xref: /linux/fs/xfs/xfs_fsops.c (revision 5e0266f0e5f57617472d5aac4013f58a3ef264ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_sb.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_error.h"
16 #include "xfs_alloc.h"
17 #include "xfs_fsops.h"
18 #include "xfs_trans_space.h"
19 #include "xfs_log.h"
20 #include "xfs_log_priv.h"
21 #include "xfs_ag.h"
22 #include "xfs_ag_resv.h"
23 #include "xfs_trace.h"
24 
25 /*
26  * Write new AG headers to disk. Non-transactional, but need to be
27  * written and completed prior to the growfs transaction being logged.
28  * To do this, we use a delayed write buffer list and wait for
29  * submission and IO completion of the list as a whole. This allows the
30  * IO subsystem to merge all the AG headers in a single AG into a single
31  * IO and hide most of the latency of the IO from us.
32  *
33  * This also means that if we get an error whilst building the buffer
34  * list to write, we can cancel the entire list without having written
35  * anything.
36  */
37 static int
38 xfs_resizefs_init_new_ags(
39 	struct xfs_trans	*tp,
40 	struct aghdr_init_data	*id,
41 	xfs_agnumber_t		oagcount,
42 	xfs_agnumber_t		nagcount,
43 	xfs_rfsblock_t		delta,
44 	struct xfs_perag	*last_pag,
45 	bool			*lastag_extended)
46 {
47 	struct xfs_mount	*mp = tp->t_mountp;
48 	xfs_rfsblock_t		nb = mp->m_sb.sb_dblocks + delta;
49 	int			error;
50 
51 	*lastag_extended = false;
52 
53 	INIT_LIST_HEAD(&id->buffer_list);
54 	for (id->agno = nagcount - 1;
55 	     id->agno >= oagcount;
56 	     id->agno--, delta -= id->agsize) {
57 
58 		if (id->agno == nagcount - 1)
59 			id->agsize = nb - (id->agno *
60 					(xfs_rfsblock_t)mp->m_sb.sb_agblocks);
61 		else
62 			id->agsize = mp->m_sb.sb_agblocks;
63 
64 		error = xfs_ag_init_headers(mp, id);
65 		if (error) {
66 			xfs_buf_delwri_cancel(&id->buffer_list);
67 			return error;
68 		}
69 	}
70 
71 	error = xfs_buf_delwri_submit(&id->buffer_list);
72 	if (error)
73 		return error;
74 
75 	if (delta) {
76 		*lastag_extended = true;
77 		error = xfs_ag_extend_space(last_pag, tp, delta);
78 	}
79 	return error;
80 }
81 
82 /*
83  * growfs operations
84  */
85 static int
86 xfs_growfs_data_private(
87 	struct xfs_mount	*mp,		/* mount point for filesystem */
88 	struct xfs_growfs_data	*in)		/* growfs data input struct */
89 {
90 	struct xfs_buf		*bp;
91 	int			error;
92 	xfs_agnumber_t		nagcount;
93 	xfs_agnumber_t		nagimax = 0;
94 	xfs_rfsblock_t		nb, nb_div, nb_mod;
95 	int64_t			delta;
96 	bool			lastag_extended;
97 	xfs_agnumber_t		oagcount;
98 	struct xfs_trans	*tp;
99 	struct aghdr_init_data	id = {};
100 	struct xfs_perag	*last_pag;
101 
102 	nb = in->newblocks;
103 	error = xfs_sb_validate_fsb_count(&mp->m_sb, nb);
104 	if (error)
105 		return error;
106 
107 	if (nb > mp->m_sb.sb_dblocks) {
108 		error = xfs_buf_read_uncached(mp->m_ddev_targp,
109 				XFS_FSB_TO_BB(mp, nb) - XFS_FSS_TO_BB(mp, 1),
110 				XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
111 		if (error)
112 			return error;
113 		xfs_buf_relse(bp);
114 	}
115 
116 	nb_div = nb;
117 	nb_mod = do_div(nb_div, mp->m_sb.sb_agblocks);
118 	nagcount = nb_div + (nb_mod != 0);
119 	if (nb_mod && nb_mod < XFS_MIN_AG_BLOCKS) {
120 		nagcount--;
121 		nb = (xfs_rfsblock_t)nagcount * mp->m_sb.sb_agblocks;
122 	}
123 	delta = nb - mp->m_sb.sb_dblocks;
124 	/*
125 	 * Reject filesystems with a single AG because they are not
126 	 * supported, and reject a shrink operation that would cause a
127 	 * filesystem to become unsupported.
128 	 */
129 	if (delta < 0 && nagcount < 2)
130 		return -EINVAL;
131 
132 	oagcount = mp->m_sb.sb_agcount;
133 	/* allocate the new per-ag structures */
134 	if (nagcount > oagcount) {
135 		error = xfs_initialize_perag(mp, nagcount, nb, &nagimax);
136 		if (error)
137 			return error;
138 	} else if (nagcount < oagcount) {
139 		/* TODO: shrinking the entire AGs hasn't yet completed */
140 		return -EINVAL;
141 	}
142 
143 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_growdata,
144 			(delta > 0 ? XFS_GROWFS_SPACE_RES(mp) : -delta), 0,
145 			XFS_TRANS_RESERVE, &tp);
146 	if (error)
147 		return error;
148 
149 	last_pag = xfs_perag_get(mp, oagcount - 1);
150 	if (delta > 0) {
151 		error = xfs_resizefs_init_new_ags(tp, &id, oagcount, nagcount,
152 				delta, last_pag, &lastag_extended);
153 	} else {
154 		xfs_warn_mount(mp, XFS_OPSTATE_WARNED_SHRINK,
155 	"EXPERIMENTAL online shrink feature in use. Use at your own risk!");
156 
157 		error = xfs_ag_shrink_space(last_pag, &tp, -delta);
158 	}
159 	xfs_perag_put(last_pag);
160 	if (error)
161 		goto out_trans_cancel;
162 
163 	/*
164 	 * Update changed superblock fields transactionally. These are not
165 	 * seen by the rest of the world until the transaction commit applies
166 	 * them atomically to the superblock.
167 	 */
168 	if (nagcount > oagcount)
169 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_AGCOUNT, nagcount - oagcount);
170 	if (delta)
171 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_DBLOCKS, delta);
172 	if (id.nfree)
173 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_FDBLOCKS, id.nfree);
174 
175 	/*
176 	 * Sync sb counters now to reflect the updated values. This is
177 	 * particularly important for shrink because the write verifier
178 	 * will fail if sb_fdblocks is ever larger than sb_dblocks.
179 	 */
180 	if (xfs_has_lazysbcount(mp))
181 		xfs_log_sb(tp);
182 
183 	xfs_trans_set_sync(tp);
184 	error = xfs_trans_commit(tp);
185 	if (error)
186 		return error;
187 
188 	/* New allocation groups fully initialized, so update mount struct */
189 	if (nagimax)
190 		mp->m_maxagi = nagimax;
191 	xfs_set_low_space_thresholds(mp);
192 	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
193 
194 	if (delta > 0) {
195 		/*
196 		 * If we expanded the last AG, free the per-AG reservation
197 		 * so we can reinitialize it with the new size.
198 		 */
199 		if (lastag_extended) {
200 			struct xfs_perag	*pag;
201 
202 			pag = xfs_perag_get(mp, id.agno);
203 			error = xfs_ag_resv_free(pag);
204 			xfs_perag_put(pag);
205 			if (error)
206 				return error;
207 		}
208 		/*
209 		 * Reserve AG metadata blocks. ENOSPC here does not mean there
210 		 * was a growfs failure, just that there still isn't space for
211 		 * new user data after the grow has been run.
212 		 */
213 		error = xfs_fs_reserve_ag_blocks(mp);
214 		if (error == -ENOSPC)
215 			error = 0;
216 	}
217 	return error;
218 
219 out_trans_cancel:
220 	xfs_trans_cancel(tp);
221 	return error;
222 }
223 
224 static int
225 xfs_growfs_log_private(
226 	struct xfs_mount	*mp,	/* mount point for filesystem */
227 	struct xfs_growfs_log	*in)	/* growfs log input struct */
228 {
229 	xfs_extlen_t		nb;
230 
231 	nb = in->newblocks;
232 	if (nb < XFS_MIN_LOG_BLOCKS || nb < XFS_B_TO_FSB(mp, XFS_MIN_LOG_BYTES))
233 		return -EINVAL;
234 	if (nb == mp->m_sb.sb_logblocks &&
235 	    in->isint == (mp->m_sb.sb_logstart != 0))
236 		return -EINVAL;
237 	/*
238 	 * Moving the log is hard, need new interfaces to sync
239 	 * the log first, hold off all activity while moving it.
240 	 * Can have shorter or longer log in the same space,
241 	 * or transform internal to external log or vice versa.
242 	 */
243 	return -ENOSYS;
244 }
245 
246 static int
247 xfs_growfs_imaxpct(
248 	struct xfs_mount	*mp,
249 	__u32			imaxpct)
250 {
251 	struct xfs_trans	*tp;
252 	int			dpct;
253 	int			error;
254 
255 	if (imaxpct > 100)
256 		return -EINVAL;
257 
258 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_growdata,
259 			XFS_GROWFS_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp);
260 	if (error)
261 		return error;
262 
263 	dpct = imaxpct - mp->m_sb.sb_imax_pct;
264 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IMAXPCT, dpct);
265 	xfs_trans_set_sync(tp);
266 	return xfs_trans_commit(tp);
267 }
268 
269 /*
270  * protected versions of growfs function acquire and release locks on the mount
271  * point - exported through ioctls: XFS_IOC_FSGROWFSDATA, XFS_IOC_FSGROWFSLOG,
272  * XFS_IOC_FSGROWFSRT
273  */
274 int
275 xfs_growfs_data(
276 	struct xfs_mount	*mp,
277 	struct xfs_growfs_data	*in)
278 {
279 	int			error = 0;
280 
281 	if (!capable(CAP_SYS_ADMIN))
282 		return -EPERM;
283 	if (!mutex_trylock(&mp->m_growlock))
284 		return -EWOULDBLOCK;
285 
286 	/* update imaxpct separately to the physical grow of the filesystem */
287 	if (in->imaxpct != mp->m_sb.sb_imax_pct) {
288 		error = xfs_growfs_imaxpct(mp, in->imaxpct);
289 		if (error)
290 			goto out_error;
291 	}
292 
293 	if (in->newblocks != mp->m_sb.sb_dblocks) {
294 		error = xfs_growfs_data_private(mp, in);
295 		if (error)
296 			goto out_error;
297 	}
298 
299 	/* Post growfs calculations needed to reflect new state in operations */
300 	if (mp->m_sb.sb_imax_pct) {
301 		uint64_t icount = mp->m_sb.sb_dblocks * mp->m_sb.sb_imax_pct;
302 		do_div(icount, 100);
303 		M_IGEO(mp)->maxicount = XFS_FSB_TO_INO(mp, icount);
304 	} else
305 		M_IGEO(mp)->maxicount = 0;
306 
307 	/* Update secondary superblocks now the physical grow has completed */
308 	error = xfs_update_secondary_sbs(mp);
309 
310 out_error:
311 	/*
312 	 * Increment the generation unconditionally, the error could be from
313 	 * updating the secondary superblocks, in which case the new size
314 	 * is live already.
315 	 */
316 	mp->m_generation++;
317 	mutex_unlock(&mp->m_growlock);
318 	return error;
319 }
320 
321 int
322 xfs_growfs_log(
323 	xfs_mount_t		*mp,
324 	struct xfs_growfs_log	*in)
325 {
326 	int error;
327 
328 	if (!capable(CAP_SYS_ADMIN))
329 		return -EPERM;
330 	if (!mutex_trylock(&mp->m_growlock))
331 		return -EWOULDBLOCK;
332 	error = xfs_growfs_log_private(mp, in);
333 	mutex_unlock(&mp->m_growlock);
334 	return error;
335 }
336 
337 /*
338  * exported through ioctl XFS_IOC_FSCOUNTS
339  */
340 
341 void
342 xfs_fs_counts(
343 	xfs_mount_t		*mp,
344 	xfs_fsop_counts_t	*cnt)
345 {
346 	cnt->allocino = percpu_counter_read_positive(&mp->m_icount);
347 	cnt->freeino = percpu_counter_read_positive(&mp->m_ifree);
348 	cnt->freedata = percpu_counter_read_positive(&mp->m_fdblocks) -
349 						xfs_fdblocks_unavailable(mp);
350 	cnt->freertx = percpu_counter_read_positive(&mp->m_frextents);
351 }
352 
353 /*
354  * exported through ioctl XFS_IOC_SET_RESBLKS & XFS_IOC_GET_RESBLKS
355  *
356  * xfs_reserve_blocks is called to set m_resblks
357  * in the in-core mount table. The number of unused reserved blocks
358  * is kept in m_resblks_avail.
359  *
360  * Reserve the requested number of blocks if available. Otherwise return
361  * as many as possible to satisfy the request. The actual number
362  * reserved are returned in outval
363  *
364  * A null inval pointer indicates that only the current reserved blocks
365  * available  should  be returned no settings are changed.
366  */
367 
368 int
369 xfs_reserve_blocks(
370 	xfs_mount_t             *mp,
371 	uint64_t              *inval,
372 	xfs_fsop_resblks_t      *outval)
373 {
374 	int64_t			lcounter, delta;
375 	int64_t			fdblks_delta = 0;
376 	uint64_t		request;
377 	int64_t			free;
378 	int			error = 0;
379 
380 	/* If inval is null, report current values and return */
381 	if (inval == (uint64_t *)NULL) {
382 		if (!outval)
383 			return -EINVAL;
384 		outval->resblks = mp->m_resblks;
385 		outval->resblks_avail = mp->m_resblks_avail;
386 		return 0;
387 	}
388 
389 	request = *inval;
390 
391 	/*
392 	 * With per-cpu counters, this becomes an interesting problem. we need
393 	 * to work out if we are freeing or allocation blocks first, then we can
394 	 * do the modification as necessary.
395 	 *
396 	 * We do this under the m_sb_lock so that if we are near ENOSPC, we will
397 	 * hold out any changes while we work out what to do. This means that
398 	 * the amount of free space can change while we do this, so we need to
399 	 * retry if we end up trying to reserve more space than is available.
400 	 */
401 	spin_lock(&mp->m_sb_lock);
402 
403 	/*
404 	 * If our previous reservation was larger than the current value,
405 	 * then move any unused blocks back to the free pool. Modify the resblks
406 	 * counters directly since we shouldn't have any problems unreserving
407 	 * space.
408 	 */
409 	if (mp->m_resblks > request) {
410 		lcounter = mp->m_resblks_avail - request;
411 		if (lcounter  > 0) {		/* release unused blocks */
412 			fdblks_delta = lcounter;
413 			mp->m_resblks_avail -= lcounter;
414 		}
415 		mp->m_resblks = request;
416 		if (fdblks_delta) {
417 			spin_unlock(&mp->m_sb_lock);
418 			error = xfs_mod_fdblocks(mp, fdblks_delta, 0);
419 			spin_lock(&mp->m_sb_lock);
420 		}
421 
422 		goto out;
423 	}
424 
425 	/*
426 	 * If the request is larger than the current reservation, reserve the
427 	 * blocks before we update the reserve counters. Sample m_fdblocks and
428 	 * perform a partial reservation if the request exceeds free space.
429 	 *
430 	 * The code below estimates how many blocks it can request from
431 	 * fdblocks to stash in the reserve pool.  This is a classic TOCTOU
432 	 * race since fdblocks updates are not always coordinated via
433 	 * m_sb_lock.  Set the reserve size even if there's not enough free
434 	 * space to fill it because mod_fdblocks will refill an undersized
435 	 * reserve when it can.
436 	 */
437 	free = percpu_counter_sum(&mp->m_fdblocks) -
438 						xfs_fdblocks_unavailable(mp);
439 	delta = request - mp->m_resblks;
440 	mp->m_resblks = request;
441 	if (delta > 0 && free > 0) {
442 		/*
443 		 * We'll either succeed in getting space from the free block
444 		 * count or we'll get an ENOSPC.  Don't set the reserved flag
445 		 * here - we don't want to reserve the extra reserve blocks
446 		 * from the reserve.
447 		 *
448 		 * The desired reserve size can change after we drop the lock.
449 		 * Use mod_fdblocks to put the space into the reserve or into
450 		 * fdblocks as appropriate.
451 		 */
452 		fdblks_delta = min(free, delta);
453 		spin_unlock(&mp->m_sb_lock);
454 		error = xfs_mod_fdblocks(mp, -fdblks_delta, 0);
455 		if (!error)
456 			xfs_mod_fdblocks(mp, fdblks_delta, 0);
457 		spin_lock(&mp->m_sb_lock);
458 	}
459 out:
460 	if (outval) {
461 		outval->resblks = mp->m_resblks;
462 		outval->resblks_avail = mp->m_resblks_avail;
463 	}
464 
465 	spin_unlock(&mp->m_sb_lock);
466 	return error;
467 }
468 
469 int
470 xfs_fs_goingdown(
471 	xfs_mount_t	*mp,
472 	uint32_t	inflags)
473 {
474 	switch (inflags) {
475 	case XFS_FSOP_GOING_FLAGS_DEFAULT: {
476 		if (!freeze_bdev(mp->m_super->s_bdev)) {
477 			xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT);
478 			thaw_bdev(mp->m_super->s_bdev);
479 		}
480 		break;
481 	}
482 	case XFS_FSOP_GOING_FLAGS_LOGFLUSH:
483 		xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT);
484 		break;
485 	case XFS_FSOP_GOING_FLAGS_NOLOGFLUSH:
486 		xfs_force_shutdown(mp,
487 				SHUTDOWN_FORCE_UMOUNT | SHUTDOWN_LOG_IO_ERROR);
488 		break;
489 	default:
490 		return -EINVAL;
491 	}
492 
493 	return 0;
494 }
495 
496 /*
497  * Force a shutdown of the filesystem instantly while keeping the filesystem
498  * consistent. We don't do an unmount here; just shutdown the shop, make sure
499  * that absolutely nothing persistent happens to this filesystem after this
500  * point.
501  *
502  * The shutdown state change is atomic, resulting in the first and only the
503  * first shutdown call processing the shutdown. This means we only shutdown the
504  * log once as it requires, and we don't spam the logs when multiple concurrent
505  * shutdowns race to set the shutdown flags.
506  */
507 void
508 xfs_do_force_shutdown(
509 	struct xfs_mount *mp,
510 	uint32_t	flags,
511 	char		*fname,
512 	int		lnnum)
513 {
514 	int		tag;
515 	const char	*why;
516 
517 
518 	if (test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &mp->m_opstate)) {
519 		xlog_shutdown_wait(mp->m_log);
520 		return;
521 	}
522 	if (mp->m_sb_bp)
523 		mp->m_sb_bp->b_flags |= XBF_DONE;
524 
525 	if (flags & SHUTDOWN_FORCE_UMOUNT)
526 		xfs_alert(mp, "User initiated shutdown received.");
527 
528 	if (xlog_force_shutdown(mp->m_log, flags)) {
529 		tag = XFS_PTAG_SHUTDOWN_LOGERROR;
530 		why = "Log I/O Error";
531 	} else if (flags & SHUTDOWN_CORRUPT_INCORE) {
532 		tag = XFS_PTAG_SHUTDOWN_CORRUPT;
533 		why = "Corruption of in-memory data";
534 	} else if (flags & SHUTDOWN_CORRUPT_ONDISK) {
535 		tag = XFS_PTAG_SHUTDOWN_CORRUPT;
536 		why = "Corruption of on-disk metadata";
537 	} else {
538 		tag = XFS_PTAG_SHUTDOWN_IOERROR;
539 		why = "Metadata I/O Error";
540 	}
541 
542 	trace_xfs_force_shutdown(mp, tag, flags, fname, lnnum);
543 
544 	xfs_alert_tag(mp, tag,
545 "%s (0x%x) detected at %pS (%s:%d).  Shutting down filesystem.",
546 			why, flags, __return_address, fname, lnnum);
547 	xfs_alert(mp,
548 		"Please unmount the filesystem and rectify the problem(s)");
549 	if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
550 		xfs_stack_trace();
551 }
552 
553 /*
554  * Reserve free space for per-AG metadata.
555  */
556 int
557 xfs_fs_reserve_ag_blocks(
558 	struct xfs_mount	*mp)
559 {
560 	xfs_agnumber_t		agno;
561 	struct xfs_perag	*pag;
562 	int			error = 0;
563 	int			err2;
564 
565 	mp->m_finobt_nores = false;
566 	for_each_perag(mp, agno, pag) {
567 		err2 = xfs_ag_resv_init(pag, NULL);
568 		if (err2 && !error)
569 			error = err2;
570 	}
571 
572 	if (error && error != -ENOSPC) {
573 		xfs_warn(mp,
574 	"Error %d reserving per-AG metadata reserve pool.", error);
575 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
576 	}
577 
578 	return error;
579 }
580 
581 /*
582  * Free space reserved for per-AG metadata.
583  */
584 int
585 xfs_fs_unreserve_ag_blocks(
586 	struct xfs_mount	*mp)
587 {
588 	xfs_agnumber_t		agno;
589 	struct xfs_perag	*pag;
590 	int			error = 0;
591 	int			err2;
592 
593 	for_each_perag(mp, agno, pag) {
594 		err2 = xfs_ag_resv_free(pag);
595 		if (err2 && !error)
596 			error = err2;
597 	}
598 
599 	if (error)
600 		xfs_warn(mp,
601 	"Error %d freeing per-AG metadata reserve pool.", error);
602 
603 	return error;
604 }
605