1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_log.h" 21 #include "xfs_sb.h" 22 #include "xfs_ag.h" 23 #include "xfs_trans.h" 24 #include "xfs_mount.h" 25 #include "xfs_bmap_btree.h" 26 #include "xfs_alloc.h" 27 #include "xfs_dinode.h" 28 #include "xfs_inode.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_error.h" 32 #include "xfs_vnodeops.h" 33 #include "xfs_da_btree.h" 34 #include "xfs_dir2_format.h" 35 #include "xfs_dir2_priv.h" 36 #include "xfs_ioctl.h" 37 #include "xfs_trace.h" 38 39 #include <linux/aio.h> 40 #include <linux/dcache.h> 41 #include <linux/falloc.h> 42 #include <linux/pagevec.h> 43 44 static const struct vm_operations_struct xfs_file_vm_ops; 45 46 /* 47 * Locking primitives for read and write IO paths to ensure we consistently use 48 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 49 */ 50 static inline void 51 xfs_rw_ilock( 52 struct xfs_inode *ip, 53 int type) 54 { 55 if (type & XFS_IOLOCK_EXCL) 56 mutex_lock(&VFS_I(ip)->i_mutex); 57 xfs_ilock(ip, type); 58 } 59 60 static inline void 61 xfs_rw_iunlock( 62 struct xfs_inode *ip, 63 int type) 64 { 65 xfs_iunlock(ip, type); 66 if (type & XFS_IOLOCK_EXCL) 67 mutex_unlock(&VFS_I(ip)->i_mutex); 68 } 69 70 static inline void 71 xfs_rw_ilock_demote( 72 struct xfs_inode *ip, 73 int type) 74 { 75 xfs_ilock_demote(ip, type); 76 if (type & XFS_IOLOCK_EXCL) 77 mutex_unlock(&VFS_I(ip)->i_mutex); 78 } 79 80 /* 81 * xfs_iozero 82 * 83 * xfs_iozero clears the specified range of buffer supplied, 84 * and marks all the affected blocks as valid and modified. If 85 * an affected block is not allocated, it will be allocated. If 86 * an affected block is not completely overwritten, and is not 87 * valid before the operation, it will be read from disk before 88 * being partially zeroed. 89 */ 90 int 91 xfs_iozero( 92 struct xfs_inode *ip, /* inode */ 93 loff_t pos, /* offset in file */ 94 size_t count) /* size of data to zero */ 95 { 96 struct page *page; 97 struct address_space *mapping; 98 int status; 99 100 mapping = VFS_I(ip)->i_mapping; 101 do { 102 unsigned offset, bytes; 103 void *fsdata; 104 105 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 106 bytes = PAGE_CACHE_SIZE - offset; 107 if (bytes > count) 108 bytes = count; 109 110 status = pagecache_write_begin(NULL, mapping, pos, bytes, 111 AOP_FLAG_UNINTERRUPTIBLE, 112 &page, &fsdata); 113 if (status) 114 break; 115 116 zero_user(page, offset, bytes); 117 118 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes, 119 page, fsdata); 120 WARN_ON(status <= 0); /* can't return less than zero! */ 121 pos += bytes; 122 count -= bytes; 123 status = 0; 124 } while (count); 125 126 return (-status); 127 } 128 129 /* 130 * Fsync operations on directories are much simpler than on regular files, 131 * as there is no file data to flush, and thus also no need for explicit 132 * cache flush operations, and there are no non-transaction metadata updates 133 * on directories either. 134 */ 135 STATIC int 136 xfs_dir_fsync( 137 struct file *file, 138 loff_t start, 139 loff_t end, 140 int datasync) 141 { 142 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 143 struct xfs_mount *mp = ip->i_mount; 144 xfs_lsn_t lsn = 0; 145 146 trace_xfs_dir_fsync(ip); 147 148 xfs_ilock(ip, XFS_ILOCK_SHARED); 149 if (xfs_ipincount(ip)) 150 lsn = ip->i_itemp->ili_last_lsn; 151 xfs_iunlock(ip, XFS_ILOCK_SHARED); 152 153 if (!lsn) 154 return 0; 155 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 156 } 157 158 STATIC int 159 xfs_file_fsync( 160 struct file *file, 161 loff_t start, 162 loff_t end, 163 int datasync) 164 { 165 struct inode *inode = file->f_mapping->host; 166 struct xfs_inode *ip = XFS_I(inode); 167 struct xfs_mount *mp = ip->i_mount; 168 int error = 0; 169 int log_flushed = 0; 170 xfs_lsn_t lsn = 0; 171 172 trace_xfs_file_fsync(ip); 173 174 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 175 if (error) 176 return error; 177 178 if (XFS_FORCED_SHUTDOWN(mp)) 179 return -XFS_ERROR(EIO); 180 181 xfs_iflags_clear(ip, XFS_ITRUNCATED); 182 183 if (mp->m_flags & XFS_MOUNT_BARRIER) { 184 /* 185 * If we have an RT and/or log subvolume we need to make sure 186 * to flush the write cache the device used for file data 187 * first. This is to ensure newly written file data make 188 * it to disk before logging the new inode size in case of 189 * an extending write. 190 */ 191 if (XFS_IS_REALTIME_INODE(ip)) 192 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 193 else if (mp->m_logdev_targp != mp->m_ddev_targp) 194 xfs_blkdev_issue_flush(mp->m_ddev_targp); 195 } 196 197 /* 198 * All metadata updates are logged, which means that we just have 199 * to flush the log up to the latest LSN that touched the inode. 200 */ 201 xfs_ilock(ip, XFS_ILOCK_SHARED); 202 if (xfs_ipincount(ip)) { 203 if (!datasync || 204 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP)) 205 lsn = ip->i_itemp->ili_last_lsn; 206 } 207 xfs_iunlock(ip, XFS_ILOCK_SHARED); 208 209 if (lsn) 210 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 211 212 /* 213 * If we only have a single device, and the log force about was 214 * a no-op we might have to flush the data device cache here. 215 * This can only happen for fdatasync/O_DSYNC if we were overwriting 216 * an already allocated file and thus do not have any metadata to 217 * commit. 218 */ 219 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 220 mp->m_logdev_targp == mp->m_ddev_targp && 221 !XFS_IS_REALTIME_INODE(ip) && 222 !log_flushed) 223 xfs_blkdev_issue_flush(mp->m_ddev_targp); 224 225 return -error; 226 } 227 228 STATIC ssize_t 229 xfs_file_aio_read( 230 struct kiocb *iocb, 231 const struct iovec *iovp, 232 unsigned long nr_segs, 233 loff_t pos) 234 { 235 struct file *file = iocb->ki_filp; 236 struct inode *inode = file->f_mapping->host; 237 struct xfs_inode *ip = XFS_I(inode); 238 struct xfs_mount *mp = ip->i_mount; 239 size_t size = 0; 240 ssize_t ret = 0; 241 int ioflags = 0; 242 xfs_fsize_t n; 243 244 XFS_STATS_INC(xs_read_calls); 245 246 BUG_ON(iocb->ki_pos != pos); 247 248 if (unlikely(file->f_flags & O_DIRECT)) 249 ioflags |= IO_ISDIRECT; 250 if (file->f_mode & FMODE_NOCMTIME) 251 ioflags |= IO_INVIS; 252 253 ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE); 254 if (ret < 0) 255 return ret; 256 257 if (unlikely(ioflags & IO_ISDIRECT)) { 258 xfs_buftarg_t *target = 259 XFS_IS_REALTIME_INODE(ip) ? 260 mp->m_rtdev_targp : mp->m_ddev_targp; 261 if ((pos & target->bt_smask) || (size & target->bt_smask)) { 262 if (pos == i_size_read(inode)) 263 return 0; 264 return -XFS_ERROR(EINVAL); 265 } 266 } 267 268 n = mp->m_super->s_maxbytes - pos; 269 if (n <= 0 || size == 0) 270 return 0; 271 272 if (n < size) 273 size = n; 274 275 if (XFS_FORCED_SHUTDOWN(mp)) 276 return -EIO; 277 278 /* 279 * Locking is a bit tricky here. If we take an exclusive lock 280 * for direct IO, we effectively serialise all new concurrent 281 * read IO to this file and block it behind IO that is currently in 282 * progress because IO in progress holds the IO lock shared. We only 283 * need to hold the lock exclusive to blow away the page cache, so 284 * only take lock exclusively if the page cache needs invalidation. 285 * This allows the normal direct IO case of no page cache pages to 286 * proceeed concurrently without serialisation. 287 */ 288 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 289 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) { 290 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 291 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 292 293 if (inode->i_mapping->nrpages) { 294 ret = -filemap_write_and_wait_range( 295 VFS_I(ip)->i_mapping, 296 pos, -1); 297 if (ret) { 298 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 299 return ret; 300 } 301 truncate_pagecache_range(VFS_I(ip), pos, -1); 302 } 303 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 304 } 305 306 trace_xfs_file_read(ip, size, pos, ioflags); 307 308 ret = generic_file_aio_read(iocb, iovp, nr_segs, pos); 309 if (ret > 0) 310 XFS_STATS_ADD(xs_read_bytes, ret); 311 312 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 313 return ret; 314 } 315 316 STATIC ssize_t 317 xfs_file_splice_read( 318 struct file *infilp, 319 loff_t *ppos, 320 struct pipe_inode_info *pipe, 321 size_t count, 322 unsigned int flags) 323 { 324 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 325 int ioflags = 0; 326 ssize_t ret; 327 328 XFS_STATS_INC(xs_read_calls); 329 330 if (infilp->f_mode & FMODE_NOCMTIME) 331 ioflags |= IO_INVIS; 332 333 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 334 return -EIO; 335 336 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 337 338 trace_xfs_file_splice_read(ip, count, *ppos, ioflags); 339 340 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 341 if (ret > 0) 342 XFS_STATS_ADD(xs_read_bytes, ret); 343 344 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 345 return ret; 346 } 347 348 /* 349 * xfs_file_splice_write() does not use xfs_rw_ilock() because 350 * generic_file_splice_write() takes the i_mutex itself. This, in theory, 351 * couuld cause lock inversions between the aio_write path and the splice path 352 * if someone is doing concurrent splice(2) based writes and write(2) based 353 * writes to the same inode. The only real way to fix this is to re-implement 354 * the generic code here with correct locking orders. 355 */ 356 STATIC ssize_t 357 xfs_file_splice_write( 358 struct pipe_inode_info *pipe, 359 struct file *outfilp, 360 loff_t *ppos, 361 size_t count, 362 unsigned int flags) 363 { 364 struct inode *inode = outfilp->f_mapping->host; 365 struct xfs_inode *ip = XFS_I(inode); 366 int ioflags = 0; 367 ssize_t ret; 368 369 XFS_STATS_INC(xs_write_calls); 370 371 if (outfilp->f_mode & FMODE_NOCMTIME) 372 ioflags |= IO_INVIS; 373 374 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 375 return -EIO; 376 377 xfs_ilock(ip, XFS_IOLOCK_EXCL); 378 379 trace_xfs_file_splice_write(ip, count, *ppos, ioflags); 380 381 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags); 382 if (ret > 0) 383 XFS_STATS_ADD(xs_write_bytes, ret); 384 385 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 386 return ret; 387 } 388 389 /* 390 * This routine is called to handle zeroing any space in the last block of the 391 * file that is beyond the EOF. We do this since the size is being increased 392 * without writing anything to that block and we don't want to read the 393 * garbage on the disk. 394 */ 395 STATIC int /* error (positive) */ 396 xfs_zero_last_block( 397 struct xfs_inode *ip, 398 xfs_fsize_t offset, 399 xfs_fsize_t isize) 400 { 401 struct xfs_mount *mp = ip->i_mount; 402 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize); 403 int zero_offset = XFS_B_FSB_OFFSET(mp, isize); 404 int zero_len; 405 int nimaps = 1; 406 int error = 0; 407 struct xfs_bmbt_irec imap; 408 409 xfs_ilock(ip, XFS_ILOCK_EXCL); 410 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); 411 xfs_iunlock(ip, XFS_ILOCK_EXCL); 412 if (error) 413 return error; 414 415 ASSERT(nimaps > 0); 416 417 /* 418 * If the block underlying isize is just a hole, then there 419 * is nothing to zero. 420 */ 421 if (imap.br_startblock == HOLESTARTBLOCK) 422 return 0; 423 424 zero_len = mp->m_sb.sb_blocksize - zero_offset; 425 if (isize + zero_len > offset) 426 zero_len = offset - isize; 427 return xfs_iozero(ip, isize, zero_len); 428 } 429 430 /* 431 * Zero any on disk space between the current EOF and the new, larger EOF. 432 * 433 * This handles the normal case of zeroing the remainder of the last block in 434 * the file and the unusual case of zeroing blocks out beyond the size of the 435 * file. This second case only happens with fixed size extents and when the 436 * system crashes before the inode size was updated but after blocks were 437 * allocated. 438 * 439 * Expects the iolock to be held exclusive, and will take the ilock internally. 440 */ 441 int /* error (positive) */ 442 xfs_zero_eof( 443 struct xfs_inode *ip, 444 xfs_off_t offset, /* starting I/O offset */ 445 xfs_fsize_t isize) /* current inode size */ 446 { 447 struct xfs_mount *mp = ip->i_mount; 448 xfs_fileoff_t start_zero_fsb; 449 xfs_fileoff_t end_zero_fsb; 450 xfs_fileoff_t zero_count_fsb; 451 xfs_fileoff_t last_fsb; 452 xfs_fileoff_t zero_off; 453 xfs_fsize_t zero_len; 454 int nimaps; 455 int error = 0; 456 struct xfs_bmbt_irec imap; 457 458 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 459 ASSERT(offset > isize); 460 461 /* 462 * First handle zeroing the block on which isize resides. 463 * 464 * We only zero a part of that block so it is handled specially. 465 */ 466 if (XFS_B_FSB_OFFSET(mp, isize) != 0) { 467 error = xfs_zero_last_block(ip, offset, isize); 468 if (error) 469 return error; 470 } 471 472 /* 473 * Calculate the range between the new size and the old where blocks 474 * needing to be zeroed may exist. 475 * 476 * To get the block where the last byte in the file currently resides, 477 * we need to subtract one from the size and truncate back to a block 478 * boundary. We subtract 1 in case the size is exactly on a block 479 * boundary. 480 */ 481 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; 482 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 483 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); 484 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); 485 if (last_fsb == end_zero_fsb) { 486 /* 487 * The size was only incremented on its last block. 488 * We took care of that above, so just return. 489 */ 490 return 0; 491 } 492 493 ASSERT(start_zero_fsb <= end_zero_fsb); 494 while (start_zero_fsb <= end_zero_fsb) { 495 nimaps = 1; 496 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; 497 498 xfs_ilock(ip, XFS_ILOCK_EXCL); 499 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, 500 &imap, &nimaps, 0); 501 xfs_iunlock(ip, XFS_ILOCK_EXCL); 502 if (error) 503 return error; 504 505 ASSERT(nimaps > 0); 506 507 if (imap.br_state == XFS_EXT_UNWRITTEN || 508 imap.br_startblock == HOLESTARTBLOCK) { 509 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 510 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 511 continue; 512 } 513 514 /* 515 * There are blocks we need to zero. 516 */ 517 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); 518 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); 519 520 if ((zero_off + zero_len) > offset) 521 zero_len = offset - zero_off; 522 523 error = xfs_iozero(ip, zero_off, zero_len); 524 if (error) 525 return error; 526 527 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 528 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 529 } 530 531 return 0; 532 } 533 534 /* 535 * Common pre-write limit and setup checks. 536 * 537 * Called with the iolocked held either shared and exclusive according to 538 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 539 * if called for a direct write beyond i_size. 540 */ 541 STATIC ssize_t 542 xfs_file_aio_write_checks( 543 struct file *file, 544 loff_t *pos, 545 size_t *count, 546 int *iolock) 547 { 548 struct inode *inode = file->f_mapping->host; 549 struct xfs_inode *ip = XFS_I(inode); 550 int error = 0; 551 552 restart: 553 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode)); 554 if (error) 555 return error; 556 557 /* 558 * If the offset is beyond the size of the file, we need to zero any 559 * blocks that fall between the existing EOF and the start of this 560 * write. If zeroing is needed and we are currently holding the 561 * iolock shared, we need to update it to exclusive which implies 562 * having to redo all checks before. 563 */ 564 if (*pos > i_size_read(inode)) { 565 if (*iolock == XFS_IOLOCK_SHARED) { 566 xfs_rw_iunlock(ip, *iolock); 567 *iolock = XFS_IOLOCK_EXCL; 568 xfs_rw_ilock(ip, *iolock); 569 goto restart; 570 } 571 error = -xfs_zero_eof(ip, *pos, i_size_read(inode)); 572 if (error) 573 return error; 574 } 575 576 /* 577 * Updating the timestamps will grab the ilock again from 578 * xfs_fs_dirty_inode, so we have to call it after dropping the 579 * lock above. Eventually we should look into a way to avoid 580 * the pointless lock roundtrip. 581 */ 582 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 583 error = file_update_time(file); 584 if (error) 585 return error; 586 } 587 588 /* 589 * If we're writing the file then make sure to clear the setuid and 590 * setgid bits if the process is not being run by root. This keeps 591 * people from modifying setuid and setgid binaries. 592 */ 593 return file_remove_suid(file); 594 } 595 596 /* 597 * xfs_file_dio_aio_write - handle direct IO writes 598 * 599 * Lock the inode appropriately to prepare for and issue a direct IO write. 600 * By separating it from the buffered write path we remove all the tricky to 601 * follow locking changes and looping. 602 * 603 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 604 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 605 * pages are flushed out. 606 * 607 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 608 * allowing them to be done in parallel with reads and other direct IO writes. 609 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 610 * needs to do sub-block zeroing and that requires serialisation against other 611 * direct IOs to the same block. In this case we need to serialise the 612 * submission of the unaligned IOs so that we don't get racing block zeroing in 613 * the dio layer. To avoid the problem with aio, we also need to wait for 614 * outstanding IOs to complete so that unwritten extent conversion is completed 615 * before we try to map the overlapping block. This is currently implemented by 616 * hitting it with a big hammer (i.e. inode_dio_wait()). 617 * 618 * Returns with locks held indicated by @iolock and errors indicated by 619 * negative return values. 620 */ 621 STATIC ssize_t 622 xfs_file_dio_aio_write( 623 struct kiocb *iocb, 624 const struct iovec *iovp, 625 unsigned long nr_segs, 626 loff_t pos, 627 size_t ocount) 628 { 629 struct file *file = iocb->ki_filp; 630 struct address_space *mapping = file->f_mapping; 631 struct inode *inode = mapping->host; 632 struct xfs_inode *ip = XFS_I(inode); 633 struct xfs_mount *mp = ip->i_mount; 634 ssize_t ret = 0; 635 size_t count = ocount; 636 int unaligned_io = 0; 637 int iolock; 638 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 639 mp->m_rtdev_targp : mp->m_ddev_targp; 640 641 if ((pos & target->bt_smask) || (count & target->bt_smask)) 642 return -XFS_ERROR(EINVAL); 643 644 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) 645 unaligned_io = 1; 646 647 /* 648 * We don't need to take an exclusive lock unless there page cache needs 649 * to be invalidated or unaligned IO is being executed. We don't need to 650 * consider the EOF extension case here because 651 * xfs_file_aio_write_checks() will relock the inode as necessary for 652 * EOF zeroing cases and fill out the new inode size as appropriate. 653 */ 654 if (unaligned_io || mapping->nrpages) 655 iolock = XFS_IOLOCK_EXCL; 656 else 657 iolock = XFS_IOLOCK_SHARED; 658 xfs_rw_ilock(ip, iolock); 659 660 /* 661 * Recheck if there are cached pages that need invalidate after we got 662 * the iolock to protect against other threads adding new pages while 663 * we were waiting for the iolock. 664 */ 665 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 666 xfs_rw_iunlock(ip, iolock); 667 iolock = XFS_IOLOCK_EXCL; 668 xfs_rw_ilock(ip, iolock); 669 } 670 671 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 672 if (ret) 673 goto out; 674 675 if (mapping->nrpages) { 676 ret = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 677 pos, -1); 678 if (ret) 679 goto out; 680 truncate_pagecache_range(VFS_I(ip), pos, -1); 681 } 682 683 /* 684 * If we are doing unaligned IO, wait for all other IO to drain, 685 * otherwise demote the lock if we had to flush cached pages 686 */ 687 if (unaligned_io) 688 inode_dio_wait(inode); 689 else if (iolock == XFS_IOLOCK_EXCL) { 690 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 691 iolock = XFS_IOLOCK_SHARED; 692 } 693 694 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); 695 ret = generic_file_direct_write(iocb, iovp, 696 &nr_segs, pos, &iocb->ki_pos, count, ocount); 697 698 out: 699 xfs_rw_iunlock(ip, iolock); 700 701 /* No fallback to buffered IO on errors for XFS. */ 702 ASSERT(ret < 0 || ret == count); 703 return ret; 704 } 705 706 STATIC ssize_t 707 xfs_file_buffered_aio_write( 708 struct kiocb *iocb, 709 const struct iovec *iovp, 710 unsigned long nr_segs, 711 loff_t pos, 712 size_t ocount) 713 { 714 struct file *file = iocb->ki_filp; 715 struct address_space *mapping = file->f_mapping; 716 struct inode *inode = mapping->host; 717 struct xfs_inode *ip = XFS_I(inode); 718 ssize_t ret; 719 int enospc = 0; 720 int iolock = XFS_IOLOCK_EXCL; 721 size_t count = ocount; 722 723 xfs_rw_ilock(ip, iolock); 724 725 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 726 if (ret) 727 goto out; 728 729 /* We can write back this queue in page reclaim */ 730 current->backing_dev_info = mapping->backing_dev_info; 731 732 write_retry: 733 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0); 734 ret = generic_file_buffered_write(iocb, iovp, nr_segs, 735 pos, &iocb->ki_pos, count, 0); 736 737 /* 738 * If we just got an ENOSPC, try to write back all dirty inodes to 739 * convert delalloc space to free up some of the excess reserved 740 * metadata space. 741 */ 742 if (ret == -ENOSPC && !enospc) { 743 enospc = 1; 744 xfs_flush_inodes(ip->i_mount); 745 goto write_retry; 746 } 747 748 current->backing_dev_info = NULL; 749 out: 750 xfs_rw_iunlock(ip, iolock); 751 return ret; 752 } 753 754 STATIC ssize_t 755 xfs_file_aio_write( 756 struct kiocb *iocb, 757 const struct iovec *iovp, 758 unsigned long nr_segs, 759 loff_t pos) 760 { 761 struct file *file = iocb->ki_filp; 762 struct address_space *mapping = file->f_mapping; 763 struct inode *inode = mapping->host; 764 struct xfs_inode *ip = XFS_I(inode); 765 ssize_t ret; 766 size_t ocount = 0; 767 768 XFS_STATS_INC(xs_write_calls); 769 770 BUG_ON(iocb->ki_pos != pos); 771 772 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ); 773 if (ret) 774 return ret; 775 776 if (ocount == 0) 777 return 0; 778 779 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 780 ret = -EIO; 781 goto out; 782 } 783 784 if (unlikely(file->f_flags & O_DIRECT)) 785 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount); 786 else 787 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos, 788 ocount); 789 790 if (ret > 0) { 791 ssize_t err; 792 793 XFS_STATS_ADD(xs_write_bytes, ret); 794 795 /* Handle various SYNC-type writes */ 796 err = generic_write_sync(file, pos, ret); 797 if (err < 0) 798 ret = err; 799 } 800 801 out: 802 return ret; 803 } 804 805 STATIC long 806 xfs_file_fallocate( 807 struct file *file, 808 int mode, 809 loff_t offset, 810 loff_t len) 811 { 812 struct inode *inode = file_inode(file); 813 long error; 814 loff_t new_size = 0; 815 xfs_flock64_t bf; 816 xfs_inode_t *ip = XFS_I(inode); 817 int cmd = XFS_IOC_RESVSP; 818 int attr_flags = XFS_ATTR_NOLOCK; 819 820 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 821 return -EOPNOTSUPP; 822 823 bf.l_whence = 0; 824 bf.l_start = offset; 825 bf.l_len = len; 826 827 xfs_ilock(ip, XFS_IOLOCK_EXCL); 828 829 if (mode & FALLOC_FL_PUNCH_HOLE) 830 cmd = XFS_IOC_UNRESVSP; 831 832 /* check the new inode size is valid before allocating */ 833 if (!(mode & FALLOC_FL_KEEP_SIZE) && 834 offset + len > i_size_read(inode)) { 835 new_size = offset + len; 836 error = inode_newsize_ok(inode, new_size); 837 if (error) 838 goto out_unlock; 839 } 840 841 if (file->f_flags & O_DSYNC) 842 attr_flags |= XFS_ATTR_SYNC; 843 844 error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags); 845 if (error) 846 goto out_unlock; 847 848 /* Change file size if needed */ 849 if (new_size) { 850 struct iattr iattr; 851 852 iattr.ia_valid = ATTR_SIZE; 853 iattr.ia_size = new_size; 854 error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK); 855 } 856 857 out_unlock: 858 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 859 return error; 860 } 861 862 863 STATIC int 864 xfs_file_open( 865 struct inode *inode, 866 struct file *file) 867 { 868 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 869 return -EFBIG; 870 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 871 return -EIO; 872 return 0; 873 } 874 875 STATIC int 876 xfs_dir_open( 877 struct inode *inode, 878 struct file *file) 879 { 880 struct xfs_inode *ip = XFS_I(inode); 881 int mode; 882 int error; 883 884 error = xfs_file_open(inode, file); 885 if (error) 886 return error; 887 888 /* 889 * If there are any blocks, read-ahead block 0 as we're almost 890 * certain to have the next operation be a read there. 891 */ 892 mode = xfs_ilock_map_shared(ip); 893 if (ip->i_d.di_nextents > 0) 894 xfs_dir3_data_readahead(NULL, ip, 0, -1); 895 xfs_iunlock(ip, mode); 896 return 0; 897 } 898 899 STATIC int 900 xfs_file_release( 901 struct inode *inode, 902 struct file *filp) 903 { 904 return -xfs_release(XFS_I(inode)); 905 } 906 907 STATIC int 908 xfs_file_readdir( 909 struct file *file, 910 struct dir_context *ctx) 911 { 912 struct inode *inode = file_inode(file); 913 xfs_inode_t *ip = XFS_I(inode); 914 int error; 915 size_t bufsize; 916 917 /* 918 * The Linux API doesn't pass down the total size of the buffer 919 * we read into down to the filesystem. With the filldir concept 920 * it's not needed for correct information, but the XFS dir2 leaf 921 * code wants an estimate of the buffer size to calculate it's 922 * readahead window and size the buffers used for mapping to 923 * physical blocks. 924 * 925 * Try to give it an estimate that's good enough, maybe at some 926 * point we can change the ->readdir prototype to include the 927 * buffer size. For now we use the current glibc buffer size. 928 */ 929 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 930 931 error = xfs_readdir(ip, ctx, bufsize); 932 if (error) 933 return -error; 934 return 0; 935 } 936 937 STATIC int 938 xfs_file_mmap( 939 struct file *filp, 940 struct vm_area_struct *vma) 941 { 942 vma->vm_ops = &xfs_file_vm_ops; 943 944 file_accessed(filp); 945 return 0; 946 } 947 948 /* 949 * mmap()d file has taken write protection fault and is being made 950 * writable. We can set the page state up correctly for a writable 951 * page, which means we can do correct delalloc accounting (ENOSPC 952 * checking!) and unwritten extent mapping. 953 */ 954 STATIC int 955 xfs_vm_page_mkwrite( 956 struct vm_area_struct *vma, 957 struct vm_fault *vmf) 958 { 959 return block_page_mkwrite(vma, vmf, xfs_get_blocks); 960 } 961 962 /* 963 * This type is designed to indicate the type of offset we would like 964 * to search from page cache for either xfs_seek_data() or xfs_seek_hole(). 965 */ 966 enum { 967 HOLE_OFF = 0, 968 DATA_OFF, 969 }; 970 971 /* 972 * Lookup the desired type of offset from the given page. 973 * 974 * On success, return true and the offset argument will point to the 975 * start of the region that was found. Otherwise this function will 976 * return false and keep the offset argument unchanged. 977 */ 978 STATIC bool 979 xfs_lookup_buffer_offset( 980 struct page *page, 981 loff_t *offset, 982 unsigned int type) 983 { 984 loff_t lastoff = page_offset(page); 985 bool found = false; 986 struct buffer_head *bh, *head; 987 988 bh = head = page_buffers(page); 989 do { 990 /* 991 * Unwritten extents that have data in the page 992 * cache covering them can be identified by the 993 * BH_Unwritten state flag. Pages with multiple 994 * buffers might have a mix of holes, data and 995 * unwritten extents - any buffer with valid 996 * data in it should have BH_Uptodate flag set 997 * on it. 998 */ 999 if (buffer_unwritten(bh) || 1000 buffer_uptodate(bh)) { 1001 if (type == DATA_OFF) 1002 found = true; 1003 } else { 1004 if (type == HOLE_OFF) 1005 found = true; 1006 } 1007 1008 if (found) { 1009 *offset = lastoff; 1010 break; 1011 } 1012 lastoff += bh->b_size; 1013 } while ((bh = bh->b_this_page) != head); 1014 1015 return found; 1016 } 1017 1018 /* 1019 * This routine is called to find out and return a data or hole offset 1020 * from the page cache for unwritten extents according to the desired 1021 * type for xfs_seek_data() or xfs_seek_hole(). 1022 * 1023 * The argument offset is used to tell where we start to search from the 1024 * page cache. Map is used to figure out the end points of the range to 1025 * lookup pages. 1026 * 1027 * Return true if the desired type of offset was found, and the argument 1028 * offset is filled with that address. Otherwise, return false and keep 1029 * offset unchanged. 1030 */ 1031 STATIC bool 1032 xfs_find_get_desired_pgoff( 1033 struct inode *inode, 1034 struct xfs_bmbt_irec *map, 1035 unsigned int type, 1036 loff_t *offset) 1037 { 1038 struct xfs_inode *ip = XFS_I(inode); 1039 struct xfs_mount *mp = ip->i_mount; 1040 struct pagevec pvec; 1041 pgoff_t index; 1042 pgoff_t end; 1043 loff_t endoff; 1044 loff_t startoff = *offset; 1045 loff_t lastoff = startoff; 1046 bool found = false; 1047 1048 pagevec_init(&pvec, 0); 1049 1050 index = startoff >> PAGE_CACHE_SHIFT; 1051 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1052 end = endoff >> PAGE_CACHE_SHIFT; 1053 do { 1054 int want; 1055 unsigned nr_pages; 1056 unsigned int i; 1057 1058 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1059 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1060 want); 1061 /* 1062 * No page mapped into given range. If we are searching holes 1063 * and if this is the first time we got into the loop, it means 1064 * that the given offset is landed in a hole, return it. 1065 * 1066 * If we have already stepped through some block buffers to find 1067 * holes but they all contains data. In this case, the last 1068 * offset is already updated and pointed to the end of the last 1069 * mapped page, if it does not reach the endpoint to search, 1070 * that means there should be a hole between them. 1071 */ 1072 if (nr_pages == 0) { 1073 /* Data search found nothing */ 1074 if (type == DATA_OFF) 1075 break; 1076 1077 ASSERT(type == HOLE_OFF); 1078 if (lastoff == startoff || lastoff < endoff) { 1079 found = true; 1080 *offset = lastoff; 1081 } 1082 break; 1083 } 1084 1085 /* 1086 * At lease we found one page. If this is the first time we 1087 * step into the loop, and if the first page index offset is 1088 * greater than the given search offset, a hole was found. 1089 */ 1090 if (type == HOLE_OFF && lastoff == startoff && 1091 lastoff < page_offset(pvec.pages[0])) { 1092 found = true; 1093 break; 1094 } 1095 1096 for (i = 0; i < nr_pages; i++) { 1097 struct page *page = pvec.pages[i]; 1098 loff_t b_offset; 1099 1100 /* 1101 * At this point, the page may be truncated or 1102 * invalidated (changing page->mapping to NULL), 1103 * or even swizzled back from swapper_space to tmpfs 1104 * file mapping. However, page->index will not change 1105 * because we have a reference on the page. 1106 * 1107 * Searching done if the page index is out of range. 1108 * If the current offset is not reaches the end of 1109 * the specified search range, there should be a hole 1110 * between them. 1111 */ 1112 if (page->index > end) { 1113 if (type == HOLE_OFF && lastoff < endoff) { 1114 *offset = lastoff; 1115 found = true; 1116 } 1117 goto out; 1118 } 1119 1120 lock_page(page); 1121 /* 1122 * Page truncated or invalidated(page->mapping == NULL). 1123 * We can freely skip it and proceed to check the next 1124 * page. 1125 */ 1126 if (unlikely(page->mapping != inode->i_mapping)) { 1127 unlock_page(page); 1128 continue; 1129 } 1130 1131 if (!page_has_buffers(page)) { 1132 unlock_page(page); 1133 continue; 1134 } 1135 1136 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1137 if (found) { 1138 /* 1139 * The found offset may be less than the start 1140 * point to search if this is the first time to 1141 * come here. 1142 */ 1143 *offset = max_t(loff_t, startoff, b_offset); 1144 unlock_page(page); 1145 goto out; 1146 } 1147 1148 /* 1149 * We either searching data but nothing was found, or 1150 * searching hole but found a data buffer. In either 1151 * case, probably the next page contains the desired 1152 * things, update the last offset to it so. 1153 */ 1154 lastoff = page_offset(page) + PAGE_SIZE; 1155 unlock_page(page); 1156 } 1157 1158 /* 1159 * The number of returned pages less than our desired, search 1160 * done. In this case, nothing was found for searching data, 1161 * but we found a hole behind the last offset. 1162 */ 1163 if (nr_pages < want) { 1164 if (type == HOLE_OFF) { 1165 *offset = lastoff; 1166 found = true; 1167 } 1168 break; 1169 } 1170 1171 index = pvec.pages[i - 1]->index + 1; 1172 pagevec_release(&pvec); 1173 } while (index <= end); 1174 1175 out: 1176 pagevec_release(&pvec); 1177 return found; 1178 } 1179 1180 STATIC loff_t 1181 xfs_seek_data( 1182 struct file *file, 1183 loff_t start) 1184 { 1185 struct inode *inode = file->f_mapping->host; 1186 struct xfs_inode *ip = XFS_I(inode); 1187 struct xfs_mount *mp = ip->i_mount; 1188 loff_t uninitialized_var(offset); 1189 xfs_fsize_t isize; 1190 xfs_fileoff_t fsbno; 1191 xfs_filblks_t end; 1192 uint lock; 1193 int error; 1194 1195 lock = xfs_ilock_map_shared(ip); 1196 1197 isize = i_size_read(inode); 1198 if (start >= isize) { 1199 error = ENXIO; 1200 goto out_unlock; 1201 } 1202 1203 /* 1204 * Try to read extents from the first block indicated 1205 * by fsbno to the end block of the file. 1206 */ 1207 fsbno = XFS_B_TO_FSBT(mp, start); 1208 end = XFS_B_TO_FSB(mp, isize); 1209 for (;;) { 1210 struct xfs_bmbt_irec map[2]; 1211 int nmap = 2; 1212 unsigned int i; 1213 1214 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1215 XFS_BMAPI_ENTIRE); 1216 if (error) 1217 goto out_unlock; 1218 1219 /* No extents at given offset, must be beyond EOF */ 1220 if (nmap == 0) { 1221 error = ENXIO; 1222 goto out_unlock; 1223 } 1224 1225 for (i = 0; i < nmap; i++) { 1226 offset = max_t(loff_t, start, 1227 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1228 1229 /* Landed in a data extent */ 1230 if (map[i].br_startblock == DELAYSTARTBLOCK || 1231 (map[i].br_state == XFS_EXT_NORM && 1232 !isnullstartblock(map[i].br_startblock))) 1233 goto out; 1234 1235 /* 1236 * Landed in an unwritten extent, try to search data 1237 * from page cache. 1238 */ 1239 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1240 if (xfs_find_get_desired_pgoff(inode, &map[i], 1241 DATA_OFF, &offset)) 1242 goto out; 1243 } 1244 } 1245 1246 /* 1247 * map[0] is hole or its an unwritten extent but 1248 * without data in page cache. Probably means that 1249 * we are reading after EOF if nothing in map[1]. 1250 */ 1251 if (nmap == 1) { 1252 error = ENXIO; 1253 goto out_unlock; 1254 } 1255 1256 ASSERT(i > 1); 1257 1258 /* 1259 * Nothing was found, proceed to the next round of search 1260 * if reading offset not beyond or hit EOF. 1261 */ 1262 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1263 start = XFS_FSB_TO_B(mp, fsbno); 1264 if (start >= isize) { 1265 error = ENXIO; 1266 goto out_unlock; 1267 } 1268 } 1269 1270 out: 1271 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1272 1273 out_unlock: 1274 xfs_iunlock_map_shared(ip, lock); 1275 1276 if (error) 1277 return -error; 1278 return offset; 1279 } 1280 1281 STATIC loff_t 1282 xfs_seek_hole( 1283 struct file *file, 1284 loff_t start) 1285 { 1286 struct inode *inode = file->f_mapping->host; 1287 struct xfs_inode *ip = XFS_I(inode); 1288 struct xfs_mount *mp = ip->i_mount; 1289 loff_t uninitialized_var(offset); 1290 xfs_fsize_t isize; 1291 xfs_fileoff_t fsbno; 1292 xfs_filblks_t end; 1293 uint lock; 1294 int error; 1295 1296 if (XFS_FORCED_SHUTDOWN(mp)) 1297 return -XFS_ERROR(EIO); 1298 1299 lock = xfs_ilock_map_shared(ip); 1300 1301 isize = i_size_read(inode); 1302 if (start >= isize) { 1303 error = ENXIO; 1304 goto out_unlock; 1305 } 1306 1307 fsbno = XFS_B_TO_FSBT(mp, start); 1308 end = XFS_B_TO_FSB(mp, isize); 1309 1310 for (;;) { 1311 struct xfs_bmbt_irec map[2]; 1312 int nmap = 2; 1313 unsigned int i; 1314 1315 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1316 XFS_BMAPI_ENTIRE); 1317 if (error) 1318 goto out_unlock; 1319 1320 /* No extents at given offset, must be beyond EOF */ 1321 if (nmap == 0) { 1322 error = ENXIO; 1323 goto out_unlock; 1324 } 1325 1326 for (i = 0; i < nmap; i++) { 1327 offset = max_t(loff_t, start, 1328 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1329 1330 /* Landed in a hole */ 1331 if (map[i].br_startblock == HOLESTARTBLOCK) 1332 goto out; 1333 1334 /* 1335 * Landed in an unwritten extent, try to search hole 1336 * from page cache. 1337 */ 1338 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1339 if (xfs_find_get_desired_pgoff(inode, &map[i], 1340 HOLE_OFF, &offset)) 1341 goto out; 1342 } 1343 } 1344 1345 /* 1346 * map[0] contains data or its unwritten but contains 1347 * data in page cache, probably means that we are 1348 * reading after EOF. We should fix offset to point 1349 * to the end of the file(i.e., there is an implicit 1350 * hole at the end of any file). 1351 */ 1352 if (nmap == 1) { 1353 offset = isize; 1354 break; 1355 } 1356 1357 ASSERT(i > 1); 1358 1359 /* 1360 * Both mappings contains data, proceed to the next round of 1361 * search if the current reading offset not beyond or hit EOF. 1362 */ 1363 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1364 start = XFS_FSB_TO_B(mp, fsbno); 1365 if (start >= isize) { 1366 offset = isize; 1367 break; 1368 } 1369 } 1370 1371 out: 1372 /* 1373 * At this point, we must have found a hole. However, the returned 1374 * offset may be bigger than the file size as it may be aligned to 1375 * page boundary for unwritten extents, we need to deal with this 1376 * situation in particular. 1377 */ 1378 offset = min_t(loff_t, offset, isize); 1379 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1380 1381 out_unlock: 1382 xfs_iunlock_map_shared(ip, lock); 1383 1384 if (error) 1385 return -error; 1386 return offset; 1387 } 1388 1389 STATIC loff_t 1390 xfs_file_llseek( 1391 struct file *file, 1392 loff_t offset, 1393 int origin) 1394 { 1395 switch (origin) { 1396 case SEEK_END: 1397 case SEEK_CUR: 1398 case SEEK_SET: 1399 return generic_file_llseek(file, offset, origin); 1400 case SEEK_DATA: 1401 return xfs_seek_data(file, offset); 1402 case SEEK_HOLE: 1403 return xfs_seek_hole(file, offset); 1404 default: 1405 return -EINVAL; 1406 } 1407 } 1408 1409 const struct file_operations xfs_file_operations = { 1410 .llseek = xfs_file_llseek, 1411 .read = do_sync_read, 1412 .write = do_sync_write, 1413 .aio_read = xfs_file_aio_read, 1414 .aio_write = xfs_file_aio_write, 1415 .splice_read = xfs_file_splice_read, 1416 .splice_write = xfs_file_splice_write, 1417 .unlocked_ioctl = xfs_file_ioctl, 1418 #ifdef CONFIG_COMPAT 1419 .compat_ioctl = xfs_file_compat_ioctl, 1420 #endif 1421 .mmap = xfs_file_mmap, 1422 .open = xfs_file_open, 1423 .release = xfs_file_release, 1424 .fsync = xfs_file_fsync, 1425 .fallocate = xfs_file_fallocate, 1426 }; 1427 1428 const struct file_operations xfs_dir_file_operations = { 1429 .open = xfs_dir_open, 1430 .read = generic_read_dir, 1431 .iterate = xfs_file_readdir, 1432 .llseek = generic_file_llseek, 1433 .unlocked_ioctl = xfs_file_ioctl, 1434 #ifdef CONFIG_COMPAT 1435 .compat_ioctl = xfs_file_compat_ioctl, 1436 #endif 1437 .fsync = xfs_dir_fsync, 1438 }; 1439 1440 static const struct vm_operations_struct xfs_file_vm_ops = { 1441 .fault = filemap_fault, 1442 .page_mkwrite = xfs_vm_page_mkwrite, 1443 .remap_pages = generic_file_remap_pages, 1444 }; 1445