1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_inode_item.h" 17 #include "xfs_quota.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_bmap_util.h" 21 #include "xfs_dquot_item.h" 22 #include "xfs_dquot.h" 23 #include "xfs_reflink.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_ag.h" 26 #include "xfs_log_priv.h" 27 #include "xfs_health.h" 28 #include "xfs_da_format.h" 29 #include "xfs_dir2.h" 30 #include "xfs_metafile.h" 31 32 #include <linux/iversion.h> 33 34 /* Radix tree tags for incore inode tree. */ 35 36 /* inode is to be reclaimed */ 37 #define XFS_ICI_RECLAIM_TAG 0 38 /* Inode has speculative preallocations (posteof or cow) to clean. */ 39 #define XFS_ICI_BLOCKGC_TAG 1 40 41 /* 42 * The goal for walking incore inodes. These can correspond with incore inode 43 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace. 44 */ 45 enum xfs_icwalk_goal { 46 /* Goals directly associated with tagged inodes. */ 47 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG, 48 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG, 49 }; 50 51 static int xfs_icwalk(struct xfs_mount *mp, 52 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 53 static int xfs_icwalk_ag(struct xfs_perag *pag, 54 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 55 56 /* 57 * Private inode cache walk flags for struct xfs_icwalk. Must not 58 * coincide with XFS_ICWALK_FLAGS_VALID. 59 */ 60 61 /* Stop scanning after icw_scan_limit inodes. */ 62 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28) 63 64 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27) 65 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */ 66 67 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \ 68 XFS_ICWALK_FLAG_RECLAIM_SICK | \ 69 XFS_ICWALK_FLAG_UNION) 70 71 /* Marks for the perag xarray */ 72 #define XFS_PERAG_RECLAIM_MARK XA_MARK_0 73 #define XFS_PERAG_BLOCKGC_MARK XA_MARK_1 74 75 static inline xa_mark_t ici_tag_to_mark(unsigned int tag) 76 { 77 if (tag == XFS_ICI_RECLAIM_TAG) 78 return XFS_PERAG_RECLAIM_MARK; 79 ASSERT(tag == XFS_ICI_BLOCKGC_TAG); 80 return XFS_PERAG_BLOCKGC_MARK; 81 } 82 83 /* 84 * Allocate and initialise an xfs_inode. 85 */ 86 struct xfs_inode * 87 xfs_inode_alloc( 88 struct xfs_mount *mp, 89 xfs_ino_t ino) 90 { 91 struct xfs_inode *ip; 92 93 /* 94 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL 95 * and return NULL here on ENOMEM. 96 */ 97 ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL); 98 99 if (inode_init_always(mp->m_super, VFS_I(ip))) { 100 kmem_cache_free(xfs_inode_cache, ip); 101 return NULL; 102 } 103 104 /* VFS doesn't initialise i_mode! */ 105 VFS_I(ip)->i_mode = 0; 106 mapping_set_folio_min_order(VFS_I(ip)->i_mapping, 107 M_IGEO(mp)->min_folio_order); 108 109 XFS_STATS_INC(mp, vn_active); 110 ASSERT(atomic_read(&ip->i_pincount) == 0); 111 ASSERT(ip->i_ino == 0); 112 113 /* initialise the xfs inode */ 114 ip->i_ino = ino; 115 ip->i_mount = mp; 116 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 117 ip->i_cowfp = NULL; 118 memset(&ip->i_af, 0, sizeof(ip->i_af)); 119 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS; 120 memset(&ip->i_df, 0, sizeof(ip->i_df)); 121 ip->i_flags = 0; 122 ip->i_delayed_blks = 0; 123 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 124 ip->i_nblocks = 0; 125 ip->i_forkoff = 0; 126 ip->i_sick = 0; 127 ip->i_checked = 0; 128 INIT_WORK(&ip->i_ioend_work, xfs_end_io); 129 INIT_LIST_HEAD(&ip->i_ioend_list); 130 spin_lock_init(&ip->i_ioend_lock); 131 ip->i_next_unlinked = NULLAGINO; 132 ip->i_prev_unlinked = 0; 133 134 return ip; 135 } 136 137 STATIC void 138 xfs_inode_free_callback( 139 struct rcu_head *head) 140 { 141 struct inode *inode = container_of(head, struct inode, i_rcu); 142 struct xfs_inode *ip = XFS_I(inode); 143 144 switch (VFS_I(ip)->i_mode & S_IFMT) { 145 case S_IFREG: 146 case S_IFDIR: 147 case S_IFLNK: 148 xfs_idestroy_fork(&ip->i_df); 149 break; 150 } 151 152 xfs_ifork_zap_attr(ip); 153 154 if (ip->i_cowfp) { 155 xfs_idestroy_fork(ip->i_cowfp); 156 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp); 157 } 158 if (ip->i_itemp) { 159 ASSERT(!test_bit(XFS_LI_IN_AIL, 160 &ip->i_itemp->ili_item.li_flags)); 161 xfs_inode_item_destroy(ip); 162 ip->i_itemp = NULL; 163 } 164 165 kmem_cache_free(xfs_inode_cache, ip); 166 } 167 168 static void 169 __xfs_inode_free( 170 struct xfs_inode *ip) 171 { 172 /* asserts to verify all state is correct here */ 173 ASSERT(atomic_read(&ip->i_pincount) == 0); 174 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list)); 175 XFS_STATS_DEC(ip->i_mount, vn_active); 176 177 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 178 } 179 180 void 181 xfs_inode_free( 182 struct xfs_inode *ip) 183 { 184 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING)); 185 186 /* 187 * Because we use RCU freeing we need to ensure the inode always 188 * appears to be reclaimed with an invalid inode number when in the 189 * free state. The ip->i_flags_lock provides the barrier against lookup 190 * races. 191 */ 192 spin_lock(&ip->i_flags_lock); 193 ip->i_flags = XFS_IRECLAIM; 194 ip->i_ino = 0; 195 spin_unlock(&ip->i_flags_lock); 196 197 __xfs_inode_free(ip); 198 } 199 200 /* 201 * Queue background inode reclaim work if there are reclaimable inodes and there 202 * isn't reclaim work already scheduled or in progress. 203 */ 204 static void 205 xfs_reclaim_work_queue( 206 struct xfs_mount *mp) 207 { 208 209 rcu_read_lock(); 210 if (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) { 211 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 212 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 213 } 214 rcu_read_unlock(); 215 } 216 217 /* 218 * Background scanning to trim preallocated space. This is queued based on the 219 * 'speculative_prealloc_lifetime' tunable (5m by default). 220 */ 221 static inline void 222 xfs_blockgc_queue( 223 struct xfs_perag *pag) 224 { 225 struct xfs_mount *mp = pag_mount(pag); 226 227 if (!xfs_is_blockgc_enabled(mp)) 228 return; 229 230 rcu_read_lock(); 231 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) 232 queue_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work, 233 secs_to_jiffies(xfs_blockgc_secs)); 234 rcu_read_unlock(); 235 } 236 237 /* Set a tag on both the AG incore inode tree and the AG radix tree. */ 238 static void 239 xfs_perag_set_inode_tag( 240 struct xfs_perag *pag, 241 xfs_agino_t agino, 242 unsigned int tag) 243 { 244 bool was_tagged; 245 246 lockdep_assert_held(&pag->pag_ici_lock); 247 248 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 249 radix_tree_tag_set(&pag->pag_ici_root, agino, tag); 250 251 if (tag == XFS_ICI_RECLAIM_TAG) 252 pag->pag_ici_reclaimable++; 253 254 if (was_tagged) 255 return; 256 257 /* propagate the tag up into the pag xarray tree */ 258 xfs_group_set_mark(pag_group(pag), ici_tag_to_mark(tag)); 259 260 /* start background work */ 261 switch (tag) { 262 case XFS_ICI_RECLAIM_TAG: 263 xfs_reclaim_work_queue(pag_mount(pag)); 264 break; 265 case XFS_ICI_BLOCKGC_TAG: 266 xfs_blockgc_queue(pag); 267 break; 268 } 269 270 trace_xfs_perag_set_inode_tag(pag, _RET_IP_); 271 } 272 273 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */ 274 static void 275 xfs_perag_clear_inode_tag( 276 struct xfs_perag *pag, 277 xfs_agino_t agino, 278 unsigned int tag) 279 { 280 lockdep_assert_held(&pag->pag_ici_lock); 281 282 /* 283 * Reclaim can signal (with a null agino) that it cleared its own tag 284 * by removing the inode from the radix tree. 285 */ 286 if (agino != NULLAGINO) 287 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag); 288 else 289 ASSERT(tag == XFS_ICI_RECLAIM_TAG); 290 291 if (tag == XFS_ICI_RECLAIM_TAG) 292 pag->pag_ici_reclaimable--; 293 294 if (radix_tree_tagged(&pag->pag_ici_root, tag)) 295 return; 296 297 /* clear the tag from the pag xarray */ 298 xfs_group_clear_mark(pag_group(pag), ici_tag_to_mark(tag)); 299 trace_xfs_perag_clear_inode_tag(pag, _RET_IP_); 300 } 301 302 /* 303 * Find the next AG after @pag, or the first AG if @pag is NULL. 304 */ 305 static struct xfs_perag * 306 xfs_perag_grab_next_tag( 307 struct xfs_mount *mp, 308 struct xfs_perag *pag, 309 int tag) 310 { 311 return to_perag(xfs_group_grab_next_mark(mp, 312 pag ? pag_group(pag) : NULL, 313 ici_tag_to_mark(tag), XG_TYPE_AG)); 314 } 315 316 /* 317 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 318 * part of the structure. This is made more complex by the fact we store 319 * information about the on-disk values in the VFS inode and so we can't just 320 * overwrite the values unconditionally. Hence we save the parameters we 321 * need to retain across reinitialisation, and rewrite them into the VFS inode 322 * after reinitialisation even if it fails. 323 */ 324 static int 325 xfs_reinit_inode( 326 struct xfs_mount *mp, 327 struct inode *inode) 328 { 329 int error; 330 uint32_t nlink = inode->i_nlink; 331 uint32_t generation = inode->i_generation; 332 uint64_t version = inode_peek_iversion(inode); 333 umode_t mode = inode->i_mode; 334 dev_t dev = inode->i_rdev; 335 kuid_t uid = inode->i_uid; 336 kgid_t gid = inode->i_gid; 337 unsigned long state = inode->i_state; 338 339 error = inode_init_always(mp->m_super, inode); 340 341 set_nlink(inode, nlink); 342 inode->i_generation = generation; 343 inode_set_iversion_queried(inode, version); 344 inode->i_mode = mode; 345 inode->i_rdev = dev; 346 inode->i_uid = uid; 347 inode->i_gid = gid; 348 inode->i_state = state; 349 mapping_set_folio_min_order(inode->i_mapping, 350 M_IGEO(mp)->min_folio_order); 351 return error; 352 } 353 354 /* 355 * Carefully nudge an inode whose VFS state has been torn down back into a 356 * usable state. Drops the i_flags_lock and the rcu read lock. 357 */ 358 static int 359 xfs_iget_recycle( 360 struct xfs_perag *pag, 361 struct xfs_inode *ip) __releases(&ip->i_flags_lock) 362 { 363 struct xfs_mount *mp = ip->i_mount; 364 struct inode *inode = VFS_I(ip); 365 int error; 366 367 trace_xfs_iget_recycle(ip); 368 369 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 370 return -EAGAIN; 371 372 /* 373 * We need to make it look like the inode is being reclaimed to prevent 374 * the actual reclaim workers from stomping over us while we recycle 375 * the inode. We can't clear the radix tree tag yet as it requires 376 * pag_ici_lock to be held exclusive. 377 */ 378 ip->i_flags |= XFS_IRECLAIM; 379 380 spin_unlock(&ip->i_flags_lock); 381 rcu_read_unlock(); 382 383 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 384 error = xfs_reinit_inode(mp, inode); 385 xfs_iunlock(ip, XFS_ILOCK_EXCL); 386 if (error) { 387 /* 388 * Re-initializing the inode failed, and we are in deep 389 * trouble. Try to re-add it to the reclaim list. 390 */ 391 rcu_read_lock(); 392 spin_lock(&ip->i_flags_lock); 393 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 394 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 395 spin_unlock(&ip->i_flags_lock); 396 rcu_read_unlock(); 397 398 trace_xfs_iget_recycle_fail(ip); 399 return error; 400 } 401 402 spin_lock(&pag->pag_ici_lock); 403 spin_lock(&ip->i_flags_lock); 404 405 /* 406 * Clear the per-lifetime state in the inode as we are now effectively 407 * a new inode and need to return to the initial state before reuse 408 * occurs. 409 */ 410 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 411 ip->i_flags |= XFS_INEW; 412 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 413 XFS_ICI_RECLAIM_TAG); 414 inode->i_state = I_NEW; 415 spin_unlock(&ip->i_flags_lock); 416 spin_unlock(&pag->pag_ici_lock); 417 418 return 0; 419 } 420 421 /* 422 * If we are allocating a new inode, then check what was returned is 423 * actually a free, empty inode. If we are not allocating an inode, 424 * then check we didn't find a free inode. 425 * 426 * Returns: 427 * 0 if the inode free state matches the lookup context 428 * -ENOENT if the inode is free and we are not allocating 429 * -EFSCORRUPTED if there is any state mismatch at all 430 */ 431 static int 432 xfs_iget_check_free_state( 433 struct xfs_inode *ip, 434 int flags) 435 { 436 if (flags & XFS_IGET_CREATE) { 437 /* should be a free inode */ 438 if (VFS_I(ip)->i_mode != 0) { 439 xfs_warn(ip->i_mount, 440 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", 441 ip->i_ino, VFS_I(ip)->i_mode); 442 xfs_agno_mark_sick(ip->i_mount, 443 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 444 XFS_SICK_AG_INOBT); 445 return -EFSCORRUPTED; 446 } 447 448 if (ip->i_nblocks != 0) { 449 xfs_warn(ip->i_mount, 450 "Corruption detected! Free inode 0x%llx has blocks allocated!", 451 ip->i_ino); 452 xfs_agno_mark_sick(ip->i_mount, 453 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 454 XFS_SICK_AG_INOBT); 455 return -EFSCORRUPTED; 456 } 457 return 0; 458 } 459 460 /* should be an allocated inode */ 461 if (VFS_I(ip)->i_mode == 0) 462 return -ENOENT; 463 464 return 0; 465 } 466 467 /* Make all pending inactivation work start immediately. */ 468 static bool 469 xfs_inodegc_queue_all( 470 struct xfs_mount *mp) 471 { 472 struct xfs_inodegc *gc; 473 int cpu; 474 bool ret = false; 475 476 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 477 gc = per_cpu_ptr(mp->m_inodegc, cpu); 478 if (!llist_empty(&gc->list)) { 479 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 480 ret = true; 481 } 482 } 483 484 return ret; 485 } 486 487 /* Wait for all queued work and collect errors */ 488 static int 489 xfs_inodegc_wait_all( 490 struct xfs_mount *mp) 491 { 492 int cpu; 493 int error = 0; 494 495 flush_workqueue(mp->m_inodegc_wq); 496 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 497 struct xfs_inodegc *gc; 498 499 gc = per_cpu_ptr(mp->m_inodegc, cpu); 500 if (gc->error && !error) 501 error = gc->error; 502 gc->error = 0; 503 } 504 505 return error; 506 } 507 508 /* 509 * Check the validity of the inode we just found it the cache 510 */ 511 static int 512 xfs_iget_cache_hit( 513 struct xfs_perag *pag, 514 struct xfs_inode *ip, 515 xfs_ino_t ino, 516 int flags, 517 int lock_flags) __releases(RCU) 518 { 519 struct inode *inode = VFS_I(ip); 520 struct xfs_mount *mp = ip->i_mount; 521 int error; 522 523 /* 524 * check for re-use of an inode within an RCU grace period due to the 525 * radix tree nodes not being updated yet. We monitor for this by 526 * setting the inode number to zero before freeing the inode structure. 527 * If the inode has been reallocated and set up, then the inode number 528 * will not match, so check for that, too. 529 */ 530 spin_lock(&ip->i_flags_lock); 531 if (ip->i_ino != ino) 532 goto out_skip; 533 534 /* 535 * If we are racing with another cache hit that is currently 536 * instantiating this inode or currently recycling it out of 537 * reclaimable state, wait for the initialisation to complete 538 * before continuing. 539 * 540 * If we're racing with the inactivation worker we also want to wait. 541 * If we're creating a new file, it's possible that the worker 542 * previously marked the inode as free on disk but hasn't finished 543 * updating the incore state yet. The AGI buffer will be dirty and 544 * locked to the icreate transaction, so a synchronous push of the 545 * inodegc workers would result in deadlock. For a regular iget, the 546 * worker is running already, so we might as well wait. 547 * 548 * XXX(hch): eventually we should do something equivalent to 549 * wait_on_inode to wait for these flags to be cleared 550 * instead of polling for it. 551 */ 552 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING)) 553 goto out_skip; 554 555 if (ip->i_flags & XFS_NEED_INACTIVE) { 556 /* Unlinked inodes cannot be re-grabbed. */ 557 if (VFS_I(ip)->i_nlink == 0) { 558 error = -ENOENT; 559 goto out_error; 560 } 561 goto out_inodegc_flush; 562 } 563 564 /* 565 * Check the inode free state is valid. This also detects lookup 566 * racing with unlinks. 567 */ 568 error = xfs_iget_check_free_state(ip, flags); 569 if (error) 570 goto out_error; 571 572 /* Skip inodes that have no vfs state. */ 573 if ((flags & XFS_IGET_INCORE) && 574 (ip->i_flags & XFS_IRECLAIMABLE)) 575 goto out_skip; 576 577 /* The inode fits the selection criteria; process it. */ 578 if (ip->i_flags & XFS_IRECLAIMABLE) { 579 /* Drops i_flags_lock and RCU read lock. */ 580 error = xfs_iget_recycle(pag, ip); 581 if (error == -EAGAIN) 582 goto out_skip; 583 if (error) 584 return error; 585 } else { 586 /* If the VFS inode is being torn down, pause and try again. */ 587 if (!igrab(inode)) 588 goto out_skip; 589 590 /* We've got a live one. */ 591 spin_unlock(&ip->i_flags_lock); 592 rcu_read_unlock(); 593 trace_xfs_iget_hit(ip); 594 } 595 596 if (lock_flags != 0) 597 xfs_ilock(ip, lock_flags); 598 599 if (!(flags & XFS_IGET_INCORE)) 600 xfs_iflags_clear(ip, XFS_ISTALE); 601 XFS_STATS_INC(mp, xs_ig_found); 602 603 return 0; 604 605 out_skip: 606 trace_xfs_iget_skip(ip); 607 XFS_STATS_INC(mp, xs_ig_frecycle); 608 error = -EAGAIN; 609 out_error: 610 spin_unlock(&ip->i_flags_lock); 611 rcu_read_unlock(); 612 return error; 613 614 out_inodegc_flush: 615 spin_unlock(&ip->i_flags_lock); 616 rcu_read_unlock(); 617 /* 618 * Do not wait for the workers, because the caller could hold an AGI 619 * buffer lock. We're just going to sleep in a loop anyway. 620 */ 621 if (xfs_is_inodegc_enabled(mp)) 622 xfs_inodegc_queue_all(mp); 623 return -EAGAIN; 624 } 625 626 static int 627 xfs_iget_cache_miss( 628 struct xfs_mount *mp, 629 struct xfs_perag *pag, 630 xfs_trans_t *tp, 631 xfs_ino_t ino, 632 struct xfs_inode **ipp, 633 int flags, 634 int lock_flags) 635 { 636 struct xfs_inode *ip; 637 int error; 638 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 639 640 ip = xfs_inode_alloc(mp, ino); 641 if (!ip) 642 return -ENOMEM; 643 644 error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags); 645 if (error) 646 goto out_destroy; 647 648 /* 649 * For version 5 superblocks, if we are initialising a new inode, we 650 * simply build the new inode core with a random generation number. 651 * 652 * For version 4 (and older) superblocks, log recovery is dependent on 653 * the i_flushiter field being initialised from the current on-disk 654 * value and hence we must also read the inode off disk even when 655 * initializing new inodes. 656 */ 657 if (xfs_has_v3inodes(mp) && (flags & XFS_IGET_CREATE)) { 658 VFS_I(ip)->i_generation = get_random_u32(); 659 } else { 660 struct xfs_buf *bp; 661 662 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp); 663 if (error) 664 goto out_destroy; 665 666 error = xfs_inode_from_disk(ip, 667 xfs_buf_offset(bp, ip->i_imap.im_boffset)); 668 if (!error) 669 xfs_buf_set_ref(bp, XFS_INO_REF); 670 else 671 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 672 xfs_trans_brelse(tp, bp); 673 674 if (error) 675 goto out_destroy; 676 } 677 678 trace_xfs_iget_miss(ip); 679 680 /* 681 * Check the inode free state is valid. This also detects lookup 682 * racing with unlinks. 683 */ 684 error = xfs_iget_check_free_state(ip, flags); 685 if (error) 686 goto out_destroy; 687 688 /* 689 * Preload the radix tree so we can insert safely under the 690 * write spinlock. Note that we cannot sleep inside the preload 691 * region. 692 */ 693 if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) { 694 error = -EAGAIN; 695 goto out_destroy; 696 } 697 698 /* 699 * Because the inode hasn't been added to the radix-tree yet it can't 700 * be found by another thread, so we can do the non-sleeping lock here. 701 */ 702 if (lock_flags) { 703 if (!xfs_ilock_nowait(ip, lock_flags)) 704 BUG(); 705 } 706 707 /* 708 * These values must be set before inserting the inode into the radix 709 * tree as the moment it is inserted a concurrent lookup (allowed by the 710 * RCU locking mechanism) can find it and that lookup must see that this 711 * is an inode currently under construction (i.e. that XFS_INEW is set). 712 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 713 * memory barrier that ensures this detection works correctly at lookup 714 * time. 715 */ 716 if (flags & XFS_IGET_DONTCACHE) 717 d_mark_dontcache(VFS_I(ip)); 718 ip->i_udquot = NULL; 719 ip->i_gdquot = NULL; 720 ip->i_pdquot = NULL; 721 xfs_iflags_set(ip, XFS_INEW); 722 723 /* insert the new inode */ 724 spin_lock(&pag->pag_ici_lock); 725 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 726 if (unlikely(error)) { 727 WARN_ON(error != -EEXIST); 728 XFS_STATS_INC(mp, xs_ig_dup); 729 error = -EAGAIN; 730 goto out_preload_end; 731 } 732 spin_unlock(&pag->pag_ici_lock); 733 radix_tree_preload_end(); 734 735 *ipp = ip; 736 return 0; 737 738 out_preload_end: 739 spin_unlock(&pag->pag_ici_lock); 740 radix_tree_preload_end(); 741 if (lock_flags) 742 xfs_iunlock(ip, lock_flags); 743 out_destroy: 744 __destroy_inode(VFS_I(ip)); 745 xfs_inode_free(ip); 746 return error; 747 } 748 749 /* 750 * Look up an inode by number in the given file system. The inode is looked up 751 * in the cache held in each AG. If the inode is found in the cache, initialise 752 * the vfs inode if necessary. 753 * 754 * If it is not in core, read it in from the file system's device, add it to the 755 * cache and initialise the vfs inode. 756 * 757 * The inode is locked according to the value of the lock_flags parameter. 758 * Inode lookup is only done during metadata operations and not as part of the 759 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup. 760 */ 761 int 762 xfs_iget( 763 struct xfs_mount *mp, 764 struct xfs_trans *tp, 765 xfs_ino_t ino, 766 uint flags, 767 uint lock_flags, 768 struct xfs_inode **ipp) 769 { 770 struct xfs_inode *ip; 771 struct xfs_perag *pag; 772 xfs_agino_t agino; 773 int error; 774 775 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 776 777 /* reject inode numbers outside existing AGs */ 778 if (!xfs_verify_ino(mp, ino)) 779 return -EINVAL; 780 781 XFS_STATS_INC(mp, xs_ig_attempts); 782 783 /* get the perag structure and ensure that it's inode capable */ 784 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 785 agino = XFS_INO_TO_AGINO(mp, ino); 786 787 again: 788 error = 0; 789 rcu_read_lock(); 790 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 791 792 if (ip) { 793 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 794 if (error) 795 goto out_error_or_again; 796 } else { 797 rcu_read_unlock(); 798 if (flags & XFS_IGET_INCORE) { 799 error = -ENODATA; 800 goto out_error_or_again; 801 } 802 XFS_STATS_INC(mp, xs_ig_missed); 803 804 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 805 flags, lock_flags); 806 if (error) 807 goto out_error_or_again; 808 } 809 xfs_perag_put(pag); 810 811 *ipp = ip; 812 813 /* 814 * If we have a real type for an on-disk inode, we can setup the inode 815 * now. If it's a new inode being created, xfs_init_new_inode will 816 * handle it. 817 */ 818 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 819 xfs_setup_existing_inode(ip); 820 return 0; 821 822 out_error_or_again: 823 if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) && 824 error == -EAGAIN) { 825 delay(1); 826 goto again; 827 } 828 xfs_perag_put(pag); 829 return error; 830 } 831 832 /* 833 * Get a metadata inode. 834 * 835 * The metafile type must match the file mode exactly, and for files in the 836 * metadata directory tree, it must match the inode's metatype exactly. 837 */ 838 int 839 xfs_trans_metafile_iget( 840 struct xfs_trans *tp, 841 xfs_ino_t ino, 842 enum xfs_metafile_type metafile_type, 843 struct xfs_inode **ipp) 844 { 845 struct xfs_mount *mp = tp->t_mountp; 846 struct xfs_inode *ip; 847 umode_t mode; 848 int error; 849 850 error = xfs_iget(mp, tp, ino, 0, 0, &ip); 851 if (error == -EFSCORRUPTED || error == -EINVAL) 852 goto whine; 853 if (error) 854 return error; 855 856 if (VFS_I(ip)->i_nlink == 0) 857 goto bad_rele; 858 859 if (metafile_type == XFS_METAFILE_DIR) 860 mode = S_IFDIR; 861 else 862 mode = S_IFREG; 863 if (inode_wrong_type(VFS_I(ip), mode)) 864 goto bad_rele; 865 if (xfs_has_metadir(mp)) { 866 if (!xfs_is_metadir_inode(ip)) 867 goto bad_rele; 868 if (metafile_type != ip->i_metatype) 869 goto bad_rele; 870 } 871 872 *ipp = ip; 873 return 0; 874 bad_rele: 875 xfs_irele(ip); 876 whine: 877 xfs_err(mp, "metadata inode 0x%llx type %u is corrupt", ino, 878 metafile_type); 879 xfs_fs_mark_sick(mp, XFS_SICK_FS_METADIR); 880 return -EFSCORRUPTED; 881 } 882 883 /* Grab a metadata file if the caller doesn't already have a transaction. */ 884 int 885 xfs_metafile_iget( 886 struct xfs_mount *mp, 887 xfs_ino_t ino, 888 enum xfs_metafile_type metafile_type, 889 struct xfs_inode **ipp) 890 { 891 struct xfs_trans *tp; 892 int error; 893 894 tp = xfs_trans_alloc_empty(mp); 895 error = xfs_trans_metafile_iget(tp, ino, metafile_type, ipp); 896 xfs_trans_cancel(tp); 897 return error; 898 } 899 900 /* 901 * Grab the inode for reclaim exclusively. 902 * 903 * We have found this inode via a lookup under RCU, so the inode may have 904 * already been freed, or it may be in the process of being recycled by 905 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode 906 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE 907 * will not be set. Hence we need to check for both these flag conditions to 908 * avoid inodes that are no longer reclaim candidates. 909 * 910 * Note: checking for other state flags here, under the i_flags_lock or not, is 911 * racy and should be avoided. Those races should be resolved only after we have 912 * ensured that we are able to reclaim this inode and the world can see that we 913 * are going to reclaim it. 914 * 915 * Return true if we grabbed it, false otherwise. 916 */ 917 static bool 918 xfs_reclaim_igrab( 919 struct xfs_inode *ip, 920 struct xfs_icwalk *icw) 921 { 922 ASSERT(rcu_read_lock_held()); 923 924 spin_lock(&ip->i_flags_lock); 925 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 926 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 927 /* not a reclaim candidate. */ 928 spin_unlock(&ip->i_flags_lock); 929 return false; 930 } 931 932 /* Don't reclaim a sick inode unless the caller asked for it. */ 933 if (ip->i_sick && 934 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) { 935 spin_unlock(&ip->i_flags_lock); 936 return false; 937 } 938 939 __xfs_iflags_set(ip, XFS_IRECLAIM); 940 spin_unlock(&ip->i_flags_lock); 941 return true; 942 } 943 944 /* 945 * Inode reclaim is non-blocking, so the default action if progress cannot be 946 * made is to "requeue" the inode for reclaim by unlocking it and clearing the 947 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about 948 * blocking anymore and hence we can wait for the inode to be able to reclaim 949 * it. 950 * 951 * We do no IO here - if callers require inodes to be cleaned they must push the 952 * AIL first to trigger writeback of dirty inodes. This enables writeback to be 953 * done in the background in a non-blocking manner, and enables memory reclaim 954 * to make progress without blocking. 955 */ 956 static void 957 xfs_reclaim_inode( 958 struct xfs_inode *ip, 959 struct xfs_perag *pag) 960 { 961 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 962 963 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 964 goto out; 965 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING)) 966 goto out_iunlock; 967 968 /* 969 * Check for log shutdown because aborting the inode can move the log 970 * tail and corrupt in memory state. This is fine if the log is shut 971 * down, but if the log is still active and only the mount is shut down 972 * then the in-memory log tail movement caused by the abort can be 973 * incorrectly propagated to disk. 974 */ 975 if (xlog_is_shutdown(ip->i_mount->m_log)) { 976 xfs_iunpin_wait(ip); 977 /* 978 * Avoid a ABBA deadlock on the inode cluster buffer vs 979 * concurrent xfs_ifree_cluster() trying to mark the inode 980 * stale. We don't need the inode locked to run the flush abort 981 * code, but the flush abort needs to lock the cluster buffer. 982 */ 983 xfs_iunlock(ip, XFS_ILOCK_EXCL); 984 xfs_iflush_shutdown_abort(ip); 985 xfs_ilock(ip, XFS_ILOCK_EXCL); 986 goto reclaim; 987 } 988 if (xfs_ipincount(ip)) 989 goto out_clear_flush; 990 if (!xfs_inode_clean(ip)) 991 goto out_clear_flush; 992 993 xfs_iflags_clear(ip, XFS_IFLUSHING); 994 reclaim: 995 trace_xfs_inode_reclaiming(ip); 996 997 /* 998 * Because we use RCU freeing we need to ensure the inode always appears 999 * to be reclaimed with an invalid inode number when in the free state. 1000 * We do this as early as possible under the ILOCK so that 1001 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to 1002 * detect races with us here. By doing this, we guarantee that once 1003 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that 1004 * it will see either a valid inode that will serialise correctly, or it 1005 * will see an invalid inode that it can skip. 1006 */ 1007 spin_lock(&ip->i_flags_lock); 1008 ip->i_flags = XFS_IRECLAIM; 1009 ip->i_ino = 0; 1010 ip->i_sick = 0; 1011 ip->i_checked = 0; 1012 spin_unlock(&ip->i_flags_lock); 1013 1014 ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL); 1015 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1016 1017 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 1018 /* 1019 * Remove the inode from the per-AG radix tree. 1020 * 1021 * Because radix_tree_delete won't complain even if the item was never 1022 * added to the tree assert that it's been there before to catch 1023 * problems with the inode life time early on. 1024 */ 1025 spin_lock(&pag->pag_ici_lock); 1026 if (!radix_tree_delete(&pag->pag_ici_root, 1027 XFS_INO_TO_AGINO(ip->i_mount, ino))) 1028 ASSERT(0); 1029 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG); 1030 spin_unlock(&pag->pag_ici_lock); 1031 1032 /* 1033 * Here we do an (almost) spurious inode lock in order to coordinate 1034 * with inode cache radix tree lookups. This is because the lookup 1035 * can reference the inodes in the cache without taking references. 1036 * 1037 * We make that OK here by ensuring that we wait until the inode is 1038 * unlocked after the lookup before we go ahead and free it. 1039 */ 1040 xfs_ilock(ip, XFS_ILOCK_EXCL); 1041 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot); 1042 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1043 ASSERT(xfs_inode_clean(ip)); 1044 1045 __xfs_inode_free(ip); 1046 return; 1047 1048 out_clear_flush: 1049 xfs_iflags_clear(ip, XFS_IFLUSHING); 1050 out_iunlock: 1051 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1052 out: 1053 xfs_iflags_clear(ip, XFS_IRECLAIM); 1054 } 1055 1056 /* Reclaim sick inodes if we're unmounting or the fs went down. */ 1057 static inline bool 1058 xfs_want_reclaim_sick( 1059 struct xfs_mount *mp) 1060 { 1061 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) || 1062 xfs_is_shutdown(mp); 1063 } 1064 1065 void 1066 xfs_reclaim_inodes( 1067 struct xfs_mount *mp) 1068 { 1069 struct xfs_icwalk icw = { 1070 .icw_flags = 0, 1071 }; 1072 1073 if (xfs_want_reclaim_sick(mp)) 1074 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 1075 1076 while (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) { 1077 xfs_ail_push_all_sync(mp->m_ail); 1078 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 1079 } 1080 } 1081 1082 /* 1083 * The shrinker infrastructure determines how many inodes we should scan for 1084 * reclaim. We want as many clean inodes ready to reclaim as possible, so we 1085 * push the AIL here. We also want to proactively free up memory if we can to 1086 * minimise the amount of work memory reclaim has to do so we kick the 1087 * background reclaim if it isn't already scheduled. 1088 */ 1089 long 1090 xfs_reclaim_inodes_nr( 1091 struct xfs_mount *mp, 1092 unsigned long nr_to_scan) 1093 { 1094 struct xfs_icwalk icw = { 1095 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT, 1096 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan), 1097 }; 1098 1099 if (xfs_want_reclaim_sick(mp)) 1100 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 1101 1102 /* kick background reclaimer and push the AIL */ 1103 xfs_reclaim_work_queue(mp); 1104 xfs_ail_push_all(mp->m_ail); 1105 1106 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 1107 return 0; 1108 } 1109 1110 /* 1111 * Return the number of reclaimable inodes in the filesystem for 1112 * the shrinker to determine how much to reclaim. 1113 */ 1114 long 1115 xfs_reclaim_inodes_count( 1116 struct xfs_mount *mp) 1117 { 1118 XA_STATE (xas, &mp->m_groups[XG_TYPE_AG].xa, 0); 1119 long reclaimable = 0; 1120 struct xfs_perag *pag; 1121 1122 rcu_read_lock(); 1123 xas_for_each_marked(&xas, pag, ULONG_MAX, XFS_PERAG_RECLAIM_MARK) { 1124 trace_xfs_reclaim_inodes_count(pag, _THIS_IP_); 1125 reclaimable += pag->pag_ici_reclaimable; 1126 } 1127 rcu_read_unlock(); 1128 1129 return reclaimable; 1130 } 1131 1132 STATIC bool 1133 xfs_icwalk_match_id( 1134 struct xfs_inode *ip, 1135 struct xfs_icwalk *icw) 1136 { 1137 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1138 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1139 return false; 1140 1141 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1142 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1143 return false; 1144 1145 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1146 ip->i_projid != icw->icw_prid) 1147 return false; 1148 1149 return true; 1150 } 1151 1152 /* 1153 * A union-based inode filtering algorithm. Process the inode if any of the 1154 * criteria match. This is for global/internal scans only. 1155 */ 1156 STATIC bool 1157 xfs_icwalk_match_id_union( 1158 struct xfs_inode *ip, 1159 struct xfs_icwalk *icw) 1160 { 1161 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1162 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1163 return true; 1164 1165 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1166 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1167 return true; 1168 1169 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1170 ip->i_projid == icw->icw_prid) 1171 return true; 1172 1173 return false; 1174 } 1175 1176 /* 1177 * Is this inode @ip eligible for eof/cow block reclamation, given some 1178 * filtering parameters @icw? The inode is eligible if @icw is null or 1179 * if the predicate functions match. 1180 */ 1181 static bool 1182 xfs_icwalk_match( 1183 struct xfs_inode *ip, 1184 struct xfs_icwalk *icw) 1185 { 1186 bool match; 1187 1188 if (!icw) 1189 return true; 1190 1191 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION) 1192 match = xfs_icwalk_match_id_union(ip, icw); 1193 else 1194 match = xfs_icwalk_match_id(ip, icw); 1195 if (!match) 1196 return false; 1197 1198 /* skip the inode if the file size is too small */ 1199 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) && 1200 XFS_ISIZE(ip) < icw->icw_min_file_size) 1201 return false; 1202 1203 return true; 1204 } 1205 1206 /* 1207 * This is a fast pass over the inode cache to try to get reclaim moving on as 1208 * many inodes as possible in a short period of time. It kicks itself every few 1209 * seconds, as well as being kicked by the inode cache shrinker when memory 1210 * goes low. 1211 */ 1212 void 1213 xfs_reclaim_worker( 1214 struct work_struct *work) 1215 { 1216 struct xfs_mount *mp = container_of(to_delayed_work(work), 1217 struct xfs_mount, m_reclaim_work); 1218 1219 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL); 1220 xfs_reclaim_work_queue(mp); 1221 } 1222 1223 STATIC int 1224 xfs_inode_free_eofblocks( 1225 struct xfs_inode *ip, 1226 struct xfs_icwalk *icw, 1227 unsigned int *lockflags) 1228 { 1229 bool wait; 1230 1231 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1232 1233 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS)) 1234 return 0; 1235 1236 /* 1237 * If the mapping is dirty the operation can block and wait for some 1238 * time. Unless we are waiting, skip it. 1239 */ 1240 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1241 return 0; 1242 1243 if (!xfs_icwalk_match(ip, icw)) 1244 return 0; 1245 1246 /* 1247 * If the caller is waiting, return -EAGAIN to keep the background 1248 * scanner moving and revisit the inode in a subsequent pass. 1249 */ 1250 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1251 if (wait) 1252 return -EAGAIN; 1253 return 0; 1254 } 1255 *lockflags |= XFS_IOLOCK_EXCL; 1256 1257 if (xfs_can_free_eofblocks(ip)) 1258 return xfs_free_eofblocks(ip); 1259 1260 /* inode could be preallocated */ 1261 trace_xfs_inode_free_eofblocks_invalid(ip); 1262 xfs_inode_clear_eofblocks_tag(ip); 1263 return 0; 1264 } 1265 1266 static void 1267 xfs_blockgc_set_iflag( 1268 struct xfs_inode *ip, 1269 unsigned long iflag) 1270 { 1271 struct xfs_mount *mp = ip->i_mount; 1272 struct xfs_perag *pag; 1273 1274 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1275 1276 /* 1277 * Don't bother locking the AG and looking up in the radix trees 1278 * if we already know that we have the tag set. 1279 */ 1280 if (ip->i_flags & iflag) 1281 return; 1282 spin_lock(&ip->i_flags_lock); 1283 ip->i_flags |= iflag; 1284 spin_unlock(&ip->i_flags_lock); 1285 1286 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1287 spin_lock(&pag->pag_ici_lock); 1288 1289 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1290 XFS_ICI_BLOCKGC_TAG); 1291 1292 spin_unlock(&pag->pag_ici_lock); 1293 xfs_perag_put(pag); 1294 } 1295 1296 void 1297 xfs_inode_set_eofblocks_tag( 1298 xfs_inode_t *ip) 1299 { 1300 trace_xfs_inode_set_eofblocks_tag(ip); 1301 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS); 1302 } 1303 1304 static void 1305 xfs_blockgc_clear_iflag( 1306 struct xfs_inode *ip, 1307 unsigned long iflag) 1308 { 1309 struct xfs_mount *mp = ip->i_mount; 1310 struct xfs_perag *pag; 1311 bool clear_tag; 1312 1313 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1314 1315 spin_lock(&ip->i_flags_lock); 1316 ip->i_flags &= ~iflag; 1317 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0; 1318 spin_unlock(&ip->i_flags_lock); 1319 1320 if (!clear_tag) 1321 return; 1322 1323 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1324 spin_lock(&pag->pag_ici_lock); 1325 1326 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1327 XFS_ICI_BLOCKGC_TAG); 1328 1329 spin_unlock(&pag->pag_ici_lock); 1330 xfs_perag_put(pag); 1331 } 1332 1333 void 1334 xfs_inode_clear_eofblocks_tag( 1335 xfs_inode_t *ip) 1336 { 1337 trace_xfs_inode_clear_eofblocks_tag(ip); 1338 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS); 1339 } 1340 1341 /* 1342 * Prepare to free COW fork blocks from an inode. 1343 */ 1344 static bool 1345 xfs_prep_free_cowblocks( 1346 struct xfs_inode *ip, 1347 struct xfs_icwalk *icw) 1348 { 1349 bool sync; 1350 1351 sync = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1352 1353 /* 1354 * Just clear the tag if we have an empty cow fork or none at all. It's 1355 * possible the inode was fully unshared since it was originally tagged. 1356 */ 1357 if (!xfs_inode_has_cow_data(ip)) { 1358 trace_xfs_inode_free_cowblocks_invalid(ip); 1359 xfs_inode_clear_cowblocks_tag(ip); 1360 return false; 1361 } 1362 1363 /* 1364 * A cowblocks trim of an inode can have a significant effect on 1365 * fragmentation even when a reasonable COW extent size hint is set. 1366 * Therefore, we prefer to not process cowblocks unless they are clean 1367 * and idle. We can never process a cowblocks inode that is dirty or has 1368 * in-flight I/O under any circumstances, because outstanding writeback 1369 * or dio expects targeted COW fork blocks exist through write 1370 * completion where they can be remapped into the data fork. 1371 * 1372 * Therefore, the heuristic used here is to never process inodes 1373 * currently opened for write from background (i.e. non-sync) scans. For 1374 * sync scans, use the pagecache/dio state of the inode to ensure we 1375 * never free COW fork blocks out from under pending I/O. 1376 */ 1377 if (!sync && inode_is_open_for_write(VFS_I(ip))) 1378 return false; 1379 return xfs_can_free_cowblocks(ip); 1380 } 1381 1382 /* 1383 * Automatic CoW Reservation Freeing 1384 * 1385 * These functions automatically garbage collect leftover CoW reservations 1386 * that were made on behalf of a cowextsize hint when we start to run out 1387 * of quota or when the reservations sit around for too long. If the file 1388 * has dirty pages or is undergoing writeback, its CoW reservations will 1389 * be retained. 1390 * 1391 * The actual garbage collection piggybacks off the same code that runs 1392 * the speculative EOF preallocation garbage collector. 1393 */ 1394 STATIC int 1395 xfs_inode_free_cowblocks( 1396 struct xfs_inode *ip, 1397 struct xfs_icwalk *icw, 1398 unsigned int *lockflags) 1399 { 1400 bool wait; 1401 int ret = 0; 1402 1403 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1404 1405 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS)) 1406 return 0; 1407 1408 if (!xfs_prep_free_cowblocks(ip, icw)) 1409 return 0; 1410 1411 if (!xfs_icwalk_match(ip, icw)) 1412 return 0; 1413 1414 /* 1415 * If the caller is waiting, return -EAGAIN to keep the background 1416 * scanner moving and revisit the inode in a subsequent pass. 1417 */ 1418 if (!(*lockflags & XFS_IOLOCK_EXCL) && 1419 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1420 if (wait) 1421 return -EAGAIN; 1422 return 0; 1423 } 1424 *lockflags |= XFS_IOLOCK_EXCL; 1425 1426 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) { 1427 if (wait) 1428 return -EAGAIN; 1429 return 0; 1430 } 1431 *lockflags |= XFS_MMAPLOCK_EXCL; 1432 1433 /* 1434 * Check again, nobody else should be able to dirty blocks or change 1435 * the reflink iflag now that we have the first two locks held. 1436 */ 1437 if (xfs_prep_free_cowblocks(ip, icw)) 1438 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1439 return ret; 1440 } 1441 1442 void 1443 xfs_inode_set_cowblocks_tag( 1444 xfs_inode_t *ip) 1445 { 1446 trace_xfs_inode_set_cowblocks_tag(ip); 1447 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS); 1448 } 1449 1450 void 1451 xfs_inode_clear_cowblocks_tag( 1452 xfs_inode_t *ip) 1453 { 1454 trace_xfs_inode_clear_cowblocks_tag(ip); 1455 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS); 1456 } 1457 1458 /* Disable post-EOF and CoW block auto-reclamation. */ 1459 void 1460 xfs_blockgc_stop( 1461 struct xfs_mount *mp) 1462 { 1463 struct xfs_perag *pag = NULL; 1464 1465 if (!xfs_clear_blockgc_enabled(mp)) 1466 return; 1467 1468 while ((pag = xfs_perag_next(mp, pag))) 1469 cancel_delayed_work_sync(&pag->pag_blockgc_work); 1470 trace_xfs_blockgc_stop(mp, __return_address); 1471 } 1472 1473 /* Enable post-EOF and CoW block auto-reclamation. */ 1474 void 1475 xfs_blockgc_start( 1476 struct xfs_mount *mp) 1477 { 1478 struct xfs_perag *pag = NULL; 1479 1480 if (xfs_set_blockgc_enabled(mp)) 1481 return; 1482 1483 trace_xfs_blockgc_start(mp, __return_address); 1484 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG))) 1485 xfs_blockgc_queue(pag); 1486 } 1487 1488 /* Don't try to run block gc on an inode that's in any of these states. */ 1489 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \ 1490 XFS_NEED_INACTIVE | \ 1491 XFS_INACTIVATING | \ 1492 XFS_IRECLAIMABLE | \ 1493 XFS_IRECLAIM) 1494 /* 1495 * Decide if the given @ip is eligible for garbage collection of speculative 1496 * preallocations, and grab it if so. Returns true if it's ready to go or 1497 * false if we should just ignore it. 1498 */ 1499 static bool 1500 xfs_blockgc_igrab( 1501 struct xfs_inode *ip) 1502 { 1503 struct inode *inode = VFS_I(ip); 1504 1505 ASSERT(rcu_read_lock_held()); 1506 1507 /* Check for stale RCU freed inode */ 1508 spin_lock(&ip->i_flags_lock); 1509 if (!ip->i_ino) 1510 goto out_unlock_noent; 1511 1512 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS) 1513 goto out_unlock_noent; 1514 spin_unlock(&ip->i_flags_lock); 1515 1516 /* nothing to sync during shutdown */ 1517 if (xfs_is_shutdown(ip->i_mount)) 1518 return false; 1519 1520 /* If we can't grab the inode, it must on it's way to reclaim. */ 1521 if (!igrab(inode)) 1522 return false; 1523 1524 /* inode is valid */ 1525 return true; 1526 1527 out_unlock_noent: 1528 spin_unlock(&ip->i_flags_lock); 1529 return false; 1530 } 1531 1532 /* Scan one incore inode for block preallocations that we can remove. */ 1533 static int 1534 xfs_blockgc_scan_inode( 1535 struct xfs_inode *ip, 1536 struct xfs_icwalk *icw) 1537 { 1538 unsigned int lockflags = 0; 1539 int error; 1540 1541 error = xfs_inode_free_eofblocks(ip, icw, &lockflags); 1542 if (error) 1543 goto unlock; 1544 1545 error = xfs_inode_free_cowblocks(ip, icw, &lockflags); 1546 unlock: 1547 if (lockflags) 1548 xfs_iunlock(ip, lockflags); 1549 xfs_irele(ip); 1550 return error; 1551 } 1552 1553 /* Background worker that trims preallocated space. */ 1554 void 1555 xfs_blockgc_worker( 1556 struct work_struct *work) 1557 { 1558 struct xfs_perag *pag = container_of(to_delayed_work(work), 1559 struct xfs_perag, pag_blockgc_work); 1560 struct xfs_mount *mp = pag_mount(pag); 1561 int error; 1562 1563 trace_xfs_blockgc_worker(mp, __return_address); 1564 1565 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL); 1566 if (error) 1567 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d", 1568 pag_agno(pag), error); 1569 xfs_blockgc_queue(pag); 1570 } 1571 1572 /* 1573 * Try to free space in the filesystem by purging inactive inodes, eofblocks 1574 * and cowblocks. 1575 */ 1576 int 1577 xfs_blockgc_free_space( 1578 struct xfs_mount *mp, 1579 struct xfs_icwalk *icw) 1580 { 1581 int error; 1582 1583 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_); 1584 1585 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw); 1586 if (error) 1587 return error; 1588 1589 return xfs_inodegc_flush(mp); 1590 } 1591 1592 /* 1593 * Reclaim all the free space that we can by scheduling the background blockgc 1594 * and inodegc workers immediately and waiting for them all to clear. 1595 */ 1596 int 1597 xfs_blockgc_flush_all( 1598 struct xfs_mount *mp) 1599 { 1600 struct xfs_perag *pag = NULL; 1601 1602 trace_xfs_blockgc_flush_all(mp, __return_address); 1603 1604 /* 1605 * For each blockgc worker, move its queue time up to now. If it wasn't 1606 * queued, it will not be requeued. Then flush whatever is left. 1607 */ 1608 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG))) 1609 mod_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work, 0); 1610 1611 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG))) 1612 flush_delayed_work(&pag->pag_blockgc_work); 1613 1614 return xfs_inodegc_flush(mp); 1615 } 1616 1617 /* 1618 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which 1619 * quota caused an allocation failure, so we make a best effort by including 1620 * each quota under low free space conditions (less than 1% free space) in the 1621 * scan. 1622 * 1623 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan 1624 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or 1625 * MMAPLOCK. 1626 */ 1627 int 1628 xfs_blockgc_free_dquots( 1629 struct xfs_mount *mp, 1630 struct xfs_dquot *udqp, 1631 struct xfs_dquot *gdqp, 1632 struct xfs_dquot *pdqp, 1633 unsigned int iwalk_flags) 1634 { 1635 struct xfs_icwalk icw = {0}; 1636 bool do_work = false; 1637 1638 if (!udqp && !gdqp && !pdqp) 1639 return 0; 1640 1641 /* 1642 * Run a scan to free blocks using the union filter to cover all 1643 * applicable quotas in a single scan. 1644 */ 1645 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags; 1646 1647 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) { 1648 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id); 1649 icw.icw_flags |= XFS_ICWALK_FLAG_UID; 1650 do_work = true; 1651 } 1652 1653 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) { 1654 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id); 1655 icw.icw_flags |= XFS_ICWALK_FLAG_GID; 1656 do_work = true; 1657 } 1658 1659 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) { 1660 icw.icw_prid = pdqp->q_id; 1661 icw.icw_flags |= XFS_ICWALK_FLAG_PRID; 1662 do_work = true; 1663 } 1664 1665 if (!do_work) 1666 return 0; 1667 1668 return xfs_blockgc_free_space(mp, &icw); 1669 } 1670 1671 /* Run cow/eofblocks scans on the quotas attached to the inode. */ 1672 int 1673 xfs_blockgc_free_quota( 1674 struct xfs_inode *ip, 1675 unsigned int iwalk_flags) 1676 { 1677 return xfs_blockgc_free_dquots(ip->i_mount, 1678 xfs_inode_dquot(ip, XFS_DQTYPE_USER), 1679 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP), 1680 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags); 1681 } 1682 1683 /* XFS Inode Cache Walking Code */ 1684 1685 /* 1686 * The inode lookup is done in batches to keep the amount of lock traffic and 1687 * radix tree lookups to a minimum. The batch size is a trade off between 1688 * lookup reduction and stack usage. This is in the reclaim path, so we can't 1689 * be too greedy. 1690 */ 1691 #define XFS_LOOKUP_BATCH 32 1692 1693 1694 /* 1695 * Decide if we want to grab this inode in anticipation of doing work towards 1696 * the goal. 1697 */ 1698 static inline bool 1699 xfs_icwalk_igrab( 1700 enum xfs_icwalk_goal goal, 1701 struct xfs_inode *ip, 1702 struct xfs_icwalk *icw) 1703 { 1704 switch (goal) { 1705 case XFS_ICWALK_BLOCKGC: 1706 return xfs_blockgc_igrab(ip); 1707 case XFS_ICWALK_RECLAIM: 1708 return xfs_reclaim_igrab(ip, icw); 1709 default: 1710 return false; 1711 } 1712 } 1713 1714 /* 1715 * Process an inode. Each processing function must handle any state changes 1716 * made by the icwalk igrab function. Return -EAGAIN to skip an inode. 1717 */ 1718 static inline int 1719 xfs_icwalk_process_inode( 1720 enum xfs_icwalk_goal goal, 1721 struct xfs_inode *ip, 1722 struct xfs_perag *pag, 1723 struct xfs_icwalk *icw) 1724 { 1725 int error = 0; 1726 1727 switch (goal) { 1728 case XFS_ICWALK_BLOCKGC: 1729 error = xfs_blockgc_scan_inode(ip, icw); 1730 break; 1731 case XFS_ICWALK_RECLAIM: 1732 xfs_reclaim_inode(ip, pag); 1733 break; 1734 } 1735 return error; 1736 } 1737 1738 /* 1739 * For a given per-AG structure @pag and a goal, grab qualifying inodes and 1740 * process them in some manner. 1741 */ 1742 static int 1743 xfs_icwalk_ag( 1744 struct xfs_perag *pag, 1745 enum xfs_icwalk_goal goal, 1746 struct xfs_icwalk *icw) 1747 { 1748 struct xfs_mount *mp = pag_mount(pag); 1749 uint32_t first_index; 1750 int last_error = 0; 1751 int skipped; 1752 bool done; 1753 int nr_found; 1754 1755 restart: 1756 done = false; 1757 skipped = 0; 1758 if (goal == XFS_ICWALK_RECLAIM) 1759 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor); 1760 else 1761 first_index = 0; 1762 nr_found = 0; 1763 do { 1764 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1765 int error = 0; 1766 int i; 1767 1768 rcu_read_lock(); 1769 1770 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, 1771 (void **) batch, first_index, 1772 XFS_LOOKUP_BATCH, goal); 1773 if (!nr_found) { 1774 done = true; 1775 rcu_read_unlock(); 1776 break; 1777 } 1778 1779 /* 1780 * Grab the inodes before we drop the lock. if we found 1781 * nothing, nr == 0 and the loop will be skipped. 1782 */ 1783 for (i = 0; i < nr_found; i++) { 1784 struct xfs_inode *ip = batch[i]; 1785 1786 if (done || !xfs_icwalk_igrab(goal, ip, icw)) 1787 batch[i] = NULL; 1788 1789 /* 1790 * Update the index for the next lookup. Catch 1791 * overflows into the next AG range which can occur if 1792 * we have inodes in the last block of the AG and we 1793 * are currently pointing to the last inode. 1794 * 1795 * Because we may see inodes that are from the wrong AG 1796 * due to RCU freeing and reallocation, only update the 1797 * index if it lies in this AG. It was a race that lead 1798 * us to see this inode, so another lookup from the 1799 * same index will not find it again. 1800 */ 1801 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag_agno(pag)) 1802 continue; 1803 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1804 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1805 done = true; 1806 } 1807 1808 /* unlock now we've grabbed the inodes. */ 1809 rcu_read_unlock(); 1810 1811 for (i = 0; i < nr_found; i++) { 1812 if (!batch[i]) 1813 continue; 1814 error = xfs_icwalk_process_inode(goal, batch[i], pag, 1815 icw); 1816 if (error == -EAGAIN) { 1817 skipped++; 1818 continue; 1819 } 1820 if (error && last_error != -EFSCORRUPTED) 1821 last_error = error; 1822 } 1823 1824 /* bail out if the filesystem is corrupted. */ 1825 if (error == -EFSCORRUPTED) 1826 break; 1827 1828 cond_resched(); 1829 1830 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) { 1831 icw->icw_scan_limit -= XFS_LOOKUP_BATCH; 1832 if (icw->icw_scan_limit <= 0) 1833 break; 1834 } 1835 } while (nr_found && !done); 1836 1837 if (goal == XFS_ICWALK_RECLAIM) { 1838 if (done) 1839 first_index = 0; 1840 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index); 1841 } 1842 1843 if (skipped) { 1844 delay(1); 1845 goto restart; 1846 } 1847 return last_error; 1848 } 1849 1850 /* Walk all incore inodes to achieve a given goal. */ 1851 static int 1852 xfs_icwalk( 1853 struct xfs_mount *mp, 1854 enum xfs_icwalk_goal goal, 1855 struct xfs_icwalk *icw) 1856 { 1857 struct xfs_perag *pag = NULL; 1858 int error = 0; 1859 int last_error = 0; 1860 1861 while ((pag = xfs_perag_grab_next_tag(mp, pag, goal))) { 1862 error = xfs_icwalk_ag(pag, goal, icw); 1863 if (error) { 1864 last_error = error; 1865 if (error == -EFSCORRUPTED) { 1866 xfs_perag_rele(pag); 1867 break; 1868 } 1869 } 1870 } 1871 return last_error; 1872 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID); 1873 } 1874 1875 #ifdef DEBUG 1876 static void 1877 xfs_check_delalloc( 1878 struct xfs_inode *ip, 1879 int whichfork) 1880 { 1881 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 1882 struct xfs_bmbt_irec got; 1883 struct xfs_iext_cursor icur; 1884 1885 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 1886 return; 1887 do { 1888 if (isnullstartblock(got.br_startblock)) { 1889 xfs_warn(ip->i_mount, 1890 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 1891 ip->i_ino, 1892 whichfork == XFS_DATA_FORK ? "data" : "cow", 1893 got.br_startoff, got.br_blockcount); 1894 } 1895 } while (xfs_iext_next_extent(ifp, &icur, &got)); 1896 } 1897 #else 1898 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 1899 #endif 1900 1901 /* Schedule the inode for reclaim. */ 1902 static void 1903 xfs_inodegc_set_reclaimable( 1904 struct xfs_inode *ip) 1905 { 1906 struct xfs_mount *mp = ip->i_mount; 1907 struct xfs_perag *pag; 1908 1909 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) { 1910 xfs_check_delalloc(ip, XFS_DATA_FORK); 1911 xfs_check_delalloc(ip, XFS_COW_FORK); 1912 ASSERT(0); 1913 } 1914 1915 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1916 spin_lock(&pag->pag_ici_lock); 1917 spin_lock(&ip->i_flags_lock); 1918 1919 trace_xfs_inode_set_reclaimable(ip); 1920 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING); 1921 ip->i_flags |= XFS_IRECLAIMABLE; 1922 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1923 XFS_ICI_RECLAIM_TAG); 1924 1925 spin_unlock(&ip->i_flags_lock); 1926 spin_unlock(&pag->pag_ici_lock); 1927 xfs_perag_put(pag); 1928 } 1929 1930 /* 1931 * Free all speculative preallocations and possibly even the inode itself. 1932 * This is the last chance to make changes to an otherwise unreferenced file 1933 * before incore reclamation happens. 1934 */ 1935 static int 1936 xfs_inodegc_inactivate( 1937 struct xfs_inode *ip) 1938 { 1939 int error; 1940 1941 trace_xfs_inode_inactivating(ip); 1942 error = xfs_inactive(ip); 1943 xfs_inodegc_set_reclaimable(ip); 1944 return error; 1945 1946 } 1947 1948 void 1949 xfs_inodegc_worker( 1950 struct work_struct *work) 1951 { 1952 struct xfs_inodegc *gc = container_of(to_delayed_work(work), 1953 struct xfs_inodegc, work); 1954 struct llist_node *node = llist_del_all(&gc->list); 1955 struct xfs_inode *ip, *n; 1956 struct xfs_mount *mp = gc->mp; 1957 unsigned int nofs_flag; 1958 1959 /* 1960 * Clear the cpu mask bit and ensure that we have seen the latest 1961 * update of the gc structure associated with this CPU. This matches 1962 * with the release semantics used when setting the cpumask bit in 1963 * xfs_inodegc_queue. 1964 */ 1965 cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask); 1966 smp_mb__after_atomic(); 1967 1968 WRITE_ONCE(gc->items, 0); 1969 1970 if (!node) 1971 return; 1972 1973 /* 1974 * We can allocate memory here while doing writeback on behalf of 1975 * memory reclaim. To avoid memory allocation deadlocks set the 1976 * task-wide nofs context for the following operations. 1977 */ 1978 nofs_flag = memalloc_nofs_save(); 1979 1980 ip = llist_entry(node, struct xfs_inode, i_gclist); 1981 trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits)); 1982 1983 WRITE_ONCE(gc->shrinker_hits, 0); 1984 llist_for_each_entry_safe(ip, n, node, i_gclist) { 1985 int error; 1986 1987 xfs_iflags_set(ip, XFS_INACTIVATING); 1988 error = xfs_inodegc_inactivate(ip); 1989 if (error && !gc->error) 1990 gc->error = error; 1991 } 1992 1993 memalloc_nofs_restore(nofs_flag); 1994 } 1995 1996 /* 1997 * Expedite all pending inodegc work to run immediately. This does not wait for 1998 * completion of the work. 1999 */ 2000 void 2001 xfs_inodegc_push( 2002 struct xfs_mount *mp) 2003 { 2004 if (!xfs_is_inodegc_enabled(mp)) 2005 return; 2006 trace_xfs_inodegc_push(mp, __return_address); 2007 xfs_inodegc_queue_all(mp); 2008 } 2009 2010 /* 2011 * Force all currently queued inode inactivation work to run immediately and 2012 * wait for the work to finish. 2013 */ 2014 int 2015 xfs_inodegc_flush( 2016 struct xfs_mount *mp) 2017 { 2018 xfs_inodegc_push(mp); 2019 trace_xfs_inodegc_flush(mp, __return_address); 2020 return xfs_inodegc_wait_all(mp); 2021 } 2022 2023 /* 2024 * Flush all the pending work and then disable the inode inactivation background 2025 * workers and wait for them to stop. Caller must hold sb->s_umount to 2026 * coordinate changes in the inodegc_enabled state. 2027 */ 2028 void 2029 xfs_inodegc_stop( 2030 struct xfs_mount *mp) 2031 { 2032 bool rerun; 2033 2034 if (!xfs_clear_inodegc_enabled(mp)) 2035 return; 2036 2037 /* 2038 * Drain all pending inodegc work, including inodes that could be 2039 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan 2040 * threads that sample the inodegc state just prior to us clearing it. 2041 * The inodegc flag state prevents new threads from queuing more 2042 * inodes, so we queue pending work items and flush the workqueue until 2043 * all inodegc lists are empty. IOWs, we cannot use drain_workqueue 2044 * here because it does not allow other unserialized mechanisms to 2045 * reschedule inodegc work while this draining is in progress. 2046 */ 2047 xfs_inodegc_queue_all(mp); 2048 do { 2049 flush_workqueue(mp->m_inodegc_wq); 2050 rerun = xfs_inodegc_queue_all(mp); 2051 } while (rerun); 2052 2053 trace_xfs_inodegc_stop(mp, __return_address); 2054 } 2055 2056 /* 2057 * Enable the inode inactivation background workers and schedule deferred inode 2058 * inactivation work if there is any. Caller must hold sb->s_umount to 2059 * coordinate changes in the inodegc_enabled state. 2060 */ 2061 void 2062 xfs_inodegc_start( 2063 struct xfs_mount *mp) 2064 { 2065 if (xfs_set_inodegc_enabled(mp)) 2066 return; 2067 2068 trace_xfs_inodegc_start(mp, __return_address); 2069 xfs_inodegc_queue_all(mp); 2070 } 2071 2072 #ifdef CONFIG_XFS_RT 2073 static inline bool 2074 xfs_inodegc_want_queue_rt_file( 2075 struct xfs_inode *ip) 2076 { 2077 struct xfs_mount *mp = ip->i_mount; 2078 2079 if (!XFS_IS_REALTIME_INODE(ip) || xfs_has_zoned(mp)) 2080 return false; 2081 2082 if (xfs_compare_freecounter(mp, XC_FREE_RTEXTENTS, 2083 mp->m_low_rtexts[XFS_LOWSP_5_PCNT], 2084 XFS_FDBLOCKS_BATCH) < 0) 2085 return true; 2086 2087 return false; 2088 } 2089 #else 2090 # define xfs_inodegc_want_queue_rt_file(ip) (false) 2091 #endif /* CONFIG_XFS_RT */ 2092 2093 /* 2094 * Schedule the inactivation worker when: 2095 * 2096 * - We've accumulated more than one inode cluster buffer's worth of inodes. 2097 * - There is less than 5% free space left. 2098 * - Any of the quotas for this inode are near an enforcement limit. 2099 */ 2100 static inline bool 2101 xfs_inodegc_want_queue_work( 2102 struct xfs_inode *ip, 2103 unsigned int items) 2104 { 2105 struct xfs_mount *mp = ip->i_mount; 2106 2107 if (items > mp->m_ino_geo.inodes_per_cluster) 2108 return true; 2109 2110 if (xfs_compare_freecounter(mp, XC_FREE_BLOCKS, 2111 mp->m_low_space[XFS_LOWSP_5_PCNT], 2112 XFS_FDBLOCKS_BATCH) < 0) 2113 return true; 2114 2115 if (xfs_inodegc_want_queue_rt_file(ip)) 2116 return true; 2117 2118 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER)) 2119 return true; 2120 2121 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP)) 2122 return true; 2123 2124 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ)) 2125 return true; 2126 2127 return false; 2128 } 2129 2130 /* 2131 * Upper bound on the number of inodes in each AG that can be queued for 2132 * inactivation at any given time, to avoid monopolizing the workqueue. 2133 */ 2134 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK) 2135 2136 /* 2137 * Make the frontend wait for inactivations when: 2138 * 2139 * - Memory shrinkers queued the inactivation worker and it hasn't finished. 2140 * - The queue depth exceeds the maximum allowable percpu backlog. 2141 * 2142 * Note: If we are in a NOFS context here (e.g. current thread is running a 2143 * transaction) the we don't want to block here as inodegc progress may require 2144 * filesystem resources we hold to make progress and that could result in a 2145 * deadlock. Hence we skip out of here if we are in a scoped NOFS context. 2146 */ 2147 static inline bool 2148 xfs_inodegc_want_flush_work( 2149 struct xfs_inode *ip, 2150 unsigned int items, 2151 unsigned int shrinker_hits) 2152 { 2153 if (current->flags & PF_MEMALLOC_NOFS) 2154 return false; 2155 2156 if (shrinker_hits > 0) 2157 return true; 2158 2159 if (items > XFS_INODEGC_MAX_BACKLOG) 2160 return true; 2161 2162 return false; 2163 } 2164 2165 /* 2166 * Queue a background inactivation worker if there are inodes that need to be 2167 * inactivated and higher level xfs code hasn't disabled the background 2168 * workers. 2169 */ 2170 static void 2171 xfs_inodegc_queue( 2172 struct xfs_inode *ip) 2173 { 2174 struct xfs_mount *mp = ip->i_mount; 2175 struct xfs_inodegc *gc; 2176 int items; 2177 unsigned int shrinker_hits; 2178 unsigned int cpu_nr; 2179 unsigned long queue_delay = 1; 2180 2181 trace_xfs_inode_set_need_inactive(ip); 2182 spin_lock(&ip->i_flags_lock); 2183 ip->i_flags |= XFS_NEED_INACTIVE; 2184 spin_unlock(&ip->i_flags_lock); 2185 2186 cpu_nr = get_cpu(); 2187 gc = this_cpu_ptr(mp->m_inodegc); 2188 llist_add(&ip->i_gclist, &gc->list); 2189 items = READ_ONCE(gc->items); 2190 WRITE_ONCE(gc->items, items + 1); 2191 shrinker_hits = READ_ONCE(gc->shrinker_hits); 2192 2193 /* 2194 * Ensure the list add is always seen by anyone who finds the cpumask 2195 * bit set. This effectively gives the cpumask bit set operation 2196 * release ordering semantics. 2197 */ 2198 smp_mb__before_atomic(); 2199 if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask)) 2200 cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask); 2201 2202 /* 2203 * We queue the work while holding the current CPU so that the work 2204 * is scheduled to run on this CPU. 2205 */ 2206 if (!xfs_is_inodegc_enabled(mp)) { 2207 put_cpu(); 2208 return; 2209 } 2210 2211 if (xfs_inodegc_want_queue_work(ip, items)) 2212 queue_delay = 0; 2213 2214 trace_xfs_inodegc_queue(mp, __return_address); 2215 mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work, 2216 queue_delay); 2217 put_cpu(); 2218 2219 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) { 2220 trace_xfs_inodegc_throttle(mp, __return_address); 2221 flush_delayed_work(&gc->work); 2222 } 2223 } 2224 2225 /* 2226 * We set the inode flag atomically with the radix tree tag. Once we get tag 2227 * lookups on the radix tree, this inode flag can go away. 2228 * 2229 * We always use background reclaim here because even if the inode is clean, it 2230 * still may be under IO and hence we have wait for IO completion to occur 2231 * before we can reclaim the inode. The background reclaim path handles this 2232 * more efficiently than we can here, so simply let background reclaim tear down 2233 * all inodes. 2234 */ 2235 void 2236 xfs_inode_mark_reclaimable( 2237 struct xfs_inode *ip) 2238 { 2239 struct xfs_mount *mp = ip->i_mount; 2240 bool need_inactive; 2241 2242 XFS_STATS_INC(mp, vn_reclaim); 2243 2244 /* 2245 * We should never get here with any of the reclaim flags already set. 2246 */ 2247 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS)); 2248 2249 need_inactive = xfs_inode_needs_inactive(ip); 2250 if (need_inactive) { 2251 xfs_inodegc_queue(ip); 2252 return; 2253 } 2254 2255 /* Going straight to reclaim, so drop the dquots. */ 2256 xfs_qm_dqdetach(ip); 2257 xfs_inodegc_set_reclaimable(ip); 2258 } 2259 2260 /* 2261 * Register a phony shrinker so that we can run background inodegc sooner when 2262 * there's memory pressure. Inactivation does not itself free any memory but 2263 * it does make inodes reclaimable, which eventually frees memory. 2264 * 2265 * The count function, seek value, and batch value are crafted to trigger the 2266 * scan function during the second round of scanning. Hopefully this means 2267 * that we reclaimed enough memory that initiating metadata transactions won't 2268 * make things worse. 2269 */ 2270 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY) 2271 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1) 2272 2273 static unsigned long 2274 xfs_inodegc_shrinker_count( 2275 struct shrinker *shrink, 2276 struct shrink_control *sc) 2277 { 2278 struct xfs_mount *mp = shrink->private_data; 2279 struct xfs_inodegc *gc; 2280 int cpu; 2281 2282 if (!xfs_is_inodegc_enabled(mp)) 2283 return 0; 2284 2285 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 2286 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2287 if (!llist_empty(&gc->list)) 2288 return XFS_INODEGC_SHRINKER_COUNT; 2289 } 2290 2291 return 0; 2292 } 2293 2294 static unsigned long 2295 xfs_inodegc_shrinker_scan( 2296 struct shrinker *shrink, 2297 struct shrink_control *sc) 2298 { 2299 struct xfs_mount *mp = shrink->private_data; 2300 struct xfs_inodegc *gc; 2301 int cpu; 2302 bool no_items = true; 2303 2304 if (!xfs_is_inodegc_enabled(mp)) 2305 return SHRINK_STOP; 2306 2307 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address); 2308 2309 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 2310 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2311 if (!llist_empty(&gc->list)) { 2312 unsigned int h = READ_ONCE(gc->shrinker_hits); 2313 2314 WRITE_ONCE(gc->shrinker_hits, h + 1); 2315 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 2316 no_items = false; 2317 } 2318 } 2319 2320 /* 2321 * If there are no inodes to inactivate, we don't want the shrinker 2322 * to think there's deferred work to call us back about. 2323 */ 2324 if (no_items) 2325 return LONG_MAX; 2326 2327 return SHRINK_STOP; 2328 } 2329 2330 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */ 2331 int 2332 xfs_inodegc_register_shrinker( 2333 struct xfs_mount *mp) 2334 { 2335 mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB, 2336 "xfs-inodegc:%s", 2337 mp->m_super->s_id); 2338 if (!mp->m_inodegc_shrinker) 2339 return -ENOMEM; 2340 2341 mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count; 2342 mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan; 2343 mp->m_inodegc_shrinker->seeks = 0; 2344 mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH; 2345 mp->m_inodegc_shrinker->private_data = mp; 2346 2347 shrinker_register(mp->m_inodegc_shrinker); 2348 2349 return 0; 2350 } 2351