1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_sb.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_error.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_inode_item.h" 18 #include "xfs_quota.h" 19 #include "xfs_trace.h" 20 #include "xfs_icache.h" 21 #include "xfs_bmap_util.h" 22 #include "xfs_dquot_item.h" 23 #include "xfs_dquot.h" 24 #include "xfs_reflink.h" 25 26 #include <linux/kthread.h> 27 #include <linux/freezer.h> 28 #include <linux/iversion.h> 29 30 /* 31 * Allocate and initialise an xfs_inode. 32 */ 33 struct xfs_inode * 34 xfs_inode_alloc( 35 struct xfs_mount *mp, 36 xfs_ino_t ino) 37 { 38 struct xfs_inode *ip; 39 40 /* 41 * if this didn't occur in transactions, we could use 42 * KM_MAYFAIL and return NULL here on ENOMEM. Set the 43 * code up to do this anyway. 44 */ 45 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); 46 if (!ip) 47 return NULL; 48 if (inode_init_always(mp->m_super, VFS_I(ip))) { 49 kmem_zone_free(xfs_inode_zone, ip); 50 return NULL; 51 } 52 53 /* VFS doesn't initialise i_mode! */ 54 VFS_I(ip)->i_mode = 0; 55 56 XFS_STATS_INC(mp, vn_active); 57 ASSERT(atomic_read(&ip->i_pincount) == 0); 58 ASSERT(!xfs_isiflocked(ip)); 59 ASSERT(ip->i_ino == 0); 60 61 /* initialise the xfs inode */ 62 ip->i_ino = ino; 63 ip->i_mount = mp; 64 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 65 ip->i_afp = NULL; 66 ip->i_cowfp = NULL; 67 ip->i_cnextents = 0; 68 ip->i_cformat = XFS_DINODE_FMT_EXTENTS; 69 memset(&ip->i_df, 0, sizeof(ip->i_df)); 70 ip->i_flags = 0; 71 ip->i_delayed_blks = 0; 72 memset(&ip->i_d, 0, sizeof(ip->i_d)); 73 ip->i_sick = 0; 74 ip->i_checked = 0; 75 INIT_WORK(&ip->i_ioend_work, xfs_end_io); 76 INIT_LIST_HEAD(&ip->i_ioend_list); 77 spin_lock_init(&ip->i_ioend_lock); 78 79 return ip; 80 } 81 82 STATIC void 83 xfs_inode_free_callback( 84 struct rcu_head *head) 85 { 86 struct inode *inode = container_of(head, struct inode, i_rcu); 87 struct xfs_inode *ip = XFS_I(inode); 88 89 switch (VFS_I(ip)->i_mode & S_IFMT) { 90 case S_IFREG: 91 case S_IFDIR: 92 case S_IFLNK: 93 xfs_idestroy_fork(ip, XFS_DATA_FORK); 94 break; 95 } 96 97 if (ip->i_afp) 98 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 99 if (ip->i_cowfp) 100 xfs_idestroy_fork(ip, XFS_COW_FORK); 101 102 if (ip->i_itemp) { 103 ASSERT(!test_bit(XFS_LI_IN_AIL, 104 &ip->i_itemp->ili_item.li_flags)); 105 xfs_inode_item_destroy(ip); 106 ip->i_itemp = NULL; 107 } 108 109 kmem_zone_free(xfs_inode_zone, ip); 110 } 111 112 static void 113 __xfs_inode_free( 114 struct xfs_inode *ip) 115 { 116 /* asserts to verify all state is correct here */ 117 ASSERT(atomic_read(&ip->i_pincount) == 0); 118 XFS_STATS_DEC(ip->i_mount, vn_active); 119 120 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 121 } 122 123 void 124 xfs_inode_free( 125 struct xfs_inode *ip) 126 { 127 ASSERT(!xfs_isiflocked(ip)); 128 129 /* 130 * Because we use RCU freeing we need to ensure the inode always 131 * appears to be reclaimed with an invalid inode number when in the 132 * free state. The ip->i_flags_lock provides the barrier against lookup 133 * races. 134 */ 135 spin_lock(&ip->i_flags_lock); 136 ip->i_flags = XFS_IRECLAIM; 137 ip->i_ino = 0; 138 spin_unlock(&ip->i_flags_lock); 139 140 __xfs_inode_free(ip); 141 } 142 143 /* 144 * Queue a new inode reclaim pass if there are reclaimable inodes and there 145 * isn't a reclaim pass already in progress. By default it runs every 5s based 146 * on the xfs periodic sync default of 30s. Perhaps this should have it's own 147 * tunable, but that can be done if this method proves to be ineffective or too 148 * aggressive. 149 */ 150 static void 151 xfs_reclaim_work_queue( 152 struct xfs_mount *mp) 153 { 154 155 rcu_read_lock(); 156 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 157 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 158 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 159 } 160 rcu_read_unlock(); 161 } 162 163 /* 164 * This is a fast pass over the inode cache to try to get reclaim moving on as 165 * many inodes as possible in a short period of time. It kicks itself every few 166 * seconds, as well as being kicked by the inode cache shrinker when memory 167 * goes low. It scans as quickly as possible avoiding locked inodes or those 168 * already being flushed, and once done schedules a future pass. 169 */ 170 void 171 xfs_reclaim_worker( 172 struct work_struct *work) 173 { 174 struct xfs_mount *mp = container_of(to_delayed_work(work), 175 struct xfs_mount, m_reclaim_work); 176 177 xfs_reclaim_inodes(mp, SYNC_TRYLOCK); 178 xfs_reclaim_work_queue(mp); 179 } 180 181 static void 182 xfs_perag_set_reclaim_tag( 183 struct xfs_perag *pag) 184 { 185 struct xfs_mount *mp = pag->pag_mount; 186 187 lockdep_assert_held(&pag->pag_ici_lock); 188 if (pag->pag_ici_reclaimable++) 189 return; 190 191 /* propagate the reclaim tag up into the perag radix tree */ 192 spin_lock(&mp->m_perag_lock); 193 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, 194 XFS_ICI_RECLAIM_TAG); 195 spin_unlock(&mp->m_perag_lock); 196 197 /* schedule periodic background inode reclaim */ 198 xfs_reclaim_work_queue(mp); 199 200 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_); 201 } 202 203 static void 204 xfs_perag_clear_reclaim_tag( 205 struct xfs_perag *pag) 206 { 207 struct xfs_mount *mp = pag->pag_mount; 208 209 lockdep_assert_held(&pag->pag_ici_lock); 210 if (--pag->pag_ici_reclaimable) 211 return; 212 213 /* clear the reclaim tag from the perag radix tree */ 214 spin_lock(&mp->m_perag_lock); 215 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, 216 XFS_ICI_RECLAIM_TAG); 217 spin_unlock(&mp->m_perag_lock); 218 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_); 219 } 220 221 222 /* 223 * We set the inode flag atomically with the radix tree tag. 224 * Once we get tag lookups on the radix tree, this inode flag 225 * can go away. 226 */ 227 void 228 xfs_inode_set_reclaim_tag( 229 struct xfs_inode *ip) 230 { 231 struct xfs_mount *mp = ip->i_mount; 232 struct xfs_perag *pag; 233 234 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 235 spin_lock(&pag->pag_ici_lock); 236 spin_lock(&ip->i_flags_lock); 237 238 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino), 239 XFS_ICI_RECLAIM_TAG); 240 xfs_perag_set_reclaim_tag(pag); 241 __xfs_iflags_set(ip, XFS_IRECLAIMABLE); 242 243 spin_unlock(&ip->i_flags_lock); 244 spin_unlock(&pag->pag_ici_lock); 245 xfs_perag_put(pag); 246 } 247 248 STATIC void 249 xfs_inode_clear_reclaim_tag( 250 struct xfs_perag *pag, 251 xfs_ino_t ino) 252 { 253 radix_tree_tag_clear(&pag->pag_ici_root, 254 XFS_INO_TO_AGINO(pag->pag_mount, ino), 255 XFS_ICI_RECLAIM_TAG); 256 xfs_perag_clear_reclaim_tag(pag); 257 } 258 259 static void 260 xfs_inew_wait( 261 struct xfs_inode *ip) 262 { 263 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT); 264 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT); 265 266 do { 267 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 268 if (!xfs_iflags_test(ip, XFS_INEW)) 269 break; 270 schedule(); 271 } while (true); 272 finish_wait(wq, &wait.wq_entry); 273 } 274 275 /* 276 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 277 * part of the structure. This is made more complex by the fact we store 278 * information about the on-disk values in the VFS inode and so we can't just 279 * overwrite the values unconditionally. Hence we save the parameters we 280 * need to retain across reinitialisation, and rewrite them into the VFS inode 281 * after reinitialisation even if it fails. 282 */ 283 static int 284 xfs_reinit_inode( 285 struct xfs_mount *mp, 286 struct inode *inode) 287 { 288 int error; 289 uint32_t nlink = inode->i_nlink; 290 uint32_t generation = inode->i_generation; 291 uint64_t version = inode_peek_iversion(inode); 292 umode_t mode = inode->i_mode; 293 dev_t dev = inode->i_rdev; 294 295 error = inode_init_always(mp->m_super, inode); 296 297 set_nlink(inode, nlink); 298 inode->i_generation = generation; 299 inode_set_iversion_queried(inode, version); 300 inode->i_mode = mode; 301 inode->i_rdev = dev; 302 return error; 303 } 304 305 /* 306 * If we are allocating a new inode, then check what was returned is 307 * actually a free, empty inode. If we are not allocating an inode, 308 * then check we didn't find a free inode. 309 * 310 * Returns: 311 * 0 if the inode free state matches the lookup context 312 * -ENOENT if the inode is free and we are not allocating 313 * -EFSCORRUPTED if there is any state mismatch at all 314 */ 315 static int 316 xfs_iget_check_free_state( 317 struct xfs_inode *ip, 318 int flags) 319 { 320 if (flags & XFS_IGET_CREATE) { 321 /* should be a free inode */ 322 if (VFS_I(ip)->i_mode != 0) { 323 xfs_warn(ip->i_mount, 324 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", 325 ip->i_ino, VFS_I(ip)->i_mode); 326 return -EFSCORRUPTED; 327 } 328 329 if (ip->i_d.di_nblocks != 0) { 330 xfs_warn(ip->i_mount, 331 "Corruption detected! Free inode 0x%llx has blocks allocated!", 332 ip->i_ino); 333 return -EFSCORRUPTED; 334 } 335 return 0; 336 } 337 338 /* should be an allocated inode */ 339 if (VFS_I(ip)->i_mode == 0) 340 return -ENOENT; 341 342 return 0; 343 } 344 345 /* 346 * Check the validity of the inode we just found it the cache 347 */ 348 static int 349 xfs_iget_cache_hit( 350 struct xfs_perag *pag, 351 struct xfs_inode *ip, 352 xfs_ino_t ino, 353 int flags, 354 int lock_flags) __releases(RCU) 355 { 356 struct inode *inode = VFS_I(ip); 357 struct xfs_mount *mp = ip->i_mount; 358 int error; 359 360 /* 361 * check for re-use of an inode within an RCU grace period due to the 362 * radix tree nodes not being updated yet. We monitor for this by 363 * setting the inode number to zero before freeing the inode structure. 364 * If the inode has been reallocated and set up, then the inode number 365 * will not match, so check for that, too. 366 */ 367 spin_lock(&ip->i_flags_lock); 368 if (ip->i_ino != ino) { 369 trace_xfs_iget_skip(ip); 370 XFS_STATS_INC(mp, xs_ig_frecycle); 371 error = -EAGAIN; 372 goto out_error; 373 } 374 375 376 /* 377 * If we are racing with another cache hit that is currently 378 * instantiating this inode or currently recycling it out of 379 * reclaimabe state, wait for the initialisation to complete 380 * before continuing. 381 * 382 * XXX(hch): eventually we should do something equivalent to 383 * wait_on_inode to wait for these flags to be cleared 384 * instead of polling for it. 385 */ 386 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { 387 trace_xfs_iget_skip(ip); 388 XFS_STATS_INC(mp, xs_ig_frecycle); 389 error = -EAGAIN; 390 goto out_error; 391 } 392 393 /* 394 * Check the inode free state is valid. This also detects lookup 395 * racing with unlinks. 396 */ 397 error = xfs_iget_check_free_state(ip, flags); 398 if (error) 399 goto out_error; 400 401 /* 402 * If IRECLAIMABLE is set, we've torn down the VFS inode already. 403 * Need to carefully get it back into useable state. 404 */ 405 if (ip->i_flags & XFS_IRECLAIMABLE) { 406 trace_xfs_iget_reclaim(ip); 407 408 if (flags & XFS_IGET_INCORE) { 409 error = -EAGAIN; 410 goto out_error; 411 } 412 413 /* 414 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode 415 * from stomping over us while we recycle the inode. We can't 416 * clear the radix tree reclaimable tag yet as it requires 417 * pag_ici_lock to be held exclusive. 418 */ 419 ip->i_flags |= XFS_IRECLAIM; 420 421 spin_unlock(&ip->i_flags_lock); 422 rcu_read_unlock(); 423 424 error = xfs_reinit_inode(mp, inode); 425 if (error) { 426 bool wake; 427 /* 428 * Re-initializing the inode failed, and we are in deep 429 * trouble. Try to re-add it to the reclaim list. 430 */ 431 rcu_read_lock(); 432 spin_lock(&ip->i_flags_lock); 433 wake = !!__xfs_iflags_test(ip, XFS_INEW); 434 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 435 if (wake) 436 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT); 437 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 438 trace_xfs_iget_reclaim_fail(ip); 439 goto out_error; 440 } 441 442 spin_lock(&pag->pag_ici_lock); 443 spin_lock(&ip->i_flags_lock); 444 445 /* 446 * Clear the per-lifetime state in the inode as we are now 447 * effectively a new inode and need to return to the initial 448 * state before reuse occurs. 449 */ 450 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 451 ip->i_flags |= XFS_INEW; 452 xfs_inode_clear_reclaim_tag(pag, ip->i_ino); 453 inode->i_state = I_NEW; 454 ip->i_sick = 0; 455 ip->i_checked = 0; 456 457 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 458 init_rwsem(&inode->i_rwsem); 459 460 spin_unlock(&ip->i_flags_lock); 461 spin_unlock(&pag->pag_ici_lock); 462 } else { 463 /* If the VFS inode is being torn down, pause and try again. */ 464 if (!igrab(inode)) { 465 trace_xfs_iget_skip(ip); 466 error = -EAGAIN; 467 goto out_error; 468 } 469 470 /* We've got a live one. */ 471 spin_unlock(&ip->i_flags_lock); 472 rcu_read_unlock(); 473 trace_xfs_iget_hit(ip); 474 } 475 476 if (lock_flags != 0) 477 xfs_ilock(ip, lock_flags); 478 479 if (!(flags & XFS_IGET_INCORE)) 480 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE); 481 XFS_STATS_INC(mp, xs_ig_found); 482 483 return 0; 484 485 out_error: 486 spin_unlock(&ip->i_flags_lock); 487 rcu_read_unlock(); 488 return error; 489 } 490 491 492 static int 493 xfs_iget_cache_miss( 494 struct xfs_mount *mp, 495 struct xfs_perag *pag, 496 xfs_trans_t *tp, 497 xfs_ino_t ino, 498 struct xfs_inode **ipp, 499 int flags, 500 int lock_flags) 501 { 502 struct xfs_inode *ip; 503 int error; 504 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 505 int iflags; 506 507 ip = xfs_inode_alloc(mp, ino); 508 if (!ip) 509 return -ENOMEM; 510 511 error = xfs_iread(mp, tp, ip, flags); 512 if (error) 513 goto out_destroy; 514 515 if (!xfs_inode_verify_forks(ip)) { 516 error = -EFSCORRUPTED; 517 goto out_destroy; 518 } 519 520 trace_xfs_iget_miss(ip); 521 522 523 /* 524 * Check the inode free state is valid. This also detects lookup 525 * racing with unlinks. 526 */ 527 error = xfs_iget_check_free_state(ip, flags); 528 if (error) 529 goto out_destroy; 530 531 /* 532 * Preload the radix tree so we can insert safely under the 533 * write spinlock. Note that we cannot sleep inside the preload 534 * region. Since we can be called from transaction context, don't 535 * recurse into the file system. 536 */ 537 if (radix_tree_preload(GFP_NOFS)) { 538 error = -EAGAIN; 539 goto out_destroy; 540 } 541 542 /* 543 * Because the inode hasn't been added to the radix-tree yet it can't 544 * be found by another thread, so we can do the non-sleeping lock here. 545 */ 546 if (lock_flags) { 547 if (!xfs_ilock_nowait(ip, lock_flags)) 548 BUG(); 549 } 550 551 /* 552 * These values must be set before inserting the inode into the radix 553 * tree as the moment it is inserted a concurrent lookup (allowed by the 554 * RCU locking mechanism) can find it and that lookup must see that this 555 * is an inode currently under construction (i.e. that XFS_INEW is set). 556 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 557 * memory barrier that ensures this detection works correctly at lookup 558 * time. 559 */ 560 iflags = XFS_INEW; 561 if (flags & XFS_IGET_DONTCACHE) 562 iflags |= XFS_IDONTCACHE; 563 ip->i_udquot = NULL; 564 ip->i_gdquot = NULL; 565 ip->i_pdquot = NULL; 566 xfs_iflags_set(ip, iflags); 567 568 /* insert the new inode */ 569 spin_lock(&pag->pag_ici_lock); 570 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 571 if (unlikely(error)) { 572 WARN_ON(error != -EEXIST); 573 XFS_STATS_INC(mp, xs_ig_dup); 574 error = -EAGAIN; 575 goto out_preload_end; 576 } 577 spin_unlock(&pag->pag_ici_lock); 578 radix_tree_preload_end(); 579 580 *ipp = ip; 581 return 0; 582 583 out_preload_end: 584 spin_unlock(&pag->pag_ici_lock); 585 radix_tree_preload_end(); 586 if (lock_flags) 587 xfs_iunlock(ip, lock_flags); 588 out_destroy: 589 __destroy_inode(VFS_I(ip)); 590 xfs_inode_free(ip); 591 return error; 592 } 593 594 /* 595 * Look up an inode by number in the given file system. 596 * The inode is looked up in the cache held in each AG. 597 * If the inode is found in the cache, initialise the vfs inode 598 * if necessary. 599 * 600 * If it is not in core, read it in from the file system's device, 601 * add it to the cache and initialise the vfs inode. 602 * 603 * The inode is locked according to the value of the lock_flags parameter. 604 * This flag parameter indicates how and if the inode's IO lock and inode lock 605 * should be taken. 606 * 607 * mp -- the mount point structure for the current file system. It points 608 * to the inode hash table. 609 * tp -- a pointer to the current transaction if there is one. This is 610 * simply passed through to the xfs_iread() call. 611 * ino -- the number of the inode desired. This is the unique identifier 612 * within the file system for the inode being requested. 613 * lock_flags -- flags indicating how to lock the inode. See the comment 614 * for xfs_ilock() for a list of valid values. 615 */ 616 int 617 xfs_iget( 618 xfs_mount_t *mp, 619 xfs_trans_t *tp, 620 xfs_ino_t ino, 621 uint flags, 622 uint lock_flags, 623 xfs_inode_t **ipp) 624 { 625 xfs_inode_t *ip; 626 int error; 627 xfs_perag_t *pag; 628 xfs_agino_t agino; 629 630 /* 631 * xfs_reclaim_inode() uses the ILOCK to ensure an inode 632 * doesn't get freed while it's being referenced during a 633 * radix tree traversal here. It assumes this function 634 * aqcuires only the ILOCK (and therefore it has no need to 635 * involve the IOLOCK in this synchronization). 636 */ 637 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 638 639 /* reject inode numbers outside existing AGs */ 640 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 641 return -EINVAL; 642 643 XFS_STATS_INC(mp, xs_ig_attempts); 644 645 /* get the perag structure and ensure that it's inode capable */ 646 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 647 agino = XFS_INO_TO_AGINO(mp, ino); 648 649 again: 650 error = 0; 651 rcu_read_lock(); 652 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 653 654 if (ip) { 655 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 656 if (error) 657 goto out_error_or_again; 658 } else { 659 rcu_read_unlock(); 660 if (flags & XFS_IGET_INCORE) { 661 error = -ENODATA; 662 goto out_error_or_again; 663 } 664 XFS_STATS_INC(mp, xs_ig_missed); 665 666 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 667 flags, lock_flags); 668 if (error) 669 goto out_error_or_again; 670 } 671 xfs_perag_put(pag); 672 673 *ipp = ip; 674 675 /* 676 * If we have a real type for an on-disk inode, we can setup the inode 677 * now. If it's a new inode being created, xfs_ialloc will handle it. 678 */ 679 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 680 xfs_setup_existing_inode(ip); 681 return 0; 682 683 out_error_or_again: 684 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) { 685 delay(1); 686 goto again; 687 } 688 xfs_perag_put(pag); 689 return error; 690 } 691 692 /* 693 * "Is this a cached inode that's also allocated?" 694 * 695 * Look up an inode by number in the given file system. If the inode is 696 * in cache and isn't in purgatory, return 1 if the inode is allocated 697 * and 0 if it is not. For all other cases (not in cache, being torn 698 * down, etc.), return a negative error code. 699 * 700 * The caller has to prevent inode allocation and freeing activity, 701 * presumably by locking the AGI buffer. This is to ensure that an 702 * inode cannot transition from allocated to freed until the caller is 703 * ready to allow that. If the inode is in an intermediate state (new, 704 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the 705 * inode is not in the cache, -ENOENT will be returned. The caller must 706 * deal with these scenarios appropriately. 707 * 708 * This is a specialized use case for the online scrubber; if you're 709 * reading this, you probably want xfs_iget. 710 */ 711 int 712 xfs_icache_inode_is_allocated( 713 struct xfs_mount *mp, 714 struct xfs_trans *tp, 715 xfs_ino_t ino, 716 bool *inuse) 717 { 718 struct xfs_inode *ip; 719 int error; 720 721 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip); 722 if (error) 723 return error; 724 725 *inuse = !!(VFS_I(ip)->i_mode); 726 xfs_irele(ip); 727 return 0; 728 } 729 730 /* 731 * The inode lookup is done in batches to keep the amount of lock traffic and 732 * radix tree lookups to a minimum. The batch size is a trade off between 733 * lookup reduction and stack usage. This is in the reclaim path, so we can't 734 * be too greedy. 735 */ 736 #define XFS_LOOKUP_BATCH 32 737 738 STATIC int 739 xfs_inode_ag_walk_grab( 740 struct xfs_inode *ip, 741 int flags) 742 { 743 struct inode *inode = VFS_I(ip); 744 bool newinos = !!(flags & XFS_AGITER_INEW_WAIT); 745 746 ASSERT(rcu_read_lock_held()); 747 748 /* 749 * check for stale RCU freed inode 750 * 751 * If the inode has been reallocated, it doesn't matter if it's not in 752 * the AG we are walking - we are walking for writeback, so if it 753 * passes all the "valid inode" checks and is dirty, then we'll write 754 * it back anyway. If it has been reallocated and still being 755 * initialised, the XFS_INEW check below will catch it. 756 */ 757 spin_lock(&ip->i_flags_lock); 758 if (!ip->i_ino) 759 goto out_unlock_noent; 760 761 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ 762 if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) || 763 __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)) 764 goto out_unlock_noent; 765 spin_unlock(&ip->i_flags_lock); 766 767 /* nothing to sync during shutdown */ 768 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 769 return -EFSCORRUPTED; 770 771 /* If we can't grab the inode, it must on it's way to reclaim. */ 772 if (!igrab(inode)) 773 return -ENOENT; 774 775 /* inode is valid */ 776 return 0; 777 778 out_unlock_noent: 779 spin_unlock(&ip->i_flags_lock); 780 return -ENOENT; 781 } 782 783 STATIC int 784 xfs_inode_ag_walk( 785 struct xfs_mount *mp, 786 struct xfs_perag *pag, 787 int (*execute)(struct xfs_inode *ip, int flags, 788 void *args), 789 int flags, 790 void *args, 791 int tag, 792 int iter_flags) 793 { 794 uint32_t first_index; 795 int last_error = 0; 796 int skipped; 797 int done; 798 int nr_found; 799 800 restart: 801 done = 0; 802 skipped = 0; 803 first_index = 0; 804 nr_found = 0; 805 do { 806 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 807 int error = 0; 808 int i; 809 810 rcu_read_lock(); 811 812 if (tag == -1) 813 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, 814 (void **)batch, first_index, 815 XFS_LOOKUP_BATCH); 816 else 817 nr_found = radix_tree_gang_lookup_tag( 818 &pag->pag_ici_root, 819 (void **) batch, first_index, 820 XFS_LOOKUP_BATCH, tag); 821 822 if (!nr_found) { 823 rcu_read_unlock(); 824 break; 825 } 826 827 /* 828 * Grab the inodes before we drop the lock. if we found 829 * nothing, nr == 0 and the loop will be skipped. 830 */ 831 for (i = 0; i < nr_found; i++) { 832 struct xfs_inode *ip = batch[i]; 833 834 if (done || xfs_inode_ag_walk_grab(ip, iter_flags)) 835 batch[i] = NULL; 836 837 /* 838 * Update the index for the next lookup. Catch 839 * overflows into the next AG range which can occur if 840 * we have inodes in the last block of the AG and we 841 * are currently pointing to the last inode. 842 * 843 * Because we may see inodes that are from the wrong AG 844 * due to RCU freeing and reallocation, only update the 845 * index if it lies in this AG. It was a race that lead 846 * us to see this inode, so another lookup from the 847 * same index will not find it again. 848 */ 849 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 850 continue; 851 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 852 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 853 done = 1; 854 } 855 856 /* unlock now we've grabbed the inodes. */ 857 rcu_read_unlock(); 858 859 for (i = 0; i < nr_found; i++) { 860 if (!batch[i]) 861 continue; 862 if ((iter_flags & XFS_AGITER_INEW_WAIT) && 863 xfs_iflags_test(batch[i], XFS_INEW)) 864 xfs_inew_wait(batch[i]); 865 error = execute(batch[i], flags, args); 866 xfs_irele(batch[i]); 867 if (error == -EAGAIN) { 868 skipped++; 869 continue; 870 } 871 if (error && last_error != -EFSCORRUPTED) 872 last_error = error; 873 } 874 875 /* bail out if the filesystem is corrupted. */ 876 if (error == -EFSCORRUPTED) 877 break; 878 879 cond_resched(); 880 881 } while (nr_found && !done); 882 883 if (skipped) { 884 delay(1); 885 goto restart; 886 } 887 return last_error; 888 } 889 890 /* 891 * Background scanning to trim post-EOF preallocated space. This is queued 892 * based on the 'speculative_prealloc_lifetime' tunable (5m by default). 893 */ 894 void 895 xfs_queue_eofblocks( 896 struct xfs_mount *mp) 897 { 898 rcu_read_lock(); 899 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG)) 900 queue_delayed_work(mp->m_eofblocks_workqueue, 901 &mp->m_eofblocks_work, 902 msecs_to_jiffies(xfs_eofb_secs * 1000)); 903 rcu_read_unlock(); 904 } 905 906 void 907 xfs_eofblocks_worker( 908 struct work_struct *work) 909 { 910 struct xfs_mount *mp = container_of(to_delayed_work(work), 911 struct xfs_mount, m_eofblocks_work); 912 xfs_icache_free_eofblocks(mp, NULL); 913 xfs_queue_eofblocks(mp); 914 } 915 916 /* 917 * Background scanning to trim preallocated CoW space. This is queued 918 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default). 919 * (We'll just piggyback on the post-EOF prealloc space workqueue.) 920 */ 921 void 922 xfs_queue_cowblocks( 923 struct xfs_mount *mp) 924 { 925 rcu_read_lock(); 926 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG)) 927 queue_delayed_work(mp->m_eofblocks_workqueue, 928 &mp->m_cowblocks_work, 929 msecs_to_jiffies(xfs_cowb_secs * 1000)); 930 rcu_read_unlock(); 931 } 932 933 void 934 xfs_cowblocks_worker( 935 struct work_struct *work) 936 { 937 struct xfs_mount *mp = container_of(to_delayed_work(work), 938 struct xfs_mount, m_cowblocks_work); 939 xfs_icache_free_cowblocks(mp, NULL); 940 xfs_queue_cowblocks(mp); 941 } 942 943 int 944 xfs_inode_ag_iterator_flags( 945 struct xfs_mount *mp, 946 int (*execute)(struct xfs_inode *ip, int flags, 947 void *args), 948 int flags, 949 void *args, 950 int iter_flags) 951 { 952 struct xfs_perag *pag; 953 int error = 0; 954 int last_error = 0; 955 xfs_agnumber_t ag; 956 957 ag = 0; 958 while ((pag = xfs_perag_get(mp, ag))) { 959 ag = pag->pag_agno + 1; 960 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1, 961 iter_flags); 962 xfs_perag_put(pag); 963 if (error) { 964 last_error = error; 965 if (error == -EFSCORRUPTED) 966 break; 967 } 968 } 969 return last_error; 970 } 971 972 int 973 xfs_inode_ag_iterator( 974 struct xfs_mount *mp, 975 int (*execute)(struct xfs_inode *ip, int flags, 976 void *args), 977 int flags, 978 void *args) 979 { 980 return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0); 981 } 982 983 int 984 xfs_inode_ag_iterator_tag( 985 struct xfs_mount *mp, 986 int (*execute)(struct xfs_inode *ip, int flags, 987 void *args), 988 int flags, 989 void *args, 990 int tag) 991 { 992 struct xfs_perag *pag; 993 int error = 0; 994 int last_error = 0; 995 xfs_agnumber_t ag; 996 997 ag = 0; 998 while ((pag = xfs_perag_get_tag(mp, ag, tag))) { 999 ag = pag->pag_agno + 1; 1000 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag, 1001 0); 1002 xfs_perag_put(pag); 1003 if (error) { 1004 last_error = error; 1005 if (error == -EFSCORRUPTED) 1006 break; 1007 } 1008 } 1009 return last_error; 1010 } 1011 1012 /* 1013 * Grab the inode for reclaim exclusively. 1014 * Return 0 if we grabbed it, non-zero otherwise. 1015 */ 1016 STATIC int 1017 xfs_reclaim_inode_grab( 1018 struct xfs_inode *ip, 1019 int flags) 1020 { 1021 ASSERT(rcu_read_lock_held()); 1022 1023 /* quick check for stale RCU freed inode */ 1024 if (!ip->i_ino) 1025 return 1; 1026 1027 /* 1028 * If we are asked for non-blocking operation, do unlocked checks to 1029 * see if the inode already is being flushed or in reclaim to avoid 1030 * lock traffic. 1031 */ 1032 if ((flags & SYNC_TRYLOCK) && 1033 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) 1034 return 1; 1035 1036 /* 1037 * The radix tree lock here protects a thread in xfs_iget from racing 1038 * with us starting reclaim on the inode. Once we have the 1039 * XFS_IRECLAIM flag set it will not touch us. 1040 * 1041 * Due to RCU lookup, we may find inodes that have been freed and only 1042 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that 1043 * aren't candidates for reclaim at all, so we must check the 1044 * XFS_IRECLAIMABLE is set first before proceeding to reclaim. 1045 */ 1046 spin_lock(&ip->i_flags_lock); 1047 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 1048 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 1049 /* not a reclaim candidate. */ 1050 spin_unlock(&ip->i_flags_lock); 1051 return 1; 1052 } 1053 __xfs_iflags_set(ip, XFS_IRECLAIM); 1054 spin_unlock(&ip->i_flags_lock); 1055 return 0; 1056 } 1057 1058 /* 1059 * Inodes in different states need to be treated differently. The following 1060 * table lists the inode states and the reclaim actions necessary: 1061 * 1062 * inode state iflush ret required action 1063 * --------------- ---------- --------------- 1064 * bad - reclaim 1065 * shutdown EIO unpin and reclaim 1066 * clean, unpinned 0 reclaim 1067 * stale, unpinned 0 reclaim 1068 * clean, pinned(*) 0 requeue 1069 * stale, pinned EAGAIN requeue 1070 * dirty, async - requeue 1071 * dirty, sync 0 reclaim 1072 * 1073 * (*) dgc: I don't think the clean, pinned state is possible but it gets 1074 * handled anyway given the order of checks implemented. 1075 * 1076 * Also, because we get the flush lock first, we know that any inode that has 1077 * been flushed delwri has had the flush completed by the time we check that 1078 * the inode is clean. 1079 * 1080 * Note that because the inode is flushed delayed write by AIL pushing, the 1081 * flush lock may already be held here and waiting on it can result in very 1082 * long latencies. Hence for sync reclaims, where we wait on the flush lock, 1083 * the caller should push the AIL first before trying to reclaim inodes to 1084 * minimise the amount of time spent waiting. For background relaim, we only 1085 * bother to reclaim clean inodes anyway. 1086 * 1087 * Hence the order of actions after gaining the locks should be: 1088 * bad => reclaim 1089 * shutdown => unpin and reclaim 1090 * pinned, async => requeue 1091 * pinned, sync => unpin 1092 * stale => reclaim 1093 * clean => reclaim 1094 * dirty, async => requeue 1095 * dirty, sync => flush, wait and reclaim 1096 */ 1097 STATIC int 1098 xfs_reclaim_inode( 1099 struct xfs_inode *ip, 1100 struct xfs_perag *pag, 1101 int sync_mode) 1102 { 1103 struct xfs_buf *bp = NULL; 1104 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 1105 int error; 1106 1107 restart: 1108 error = 0; 1109 xfs_ilock(ip, XFS_ILOCK_EXCL); 1110 if (!xfs_iflock_nowait(ip)) { 1111 if (!(sync_mode & SYNC_WAIT)) 1112 goto out; 1113 xfs_iflock(ip); 1114 } 1115 1116 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 1117 xfs_iunpin_wait(ip); 1118 /* xfs_iflush_abort() drops the flush lock */ 1119 xfs_iflush_abort(ip, false); 1120 goto reclaim; 1121 } 1122 if (xfs_ipincount(ip)) { 1123 if (!(sync_mode & SYNC_WAIT)) 1124 goto out_ifunlock; 1125 xfs_iunpin_wait(ip); 1126 } 1127 if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) { 1128 xfs_ifunlock(ip); 1129 goto reclaim; 1130 } 1131 1132 /* 1133 * Never flush out dirty data during non-blocking reclaim, as it would 1134 * just contend with AIL pushing trying to do the same job. 1135 */ 1136 if (!(sync_mode & SYNC_WAIT)) 1137 goto out_ifunlock; 1138 1139 /* 1140 * Now we have an inode that needs flushing. 1141 * 1142 * Note that xfs_iflush will never block on the inode buffer lock, as 1143 * xfs_ifree_cluster() can lock the inode buffer before it locks the 1144 * ip->i_lock, and we are doing the exact opposite here. As a result, 1145 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would 1146 * result in an ABBA deadlock with xfs_ifree_cluster(). 1147 * 1148 * As xfs_ifree_cluser() must gather all inodes that are active in the 1149 * cache to mark them stale, if we hit this case we don't actually want 1150 * to do IO here - we want the inode marked stale so we can simply 1151 * reclaim it. Hence if we get an EAGAIN error here, just unlock the 1152 * inode, back off and try again. Hopefully the next pass through will 1153 * see the stale flag set on the inode. 1154 */ 1155 error = xfs_iflush(ip, &bp); 1156 if (error == -EAGAIN) { 1157 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1158 /* backoff longer than in xfs_ifree_cluster */ 1159 delay(2); 1160 goto restart; 1161 } 1162 1163 if (!error) { 1164 error = xfs_bwrite(bp); 1165 xfs_buf_relse(bp); 1166 } 1167 1168 reclaim: 1169 ASSERT(!xfs_isiflocked(ip)); 1170 1171 /* 1172 * Because we use RCU freeing we need to ensure the inode always appears 1173 * to be reclaimed with an invalid inode number when in the free state. 1174 * We do this as early as possible under the ILOCK so that 1175 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to 1176 * detect races with us here. By doing this, we guarantee that once 1177 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that 1178 * it will see either a valid inode that will serialise correctly, or it 1179 * will see an invalid inode that it can skip. 1180 */ 1181 spin_lock(&ip->i_flags_lock); 1182 ip->i_flags = XFS_IRECLAIM; 1183 ip->i_ino = 0; 1184 spin_unlock(&ip->i_flags_lock); 1185 1186 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1187 1188 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 1189 /* 1190 * Remove the inode from the per-AG radix tree. 1191 * 1192 * Because radix_tree_delete won't complain even if the item was never 1193 * added to the tree assert that it's been there before to catch 1194 * problems with the inode life time early on. 1195 */ 1196 spin_lock(&pag->pag_ici_lock); 1197 if (!radix_tree_delete(&pag->pag_ici_root, 1198 XFS_INO_TO_AGINO(ip->i_mount, ino))) 1199 ASSERT(0); 1200 xfs_perag_clear_reclaim_tag(pag); 1201 spin_unlock(&pag->pag_ici_lock); 1202 1203 /* 1204 * Here we do an (almost) spurious inode lock in order to coordinate 1205 * with inode cache radix tree lookups. This is because the lookup 1206 * can reference the inodes in the cache without taking references. 1207 * 1208 * We make that OK here by ensuring that we wait until the inode is 1209 * unlocked after the lookup before we go ahead and free it. 1210 */ 1211 xfs_ilock(ip, XFS_ILOCK_EXCL); 1212 xfs_qm_dqdetach(ip); 1213 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1214 1215 __xfs_inode_free(ip); 1216 return error; 1217 1218 out_ifunlock: 1219 xfs_ifunlock(ip); 1220 out: 1221 xfs_iflags_clear(ip, XFS_IRECLAIM); 1222 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1223 /* 1224 * We could return -EAGAIN here to make reclaim rescan the inode tree in 1225 * a short while. However, this just burns CPU time scanning the tree 1226 * waiting for IO to complete and the reclaim work never goes back to 1227 * the idle state. Instead, return 0 to let the next scheduled 1228 * background reclaim attempt to reclaim the inode again. 1229 */ 1230 return 0; 1231 } 1232 1233 /* 1234 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is 1235 * corrupted, we still want to try to reclaim all the inodes. If we don't, 1236 * then a shut down during filesystem unmount reclaim walk leak all the 1237 * unreclaimed inodes. 1238 */ 1239 STATIC int 1240 xfs_reclaim_inodes_ag( 1241 struct xfs_mount *mp, 1242 int flags, 1243 int *nr_to_scan) 1244 { 1245 struct xfs_perag *pag; 1246 int error = 0; 1247 int last_error = 0; 1248 xfs_agnumber_t ag; 1249 int trylock = flags & SYNC_TRYLOCK; 1250 int skipped; 1251 1252 restart: 1253 ag = 0; 1254 skipped = 0; 1255 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1256 unsigned long first_index = 0; 1257 int done = 0; 1258 int nr_found = 0; 1259 1260 ag = pag->pag_agno + 1; 1261 1262 if (trylock) { 1263 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { 1264 skipped++; 1265 xfs_perag_put(pag); 1266 continue; 1267 } 1268 first_index = pag->pag_ici_reclaim_cursor; 1269 } else 1270 mutex_lock(&pag->pag_ici_reclaim_lock); 1271 1272 do { 1273 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1274 int i; 1275 1276 rcu_read_lock(); 1277 nr_found = radix_tree_gang_lookup_tag( 1278 &pag->pag_ici_root, 1279 (void **)batch, first_index, 1280 XFS_LOOKUP_BATCH, 1281 XFS_ICI_RECLAIM_TAG); 1282 if (!nr_found) { 1283 done = 1; 1284 rcu_read_unlock(); 1285 break; 1286 } 1287 1288 /* 1289 * Grab the inodes before we drop the lock. if we found 1290 * nothing, nr == 0 and the loop will be skipped. 1291 */ 1292 for (i = 0; i < nr_found; i++) { 1293 struct xfs_inode *ip = batch[i]; 1294 1295 if (done || xfs_reclaim_inode_grab(ip, flags)) 1296 batch[i] = NULL; 1297 1298 /* 1299 * Update the index for the next lookup. Catch 1300 * overflows into the next AG range which can 1301 * occur if we have inodes in the last block of 1302 * the AG and we are currently pointing to the 1303 * last inode. 1304 * 1305 * Because we may see inodes that are from the 1306 * wrong AG due to RCU freeing and 1307 * reallocation, only update the index if it 1308 * lies in this AG. It was a race that lead us 1309 * to see this inode, so another lookup from 1310 * the same index will not find it again. 1311 */ 1312 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != 1313 pag->pag_agno) 1314 continue; 1315 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1316 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1317 done = 1; 1318 } 1319 1320 /* unlock now we've grabbed the inodes. */ 1321 rcu_read_unlock(); 1322 1323 for (i = 0; i < nr_found; i++) { 1324 if (!batch[i]) 1325 continue; 1326 error = xfs_reclaim_inode(batch[i], pag, flags); 1327 if (error && last_error != -EFSCORRUPTED) 1328 last_error = error; 1329 } 1330 1331 *nr_to_scan -= XFS_LOOKUP_BATCH; 1332 1333 cond_resched(); 1334 1335 } while (nr_found && !done && *nr_to_scan > 0); 1336 1337 if (trylock && !done) 1338 pag->pag_ici_reclaim_cursor = first_index; 1339 else 1340 pag->pag_ici_reclaim_cursor = 0; 1341 mutex_unlock(&pag->pag_ici_reclaim_lock); 1342 xfs_perag_put(pag); 1343 } 1344 1345 /* 1346 * if we skipped any AG, and we still have scan count remaining, do 1347 * another pass this time using blocking reclaim semantics (i.e 1348 * waiting on the reclaim locks and ignoring the reclaim cursors). This 1349 * ensure that when we get more reclaimers than AGs we block rather 1350 * than spin trying to execute reclaim. 1351 */ 1352 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { 1353 trylock = 0; 1354 goto restart; 1355 } 1356 return last_error; 1357 } 1358 1359 int 1360 xfs_reclaim_inodes( 1361 xfs_mount_t *mp, 1362 int mode) 1363 { 1364 int nr_to_scan = INT_MAX; 1365 1366 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); 1367 } 1368 1369 /* 1370 * Scan a certain number of inodes for reclaim. 1371 * 1372 * When called we make sure that there is a background (fast) inode reclaim in 1373 * progress, while we will throttle the speed of reclaim via doing synchronous 1374 * reclaim of inodes. That means if we come across dirty inodes, we wait for 1375 * them to be cleaned, which we hope will not be very long due to the 1376 * background walker having already kicked the IO off on those dirty inodes. 1377 */ 1378 long 1379 xfs_reclaim_inodes_nr( 1380 struct xfs_mount *mp, 1381 int nr_to_scan) 1382 { 1383 /* kick background reclaimer and push the AIL */ 1384 xfs_reclaim_work_queue(mp); 1385 xfs_ail_push_all(mp->m_ail); 1386 1387 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); 1388 } 1389 1390 /* 1391 * Return the number of reclaimable inodes in the filesystem for 1392 * the shrinker to determine how much to reclaim. 1393 */ 1394 int 1395 xfs_reclaim_inodes_count( 1396 struct xfs_mount *mp) 1397 { 1398 struct xfs_perag *pag; 1399 xfs_agnumber_t ag = 0; 1400 int reclaimable = 0; 1401 1402 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1403 ag = pag->pag_agno + 1; 1404 reclaimable += pag->pag_ici_reclaimable; 1405 xfs_perag_put(pag); 1406 } 1407 return reclaimable; 1408 } 1409 1410 STATIC int 1411 xfs_inode_match_id( 1412 struct xfs_inode *ip, 1413 struct xfs_eofblocks *eofb) 1414 { 1415 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1416 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1417 return 0; 1418 1419 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1420 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1421 return 0; 1422 1423 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1424 xfs_get_projid(ip) != eofb->eof_prid) 1425 return 0; 1426 1427 return 1; 1428 } 1429 1430 /* 1431 * A union-based inode filtering algorithm. Process the inode if any of the 1432 * criteria match. This is for global/internal scans only. 1433 */ 1434 STATIC int 1435 xfs_inode_match_id_union( 1436 struct xfs_inode *ip, 1437 struct xfs_eofblocks *eofb) 1438 { 1439 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1440 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1441 return 1; 1442 1443 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1444 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1445 return 1; 1446 1447 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1448 xfs_get_projid(ip) == eofb->eof_prid) 1449 return 1; 1450 1451 return 0; 1452 } 1453 1454 STATIC int 1455 xfs_inode_free_eofblocks( 1456 struct xfs_inode *ip, 1457 int flags, 1458 void *args) 1459 { 1460 int ret = 0; 1461 struct xfs_eofblocks *eofb = args; 1462 int match; 1463 1464 if (!xfs_can_free_eofblocks(ip, false)) { 1465 /* inode could be preallocated or append-only */ 1466 trace_xfs_inode_free_eofblocks_invalid(ip); 1467 xfs_inode_clear_eofblocks_tag(ip); 1468 return 0; 1469 } 1470 1471 /* 1472 * If the mapping is dirty the operation can block and wait for some 1473 * time. Unless we are waiting, skip it. 1474 */ 1475 if (!(flags & SYNC_WAIT) && 1476 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1477 return 0; 1478 1479 if (eofb) { 1480 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) 1481 match = xfs_inode_match_id_union(ip, eofb); 1482 else 1483 match = xfs_inode_match_id(ip, eofb); 1484 if (!match) 1485 return 0; 1486 1487 /* skip the inode if the file size is too small */ 1488 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && 1489 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1490 return 0; 1491 } 1492 1493 /* 1494 * If the caller is waiting, return -EAGAIN to keep the background 1495 * scanner moving and revisit the inode in a subsequent pass. 1496 */ 1497 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1498 if (flags & SYNC_WAIT) 1499 ret = -EAGAIN; 1500 return ret; 1501 } 1502 ret = xfs_free_eofblocks(ip); 1503 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1504 1505 return ret; 1506 } 1507 1508 static int 1509 __xfs_icache_free_eofblocks( 1510 struct xfs_mount *mp, 1511 struct xfs_eofblocks *eofb, 1512 int (*execute)(struct xfs_inode *ip, int flags, 1513 void *args), 1514 int tag) 1515 { 1516 int flags = SYNC_TRYLOCK; 1517 1518 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC)) 1519 flags = SYNC_WAIT; 1520 1521 return xfs_inode_ag_iterator_tag(mp, execute, flags, 1522 eofb, tag); 1523 } 1524 1525 int 1526 xfs_icache_free_eofblocks( 1527 struct xfs_mount *mp, 1528 struct xfs_eofblocks *eofb) 1529 { 1530 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks, 1531 XFS_ICI_EOFBLOCKS_TAG); 1532 } 1533 1534 /* 1535 * Run eofblocks scans on the quotas applicable to the inode. For inodes with 1536 * multiple quotas, we don't know exactly which quota caused an allocation 1537 * failure. We make a best effort by including each quota under low free space 1538 * conditions (less than 1% free space) in the scan. 1539 */ 1540 static int 1541 __xfs_inode_free_quota_eofblocks( 1542 struct xfs_inode *ip, 1543 int (*execute)(struct xfs_mount *mp, 1544 struct xfs_eofblocks *eofb)) 1545 { 1546 int scan = 0; 1547 struct xfs_eofblocks eofb = {0}; 1548 struct xfs_dquot *dq; 1549 1550 /* 1551 * Run a sync scan to increase effectiveness and use the union filter to 1552 * cover all applicable quotas in a single scan. 1553 */ 1554 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC; 1555 1556 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) { 1557 dq = xfs_inode_dquot(ip, XFS_DQ_USER); 1558 if (dq && xfs_dquot_lowsp(dq)) { 1559 eofb.eof_uid = VFS_I(ip)->i_uid; 1560 eofb.eof_flags |= XFS_EOF_FLAGS_UID; 1561 scan = 1; 1562 } 1563 } 1564 1565 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) { 1566 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP); 1567 if (dq && xfs_dquot_lowsp(dq)) { 1568 eofb.eof_gid = VFS_I(ip)->i_gid; 1569 eofb.eof_flags |= XFS_EOF_FLAGS_GID; 1570 scan = 1; 1571 } 1572 } 1573 1574 if (scan) 1575 execute(ip->i_mount, &eofb); 1576 1577 return scan; 1578 } 1579 1580 int 1581 xfs_inode_free_quota_eofblocks( 1582 struct xfs_inode *ip) 1583 { 1584 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks); 1585 } 1586 1587 static inline unsigned long 1588 xfs_iflag_for_tag( 1589 int tag) 1590 { 1591 switch (tag) { 1592 case XFS_ICI_EOFBLOCKS_TAG: 1593 return XFS_IEOFBLOCKS; 1594 case XFS_ICI_COWBLOCKS_TAG: 1595 return XFS_ICOWBLOCKS; 1596 default: 1597 ASSERT(0); 1598 return 0; 1599 } 1600 } 1601 1602 static void 1603 __xfs_inode_set_blocks_tag( 1604 xfs_inode_t *ip, 1605 void (*execute)(struct xfs_mount *mp), 1606 void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, 1607 int error, unsigned long caller_ip), 1608 int tag) 1609 { 1610 struct xfs_mount *mp = ip->i_mount; 1611 struct xfs_perag *pag; 1612 int tagged; 1613 1614 /* 1615 * Don't bother locking the AG and looking up in the radix trees 1616 * if we already know that we have the tag set. 1617 */ 1618 if (ip->i_flags & xfs_iflag_for_tag(tag)) 1619 return; 1620 spin_lock(&ip->i_flags_lock); 1621 ip->i_flags |= xfs_iflag_for_tag(tag); 1622 spin_unlock(&ip->i_flags_lock); 1623 1624 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1625 spin_lock(&pag->pag_ici_lock); 1626 1627 tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 1628 radix_tree_tag_set(&pag->pag_ici_root, 1629 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); 1630 if (!tagged) { 1631 /* propagate the eofblocks tag up into the perag radix tree */ 1632 spin_lock(&ip->i_mount->m_perag_lock); 1633 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 1634 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1635 tag); 1636 spin_unlock(&ip->i_mount->m_perag_lock); 1637 1638 /* kick off background trimming */ 1639 execute(ip->i_mount); 1640 1641 set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); 1642 } 1643 1644 spin_unlock(&pag->pag_ici_lock); 1645 xfs_perag_put(pag); 1646 } 1647 1648 void 1649 xfs_inode_set_eofblocks_tag( 1650 xfs_inode_t *ip) 1651 { 1652 trace_xfs_inode_set_eofblocks_tag(ip); 1653 return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks, 1654 trace_xfs_perag_set_eofblocks, 1655 XFS_ICI_EOFBLOCKS_TAG); 1656 } 1657 1658 static void 1659 __xfs_inode_clear_blocks_tag( 1660 xfs_inode_t *ip, 1661 void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, 1662 int error, unsigned long caller_ip), 1663 int tag) 1664 { 1665 struct xfs_mount *mp = ip->i_mount; 1666 struct xfs_perag *pag; 1667 1668 spin_lock(&ip->i_flags_lock); 1669 ip->i_flags &= ~xfs_iflag_for_tag(tag); 1670 spin_unlock(&ip->i_flags_lock); 1671 1672 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1673 spin_lock(&pag->pag_ici_lock); 1674 1675 radix_tree_tag_clear(&pag->pag_ici_root, 1676 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); 1677 if (!radix_tree_tagged(&pag->pag_ici_root, tag)) { 1678 /* clear the eofblocks tag from the perag radix tree */ 1679 spin_lock(&ip->i_mount->m_perag_lock); 1680 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 1681 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1682 tag); 1683 spin_unlock(&ip->i_mount->m_perag_lock); 1684 clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); 1685 } 1686 1687 spin_unlock(&pag->pag_ici_lock); 1688 xfs_perag_put(pag); 1689 } 1690 1691 void 1692 xfs_inode_clear_eofblocks_tag( 1693 xfs_inode_t *ip) 1694 { 1695 trace_xfs_inode_clear_eofblocks_tag(ip); 1696 return __xfs_inode_clear_blocks_tag(ip, 1697 trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG); 1698 } 1699 1700 /* 1701 * Set ourselves up to free CoW blocks from this file. If it's already clean 1702 * then we can bail out quickly, but otherwise we must back off if the file 1703 * is undergoing some kind of write. 1704 */ 1705 static bool 1706 xfs_prep_free_cowblocks( 1707 struct xfs_inode *ip) 1708 { 1709 /* 1710 * Just clear the tag if we have an empty cow fork or none at all. It's 1711 * possible the inode was fully unshared since it was originally tagged. 1712 */ 1713 if (!xfs_inode_has_cow_data(ip)) { 1714 trace_xfs_inode_free_cowblocks_invalid(ip); 1715 xfs_inode_clear_cowblocks_tag(ip); 1716 return false; 1717 } 1718 1719 /* 1720 * If the mapping is dirty or under writeback we cannot touch the 1721 * CoW fork. Leave it alone if we're in the midst of a directio. 1722 */ 1723 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || 1724 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || 1725 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || 1726 atomic_read(&VFS_I(ip)->i_dio_count)) 1727 return false; 1728 1729 return true; 1730 } 1731 1732 /* 1733 * Automatic CoW Reservation Freeing 1734 * 1735 * These functions automatically garbage collect leftover CoW reservations 1736 * that were made on behalf of a cowextsize hint when we start to run out 1737 * of quota or when the reservations sit around for too long. If the file 1738 * has dirty pages or is undergoing writeback, its CoW reservations will 1739 * be retained. 1740 * 1741 * The actual garbage collection piggybacks off the same code that runs 1742 * the speculative EOF preallocation garbage collector. 1743 */ 1744 STATIC int 1745 xfs_inode_free_cowblocks( 1746 struct xfs_inode *ip, 1747 int flags, 1748 void *args) 1749 { 1750 struct xfs_eofblocks *eofb = args; 1751 int match; 1752 int ret = 0; 1753 1754 if (!xfs_prep_free_cowblocks(ip)) 1755 return 0; 1756 1757 if (eofb) { 1758 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) 1759 match = xfs_inode_match_id_union(ip, eofb); 1760 else 1761 match = xfs_inode_match_id(ip, eofb); 1762 if (!match) 1763 return 0; 1764 1765 /* skip the inode if the file size is too small */ 1766 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && 1767 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1768 return 0; 1769 } 1770 1771 /* Free the CoW blocks */ 1772 xfs_ilock(ip, XFS_IOLOCK_EXCL); 1773 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 1774 1775 /* 1776 * Check again, nobody else should be able to dirty blocks or change 1777 * the reflink iflag now that we have the first two locks held. 1778 */ 1779 if (xfs_prep_free_cowblocks(ip)) 1780 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1781 1782 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1783 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1784 1785 return ret; 1786 } 1787 1788 int 1789 xfs_icache_free_cowblocks( 1790 struct xfs_mount *mp, 1791 struct xfs_eofblocks *eofb) 1792 { 1793 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks, 1794 XFS_ICI_COWBLOCKS_TAG); 1795 } 1796 1797 int 1798 xfs_inode_free_quota_cowblocks( 1799 struct xfs_inode *ip) 1800 { 1801 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks); 1802 } 1803 1804 void 1805 xfs_inode_set_cowblocks_tag( 1806 xfs_inode_t *ip) 1807 { 1808 trace_xfs_inode_set_cowblocks_tag(ip); 1809 return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks, 1810 trace_xfs_perag_set_cowblocks, 1811 XFS_ICI_COWBLOCKS_TAG); 1812 } 1813 1814 void 1815 xfs_inode_clear_cowblocks_tag( 1816 xfs_inode_t *ip) 1817 { 1818 trace_xfs_inode_clear_cowblocks_tag(ip); 1819 return __xfs_inode_clear_blocks_tag(ip, 1820 trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG); 1821 } 1822 1823 /* Disable post-EOF and CoW block auto-reclamation. */ 1824 void 1825 xfs_stop_block_reaping( 1826 struct xfs_mount *mp) 1827 { 1828 cancel_delayed_work_sync(&mp->m_eofblocks_work); 1829 cancel_delayed_work_sync(&mp->m_cowblocks_work); 1830 } 1831 1832 /* Enable post-EOF and CoW block auto-reclamation. */ 1833 void 1834 xfs_start_block_reaping( 1835 struct xfs_mount *mp) 1836 { 1837 xfs_queue_eofblocks(mp); 1838 xfs_queue_cowblocks(mp); 1839 } 1840