xref: /linux/fs/xfs/xfs_file.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44 #include <linux/backing-dev.h>
45 
46 static const struct vm_operations_struct xfs_file_vm_ops;
47 
48 /*
49  * Locking primitives for read and write IO paths to ensure we consistently use
50  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
51  */
52 static inline void
53 xfs_rw_ilock(
54 	struct xfs_inode	*ip,
55 	int			type)
56 {
57 	if (type & XFS_IOLOCK_EXCL)
58 		mutex_lock(&VFS_I(ip)->i_mutex);
59 	xfs_ilock(ip, type);
60 }
61 
62 static inline void
63 xfs_rw_iunlock(
64 	struct xfs_inode	*ip,
65 	int			type)
66 {
67 	xfs_iunlock(ip, type);
68 	if (type & XFS_IOLOCK_EXCL)
69 		mutex_unlock(&VFS_I(ip)->i_mutex);
70 }
71 
72 static inline void
73 xfs_rw_ilock_demote(
74 	struct xfs_inode	*ip,
75 	int			type)
76 {
77 	xfs_ilock_demote(ip, type);
78 	if (type & XFS_IOLOCK_EXCL)
79 		mutex_unlock(&VFS_I(ip)->i_mutex);
80 }
81 
82 /*
83  * xfs_iozero clears the specified range supplied via the page cache (except in
84  * the DAX case). Writes through the page cache will allocate blocks over holes,
85  * though the callers usually map the holes first and avoid them. If a block is
86  * not completely zeroed, then it will be read from disk before being partially
87  * zeroed.
88  *
89  * In the DAX case, we can just directly write to the underlying pages. This
90  * will not allocate blocks, but will avoid holes and unwritten extents and so
91  * not do unnecessary work.
92  */
93 int
94 xfs_iozero(
95 	struct xfs_inode	*ip,	/* inode			*/
96 	loff_t			pos,	/* offset in file		*/
97 	size_t			count)	/* size of data to zero		*/
98 {
99 	struct page		*page;
100 	struct address_space	*mapping;
101 	int			status = 0;
102 
103 
104 	mapping = VFS_I(ip)->i_mapping;
105 	do {
106 		unsigned offset, bytes;
107 		void *fsdata;
108 
109 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
110 		bytes = PAGE_CACHE_SIZE - offset;
111 		if (bytes > count)
112 			bytes = count;
113 
114 		if (IS_DAX(VFS_I(ip))) {
115 			status = dax_zero_page_range(VFS_I(ip), pos, bytes,
116 						     xfs_get_blocks_direct);
117 			if (status)
118 				break;
119 		} else {
120 			status = pagecache_write_begin(NULL, mapping, pos, bytes,
121 						AOP_FLAG_UNINTERRUPTIBLE,
122 						&page, &fsdata);
123 			if (status)
124 				break;
125 
126 			zero_user(page, offset, bytes);
127 
128 			status = pagecache_write_end(NULL, mapping, pos, bytes,
129 						bytes, page, fsdata);
130 			WARN_ON(status <= 0); /* can't return less than zero! */
131 			status = 0;
132 		}
133 		pos += bytes;
134 		count -= bytes;
135 	} while (count);
136 
137 	return status;
138 }
139 
140 int
141 xfs_update_prealloc_flags(
142 	struct xfs_inode	*ip,
143 	enum xfs_prealloc_flags	flags)
144 {
145 	struct xfs_trans	*tp;
146 	int			error;
147 
148 	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
149 	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
150 	if (error) {
151 		xfs_trans_cancel(tp);
152 		return error;
153 	}
154 
155 	xfs_ilock(ip, XFS_ILOCK_EXCL);
156 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
157 
158 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
159 		ip->i_d.di_mode &= ~S_ISUID;
160 		if (ip->i_d.di_mode & S_IXGRP)
161 			ip->i_d.di_mode &= ~S_ISGID;
162 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
163 	}
164 
165 	if (flags & XFS_PREALLOC_SET)
166 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
167 	if (flags & XFS_PREALLOC_CLEAR)
168 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
169 
170 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
171 	if (flags & XFS_PREALLOC_SYNC)
172 		xfs_trans_set_sync(tp);
173 	return xfs_trans_commit(tp);
174 }
175 
176 /*
177  * Fsync operations on directories are much simpler than on regular files,
178  * as there is no file data to flush, and thus also no need for explicit
179  * cache flush operations, and there are no non-transaction metadata updates
180  * on directories either.
181  */
182 STATIC int
183 xfs_dir_fsync(
184 	struct file		*file,
185 	loff_t			start,
186 	loff_t			end,
187 	int			datasync)
188 {
189 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
190 	struct xfs_mount	*mp = ip->i_mount;
191 	xfs_lsn_t		lsn = 0;
192 
193 	trace_xfs_dir_fsync(ip);
194 
195 	xfs_ilock(ip, XFS_ILOCK_SHARED);
196 	if (xfs_ipincount(ip))
197 		lsn = ip->i_itemp->ili_last_lsn;
198 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
199 
200 	if (!lsn)
201 		return 0;
202 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
203 }
204 
205 STATIC int
206 xfs_file_fsync(
207 	struct file		*file,
208 	loff_t			start,
209 	loff_t			end,
210 	int			datasync)
211 {
212 	struct inode		*inode = file->f_mapping->host;
213 	struct xfs_inode	*ip = XFS_I(inode);
214 	struct xfs_mount	*mp = ip->i_mount;
215 	int			error = 0;
216 	int			log_flushed = 0;
217 	xfs_lsn_t		lsn = 0;
218 
219 	trace_xfs_file_fsync(ip);
220 
221 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
222 	if (error)
223 		return error;
224 
225 	if (XFS_FORCED_SHUTDOWN(mp))
226 		return -EIO;
227 
228 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
229 
230 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
231 		/*
232 		 * If we have an RT and/or log subvolume we need to make sure
233 		 * to flush the write cache the device used for file data
234 		 * first.  This is to ensure newly written file data make
235 		 * it to disk before logging the new inode size in case of
236 		 * an extending write.
237 		 */
238 		if (XFS_IS_REALTIME_INODE(ip))
239 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
240 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
241 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
242 	}
243 
244 	/*
245 	 * All metadata updates are logged, which means that we just have
246 	 * to flush the log up to the latest LSN that touched the inode.
247 	 */
248 	xfs_ilock(ip, XFS_ILOCK_SHARED);
249 	if (xfs_ipincount(ip)) {
250 		if (!datasync ||
251 		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
252 			lsn = ip->i_itemp->ili_last_lsn;
253 	}
254 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
255 
256 	if (lsn)
257 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
258 
259 	/*
260 	 * If we only have a single device, and the log force about was
261 	 * a no-op we might have to flush the data device cache here.
262 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
263 	 * an already allocated file and thus do not have any metadata to
264 	 * commit.
265 	 */
266 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
267 	    mp->m_logdev_targp == mp->m_ddev_targp &&
268 	    !XFS_IS_REALTIME_INODE(ip) &&
269 	    !log_flushed)
270 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
271 
272 	return error;
273 }
274 
275 STATIC ssize_t
276 xfs_file_read_iter(
277 	struct kiocb		*iocb,
278 	struct iov_iter		*to)
279 {
280 	struct file		*file = iocb->ki_filp;
281 	struct inode		*inode = file->f_mapping->host;
282 	struct xfs_inode	*ip = XFS_I(inode);
283 	struct xfs_mount	*mp = ip->i_mount;
284 	size_t			size = iov_iter_count(to);
285 	ssize_t			ret = 0;
286 	int			ioflags = 0;
287 	xfs_fsize_t		n;
288 	loff_t			pos = iocb->ki_pos;
289 
290 	XFS_STATS_INC(xs_read_calls);
291 
292 	if (unlikely(iocb->ki_flags & IOCB_DIRECT))
293 		ioflags |= XFS_IO_ISDIRECT;
294 	if (file->f_mode & FMODE_NOCMTIME)
295 		ioflags |= XFS_IO_INVIS;
296 
297 	if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) {
298 		xfs_buftarg_t	*target =
299 			XFS_IS_REALTIME_INODE(ip) ?
300 				mp->m_rtdev_targp : mp->m_ddev_targp;
301 		/* DIO must be aligned to device logical sector size */
302 		if ((pos | size) & target->bt_logical_sectormask) {
303 			if (pos == i_size_read(inode))
304 				return 0;
305 			return -EINVAL;
306 		}
307 	}
308 
309 	n = mp->m_super->s_maxbytes - pos;
310 	if (n <= 0 || size == 0)
311 		return 0;
312 
313 	if (n < size)
314 		size = n;
315 
316 	if (XFS_FORCED_SHUTDOWN(mp))
317 		return -EIO;
318 
319 	/*
320 	 * Locking is a bit tricky here. If we take an exclusive lock for direct
321 	 * IO, we effectively serialise all new concurrent read IO to this file
322 	 * and block it behind IO that is currently in progress because IO in
323 	 * progress holds the IO lock shared. We only need to hold the lock
324 	 * exclusive to blow away the page cache, so only take lock exclusively
325 	 * if the page cache needs invalidation. This allows the normal direct
326 	 * IO case of no page cache pages to proceeed concurrently without
327 	 * serialisation.
328 	 */
329 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
330 	if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
331 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
332 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
333 
334 		/*
335 		 * The generic dio code only flushes the range of the particular
336 		 * I/O. Because we take an exclusive lock here, this whole
337 		 * sequence is considerably more expensive for us. This has a
338 		 * noticeable performance impact for any file with cached pages,
339 		 * even when outside of the range of the particular I/O.
340 		 *
341 		 * Hence, amortize the cost of the lock against a full file
342 		 * flush and reduce the chances of repeated iolock cycles going
343 		 * forward.
344 		 */
345 		if (inode->i_mapping->nrpages) {
346 			ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
347 			if (ret) {
348 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
349 				return ret;
350 			}
351 
352 			/*
353 			 * Invalidate whole pages. This can return an error if
354 			 * we fail to invalidate a page, but this should never
355 			 * happen on XFS. Warn if it does fail.
356 			 */
357 			ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
358 			WARN_ON_ONCE(ret);
359 			ret = 0;
360 		}
361 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
362 	}
363 
364 	trace_xfs_file_read(ip, size, pos, ioflags);
365 
366 	ret = generic_file_read_iter(iocb, to);
367 	if (ret > 0)
368 		XFS_STATS_ADD(xs_read_bytes, ret);
369 
370 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
371 	return ret;
372 }
373 
374 STATIC ssize_t
375 xfs_file_splice_read(
376 	struct file		*infilp,
377 	loff_t			*ppos,
378 	struct pipe_inode_info	*pipe,
379 	size_t			count,
380 	unsigned int		flags)
381 {
382 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
383 	int			ioflags = 0;
384 	ssize_t			ret;
385 
386 	XFS_STATS_INC(xs_read_calls);
387 
388 	if (infilp->f_mode & FMODE_NOCMTIME)
389 		ioflags |= XFS_IO_INVIS;
390 
391 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
392 		return -EIO;
393 
394 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
395 
396 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
397 
398 	/* for dax, we need to avoid the page cache */
399 	if (IS_DAX(VFS_I(ip)))
400 		ret = default_file_splice_read(infilp, ppos, pipe, count, flags);
401 	else
402 		ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
403 	if (ret > 0)
404 		XFS_STATS_ADD(xs_read_bytes, ret);
405 
406 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
407 	return ret;
408 }
409 
410 /*
411  * This routine is called to handle zeroing any space in the last block of the
412  * file that is beyond the EOF.  We do this since the size is being increased
413  * without writing anything to that block and we don't want to read the
414  * garbage on the disk.
415  */
416 STATIC int				/* error (positive) */
417 xfs_zero_last_block(
418 	struct xfs_inode	*ip,
419 	xfs_fsize_t		offset,
420 	xfs_fsize_t		isize,
421 	bool			*did_zeroing)
422 {
423 	struct xfs_mount	*mp = ip->i_mount;
424 	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
425 	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
426 	int			zero_len;
427 	int			nimaps = 1;
428 	int			error = 0;
429 	struct xfs_bmbt_irec	imap;
430 
431 	xfs_ilock(ip, XFS_ILOCK_EXCL);
432 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
433 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
434 	if (error)
435 		return error;
436 
437 	ASSERT(nimaps > 0);
438 
439 	/*
440 	 * If the block underlying isize is just a hole, then there
441 	 * is nothing to zero.
442 	 */
443 	if (imap.br_startblock == HOLESTARTBLOCK)
444 		return 0;
445 
446 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
447 	if (isize + zero_len > offset)
448 		zero_len = offset - isize;
449 	*did_zeroing = true;
450 	return xfs_iozero(ip, isize, zero_len);
451 }
452 
453 /*
454  * Zero any on disk space between the current EOF and the new, larger EOF.
455  *
456  * This handles the normal case of zeroing the remainder of the last block in
457  * the file and the unusual case of zeroing blocks out beyond the size of the
458  * file.  This second case only happens with fixed size extents and when the
459  * system crashes before the inode size was updated but after blocks were
460  * allocated.
461  *
462  * Expects the iolock to be held exclusive, and will take the ilock internally.
463  */
464 int					/* error (positive) */
465 xfs_zero_eof(
466 	struct xfs_inode	*ip,
467 	xfs_off_t		offset,		/* starting I/O offset */
468 	xfs_fsize_t		isize,		/* current inode size */
469 	bool			*did_zeroing)
470 {
471 	struct xfs_mount	*mp = ip->i_mount;
472 	xfs_fileoff_t		start_zero_fsb;
473 	xfs_fileoff_t		end_zero_fsb;
474 	xfs_fileoff_t		zero_count_fsb;
475 	xfs_fileoff_t		last_fsb;
476 	xfs_fileoff_t		zero_off;
477 	xfs_fsize_t		zero_len;
478 	int			nimaps;
479 	int			error = 0;
480 	struct xfs_bmbt_irec	imap;
481 
482 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
483 	ASSERT(offset > isize);
484 
485 	/*
486 	 * First handle zeroing the block on which isize resides.
487 	 *
488 	 * We only zero a part of that block so it is handled specially.
489 	 */
490 	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
491 		error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
492 		if (error)
493 			return error;
494 	}
495 
496 	/*
497 	 * Calculate the range between the new size and the old where blocks
498 	 * needing to be zeroed may exist.
499 	 *
500 	 * To get the block where the last byte in the file currently resides,
501 	 * we need to subtract one from the size and truncate back to a block
502 	 * boundary.  We subtract 1 in case the size is exactly on a block
503 	 * boundary.
504 	 */
505 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
506 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
507 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
508 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
509 	if (last_fsb == end_zero_fsb) {
510 		/*
511 		 * The size was only incremented on its last block.
512 		 * We took care of that above, so just return.
513 		 */
514 		return 0;
515 	}
516 
517 	ASSERT(start_zero_fsb <= end_zero_fsb);
518 	while (start_zero_fsb <= end_zero_fsb) {
519 		nimaps = 1;
520 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
521 
522 		xfs_ilock(ip, XFS_ILOCK_EXCL);
523 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
524 					  &imap, &nimaps, 0);
525 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
526 		if (error)
527 			return error;
528 
529 		ASSERT(nimaps > 0);
530 
531 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
532 		    imap.br_startblock == HOLESTARTBLOCK) {
533 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
534 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
535 			continue;
536 		}
537 
538 		/*
539 		 * There are blocks we need to zero.
540 		 */
541 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
542 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
543 
544 		if ((zero_off + zero_len) > offset)
545 			zero_len = offset - zero_off;
546 
547 		error = xfs_iozero(ip, zero_off, zero_len);
548 		if (error)
549 			return error;
550 
551 		*did_zeroing = true;
552 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
553 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
554 	}
555 
556 	return 0;
557 }
558 
559 /*
560  * Common pre-write limit and setup checks.
561  *
562  * Called with the iolocked held either shared and exclusive according to
563  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
564  * if called for a direct write beyond i_size.
565  */
566 STATIC ssize_t
567 xfs_file_aio_write_checks(
568 	struct kiocb		*iocb,
569 	struct iov_iter		*from,
570 	int			*iolock)
571 {
572 	struct file		*file = iocb->ki_filp;
573 	struct inode		*inode = file->f_mapping->host;
574 	struct xfs_inode	*ip = XFS_I(inode);
575 	ssize_t			error = 0;
576 	size_t			count = iov_iter_count(from);
577 
578 restart:
579 	error = generic_write_checks(iocb, from);
580 	if (error <= 0)
581 		return error;
582 
583 	error = xfs_break_layouts(inode, iolock, true);
584 	if (error)
585 		return error;
586 
587 	/* For changing security info in file_remove_privs() we need i_mutex */
588 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
589 		xfs_rw_iunlock(ip, *iolock);
590 		*iolock = XFS_IOLOCK_EXCL;
591 		xfs_rw_ilock(ip, *iolock);
592 		goto restart;
593 	}
594 	/*
595 	 * If the offset is beyond the size of the file, we need to zero any
596 	 * blocks that fall between the existing EOF and the start of this
597 	 * write.  If zeroing is needed and we are currently holding the
598 	 * iolock shared, we need to update it to exclusive which implies
599 	 * having to redo all checks before.
600 	 *
601 	 * We need to serialise against EOF updates that occur in IO
602 	 * completions here. We want to make sure that nobody is changing the
603 	 * size while we do this check until we have placed an IO barrier (i.e.
604 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
605 	 * The spinlock effectively forms a memory barrier once we have the
606 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
607 	 * and hence be able to correctly determine if we need to run zeroing.
608 	 */
609 	spin_lock(&ip->i_flags_lock);
610 	if (iocb->ki_pos > i_size_read(inode)) {
611 		bool	zero = false;
612 
613 		spin_unlock(&ip->i_flags_lock);
614 		if (*iolock == XFS_IOLOCK_SHARED) {
615 			xfs_rw_iunlock(ip, *iolock);
616 			*iolock = XFS_IOLOCK_EXCL;
617 			xfs_rw_ilock(ip, *iolock);
618 			iov_iter_reexpand(from, count);
619 
620 			/*
621 			 * We now have an IO submission barrier in place, but
622 			 * AIO can do EOF updates during IO completion and hence
623 			 * we now need to wait for all of them to drain. Non-AIO
624 			 * DIO will have drained before we are given the
625 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
626 			 * no-op.
627 			 */
628 			inode_dio_wait(inode);
629 			goto restart;
630 		}
631 		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
632 		if (error)
633 			return error;
634 	} else
635 		spin_unlock(&ip->i_flags_lock);
636 
637 	/*
638 	 * Updating the timestamps will grab the ilock again from
639 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
640 	 * lock above.  Eventually we should look into a way to avoid
641 	 * the pointless lock roundtrip.
642 	 */
643 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
644 		error = file_update_time(file);
645 		if (error)
646 			return error;
647 	}
648 
649 	/*
650 	 * If we're writing the file then make sure to clear the setuid and
651 	 * setgid bits if the process is not being run by root.  This keeps
652 	 * people from modifying setuid and setgid binaries.
653 	 */
654 	if (!IS_NOSEC(inode))
655 		return file_remove_privs(file);
656 	return 0;
657 }
658 
659 /*
660  * xfs_file_dio_aio_write - handle direct IO writes
661  *
662  * Lock the inode appropriately to prepare for and issue a direct IO write.
663  * By separating it from the buffered write path we remove all the tricky to
664  * follow locking changes and looping.
665  *
666  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
667  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
668  * pages are flushed out.
669  *
670  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
671  * allowing them to be done in parallel with reads and other direct IO writes.
672  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
673  * needs to do sub-block zeroing and that requires serialisation against other
674  * direct IOs to the same block. In this case we need to serialise the
675  * submission of the unaligned IOs so that we don't get racing block zeroing in
676  * the dio layer.  To avoid the problem with aio, we also need to wait for
677  * outstanding IOs to complete so that unwritten extent conversion is completed
678  * before we try to map the overlapping block. This is currently implemented by
679  * hitting it with a big hammer (i.e. inode_dio_wait()).
680  *
681  * Returns with locks held indicated by @iolock and errors indicated by
682  * negative return values.
683  */
684 STATIC ssize_t
685 xfs_file_dio_aio_write(
686 	struct kiocb		*iocb,
687 	struct iov_iter		*from)
688 {
689 	struct file		*file = iocb->ki_filp;
690 	struct address_space	*mapping = file->f_mapping;
691 	struct inode		*inode = mapping->host;
692 	struct xfs_inode	*ip = XFS_I(inode);
693 	struct xfs_mount	*mp = ip->i_mount;
694 	ssize_t			ret = 0;
695 	int			unaligned_io = 0;
696 	int			iolock;
697 	size_t			count = iov_iter_count(from);
698 	loff_t			pos = iocb->ki_pos;
699 	loff_t			end;
700 	struct iov_iter		data;
701 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
702 					mp->m_rtdev_targp : mp->m_ddev_targp;
703 
704 	/* DIO must be aligned to device logical sector size */
705 	if (!IS_DAX(inode) && ((pos | count) & target->bt_logical_sectormask))
706 		return -EINVAL;
707 
708 	/* "unaligned" here means not aligned to a filesystem block */
709 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
710 		unaligned_io = 1;
711 
712 	/*
713 	 * We don't need to take an exclusive lock unless there page cache needs
714 	 * to be invalidated or unaligned IO is being executed. We don't need to
715 	 * consider the EOF extension case here because
716 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
717 	 * EOF zeroing cases and fill out the new inode size as appropriate.
718 	 */
719 	if (unaligned_io || mapping->nrpages)
720 		iolock = XFS_IOLOCK_EXCL;
721 	else
722 		iolock = XFS_IOLOCK_SHARED;
723 	xfs_rw_ilock(ip, iolock);
724 
725 	/*
726 	 * Recheck if there are cached pages that need invalidate after we got
727 	 * the iolock to protect against other threads adding new pages while
728 	 * we were waiting for the iolock.
729 	 */
730 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
731 		xfs_rw_iunlock(ip, iolock);
732 		iolock = XFS_IOLOCK_EXCL;
733 		xfs_rw_ilock(ip, iolock);
734 	}
735 
736 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
737 	if (ret)
738 		goto out;
739 	count = iov_iter_count(from);
740 	pos = iocb->ki_pos;
741 	end = pos + count - 1;
742 
743 	/*
744 	 * See xfs_file_read_iter() for why we do a full-file flush here.
745 	 */
746 	if (mapping->nrpages) {
747 		ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
748 		if (ret)
749 			goto out;
750 		/*
751 		 * Invalidate whole pages. This can return an error if we fail
752 		 * to invalidate a page, but this should never happen on XFS.
753 		 * Warn if it does fail.
754 		 */
755 		ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
756 		WARN_ON_ONCE(ret);
757 		ret = 0;
758 	}
759 
760 	/*
761 	 * If we are doing unaligned IO, wait for all other IO to drain,
762 	 * otherwise demote the lock if we had to flush cached pages
763 	 */
764 	if (unaligned_io)
765 		inode_dio_wait(inode);
766 	else if (iolock == XFS_IOLOCK_EXCL) {
767 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
768 		iolock = XFS_IOLOCK_SHARED;
769 	}
770 
771 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
772 
773 	data = *from;
774 	ret = mapping->a_ops->direct_IO(iocb, &data, pos);
775 
776 	/* see generic_file_direct_write() for why this is necessary */
777 	if (mapping->nrpages) {
778 		invalidate_inode_pages2_range(mapping,
779 					      pos >> PAGE_CACHE_SHIFT,
780 					      end >> PAGE_CACHE_SHIFT);
781 	}
782 
783 	if (ret > 0) {
784 		pos += ret;
785 		iov_iter_advance(from, ret);
786 		iocb->ki_pos = pos;
787 	}
788 out:
789 	xfs_rw_iunlock(ip, iolock);
790 
791 	/*
792 	 * No fallback to buffered IO on errors for XFS. DAX can result in
793 	 * partial writes, but direct IO will either complete fully or fail.
794 	 */
795 	ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip)));
796 	return ret;
797 }
798 
799 STATIC ssize_t
800 xfs_file_buffered_aio_write(
801 	struct kiocb		*iocb,
802 	struct iov_iter		*from)
803 {
804 	struct file		*file = iocb->ki_filp;
805 	struct address_space	*mapping = file->f_mapping;
806 	struct inode		*inode = mapping->host;
807 	struct xfs_inode	*ip = XFS_I(inode);
808 	ssize_t			ret;
809 	int			enospc = 0;
810 	int			iolock = XFS_IOLOCK_EXCL;
811 
812 	xfs_rw_ilock(ip, iolock);
813 
814 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
815 	if (ret)
816 		goto out;
817 
818 	/* We can write back this queue in page reclaim */
819 	current->backing_dev_info = inode_to_bdi(inode);
820 
821 write_retry:
822 	trace_xfs_file_buffered_write(ip, iov_iter_count(from),
823 				      iocb->ki_pos, 0);
824 	ret = generic_perform_write(file, from, iocb->ki_pos);
825 	if (likely(ret >= 0))
826 		iocb->ki_pos += ret;
827 
828 	/*
829 	 * If we hit a space limit, try to free up some lingering preallocated
830 	 * space before returning an error. In the case of ENOSPC, first try to
831 	 * write back all dirty inodes to free up some of the excess reserved
832 	 * metadata space. This reduces the chances that the eofblocks scan
833 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
834 	 * also behaves as a filter to prevent too many eofblocks scans from
835 	 * running at the same time.
836 	 */
837 	if (ret == -EDQUOT && !enospc) {
838 		enospc = xfs_inode_free_quota_eofblocks(ip);
839 		if (enospc)
840 			goto write_retry;
841 	} else if (ret == -ENOSPC && !enospc) {
842 		struct xfs_eofblocks eofb = {0};
843 
844 		enospc = 1;
845 		xfs_flush_inodes(ip->i_mount);
846 		eofb.eof_scan_owner = ip->i_ino; /* for locking */
847 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
848 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
849 		goto write_retry;
850 	}
851 
852 	current->backing_dev_info = NULL;
853 out:
854 	xfs_rw_iunlock(ip, iolock);
855 	return ret;
856 }
857 
858 STATIC ssize_t
859 xfs_file_write_iter(
860 	struct kiocb		*iocb,
861 	struct iov_iter		*from)
862 {
863 	struct file		*file = iocb->ki_filp;
864 	struct address_space	*mapping = file->f_mapping;
865 	struct inode		*inode = mapping->host;
866 	struct xfs_inode	*ip = XFS_I(inode);
867 	ssize_t			ret;
868 	size_t			ocount = iov_iter_count(from);
869 
870 	XFS_STATS_INC(xs_write_calls);
871 
872 	if (ocount == 0)
873 		return 0;
874 
875 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
876 		return -EIO;
877 
878 	if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode))
879 		ret = xfs_file_dio_aio_write(iocb, from);
880 	else
881 		ret = xfs_file_buffered_aio_write(iocb, from);
882 
883 	if (ret > 0) {
884 		ssize_t err;
885 
886 		XFS_STATS_ADD(xs_write_bytes, ret);
887 
888 		/* Handle various SYNC-type writes */
889 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
890 		if (err < 0)
891 			ret = err;
892 	}
893 	return ret;
894 }
895 
896 #define	XFS_FALLOC_FL_SUPPORTED						\
897 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
898 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
899 		 FALLOC_FL_INSERT_RANGE)
900 
901 STATIC long
902 xfs_file_fallocate(
903 	struct file		*file,
904 	int			mode,
905 	loff_t			offset,
906 	loff_t			len)
907 {
908 	struct inode		*inode = file_inode(file);
909 	struct xfs_inode	*ip = XFS_I(inode);
910 	long			error;
911 	enum xfs_prealloc_flags	flags = 0;
912 	uint			iolock = XFS_IOLOCK_EXCL;
913 	loff_t			new_size = 0;
914 	bool			do_file_insert = 0;
915 
916 	if (!S_ISREG(inode->i_mode))
917 		return -EINVAL;
918 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
919 		return -EOPNOTSUPP;
920 
921 	xfs_ilock(ip, iolock);
922 	error = xfs_break_layouts(inode, &iolock, false);
923 	if (error)
924 		goto out_unlock;
925 
926 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
927 	iolock |= XFS_MMAPLOCK_EXCL;
928 
929 	if (mode & FALLOC_FL_PUNCH_HOLE) {
930 		error = xfs_free_file_space(ip, offset, len);
931 		if (error)
932 			goto out_unlock;
933 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
934 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
935 
936 		if (offset & blksize_mask || len & blksize_mask) {
937 			error = -EINVAL;
938 			goto out_unlock;
939 		}
940 
941 		/*
942 		 * There is no need to overlap collapse range with EOF,
943 		 * in which case it is effectively a truncate operation
944 		 */
945 		if (offset + len >= i_size_read(inode)) {
946 			error = -EINVAL;
947 			goto out_unlock;
948 		}
949 
950 		new_size = i_size_read(inode) - len;
951 
952 		error = xfs_collapse_file_space(ip, offset, len);
953 		if (error)
954 			goto out_unlock;
955 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
956 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
957 
958 		new_size = i_size_read(inode) + len;
959 		if (offset & blksize_mask || len & blksize_mask) {
960 			error = -EINVAL;
961 			goto out_unlock;
962 		}
963 
964 		/* check the new inode size does not wrap through zero */
965 		if (new_size > inode->i_sb->s_maxbytes) {
966 			error = -EFBIG;
967 			goto out_unlock;
968 		}
969 
970 		/* Offset should be less than i_size */
971 		if (offset >= i_size_read(inode)) {
972 			error = -EINVAL;
973 			goto out_unlock;
974 		}
975 		do_file_insert = 1;
976 	} else {
977 		flags |= XFS_PREALLOC_SET;
978 
979 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
980 		    offset + len > i_size_read(inode)) {
981 			new_size = offset + len;
982 			error = inode_newsize_ok(inode, new_size);
983 			if (error)
984 				goto out_unlock;
985 		}
986 
987 		if (mode & FALLOC_FL_ZERO_RANGE)
988 			error = xfs_zero_file_space(ip, offset, len);
989 		else
990 			error = xfs_alloc_file_space(ip, offset, len,
991 						     XFS_BMAPI_PREALLOC);
992 		if (error)
993 			goto out_unlock;
994 	}
995 
996 	if (file->f_flags & O_DSYNC)
997 		flags |= XFS_PREALLOC_SYNC;
998 
999 	error = xfs_update_prealloc_flags(ip, flags);
1000 	if (error)
1001 		goto out_unlock;
1002 
1003 	/* Change file size if needed */
1004 	if (new_size) {
1005 		struct iattr iattr;
1006 
1007 		iattr.ia_valid = ATTR_SIZE;
1008 		iattr.ia_size = new_size;
1009 		error = xfs_setattr_size(ip, &iattr);
1010 		if (error)
1011 			goto out_unlock;
1012 	}
1013 
1014 	/*
1015 	 * Perform hole insertion now that the file size has been
1016 	 * updated so that if we crash during the operation we don't
1017 	 * leave shifted extents past EOF and hence losing access to
1018 	 * the data that is contained within them.
1019 	 */
1020 	if (do_file_insert)
1021 		error = xfs_insert_file_space(ip, offset, len);
1022 
1023 out_unlock:
1024 	xfs_iunlock(ip, iolock);
1025 	return error;
1026 }
1027 
1028 
1029 STATIC int
1030 xfs_file_open(
1031 	struct inode	*inode,
1032 	struct file	*file)
1033 {
1034 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1035 		return -EFBIG;
1036 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1037 		return -EIO;
1038 	return 0;
1039 }
1040 
1041 STATIC int
1042 xfs_dir_open(
1043 	struct inode	*inode,
1044 	struct file	*file)
1045 {
1046 	struct xfs_inode *ip = XFS_I(inode);
1047 	int		mode;
1048 	int		error;
1049 
1050 	error = xfs_file_open(inode, file);
1051 	if (error)
1052 		return error;
1053 
1054 	/*
1055 	 * If there are any blocks, read-ahead block 0 as we're almost
1056 	 * certain to have the next operation be a read there.
1057 	 */
1058 	mode = xfs_ilock_data_map_shared(ip);
1059 	if (ip->i_d.di_nextents > 0)
1060 		xfs_dir3_data_readahead(ip, 0, -1);
1061 	xfs_iunlock(ip, mode);
1062 	return 0;
1063 }
1064 
1065 STATIC int
1066 xfs_file_release(
1067 	struct inode	*inode,
1068 	struct file	*filp)
1069 {
1070 	return xfs_release(XFS_I(inode));
1071 }
1072 
1073 STATIC int
1074 xfs_file_readdir(
1075 	struct file	*file,
1076 	struct dir_context *ctx)
1077 {
1078 	struct inode	*inode = file_inode(file);
1079 	xfs_inode_t	*ip = XFS_I(inode);
1080 	size_t		bufsize;
1081 
1082 	/*
1083 	 * The Linux API doesn't pass down the total size of the buffer
1084 	 * we read into down to the filesystem.  With the filldir concept
1085 	 * it's not needed for correct information, but the XFS dir2 leaf
1086 	 * code wants an estimate of the buffer size to calculate it's
1087 	 * readahead window and size the buffers used for mapping to
1088 	 * physical blocks.
1089 	 *
1090 	 * Try to give it an estimate that's good enough, maybe at some
1091 	 * point we can change the ->readdir prototype to include the
1092 	 * buffer size.  For now we use the current glibc buffer size.
1093 	 */
1094 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1095 
1096 	return xfs_readdir(ip, ctx, bufsize);
1097 }
1098 
1099 /*
1100  * This type is designed to indicate the type of offset we would like
1101  * to search from page cache for xfs_seek_hole_data().
1102  */
1103 enum {
1104 	HOLE_OFF = 0,
1105 	DATA_OFF,
1106 };
1107 
1108 /*
1109  * Lookup the desired type of offset from the given page.
1110  *
1111  * On success, return true and the offset argument will point to the
1112  * start of the region that was found.  Otherwise this function will
1113  * return false and keep the offset argument unchanged.
1114  */
1115 STATIC bool
1116 xfs_lookup_buffer_offset(
1117 	struct page		*page,
1118 	loff_t			*offset,
1119 	unsigned int		type)
1120 {
1121 	loff_t			lastoff = page_offset(page);
1122 	bool			found = false;
1123 	struct buffer_head	*bh, *head;
1124 
1125 	bh = head = page_buffers(page);
1126 	do {
1127 		/*
1128 		 * Unwritten extents that have data in the page
1129 		 * cache covering them can be identified by the
1130 		 * BH_Unwritten state flag.  Pages with multiple
1131 		 * buffers might have a mix of holes, data and
1132 		 * unwritten extents - any buffer with valid
1133 		 * data in it should have BH_Uptodate flag set
1134 		 * on it.
1135 		 */
1136 		if (buffer_unwritten(bh) ||
1137 		    buffer_uptodate(bh)) {
1138 			if (type == DATA_OFF)
1139 				found = true;
1140 		} else {
1141 			if (type == HOLE_OFF)
1142 				found = true;
1143 		}
1144 
1145 		if (found) {
1146 			*offset = lastoff;
1147 			break;
1148 		}
1149 		lastoff += bh->b_size;
1150 	} while ((bh = bh->b_this_page) != head);
1151 
1152 	return found;
1153 }
1154 
1155 /*
1156  * This routine is called to find out and return a data or hole offset
1157  * from the page cache for unwritten extents according to the desired
1158  * type for xfs_seek_hole_data().
1159  *
1160  * The argument offset is used to tell where we start to search from the
1161  * page cache.  Map is used to figure out the end points of the range to
1162  * lookup pages.
1163  *
1164  * Return true if the desired type of offset was found, and the argument
1165  * offset is filled with that address.  Otherwise, return false and keep
1166  * offset unchanged.
1167  */
1168 STATIC bool
1169 xfs_find_get_desired_pgoff(
1170 	struct inode		*inode,
1171 	struct xfs_bmbt_irec	*map,
1172 	unsigned int		type,
1173 	loff_t			*offset)
1174 {
1175 	struct xfs_inode	*ip = XFS_I(inode);
1176 	struct xfs_mount	*mp = ip->i_mount;
1177 	struct pagevec		pvec;
1178 	pgoff_t			index;
1179 	pgoff_t			end;
1180 	loff_t			endoff;
1181 	loff_t			startoff = *offset;
1182 	loff_t			lastoff = startoff;
1183 	bool			found = false;
1184 
1185 	pagevec_init(&pvec, 0);
1186 
1187 	index = startoff >> PAGE_CACHE_SHIFT;
1188 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1189 	end = endoff >> PAGE_CACHE_SHIFT;
1190 	do {
1191 		int		want;
1192 		unsigned	nr_pages;
1193 		unsigned int	i;
1194 
1195 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1196 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1197 					  want);
1198 		/*
1199 		 * No page mapped into given range.  If we are searching holes
1200 		 * and if this is the first time we got into the loop, it means
1201 		 * that the given offset is landed in a hole, return it.
1202 		 *
1203 		 * If we have already stepped through some block buffers to find
1204 		 * holes but they all contains data.  In this case, the last
1205 		 * offset is already updated and pointed to the end of the last
1206 		 * mapped page, if it does not reach the endpoint to search,
1207 		 * that means there should be a hole between them.
1208 		 */
1209 		if (nr_pages == 0) {
1210 			/* Data search found nothing */
1211 			if (type == DATA_OFF)
1212 				break;
1213 
1214 			ASSERT(type == HOLE_OFF);
1215 			if (lastoff == startoff || lastoff < endoff) {
1216 				found = true;
1217 				*offset = lastoff;
1218 			}
1219 			break;
1220 		}
1221 
1222 		/*
1223 		 * At lease we found one page.  If this is the first time we
1224 		 * step into the loop, and if the first page index offset is
1225 		 * greater than the given search offset, a hole was found.
1226 		 */
1227 		if (type == HOLE_OFF && lastoff == startoff &&
1228 		    lastoff < page_offset(pvec.pages[0])) {
1229 			found = true;
1230 			break;
1231 		}
1232 
1233 		for (i = 0; i < nr_pages; i++) {
1234 			struct page	*page = pvec.pages[i];
1235 			loff_t		b_offset;
1236 
1237 			/*
1238 			 * At this point, the page may be truncated or
1239 			 * invalidated (changing page->mapping to NULL),
1240 			 * or even swizzled back from swapper_space to tmpfs
1241 			 * file mapping. However, page->index will not change
1242 			 * because we have a reference on the page.
1243 			 *
1244 			 * Searching done if the page index is out of range.
1245 			 * If the current offset is not reaches the end of
1246 			 * the specified search range, there should be a hole
1247 			 * between them.
1248 			 */
1249 			if (page->index > end) {
1250 				if (type == HOLE_OFF && lastoff < endoff) {
1251 					*offset = lastoff;
1252 					found = true;
1253 				}
1254 				goto out;
1255 			}
1256 
1257 			lock_page(page);
1258 			/*
1259 			 * Page truncated or invalidated(page->mapping == NULL).
1260 			 * We can freely skip it and proceed to check the next
1261 			 * page.
1262 			 */
1263 			if (unlikely(page->mapping != inode->i_mapping)) {
1264 				unlock_page(page);
1265 				continue;
1266 			}
1267 
1268 			if (!page_has_buffers(page)) {
1269 				unlock_page(page);
1270 				continue;
1271 			}
1272 
1273 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1274 			if (found) {
1275 				/*
1276 				 * The found offset may be less than the start
1277 				 * point to search if this is the first time to
1278 				 * come here.
1279 				 */
1280 				*offset = max_t(loff_t, startoff, b_offset);
1281 				unlock_page(page);
1282 				goto out;
1283 			}
1284 
1285 			/*
1286 			 * We either searching data but nothing was found, or
1287 			 * searching hole but found a data buffer.  In either
1288 			 * case, probably the next page contains the desired
1289 			 * things, update the last offset to it so.
1290 			 */
1291 			lastoff = page_offset(page) + PAGE_SIZE;
1292 			unlock_page(page);
1293 		}
1294 
1295 		/*
1296 		 * The number of returned pages less than our desired, search
1297 		 * done.  In this case, nothing was found for searching data,
1298 		 * but we found a hole behind the last offset.
1299 		 */
1300 		if (nr_pages < want) {
1301 			if (type == HOLE_OFF) {
1302 				*offset = lastoff;
1303 				found = true;
1304 			}
1305 			break;
1306 		}
1307 
1308 		index = pvec.pages[i - 1]->index + 1;
1309 		pagevec_release(&pvec);
1310 	} while (index <= end);
1311 
1312 out:
1313 	pagevec_release(&pvec);
1314 	return found;
1315 }
1316 
1317 STATIC loff_t
1318 xfs_seek_hole_data(
1319 	struct file		*file,
1320 	loff_t			start,
1321 	int			whence)
1322 {
1323 	struct inode		*inode = file->f_mapping->host;
1324 	struct xfs_inode	*ip = XFS_I(inode);
1325 	struct xfs_mount	*mp = ip->i_mount;
1326 	loff_t			uninitialized_var(offset);
1327 	xfs_fsize_t		isize;
1328 	xfs_fileoff_t		fsbno;
1329 	xfs_filblks_t		end;
1330 	uint			lock;
1331 	int			error;
1332 
1333 	if (XFS_FORCED_SHUTDOWN(mp))
1334 		return -EIO;
1335 
1336 	lock = xfs_ilock_data_map_shared(ip);
1337 
1338 	isize = i_size_read(inode);
1339 	if (start >= isize) {
1340 		error = -ENXIO;
1341 		goto out_unlock;
1342 	}
1343 
1344 	/*
1345 	 * Try to read extents from the first block indicated
1346 	 * by fsbno to the end block of the file.
1347 	 */
1348 	fsbno = XFS_B_TO_FSBT(mp, start);
1349 	end = XFS_B_TO_FSB(mp, isize);
1350 
1351 	for (;;) {
1352 		struct xfs_bmbt_irec	map[2];
1353 		int			nmap = 2;
1354 		unsigned int		i;
1355 
1356 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1357 				       XFS_BMAPI_ENTIRE);
1358 		if (error)
1359 			goto out_unlock;
1360 
1361 		/* No extents at given offset, must be beyond EOF */
1362 		if (nmap == 0) {
1363 			error = -ENXIO;
1364 			goto out_unlock;
1365 		}
1366 
1367 		for (i = 0; i < nmap; i++) {
1368 			offset = max_t(loff_t, start,
1369 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1370 
1371 			/* Landed in the hole we wanted? */
1372 			if (whence == SEEK_HOLE &&
1373 			    map[i].br_startblock == HOLESTARTBLOCK)
1374 				goto out;
1375 
1376 			/* Landed in the data extent we wanted? */
1377 			if (whence == SEEK_DATA &&
1378 			    (map[i].br_startblock == DELAYSTARTBLOCK ||
1379 			     (map[i].br_state == XFS_EXT_NORM &&
1380 			      !isnullstartblock(map[i].br_startblock))))
1381 				goto out;
1382 
1383 			/*
1384 			 * Landed in an unwritten extent, try to search
1385 			 * for hole or data from page cache.
1386 			 */
1387 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1388 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1389 				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1390 							&offset))
1391 					goto out;
1392 			}
1393 		}
1394 
1395 		/*
1396 		 * We only received one extent out of the two requested. This
1397 		 * means we've hit EOF and didn't find what we are looking for.
1398 		 */
1399 		if (nmap == 1) {
1400 			/*
1401 			 * If we were looking for a hole, set offset to
1402 			 * the end of the file (i.e., there is an implicit
1403 			 * hole at the end of any file).
1404 		 	 */
1405 			if (whence == SEEK_HOLE) {
1406 				offset = isize;
1407 				break;
1408 			}
1409 			/*
1410 			 * If we were looking for data, it's nowhere to be found
1411 			 */
1412 			ASSERT(whence == SEEK_DATA);
1413 			error = -ENXIO;
1414 			goto out_unlock;
1415 		}
1416 
1417 		ASSERT(i > 1);
1418 
1419 		/*
1420 		 * Nothing was found, proceed to the next round of search
1421 		 * if the next reading offset is not at or beyond EOF.
1422 		 */
1423 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1424 		start = XFS_FSB_TO_B(mp, fsbno);
1425 		if (start >= isize) {
1426 			if (whence == SEEK_HOLE) {
1427 				offset = isize;
1428 				break;
1429 			}
1430 			ASSERT(whence == SEEK_DATA);
1431 			error = -ENXIO;
1432 			goto out_unlock;
1433 		}
1434 	}
1435 
1436 out:
1437 	/*
1438 	 * If at this point we have found the hole we wanted, the returned
1439 	 * offset may be bigger than the file size as it may be aligned to
1440 	 * page boundary for unwritten extents.  We need to deal with this
1441 	 * situation in particular.
1442 	 */
1443 	if (whence == SEEK_HOLE)
1444 		offset = min_t(loff_t, offset, isize);
1445 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1446 
1447 out_unlock:
1448 	xfs_iunlock(ip, lock);
1449 
1450 	if (error)
1451 		return error;
1452 	return offset;
1453 }
1454 
1455 STATIC loff_t
1456 xfs_file_llseek(
1457 	struct file	*file,
1458 	loff_t		offset,
1459 	int		whence)
1460 {
1461 	switch (whence) {
1462 	case SEEK_END:
1463 	case SEEK_CUR:
1464 	case SEEK_SET:
1465 		return generic_file_llseek(file, offset, whence);
1466 	case SEEK_HOLE:
1467 	case SEEK_DATA:
1468 		return xfs_seek_hole_data(file, offset, whence);
1469 	default:
1470 		return -EINVAL;
1471 	}
1472 }
1473 
1474 /*
1475  * Locking for serialisation of IO during page faults. This results in a lock
1476  * ordering of:
1477  *
1478  * mmap_sem (MM)
1479  *   sb_start_pagefault(vfs, freeze)
1480  *     i_mmap_lock (XFS - truncate serialisation)
1481  *       page_lock (MM)
1482  *         i_lock (XFS - extent map serialisation)
1483  */
1484 
1485 /*
1486  * mmap()d file has taken write protection fault and is being made writable. We
1487  * can set the page state up correctly for a writable page, which means we can
1488  * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1489  * mapping.
1490  */
1491 STATIC int
1492 xfs_filemap_page_mkwrite(
1493 	struct vm_area_struct	*vma,
1494 	struct vm_fault		*vmf)
1495 {
1496 	struct inode		*inode = file_inode(vma->vm_file);
1497 	int			ret;
1498 
1499 	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1500 
1501 	sb_start_pagefault(inode->i_sb);
1502 	file_update_time(vma->vm_file);
1503 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1504 
1505 	if (IS_DAX(inode)) {
1506 		ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_direct,
1507 				    xfs_end_io_dax_write);
1508 	} else {
1509 		ret = __block_page_mkwrite(vma, vmf, xfs_get_blocks);
1510 		ret = block_page_mkwrite_return(ret);
1511 	}
1512 
1513 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1514 	sb_end_pagefault(inode->i_sb);
1515 
1516 	return ret;
1517 }
1518 
1519 STATIC int
1520 xfs_filemap_fault(
1521 	struct vm_area_struct	*vma,
1522 	struct vm_fault		*vmf)
1523 {
1524 	struct inode		*inode = file_inode(vma->vm_file);
1525 	int			ret;
1526 
1527 	trace_xfs_filemap_fault(XFS_I(inode));
1528 
1529 	/* DAX can shortcut the normal fault path on write faults! */
1530 	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1531 		return xfs_filemap_page_mkwrite(vma, vmf);
1532 
1533 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1534 	if (IS_DAX(inode)) {
1535 		/*
1536 		 * we do not want to trigger unwritten extent conversion on read
1537 		 * faults - that is unnecessary overhead and would also require
1538 		 * changes to xfs_get_blocks_direct() to map unwritten extent
1539 		 * ioend for conversion on read-only mappings.
1540 		 */
1541 		ret = __dax_fault(vma, vmf, xfs_get_blocks_direct, NULL);
1542 	} else
1543 		ret = filemap_fault(vma, vmf);
1544 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1545 
1546 	return ret;
1547 }
1548 
1549 STATIC int
1550 xfs_filemap_pmd_fault(
1551 	struct vm_area_struct	*vma,
1552 	unsigned long		addr,
1553 	pmd_t			*pmd,
1554 	unsigned int		flags)
1555 {
1556 	struct inode		*inode = file_inode(vma->vm_file);
1557 	struct xfs_inode	*ip = XFS_I(inode);
1558 	int			ret;
1559 
1560 	if (!IS_DAX(inode))
1561 		return VM_FAULT_FALLBACK;
1562 
1563 	trace_xfs_filemap_pmd_fault(ip);
1564 
1565 	sb_start_pagefault(inode->i_sb);
1566 	file_update_time(vma->vm_file);
1567 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1568 	ret = __dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_direct,
1569 				    xfs_end_io_dax_write);
1570 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1571 	sb_end_pagefault(inode->i_sb);
1572 
1573 	return ret;
1574 }
1575 
1576 static const struct vm_operations_struct xfs_file_vm_ops = {
1577 	.fault		= xfs_filemap_fault,
1578 	.pmd_fault	= xfs_filemap_pmd_fault,
1579 	.map_pages	= filemap_map_pages,
1580 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1581 };
1582 
1583 STATIC int
1584 xfs_file_mmap(
1585 	struct file	*filp,
1586 	struct vm_area_struct *vma)
1587 {
1588 	file_accessed(filp);
1589 	vma->vm_ops = &xfs_file_vm_ops;
1590 	if (IS_DAX(file_inode(filp)))
1591 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1592 	return 0;
1593 }
1594 
1595 const struct file_operations xfs_file_operations = {
1596 	.llseek		= xfs_file_llseek,
1597 	.read_iter	= xfs_file_read_iter,
1598 	.write_iter	= xfs_file_write_iter,
1599 	.splice_read	= xfs_file_splice_read,
1600 	.splice_write	= iter_file_splice_write,
1601 	.unlocked_ioctl	= xfs_file_ioctl,
1602 #ifdef CONFIG_COMPAT
1603 	.compat_ioctl	= xfs_file_compat_ioctl,
1604 #endif
1605 	.mmap		= xfs_file_mmap,
1606 	.open		= xfs_file_open,
1607 	.release	= xfs_file_release,
1608 	.fsync		= xfs_file_fsync,
1609 	.fallocate	= xfs_file_fallocate,
1610 };
1611 
1612 const struct file_operations xfs_dir_file_operations = {
1613 	.open		= xfs_dir_open,
1614 	.read		= generic_read_dir,
1615 	.iterate	= xfs_file_readdir,
1616 	.llseek		= generic_file_llseek,
1617 	.unlocked_ioctl	= xfs_file_ioctl,
1618 #ifdef CONFIG_COMPAT
1619 	.compat_ioctl	= xfs_file_compat_ioctl,
1620 #endif
1621 	.fsync		= xfs_dir_fsync,
1622 };
1623