORRUPTED) { 1800 xfs_perag_rele(pag); 1801 break; 1802 } 1803 } 1804 } 1805 return last_error; 1806 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID); 1807 } 1808 1809 #ifdef DEBUG 1810 static void 1811 xfs_check_delalloc( 1812 struct xfs_inode *ip, 1813 int whichfork) 1814 { 1815 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 1816 struct xfs_bmbt_irec got; 1817 struct xfs_iext_cursor icur; 1818 1819 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 1820 return; 1821 do { 1822 if (isnullstartblock(got.br_startblock)) { 1823 xfs_warn(ip->i_mount, 1824 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 1825 ip->i_ino, 1826 whichfork == XFS_DATA_FORK ? "data" : "cow", 1827 got.br_startoff, got.br_blockcount); 1828 } 1829 } while (xfs_iext_next_extent(ifp, &icur, &got)); 1830 } 1831 #else 1832 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 1833 #endif 1834 1835 /* Schedule the inode for reclaim. */ 1836 static void 1837 xfs_inodegc_set_reclaimable( 1838 struct xfs_inode *ip) 1839 { 1840 struct xfs_mount *mp = ip->i_mount; 1841 struct xfs_perag *pag; 1842 1843 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) { 1844 xfs_check_delalloc(ip, XFS_DATA_FORK); 1845 xfs_check_delalloc(ip, XFS_COW_FORK); 1846 ASSERT(0); 1847 } 1848 1849 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1850 spin_lock(&pag->pag_ici_lock); 1851 spin_lock(&ip->i_flags_lock); 1852 1853 trace_xfs_inode_set_reclaimable(ip); 1854 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING); 1855 ip->i_flags |= XFS_IRECLAIMABLE; 1856 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1857 XFS_ICI_RECLAIM_TAG); 1858 1859 spin_unlock(&ip->i_flags_lock); 1860 spin_unlock(&pag->pag_ici_lock); 1861 xfs_perag_put(pag); 1862 } 1863 1864 /* 1865 * Free all speculative preallocations and possibly even the inode itself. 1866 * This is the last chance to make changes to an otherwise unreferenced file 1867 * before incore reclamation happens. 1868 */ 1869 static int 1870 xfs_inodegc_inactivate( 1871 struct xfs_inode *ip) 1872 { 1873 int error; 1874 1875 trace_xfs_inode_inactivating(ip); 1876 error = xfs_inactive(ip); 1877 xfs_inodegc_set_reclaimable(ip); 1878 return error; 1879 1880 } 1881 1882 void 1883 xfs_inodegc_worker( 1884 struct work_struct *work) 1885 { 1886 struct xfs_inodegc *gc = container_of(to_delayed_work(work), 1887 struct xfs_inodegc, work); 1888 struct llist_node *node = llist_del_all(&gc->list); 1889 struct xfs_inode *ip, *n; 1890 struct xfs_mount *mp = gc->mp; 1891 unsigned int nofs_flag; 1892 1893 /* 1894 * Clear the cpu mask bit and ensure that we have seen the latest 1895 * update of the gc structure associated with this CPU. This matches 1896 * with the release semantics used when setting the cpumask bit in 1897 * xfs_inodegc_queue. 1898 */ 1899 cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask); 1900 smp_mb__after_atomic(); 1901 1902 WRITE_ONCE(gc->items, 0); 1903 1904 if (!node) 1905 return; 1906 1907 /* 1908 * We can allocate memory here while doing writeback on behalf of 1909 * memory reclaim. To avoid memory allocation deadlocks set the 1910 * task-wide nofs context for the following operations. 1911 */ 1912 nofs_flag = memalloc_nofs_save(); 1913 1914 ip = llist_entry(node, struct xfs_inode, i_gclist); 1915 trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits)); 1916 1917 WRITE_ONCE(gc->shrinker_hits, 0); 1918 llist_for_each_entry_safe(ip, n, node, i_gclist) { 1919 int error; 1920 1921 xfs_iflags_set(ip, XFS_INACTIVATING); 1922 error = xfs_inodegc_inactivate(ip); 1923 if (error && !gc->error) 1924 gc->error = error; 1925 } 1926 1927 memalloc_nofs_restore(nofs_flag); 1928 } 1929 1930 /* 1931 * Expedite all pending inodegc work to run immediately. This does not wait for 1932 * completion of the work. 1933 */ 1934 void 1935 xfs_inodegc_push( 1936 struct xfs_mount *mp) 1937 { 1938 if (!xfs_is_inodegc_enabled(mp)) 1939 return; 1940 trace_xfs_inodegc_push(mp, __return_address); 1941 xfs_inodegc_queue_all(mp); 1942 } 1943 1944 /* 1945 * Force all currently queued inode inactivation work to run immediately and 1946 * wait for the work to finish. 1947 */ 1948 int 1949 xfs_inodegc_flush( 1950 struct xfs_mount *mp) 1951 { 1952 xfs_inodegc_push(mp); 1953 trace_xfs_inodegc_flush(mp, __return_address); 1954 return xfs_inodegc_wait_all(mp); 1955 } 1956 1957 /* 1958 * Flush all the pending work and then disable the inode inactivation background 1959 * workers and wait for them to stop. Caller must hold sb->s_umount to 1960 * coordinate changes in the inodegc_enabled state. 1961 */ 1962 void 1963 xfs_inodegc_stop( 1964 struct xfs_mount *mp) 1965 { 1966 bool rerun; 1967 1968 if (!xfs_clear_inodegc_enabled(mp)) 1969 return; 1970 1971 /* 1972 * Drain all pending inodegc work, including inodes that could be 1973 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan 1974 * threads that sample the inodegc state just prior to us clearing it. 1975 * The inodegc flag state prevents new threads from queuing more 1976 * inodes, so we queue pending work items and flush the workqueue until 1977 * all inodegc lists are empty. IOWs, we cannot use drain_workqueue 1978 * here because it does not allow other unserialized mechanisms to 1979 * reschedule inodegc work while this draining is in progress. 1980 */ 1981 xfs_inodegc_queue_all(mp); 1982 do { 1983 flush_workqueue(mp->m_inodegc_wq); 1984 rerun = xfs_inodegc_queue_all(mp); 1985 } while (rerun); 1986 1987 trace_xfs_inodegc_stop(mp, __return_address); 1988 } 1989 1990 /* 1991 * Enable the inode inactivation background workers and schedule deferred inode 1992 * inactivation work if there is any. Caller must hold sb->s_umount to 1993 * coordinate changes in the inodegc_enabled state. 1994 */ 1995 void 1996 xfs_inodegc_start( 1997 struct xfs_mount *mp) 1998 { 1999 if (xfs_set_inodegc_enabled(mp)) 2000 return; 2001 2002 trace_xfs_inodegc_start(mp, __return_address); 2003 xfs_inodegc_queue_all(mp); 2004 } 2005 2006 #ifdef CONFIG_XFS_RT 2007 static inline bool 2008 xfs_inodegc_want_queue_rt_file( 2009 struct xfs_inode *ip) 2010 { 2011 struct xfs_mount *mp = ip->i_mount; 2012 2013 if (!XFS_IS_REALTIME_INODE(ip)) 2014 return false; 2015 2016 if (__percpu_counter_compare(&mp->m_frextents, 2017 mp->m_low_rtexts[XFS_LOWSP_5_PCNT], 2018 XFS_FDBLOCKS_BATCH) < 0) 2019 return true; 2020 2021 return false; 2022 } 2023 #else 2024 # define xfs_inodegc_want_queue_rt_file(ip) (false) 2025 #endif /* CONFIG_XFS_RT */ 2026 2027 /* 2028 * Schedule the inactivation worker when: 2029 * 2030 * - We've accumulated more than one inode cluster buffer's worth of inodes. 2031 * - There is less than 5% free space left. 2032 * - Any of the quotas for this inode are near an enforcement limit. 2033 */ 2034 static inline bool 2035 xfs_inodegc_want_queue_work( 2036 struct xfs_inode *ip, 2037 unsigned int items) 2038 { 2039 struct xfs_mount *mp = ip->i_mount; 2040 2041 if (items > mp->m_ino_geo.inodes_per_cluster) 2042 return true; 2043 2044 if (__percpu_counter_compare(&mp->m_fdblocks, 2045 mp->m_low_space[XFS_LOWSP_5_PCNT], 2046 XFS_FDBLOCKS_BATCH) < 0) 2047 return true; 2048 2049 if (xfs_inodegc_want_queue_rt_file(ip)) 2050 return true; 2051 2052 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER)) 2053 return true; 2054 2055 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP)) 2056 return true; 2057 2058 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ)) 2059 return true; 2060 2061 return false; 2062 } 2063 2064 /* 2065 * Upper bound on the number of inodes in each AG that can be queued for 2066 * inactivation at any given time, to avoid monopolizing the workqueue. 2067 */ 2068 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK) 2069 2070 /* 2071 * Make the frontend wait for inactivations when: 2072 * 2073 * - Memory shrinkers queued the inactivation worker and it hasn't finished. 2074 * - The queue depth exceeds the maximum allowable percpu backlog. 2075 * 2076 * Note: If we are in a NOFS context here (e.g. current thread is running a 2077 * transaction) the we don't want to block here as inodegc progress may require 2078 * filesystem resources we hold to make progress and that could result in a 2079 * deadlock. Hence we skip out of here if we are in a scoped NOFS context. 2080 */ 2081 static inline bool 2082 xfs_inodegc_want_flush_work( 2083 struct xfs_inode *ip, 2084 unsigned int items, 2085 unsigned int shrinker_hits) 2086 { 2087 if (current->flags & PF_MEMALLOC_NOFS) 2088 return false; 2089 2090 if (shrinker_hits > 0) 2091 return true; 2092 2093 if (items > XFS_INODEGC_MAX_BACKLOG) 2094 return true; 2095 2096 return false; 2097 } 2098 2099 /* 2100 * Queue a background inactivation worker if there are inodes that need to be 2101 * inactivated and higher level xfs code hasn't disabled the background 2102 * workers. 2103 */ 2104 static void 2105 xfs_inodegc_queue( 2106 struct xfs_inode *ip) 2107 { 2108 struct xfs_mount *mp = ip->i_mount; 2109 struct xfs_inodegc *gc; 2110 int items; 2111 unsigned int shrinker_hits; 2112 unsigned int cpu_nr; 2113 unsigned long queue_delay = 1; 2114 2115 trace_xfs_inode_set_need_inactive(ip); 2116 spin_lock(&ip->i_flags_lock); 2117 ip->i_flags |= XFS_NEED_INACTIVE; 2118 spin_unlock(&ip->i_flags_lock); 2119 2120 cpu_nr = get_cpu(); 2121 gc = this_cpu_ptr(mp->m_inodegc); 2122 llist_add(&ip->i_gclist, &gc->list); 2123 items = READ_ONCE(gc->items); 2124 WRITE_ONCE(gc->items, items + 1); 2125 shrinker_hits = READ_ONCE(gc->shrinker_hits); 2126 2127 /* 2128 * Ensure the list add is always seen by anyone who finds the cpumask 2129 * bit set. This effectively gives the cpumask bit set operation 2130 * release ordering semantics. 2131 */ 2132 smp_mb__before_atomic(); 2133 if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask)) 2134 cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask); 2135 2136 /* 2137 * We queue the work while holding the current CPU so that the work 2138 * is scheduled to run on this CPU. 2139 */ 2140 if (!xfs_is_inodegc_enabled(mp)) { 2141 put_cpu(); 2142 return; 2143 } 2144 2145 if (xfs_inodegc_want_queue_work(ip, items)) 2146 queue_delay = 0; 2147 2148 trace_xfs_inodegc_queue(mp, __return_address); 2149 mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work, 2150 queue_delay); 2151 put_cpu(); 2152 2153 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) { 2154 trace_xfs_inodegc_throttle(mp, __return_address); 2155 flush_delayed_work(&gc->work); 2156 } 2157 } 2158 2159 /* 2160 * We set the inode flag atomically with the radix tree tag. Once we get tag 2161 * lookups on the radix tree, this inode flag can go away. 2162 * 2163 * We always use background reclaim here because even if the inode is clean, it 2164 * still may be under IO and hence we have wait for IO completion to occur 2165 * before we can reclaim the inode. The background reclaim path handles this 2166 * more efficiently than we can here, so simply let background reclaim tear down 2167 * all inodes. 2168 */ 2169 void 2170 xfs_inode_mark_reclaimable( 2171 struct xfs_inode *ip) 2172 { 2173 struct xfs_mount *mp = ip->i_mount; 2174 bool need_inactive; 2175 2176 XFS_STATS_INC(mp, vn_reclaim); 2177 2178 /* 2179 * We should never get here with any of the reclaim flags already set. 2180 */ 2181 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS)); 2182 2183 need_inactive = xfs_inode_needs_inactive(ip); 2184 if (need_inactive) { 2185 xfs_inodegc_queue(ip); 2186 return; 2187 } 2188 2189 /* Going straight to reclaim, so drop the dquots. */ 2190 xfs_qm_dqdetach(ip); 2191 xfs_inodegc_set_reclaimable(ip); 2192 } 2193 2194 /* 2195 * Register a phony shrinker so that we can run background inodegc sooner when 2196 * there's memory pressure. Inactivation does not itself free any memory but 2197 * it does make inodes reclaimable, which eventually frees memory. 2198 * 2199 * The count function, seek value, and batch value are crafted to trigger the 2200 * scan function during the second round of scanning. Hopefully this means 2201 * that we reclaimed enough memory that initiating metadata transactions won't 2202 * make things worse. 2203 */ 2204 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY) 2205 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1) 2206 2207 static unsigned long 2208 xfs_inodegc_shrinker_count( 2209 struct shrinker *shrink, 2210 struct shrink_control *sc) 2211 { 2212 struct xfs_mount *mp = shrink->private_data; 2213 struct xfs_inodegc *gc; 2214 int cpu; 2215 2216 if (!xfs_is_inodegc_enabled(mp)) 2217 return 0; 2218 2219 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 2220 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2221 if (!llist_empty(&gc->list)) 2222 return XFS_INODEGC_SHRINKER_COUNT; 2223 } 2224 2225 return 0; 2226 } 2227 2228 static unsigned long 2229 xfs_inodegc_shrinker_scan( 2230 struct shrinker *shrink, 2231 struct shrink_control *sc) 2232 { 2233 struct xfs_mount *mp = shrink->private_data; 2234 struct xfs_inodegc *gc; 2235 int cpu; 2236 bool no_items = true; 2237 2238 if (!xfs_is_inodegc_enabled(mp)) 2239 return SHRINK_STOP; 2240 2241 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address); 2242 2243 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 2244 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2245 if (!llist_empty(&gc->list)) { 2246 unsigned int h = READ_ONCE(gc->shrinker_hits); 2247 2248 WRITE_ONCE(gc->shrinker_hits, h + 1); 2249 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 2250 no_items = false; 2251 } 2252 } 2253 2254 /* 2255 * If there are no inodes to inactivate, we don't want the shrinker 2256 * to think there's deferred work to call us back about. 2257 */ 2258 if (no_items) 2259 return LONG_MAX; 2260 2261 return SHRINK_STOP; 2262 } 2263 2264 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */ 2265 int 2266 xfs_inodegc_register_shrinker( 2267 struct xfs_mount *mp) 2268 { 2269 mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB, 2270 "xfs-inodegc:%s", 2271 mp->m_super->s_id); 2272 if (!mp->m_inodegc_shrinker) 2273 return -ENOMEM; 2274 2275 mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count; 2276 mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan; 2277 mp->m_inodegc_shrinker->seeks = 0; 2278 mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH; 2279 mp->m_inodegc_shrinker->private_data = mp; 2280 2281 shrinker_register(mp->m_inodegc_shrinker); 2282 2283 return 0; 2284 } 2285