1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2017 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_sb.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_inode.h" 16 #include "xfs_trans.h" 17 #include "xfs_error.h" 18 #include "xfs_btree.h" 19 #include "xfs_rmap_btree.h" 20 #include "xfs_trace.h" 21 #include "xfs_log.h" 22 #include "xfs_rmap.h" 23 #include "xfs_alloc.h" 24 #include "xfs_bit.h" 25 #include <linux/fsmap.h> 26 #include "xfs_fsmap.h" 27 #include "xfs_refcount.h" 28 #include "xfs_refcount_btree.h" 29 #include "xfs_alloc_btree.h" 30 #include "xfs_rtalloc.h" 31 32 /* Convert an xfs_fsmap to an fsmap. */ 33 void 34 xfs_fsmap_from_internal( 35 struct fsmap *dest, 36 struct xfs_fsmap *src) 37 { 38 dest->fmr_device = src->fmr_device; 39 dest->fmr_flags = src->fmr_flags; 40 dest->fmr_physical = BBTOB(src->fmr_physical); 41 dest->fmr_owner = src->fmr_owner; 42 dest->fmr_offset = BBTOB(src->fmr_offset); 43 dest->fmr_length = BBTOB(src->fmr_length); 44 dest->fmr_reserved[0] = 0; 45 dest->fmr_reserved[1] = 0; 46 dest->fmr_reserved[2] = 0; 47 } 48 49 /* Convert an fsmap to an xfs_fsmap. */ 50 void 51 xfs_fsmap_to_internal( 52 struct xfs_fsmap *dest, 53 struct fsmap *src) 54 { 55 dest->fmr_device = src->fmr_device; 56 dest->fmr_flags = src->fmr_flags; 57 dest->fmr_physical = BTOBBT(src->fmr_physical); 58 dest->fmr_owner = src->fmr_owner; 59 dest->fmr_offset = BTOBBT(src->fmr_offset); 60 dest->fmr_length = BTOBBT(src->fmr_length); 61 } 62 63 /* Convert an fsmap owner into an rmapbt owner. */ 64 static int 65 xfs_fsmap_owner_to_rmap( 66 struct xfs_rmap_irec *dest, 67 struct xfs_fsmap *src) 68 { 69 if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) { 70 dest->rm_owner = src->fmr_owner; 71 return 0; 72 } 73 74 switch (src->fmr_owner) { 75 case 0: /* "lowest owner id possible" */ 76 case -1ULL: /* "highest owner id possible" */ 77 dest->rm_owner = 0; 78 break; 79 case XFS_FMR_OWN_FREE: 80 dest->rm_owner = XFS_RMAP_OWN_NULL; 81 break; 82 case XFS_FMR_OWN_UNKNOWN: 83 dest->rm_owner = XFS_RMAP_OWN_UNKNOWN; 84 break; 85 case XFS_FMR_OWN_FS: 86 dest->rm_owner = XFS_RMAP_OWN_FS; 87 break; 88 case XFS_FMR_OWN_LOG: 89 dest->rm_owner = XFS_RMAP_OWN_LOG; 90 break; 91 case XFS_FMR_OWN_AG: 92 dest->rm_owner = XFS_RMAP_OWN_AG; 93 break; 94 case XFS_FMR_OWN_INOBT: 95 dest->rm_owner = XFS_RMAP_OWN_INOBT; 96 break; 97 case XFS_FMR_OWN_INODES: 98 dest->rm_owner = XFS_RMAP_OWN_INODES; 99 break; 100 case XFS_FMR_OWN_REFC: 101 dest->rm_owner = XFS_RMAP_OWN_REFC; 102 break; 103 case XFS_FMR_OWN_COW: 104 dest->rm_owner = XFS_RMAP_OWN_COW; 105 break; 106 case XFS_FMR_OWN_DEFECTIVE: /* not implemented */ 107 /* fall through */ 108 default: 109 return -EINVAL; 110 } 111 return 0; 112 } 113 114 /* Convert an rmapbt owner into an fsmap owner. */ 115 static int 116 xfs_fsmap_owner_from_rmap( 117 struct xfs_fsmap *dest, 118 struct xfs_rmap_irec *src) 119 { 120 dest->fmr_flags = 0; 121 if (!XFS_RMAP_NON_INODE_OWNER(src->rm_owner)) { 122 dest->fmr_owner = src->rm_owner; 123 return 0; 124 } 125 dest->fmr_flags |= FMR_OF_SPECIAL_OWNER; 126 127 switch (src->rm_owner) { 128 case XFS_RMAP_OWN_FS: 129 dest->fmr_owner = XFS_FMR_OWN_FS; 130 break; 131 case XFS_RMAP_OWN_LOG: 132 dest->fmr_owner = XFS_FMR_OWN_LOG; 133 break; 134 case XFS_RMAP_OWN_AG: 135 dest->fmr_owner = XFS_FMR_OWN_AG; 136 break; 137 case XFS_RMAP_OWN_INOBT: 138 dest->fmr_owner = XFS_FMR_OWN_INOBT; 139 break; 140 case XFS_RMAP_OWN_INODES: 141 dest->fmr_owner = XFS_FMR_OWN_INODES; 142 break; 143 case XFS_RMAP_OWN_REFC: 144 dest->fmr_owner = XFS_FMR_OWN_REFC; 145 break; 146 case XFS_RMAP_OWN_COW: 147 dest->fmr_owner = XFS_FMR_OWN_COW; 148 break; 149 case XFS_RMAP_OWN_NULL: /* "free" */ 150 dest->fmr_owner = XFS_FMR_OWN_FREE; 151 break; 152 default: 153 return -EFSCORRUPTED; 154 } 155 return 0; 156 } 157 158 /* getfsmap query state */ 159 struct xfs_getfsmap_info { 160 struct xfs_fsmap_head *head; 161 xfs_fsmap_format_t formatter; /* formatting fn */ 162 void *format_arg; /* format buffer */ 163 struct xfs_buf *agf_bp; /* AGF, for refcount queries */ 164 xfs_daddr_t next_daddr; /* next daddr we expect */ 165 u64 missing_owner; /* owner of holes */ 166 u32 dev; /* device id */ 167 xfs_agnumber_t agno; /* AG number, if applicable */ 168 struct xfs_rmap_irec low; /* low rmap key */ 169 struct xfs_rmap_irec high; /* high rmap key */ 170 bool last; /* last extent? */ 171 }; 172 173 /* Associate a device with a getfsmap handler. */ 174 struct xfs_getfsmap_dev { 175 u32 dev; 176 int (*fn)(struct xfs_trans *tp, 177 struct xfs_fsmap *keys, 178 struct xfs_getfsmap_info *info); 179 }; 180 181 /* Compare two getfsmap device handlers. */ 182 static int 183 xfs_getfsmap_dev_compare( 184 const void *p1, 185 const void *p2) 186 { 187 const struct xfs_getfsmap_dev *d1 = p1; 188 const struct xfs_getfsmap_dev *d2 = p2; 189 190 return d1->dev - d2->dev; 191 } 192 193 /* Decide if this mapping is shared. */ 194 STATIC int 195 xfs_getfsmap_is_shared( 196 struct xfs_trans *tp, 197 struct xfs_getfsmap_info *info, 198 struct xfs_rmap_irec *rec, 199 bool *stat) 200 { 201 struct xfs_mount *mp = tp->t_mountp; 202 struct xfs_btree_cur *cur; 203 xfs_agblock_t fbno; 204 xfs_extlen_t flen; 205 int error; 206 207 *stat = false; 208 if (!xfs_sb_version_hasreflink(&mp->m_sb)) 209 return 0; 210 /* rt files will have agno set to NULLAGNUMBER */ 211 if (info->agno == NULLAGNUMBER) 212 return 0; 213 214 /* Are there any shared blocks here? */ 215 flen = 0; 216 cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp, 217 info->agno, NULL); 218 219 error = xfs_refcount_find_shared(cur, rec->rm_startblock, 220 rec->rm_blockcount, &fbno, &flen, false); 221 222 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); 223 if (error) 224 return error; 225 226 *stat = flen > 0; 227 return 0; 228 } 229 230 /* 231 * Format a reverse mapping for getfsmap, having translated rm_startblock 232 * into the appropriate daddr units. 233 */ 234 STATIC int 235 xfs_getfsmap_helper( 236 struct xfs_trans *tp, 237 struct xfs_getfsmap_info *info, 238 struct xfs_rmap_irec *rec, 239 xfs_daddr_t rec_daddr) 240 { 241 struct xfs_fsmap fmr; 242 struct xfs_mount *mp = tp->t_mountp; 243 bool shared; 244 int error; 245 246 if (fatal_signal_pending(current)) 247 return -EINTR; 248 249 /* 250 * Filter out records that start before our startpoint, if the 251 * caller requested that. 252 */ 253 if (xfs_rmap_compare(rec, &info->low) < 0) { 254 rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount); 255 if (info->next_daddr < rec_daddr) 256 info->next_daddr = rec_daddr; 257 return XFS_BTREE_QUERY_RANGE_CONTINUE; 258 } 259 260 /* Are we just counting mappings? */ 261 if (info->head->fmh_count == 0) { 262 if (rec_daddr > info->next_daddr) 263 info->head->fmh_entries++; 264 265 if (info->last) 266 return XFS_BTREE_QUERY_RANGE_CONTINUE; 267 268 info->head->fmh_entries++; 269 270 rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount); 271 if (info->next_daddr < rec_daddr) 272 info->next_daddr = rec_daddr; 273 return XFS_BTREE_QUERY_RANGE_CONTINUE; 274 } 275 276 /* 277 * If the record starts past the last physical block we saw, 278 * then we've found a gap. Report the gap as being owned by 279 * whatever the caller specified is the missing owner. 280 */ 281 if (rec_daddr > info->next_daddr) { 282 if (info->head->fmh_entries >= info->head->fmh_count) 283 return XFS_BTREE_QUERY_RANGE_ABORT; 284 285 fmr.fmr_device = info->dev; 286 fmr.fmr_physical = info->next_daddr; 287 fmr.fmr_owner = info->missing_owner; 288 fmr.fmr_offset = 0; 289 fmr.fmr_length = rec_daddr - info->next_daddr; 290 fmr.fmr_flags = FMR_OF_SPECIAL_OWNER; 291 error = info->formatter(&fmr, info->format_arg); 292 if (error) 293 return error; 294 info->head->fmh_entries++; 295 } 296 297 if (info->last) 298 goto out; 299 300 /* Fill out the extent we found */ 301 if (info->head->fmh_entries >= info->head->fmh_count) 302 return XFS_BTREE_QUERY_RANGE_ABORT; 303 304 trace_xfs_fsmap_mapping(mp, info->dev, info->agno, rec); 305 306 fmr.fmr_device = info->dev; 307 fmr.fmr_physical = rec_daddr; 308 error = xfs_fsmap_owner_from_rmap(&fmr, rec); 309 if (error) 310 return error; 311 fmr.fmr_offset = XFS_FSB_TO_BB(mp, rec->rm_offset); 312 fmr.fmr_length = XFS_FSB_TO_BB(mp, rec->rm_blockcount); 313 if (rec->rm_flags & XFS_RMAP_UNWRITTEN) 314 fmr.fmr_flags |= FMR_OF_PREALLOC; 315 if (rec->rm_flags & XFS_RMAP_ATTR_FORK) 316 fmr.fmr_flags |= FMR_OF_ATTR_FORK; 317 if (rec->rm_flags & XFS_RMAP_BMBT_BLOCK) 318 fmr.fmr_flags |= FMR_OF_EXTENT_MAP; 319 if (fmr.fmr_flags == 0) { 320 error = xfs_getfsmap_is_shared(tp, info, rec, &shared); 321 if (error) 322 return error; 323 if (shared) 324 fmr.fmr_flags |= FMR_OF_SHARED; 325 } 326 error = info->formatter(&fmr, info->format_arg); 327 if (error) 328 return error; 329 info->head->fmh_entries++; 330 331 out: 332 rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount); 333 if (info->next_daddr < rec_daddr) 334 info->next_daddr = rec_daddr; 335 return XFS_BTREE_QUERY_RANGE_CONTINUE; 336 } 337 338 /* Transform a rmapbt irec into a fsmap */ 339 STATIC int 340 xfs_getfsmap_datadev_helper( 341 struct xfs_btree_cur *cur, 342 struct xfs_rmap_irec *rec, 343 void *priv) 344 { 345 struct xfs_mount *mp = cur->bc_mp; 346 struct xfs_getfsmap_info *info = priv; 347 xfs_fsblock_t fsb; 348 xfs_daddr_t rec_daddr; 349 350 fsb = XFS_AGB_TO_FSB(mp, cur->bc_private.a.agno, rec->rm_startblock); 351 rec_daddr = XFS_FSB_TO_DADDR(mp, fsb); 352 353 return xfs_getfsmap_helper(cur->bc_tp, info, rec, rec_daddr); 354 } 355 356 /* Transform a bnobt irec into a fsmap */ 357 STATIC int 358 xfs_getfsmap_datadev_bnobt_helper( 359 struct xfs_btree_cur *cur, 360 struct xfs_alloc_rec_incore *rec, 361 void *priv) 362 { 363 struct xfs_mount *mp = cur->bc_mp; 364 struct xfs_getfsmap_info *info = priv; 365 struct xfs_rmap_irec irec; 366 xfs_daddr_t rec_daddr; 367 368 rec_daddr = XFS_AGB_TO_DADDR(mp, cur->bc_private.a.agno, 369 rec->ar_startblock); 370 371 irec.rm_startblock = rec->ar_startblock; 372 irec.rm_blockcount = rec->ar_blockcount; 373 irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */ 374 irec.rm_offset = 0; 375 irec.rm_flags = 0; 376 377 return xfs_getfsmap_helper(cur->bc_tp, info, &irec, rec_daddr); 378 } 379 380 /* Set rmap flags based on the getfsmap flags */ 381 static void 382 xfs_getfsmap_set_irec_flags( 383 struct xfs_rmap_irec *irec, 384 struct xfs_fsmap *fmr) 385 { 386 irec->rm_flags = 0; 387 if (fmr->fmr_flags & FMR_OF_ATTR_FORK) 388 irec->rm_flags |= XFS_RMAP_ATTR_FORK; 389 if (fmr->fmr_flags & FMR_OF_EXTENT_MAP) 390 irec->rm_flags |= XFS_RMAP_BMBT_BLOCK; 391 if (fmr->fmr_flags & FMR_OF_PREALLOC) 392 irec->rm_flags |= XFS_RMAP_UNWRITTEN; 393 } 394 395 /* Execute a getfsmap query against the log device. */ 396 STATIC int 397 xfs_getfsmap_logdev( 398 struct xfs_trans *tp, 399 struct xfs_fsmap *keys, 400 struct xfs_getfsmap_info *info) 401 { 402 struct xfs_mount *mp = tp->t_mountp; 403 struct xfs_rmap_irec rmap; 404 int error; 405 406 /* Set up search keys */ 407 info->low.rm_startblock = XFS_BB_TO_FSBT(mp, keys[0].fmr_physical); 408 info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset); 409 error = xfs_fsmap_owner_to_rmap(&info->low, keys); 410 if (error) 411 return error; 412 info->low.rm_blockcount = 0; 413 xfs_getfsmap_set_irec_flags(&info->low, &keys[0]); 414 415 error = xfs_fsmap_owner_to_rmap(&info->high, keys + 1); 416 if (error) 417 return error; 418 info->high.rm_startblock = -1U; 419 info->high.rm_owner = ULLONG_MAX; 420 info->high.rm_offset = ULLONG_MAX; 421 info->high.rm_blockcount = 0; 422 info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS; 423 info->missing_owner = XFS_FMR_OWN_FREE; 424 425 trace_xfs_fsmap_low_key(mp, info->dev, info->agno, &info->low); 426 trace_xfs_fsmap_high_key(mp, info->dev, info->agno, &info->high); 427 428 if (keys[0].fmr_physical > 0) 429 return 0; 430 431 /* Fabricate an rmap entry for the external log device. */ 432 rmap.rm_startblock = 0; 433 rmap.rm_blockcount = mp->m_sb.sb_logblocks; 434 rmap.rm_owner = XFS_RMAP_OWN_LOG; 435 rmap.rm_offset = 0; 436 rmap.rm_flags = 0; 437 438 return xfs_getfsmap_helper(tp, info, &rmap, 0); 439 } 440 441 #ifdef CONFIG_XFS_RT 442 /* Transform a rtbitmap "record" into a fsmap */ 443 STATIC int 444 xfs_getfsmap_rtdev_rtbitmap_helper( 445 struct xfs_trans *tp, 446 struct xfs_rtalloc_rec *rec, 447 void *priv) 448 { 449 struct xfs_mount *mp = tp->t_mountp; 450 struct xfs_getfsmap_info *info = priv; 451 struct xfs_rmap_irec irec; 452 xfs_daddr_t rec_daddr; 453 454 irec.rm_startblock = rec->ar_startext * mp->m_sb.sb_rextsize; 455 rec_daddr = XFS_FSB_TO_BB(mp, irec.rm_startblock); 456 irec.rm_blockcount = rec->ar_extcount * mp->m_sb.sb_rextsize; 457 irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */ 458 irec.rm_offset = 0; 459 irec.rm_flags = 0; 460 461 return xfs_getfsmap_helper(tp, info, &irec, rec_daddr); 462 } 463 464 /* Execute a getfsmap query against the realtime device. */ 465 STATIC int 466 __xfs_getfsmap_rtdev( 467 struct xfs_trans *tp, 468 struct xfs_fsmap *keys, 469 int (*query_fn)(struct xfs_trans *, 470 struct xfs_getfsmap_info *), 471 struct xfs_getfsmap_info *info) 472 { 473 struct xfs_mount *mp = tp->t_mountp; 474 xfs_fsblock_t start_fsb; 475 xfs_fsblock_t end_fsb; 476 xfs_daddr_t eofs; 477 int error = 0; 478 479 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks); 480 if (keys[0].fmr_physical >= eofs) 481 return 0; 482 if (keys[1].fmr_physical >= eofs) 483 keys[1].fmr_physical = eofs - 1; 484 start_fsb = XFS_BB_TO_FSBT(mp, keys[0].fmr_physical); 485 end_fsb = XFS_BB_TO_FSB(mp, keys[1].fmr_physical); 486 487 /* Set up search keys */ 488 info->low.rm_startblock = start_fsb; 489 error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]); 490 if (error) 491 return error; 492 info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset); 493 info->low.rm_blockcount = 0; 494 xfs_getfsmap_set_irec_flags(&info->low, &keys[0]); 495 496 info->high.rm_startblock = end_fsb; 497 error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]); 498 if (error) 499 return error; 500 info->high.rm_offset = XFS_BB_TO_FSBT(mp, keys[1].fmr_offset); 501 info->high.rm_blockcount = 0; 502 xfs_getfsmap_set_irec_flags(&info->high, &keys[1]); 503 504 trace_xfs_fsmap_low_key(mp, info->dev, info->agno, &info->low); 505 trace_xfs_fsmap_high_key(mp, info->dev, info->agno, &info->high); 506 507 return query_fn(tp, info); 508 } 509 510 /* Actually query the realtime bitmap. */ 511 STATIC int 512 xfs_getfsmap_rtdev_rtbitmap_query( 513 struct xfs_trans *tp, 514 struct xfs_getfsmap_info *info) 515 { 516 struct xfs_rtalloc_rec alow = { 0 }; 517 struct xfs_rtalloc_rec ahigh = { 0 }; 518 int error; 519 520 xfs_ilock(tp->t_mountp->m_rbmip, XFS_ILOCK_SHARED); 521 522 alow.ar_startext = info->low.rm_startblock; 523 ahigh.ar_startext = info->high.rm_startblock; 524 do_div(alow.ar_startext, tp->t_mountp->m_sb.sb_rextsize); 525 if (do_div(ahigh.ar_startext, tp->t_mountp->m_sb.sb_rextsize)) 526 ahigh.ar_startext++; 527 error = xfs_rtalloc_query_range(tp, &alow, &ahigh, 528 xfs_getfsmap_rtdev_rtbitmap_helper, info); 529 if (error) 530 goto err; 531 532 /* Report any gaps at the end of the rtbitmap */ 533 info->last = true; 534 error = xfs_getfsmap_rtdev_rtbitmap_helper(tp, &ahigh, info); 535 if (error) 536 goto err; 537 err: 538 xfs_iunlock(tp->t_mountp->m_rbmip, XFS_ILOCK_SHARED); 539 return error; 540 } 541 542 /* Execute a getfsmap query against the realtime device rtbitmap. */ 543 STATIC int 544 xfs_getfsmap_rtdev_rtbitmap( 545 struct xfs_trans *tp, 546 struct xfs_fsmap *keys, 547 struct xfs_getfsmap_info *info) 548 { 549 info->missing_owner = XFS_FMR_OWN_UNKNOWN; 550 return __xfs_getfsmap_rtdev(tp, keys, xfs_getfsmap_rtdev_rtbitmap_query, 551 info); 552 } 553 #endif /* CONFIG_XFS_RT */ 554 555 /* Execute a getfsmap query against the regular data device. */ 556 STATIC int 557 __xfs_getfsmap_datadev( 558 struct xfs_trans *tp, 559 struct xfs_fsmap *keys, 560 struct xfs_getfsmap_info *info, 561 int (*query_fn)(struct xfs_trans *, 562 struct xfs_getfsmap_info *, 563 struct xfs_btree_cur **, 564 void *), 565 void *priv) 566 { 567 struct xfs_mount *mp = tp->t_mountp; 568 struct xfs_btree_cur *bt_cur = NULL; 569 xfs_fsblock_t start_fsb; 570 xfs_fsblock_t end_fsb; 571 xfs_agnumber_t start_ag; 572 xfs_agnumber_t end_ag; 573 xfs_daddr_t eofs; 574 int error = 0; 575 576 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 577 if (keys[0].fmr_physical >= eofs) 578 return 0; 579 if (keys[1].fmr_physical >= eofs) 580 keys[1].fmr_physical = eofs - 1; 581 start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical); 582 end_fsb = XFS_DADDR_TO_FSB(mp, keys[1].fmr_physical); 583 584 /* 585 * Convert the fsmap low/high keys to AG based keys. Initialize 586 * low to the fsmap low key and max out the high key to the end 587 * of the AG. 588 */ 589 info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb); 590 info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset); 591 error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]); 592 if (error) 593 return error; 594 info->low.rm_blockcount = 0; 595 xfs_getfsmap_set_irec_flags(&info->low, &keys[0]); 596 597 info->high.rm_startblock = -1U; 598 info->high.rm_owner = ULLONG_MAX; 599 info->high.rm_offset = ULLONG_MAX; 600 info->high.rm_blockcount = 0; 601 info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS; 602 603 start_ag = XFS_FSB_TO_AGNO(mp, start_fsb); 604 end_ag = XFS_FSB_TO_AGNO(mp, end_fsb); 605 606 /* Query each AG */ 607 for (info->agno = start_ag; info->agno <= end_ag; info->agno++) { 608 /* 609 * Set the AG high key from the fsmap high key if this 610 * is the last AG that we're querying. 611 */ 612 if (info->agno == end_ag) { 613 info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp, 614 end_fsb); 615 info->high.rm_offset = XFS_BB_TO_FSBT(mp, 616 keys[1].fmr_offset); 617 error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]); 618 if (error) 619 goto err; 620 xfs_getfsmap_set_irec_flags(&info->high, &keys[1]); 621 } 622 623 if (bt_cur) { 624 xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR); 625 bt_cur = NULL; 626 xfs_trans_brelse(tp, info->agf_bp); 627 info->agf_bp = NULL; 628 } 629 630 error = xfs_alloc_read_agf(mp, tp, info->agno, 0, 631 &info->agf_bp); 632 if (error) 633 goto err; 634 635 trace_xfs_fsmap_low_key(mp, info->dev, info->agno, &info->low); 636 trace_xfs_fsmap_high_key(mp, info->dev, info->agno, 637 &info->high); 638 639 error = query_fn(tp, info, &bt_cur, priv); 640 if (error) 641 goto err; 642 643 /* 644 * Set the AG low key to the start of the AG prior to 645 * moving on to the next AG. 646 */ 647 if (info->agno == start_ag) { 648 info->low.rm_startblock = 0; 649 info->low.rm_owner = 0; 650 info->low.rm_offset = 0; 651 info->low.rm_flags = 0; 652 } 653 } 654 655 /* Report any gap at the end of the AG */ 656 info->last = true; 657 error = query_fn(tp, info, &bt_cur, priv); 658 if (error) 659 goto err; 660 661 err: 662 if (bt_cur) 663 xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR : 664 XFS_BTREE_NOERROR); 665 if (info->agf_bp) { 666 xfs_trans_brelse(tp, info->agf_bp); 667 info->agf_bp = NULL; 668 } 669 670 return error; 671 } 672 673 /* Actually query the rmap btree. */ 674 STATIC int 675 xfs_getfsmap_datadev_rmapbt_query( 676 struct xfs_trans *tp, 677 struct xfs_getfsmap_info *info, 678 struct xfs_btree_cur **curpp, 679 void *priv) 680 { 681 /* Report any gap at the end of the last AG. */ 682 if (info->last) 683 return xfs_getfsmap_datadev_helper(*curpp, &info->high, info); 684 685 /* Allocate cursor for this AG and query_range it. */ 686 *curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp, 687 info->agno); 688 return xfs_rmap_query_range(*curpp, &info->low, &info->high, 689 xfs_getfsmap_datadev_helper, info); 690 } 691 692 /* Execute a getfsmap query against the regular data device rmapbt. */ 693 STATIC int 694 xfs_getfsmap_datadev_rmapbt( 695 struct xfs_trans *tp, 696 struct xfs_fsmap *keys, 697 struct xfs_getfsmap_info *info) 698 { 699 info->missing_owner = XFS_FMR_OWN_FREE; 700 return __xfs_getfsmap_datadev(tp, keys, info, 701 xfs_getfsmap_datadev_rmapbt_query, NULL); 702 } 703 704 /* Actually query the bno btree. */ 705 STATIC int 706 xfs_getfsmap_datadev_bnobt_query( 707 struct xfs_trans *tp, 708 struct xfs_getfsmap_info *info, 709 struct xfs_btree_cur **curpp, 710 void *priv) 711 { 712 struct xfs_alloc_rec_incore *key = priv; 713 714 /* Report any gap at the end of the last AG. */ 715 if (info->last) 716 return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info); 717 718 /* Allocate cursor for this AG and query_range it. */ 719 *curpp = xfs_allocbt_init_cursor(tp->t_mountp, tp, info->agf_bp, 720 info->agno, XFS_BTNUM_BNO); 721 key->ar_startblock = info->low.rm_startblock; 722 key[1].ar_startblock = info->high.rm_startblock; 723 return xfs_alloc_query_range(*curpp, key, &key[1], 724 xfs_getfsmap_datadev_bnobt_helper, info); 725 } 726 727 /* Execute a getfsmap query against the regular data device's bnobt. */ 728 STATIC int 729 xfs_getfsmap_datadev_bnobt( 730 struct xfs_trans *tp, 731 struct xfs_fsmap *keys, 732 struct xfs_getfsmap_info *info) 733 { 734 struct xfs_alloc_rec_incore akeys[2]; 735 736 info->missing_owner = XFS_FMR_OWN_UNKNOWN; 737 return __xfs_getfsmap_datadev(tp, keys, info, 738 xfs_getfsmap_datadev_bnobt_query, &akeys[0]); 739 } 740 741 /* Do we recognize the device? */ 742 STATIC bool 743 xfs_getfsmap_is_valid_device( 744 struct xfs_mount *mp, 745 struct xfs_fsmap *fm) 746 { 747 if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX || 748 fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev)) 749 return true; 750 if (mp->m_logdev_targp && 751 fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev)) 752 return true; 753 if (mp->m_rtdev_targp && 754 fm->fmr_device == new_encode_dev(mp->m_rtdev_targp->bt_dev)) 755 return true; 756 return false; 757 } 758 759 /* Ensure that the low key is less than the high key. */ 760 STATIC bool 761 xfs_getfsmap_check_keys( 762 struct xfs_fsmap *low_key, 763 struct xfs_fsmap *high_key) 764 { 765 if (low_key->fmr_device > high_key->fmr_device) 766 return false; 767 if (low_key->fmr_device < high_key->fmr_device) 768 return true; 769 770 if (low_key->fmr_physical > high_key->fmr_physical) 771 return false; 772 if (low_key->fmr_physical < high_key->fmr_physical) 773 return true; 774 775 if (low_key->fmr_owner > high_key->fmr_owner) 776 return false; 777 if (low_key->fmr_owner < high_key->fmr_owner) 778 return true; 779 780 if (low_key->fmr_offset > high_key->fmr_offset) 781 return false; 782 if (low_key->fmr_offset < high_key->fmr_offset) 783 return true; 784 785 return false; 786 } 787 788 /* 789 * There are only two devices if we didn't configure RT devices at build time. 790 */ 791 #ifdef CONFIG_XFS_RT 792 #define XFS_GETFSMAP_DEVS 3 793 #else 794 #define XFS_GETFSMAP_DEVS 2 795 #endif /* CONFIG_XFS_RT */ 796 797 /* 798 * Get filesystem's extents as described in head, and format for 799 * output. Calls formatter to fill the user's buffer until all 800 * extents are mapped, until the passed-in head->fmh_count slots have 801 * been filled, or until the formatter short-circuits the loop, if it 802 * is tracking filled-in extents on its own. 803 * 804 * Key to Confusion 805 * ---------------- 806 * There are multiple levels of keys and counters at work here: 807 * xfs_fsmap_head.fmh_keys -- low and high fsmap keys passed in; 808 * these reflect fs-wide sector addrs. 809 * dkeys -- fmh_keys used to query each device; 810 * these are fmh_keys but w/ the low key 811 * bumped up by fmr_length. 812 * xfs_getfsmap_info.next_daddr -- next disk addr we expect to see; this 813 * is how we detect gaps in the fsmap 814 records and report them. 815 * xfs_getfsmap_info.low/high -- per-AG low/high keys computed from 816 * dkeys; used to query the metadata. 817 */ 818 int 819 xfs_getfsmap( 820 struct xfs_mount *mp, 821 struct xfs_fsmap_head *head, 822 xfs_fsmap_format_t formatter, 823 void *arg) 824 { 825 struct xfs_trans *tp = NULL; 826 struct xfs_fsmap dkeys[2]; /* per-dev keys */ 827 struct xfs_getfsmap_dev handlers[XFS_GETFSMAP_DEVS]; 828 struct xfs_getfsmap_info info = { NULL }; 829 bool use_rmap; 830 int i; 831 int error = 0; 832 833 if (head->fmh_iflags & ~FMH_IF_VALID) 834 return -EINVAL; 835 if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) || 836 !xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1])) 837 return -EINVAL; 838 839 use_rmap = capable(CAP_SYS_ADMIN) && 840 xfs_sb_version_hasrmapbt(&mp->m_sb); 841 head->fmh_entries = 0; 842 843 /* Set up our device handlers. */ 844 memset(handlers, 0, sizeof(handlers)); 845 handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev); 846 if (use_rmap) 847 handlers[0].fn = xfs_getfsmap_datadev_rmapbt; 848 else 849 handlers[0].fn = xfs_getfsmap_datadev_bnobt; 850 if (mp->m_logdev_targp != mp->m_ddev_targp) { 851 handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev); 852 handlers[1].fn = xfs_getfsmap_logdev; 853 } 854 #ifdef CONFIG_XFS_RT 855 if (mp->m_rtdev_targp) { 856 handlers[2].dev = new_encode_dev(mp->m_rtdev_targp->bt_dev); 857 handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap; 858 } 859 #endif /* CONFIG_XFS_RT */ 860 861 xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev), 862 xfs_getfsmap_dev_compare); 863 864 /* 865 * To continue where we left off, we allow userspace to use the 866 * last mapping from a previous call as the low key of the next. 867 * This is identified by a non-zero length in the low key. We 868 * have to increment the low key in this scenario to ensure we 869 * don't return the same mapping again, and instead return the 870 * very next mapping. 871 * 872 * If the low key mapping refers to file data, the same physical 873 * blocks could be mapped to several other files/offsets. 874 * According to rmapbt record ordering, the minimal next 875 * possible record for the block range is the next starting 876 * offset in the same inode. Therefore, bump the file offset to 877 * continue the search appropriately. For all other low key 878 * mapping types (attr blocks, metadata), bump the physical 879 * offset as there can be no other mapping for the same physical 880 * block range. 881 */ 882 dkeys[0] = head->fmh_keys[0]; 883 if (dkeys[0].fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) { 884 dkeys[0].fmr_physical += dkeys[0].fmr_length; 885 dkeys[0].fmr_owner = 0; 886 if (dkeys[0].fmr_offset) 887 return -EINVAL; 888 } else 889 dkeys[0].fmr_offset += dkeys[0].fmr_length; 890 dkeys[0].fmr_length = 0; 891 memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap)); 892 893 if (!xfs_getfsmap_check_keys(dkeys, &head->fmh_keys[1])) 894 return -EINVAL; 895 896 info.next_daddr = head->fmh_keys[0].fmr_physical + 897 head->fmh_keys[0].fmr_length; 898 info.formatter = formatter; 899 info.format_arg = arg; 900 info.head = head; 901 902 /* For each device we support... */ 903 for (i = 0; i < XFS_GETFSMAP_DEVS; i++) { 904 /* Is this device within the range the user asked for? */ 905 if (!handlers[i].fn) 906 continue; 907 if (head->fmh_keys[0].fmr_device > handlers[i].dev) 908 continue; 909 if (head->fmh_keys[1].fmr_device < handlers[i].dev) 910 break; 911 912 /* 913 * If this device number matches the high key, we have 914 * to pass the high key to the handler to limit the 915 * query results. If the device number exceeds the 916 * low key, zero out the low key so that we get 917 * everything from the beginning. 918 */ 919 if (handlers[i].dev == head->fmh_keys[1].fmr_device) 920 dkeys[1] = head->fmh_keys[1]; 921 if (handlers[i].dev > head->fmh_keys[0].fmr_device) 922 memset(&dkeys[0], 0, sizeof(struct xfs_fsmap)); 923 924 error = xfs_trans_alloc_empty(mp, &tp); 925 if (error) 926 break; 927 928 info.dev = handlers[i].dev; 929 info.last = false; 930 info.agno = NULLAGNUMBER; 931 error = handlers[i].fn(tp, dkeys, &info); 932 if (error) 933 break; 934 xfs_trans_cancel(tp); 935 tp = NULL; 936 info.next_daddr = 0; 937 } 938 939 if (tp) 940 xfs_trans_cancel(tp); 941 head->fmh_oflags = FMH_OF_DEV_T; 942 return error; 943 } 944