xref: /linux/fs/xfs/xfs_file.c (revision fa8d972d055c723cc427e14d4d7919640f418730)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44 #include <linux/backing-dev.h>
45 
46 static const struct vm_operations_struct xfs_file_vm_ops;
47 
48 /*
49  * Locking primitives for read and write IO paths to ensure we consistently use
50  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
51  */
52 static inline void
53 xfs_rw_ilock(
54 	struct xfs_inode	*ip,
55 	int			type)
56 {
57 	if (type & XFS_IOLOCK_EXCL)
58 		inode_lock(VFS_I(ip));
59 	xfs_ilock(ip, type);
60 }
61 
62 static inline void
63 xfs_rw_iunlock(
64 	struct xfs_inode	*ip,
65 	int			type)
66 {
67 	xfs_iunlock(ip, type);
68 	if (type & XFS_IOLOCK_EXCL)
69 		inode_unlock(VFS_I(ip));
70 }
71 
72 static inline void
73 xfs_rw_ilock_demote(
74 	struct xfs_inode	*ip,
75 	int			type)
76 {
77 	xfs_ilock_demote(ip, type);
78 	if (type & XFS_IOLOCK_EXCL)
79 		inode_unlock(VFS_I(ip));
80 }
81 
82 /*
83  * xfs_iozero clears the specified range supplied via the page cache (except in
84  * the DAX case). Writes through the page cache will allocate blocks over holes,
85  * though the callers usually map the holes first and avoid them. If a block is
86  * not completely zeroed, then it will be read from disk before being partially
87  * zeroed.
88  *
89  * In the DAX case, we can just directly write to the underlying pages. This
90  * will not allocate blocks, but will avoid holes and unwritten extents and so
91  * not do unnecessary work.
92  */
93 int
94 xfs_iozero(
95 	struct xfs_inode	*ip,	/* inode			*/
96 	loff_t			pos,	/* offset in file		*/
97 	size_t			count)	/* size of data to zero		*/
98 {
99 	struct page		*page;
100 	struct address_space	*mapping;
101 	int			status = 0;
102 
103 
104 	mapping = VFS_I(ip)->i_mapping;
105 	do {
106 		unsigned offset, bytes;
107 		void *fsdata;
108 
109 		offset = (pos & (PAGE_SIZE -1)); /* Within page */
110 		bytes = PAGE_SIZE - offset;
111 		if (bytes > count)
112 			bytes = count;
113 
114 		if (IS_DAX(VFS_I(ip))) {
115 			status = dax_zero_page_range(VFS_I(ip), pos, bytes,
116 						     xfs_get_blocks_direct);
117 			if (status)
118 				break;
119 		} else {
120 			status = pagecache_write_begin(NULL, mapping, pos, bytes,
121 						AOP_FLAG_UNINTERRUPTIBLE,
122 						&page, &fsdata);
123 			if (status)
124 				break;
125 
126 			zero_user(page, offset, bytes);
127 
128 			status = pagecache_write_end(NULL, mapping, pos, bytes,
129 						bytes, page, fsdata);
130 			WARN_ON(status <= 0); /* can't return less than zero! */
131 			status = 0;
132 		}
133 		pos += bytes;
134 		count -= bytes;
135 	} while (count);
136 
137 	return status;
138 }
139 
140 int
141 xfs_update_prealloc_flags(
142 	struct xfs_inode	*ip,
143 	enum xfs_prealloc_flags	flags)
144 {
145 	struct xfs_trans	*tp;
146 	int			error;
147 
148 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
149 			0, 0, 0, &tp);
150 	if (error)
151 		return error;
152 
153 	xfs_ilock(ip, XFS_ILOCK_EXCL);
154 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
155 
156 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
157 		VFS_I(ip)->i_mode &= ~S_ISUID;
158 		if (VFS_I(ip)->i_mode & S_IXGRP)
159 			VFS_I(ip)->i_mode &= ~S_ISGID;
160 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
161 	}
162 
163 	if (flags & XFS_PREALLOC_SET)
164 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
165 	if (flags & XFS_PREALLOC_CLEAR)
166 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
167 
168 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
169 	if (flags & XFS_PREALLOC_SYNC)
170 		xfs_trans_set_sync(tp);
171 	return xfs_trans_commit(tp);
172 }
173 
174 /*
175  * Fsync operations on directories are much simpler than on regular files,
176  * as there is no file data to flush, and thus also no need for explicit
177  * cache flush operations, and there are no non-transaction metadata updates
178  * on directories either.
179  */
180 STATIC int
181 xfs_dir_fsync(
182 	struct file		*file,
183 	loff_t			start,
184 	loff_t			end,
185 	int			datasync)
186 {
187 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
188 	struct xfs_mount	*mp = ip->i_mount;
189 	xfs_lsn_t		lsn = 0;
190 
191 	trace_xfs_dir_fsync(ip);
192 
193 	xfs_ilock(ip, XFS_ILOCK_SHARED);
194 	if (xfs_ipincount(ip))
195 		lsn = ip->i_itemp->ili_last_lsn;
196 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
197 
198 	if (!lsn)
199 		return 0;
200 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
201 }
202 
203 STATIC int
204 xfs_file_fsync(
205 	struct file		*file,
206 	loff_t			start,
207 	loff_t			end,
208 	int			datasync)
209 {
210 	struct inode		*inode = file->f_mapping->host;
211 	struct xfs_inode	*ip = XFS_I(inode);
212 	struct xfs_mount	*mp = ip->i_mount;
213 	int			error = 0;
214 	int			log_flushed = 0;
215 	xfs_lsn_t		lsn = 0;
216 
217 	trace_xfs_file_fsync(ip);
218 
219 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
220 	if (error)
221 		return error;
222 
223 	if (XFS_FORCED_SHUTDOWN(mp))
224 		return -EIO;
225 
226 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
227 
228 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
229 		/*
230 		 * If we have an RT and/or log subvolume we need to make sure
231 		 * to flush the write cache the device used for file data
232 		 * first.  This is to ensure newly written file data make
233 		 * it to disk before logging the new inode size in case of
234 		 * an extending write.
235 		 */
236 		if (XFS_IS_REALTIME_INODE(ip))
237 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
238 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
239 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
240 	}
241 
242 	/*
243 	 * All metadata updates are logged, which means that we just have to
244 	 * flush the log up to the latest LSN that touched the inode. If we have
245 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
246 	 * log force before we clear the ili_fsync_fields field. This ensures
247 	 * that we don't get a racing sync operation that does not wait for the
248 	 * metadata to hit the journal before returning. If we race with
249 	 * clearing the ili_fsync_fields, then all that will happen is the log
250 	 * force will do nothing as the lsn will already be on disk. We can't
251 	 * race with setting ili_fsync_fields because that is done under
252 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
253 	 * until after the ili_fsync_fields is cleared.
254 	 */
255 	xfs_ilock(ip, XFS_ILOCK_SHARED);
256 	if (xfs_ipincount(ip)) {
257 		if (!datasync ||
258 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
259 			lsn = ip->i_itemp->ili_last_lsn;
260 	}
261 
262 	if (lsn) {
263 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
264 		ip->i_itemp->ili_fsync_fields = 0;
265 	}
266 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
267 
268 	/*
269 	 * If we only have a single device, and the log force about was
270 	 * a no-op we might have to flush the data device cache here.
271 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
272 	 * an already allocated file and thus do not have any metadata to
273 	 * commit.
274 	 */
275 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
276 	    mp->m_logdev_targp == mp->m_ddev_targp &&
277 	    !XFS_IS_REALTIME_INODE(ip) &&
278 	    !log_flushed)
279 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
280 
281 	return error;
282 }
283 
284 STATIC ssize_t
285 xfs_file_dio_aio_read(
286 	struct kiocb		*iocb,
287 	struct iov_iter		*to)
288 {
289 	struct address_space	*mapping = iocb->ki_filp->f_mapping;
290 	struct inode		*inode = mapping->host;
291 	struct xfs_inode	*ip = XFS_I(inode);
292 	loff_t			isize = i_size_read(inode);
293 	size_t			count = iov_iter_count(to);
294 	struct iov_iter		data;
295 	struct xfs_buftarg	*target;
296 	ssize_t			ret = 0;
297 
298 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
299 
300 	if (!count)
301 		return 0; /* skip atime */
302 
303 	if (XFS_IS_REALTIME_INODE(ip))
304 		target = ip->i_mount->m_rtdev_targp;
305 	else
306 		target = ip->i_mount->m_ddev_targp;
307 
308 	if (!IS_DAX(inode)) {
309 		/* DIO must be aligned to device logical sector size */
310 		if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
311 			if (iocb->ki_pos == isize)
312 				return 0;
313 			return -EINVAL;
314 		}
315 	}
316 
317 	/*
318 	 * Locking is a bit tricky here. If we take an exclusive lock for direct
319 	 * IO, we effectively serialise all new concurrent read IO to this file
320 	 * and block it behind IO that is currently in progress because IO in
321 	 * progress holds the IO lock shared. We only need to hold the lock
322 	 * exclusive to blow away the page cache, so only take lock exclusively
323 	 * if the page cache needs invalidation. This allows the normal direct
324 	 * IO case of no page cache pages to proceeed concurrently without
325 	 * serialisation.
326 	 */
327 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
328 	if (mapping->nrpages) {
329 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
330 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
331 
332 		/*
333 		 * The generic dio code only flushes the range of the particular
334 		 * I/O. Because we take an exclusive lock here, this whole
335 		 * sequence is considerably more expensive for us. This has a
336 		 * noticeable performance impact for any file with cached pages,
337 		 * even when outside of the range of the particular I/O.
338 		 *
339 		 * Hence, amortize the cost of the lock against a full file
340 		 * flush and reduce the chances of repeated iolock cycles going
341 		 * forward.
342 		 */
343 		if (mapping->nrpages) {
344 			ret = filemap_write_and_wait(mapping);
345 			if (ret) {
346 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
347 				return ret;
348 			}
349 
350 			/*
351 			 * Invalidate whole pages. This can return an error if
352 			 * we fail to invalidate a page, but this should never
353 			 * happen on XFS. Warn if it does fail.
354 			 */
355 			ret = invalidate_inode_pages2(mapping);
356 			WARN_ON_ONCE(ret);
357 			ret = 0;
358 		}
359 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
360 	}
361 
362 	data = *to;
363 	if (IS_DAX(inode)) {
364 		ret = dax_do_io(iocb, inode, &data, xfs_get_blocks_direct,
365 				NULL, 0);
366 	} else {
367 		ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
368 				xfs_get_blocks_direct, NULL, NULL, 0);
369 	}
370 	if (ret > 0) {
371 		iocb->ki_pos += ret;
372 		iov_iter_advance(to, ret);
373 	}
374 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
375 
376 	file_accessed(iocb->ki_filp);
377 	return ret;
378 }
379 
380 STATIC ssize_t
381 xfs_file_buffered_aio_read(
382 	struct kiocb		*iocb,
383 	struct iov_iter		*to)
384 {
385 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
386 	ssize_t			ret;
387 
388 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
389 
390 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
391 	ret = generic_file_read_iter(iocb, to);
392 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
393 
394 	return ret;
395 }
396 
397 STATIC ssize_t
398 xfs_file_read_iter(
399 	struct kiocb		*iocb,
400 	struct iov_iter		*to)
401 {
402 	struct xfs_mount	*mp = XFS_I(file_inode(iocb->ki_filp))->i_mount;
403 	ssize_t			ret = 0;
404 
405 	XFS_STATS_INC(mp, xs_read_calls);
406 
407 	if (XFS_FORCED_SHUTDOWN(mp))
408 		return -EIO;
409 
410 	if (iocb->ki_flags & IOCB_DIRECT)
411 		ret = xfs_file_dio_aio_read(iocb, to);
412 	else
413 		ret = xfs_file_buffered_aio_read(iocb, to);
414 
415 	if (ret > 0)
416 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
417 	return ret;
418 }
419 
420 STATIC ssize_t
421 xfs_file_splice_read(
422 	struct file		*infilp,
423 	loff_t			*ppos,
424 	struct pipe_inode_info	*pipe,
425 	size_t			count,
426 	unsigned int		flags)
427 {
428 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
429 	ssize_t			ret;
430 
431 	XFS_STATS_INC(ip->i_mount, xs_read_calls);
432 
433 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
434 		return -EIO;
435 
436 	trace_xfs_file_splice_read(ip, count, *ppos);
437 
438 	/*
439 	 * DAX inodes cannot ues the page cache for splice, so we have to push
440 	 * them through the VFS IO path. This means it goes through
441 	 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we
442 	 * cannot lock the splice operation at this level for DAX inodes.
443 	 */
444 	if (IS_DAX(VFS_I(ip))) {
445 		ret = default_file_splice_read(infilp, ppos, pipe, count,
446 					       flags);
447 		goto out;
448 	}
449 
450 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
451 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
452 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
453 out:
454 	if (ret > 0)
455 		XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
456 	return ret;
457 }
458 
459 /*
460  * This routine is called to handle zeroing any space in the last block of the
461  * file that is beyond the EOF.  We do this since the size is being increased
462  * without writing anything to that block and we don't want to read the
463  * garbage on the disk.
464  */
465 STATIC int				/* error (positive) */
466 xfs_zero_last_block(
467 	struct xfs_inode	*ip,
468 	xfs_fsize_t		offset,
469 	xfs_fsize_t		isize,
470 	bool			*did_zeroing)
471 {
472 	struct xfs_mount	*mp = ip->i_mount;
473 	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
474 	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
475 	int			zero_len;
476 	int			nimaps = 1;
477 	int			error = 0;
478 	struct xfs_bmbt_irec	imap;
479 
480 	xfs_ilock(ip, XFS_ILOCK_EXCL);
481 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
482 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
483 	if (error)
484 		return error;
485 
486 	ASSERT(nimaps > 0);
487 
488 	/*
489 	 * If the block underlying isize is just a hole, then there
490 	 * is nothing to zero.
491 	 */
492 	if (imap.br_startblock == HOLESTARTBLOCK)
493 		return 0;
494 
495 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
496 	if (isize + zero_len > offset)
497 		zero_len = offset - isize;
498 	*did_zeroing = true;
499 	return xfs_iozero(ip, isize, zero_len);
500 }
501 
502 /*
503  * Zero any on disk space between the current EOF and the new, larger EOF.
504  *
505  * This handles the normal case of zeroing the remainder of the last block in
506  * the file and the unusual case of zeroing blocks out beyond the size of the
507  * file.  This second case only happens with fixed size extents and when the
508  * system crashes before the inode size was updated but after blocks were
509  * allocated.
510  *
511  * Expects the iolock to be held exclusive, and will take the ilock internally.
512  */
513 int					/* error (positive) */
514 xfs_zero_eof(
515 	struct xfs_inode	*ip,
516 	xfs_off_t		offset,		/* starting I/O offset */
517 	xfs_fsize_t		isize,		/* current inode size */
518 	bool			*did_zeroing)
519 {
520 	struct xfs_mount	*mp = ip->i_mount;
521 	xfs_fileoff_t		start_zero_fsb;
522 	xfs_fileoff_t		end_zero_fsb;
523 	xfs_fileoff_t		zero_count_fsb;
524 	xfs_fileoff_t		last_fsb;
525 	xfs_fileoff_t		zero_off;
526 	xfs_fsize_t		zero_len;
527 	int			nimaps;
528 	int			error = 0;
529 	struct xfs_bmbt_irec	imap;
530 
531 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
532 	ASSERT(offset > isize);
533 
534 	trace_xfs_zero_eof(ip, isize, offset - isize);
535 
536 	/*
537 	 * First handle zeroing the block on which isize resides.
538 	 *
539 	 * We only zero a part of that block so it is handled specially.
540 	 */
541 	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
542 		error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
543 		if (error)
544 			return error;
545 	}
546 
547 	/*
548 	 * Calculate the range between the new size and the old where blocks
549 	 * needing to be zeroed may exist.
550 	 *
551 	 * To get the block where the last byte in the file currently resides,
552 	 * we need to subtract one from the size and truncate back to a block
553 	 * boundary.  We subtract 1 in case the size is exactly on a block
554 	 * boundary.
555 	 */
556 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
557 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
558 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
559 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
560 	if (last_fsb == end_zero_fsb) {
561 		/*
562 		 * The size was only incremented on its last block.
563 		 * We took care of that above, so just return.
564 		 */
565 		return 0;
566 	}
567 
568 	ASSERT(start_zero_fsb <= end_zero_fsb);
569 	while (start_zero_fsb <= end_zero_fsb) {
570 		nimaps = 1;
571 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
572 
573 		xfs_ilock(ip, XFS_ILOCK_EXCL);
574 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
575 					  &imap, &nimaps, 0);
576 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
577 		if (error)
578 			return error;
579 
580 		ASSERT(nimaps > 0);
581 
582 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
583 		    imap.br_startblock == HOLESTARTBLOCK) {
584 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
585 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
586 			continue;
587 		}
588 
589 		/*
590 		 * There are blocks we need to zero.
591 		 */
592 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
593 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
594 
595 		if ((zero_off + zero_len) > offset)
596 			zero_len = offset - zero_off;
597 
598 		error = xfs_iozero(ip, zero_off, zero_len);
599 		if (error)
600 			return error;
601 
602 		*did_zeroing = true;
603 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
604 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
605 	}
606 
607 	return 0;
608 }
609 
610 /*
611  * Common pre-write limit and setup checks.
612  *
613  * Called with the iolocked held either shared and exclusive according to
614  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
615  * if called for a direct write beyond i_size.
616  */
617 STATIC ssize_t
618 xfs_file_aio_write_checks(
619 	struct kiocb		*iocb,
620 	struct iov_iter		*from,
621 	int			*iolock)
622 {
623 	struct file		*file = iocb->ki_filp;
624 	struct inode		*inode = file->f_mapping->host;
625 	struct xfs_inode	*ip = XFS_I(inode);
626 	ssize_t			error = 0;
627 	size_t			count = iov_iter_count(from);
628 	bool			drained_dio = false;
629 
630 restart:
631 	error = generic_write_checks(iocb, from);
632 	if (error <= 0)
633 		return error;
634 
635 	error = xfs_break_layouts(inode, iolock, true);
636 	if (error)
637 		return error;
638 
639 	/* For changing security info in file_remove_privs() we need i_mutex */
640 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
641 		xfs_rw_iunlock(ip, *iolock);
642 		*iolock = XFS_IOLOCK_EXCL;
643 		xfs_rw_ilock(ip, *iolock);
644 		goto restart;
645 	}
646 	/*
647 	 * If the offset is beyond the size of the file, we need to zero any
648 	 * blocks that fall between the existing EOF and the start of this
649 	 * write.  If zeroing is needed and we are currently holding the
650 	 * iolock shared, we need to update it to exclusive which implies
651 	 * having to redo all checks before.
652 	 *
653 	 * We need to serialise against EOF updates that occur in IO
654 	 * completions here. We want to make sure that nobody is changing the
655 	 * size while we do this check until we have placed an IO barrier (i.e.
656 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
657 	 * The spinlock effectively forms a memory barrier once we have the
658 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
659 	 * and hence be able to correctly determine if we need to run zeroing.
660 	 */
661 	spin_lock(&ip->i_flags_lock);
662 	if (iocb->ki_pos > i_size_read(inode)) {
663 		bool	zero = false;
664 
665 		spin_unlock(&ip->i_flags_lock);
666 		if (!drained_dio) {
667 			if (*iolock == XFS_IOLOCK_SHARED) {
668 				xfs_rw_iunlock(ip, *iolock);
669 				*iolock = XFS_IOLOCK_EXCL;
670 				xfs_rw_ilock(ip, *iolock);
671 				iov_iter_reexpand(from, count);
672 			}
673 			/*
674 			 * We now have an IO submission barrier in place, but
675 			 * AIO can do EOF updates during IO completion and hence
676 			 * we now need to wait for all of them to drain. Non-AIO
677 			 * DIO will have drained before we are given the
678 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
679 			 * no-op.
680 			 */
681 			inode_dio_wait(inode);
682 			drained_dio = true;
683 			goto restart;
684 		}
685 		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
686 		if (error)
687 			return error;
688 	} else
689 		spin_unlock(&ip->i_flags_lock);
690 
691 	/*
692 	 * Updating the timestamps will grab the ilock again from
693 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
694 	 * lock above.  Eventually we should look into a way to avoid
695 	 * the pointless lock roundtrip.
696 	 */
697 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
698 		error = file_update_time(file);
699 		if (error)
700 			return error;
701 	}
702 
703 	/*
704 	 * If we're writing the file then make sure to clear the setuid and
705 	 * setgid bits if the process is not being run by root.  This keeps
706 	 * people from modifying setuid and setgid binaries.
707 	 */
708 	if (!IS_NOSEC(inode))
709 		return file_remove_privs(file);
710 	return 0;
711 }
712 
713 /*
714  * xfs_file_dio_aio_write - handle direct IO writes
715  *
716  * Lock the inode appropriately to prepare for and issue a direct IO write.
717  * By separating it from the buffered write path we remove all the tricky to
718  * follow locking changes and looping.
719  *
720  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
721  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
722  * pages are flushed out.
723  *
724  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
725  * allowing them to be done in parallel with reads and other direct IO writes.
726  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
727  * needs to do sub-block zeroing and that requires serialisation against other
728  * direct IOs to the same block. In this case we need to serialise the
729  * submission of the unaligned IOs so that we don't get racing block zeroing in
730  * the dio layer.  To avoid the problem with aio, we also need to wait for
731  * outstanding IOs to complete so that unwritten extent conversion is completed
732  * before we try to map the overlapping block. This is currently implemented by
733  * hitting it with a big hammer (i.e. inode_dio_wait()).
734  *
735  * Returns with locks held indicated by @iolock and errors indicated by
736  * negative return values.
737  */
738 STATIC ssize_t
739 xfs_file_dio_aio_write(
740 	struct kiocb		*iocb,
741 	struct iov_iter		*from)
742 {
743 	struct file		*file = iocb->ki_filp;
744 	struct address_space	*mapping = file->f_mapping;
745 	struct inode		*inode = mapping->host;
746 	struct xfs_inode	*ip = XFS_I(inode);
747 	struct xfs_mount	*mp = ip->i_mount;
748 	ssize_t			ret = 0;
749 	int			unaligned_io = 0;
750 	int			iolock;
751 	size_t			count = iov_iter_count(from);
752 	loff_t			end;
753 	struct iov_iter		data;
754 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
755 					mp->m_rtdev_targp : mp->m_ddev_targp;
756 
757 	/* DIO must be aligned to device logical sector size */
758 	if (!IS_DAX(inode) &&
759 	    ((iocb->ki_pos | count) & target->bt_logical_sectormask))
760 		return -EINVAL;
761 
762 	/* "unaligned" here means not aligned to a filesystem block */
763 	if ((iocb->ki_pos & mp->m_blockmask) ||
764 	    ((iocb->ki_pos + count) & mp->m_blockmask))
765 		unaligned_io = 1;
766 
767 	/*
768 	 * We don't need to take an exclusive lock unless there page cache needs
769 	 * to be invalidated or unaligned IO is being executed. We don't need to
770 	 * consider the EOF extension case here because
771 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
772 	 * EOF zeroing cases and fill out the new inode size as appropriate.
773 	 */
774 	if (unaligned_io || mapping->nrpages)
775 		iolock = XFS_IOLOCK_EXCL;
776 	else
777 		iolock = XFS_IOLOCK_SHARED;
778 	xfs_rw_ilock(ip, iolock);
779 
780 	/*
781 	 * Recheck if there are cached pages that need invalidate after we got
782 	 * the iolock to protect against other threads adding new pages while
783 	 * we were waiting for the iolock.
784 	 */
785 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
786 		xfs_rw_iunlock(ip, iolock);
787 		iolock = XFS_IOLOCK_EXCL;
788 		xfs_rw_ilock(ip, iolock);
789 	}
790 
791 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
792 	if (ret)
793 		goto out;
794 	count = iov_iter_count(from);
795 	end = iocb->ki_pos + count - 1;
796 
797 	/*
798 	 * See xfs_file_dio_aio_read() for why we do a full-file flush here.
799 	 */
800 	if (mapping->nrpages) {
801 		ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
802 		if (ret)
803 			goto out;
804 		/*
805 		 * Invalidate whole pages. This can return an error if we fail
806 		 * to invalidate a page, but this should never happen on XFS.
807 		 * Warn if it does fail.
808 		 */
809 		ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
810 		WARN_ON_ONCE(ret);
811 		ret = 0;
812 	}
813 
814 	/*
815 	 * If we are doing unaligned IO, wait for all other IO to drain,
816 	 * otherwise demote the lock if we had to flush cached pages
817 	 */
818 	if (unaligned_io)
819 		inode_dio_wait(inode);
820 	else if (iolock == XFS_IOLOCK_EXCL) {
821 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
822 		iolock = XFS_IOLOCK_SHARED;
823 	}
824 
825 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
826 
827 	data = *from;
828 	if (IS_DAX(inode)) {
829 		ret = dax_do_io(iocb, inode, &data, xfs_get_blocks_direct,
830 				xfs_end_io_direct_write, 0);
831 	} else {
832 		ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
833 				xfs_get_blocks_direct, xfs_end_io_direct_write,
834 				NULL, DIO_ASYNC_EXTEND);
835 	}
836 
837 	/* see generic_file_direct_write() for why this is necessary */
838 	if (mapping->nrpages) {
839 		invalidate_inode_pages2_range(mapping,
840 					      iocb->ki_pos >> PAGE_SHIFT,
841 					      end >> PAGE_SHIFT);
842 	}
843 
844 	if (ret > 0) {
845 		iocb->ki_pos += ret;
846 		iov_iter_advance(from, ret);
847 	}
848 out:
849 	xfs_rw_iunlock(ip, iolock);
850 
851 	/*
852 	 * No fallback to buffered IO on errors for XFS. DAX can result in
853 	 * partial writes, but direct IO will either complete fully or fail.
854 	 */
855 	ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip)));
856 	return ret;
857 }
858 
859 STATIC ssize_t
860 xfs_file_buffered_aio_write(
861 	struct kiocb		*iocb,
862 	struct iov_iter		*from)
863 {
864 	struct file		*file = iocb->ki_filp;
865 	struct address_space	*mapping = file->f_mapping;
866 	struct inode		*inode = mapping->host;
867 	struct xfs_inode	*ip = XFS_I(inode);
868 	ssize_t			ret;
869 	int			enospc = 0;
870 	int			iolock = XFS_IOLOCK_EXCL;
871 
872 	xfs_rw_ilock(ip, iolock);
873 
874 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
875 	if (ret)
876 		goto out;
877 
878 	/* We can write back this queue in page reclaim */
879 	current->backing_dev_info = inode_to_bdi(inode);
880 
881 write_retry:
882 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
883 	ret = generic_perform_write(file, from, iocb->ki_pos);
884 	if (likely(ret >= 0))
885 		iocb->ki_pos += ret;
886 
887 	/*
888 	 * If we hit a space limit, try to free up some lingering preallocated
889 	 * space before returning an error. In the case of ENOSPC, first try to
890 	 * write back all dirty inodes to free up some of the excess reserved
891 	 * metadata space. This reduces the chances that the eofblocks scan
892 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
893 	 * also behaves as a filter to prevent too many eofblocks scans from
894 	 * running at the same time.
895 	 */
896 	if (ret == -EDQUOT && !enospc) {
897 		enospc = xfs_inode_free_quota_eofblocks(ip);
898 		if (enospc)
899 			goto write_retry;
900 	} else if (ret == -ENOSPC && !enospc) {
901 		struct xfs_eofblocks eofb = {0};
902 
903 		enospc = 1;
904 		xfs_flush_inodes(ip->i_mount);
905 		eofb.eof_scan_owner = ip->i_ino; /* for locking */
906 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
907 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
908 		goto write_retry;
909 	}
910 
911 	current->backing_dev_info = NULL;
912 out:
913 	xfs_rw_iunlock(ip, iolock);
914 	return ret;
915 }
916 
917 STATIC ssize_t
918 xfs_file_write_iter(
919 	struct kiocb		*iocb,
920 	struct iov_iter		*from)
921 {
922 	struct file		*file = iocb->ki_filp;
923 	struct address_space	*mapping = file->f_mapping;
924 	struct inode		*inode = mapping->host;
925 	struct xfs_inode	*ip = XFS_I(inode);
926 	ssize_t			ret;
927 	size_t			ocount = iov_iter_count(from);
928 
929 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
930 
931 	if (ocount == 0)
932 		return 0;
933 
934 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
935 		return -EIO;
936 
937 	if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode))
938 		ret = xfs_file_dio_aio_write(iocb, from);
939 	else
940 		ret = xfs_file_buffered_aio_write(iocb, from);
941 
942 	if (ret > 0) {
943 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
944 
945 		/* Handle various SYNC-type writes */
946 		ret = generic_write_sync(iocb, ret);
947 	}
948 	return ret;
949 }
950 
951 #define	XFS_FALLOC_FL_SUPPORTED						\
952 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
953 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
954 		 FALLOC_FL_INSERT_RANGE)
955 
956 STATIC long
957 xfs_file_fallocate(
958 	struct file		*file,
959 	int			mode,
960 	loff_t			offset,
961 	loff_t			len)
962 {
963 	struct inode		*inode = file_inode(file);
964 	struct xfs_inode	*ip = XFS_I(inode);
965 	long			error;
966 	enum xfs_prealloc_flags	flags = 0;
967 	uint			iolock = XFS_IOLOCK_EXCL;
968 	loff_t			new_size = 0;
969 	bool			do_file_insert = 0;
970 
971 	if (!S_ISREG(inode->i_mode))
972 		return -EINVAL;
973 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
974 		return -EOPNOTSUPP;
975 
976 	xfs_ilock(ip, iolock);
977 	error = xfs_break_layouts(inode, &iolock, false);
978 	if (error)
979 		goto out_unlock;
980 
981 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
982 	iolock |= XFS_MMAPLOCK_EXCL;
983 
984 	if (mode & FALLOC_FL_PUNCH_HOLE) {
985 		error = xfs_free_file_space(ip, offset, len);
986 		if (error)
987 			goto out_unlock;
988 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
989 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
990 
991 		if (offset & blksize_mask || len & blksize_mask) {
992 			error = -EINVAL;
993 			goto out_unlock;
994 		}
995 
996 		/*
997 		 * There is no need to overlap collapse range with EOF,
998 		 * in which case it is effectively a truncate operation
999 		 */
1000 		if (offset + len >= i_size_read(inode)) {
1001 			error = -EINVAL;
1002 			goto out_unlock;
1003 		}
1004 
1005 		new_size = i_size_read(inode) - len;
1006 
1007 		error = xfs_collapse_file_space(ip, offset, len);
1008 		if (error)
1009 			goto out_unlock;
1010 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1011 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
1012 
1013 		new_size = i_size_read(inode) + len;
1014 		if (offset & blksize_mask || len & blksize_mask) {
1015 			error = -EINVAL;
1016 			goto out_unlock;
1017 		}
1018 
1019 		/* check the new inode size does not wrap through zero */
1020 		if (new_size > inode->i_sb->s_maxbytes) {
1021 			error = -EFBIG;
1022 			goto out_unlock;
1023 		}
1024 
1025 		/* Offset should be less than i_size */
1026 		if (offset >= i_size_read(inode)) {
1027 			error = -EINVAL;
1028 			goto out_unlock;
1029 		}
1030 		do_file_insert = 1;
1031 	} else {
1032 		flags |= XFS_PREALLOC_SET;
1033 
1034 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1035 		    offset + len > i_size_read(inode)) {
1036 			new_size = offset + len;
1037 			error = inode_newsize_ok(inode, new_size);
1038 			if (error)
1039 				goto out_unlock;
1040 		}
1041 
1042 		if (mode & FALLOC_FL_ZERO_RANGE)
1043 			error = xfs_zero_file_space(ip, offset, len);
1044 		else
1045 			error = xfs_alloc_file_space(ip, offset, len,
1046 						     XFS_BMAPI_PREALLOC);
1047 		if (error)
1048 			goto out_unlock;
1049 	}
1050 
1051 	if (file->f_flags & O_DSYNC)
1052 		flags |= XFS_PREALLOC_SYNC;
1053 
1054 	error = xfs_update_prealloc_flags(ip, flags);
1055 	if (error)
1056 		goto out_unlock;
1057 
1058 	/* Change file size if needed */
1059 	if (new_size) {
1060 		struct iattr iattr;
1061 
1062 		iattr.ia_valid = ATTR_SIZE;
1063 		iattr.ia_size = new_size;
1064 		error = xfs_setattr_size(ip, &iattr);
1065 		if (error)
1066 			goto out_unlock;
1067 	}
1068 
1069 	/*
1070 	 * Perform hole insertion now that the file size has been
1071 	 * updated so that if we crash during the operation we don't
1072 	 * leave shifted extents past EOF and hence losing access to
1073 	 * the data that is contained within them.
1074 	 */
1075 	if (do_file_insert)
1076 		error = xfs_insert_file_space(ip, offset, len);
1077 
1078 out_unlock:
1079 	xfs_iunlock(ip, iolock);
1080 	return error;
1081 }
1082 
1083 
1084 STATIC int
1085 xfs_file_open(
1086 	struct inode	*inode,
1087 	struct file	*file)
1088 {
1089 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1090 		return -EFBIG;
1091 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1092 		return -EIO;
1093 	return 0;
1094 }
1095 
1096 STATIC int
1097 xfs_dir_open(
1098 	struct inode	*inode,
1099 	struct file	*file)
1100 {
1101 	struct xfs_inode *ip = XFS_I(inode);
1102 	int		mode;
1103 	int		error;
1104 
1105 	error = xfs_file_open(inode, file);
1106 	if (error)
1107 		return error;
1108 
1109 	/*
1110 	 * If there are any blocks, read-ahead block 0 as we're almost
1111 	 * certain to have the next operation be a read there.
1112 	 */
1113 	mode = xfs_ilock_data_map_shared(ip);
1114 	if (ip->i_d.di_nextents > 0)
1115 		xfs_dir3_data_readahead(ip, 0, -1);
1116 	xfs_iunlock(ip, mode);
1117 	return 0;
1118 }
1119 
1120 STATIC int
1121 xfs_file_release(
1122 	struct inode	*inode,
1123 	struct file	*filp)
1124 {
1125 	return xfs_release(XFS_I(inode));
1126 }
1127 
1128 STATIC int
1129 xfs_file_readdir(
1130 	struct file	*file,
1131 	struct dir_context *ctx)
1132 {
1133 	struct inode	*inode = file_inode(file);
1134 	xfs_inode_t	*ip = XFS_I(inode);
1135 	size_t		bufsize;
1136 
1137 	/*
1138 	 * The Linux API doesn't pass down the total size of the buffer
1139 	 * we read into down to the filesystem.  With the filldir concept
1140 	 * it's not needed for correct information, but the XFS dir2 leaf
1141 	 * code wants an estimate of the buffer size to calculate it's
1142 	 * readahead window and size the buffers used for mapping to
1143 	 * physical blocks.
1144 	 *
1145 	 * Try to give it an estimate that's good enough, maybe at some
1146 	 * point we can change the ->readdir prototype to include the
1147 	 * buffer size.  For now we use the current glibc buffer size.
1148 	 */
1149 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1150 
1151 	return xfs_readdir(ip, ctx, bufsize);
1152 }
1153 
1154 /*
1155  * This type is designed to indicate the type of offset we would like
1156  * to search from page cache for xfs_seek_hole_data().
1157  */
1158 enum {
1159 	HOLE_OFF = 0,
1160 	DATA_OFF,
1161 };
1162 
1163 /*
1164  * Lookup the desired type of offset from the given page.
1165  *
1166  * On success, return true and the offset argument will point to the
1167  * start of the region that was found.  Otherwise this function will
1168  * return false and keep the offset argument unchanged.
1169  */
1170 STATIC bool
1171 xfs_lookup_buffer_offset(
1172 	struct page		*page,
1173 	loff_t			*offset,
1174 	unsigned int		type)
1175 {
1176 	loff_t			lastoff = page_offset(page);
1177 	bool			found = false;
1178 	struct buffer_head	*bh, *head;
1179 
1180 	bh = head = page_buffers(page);
1181 	do {
1182 		/*
1183 		 * Unwritten extents that have data in the page
1184 		 * cache covering them can be identified by the
1185 		 * BH_Unwritten state flag.  Pages with multiple
1186 		 * buffers might have a mix of holes, data and
1187 		 * unwritten extents - any buffer with valid
1188 		 * data in it should have BH_Uptodate flag set
1189 		 * on it.
1190 		 */
1191 		if (buffer_unwritten(bh) ||
1192 		    buffer_uptodate(bh)) {
1193 			if (type == DATA_OFF)
1194 				found = true;
1195 		} else {
1196 			if (type == HOLE_OFF)
1197 				found = true;
1198 		}
1199 
1200 		if (found) {
1201 			*offset = lastoff;
1202 			break;
1203 		}
1204 		lastoff += bh->b_size;
1205 	} while ((bh = bh->b_this_page) != head);
1206 
1207 	return found;
1208 }
1209 
1210 /*
1211  * This routine is called to find out and return a data or hole offset
1212  * from the page cache for unwritten extents according to the desired
1213  * type for xfs_seek_hole_data().
1214  *
1215  * The argument offset is used to tell where we start to search from the
1216  * page cache.  Map is used to figure out the end points of the range to
1217  * lookup pages.
1218  *
1219  * Return true if the desired type of offset was found, and the argument
1220  * offset is filled with that address.  Otherwise, return false and keep
1221  * offset unchanged.
1222  */
1223 STATIC bool
1224 xfs_find_get_desired_pgoff(
1225 	struct inode		*inode,
1226 	struct xfs_bmbt_irec	*map,
1227 	unsigned int		type,
1228 	loff_t			*offset)
1229 {
1230 	struct xfs_inode	*ip = XFS_I(inode);
1231 	struct xfs_mount	*mp = ip->i_mount;
1232 	struct pagevec		pvec;
1233 	pgoff_t			index;
1234 	pgoff_t			end;
1235 	loff_t			endoff;
1236 	loff_t			startoff = *offset;
1237 	loff_t			lastoff = startoff;
1238 	bool			found = false;
1239 
1240 	pagevec_init(&pvec, 0);
1241 
1242 	index = startoff >> PAGE_SHIFT;
1243 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1244 	end = endoff >> PAGE_SHIFT;
1245 	do {
1246 		int		want;
1247 		unsigned	nr_pages;
1248 		unsigned int	i;
1249 
1250 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1251 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1252 					  want);
1253 		/*
1254 		 * No page mapped into given range.  If we are searching holes
1255 		 * and if this is the first time we got into the loop, it means
1256 		 * that the given offset is landed in a hole, return it.
1257 		 *
1258 		 * If we have already stepped through some block buffers to find
1259 		 * holes but they all contains data.  In this case, the last
1260 		 * offset is already updated and pointed to the end of the last
1261 		 * mapped page, if it does not reach the endpoint to search,
1262 		 * that means there should be a hole between them.
1263 		 */
1264 		if (nr_pages == 0) {
1265 			/* Data search found nothing */
1266 			if (type == DATA_OFF)
1267 				break;
1268 
1269 			ASSERT(type == HOLE_OFF);
1270 			if (lastoff == startoff || lastoff < endoff) {
1271 				found = true;
1272 				*offset = lastoff;
1273 			}
1274 			break;
1275 		}
1276 
1277 		/*
1278 		 * At lease we found one page.  If this is the first time we
1279 		 * step into the loop, and if the first page index offset is
1280 		 * greater than the given search offset, a hole was found.
1281 		 */
1282 		if (type == HOLE_OFF && lastoff == startoff &&
1283 		    lastoff < page_offset(pvec.pages[0])) {
1284 			found = true;
1285 			break;
1286 		}
1287 
1288 		for (i = 0; i < nr_pages; i++) {
1289 			struct page	*page = pvec.pages[i];
1290 			loff_t		b_offset;
1291 
1292 			/*
1293 			 * At this point, the page may be truncated or
1294 			 * invalidated (changing page->mapping to NULL),
1295 			 * or even swizzled back from swapper_space to tmpfs
1296 			 * file mapping. However, page->index will not change
1297 			 * because we have a reference on the page.
1298 			 *
1299 			 * Searching done if the page index is out of range.
1300 			 * If the current offset is not reaches the end of
1301 			 * the specified search range, there should be a hole
1302 			 * between them.
1303 			 */
1304 			if (page->index > end) {
1305 				if (type == HOLE_OFF && lastoff < endoff) {
1306 					*offset = lastoff;
1307 					found = true;
1308 				}
1309 				goto out;
1310 			}
1311 
1312 			lock_page(page);
1313 			/*
1314 			 * Page truncated or invalidated(page->mapping == NULL).
1315 			 * We can freely skip it and proceed to check the next
1316 			 * page.
1317 			 */
1318 			if (unlikely(page->mapping != inode->i_mapping)) {
1319 				unlock_page(page);
1320 				continue;
1321 			}
1322 
1323 			if (!page_has_buffers(page)) {
1324 				unlock_page(page);
1325 				continue;
1326 			}
1327 
1328 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1329 			if (found) {
1330 				/*
1331 				 * The found offset may be less than the start
1332 				 * point to search if this is the first time to
1333 				 * come here.
1334 				 */
1335 				*offset = max_t(loff_t, startoff, b_offset);
1336 				unlock_page(page);
1337 				goto out;
1338 			}
1339 
1340 			/*
1341 			 * We either searching data but nothing was found, or
1342 			 * searching hole but found a data buffer.  In either
1343 			 * case, probably the next page contains the desired
1344 			 * things, update the last offset to it so.
1345 			 */
1346 			lastoff = page_offset(page) + PAGE_SIZE;
1347 			unlock_page(page);
1348 		}
1349 
1350 		/*
1351 		 * The number of returned pages less than our desired, search
1352 		 * done.  In this case, nothing was found for searching data,
1353 		 * but we found a hole behind the last offset.
1354 		 */
1355 		if (nr_pages < want) {
1356 			if (type == HOLE_OFF) {
1357 				*offset = lastoff;
1358 				found = true;
1359 			}
1360 			break;
1361 		}
1362 
1363 		index = pvec.pages[i - 1]->index + 1;
1364 		pagevec_release(&pvec);
1365 	} while (index <= end);
1366 
1367 out:
1368 	pagevec_release(&pvec);
1369 	return found;
1370 }
1371 
1372 /*
1373  * caller must lock inode with xfs_ilock_data_map_shared,
1374  * can we craft an appropriate ASSERT?
1375  *
1376  * end is because the VFS-level lseek interface is defined such that any
1377  * offset past i_size shall return -ENXIO, but we use this for quota code
1378  * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1379  */
1380 loff_t
1381 __xfs_seek_hole_data(
1382 	struct inode		*inode,
1383 	loff_t			start,
1384 	loff_t			end,
1385 	int			whence)
1386 {
1387 	struct xfs_inode	*ip = XFS_I(inode);
1388 	struct xfs_mount	*mp = ip->i_mount;
1389 	loff_t			uninitialized_var(offset);
1390 	xfs_fileoff_t		fsbno;
1391 	xfs_filblks_t		lastbno;
1392 	int			error;
1393 
1394 	if (start >= end) {
1395 		error = -ENXIO;
1396 		goto out_error;
1397 	}
1398 
1399 	/*
1400 	 * Try to read extents from the first block indicated
1401 	 * by fsbno to the end block of the file.
1402 	 */
1403 	fsbno = XFS_B_TO_FSBT(mp, start);
1404 	lastbno = XFS_B_TO_FSB(mp, end);
1405 
1406 	for (;;) {
1407 		struct xfs_bmbt_irec	map[2];
1408 		int			nmap = 2;
1409 		unsigned int		i;
1410 
1411 		error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1412 				       XFS_BMAPI_ENTIRE);
1413 		if (error)
1414 			goto out_error;
1415 
1416 		/* No extents at given offset, must be beyond EOF */
1417 		if (nmap == 0) {
1418 			error = -ENXIO;
1419 			goto out_error;
1420 		}
1421 
1422 		for (i = 0; i < nmap; i++) {
1423 			offset = max_t(loff_t, start,
1424 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1425 
1426 			/* Landed in the hole we wanted? */
1427 			if (whence == SEEK_HOLE &&
1428 			    map[i].br_startblock == HOLESTARTBLOCK)
1429 				goto out;
1430 
1431 			/* Landed in the data extent we wanted? */
1432 			if (whence == SEEK_DATA &&
1433 			    (map[i].br_startblock == DELAYSTARTBLOCK ||
1434 			     (map[i].br_state == XFS_EXT_NORM &&
1435 			      !isnullstartblock(map[i].br_startblock))))
1436 				goto out;
1437 
1438 			/*
1439 			 * Landed in an unwritten extent, try to search
1440 			 * for hole or data from page cache.
1441 			 */
1442 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1443 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1444 				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1445 							&offset))
1446 					goto out;
1447 			}
1448 		}
1449 
1450 		/*
1451 		 * We only received one extent out of the two requested. This
1452 		 * means we've hit EOF and didn't find what we are looking for.
1453 		 */
1454 		if (nmap == 1) {
1455 			/*
1456 			 * If we were looking for a hole, set offset to
1457 			 * the end of the file (i.e., there is an implicit
1458 			 * hole at the end of any file).
1459 		 	 */
1460 			if (whence == SEEK_HOLE) {
1461 				offset = end;
1462 				break;
1463 			}
1464 			/*
1465 			 * If we were looking for data, it's nowhere to be found
1466 			 */
1467 			ASSERT(whence == SEEK_DATA);
1468 			error = -ENXIO;
1469 			goto out_error;
1470 		}
1471 
1472 		ASSERT(i > 1);
1473 
1474 		/*
1475 		 * Nothing was found, proceed to the next round of search
1476 		 * if the next reading offset is not at or beyond EOF.
1477 		 */
1478 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1479 		start = XFS_FSB_TO_B(mp, fsbno);
1480 		if (start >= end) {
1481 			if (whence == SEEK_HOLE) {
1482 				offset = end;
1483 				break;
1484 			}
1485 			ASSERT(whence == SEEK_DATA);
1486 			error = -ENXIO;
1487 			goto out_error;
1488 		}
1489 	}
1490 
1491 out:
1492 	/*
1493 	 * If at this point we have found the hole we wanted, the returned
1494 	 * offset may be bigger than the file size as it may be aligned to
1495 	 * page boundary for unwritten extents.  We need to deal with this
1496 	 * situation in particular.
1497 	 */
1498 	if (whence == SEEK_HOLE)
1499 		offset = min_t(loff_t, offset, end);
1500 
1501 	return offset;
1502 
1503 out_error:
1504 	return error;
1505 }
1506 
1507 STATIC loff_t
1508 xfs_seek_hole_data(
1509 	struct file		*file,
1510 	loff_t			start,
1511 	int			whence)
1512 {
1513 	struct inode		*inode = file->f_mapping->host;
1514 	struct xfs_inode	*ip = XFS_I(inode);
1515 	struct xfs_mount	*mp = ip->i_mount;
1516 	uint			lock;
1517 	loff_t			offset, end;
1518 	int			error = 0;
1519 
1520 	if (XFS_FORCED_SHUTDOWN(mp))
1521 		return -EIO;
1522 
1523 	lock = xfs_ilock_data_map_shared(ip);
1524 
1525 	end = i_size_read(inode);
1526 	offset = __xfs_seek_hole_data(inode, start, end, whence);
1527 	if (offset < 0) {
1528 		error = offset;
1529 		goto out_unlock;
1530 	}
1531 
1532 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1533 
1534 out_unlock:
1535 	xfs_iunlock(ip, lock);
1536 
1537 	if (error)
1538 		return error;
1539 	return offset;
1540 }
1541 
1542 STATIC loff_t
1543 xfs_file_llseek(
1544 	struct file	*file,
1545 	loff_t		offset,
1546 	int		whence)
1547 {
1548 	switch (whence) {
1549 	case SEEK_END:
1550 	case SEEK_CUR:
1551 	case SEEK_SET:
1552 		return generic_file_llseek(file, offset, whence);
1553 	case SEEK_HOLE:
1554 	case SEEK_DATA:
1555 		return xfs_seek_hole_data(file, offset, whence);
1556 	default:
1557 		return -EINVAL;
1558 	}
1559 }
1560 
1561 /*
1562  * Locking for serialisation of IO during page faults. This results in a lock
1563  * ordering of:
1564  *
1565  * mmap_sem (MM)
1566  *   sb_start_pagefault(vfs, freeze)
1567  *     i_mmaplock (XFS - truncate serialisation)
1568  *       page_lock (MM)
1569  *         i_lock (XFS - extent map serialisation)
1570  */
1571 
1572 /*
1573  * mmap()d file has taken write protection fault and is being made writable. We
1574  * can set the page state up correctly for a writable page, which means we can
1575  * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1576  * mapping.
1577  */
1578 STATIC int
1579 xfs_filemap_page_mkwrite(
1580 	struct vm_area_struct	*vma,
1581 	struct vm_fault		*vmf)
1582 {
1583 	struct inode		*inode = file_inode(vma->vm_file);
1584 	int			ret;
1585 
1586 	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1587 
1588 	sb_start_pagefault(inode->i_sb);
1589 	file_update_time(vma->vm_file);
1590 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1591 
1592 	if (IS_DAX(inode)) {
1593 		ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_dax_fault);
1594 	} else {
1595 		ret = block_page_mkwrite(vma, vmf, xfs_get_blocks);
1596 		ret = block_page_mkwrite_return(ret);
1597 	}
1598 
1599 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1600 	sb_end_pagefault(inode->i_sb);
1601 
1602 	return ret;
1603 }
1604 
1605 STATIC int
1606 xfs_filemap_fault(
1607 	struct vm_area_struct	*vma,
1608 	struct vm_fault		*vmf)
1609 {
1610 	struct inode		*inode = file_inode(vma->vm_file);
1611 	int			ret;
1612 
1613 	trace_xfs_filemap_fault(XFS_I(inode));
1614 
1615 	/* DAX can shortcut the normal fault path on write faults! */
1616 	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1617 		return xfs_filemap_page_mkwrite(vma, vmf);
1618 
1619 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1620 	if (IS_DAX(inode)) {
1621 		/*
1622 		 * we do not want to trigger unwritten extent conversion on read
1623 		 * faults - that is unnecessary overhead and would also require
1624 		 * changes to xfs_get_blocks_direct() to map unwritten extent
1625 		 * ioend for conversion on read-only mappings.
1626 		 */
1627 		ret = __dax_fault(vma, vmf, xfs_get_blocks_dax_fault);
1628 	} else
1629 		ret = filemap_fault(vma, vmf);
1630 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1631 
1632 	return ret;
1633 }
1634 
1635 /*
1636  * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1637  * both read and write faults. Hence we need to handle both cases. There is no
1638  * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1639  * handle both cases here. @flags carries the information on the type of fault
1640  * occuring.
1641  */
1642 STATIC int
1643 xfs_filemap_pmd_fault(
1644 	struct vm_area_struct	*vma,
1645 	unsigned long		addr,
1646 	pmd_t			*pmd,
1647 	unsigned int		flags)
1648 {
1649 	struct inode		*inode = file_inode(vma->vm_file);
1650 	struct xfs_inode	*ip = XFS_I(inode);
1651 	int			ret;
1652 
1653 	if (!IS_DAX(inode))
1654 		return VM_FAULT_FALLBACK;
1655 
1656 	trace_xfs_filemap_pmd_fault(ip);
1657 
1658 	if (flags & FAULT_FLAG_WRITE) {
1659 		sb_start_pagefault(inode->i_sb);
1660 		file_update_time(vma->vm_file);
1661 	}
1662 
1663 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1664 	ret = __dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
1665 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1666 
1667 	if (flags & FAULT_FLAG_WRITE)
1668 		sb_end_pagefault(inode->i_sb);
1669 
1670 	return ret;
1671 }
1672 
1673 /*
1674  * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1675  * updates on write faults. In reality, it's need to serialise against
1676  * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1677  * to ensure we serialise the fault barrier in place.
1678  */
1679 static int
1680 xfs_filemap_pfn_mkwrite(
1681 	struct vm_area_struct	*vma,
1682 	struct vm_fault		*vmf)
1683 {
1684 
1685 	struct inode		*inode = file_inode(vma->vm_file);
1686 	struct xfs_inode	*ip = XFS_I(inode);
1687 	int			ret = VM_FAULT_NOPAGE;
1688 	loff_t			size;
1689 
1690 	trace_xfs_filemap_pfn_mkwrite(ip);
1691 
1692 	sb_start_pagefault(inode->i_sb);
1693 	file_update_time(vma->vm_file);
1694 
1695 	/* check if the faulting page hasn't raced with truncate */
1696 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1697 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1698 	if (vmf->pgoff >= size)
1699 		ret = VM_FAULT_SIGBUS;
1700 	else if (IS_DAX(inode))
1701 		ret = dax_pfn_mkwrite(vma, vmf);
1702 	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1703 	sb_end_pagefault(inode->i_sb);
1704 	return ret;
1705 
1706 }
1707 
1708 static const struct vm_operations_struct xfs_file_vm_ops = {
1709 	.fault		= xfs_filemap_fault,
1710 	.pmd_fault	= xfs_filemap_pmd_fault,
1711 	.map_pages	= filemap_map_pages,
1712 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1713 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1714 };
1715 
1716 STATIC int
1717 xfs_file_mmap(
1718 	struct file	*filp,
1719 	struct vm_area_struct *vma)
1720 {
1721 	file_accessed(filp);
1722 	vma->vm_ops = &xfs_file_vm_ops;
1723 	if (IS_DAX(file_inode(filp)))
1724 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1725 	return 0;
1726 }
1727 
1728 const struct file_operations xfs_file_operations = {
1729 	.llseek		= xfs_file_llseek,
1730 	.read_iter	= xfs_file_read_iter,
1731 	.write_iter	= xfs_file_write_iter,
1732 	.splice_read	= xfs_file_splice_read,
1733 	.splice_write	= iter_file_splice_write,
1734 	.unlocked_ioctl	= xfs_file_ioctl,
1735 #ifdef CONFIG_COMPAT
1736 	.compat_ioctl	= xfs_file_compat_ioctl,
1737 #endif
1738 	.mmap		= xfs_file_mmap,
1739 	.open		= xfs_file_open,
1740 	.release	= xfs_file_release,
1741 	.fsync		= xfs_file_fsync,
1742 	.fallocate	= xfs_file_fallocate,
1743 };
1744 
1745 const struct file_operations xfs_dir_file_operations = {
1746 	.open		= xfs_dir_open,
1747 	.read		= generic_read_dir,
1748 	.iterate_shared	= xfs_file_readdir,
1749 	.llseek		= generic_file_llseek,
1750 	.unlocked_ioctl	= xfs_file_ioctl,
1751 #ifdef CONFIG_COMPAT
1752 	.compat_ioctl	= xfs_file_compat_ioctl,
1753 #endif
1754 	.fsync		= xfs_dir_fsync,
1755 };
1756