xref: /linux/fs/xfs/xfs_fsmap.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_btree.h"
16 #include "xfs_rmap_btree.h"
17 #include "xfs_trace.h"
18 #include "xfs_rmap.h"
19 #include "xfs_alloc.h"
20 #include "xfs_bit.h"
21 #include <linux/fsmap.h>
22 #include "xfs_fsmap.h"
23 #include "xfs_refcount.h"
24 #include "xfs_refcount_btree.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_rtbitmap.h"
27 #include "xfs_ag.h"
28 
29 /* Convert an xfs_fsmap to an fsmap. */
30 static void
31 xfs_fsmap_from_internal(
32 	struct fsmap		*dest,
33 	struct xfs_fsmap	*src)
34 {
35 	dest->fmr_device = src->fmr_device;
36 	dest->fmr_flags = src->fmr_flags;
37 	dest->fmr_physical = BBTOB(src->fmr_physical);
38 	dest->fmr_owner = src->fmr_owner;
39 	dest->fmr_offset = BBTOB(src->fmr_offset);
40 	dest->fmr_length = BBTOB(src->fmr_length);
41 	dest->fmr_reserved[0] = 0;
42 	dest->fmr_reserved[1] = 0;
43 	dest->fmr_reserved[2] = 0;
44 }
45 
46 /* Convert an fsmap to an xfs_fsmap. */
47 static void
48 xfs_fsmap_to_internal(
49 	struct xfs_fsmap	*dest,
50 	struct fsmap		*src)
51 {
52 	dest->fmr_device = src->fmr_device;
53 	dest->fmr_flags = src->fmr_flags;
54 	dest->fmr_physical = BTOBBT(src->fmr_physical);
55 	dest->fmr_owner = src->fmr_owner;
56 	dest->fmr_offset = BTOBBT(src->fmr_offset);
57 	dest->fmr_length = BTOBBT(src->fmr_length);
58 }
59 
60 /* Convert an fsmap owner into an rmapbt owner. */
61 static int
62 xfs_fsmap_owner_to_rmap(
63 	struct xfs_rmap_irec	*dest,
64 	const struct xfs_fsmap	*src)
65 {
66 	if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) {
67 		dest->rm_owner = src->fmr_owner;
68 		return 0;
69 	}
70 
71 	switch (src->fmr_owner) {
72 	case 0:			/* "lowest owner id possible" */
73 	case -1ULL:		/* "highest owner id possible" */
74 		dest->rm_owner = src->fmr_owner;
75 		break;
76 	case XFS_FMR_OWN_FREE:
77 		dest->rm_owner = XFS_RMAP_OWN_NULL;
78 		break;
79 	case XFS_FMR_OWN_UNKNOWN:
80 		dest->rm_owner = XFS_RMAP_OWN_UNKNOWN;
81 		break;
82 	case XFS_FMR_OWN_FS:
83 		dest->rm_owner = XFS_RMAP_OWN_FS;
84 		break;
85 	case XFS_FMR_OWN_LOG:
86 		dest->rm_owner = XFS_RMAP_OWN_LOG;
87 		break;
88 	case XFS_FMR_OWN_AG:
89 		dest->rm_owner = XFS_RMAP_OWN_AG;
90 		break;
91 	case XFS_FMR_OWN_INOBT:
92 		dest->rm_owner = XFS_RMAP_OWN_INOBT;
93 		break;
94 	case XFS_FMR_OWN_INODES:
95 		dest->rm_owner = XFS_RMAP_OWN_INODES;
96 		break;
97 	case XFS_FMR_OWN_REFC:
98 		dest->rm_owner = XFS_RMAP_OWN_REFC;
99 		break;
100 	case XFS_FMR_OWN_COW:
101 		dest->rm_owner = XFS_RMAP_OWN_COW;
102 		break;
103 	case XFS_FMR_OWN_DEFECTIVE:	/* not implemented */
104 		/* fall through */
105 	default:
106 		return -EINVAL;
107 	}
108 	return 0;
109 }
110 
111 /* Convert an rmapbt owner into an fsmap owner. */
112 static int
113 xfs_fsmap_owner_from_rmap(
114 	struct xfs_fsmap		*dest,
115 	const struct xfs_rmap_irec	*src)
116 {
117 	dest->fmr_flags = 0;
118 	if (!XFS_RMAP_NON_INODE_OWNER(src->rm_owner)) {
119 		dest->fmr_owner = src->rm_owner;
120 		return 0;
121 	}
122 	dest->fmr_flags |= FMR_OF_SPECIAL_OWNER;
123 
124 	switch (src->rm_owner) {
125 	case XFS_RMAP_OWN_FS:
126 		dest->fmr_owner = XFS_FMR_OWN_FS;
127 		break;
128 	case XFS_RMAP_OWN_LOG:
129 		dest->fmr_owner = XFS_FMR_OWN_LOG;
130 		break;
131 	case XFS_RMAP_OWN_AG:
132 		dest->fmr_owner = XFS_FMR_OWN_AG;
133 		break;
134 	case XFS_RMAP_OWN_INOBT:
135 		dest->fmr_owner = XFS_FMR_OWN_INOBT;
136 		break;
137 	case XFS_RMAP_OWN_INODES:
138 		dest->fmr_owner = XFS_FMR_OWN_INODES;
139 		break;
140 	case XFS_RMAP_OWN_REFC:
141 		dest->fmr_owner = XFS_FMR_OWN_REFC;
142 		break;
143 	case XFS_RMAP_OWN_COW:
144 		dest->fmr_owner = XFS_FMR_OWN_COW;
145 		break;
146 	case XFS_RMAP_OWN_NULL:	/* "free" */
147 		dest->fmr_owner = XFS_FMR_OWN_FREE;
148 		break;
149 	default:
150 		ASSERT(0);
151 		return -EFSCORRUPTED;
152 	}
153 	return 0;
154 }
155 
156 /* getfsmap query state */
157 struct xfs_getfsmap_info {
158 	struct xfs_fsmap_head	*head;
159 	struct fsmap		*fsmap_recs;	/* mapping records */
160 	struct xfs_buf		*agf_bp;	/* AGF, for refcount queries */
161 	struct xfs_perag	*pag;		/* AG info, if applicable */
162 	xfs_daddr_t		next_daddr;	/* next daddr we expect */
163 	/* daddr of low fsmap key when we're using the rtbitmap */
164 	xfs_daddr_t		low_daddr;
165 	xfs_daddr_t		end_daddr;	/* daddr of high fsmap key */
166 	u64			missing_owner;	/* owner of holes */
167 	u32			dev;		/* device id */
168 	/*
169 	 * Low rmap key for the query.  If low.rm_blockcount is nonzero, this
170 	 * is the second (or later) call to retrieve the recordset in pieces.
171 	 * xfs_getfsmap_rec_before_start will compare all records retrieved
172 	 * by the rmapbt query to filter out any records that start before
173 	 * the last record.
174 	 */
175 	struct xfs_rmap_irec	low;
176 	struct xfs_rmap_irec	high;		/* high rmap key */
177 	bool			last;		/* last extent? */
178 };
179 
180 /* Associate a device with a getfsmap handler. */
181 struct xfs_getfsmap_dev {
182 	u32			dev;
183 	int			(*fn)(struct xfs_trans *tp,
184 				      const struct xfs_fsmap *keys,
185 				      struct xfs_getfsmap_info *info);
186 	sector_t		nr_sectors;
187 };
188 
189 /* Compare two getfsmap device handlers. */
190 static int
191 xfs_getfsmap_dev_compare(
192 	const void			*p1,
193 	const void			*p2)
194 {
195 	const struct xfs_getfsmap_dev	*d1 = p1;
196 	const struct xfs_getfsmap_dev	*d2 = p2;
197 
198 	return d1->dev - d2->dev;
199 }
200 
201 /* Decide if this mapping is shared. */
202 STATIC int
203 xfs_getfsmap_is_shared(
204 	struct xfs_trans		*tp,
205 	struct xfs_getfsmap_info	*info,
206 	const struct xfs_rmap_irec	*rec,
207 	bool				*stat)
208 {
209 	struct xfs_mount		*mp = tp->t_mountp;
210 	struct xfs_btree_cur		*cur;
211 	xfs_agblock_t			fbno;
212 	xfs_extlen_t			flen;
213 	int				error;
214 
215 	*stat = false;
216 	if (!xfs_has_reflink(mp))
217 		return 0;
218 	/* rt files will have no perag structure */
219 	if (!info->pag)
220 		return 0;
221 
222 	/* Are there any shared blocks here? */
223 	flen = 0;
224 	cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp, info->pag);
225 
226 	error = xfs_refcount_find_shared(cur, rec->rm_startblock,
227 			rec->rm_blockcount, &fbno, &flen, false);
228 
229 	xfs_btree_del_cursor(cur, error);
230 	if (error)
231 		return error;
232 
233 	*stat = flen > 0;
234 	return 0;
235 }
236 
237 static inline void
238 xfs_getfsmap_format(
239 	struct xfs_mount		*mp,
240 	struct xfs_fsmap		*xfm,
241 	struct xfs_getfsmap_info	*info)
242 {
243 	struct fsmap			*rec;
244 
245 	trace_xfs_getfsmap_mapping(mp, xfm);
246 
247 	rec = &info->fsmap_recs[info->head->fmh_entries++];
248 	xfs_fsmap_from_internal(rec, xfm);
249 }
250 
251 static inline bool
252 xfs_getfsmap_rec_before_start(
253 	struct xfs_getfsmap_info	*info,
254 	const struct xfs_rmap_irec	*rec,
255 	xfs_daddr_t			rec_daddr)
256 {
257 	if (info->low_daddr != XFS_BUF_DADDR_NULL)
258 		return rec_daddr < info->low_daddr;
259 	if (info->low.rm_blockcount)
260 		return xfs_rmap_compare(rec, &info->low) < 0;
261 	return false;
262 }
263 
264 /*
265  * Format a reverse mapping for getfsmap, having translated rm_startblock
266  * into the appropriate daddr units.  Pass in a nonzero @len_daddr if the
267  * length could be larger than rm_blockcount in struct xfs_rmap_irec.
268  */
269 STATIC int
270 xfs_getfsmap_helper(
271 	struct xfs_trans		*tp,
272 	struct xfs_getfsmap_info	*info,
273 	const struct xfs_rmap_irec	*rec,
274 	xfs_daddr_t			rec_daddr,
275 	xfs_daddr_t			len_daddr)
276 {
277 	struct xfs_fsmap		fmr;
278 	struct xfs_mount		*mp = tp->t_mountp;
279 	bool				shared;
280 	int				error;
281 
282 	if (fatal_signal_pending(current))
283 		return -EINTR;
284 
285 	if (len_daddr == 0)
286 		len_daddr = XFS_FSB_TO_BB(mp, rec->rm_blockcount);
287 
288 	/*
289 	 * Filter out records that start before our startpoint, if the
290 	 * caller requested that.
291 	 */
292 	if (xfs_getfsmap_rec_before_start(info, rec, rec_daddr)) {
293 		rec_daddr += len_daddr;
294 		if (info->next_daddr < rec_daddr)
295 			info->next_daddr = rec_daddr;
296 		return 0;
297 	}
298 
299 	/*
300 	 * For an info->last query, we're looking for a gap between the last
301 	 * mapping emitted and the high key specified by userspace.  If the
302 	 * user's query spans less than 1 fsblock, then info->high and
303 	 * info->low will have the same rm_startblock, which causes rec_daddr
304 	 * and next_daddr to be the same.  Therefore, use the end_daddr that
305 	 * we calculated from userspace's high key to synthesize the record.
306 	 * Note that if the btree query found a mapping, there won't be a gap.
307 	 */
308 	if (info->last && info->end_daddr != XFS_BUF_DADDR_NULL)
309 		rec_daddr = info->end_daddr;
310 
311 	/* Are we just counting mappings? */
312 	if (info->head->fmh_count == 0) {
313 		if (info->head->fmh_entries == UINT_MAX)
314 			return -ECANCELED;
315 
316 		if (rec_daddr > info->next_daddr)
317 			info->head->fmh_entries++;
318 
319 		if (info->last)
320 			return 0;
321 
322 		info->head->fmh_entries++;
323 
324 		rec_daddr += len_daddr;
325 		if (info->next_daddr < rec_daddr)
326 			info->next_daddr = rec_daddr;
327 		return 0;
328 	}
329 
330 	/*
331 	 * If the record starts past the last physical block we saw,
332 	 * then we've found a gap.  Report the gap as being owned by
333 	 * whatever the caller specified is the missing owner.
334 	 */
335 	if (rec_daddr > info->next_daddr) {
336 		if (info->head->fmh_entries >= info->head->fmh_count)
337 			return -ECANCELED;
338 
339 		fmr.fmr_device = info->dev;
340 		fmr.fmr_physical = info->next_daddr;
341 		fmr.fmr_owner = info->missing_owner;
342 		fmr.fmr_offset = 0;
343 		fmr.fmr_length = rec_daddr - info->next_daddr;
344 		fmr.fmr_flags = FMR_OF_SPECIAL_OWNER;
345 		xfs_getfsmap_format(mp, &fmr, info);
346 	}
347 
348 	if (info->last)
349 		goto out;
350 
351 	/* Fill out the extent we found */
352 	if (info->head->fmh_entries >= info->head->fmh_count)
353 		return -ECANCELED;
354 
355 	trace_xfs_fsmap_mapping(mp, info->dev,
356 			info->pag ? info->pag->pag_agno : NULLAGNUMBER, rec);
357 
358 	fmr.fmr_device = info->dev;
359 	fmr.fmr_physical = rec_daddr;
360 	error = xfs_fsmap_owner_from_rmap(&fmr, rec);
361 	if (error)
362 		return error;
363 	fmr.fmr_offset = XFS_FSB_TO_BB(mp, rec->rm_offset);
364 	fmr.fmr_length = len_daddr;
365 	if (rec->rm_flags & XFS_RMAP_UNWRITTEN)
366 		fmr.fmr_flags |= FMR_OF_PREALLOC;
367 	if (rec->rm_flags & XFS_RMAP_ATTR_FORK)
368 		fmr.fmr_flags |= FMR_OF_ATTR_FORK;
369 	if (rec->rm_flags & XFS_RMAP_BMBT_BLOCK)
370 		fmr.fmr_flags |= FMR_OF_EXTENT_MAP;
371 	if (fmr.fmr_flags == 0) {
372 		error = xfs_getfsmap_is_shared(tp, info, rec, &shared);
373 		if (error)
374 			return error;
375 		if (shared)
376 			fmr.fmr_flags |= FMR_OF_SHARED;
377 	}
378 
379 	xfs_getfsmap_format(mp, &fmr, info);
380 out:
381 	rec_daddr += len_daddr;
382 	if (info->next_daddr < rec_daddr)
383 		info->next_daddr = rec_daddr;
384 	return 0;
385 }
386 
387 /* Transform a rmapbt irec into a fsmap */
388 STATIC int
389 xfs_getfsmap_datadev_helper(
390 	struct xfs_btree_cur		*cur,
391 	const struct xfs_rmap_irec	*rec,
392 	void				*priv)
393 {
394 	struct xfs_mount		*mp = cur->bc_mp;
395 	struct xfs_getfsmap_info	*info = priv;
396 	xfs_fsblock_t			fsb;
397 	xfs_daddr_t			rec_daddr;
398 
399 	fsb = XFS_AGB_TO_FSB(mp, cur->bc_ag.pag->pag_agno, rec->rm_startblock);
400 	rec_daddr = XFS_FSB_TO_DADDR(mp, fsb);
401 
402 	return xfs_getfsmap_helper(cur->bc_tp, info, rec, rec_daddr, 0);
403 }
404 
405 /* Transform a bnobt irec into a fsmap */
406 STATIC int
407 xfs_getfsmap_datadev_bnobt_helper(
408 	struct xfs_btree_cur		*cur,
409 	const struct xfs_alloc_rec_incore *rec,
410 	void				*priv)
411 {
412 	struct xfs_mount		*mp = cur->bc_mp;
413 	struct xfs_getfsmap_info	*info = priv;
414 	struct xfs_rmap_irec		irec;
415 	xfs_daddr_t			rec_daddr;
416 
417 	rec_daddr = XFS_AGB_TO_DADDR(mp, cur->bc_ag.pag->pag_agno,
418 			rec->ar_startblock);
419 
420 	irec.rm_startblock = rec->ar_startblock;
421 	irec.rm_blockcount = rec->ar_blockcount;
422 	irec.rm_owner = XFS_RMAP_OWN_NULL;	/* "free" */
423 	irec.rm_offset = 0;
424 	irec.rm_flags = 0;
425 
426 	return xfs_getfsmap_helper(cur->bc_tp, info, &irec, rec_daddr, 0);
427 }
428 
429 /* Set rmap flags based on the getfsmap flags */
430 static void
431 xfs_getfsmap_set_irec_flags(
432 	struct xfs_rmap_irec	*irec,
433 	const struct xfs_fsmap	*fmr)
434 {
435 	irec->rm_flags = 0;
436 	if (fmr->fmr_flags & FMR_OF_ATTR_FORK)
437 		irec->rm_flags |= XFS_RMAP_ATTR_FORK;
438 	if (fmr->fmr_flags & FMR_OF_EXTENT_MAP)
439 		irec->rm_flags |= XFS_RMAP_BMBT_BLOCK;
440 	if (fmr->fmr_flags & FMR_OF_PREALLOC)
441 		irec->rm_flags |= XFS_RMAP_UNWRITTEN;
442 }
443 
444 static inline bool
445 rmap_not_shareable(struct xfs_mount *mp, const struct xfs_rmap_irec *r)
446 {
447 	if (!xfs_has_reflink(mp))
448 		return true;
449 	if (XFS_RMAP_NON_INODE_OWNER(r->rm_owner))
450 		return true;
451 	if (r->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK |
452 			   XFS_RMAP_UNWRITTEN))
453 		return true;
454 	return false;
455 }
456 
457 /* Execute a getfsmap query against the regular data device. */
458 STATIC int
459 __xfs_getfsmap_datadev(
460 	struct xfs_trans		*tp,
461 	const struct xfs_fsmap		*keys,
462 	struct xfs_getfsmap_info	*info,
463 	int				(*query_fn)(struct xfs_trans *,
464 						    struct xfs_getfsmap_info *,
465 						    struct xfs_btree_cur **,
466 						    void *),
467 	void				*priv)
468 {
469 	struct xfs_mount		*mp = tp->t_mountp;
470 	struct xfs_perag		*pag;
471 	struct xfs_btree_cur		*bt_cur = NULL;
472 	xfs_fsblock_t			start_fsb;
473 	xfs_fsblock_t			end_fsb;
474 	xfs_agnumber_t			start_ag;
475 	xfs_agnumber_t			end_ag;
476 	uint64_t			eofs;
477 	int				error = 0;
478 
479 	eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
480 	if (keys[0].fmr_physical >= eofs)
481 		return 0;
482 	start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical);
483 	end_fsb = XFS_DADDR_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
484 
485 	/*
486 	 * Convert the fsmap low/high keys to AG based keys.  Initialize
487 	 * low to the fsmap low key and max out the high key to the end
488 	 * of the AG.
489 	 */
490 	info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
491 	error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]);
492 	if (error)
493 		return error;
494 	info->low.rm_blockcount = XFS_BB_TO_FSBT(mp, keys[0].fmr_length);
495 	xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
496 
497 	/* Adjust the low key if we are continuing from where we left off. */
498 	if (info->low.rm_blockcount == 0) {
499 		/* No previous record from which to continue */
500 	} else if (rmap_not_shareable(mp, &info->low)) {
501 		/* Last record seen was an unshareable extent */
502 		info->low.rm_owner = 0;
503 		info->low.rm_offset = 0;
504 
505 		start_fsb += info->low.rm_blockcount;
506 		if (XFS_FSB_TO_DADDR(mp, start_fsb) >= eofs)
507 			return 0;
508 	} else {
509 		/* Last record seen was a shareable file data extent */
510 		info->low.rm_offset += info->low.rm_blockcount;
511 	}
512 	info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb);
513 
514 	info->high.rm_startblock = -1U;
515 	info->high.rm_owner = ULLONG_MAX;
516 	info->high.rm_offset = ULLONG_MAX;
517 	info->high.rm_blockcount = 0;
518 	info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
519 
520 	start_ag = XFS_FSB_TO_AGNO(mp, start_fsb);
521 	end_ag = XFS_FSB_TO_AGNO(mp, end_fsb);
522 
523 	for_each_perag_range(mp, start_ag, end_ag, pag) {
524 		/*
525 		 * Set the AG high key from the fsmap high key if this
526 		 * is the last AG that we're querying.
527 		 */
528 		info->pag = pag;
529 		if (pag->pag_agno == end_ag) {
530 			info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp,
531 					end_fsb);
532 			info->high.rm_offset = XFS_BB_TO_FSBT(mp,
533 					keys[1].fmr_offset);
534 			error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
535 			if (error)
536 				break;
537 			xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
538 		}
539 
540 		if (bt_cur) {
541 			xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR);
542 			bt_cur = NULL;
543 			xfs_trans_brelse(tp, info->agf_bp);
544 			info->agf_bp = NULL;
545 		}
546 
547 		error = xfs_alloc_read_agf(pag, tp, 0, &info->agf_bp);
548 		if (error)
549 			break;
550 
551 		trace_xfs_fsmap_low_key(mp, info->dev, pag->pag_agno,
552 				&info->low);
553 		trace_xfs_fsmap_high_key(mp, info->dev, pag->pag_agno,
554 				&info->high);
555 
556 		error = query_fn(tp, info, &bt_cur, priv);
557 		if (error)
558 			break;
559 
560 		/*
561 		 * Set the AG low key to the start of the AG prior to
562 		 * moving on to the next AG.
563 		 */
564 		if (pag->pag_agno == start_ag)
565 			memset(&info->low, 0, sizeof(info->low));
566 
567 		/*
568 		 * If this is the last AG, report any gap at the end of it
569 		 * before we drop the reference to the perag when the loop
570 		 * terminates.
571 		 */
572 		if (pag->pag_agno == end_ag) {
573 			info->last = true;
574 			error = query_fn(tp, info, &bt_cur, priv);
575 			if (error)
576 				break;
577 		}
578 		info->pag = NULL;
579 	}
580 
581 	if (bt_cur)
582 		xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR :
583 							 XFS_BTREE_NOERROR);
584 	if (info->agf_bp) {
585 		xfs_trans_brelse(tp, info->agf_bp);
586 		info->agf_bp = NULL;
587 	}
588 	if (info->pag) {
589 		xfs_perag_rele(info->pag);
590 		info->pag = NULL;
591 	} else if (pag) {
592 		/* loop termination case */
593 		xfs_perag_rele(pag);
594 	}
595 
596 	return error;
597 }
598 
599 /* Actually query the rmap btree. */
600 STATIC int
601 xfs_getfsmap_datadev_rmapbt_query(
602 	struct xfs_trans		*tp,
603 	struct xfs_getfsmap_info	*info,
604 	struct xfs_btree_cur		**curpp,
605 	void				*priv)
606 {
607 	/* Report any gap at the end of the last AG. */
608 	if (info->last)
609 		return xfs_getfsmap_datadev_helper(*curpp, &info->high, info);
610 
611 	/* Allocate cursor for this AG and query_range it. */
612 	*curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp,
613 			info->pag);
614 	return xfs_rmap_query_range(*curpp, &info->low, &info->high,
615 			xfs_getfsmap_datadev_helper, info);
616 }
617 
618 /* Execute a getfsmap query against the regular data device rmapbt. */
619 STATIC int
620 xfs_getfsmap_datadev_rmapbt(
621 	struct xfs_trans		*tp,
622 	const struct xfs_fsmap		*keys,
623 	struct xfs_getfsmap_info	*info)
624 {
625 	info->missing_owner = XFS_FMR_OWN_FREE;
626 	return __xfs_getfsmap_datadev(tp, keys, info,
627 			xfs_getfsmap_datadev_rmapbt_query, NULL);
628 }
629 
630 /* Actually query the bno btree. */
631 STATIC int
632 xfs_getfsmap_datadev_bnobt_query(
633 	struct xfs_trans		*tp,
634 	struct xfs_getfsmap_info	*info,
635 	struct xfs_btree_cur		**curpp,
636 	void				*priv)
637 {
638 	struct xfs_alloc_rec_incore	*key = priv;
639 
640 	/* Report any gap at the end of the last AG. */
641 	if (info->last)
642 		return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info);
643 
644 	/* Allocate cursor for this AG and query_range it. */
645 	*curpp = xfs_bnobt_init_cursor(tp->t_mountp, tp, info->agf_bp,
646 			info->pag);
647 	key->ar_startblock = info->low.rm_startblock;
648 	key[1].ar_startblock = info->high.rm_startblock;
649 	return xfs_alloc_query_range(*curpp, key, &key[1],
650 			xfs_getfsmap_datadev_bnobt_helper, info);
651 }
652 
653 /* Execute a getfsmap query against the regular data device's bnobt. */
654 STATIC int
655 xfs_getfsmap_datadev_bnobt(
656 	struct xfs_trans		*tp,
657 	const struct xfs_fsmap		*keys,
658 	struct xfs_getfsmap_info	*info)
659 {
660 	struct xfs_alloc_rec_incore	akeys[2];
661 
662 	memset(akeys, 0, sizeof(akeys));
663 	info->missing_owner = XFS_FMR_OWN_UNKNOWN;
664 	return __xfs_getfsmap_datadev(tp, keys, info,
665 			xfs_getfsmap_datadev_bnobt_query, &akeys[0]);
666 }
667 
668 /* Execute a getfsmap query against the log device. */
669 STATIC int
670 xfs_getfsmap_logdev(
671 	struct xfs_trans		*tp,
672 	const struct xfs_fsmap		*keys,
673 	struct xfs_getfsmap_info	*info)
674 {
675 	struct xfs_mount		*mp = tp->t_mountp;
676 	struct xfs_rmap_irec		rmap;
677 	xfs_daddr_t			rec_daddr, len_daddr;
678 	xfs_fsblock_t			start_fsb, end_fsb;
679 	uint64_t			eofs;
680 
681 	eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
682 	if (keys[0].fmr_physical >= eofs)
683 		return 0;
684 	start_fsb = XFS_BB_TO_FSBT(mp,
685 				keys[0].fmr_physical + keys[0].fmr_length);
686 	end_fsb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
687 
688 	/* Adjust the low key if we are continuing from where we left off. */
689 	if (keys[0].fmr_length > 0)
690 		info->low_daddr = XFS_FSB_TO_BB(mp, start_fsb);
691 
692 	trace_xfs_fsmap_low_key_linear(mp, info->dev, start_fsb);
693 	trace_xfs_fsmap_high_key_linear(mp, info->dev, end_fsb);
694 
695 	if (start_fsb > 0)
696 		return 0;
697 
698 	/* Fabricate an rmap entry for the external log device. */
699 	rmap.rm_startblock = 0;
700 	rmap.rm_blockcount = mp->m_sb.sb_logblocks;
701 	rmap.rm_owner = XFS_RMAP_OWN_LOG;
702 	rmap.rm_offset = 0;
703 	rmap.rm_flags = 0;
704 
705 	rec_daddr = XFS_FSB_TO_BB(mp, rmap.rm_startblock);
706 	len_daddr = XFS_FSB_TO_BB(mp, rmap.rm_blockcount);
707 	return xfs_getfsmap_helper(tp, info, &rmap, rec_daddr, len_daddr);
708 }
709 
710 #ifdef CONFIG_XFS_RT
711 /* Transform a rtbitmap "record" into a fsmap */
712 STATIC int
713 xfs_getfsmap_rtdev_rtbitmap_helper(
714 	struct xfs_mount		*mp,
715 	struct xfs_trans		*tp,
716 	const struct xfs_rtalloc_rec	*rec,
717 	void				*priv)
718 {
719 	struct xfs_getfsmap_info	*info = priv;
720 	struct xfs_rmap_irec		irec;
721 	xfs_rtblock_t			rtbno;
722 	xfs_daddr_t			rec_daddr, len_daddr;
723 
724 	rtbno = xfs_rtx_to_rtb(mp, rec->ar_startext);
725 	rec_daddr = XFS_FSB_TO_BB(mp, rtbno);
726 	irec.rm_startblock = rtbno;
727 
728 	rtbno = xfs_rtx_to_rtb(mp, rec->ar_extcount);
729 	len_daddr = XFS_FSB_TO_BB(mp, rtbno);
730 	irec.rm_blockcount = rtbno;
731 
732 	irec.rm_owner = XFS_RMAP_OWN_NULL;	/* "free" */
733 	irec.rm_offset = 0;
734 	irec.rm_flags = 0;
735 
736 	return xfs_getfsmap_helper(tp, info, &irec, rec_daddr, len_daddr);
737 }
738 
739 /* Execute a getfsmap query against the realtime device rtbitmap. */
740 STATIC int
741 xfs_getfsmap_rtdev_rtbitmap(
742 	struct xfs_trans		*tp,
743 	const struct xfs_fsmap		*keys,
744 	struct xfs_getfsmap_info	*info)
745 {
746 
747 	struct xfs_rtalloc_rec		ahigh = { 0 };
748 	struct xfs_mount		*mp = tp->t_mountp;
749 	xfs_rtblock_t			start_rtb;
750 	xfs_rtblock_t			end_rtb;
751 	xfs_rtxnum_t			high;
752 	uint64_t			eofs;
753 	int				error;
754 
755 	eofs = XFS_FSB_TO_BB(mp, xfs_rtx_to_rtb(mp, mp->m_sb.sb_rextents));
756 	if (keys[0].fmr_physical >= eofs)
757 		return 0;
758 	start_rtb = XFS_BB_TO_FSBT(mp,
759 				keys[0].fmr_physical + keys[0].fmr_length);
760 	end_rtb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
761 
762 	info->missing_owner = XFS_FMR_OWN_UNKNOWN;
763 
764 	/* Adjust the low key if we are continuing from where we left off. */
765 	if (keys[0].fmr_length > 0) {
766 		info->low_daddr = XFS_FSB_TO_BB(mp, start_rtb);
767 		if (info->low_daddr >= eofs)
768 			return 0;
769 	}
770 
771 	trace_xfs_fsmap_low_key_linear(mp, info->dev, start_rtb);
772 	trace_xfs_fsmap_high_key_linear(mp, info->dev, end_rtb);
773 
774 	xfs_rtbitmap_lock_shared(mp, XFS_RBMLOCK_BITMAP);
775 
776 	/*
777 	 * Set up query parameters to return free rtextents covering the range
778 	 * we want.
779 	 */
780 	high = xfs_rtb_to_rtxup(mp, end_rtb);
781 	error = xfs_rtalloc_query_range(mp, tp, xfs_rtb_to_rtx(mp, start_rtb),
782 			high, xfs_getfsmap_rtdev_rtbitmap_helper, info);
783 	if (error)
784 		goto err;
785 
786 	/*
787 	 * Report any gaps at the end of the rtbitmap by simulating a null
788 	 * rmap starting at the block after the end of the query range.
789 	 */
790 	info->last = true;
791 	ahigh.ar_startext = min(mp->m_sb.sb_rextents, high);
792 
793 	error = xfs_getfsmap_rtdev_rtbitmap_helper(mp, tp, &ahigh, info);
794 	if (error)
795 		goto err;
796 err:
797 	xfs_rtbitmap_unlock_shared(mp, XFS_RBMLOCK_BITMAP);
798 	return error;
799 }
800 #endif /* CONFIG_XFS_RT */
801 
802 /* Do we recognize the device? */
803 STATIC bool
804 xfs_getfsmap_is_valid_device(
805 	struct xfs_mount	*mp,
806 	struct xfs_fsmap	*fm)
807 {
808 	if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX ||
809 	    fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev))
810 		return true;
811 	if (mp->m_logdev_targp &&
812 	    fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev))
813 		return true;
814 	if (mp->m_rtdev_targp &&
815 	    fm->fmr_device == new_encode_dev(mp->m_rtdev_targp->bt_dev))
816 		return true;
817 	return false;
818 }
819 
820 /* Ensure that the low key is less than the high key. */
821 STATIC bool
822 xfs_getfsmap_check_keys(
823 	struct xfs_fsmap		*low_key,
824 	struct xfs_fsmap		*high_key)
825 {
826 	if (low_key->fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) {
827 		if (low_key->fmr_offset)
828 			return false;
829 	}
830 	if (high_key->fmr_flags != -1U &&
831 	    (high_key->fmr_flags & (FMR_OF_SPECIAL_OWNER |
832 				    FMR_OF_EXTENT_MAP))) {
833 		if (high_key->fmr_offset && high_key->fmr_offset != -1ULL)
834 			return false;
835 	}
836 	if (high_key->fmr_length && high_key->fmr_length != -1ULL)
837 		return false;
838 
839 	if (low_key->fmr_device > high_key->fmr_device)
840 		return false;
841 	if (low_key->fmr_device < high_key->fmr_device)
842 		return true;
843 
844 	if (low_key->fmr_physical > high_key->fmr_physical)
845 		return false;
846 	if (low_key->fmr_physical < high_key->fmr_physical)
847 		return true;
848 
849 	if (low_key->fmr_owner > high_key->fmr_owner)
850 		return false;
851 	if (low_key->fmr_owner < high_key->fmr_owner)
852 		return true;
853 
854 	if (low_key->fmr_offset > high_key->fmr_offset)
855 		return false;
856 	if (low_key->fmr_offset < high_key->fmr_offset)
857 		return true;
858 
859 	return false;
860 }
861 
862 /*
863  * There are only two devices if we didn't configure RT devices at build time.
864  */
865 #ifdef CONFIG_XFS_RT
866 #define XFS_GETFSMAP_DEVS	3
867 #else
868 #define XFS_GETFSMAP_DEVS	2
869 #endif /* CONFIG_XFS_RT */
870 
871 /*
872  * Get filesystem's extents as described in head, and format for output. Fills
873  * in the supplied records array until there are no more reverse mappings to
874  * return or head.fmh_entries == head.fmh_count.  In the second case, this
875  * function returns -ECANCELED to indicate that more records would have been
876  * returned.
877  *
878  * Key to Confusion
879  * ----------------
880  * There are multiple levels of keys and counters at work here:
881  * xfs_fsmap_head.fmh_keys	-- low and high fsmap keys passed in;
882  *				   these reflect fs-wide sector addrs.
883  * dkeys			-- fmh_keys used to query each device;
884  *				   these are fmh_keys but w/ the low key
885  *				   bumped up by fmr_length.
886  * xfs_getfsmap_info.next_daddr	-- next disk addr we expect to see; this
887  *				   is how we detect gaps in the fsmap
888 				   records and report them.
889  * xfs_getfsmap_info.low/high	-- per-AG low/high keys computed from
890  *				   dkeys; used to query the metadata.
891  */
892 STATIC int
893 xfs_getfsmap(
894 	struct xfs_mount		*mp,
895 	struct xfs_fsmap_head		*head,
896 	struct fsmap			*fsmap_recs)
897 {
898 	struct xfs_trans		*tp = NULL;
899 	struct xfs_fsmap		dkeys[2];	/* per-dev keys */
900 	struct xfs_getfsmap_dev		handlers[XFS_GETFSMAP_DEVS];
901 	struct xfs_getfsmap_info	info = { NULL };
902 	bool				use_rmap;
903 	int				i;
904 	int				error = 0;
905 
906 	if (head->fmh_iflags & ~FMH_IF_VALID)
907 		return -EINVAL;
908 	if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) ||
909 	    !xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1]))
910 		return -EINVAL;
911 	if (!xfs_getfsmap_check_keys(&head->fmh_keys[0], &head->fmh_keys[1]))
912 		return -EINVAL;
913 
914 	use_rmap = xfs_has_rmapbt(mp) &&
915 		   has_capability_noaudit(current, CAP_SYS_ADMIN);
916 	head->fmh_entries = 0;
917 
918 	/* Set up our device handlers. */
919 	memset(handlers, 0, sizeof(handlers));
920 	handlers[0].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
921 	handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev);
922 	if (use_rmap)
923 		handlers[0].fn = xfs_getfsmap_datadev_rmapbt;
924 	else
925 		handlers[0].fn = xfs_getfsmap_datadev_bnobt;
926 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
927 		handlers[1].nr_sectors = XFS_FSB_TO_BB(mp,
928 						       mp->m_sb.sb_logblocks);
929 		handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev);
930 		handlers[1].fn = xfs_getfsmap_logdev;
931 	}
932 #ifdef CONFIG_XFS_RT
933 	if (mp->m_rtdev_targp) {
934 		handlers[2].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
935 		handlers[2].dev = new_encode_dev(mp->m_rtdev_targp->bt_dev);
936 		handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap;
937 	}
938 #endif /* CONFIG_XFS_RT */
939 
940 	xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev),
941 			xfs_getfsmap_dev_compare);
942 
943 	/*
944 	 * To continue where we left off, we allow userspace to use the
945 	 * last mapping from a previous call as the low key of the next.
946 	 * This is identified by a non-zero length in the low key. We
947 	 * have to increment the low key in this scenario to ensure we
948 	 * don't return the same mapping again, and instead return the
949 	 * very next mapping.
950 	 *
951 	 * If the low key mapping refers to file data, the same physical
952 	 * blocks could be mapped to several other files/offsets.
953 	 * According to rmapbt record ordering, the minimal next
954 	 * possible record for the block range is the next starting
955 	 * offset in the same inode. Therefore, each fsmap backend bumps
956 	 * the file offset to continue the search appropriately.  For
957 	 * all other low key mapping types (attr blocks, metadata), each
958 	 * fsmap backend bumps the physical offset as there can be no
959 	 * other mapping for the same physical block range.
960 	 */
961 	dkeys[0] = head->fmh_keys[0];
962 	memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap));
963 
964 	info.next_daddr = head->fmh_keys[0].fmr_physical +
965 			  head->fmh_keys[0].fmr_length;
966 	info.end_daddr = XFS_BUF_DADDR_NULL;
967 	info.fsmap_recs = fsmap_recs;
968 	info.head = head;
969 
970 	/* For each device we support... */
971 	for (i = 0; i < XFS_GETFSMAP_DEVS; i++) {
972 		/* Is this device within the range the user asked for? */
973 		if (!handlers[i].fn)
974 			continue;
975 		if (head->fmh_keys[0].fmr_device > handlers[i].dev)
976 			continue;
977 		if (head->fmh_keys[1].fmr_device < handlers[i].dev)
978 			break;
979 
980 		/*
981 		 * If this device number matches the high key, we have
982 		 * to pass the high key to the handler to limit the
983 		 * query results.  If the device number exceeds the
984 		 * low key, zero out the low key so that we get
985 		 * everything from the beginning.
986 		 */
987 		if (handlers[i].dev == head->fmh_keys[1].fmr_device) {
988 			dkeys[1] = head->fmh_keys[1];
989 			info.end_daddr = min(handlers[i].nr_sectors - 1,
990 					     dkeys[1].fmr_physical);
991 		}
992 		if (handlers[i].dev > head->fmh_keys[0].fmr_device)
993 			memset(&dkeys[0], 0, sizeof(struct xfs_fsmap));
994 
995 		/*
996 		 * Grab an empty transaction so that we can use its recursive
997 		 * buffer locking abilities to detect cycles in the rmapbt
998 		 * without deadlocking.
999 		 */
1000 		error = xfs_trans_alloc_empty(mp, &tp);
1001 		if (error)
1002 			break;
1003 
1004 		info.dev = handlers[i].dev;
1005 		info.last = false;
1006 		info.pag = NULL;
1007 		info.low_daddr = XFS_BUF_DADDR_NULL;
1008 		info.low.rm_blockcount = 0;
1009 		error = handlers[i].fn(tp, dkeys, &info);
1010 		if (error)
1011 			break;
1012 		xfs_trans_cancel(tp);
1013 		tp = NULL;
1014 		info.next_daddr = 0;
1015 	}
1016 
1017 	if (tp)
1018 		xfs_trans_cancel(tp);
1019 	head->fmh_oflags = FMH_OF_DEV_T;
1020 	return error;
1021 }
1022 
1023 int
1024 xfs_ioc_getfsmap(
1025 	struct xfs_inode	*ip,
1026 	struct fsmap_head	__user *arg)
1027 {
1028 	struct xfs_fsmap_head	xhead = {0};
1029 	struct fsmap_head	head;
1030 	struct fsmap		*recs;
1031 	unsigned int		count;
1032 	__u32			last_flags = 0;
1033 	bool			done = false;
1034 	int			error;
1035 
1036 	if (copy_from_user(&head, arg, sizeof(struct fsmap_head)))
1037 		return -EFAULT;
1038 	if (memchr_inv(head.fmh_reserved, 0, sizeof(head.fmh_reserved)) ||
1039 	    memchr_inv(head.fmh_keys[0].fmr_reserved, 0,
1040 		       sizeof(head.fmh_keys[0].fmr_reserved)) ||
1041 	    memchr_inv(head.fmh_keys[1].fmr_reserved, 0,
1042 		       sizeof(head.fmh_keys[1].fmr_reserved)))
1043 		return -EINVAL;
1044 
1045 	/*
1046 	 * Use an internal memory buffer so that we don't have to copy fsmap
1047 	 * data to userspace while holding locks.  Start by trying to allocate
1048 	 * up to 128k for the buffer, but fall back to a single page if needed.
1049 	 */
1050 	count = min_t(unsigned int, head.fmh_count,
1051 			131072 / sizeof(struct fsmap));
1052 	recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL);
1053 	if (!recs) {
1054 		count = min_t(unsigned int, head.fmh_count,
1055 				PAGE_SIZE / sizeof(struct fsmap));
1056 		recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL);
1057 		if (!recs)
1058 			return -ENOMEM;
1059 	}
1060 
1061 	xhead.fmh_iflags = head.fmh_iflags;
1062 	xfs_fsmap_to_internal(&xhead.fmh_keys[0], &head.fmh_keys[0]);
1063 	xfs_fsmap_to_internal(&xhead.fmh_keys[1], &head.fmh_keys[1]);
1064 
1065 	trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]);
1066 	trace_xfs_getfsmap_high_key(ip->i_mount, &xhead.fmh_keys[1]);
1067 
1068 	head.fmh_entries = 0;
1069 	do {
1070 		struct fsmap __user	*user_recs;
1071 		struct fsmap		*last_rec;
1072 
1073 		user_recs = &arg->fmh_recs[head.fmh_entries];
1074 		xhead.fmh_entries = 0;
1075 		xhead.fmh_count = min_t(unsigned int, count,
1076 					head.fmh_count - head.fmh_entries);
1077 
1078 		/* Run query, record how many entries we got. */
1079 		error = xfs_getfsmap(ip->i_mount, &xhead, recs);
1080 		switch (error) {
1081 		case 0:
1082 			/*
1083 			 * There are no more records in the result set.  Copy
1084 			 * whatever we got to userspace and break out.
1085 			 */
1086 			done = true;
1087 			break;
1088 		case -ECANCELED:
1089 			/*
1090 			 * The internal memory buffer is full.  Copy whatever
1091 			 * records we got to userspace and go again if we have
1092 			 * not yet filled the userspace buffer.
1093 			 */
1094 			error = 0;
1095 			break;
1096 		default:
1097 			goto out_free;
1098 		}
1099 		head.fmh_entries += xhead.fmh_entries;
1100 		head.fmh_oflags = xhead.fmh_oflags;
1101 
1102 		/*
1103 		 * If the caller wanted a record count or there aren't any
1104 		 * new records to return, we're done.
1105 		 */
1106 		if (head.fmh_count == 0 || xhead.fmh_entries == 0)
1107 			break;
1108 
1109 		/* Copy all the records we got out to userspace. */
1110 		if (copy_to_user(user_recs, recs,
1111 				 xhead.fmh_entries * sizeof(struct fsmap))) {
1112 			error = -EFAULT;
1113 			goto out_free;
1114 		}
1115 
1116 		/* Remember the last record flags we copied to userspace. */
1117 		last_rec = &recs[xhead.fmh_entries - 1];
1118 		last_flags = last_rec->fmr_flags;
1119 
1120 		/* Set up the low key for the next iteration. */
1121 		xfs_fsmap_to_internal(&xhead.fmh_keys[0], last_rec);
1122 		trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]);
1123 	} while (!done && head.fmh_entries < head.fmh_count);
1124 
1125 	/*
1126 	 * If there are no more records in the query result set and we're not
1127 	 * in counting mode, mark the last record returned with the LAST flag.
1128 	 */
1129 	if (done && head.fmh_count > 0 && head.fmh_entries > 0) {
1130 		struct fsmap __user	*user_rec;
1131 
1132 		last_flags |= FMR_OF_LAST;
1133 		user_rec = &arg->fmh_recs[head.fmh_entries - 1];
1134 
1135 		if (copy_to_user(&user_rec->fmr_flags, &last_flags,
1136 					sizeof(last_flags))) {
1137 			error = -EFAULT;
1138 			goto out_free;
1139 		}
1140 	}
1141 
1142 	/* copy back header */
1143 	if (copy_to_user(arg, &head, sizeof(struct fsmap_head))) {
1144 		error = -EFAULT;
1145 		goto out_free;
1146 	}
1147 
1148 out_free:
1149 	kvfree(recs);
1150 	return error;
1151 }
1152