xref: /linux/fs/xfs/xfs_file.c (revision f1285ff0acf9040a39921355d07bd83a3308c402)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44 #include <linux/backing-dev.h>
45 
46 static const struct vm_operations_struct xfs_file_vm_ops;
47 
48 /*
49  * Locking primitives for read and write IO paths to ensure we consistently use
50  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
51  */
52 static inline void
53 xfs_rw_ilock(
54 	struct xfs_inode	*ip,
55 	int			type)
56 {
57 	if (type & XFS_IOLOCK_EXCL)
58 		inode_lock(VFS_I(ip));
59 	xfs_ilock(ip, type);
60 }
61 
62 static inline void
63 xfs_rw_iunlock(
64 	struct xfs_inode	*ip,
65 	int			type)
66 {
67 	xfs_iunlock(ip, type);
68 	if (type & XFS_IOLOCK_EXCL)
69 		inode_unlock(VFS_I(ip));
70 }
71 
72 static inline void
73 xfs_rw_ilock_demote(
74 	struct xfs_inode	*ip,
75 	int			type)
76 {
77 	xfs_ilock_demote(ip, type);
78 	if (type & XFS_IOLOCK_EXCL)
79 		inode_unlock(VFS_I(ip));
80 }
81 
82 /*
83  * xfs_iozero clears the specified range supplied via the page cache (except in
84  * the DAX case). Writes through the page cache will allocate blocks over holes,
85  * though the callers usually map the holes first and avoid them. If a block is
86  * not completely zeroed, then it will be read from disk before being partially
87  * zeroed.
88  *
89  * In the DAX case, we can just directly write to the underlying pages. This
90  * will not allocate blocks, but will avoid holes and unwritten extents and so
91  * not do unnecessary work.
92  */
93 int
94 xfs_iozero(
95 	struct xfs_inode	*ip,	/* inode			*/
96 	loff_t			pos,	/* offset in file		*/
97 	size_t			count)	/* size of data to zero		*/
98 {
99 	struct page		*page;
100 	struct address_space	*mapping;
101 	int			status = 0;
102 
103 
104 	mapping = VFS_I(ip)->i_mapping;
105 	do {
106 		unsigned offset, bytes;
107 		void *fsdata;
108 
109 		offset = (pos & (PAGE_SIZE -1)); /* Within page */
110 		bytes = PAGE_SIZE - offset;
111 		if (bytes > count)
112 			bytes = count;
113 
114 		if (IS_DAX(VFS_I(ip))) {
115 			status = dax_zero_page_range(VFS_I(ip), pos, bytes,
116 						     xfs_get_blocks_direct);
117 			if (status)
118 				break;
119 		} else {
120 			status = pagecache_write_begin(NULL, mapping, pos, bytes,
121 						AOP_FLAG_UNINTERRUPTIBLE,
122 						&page, &fsdata);
123 			if (status)
124 				break;
125 
126 			zero_user(page, offset, bytes);
127 
128 			status = pagecache_write_end(NULL, mapping, pos, bytes,
129 						bytes, page, fsdata);
130 			WARN_ON(status <= 0); /* can't return less than zero! */
131 			status = 0;
132 		}
133 		pos += bytes;
134 		count -= bytes;
135 	} while (count);
136 
137 	return status;
138 }
139 
140 int
141 xfs_update_prealloc_flags(
142 	struct xfs_inode	*ip,
143 	enum xfs_prealloc_flags	flags)
144 {
145 	struct xfs_trans	*tp;
146 	int			error;
147 
148 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
149 			0, 0, 0, &tp);
150 	if (error)
151 		return error;
152 
153 	xfs_ilock(ip, XFS_ILOCK_EXCL);
154 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
155 
156 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
157 		VFS_I(ip)->i_mode &= ~S_ISUID;
158 		if (VFS_I(ip)->i_mode & S_IXGRP)
159 			VFS_I(ip)->i_mode &= ~S_ISGID;
160 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
161 	}
162 
163 	if (flags & XFS_PREALLOC_SET)
164 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
165 	if (flags & XFS_PREALLOC_CLEAR)
166 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
167 
168 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
169 	if (flags & XFS_PREALLOC_SYNC)
170 		xfs_trans_set_sync(tp);
171 	return xfs_trans_commit(tp);
172 }
173 
174 /*
175  * Fsync operations on directories are much simpler than on regular files,
176  * as there is no file data to flush, and thus also no need for explicit
177  * cache flush operations, and there are no non-transaction metadata updates
178  * on directories either.
179  */
180 STATIC int
181 xfs_dir_fsync(
182 	struct file		*file,
183 	loff_t			start,
184 	loff_t			end,
185 	int			datasync)
186 {
187 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
188 	struct xfs_mount	*mp = ip->i_mount;
189 	xfs_lsn_t		lsn = 0;
190 
191 	trace_xfs_dir_fsync(ip);
192 
193 	xfs_ilock(ip, XFS_ILOCK_SHARED);
194 	if (xfs_ipincount(ip))
195 		lsn = ip->i_itemp->ili_last_lsn;
196 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
197 
198 	if (!lsn)
199 		return 0;
200 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
201 }
202 
203 STATIC int
204 xfs_file_fsync(
205 	struct file		*file,
206 	loff_t			start,
207 	loff_t			end,
208 	int			datasync)
209 {
210 	struct inode		*inode = file->f_mapping->host;
211 	struct xfs_inode	*ip = XFS_I(inode);
212 	struct xfs_mount	*mp = ip->i_mount;
213 	int			error = 0;
214 	int			log_flushed = 0;
215 	xfs_lsn_t		lsn = 0;
216 
217 	trace_xfs_file_fsync(ip);
218 
219 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
220 	if (error)
221 		return error;
222 
223 	if (XFS_FORCED_SHUTDOWN(mp))
224 		return -EIO;
225 
226 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
227 
228 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
229 		/*
230 		 * If we have an RT and/or log subvolume we need to make sure
231 		 * to flush the write cache the device used for file data
232 		 * first.  This is to ensure newly written file data make
233 		 * it to disk before logging the new inode size in case of
234 		 * an extending write.
235 		 */
236 		if (XFS_IS_REALTIME_INODE(ip))
237 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
238 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
239 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
240 	}
241 
242 	/*
243 	 * All metadata updates are logged, which means that we just have to
244 	 * flush the log up to the latest LSN that touched the inode. If we have
245 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
246 	 * log force before we clear the ili_fsync_fields field. This ensures
247 	 * that we don't get a racing sync operation that does not wait for the
248 	 * metadata to hit the journal before returning. If we race with
249 	 * clearing the ili_fsync_fields, then all that will happen is the log
250 	 * force will do nothing as the lsn will already be on disk. We can't
251 	 * race with setting ili_fsync_fields because that is done under
252 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
253 	 * until after the ili_fsync_fields is cleared.
254 	 */
255 	xfs_ilock(ip, XFS_ILOCK_SHARED);
256 	if (xfs_ipincount(ip)) {
257 		if (!datasync ||
258 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
259 			lsn = ip->i_itemp->ili_last_lsn;
260 	}
261 
262 	if (lsn) {
263 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
264 		ip->i_itemp->ili_fsync_fields = 0;
265 	}
266 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
267 
268 	/*
269 	 * If we only have a single device, and the log force about was
270 	 * a no-op we might have to flush the data device cache here.
271 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
272 	 * an already allocated file and thus do not have any metadata to
273 	 * commit.
274 	 */
275 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
276 	    mp->m_logdev_targp == mp->m_ddev_targp &&
277 	    !XFS_IS_REALTIME_INODE(ip) &&
278 	    !log_flushed)
279 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
280 
281 	return error;
282 }
283 
284 STATIC ssize_t
285 xfs_file_dio_aio_read(
286 	struct kiocb		*iocb,
287 	struct iov_iter		*to)
288 {
289 	struct address_space	*mapping = iocb->ki_filp->f_mapping;
290 	struct inode		*inode = mapping->host;
291 	struct xfs_inode	*ip = XFS_I(inode);
292 	loff_t			isize = i_size_read(inode);
293 	size_t			count = iov_iter_count(to);
294 	struct iov_iter		data;
295 	struct xfs_buftarg	*target;
296 	ssize_t			ret = 0;
297 
298 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
299 
300 	if (!count)
301 		return 0; /* skip atime */
302 
303 	if (XFS_IS_REALTIME_INODE(ip))
304 		target = ip->i_mount->m_rtdev_targp;
305 	else
306 		target = ip->i_mount->m_ddev_targp;
307 
308 	if (!IS_DAX(inode)) {
309 		/* DIO must be aligned to device logical sector size */
310 		if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
311 			if (iocb->ki_pos == isize)
312 				return 0;
313 			return -EINVAL;
314 		}
315 	}
316 
317 	/*
318 	 * Locking is a bit tricky here. If we take an exclusive lock for direct
319 	 * IO, we effectively serialise all new concurrent read IO to this file
320 	 * and block it behind IO that is currently in progress because IO in
321 	 * progress holds the IO lock shared. We only need to hold the lock
322 	 * exclusive to blow away the page cache, so only take lock exclusively
323 	 * if the page cache needs invalidation. This allows the normal direct
324 	 * IO case of no page cache pages to proceeed concurrently without
325 	 * serialisation.
326 	 */
327 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
328 	if (mapping->nrpages) {
329 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
330 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
331 
332 		/*
333 		 * The generic dio code only flushes the range of the particular
334 		 * I/O. Because we take an exclusive lock here, this whole
335 		 * sequence is considerably more expensive for us. This has a
336 		 * noticeable performance impact for any file with cached pages,
337 		 * even when outside of the range of the particular I/O.
338 		 *
339 		 * Hence, amortize the cost of the lock against a full file
340 		 * flush and reduce the chances of repeated iolock cycles going
341 		 * forward.
342 		 */
343 		if (mapping->nrpages) {
344 			ret = filemap_write_and_wait(mapping);
345 			if (ret) {
346 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
347 				return ret;
348 			}
349 
350 			/*
351 			 * Invalidate whole pages. This can return an error if
352 			 * we fail to invalidate a page, but this should never
353 			 * happen on XFS. Warn if it does fail.
354 			 */
355 			ret = invalidate_inode_pages2(mapping);
356 			WARN_ON_ONCE(ret);
357 			ret = 0;
358 		}
359 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
360 	}
361 
362 	data = *to;
363 	ret = mapping->a_ops->direct_IO(iocb, &data);
364 	if (ret > 0) {
365 		iocb->ki_pos += ret;
366 		iov_iter_advance(to, ret);
367 	}
368 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
369 
370 	file_accessed(iocb->ki_filp);
371 	return ret;
372 }
373 
374 STATIC ssize_t
375 xfs_file_buffered_aio_read(
376 	struct kiocb		*iocb,
377 	struct iov_iter		*to)
378 {
379 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
380 	ssize_t			ret;
381 
382 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
383 
384 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
385 	ret = generic_file_read_iter(iocb, to);
386 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
387 
388 	return ret;
389 }
390 
391 STATIC ssize_t
392 xfs_file_read_iter(
393 	struct kiocb		*iocb,
394 	struct iov_iter		*to)
395 {
396 	struct xfs_mount	*mp = XFS_I(file_inode(iocb->ki_filp))->i_mount;
397 	ssize_t			ret = 0;
398 
399 	XFS_STATS_INC(mp, xs_read_calls);
400 
401 	if (XFS_FORCED_SHUTDOWN(mp))
402 		return -EIO;
403 
404 	if (iocb->ki_flags & IOCB_DIRECT)
405 		ret = xfs_file_dio_aio_read(iocb, to);
406 	else
407 		ret = xfs_file_buffered_aio_read(iocb, to);
408 
409 	if (ret > 0)
410 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
411 	return ret;
412 }
413 
414 STATIC ssize_t
415 xfs_file_splice_read(
416 	struct file		*infilp,
417 	loff_t			*ppos,
418 	struct pipe_inode_info	*pipe,
419 	size_t			count,
420 	unsigned int		flags)
421 {
422 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
423 	ssize_t			ret;
424 
425 	XFS_STATS_INC(ip->i_mount, xs_read_calls);
426 
427 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
428 		return -EIO;
429 
430 	trace_xfs_file_splice_read(ip, count, *ppos);
431 
432 	/*
433 	 * DAX inodes cannot ues the page cache for splice, so we have to push
434 	 * them through the VFS IO path. This means it goes through
435 	 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we
436 	 * cannot lock the splice operation at this level for DAX inodes.
437 	 */
438 	if (IS_DAX(VFS_I(ip))) {
439 		ret = default_file_splice_read(infilp, ppos, pipe, count,
440 					       flags);
441 		goto out;
442 	}
443 
444 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
445 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
446 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
447 out:
448 	if (ret > 0)
449 		XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
450 	return ret;
451 }
452 
453 /*
454  * This routine is called to handle zeroing any space in the last block of the
455  * file that is beyond the EOF.  We do this since the size is being increased
456  * without writing anything to that block and we don't want to read the
457  * garbage on the disk.
458  */
459 STATIC int				/* error (positive) */
460 xfs_zero_last_block(
461 	struct xfs_inode	*ip,
462 	xfs_fsize_t		offset,
463 	xfs_fsize_t		isize,
464 	bool			*did_zeroing)
465 {
466 	struct xfs_mount	*mp = ip->i_mount;
467 	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
468 	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
469 	int			zero_len;
470 	int			nimaps = 1;
471 	int			error = 0;
472 	struct xfs_bmbt_irec	imap;
473 
474 	xfs_ilock(ip, XFS_ILOCK_EXCL);
475 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
476 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
477 	if (error)
478 		return error;
479 
480 	ASSERT(nimaps > 0);
481 
482 	/*
483 	 * If the block underlying isize is just a hole, then there
484 	 * is nothing to zero.
485 	 */
486 	if (imap.br_startblock == HOLESTARTBLOCK)
487 		return 0;
488 
489 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
490 	if (isize + zero_len > offset)
491 		zero_len = offset - isize;
492 	*did_zeroing = true;
493 	return xfs_iozero(ip, isize, zero_len);
494 }
495 
496 /*
497  * Zero any on disk space between the current EOF and the new, larger EOF.
498  *
499  * This handles the normal case of zeroing the remainder of the last block in
500  * the file and the unusual case of zeroing blocks out beyond the size of the
501  * file.  This second case only happens with fixed size extents and when the
502  * system crashes before the inode size was updated but after blocks were
503  * allocated.
504  *
505  * Expects the iolock to be held exclusive, and will take the ilock internally.
506  */
507 int					/* error (positive) */
508 xfs_zero_eof(
509 	struct xfs_inode	*ip,
510 	xfs_off_t		offset,		/* starting I/O offset */
511 	xfs_fsize_t		isize,		/* current inode size */
512 	bool			*did_zeroing)
513 {
514 	struct xfs_mount	*mp = ip->i_mount;
515 	xfs_fileoff_t		start_zero_fsb;
516 	xfs_fileoff_t		end_zero_fsb;
517 	xfs_fileoff_t		zero_count_fsb;
518 	xfs_fileoff_t		last_fsb;
519 	xfs_fileoff_t		zero_off;
520 	xfs_fsize_t		zero_len;
521 	int			nimaps;
522 	int			error = 0;
523 	struct xfs_bmbt_irec	imap;
524 
525 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
526 	ASSERT(offset > isize);
527 
528 	trace_xfs_zero_eof(ip, isize, offset - isize);
529 
530 	/*
531 	 * First handle zeroing the block on which isize resides.
532 	 *
533 	 * We only zero a part of that block so it is handled specially.
534 	 */
535 	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
536 		error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
537 		if (error)
538 			return error;
539 	}
540 
541 	/*
542 	 * Calculate the range between the new size and the old where blocks
543 	 * needing to be zeroed may exist.
544 	 *
545 	 * To get the block where the last byte in the file currently resides,
546 	 * we need to subtract one from the size and truncate back to a block
547 	 * boundary.  We subtract 1 in case the size is exactly on a block
548 	 * boundary.
549 	 */
550 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
551 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
552 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
553 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
554 	if (last_fsb == end_zero_fsb) {
555 		/*
556 		 * The size was only incremented on its last block.
557 		 * We took care of that above, so just return.
558 		 */
559 		return 0;
560 	}
561 
562 	ASSERT(start_zero_fsb <= end_zero_fsb);
563 	while (start_zero_fsb <= end_zero_fsb) {
564 		nimaps = 1;
565 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
566 
567 		xfs_ilock(ip, XFS_ILOCK_EXCL);
568 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
569 					  &imap, &nimaps, 0);
570 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
571 		if (error)
572 			return error;
573 
574 		ASSERT(nimaps > 0);
575 
576 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
577 		    imap.br_startblock == HOLESTARTBLOCK) {
578 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
579 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
580 			continue;
581 		}
582 
583 		/*
584 		 * There are blocks we need to zero.
585 		 */
586 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
587 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
588 
589 		if ((zero_off + zero_len) > offset)
590 			zero_len = offset - zero_off;
591 
592 		error = xfs_iozero(ip, zero_off, zero_len);
593 		if (error)
594 			return error;
595 
596 		*did_zeroing = true;
597 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
598 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
599 	}
600 
601 	return 0;
602 }
603 
604 /*
605  * Common pre-write limit and setup checks.
606  *
607  * Called with the iolocked held either shared and exclusive according to
608  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
609  * if called for a direct write beyond i_size.
610  */
611 STATIC ssize_t
612 xfs_file_aio_write_checks(
613 	struct kiocb		*iocb,
614 	struct iov_iter		*from,
615 	int			*iolock)
616 {
617 	struct file		*file = iocb->ki_filp;
618 	struct inode		*inode = file->f_mapping->host;
619 	struct xfs_inode	*ip = XFS_I(inode);
620 	ssize_t			error = 0;
621 	size_t			count = iov_iter_count(from);
622 	bool			drained_dio = false;
623 
624 restart:
625 	error = generic_write_checks(iocb, from);
626 	if (error <= 0)
627 		return error;
628 
629 	error = xfs_break_layouts(inode, iolock, true);
630 	if (error)
631 		return error;
632 
633 	/* For changing security info in file_remove_privs() we need i_mutex */
634 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
635 		xfs_rw_iunlock(ip, *iolock);
636 		*iolock = XFS_IOLOCK_EXCL;
637 		xfs_rw_ilock(ip, *iolock);
638 		goto restart;
639 	}
640 	/*
641 	 * If the offset is beyond the size of the file, we need to zero any
642 	 * blocks that fall between the existing EOF and the start of this
643 	 * write.  If zeroing is needed and we are currently holding the
644 	 * iolock shared, we need to update it to exclusive which implies
645 	 * having to redo all checks before.
646 	 *
647 	 * We need to serialise against EOF updates that occur in IO
648 	 * completions here. We want to make sure that nobody is changing the
649 	 * size while we do this check until we have placed an IO barrier (i.e.
650 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
651 	 * The spinlock effectively forms a memory barrier once we have the
652 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
653 	 * and hence be able to correctly determine if we need to run zeroing.
654 	 */
655 	spin_lock(&ip->i_flags_lock);
656 	if (iocb->ki_pos > i_size_read(inode)) {
657 		bool	zero = false;
658 
659 		spin_unlock(&ip->i_flags_lock);
660 		if (!drained_dio) {
661 			if (*iolock == XFS_IOLOCK_SHARED) {
662 				xfs_rw_iunlock(ip, *iolock);
663 				*iolock = XFS_IOLOCK_EXCL;
664 				xfs_rw_ilock(ip, *iolock);
665 				iov_iter_reexpand(from, count);
666 			}
667 			/*
668 			 * We now have an IO submission barrier in place, but
669 			 * AIO can do EOF updates during IO completion and hence
670 			 * we now need to wait for all of them to drain. Non-AIO
671 			 * DIO will have drained before we are given the
672 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
673 			 * no-op.
674 			 */
675 			inode_dio_wait(inode);
676 			drained_dio = true;
677 			goto restart;
678 		}
679 		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
680 		if (error)
681 			return error;
682 	} else
683 		spin_unlock(&ip->i_flags_lock);
684 
685 	/*
686 	 * Updating the timestamps will grab the ilock again from
687 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
688 	 * lock above.  Eventually we should look into a way to avoid
689 	 * the pointless lock roundtrip.
690 	 */
691 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
692 		error = file_update_time(file);
693 		if (error)
694 			return error;
695 	}
696 
697 	/*
698 	 * If we're writing the file then make sure to clear the setuid and
699 	 * setgid bits if the process is not being run by root.  This keeps
700 	 * people from modifying setuid and setgid binaries.
701 	 */
702 	if (!IS_NOSEC(inode))
703 		return file_remove_privs(file);
704 	return 0;
705 }
706 
707 /*
708  * xfs_file_dio_aio_write - handle direct IO writes
709  *
710  * Lock the inode appropriately to prepare for and issue a direct IO write.
711  * By separating it from the buffered write path we remove all the tricky to
712  * follow locking changes and looping.
713  *
714  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
715  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
716  * pages are flushed out.
717  *
718  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
719  * allowing them to be done in parallel with reads and other direct IO writes.
720  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
721  * needs to do sub-block zeroing and that requires serialisation against other
722  * direct IOs to the same block. In this case we need to serialise the
723  * submission of the unaligned IOs so that we don't get racing block zeroing in
724  * the dio layer.  To avoid the problem with aio, we also need to wait for
725  * outstanding IOs to complete so that unwritten extent conversion is completed
726  * before we try to map the overlapping block. This is currently implemented by
727  * hitting it with a big hammer (i.e. inode_dio_wait()).
728  *
729  * Returns with locks held indicated by @iolock and errors indicated by
730  * negative return values.
731  */
732 STATIC ssize_t
733 xfs_file_dio_aio_write(
734 	struct kiocb		*iocb,
735 	struct iov_iter		*from)
736 {
737 	struct file		*file = iocb->ki_filp;
738 	struct address_space	*mapping = file->f_mapping;
739 	struct inode		*inode = mapping->host;
740 	struct xfs_inode	*ip = XFS_I(inode);
741 	struct xfs_mount	*mp = ip->i_mount;
742 	ssize_t			ret = 0;
743 	int			unaligned_io = 0;
744 	int			iolock;
745 	size_t			count = iov_iter_count(from);
746 	loff_t			end;
747 	struct iov_iter		data;
748 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
749 					mp->m_rtdev_targp : mp->m_ddev_targp;
750 
751 	/* DIO must be aligned to device logical sector size */
752 	if (!IS_DAX(inode) &&
753 	    ((iocb->ki_pos | count) & target->bt_logical_sectormask))
754 		return -EINVAL;
755 
756 	/* "unaligned" here means not aligned to a filesystem block */
757 	if ((iocb->ki_pos & mp->m_blockmask) ||
758 	    ((iocb->ki_pos + count) & mp->m_blockmask))
759 		unaligned_io = 1;
760 
761 	/*
762 	 * We don't need to take an exclusive lock unless there page cache needs
763 	 * to be invalidated or unaligned IO is being executed. We don't need to
764 	 * consider the EOF extension case here because
765 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
766 	 * EOF zeroing cases and fill out the new inode size as appropriate.
767 	 */
768 	if (unaligned_io || mapping->nrpages)
769 		iolock = XFS_IOLOCK_EXCL;
770 	else
771 		iolock = XFS_IOLOCK_SHARED;
772 	xfs_rw_ilock(ip, iolock);
773 
774 	/*
775 	 * Recheck if there are cached pages that need invalidate after we got
776 	 * the iolock to protect against other threads adding new pages while
777 	 * we were waiting for the iolock.
778 	 */
779 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
780 		xfs_rw_iunlock(ip, iolock);
781 		iolock = XFS_IOLOCK_EXCL;
782 		xfs_rw_ilock(ip, iolock);
783 	}
784 
785 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
786 	if (ret)
787 		goto out;
788 	count = iov_iter_count(from);
789 	end = iocb->ki_pos + count - 1;
790 
791 	/*
792 	 * See xfs_file_dio_aio_read() for why we do a full-file flush here.
793 	 */
794 	if (mapping->nrpages) {
795 		ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
796 		if (ret)
797 			goto out;
798 		/*
799 		 * Invalidate whole pages. This can return an error if we fail
800 		 * to invalidate a page, but this should never happen on XFS.
801 		 * Warn if it does fail.
802 		 */
803 		ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
804 		WARN_ON_ONCE(ret);
805 		ret = 0;
806 	}
807 
808 	/*
809 	 * If we are doing unaligned IO, wait for all other IO to drain,
810 	 * otherwise demote the lock if we had to flush cached pages
811 	 */
812 	if (unaligned_io)
813 		inode_dio_wait(inode);
814 	else if (iolock == XFS_IOLOCK_EXCL) {
815 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
816 		iolock = XFS_IOLOCK_SHARED;
817 	}
818 
819 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
820 
821 	data = *from;
822 	ret = mapping->a_ops->direct_IO(iocb, &data);
823 
824 	/* see generic_file_direct_write() for why this is necessary */
825 	if (mapping->nrpages) {
826 		invalidate_inode_pages2_range(mapping,
827 					      iocb->ki_pos >> PAGE_SHIFT,
828 					      end >> PAGE_SHIFT);
829 	}
830 
831 	if (ret > 0) {
832 		iocb->ki_pos += ret;
833 		iov_iter_advance(from, ret);
834 	}
835 out:
836 	xfs_rw_iunlock(ip, iolock);
837 
838 	/*
839 	 * No fallback to buffered IO on errors for XFS. DAX can result in
840 	 * partial writes, but direct IO will either complete fully or fail.
841 	 */
842 	ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip)));
843 	return ret;
844 }
845 
846 STATIC ssize_t
847 xfs_file_buffered_aio_write(
848 	struct kiocb		*iocb,
849 	struct iov_iter		*from)
850 {
851 	struct file		*file = iocb->ki_filp;
852 	struct address_space	*mapping = file->f_mapping;
853 	struct inode		*inode = mapping->host;
854 	struct xfs_inode	*ip = XFS_I(inode);
855 	ssize_t			ret;
856 	int			enospc = 0;
857 	int			iolock = XFS_IOLOCK_EXCL;
858 
859 	xfs_rw_ilock(ip, iolock);
860 
861 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
862 	if (ret)
863 		goto out;
864 
865 	/* We can write back this queue in page reclaim */
866 	current->backing_dev_info = inode_to_bdi(inode);
867 
868 write_retry:
869 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
870 	ret = generic_perform_write(file, from, iocb->ki_pos);
871 	if (likely(ret >= 0))
872 		iocb->ki_pos += ret;
873 
874 	/*
875 	 * If we hit a space limit, try to free up some lingering preallocated
876 	 * space before returning an error. In the case of ENOSPC, first try to
877 	 * write back all dirty inodes to free up some of the excess reserved
878 	 * metadata space. This reduces the chances that the eofblocks scan
879 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
880 	 * also behaves as a filter to prevent too many eofblocks scans from
881 	 * running at the same time.
882 	 */
883 	if (ret == -EDQUOT && !enospc) {
884 		enospc = xfs_inode_free_quota_eofblocks(ip);
885 		if (enospc)
886 			goto write_retry;
887 	} else if (ret == -ENOSPC && !enospc) {
888 		struct xfs_eofblocks eofb = {0};
889 
890 		enospc = 1;
891 		xfs_flush_inodes(ip->i_mount);
892 		eofb.eof_scan_owner = ip->i_ino; /* for locking */
893 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
894 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
895 		goto write_retry;
896 	}
897 
898 	current->backing_dev_info = NULL;
899 out:
900 	xfs_rw_iunlock(ip, iolock);
901 	return ret;
902 }
903 
904 STATIC ssize_t
905 xfs_file_write_iter(
906 	struct kiocb		*iocb,
907 	struct iov_iter		*from)
908 {
909 	struct file		*file = iocb->ki_filp;
910 	struct address_space	*mapping = file->f_mapping;
911 	struct inode		*inode = mapping->host;
912 	struct xfs_inode	*ip = XFS_I(inode);
913 	ssize_t			ret;
914 	size_t			ocount = iov_iter_count(from);
915 
916 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
917 
918 	if (ocount == 0)
919 		return 0;
920 
921 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
922 		return -EIO;
923 
924 	if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode))
925 		ret = xfs_file_dio_aio_write(iocb, from);
926 	else
927 		ret = xfs_file_buffered_aio_write(iocb, from);
928 
929 	if (ret > 0) {
930 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
931 
932 		/* Handle various SYNC-type writes */
933 		ret = generic_write_sync(iocb, ret);
934 	}
935 	return ret;
936 }
937 
938 #define	XFS_FALLOC_FL_SUPPORTED						\
939 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
940 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
941 		 FALLOC_FL_INSERT_RANGE)
942 
943 STATIC long
944 xfs_file_fallocate(
945 	struct file		*file,
946 	int			mode,
947 	loff_t			offset,
948 	loff_t			len)
949 {
950 	struct inode		*inode = file_inode(file);
951 	struct xfs_inode	*ip = XFS_I(inode);
952 	long			error;
953 	enum xfs_prealloc_flags	flags = 0;
954 	uint			iolock = XFS_IOLOCK_EXCL;
955 	loff_t			new_size = 0;
956 	bool			do_file_insert = 0;
957 
958 	if (!S_ISREG(inode->i_mode))
959 		return -EINVAL;
960 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
961 		return -EOPNOTSUPP;
962 
963 	xfs_ilock(ip, iolock);
964 	error = xfs_break_layouts(inode, &iolock, false);
965 	if (error)
966 		goto out_unlock;
967 
968 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
969 	iolock |= XFS_MMAPLOCK_EXCL;
970 
971 	if (mode & FALLOC_FL_PUNCH_HOLE) {
972 		error = xfs_free_file_space(ip, offset, len);
973 		if (error)
974 			goto out_unlock;
975 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
976 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
977 
978 		if (offset & blksize_mask || len & blksize_mask) {
979 			error = -EINVAL;
980 			goto out_unlock;
981 		}
982 
983 		/*
984 		 * There is no need to overlap collapse range with EOF,
985 		 * in which case it is effectively a truncate operation
986 		 */
987 		if (offset + len >= i_size_read(inode)) {
988 			error = -EINVAL;
989 			goto out_unlock;
990 		}
991 
992 		new_size = i_size_read(inode) - len;
993 
994 		error = xfs_collapse_file_space(ip, offset, len);
995 		if (error)
996 			goto out_unlock;
997 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
998 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
999 
1000 		new_size = i_size_read(inode) + len;
1001 		if (offset & blksize_mask || len & blksize_mask) {
1002 			error = -EINVAL;
1003 			goto out_unlock;
1004 		}
1005 
1006 		/* check the new inode size does not wrap through zero */
1007 		if (new_size > inode->i_sb->s_maxbytes) {
1008 			error = -EFBIG;
1009 			goto out_unlock;
1010 		}
1011 
1012 		/* Offset should be less than i_size */
1013 		if (offset >= i_size_read(inode)) {
1014 			error = -EINVAL;
1015 			goto out_unlock;
1016 		}
1017 		do_file_insert = 1;
1018 	} else {
1019 		flags |= XFS_PREALLOC_SET;
1020 
1021 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1022 		    offset + len > i_size_read(inode)) {
1023 			new_size = offset + len;
1024 			error = inode_newsize_ok(inode, new_size);
1025 			if (error)
1026 				goto out_unlock;
1027 		}
1028 
1029 		if (mode & FALLOC_FL_ZERO_RANGE)
1030 			error = xfs_zero_file_space(ip, offset, len);
1031 		else
1032 			error = xfs_alloc_file_space(ip, offset, len,
1033 						     XFS_BMAPI_PREALLOC);
1034 		if (error)
1035 			goto out_unlock;
1036 	}
1037 
1038 	if (file->f_flags & O_DSYNC)
1039 		flags |= XFS_PREALLOC_SYNC;
1040 
1041 	error = xfs_update_prealloc_flags(ip, flags);
1042 	if (error)
1043 		goto out_unlock;
1044 
1045 	/* Change file size if needed */
1046 	if (new_size) {
1047 		struct iattr iattr;
1048 
1049 		iattr.ia_valid = ATTR_SIZE;
1050 		iattr.ia_size = new_size;
1051 		error = xfs_setattr_size(ip, &iattr);
1052 		if (error)
1053 			goto out_unlock;
1054 	}
1055 
1056 	/*
1057 	 * Perform hole insertion now that the file size has been
1058 	 * updated so that if we crash during the operation we don't
1059 	 * leave shifted extents past EOF and hence losing access to
1060 	 * the data that is contained within them.
1061 	 */
1062 	if (do_file_insert)
1063 		error = xfs_insert_file_space(ip, offset, len);
1064 
1065 out_unlock:
1066 	xfs_iunlock(ip, iolock);
1067 	return error;
1068 }
1069 
1070 
1071 STATIC int
1072 xfs_file_open(
1073 	struct inode	*inode,
1074 	struct file	*file)
1075 {
1076 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1077 		return -EFBIG;
1078 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1079 		return -EIO;
1080 	return 0;
1081 }
1082 
1083 STATIC int
1084 xfs_dir_open(
1085 	struct inode	*inode,
1086 	struct file	*file)
1087 {
1088 	struct xfs_inode *ip = XFS_I(inode);
1089 	int		mode;
1090 	int		error;
1091 
1092 	error = xfs_file_open(inode, file);
1093 	if (error)
1094 		return error;
1095 
1096 	/*
1097 	 * If there are any blocks, read-ahead block 0 as we're almost
1098 	 * certain to have the next operation be a read there.
1099 	 */
1100 	mode = xfs_ilock_data_map_shared(ip);
1101 	if (ip->i_d.di_nextents > 0)
1102 		xfs_dir3_data_readahead(ip, 0, -1);
1103 	xfs_iunlock(ip, mode);
1104 	return 0;
1105 }
1106 
1107 STATIC int
1108 xfs_file_release(
1109 	struct inode	*inode,
1110 	struct file	*filp)
1111 {
1112 	return xfs_release(XFS_I(inode));
1113 }
1114 
1115 STATIC int
1116 xfs_file_readdir(
1117 	struct file	*file,
1118 	struct dir_context *ctx)
1119 {
1120 	struct inode	*inode = file_inode(file);
1121 	xfs_inode_t	*ip = XFS_I(inode);
1122 	size_t		bufsize;
1123 
1124 	/*
1125 	 * The Linux API doesn't pass down the total size of the buffer
1126 	 * we read into down to the filesystem.  With the filldir concept
1127 	 * it's not needed for correct information, but the XFS dir2 leaf
1128 	 * code wants an estimate of the buffer size to calculate it's
1129 	 * readahead window and size the buffers used for mapping to
1130 	 * physical blocks.
1131 	 *
1132 	 * Try to give it an estimate that's good enough, maybe at some
1133 	 * point we can change the ->readdir prototype to include the
1134 	 * buffer size.  For now we use the current glibc buffer size.
1135 	 */
1136 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1137 
1138 	return xfs_readdir(ip, ctx, bufsize);
1139 }
1140 
1141 /*
1142  * This type is designed to indicate the type of offset we would like
1143  * to search from page cache for xfs_seek_hole_data().
1144  */
1145 enum {
1146 	HOLE_OFF = 0,
1147 	DATA_OFF,
1148 };
1149 
1150 /*
1151  * Lookup the desired type of offset from the given page.
1152  *
1153  * On success, return true and the offset argument will point to the
1154  * start of the region that was found.  Otherwise this function will
1155  * return false and keep the offset argument unchanged.
1156  */
1157 STATIC bool
1158 xfs_lookup_buffer_offset(
1159 	struct page		*page,
1160 	loff_t			*offset,
1161 	unsigned int		type)
1162 {
1163 	loff_t			lastoff = page_offset(page);
1164 	bool			found = false;
1165 	struct buffer_head	*bh, *head;
1166 
1167 	bh = head = page_buffers(page);
1168 	do {
1169 		/*
1170 		 * Unwritten extents that have data in the page
1171 		 * cache covering them can be identified by the
1172 		 * BH_Unwritten state flag.  Pages with multiple
1173 		 * buffers might have a mix of holes, data and
1174 		 * unwritten extents - any buffer with valid
1175 		 * data in it should have BH_Uptodate flag set
1176 		 * on it.
1177 		 */
1178 		if (buffer_unwritten(bh) ||
1179 		    buffer_uptodate(bh)) {
1180 			if (type == DATA_OFF)
1181 				found = true;
1182 		} else {
1183 			if (type == HOLE_OFF)
1184 				found = true;
1185 		}
1186 
1187 		if (found) {
1188 			*offset = lastoff;
1189 			break;
1190 		}
1191 		lastoff += bh->b_size;
1192 	} while ((bh = bh->b_this_page) != head);
1193 
1194 	return found;
1195 }
1196 
1197 /*
1198  * This routine is called to find out and return a data or hole offset
1199  * from the page cache for unwritten extents according to the desired
1200  * type for xfs_seek_hole_data().
1201  *
1202  * The argument offset is used to tell where we start to search from the
1203  * page cache.  Map is used to figure out the end points of the range to
1204  * lookup pages.
1205  *
1206  * Return true if the desired type of offset was found, and the argument
1207  * offset is filled with that address.  Otherwise, return false and keep
1208  * offset unchanged.
1209  */
1210 STATIC bool
1211 xfs_find_get_desired_pgoff(
1212 	struct inode		*inode,
1213 	struct xfs_bmbt_irec	*map,
1214 	unsigned int		type,
1215 	loff_t			*offset)
1216 {
1217 	struct xfs_inode	*ip = XFS_I(inode);
1218 	struct xfs_mount	*mp = ip->i_mount;
1219 	struct pagevec		pvec;
1220 	pgoff_t			index;
1221 	pgoff_t			end;
1222 	loff_t			endoff;
1223 	loff_t			startoff = *offset;
1224 	loff_t			lastoff = startoff;
1225 	bool			found = false;
1226 
1227 	pagevec_init(&pvec, 0);
1228 
1229 	index = startoff >> PAGE_SHIFT;
1230 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1231 	end = endoff >> PAGE_SHIFT;
1232 	do {
1233 		int		want;
1234 		unsigned	nr_pages;
1235 		unsigned int	i;
1236 
1237 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1238 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1239 					  want);
1240 		/*
1241 		 * No page mapped into given range.  If we are searching holes
1242 		 * and if this is the first time we got into the loop, it means
1243 		 * that the given offset is landed in a hole, return it.
1244 		 *
1245 		 * If we have already stepped through some block buffers to find
1246 		 * holes but they all contains data.  In this case, the last
1247 		 * offset is already updated and pointed to the end of the last
1248 		 * mapped page, if it does not reach the endpoint to search,
1249 		 * that means there should be a hole between them.
1250 		 */
1251 		if (nr_pages == 0) {
1252 			/* Data search found nothing */
1253 			if (type == DATA_OFF)
1254 				break;
1255 
1256 			ASSERT(type == HOLE_OFF);
1257 			if (lastoff == startoff || lastoff < endoff) {
1258 				found = true;
1259 				*offset = lastoff;
1260 			}
1261 			break;
1262 		}
1263 
1264 		/*
1265 		 * At lease we found one page.  If this is the first time we
1266 		 * step into the loop, and if the first page index offset is
1267 		 * greater than the given search offset, a hole was found.
1268 		 */
1269 		if (type == HOLE_OFF && lastoff == startoff &&
1270 		    lastoff < page_offset(pvec.pages[0])) {
1271 			found = true;
1272 			break;
1273 		}
1274 
1275 		for (i = 0; i < nr_pages; i++) {
1276 			struct page	*page = pvec.pages[i];
1277 			loff_t		b_offset;
1278 
1279 			/*
1280 			 * At this point, the page may be truncated or
1281 			 * invalidated (changing page->mapping to NULL),
1282 			 * or even swizzled back from swapper_space to tmpfs
1283 			 * file mapping. However, page->index will not change
1284 			 * because we have a reference on the page.
1285 			 *
1286 			 * Searching done if the page index is out of range.
1287 			 * If the current offset is not reaches the end of
1288 			 * the specified search range, there should be a hole
1289 			 * between them.
1290 			 */
1291 			if (page->index > end) {
1292 				if (type == HOLE_OFF && lastoff < endoff) {
1293 					*offset = lastoff;
1294 					found = true;
1295 				}
1296 				goto out;
1297 			}
1298 
1299 			lock_page(page);
1300 			/*
1301 			 * Page truncated or invalidated(page->mapping == NULL).
1302 			 * We can freely skip it and proceed to check the next
1303 			 * page.
1304 			 */
1305 			if (unlikely(page->mapping != inode->i_mapping)) {
1306 				unlock_page(page);
1307 				continue;
1308 			}
1309 
1310 			if (!page_has_buffers(page)) {
1311 				unlock_page(page);
1312 				continue;
1313 			}
1314 
1315 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1316 			if (found) {
1317 				/*
1318 				 * The found offset may be less than the start
1319 				 * point to search if this is the first time to
1320 				 * come here.
1321 				 */
1322 				*offset = max_t(loff_t, startoff, b_offset);
1323 				unlock_page(page);
1324 				goto out;
1325 			}
1326 
1327 			/*
1328 			 * We either searching data but nothing was found, or
1329 			 * searching hole but found a data buffer.  In either
1330 			 * case, probably the next page contains the desired
1331 			 * things, update the last offset to it so.
1332 			 */
1333 			lastoff = page_offset(page) + PAGE_SIZE;
1334 			unlock_page(page);
1335 		}
1336 
1337 		/*
1338 		 * The number of returned pages less than our desired, search
1339 		 * done.  In this case, nothing was found for searching data,
1340 		 * but we found a hole behind the last offset.
1341 		 */
1342 		if (nr_pages < want) {
1343 			if (type == HOLE_OFF) {
1344 				*offset = lastoff;
1345 				found = true;
1346 			}
1347 			break;
1348 		}
1349 
1350 		index = pvec.pages[i - 1]->index + 1;
1351 		pagevec_release(&pvec);
1352 	} while (index <= end);
1353 
1354 out:
1355 	pagevec_release(&pvec);
1356 	return found;
1357 }
1358 
1359 /*
1360  * caller must lock inode with xfs_ilock_data_map_shared,
1361  * can we craft an appropriate ASSERT?
1362  *
1363  * end is because the VFS-level lseek interface is defined such that any
1364  * offset past i_size shall return -ENXIO, but we use this for quota code
1365  * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1366  */
1367 loff_t
1368 __xfs_seek_hole_data(
1369 	struct inode		*inode,
1370 	loff_t			start,
1371 	loff_t			end,
1372 	int			whence)
1373 {
1374 	struct xfs_inode	*ip = XFS_I(inode);
1375 	struct xfs_mount	*mp = ip->i_mount;
1376 	loff_t			uninitialized_var(offset);
1377 	xfs_fileoff_t		fsbno;
1378 	xfs_filblks_t		lastbno;
1379 	int			error;
1380 
1381 	if (start >= end) {
1382 		error = -ENXIO;
1383 		goto out_error;
1384 	}
1385 
1386 	/*
1387 	 * Try to read extents from the first block indicated
1388 	 * by fsbno to the end block of the file.
1389 	 */
1390 	fsbno = XFS_B_TO_FSBT(mp, start);
1391 	lastbno = XFS_B_TO_FSB(mp, end);
1392 
1393 	for (;;) {
1394 		struct xfs_bmbt_irec	map[2];
1395 		int			nmap = 2;
1396 		unsigned int		i;
1397 
1398 		error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1399 				       XFS_BMAPI_ENTIRE);
1400 		if (error)
1401 			goto out_error;
1402 
1403 		/* No extents at given offset, must be beyond EOF */
1404 		if (nmap == 0) {
1405 			error = -ENXIO;
1406 			goto out_error;
1407 		}
1408 
1409 		for (i = 0; i < nmap; i++) {
1410 			offset = max_t(loff_t, start,
1411 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1412 
1413 			/* Landed in the hole we wanted? */
1414 			if (whence == SEEK_HOLE &&
1415 			    map[i].br_startblock == HOLESTARTBLOCK)
1416 				goto out;
1417 
1418 			/* Landed in the data extent we wanted? */
1419 			if (whence == SEEK_DATA &&
1420 			    (map[i].br_startblock == DELAYSTARTBLOCK ||
1421 			     (map[i].br_state == XFS_EXT_NORM &&
1422 			      !isnullstartblock(map[i].br_startblock))))
1423 				goto out;
1424 
1425 			/*
1426 			 * Landed in an unwritten extent, try to search
1427 			 * for hole or data from page cache.
1428 			 */
1429 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1430 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1431 				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1432 							&offset))
1433 					goto out;
1434 			}
1435 		}
1436 
1437 		/*
1438 		 * We only received one extent out of the two requested. This
1439 		 * means we've hit EOF and didn't find what we are looking for.
1440 		 */
1441 		if (nmap == 1) {
1442 			/*
1443 			 * If we were looking for a hole, set offset to
1444 			 * the end of the file (i.e., there is an implicit
1445 			 * hole at the end of any file).
1446 		 	 */
1447 			if (whence == SEEK_HOLE) {
1448 				offset = end;
1449 				break;
1450 			}
1451 			/*
1452 			 * If we were looking for data, it's nowhere to be found
1453 			 */
1454 			ASSERT(whence == SEEK_DATA);
1455 			error = -ENXIO;
1456 			goto out_error;
1457 		}
1458 
1459 		ASSERT(i > 1);
1460 
1461 		/*
1462 		 * Nothing was found, proceed to the next round of search
1463 		 * if the next reading offset is not at or beyond EOF.
1464 		 */
1465 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1466 		start = XFS_FSB_TO_B(mp, fsbno);
1467 		if (start >= end) {
1468 			if (whence == SEEK_HOLE) {
1469 				offset = end;
1470 				break;
1471 			}
1472 			ASSERT(whence == SEEK_DATA);
1473 			error = -ENXIO;
1474 			goto out_error;
1475 		}
1476 	}
1477 
1478 out:
1479 	/*
1480 	 * If at this point we have found the hole we wanted, the returned
1481 	 * offset may be bigger than the file size as it may be aligned to
1482 	 * page boundary for unwritten extents.  We need to deal with this
1483 	 * situation in particular.
1484 	 */
1485 	if (whence == SEEK_HOLE)
1486 		offset = min_t(loff_t, offset, end);
1487 
1488 	return offset;
1489 
1490 out_error:
1491 	return error;
1492 }
1493 
1494 STATIC loff_t
1495 xfs_seek_hole_data(
1496 	struct file		*file,
1497 	loff_t			start,
1498 	int			whence)
1499 {
1500 	struct inode		*inode = file->f_mapping->host;
1501 	struct xfs_inode	*ip = XFS_I(inode);
1502 	struct xfs_mount	*mp = ip->i_mount;
1503 	uint			lock;
1504 	loff_t			offset, end;
1505 	int			error = 0;
1506 
1507 	if (XFS_FORCED_SHUTDOWN(mp))
1508 		return -EIO;
1509 
1510 	lock = xfs_ilock_data_map_shared(ip);
1511 
1512 	end = i_size_read(inode);
1513 	offset = __xfs_seek_hole_data(inode, start, end, whence);
1514 	if (offset < 0) {
1515 		error = offset;
1516 		goto out_unlock;
1517 	}
1518 
1519 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1520 
1521 out_unlock:
1522 	xfs_iunlock(ip, lock);
1523 
1524 	if (error)
1525 		return error;
1526 	return offset;
1527 }
1528 
1529 STATIC loff_t
1530 xfs_file_llseek(
1531 	struct file	*file,
1532 	loff_t		offset,
1533 	int		whence)
1534 {
1535 	switch (whence) {
1536 	case SEEK_END:
1537 	case SEEK_CUR:
1538 	case SEEK_SET:
1539 		return generic_file_llseek(file, offset, whence);
1540 	case SEEK_HOLE:
1541 	case SEEK_DATA:
1542 		return xfs_seek_hole_data(file, offset, whence);
1543 	default:
1544 		return -EINVAL;
1545 	}
1546 }
1547 
1548 /*
1549  * Locking for serialisation of IO during page faults. This results in a lock
1550  * ordering of:
1551  *
1552  * mmap_sem (MM)
1553  *   sb_start_pagefault(vfs, freeze)
1554  *     i_mmaplock (XFS - truncate serialisation)
1555  *       page_lock (MM)
1556  *         i_lock (XFS - extent map serialisation)
1557  */
1558 
1559 /*
1560  * mmap()d file has taken write protection fault and is being made writable. We
1561  * can set the page state up correctly for a writable page, which means we can
1562  * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1563  * mapping.
1564  */
1565 STATIC int
1566 xfs_filemap_page_mkwrite(
1567 	struct vm_area_struct	*vma,
1568 	struct vm_fault		*vmf)
1569 {
1570 	struct inode		*inode = file_inode(vma->vm_file);
1571 	int			ret;
1572 
1573 	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1574 
1575 	sb_start_pagefault(inode->i_sb);
1576 	file_update_time(vma->vm_file);
1577 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1578 
1579 	if (IS_DAX(inode)) {
1580 		ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_dax_fault);
1581 	} else {
1582 		ret = block_page_mkwrite(vma, vmf, xfs_get_blocks);
1583 		ret = block_page_mkwrite_return(ret);
1584 	}
1585 
1586 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1587 	sb_end_pagefault(inode->i_sb);
1588 
1589 	return ret;
1590 }
1591 
1592 STATIC int
1593 xfs_filemap_fault(
1594 	struct vm_area_struct	*vma,
1595 	struct vm_fault		*vmf)
1596 {
1597 	struct inode		*inode = file_inode(vma->vm_file);
1598 	int			ret;
1599 
1600 	trace_xfs_filemap_fault(XFS_I(inode));
1601 
1602 	/* DAX can shortcut the normal fault path on write faults! */
1603 	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1604 		return xfs_filemap_page_mkwrite(vma, vmf);
1605 
1606 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1607 	if (IS_DAX(inode)) {
1608 		/*
1609 		 * we do not want to trigger unwritten extent conversion on read
1610 		 * faults - that is unnecessary overhead and would also require
1611 		 * changes to xfs_get_blocks_direct() to map unwritten extent
1612 		 * ioend for conversion on read-only mappings.
1613 		 */
1614 		ret = __dax_fault(vma, vmf, xfs_get_blocks_dax_fault);
1615 	} else
1616 		ret = filemap_fault(vma, vmf);
1617 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1618 
1619 	return ret;
1620 }
1621 
1622 /*
1623  * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1624  * both read and write faults. Hence we need to handle both cases. There is no
1625  * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1626  * handle both cases here. @flags carries the information on the type of fault
1627  * occuring.
1628  */
1629 STATIC int
1630 xfs_filemap_pmd_fault(
1631 	struct vm_area_struct	*vma,
1632 	unsigned long		addr,
1633 	pmd_t			*pmd,
1634 	unsigned int		flags)
1635 {
1636 	struct inode		*inode = file_inode(vma->vm_file);
1637 	struct xfs_inode	*ip = XFS_I(inode);
1638 	int			ret;
1639 
1640 	if (!IS_DAX(inode))
1641 		return VM_FAULT_FALLBACK;
1642 
1643 	trace_xfs_filemap_pmd_fault(ip);
1644 
1645 	if (flags & FAULT_FLAG_WRITE) {
1646 		sb_start_pagefault(inode->i_sb);
1647 		file_update_time(vma->vm_file);
1648 	}
1649 
1650 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1651 	ret = __dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
1652 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1653 
1654 	if (flags & FAULT_FLAG_WRITE)
1655 		sb_end_pagefault(inode->i_sb);
1656 
1657 	return ret;
1658 }
1659 
1660 /*
1661  * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1662  * updates on write faults. In reality, it's need to serialise against
1663  * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1664  * to ensure we serialise the fault barrier in place.
1665  */
1666 static int
1667 xfs_filemap_pfn_mkwrite(
1668 	struct vm_area_struct	*vma,
1669 	struct vm_fault		*vmf)
1670 {
1671 
1672 	struct inode		*inode = file_inode(vma->vm_file);
1673 	struct xfs_inode	*ip = XFS_I(inode);
1674 	int			ret = VM_FAULT_NOPAGE;
1675 	loff_t			size;
1676 
1677 	trace_xfs_filemap_pfn_mkwrite(ip);
1678 
1679 	sb_start_pagefault(inode->i_sb);
1680 	file_update_time(vma->vm_file);
1681 
1682 	/* check if the faulting page hasn't raced with truncate */
1683 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1684 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1685 	if (vmf->pgoff >= size)
1686 		ret = VM_FAULT_SIGBUS;
1687 	else if (IS_DAX(inode))
1688 		ret = dax_pfn_mkwrite(vma, vmf);
1689 	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1690 	sb_end_pagefault(inode->i_sb);
1691 	return ret;
1692 
1693 }
1694 
1695 static const struct vm_operations_struct xfs_file_vm_ops = {
1696 	.fault		= xfs_filemap_fault,
1697 	.pmd_fault	= xfs_filemap_pmd_fault,
1698 	.map_pages	= filemap_map_pages,
1699 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1700 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1701 };
1702 
1703 STATIC int
1704 xfs_file_mmap(
1705 	struct file	*filp,
1706 	struct vm_area_struct *vma)
1707 {
1708 	file_accessed(filp);
1709 	vma->vm_ops = &xfs_file_vm_ops;
1710 	if (IS_DAX(file_inode(filp)))
1711 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1712 	return 0;
1713 }
1714 
1715 const struct file_operations xfs_file_operations = {
1716 	.llseek		= xfs_file_llseek,
1717 	.read_iter	= xfs_file_read_iter,
1718 	.write_iter	= xfs_file_write_iter,
1719 	.splice_read	= xfs_file_splice_read,
1720 	.splice_write	= iter_file_splice_write,
1721 	.unlocked_ioctl	= xfs_file_ioctl,
1722 #ifdef CONFIG_COMPAT
1723 	.compat_ioctl	= xfs_file_compat_ioctl,
1724 #endif
1725 	.mmap		= xfs_file_mmap,
1726 	.open		= xfs_file_open,
1727 	.release	= xfs_file_release,
1728 	.fsync		= xfs_file_fsync,
1729 	.fallocate	= xfs_file_fallocate,
1730 };
1731 
1732 const struct file_operations xfs_dir_file_operations = {
1733 	.open		= xfs_dir_open,
1734 	.read		= generic_read_dir,
1735 	.iterate_shared	= xfs_file_readdir,
1736 	.llseek		= generic_file_llseek,
1737 	.unlocked_ioctl	= xfs_file_ioctl,
1738 #ifdef CONFIG_COMPAT
1739 	.compat_ioctl	= xfs_file_compat_ioctl,
1740 #endif
1741 	.fsync		= xfs_dir_fsync,
1742 };
1743