1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_sb.h" 25 #include "xfs_ag.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_da_btree.h" 29 #include "xfs_inode.h" 30 #include "xfs_trans.h" 31 #include "xfs_inode_item.h" 32 #include "xfs_bmap.h" 33 #include "xfs_bmap_util.h" 34 #include "xfs_error.h" 35 #include "xfs_dir2.h" 36 #include "xfs_dir2_priv.h" 37 #include "xfs_ioctl.h" 38 #include "xfs_trace.h" 39 #include "xfs_log.h" 40 #include "xfs_dinode.h" 41 42 #include <linux/aio.h> 43 #include <linux/dcache.h> 44 #include <linux/falloc.h> 45 #include <linux/pagevec.h> 46 47 static const struct vm_operations_struct xfs_file_vm_ops; 48 49 /* 50 * Locking primitives for read and write IO paths to ensure we consistently use 51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 52 */ 53 static inline void 54 xfs_rw_ilock( 55 struct xfs_inode *ip, 56 int type) 57 { 58 if (type & XFS_IOLOCK_EXCL) 59 mutex_lock(&VFS_I(ip)->i_mutex); 60 xfs_ilock(ip, type); 61 } 62 63 static inline void 64 xfs_rw_iunlock( 65 struct xfs_inode *ip, 66 int type) 67 { 68 xfs_iunlock(ip, type); 69 if (type & XFS_IOLOCK_EXCL) 70 mutex_unlock(&VFS_I(ip)->i_mutex); 71 } 72 73 static inline void 74 xfs_rw_ilock_demote( 75 struct xfs_inode *ip, 76 int type) 77 { 78 xfs_ilock_demote(ip, type); 79 if (type & XFS_IOLOCK_EXCL) 80 mutex_unlock(&VFS_I(ip)->i_mutex); 81 } 82 83 /* 84 * xfs_iozero 85 * 86 * xfs_iozero clears the specified range of buffer supplied, 87 * and marks all the affected blocks as valid and modified. If 88 * an affected block is not allocated, it will be allocated. If 89 * an affected block is not completely overwritten, and is not 90 * valid before the operation, it will be read from disk before 91 * being partially zeroed. 92 */ 93 int 94 xfs_iozero( 95 struct xfs_inode *ip, /* inode */ 96 loff_t pos, /* offset in file */ 97 size_t count) /* size of data to zero */ 98 { 99 struct page *page; 100 struct address_space *mapping; 101 int status; 102 103 mapping = VFS_I(ip)->i_mapping; 104 do { 105 unsigned offset, bytes; 106 void *fsdata; 107 108 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 109 bytes = PAGE_CACHE_SIZE - offset; 110 if (bytes > count) 111 bytes = count; 112 113 status = pagecache_write_begin(NULL, mapping, pos, bytes, 114 AOP_FLAG_UNINTERRUPTIBLE, 115 &page, &fsdata); 116 if (status) 117 break; 118 119 zero_user(page, offset, bytes); 120 121 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes, 122 page, fsdata); 123 WARN_ON(status <= 0); /* can't return less than zero! */ 124 pos += bytes; 125 count -= bytes; 126 status = 0; 127 } while (count); 128 129 return (-status); 130 } 131 132 /* 133 * Fsync operations on directories are much simpler than on regular files, 134 * as there is no file data to flush, and thus also no need for explicit 135 * cache flush operations, and there are no non-transaction metadata updates 136 * on directories either. 137 */ 138 STATIC int 139 xfs_dir_fsync( 140 struct file *file, 141 loff_t start, 142 loff_t end, 143 int datasync) 144 { 145 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 146 struct xfs_mount *mp = ip->i_mount; 147 xfs_lsn_t lsn = 0; 148 149 trace_xfs_dir_fsync(ip); 150 151 xfs_ilock(ip, XFS_ILOCK_SHARED); 152 if (xfs_ipincount(ip)) 153 lsn = ip->i_itemp->ili_last_lsn; 154 xfs_iunlock(ip, XFS_ILOCK_SHARED); 155 156 if (!lsn) 157 return 0; 158 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 159 } 160 161 STATIC int 162 xfs_file_fsync( 163 struct file *file, 164 loff_t start, 165 loff_t end, 166 int datasync) 167 { 168 struct inode *inode = file->f_mapping->host; 169 struct xfs_inode *ip = XFS_I(inode); 170 struct xfs_mount *mp = ip->i_mount; 171 int error = 0; 172 int log_flushed = 0; 173 xfs_lsn_t lsn = 0; 174 175 trace_xfs_file_fsync(ip); 176 177 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 178 if (error) 179 return error; 180 181 if (XFS_FORCED_SHUTDOWN(mp)) 182 return -XFS_ERROR(EIO); 183 184 xfs_iflags_clear(ip, XFS_ITRUNCATED); 185 186 if (mp->m_flags & XFS_MOUNT_BARRIER) { 187 /* 188 * If we have an RT and/or log subvolume we need to make sure 189 * to flush the write cache the device used for file data 190 * first. This is to ensure newly written file data make 191 * it to disk before logging the new inode size in case of 192 * an extending write. 193 */ 194 if (XFS_IS_REALTIME_INODE(ip)) 195 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 196 else if (mp->m_logdev_targp != mp->m_ddev_targp) 197 xfs_blkdev_issue_flush(mp->m_ddev_targp); 198 } 199 200 /* 201 * All metadata updates are logged, which means that we just have 202 * to flush the log up to the latest LSN that touched the inode. 203 */ 204 xfs_ilock(ip, XFS_ILOCK_SHARED); 205 if (xfs_ipincount(ip)) { 206 if (!datasync || 207 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP)) 208 lsn = ip->i_itemp->ili_last_lsn; 209 } 210 xfs_iunlock(ip, XFS_ILOCK_SHARED); 211 212 if (lsn) 213 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 214 215 /* 216 * If we only have a single device, and the log force about was 217 * a no-op we might have to flush the data device cache here. 218 * This can only happen for fdatasync/O_DSYNC if we were overwriting 219 * an already allocated file and thus do not have any metadata to 220 * commit. 221 */ 222 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 223 mp->m_logdev_targp == mp->m_ddev_targp && 224 !XFS_IS_REALTIME_INODE(ip) && 225 !log_flushed) 226 xfs_blkdev_issue_flush(mp->m_ddev_targp); 227 228 return -error; 229 } 230 231 STATIC ssize_t 232 xfs_file_aio_read( 233 struct kiocb *iocb, 234 const struct iovec *iovp, 235 unsigned long nr_segs, 236 loff_t pos) 237 { 238 struct file *file = iocb->ki_filp; 239 struct inode *inode = file->f_mapping->host; 240 struct xfs_inode *ip = XFS_I(inode); 241 struct xfs_mount *mp = ip->i_mount; 242 size_t size = 0; 243 ssize_t ret = 0; 244 int ioflags = 0; 245 xfs_fsize_t n; 246 247 XFS_STATS_INC(xs_read_calls); 248 249 BUG_ON(iocb->ki_pos != pos); 250 251 if (unlikely(file->f_flags & O_DIRECT)) 252 ioflags |= IO_ISDIRECT; 253 if (file->f_mode & FMODE_NOCMTIME) 254 ioflags |= IO_INVIS; 255 256 ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE); 257 if (ret < 0) 258 return ret; 259 260 if (unlikely(ioflags & IO_ISDIRECT)) { 261 xfs_buftarg_t *target = 262 XFS_IS_REALTIME_INODE(ip) ? 263 mp->m_rtdev_targp : mp->m_ddev_targp; 264 /* DIO must be aligned to device logical sector size */ 265 if ((pos | size) & target->bt_logical_sectormask) { 266 if (pos == i_size_read(inode)) 267 return 0; 268 return -XFS_ERROR(EINVAL); 269 } 270 } 271 272 n = mp->m_super->s_maxbytes - pos; 273 if (n <= 0 || size == 0) 274 return 0; 275 276 if (n < size) 277 size = n; 278 279 if (XFS_FORCED_SHUTDOWN(mp)) 280 return -EIO; 281 282 /* 283 * Locking is a bit tricky here. If we take an exclusive lock 284 * for direct IO, we effectively serialise all new concurrent 285 * read IO to this file and block it behind IO that is currently in 286 * progress because IO in progress holds the IO lock shared. We only 287 * need to hold the lock exclusive to blow away the page cache, so 288 * only take lock exclusively if the page cache needs invalidation. 289 * This allows the normal direct IO case of no page cache pages to 290 * proceeed concurrently without serialisation. 291 */ 292 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 293 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) { 294 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 295 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 296 297 if (inode->i_mapping->nrpages) { 298 ret = -filemap_write_and_wait_range( 299 VFS_I(ip)->i_mapping, 300 pos, -1); 301 if (ret) { 302 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 303 return ret; 304 } 305 truncate_pagecache_range(VFS_I(ip), pos, -1); 306 } 307 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 308 } 309 310 trace_xfs_file_read(ip, size, pos, ioflags); 311 312 ret = generic_file_aio_read(iocb, iovp, nr_segs, pos); 313 if (ret > 0) 314 XFS_STATS_ADD(xs_read_bytes, ret); 315 316 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 317 return ret; 318 } 319 320 STATIC ssize_t 321 xfs_file_splice_read( 322 struct file *infilp, 323 loff_t *ppos, 324 struct pipe_inode_info *pipe, 325 size_t count, 326 unsigned int flags) 327 { 328 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 329 int ioflags = 0; 330 ssize_t ret; 331 332 XFS_STATS_INC(xs_read_calls); 333 334 if (infilp->f_mode & FMODE_NOCMTIME) 335 ioflags |= IO_INVIS; 336 337 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 338 return -EIO; 339 340 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 341 342 trace_xfs_file_splice_read(ip, count, *ppos, ioflags); 343 344 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 345 if (ret > 0) 346 XFS_STATS_ADD(xs_read_bytes, ret); 347 348 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 349 return ret; 350 } 351 352 /* 353 * xfs_file_splice_write() does not use xfs_rw_ilock() because 354 * generic_file_splice_write() takes the i_mutex itself. This, in theory, 355 * couuld cause lock inversions between the aio_write path and the splice path 356 * if someone is doing concurrent splice(2) based writes and write(2) based 357 * writes to the same inode. The only real way to fix this is to re-implement 358 * the generic code here with correct locking orders. 359 */ 360 STATIC ssize_t 361 xfs_file_splice_write( 362 struct pipe_inode_info *pipe, 363 struct file *outfilp, 364 loff_t *ppos, 365 size_t count, 366 unsigned int flags) 367 { 368 struct inode *inode = outfilp->f_mapping->host; 369 struct xfs_inode *ip = XFS_I(inode); 370 int ioflags = 0; 371 ssize_t ret; 372 373 XFS_STATS_INC(xs_write_calls); 374 375 if (outfilp->f_mode & FMODE_NOCMTIME) 376 ioflags |= IO_INVIS; 377 378 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 379 return -EIO; 380 381 xfs_ilock(ip, XFS_IOLOCK_EXCL); 382 383 trace_xfs_file_splice_write(ip, count, *ppos, ioflags); 384 385 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags); 386 if (ret > 0) 387 XFS_STATS_ADD(xs_write_bytes, ret); 388 389 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 390 return ret; 391 } 392 393 /* 394 * This routine is called to handle zeroing any space in the last block of the 395 * file that is beyond the EOF. We do this since the size is being increased 396 * without writing anything to that block and we don't want to read the 397 * garbage on the disk. 398 */ 399 STATIC int /* error (positive) */ 400 xfs_zero_last_block( 401 struct xfs_inode *ip, 402 xfs_fsize_t offset, 403 xfs_fsize_t isize) 404 { 405 struct xfs_mount *mp = ip->i_mount; 406 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize); 407 int zero_offset = XFS_B_FSB_OFFSET(mp, isize); 408 int zero_len; 409 int nimaps = 1; 410 int error = 0; 411 struct xfs_bmbt_irec imap; 412 413 xfs_ilock(ip, XFS_ILOCK_EXCL); 414 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); 415 xfs_iunlock(ip, XFS_ILOCK_EXCL); 416 if (error) 417 return error; 418 419 ASSERT(nimaps > 0); 420 421 /* 422 * If the block underlying isize is just a hole, then there 423 * is nothing to zero. 424 */ 425 if (imap.br_startblock == HOLESTARTBLOCK) 426 return 0; 427 428 zero_len = mp->m_sb.sb_blocksize - zero_offset; 429 if (isize + zero_len > offset) 430 zero_len = offset - isize; 431 return xfs_iozero(ip, isize, zero_len); 432 } 433 434 /* 435 * Zero any on disk space between the current EOF and the new, larger EOF. 436 * 437 * This handles the normal case of zeroing the remainder of the last block in 438 * the file and the unusual case of zeroing blocks out beyond the size of the 439 * file. This second case only happens with fixed size extents and when the 440 * system crashes before the inode size was updated but after blocks were 441 * allocated. 442 * 443 * Expects the iolock to be held exclusive, and will take the ilock internally. 444 */ 445 int /* error (positive) */ 446 xfs_zero_eof( 447 struct xfs_inode *ip, 448 xfs_off_t offset, /* starting I/O offset */ 449 xfs_fsize_t isize) /* current inode size */ 450 { 451 struct xfs_mount *mp = ip->i_mount; 452 xfs_fileoff_t start_zero_fsb; 453 xfs_fileoff_t end_zero_fsb; 454 xfs_fileoff_t zero_count_fsb; 455 xfs_fileoff_t last_fsb; 456 xfs_fileoff_t zero_off; 457 xfs_fsize_t zero_len; 458 int nimaps; 459 int error = 0; 460 struct xfs_bmbt_irec imap; 461 462 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 463 ASSERT(offset > isize); 464 465 /* 466 * First handle zeroing the block on which isize resides. 467 * 468 * We only zero a part of that block so it is handled specially. 469 */ 470 if (XFS_B_FSB_OFFSET(mp, isize) != 0) { 471 error = xfs_zero_last_block(ip, offset, isize); 472 if (error) 473 return error; 474 } 475 476 /* 477 * Calculate the range between the new size and the old where blocks 478 * needing to be zeroed may exist. 479 * 480 * To get the block where the last byte in the file currently resides, 481 * we need to subtract one from the size and truncate back to a block 482 * boundary. We subtract 1 in case the size is exactly on a block 483 * boundary. 484 */ 485 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; 486 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 487 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); 488 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); 489 if (last_fsb == end_zero_fsb) { 490 /* 491 * The size was only incremented on its last block. 492 * We took care of that above, so just return. 493 */ 494 return 0; 495 } 496 497 ASSERT(start_zero_fsb <= end_zero_fsb); 498 while (start_zero_fsb <= end_zero_fsb) { 499 nimaps = 1; 500 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; 501 502 xfs_ilock(ip, XFS_ILOCK_EXCL); 503 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, 504 &imap, &nimaps, 0); 505 xfs_iunlock(ip, XFS_ILOCK_EXCL); 506 if (error) 507 return error; 508 509 ASSERT(nimaps > 0); 510 511 if (imap.br_state == XFS_EXT_UNWRITTEN || 512 imap.br_startblock == HOLESTARTBLOCK) { 513 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 514 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 515 continue; 516 } 517 518 /* 519 * There are blocks we need to zero. 520 */ 521 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); 522 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); 523 524 if ((zero_off + zero_len) > offset) 525 zero_len = offset - zero_off; 526 527 error = xfs_iozero(ip, zero_off, zero_len); 528 if (error) 529 return error; 530 531 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 532 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 533 } 534 535 return 0; 536 } 537 538 /* 539 * Common pre-write limit and setup checks. 540 * 541 * Called with the iolocked held either shared and exclusive according to 542 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 543 * if called for a direct write beyond i_size. 544 */ 545 STATIC ssize_t 546 xfs_file_aio_write_checks( 547 struct file *file, 548 loff_t *pos, 549 size_t *count, 550 int *iolock) 551 { 552 struct inode *inode = file->f_mapping->host; 553 struct xfs_inode *ip = XFS_I(inode); 554 int error = 0; 555 556 restart: 557 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode)); 558 if (error) 559 return error; 560 561 /* 562 * If the offset is beyond the size of the file, we need to zero any 563 * blocks that fall between the existing EOF and the start of this 564 * write. If zeroing is needed and we are currently holding the 565 * iolock shared, we need to update it to exclusive which implies 566 * having to redo all checks before. 567 */ 568 if (*pos > i_size_read(inode)) { 569 if (*iolock == XFS_IOLOCK_SHARED) { 570 xfs_rw_iunlock(ip, *iolock); 571 *iolock = XFS_IOLOCK_EXCL; 572 xfs_rw_ilock(ip, *iolock); 573 goto restart; 574 } 575 error = -xfs_zero_eof(ip, *pos, i_size_read(inode)); 576 if (error) 577 return error; 578 } 579 580 /* 581 * Updating the timestamps will grab the ilock again from 582 * xfs_fs_dirty_inode, so we have to call it after dropping the 583 * lock above. Eventually we should look into a way to avoid 584 * the pointless lock roundtrip. 585 */ 586 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 587 error = file_update_time(file); 588 if (error) 589 return error; 590 } 591 592 /* 593 * If we're writing the file then make sure to clear the setuid and 594 * setgid bits if the process is not being run by root. This keeps 595 * people from modifying setuid and setgid binaries. 596 */ 597 return file_remove_suid(file); 598 } 599 600 /* 601 * xfs_file_dio_aio_write - handle direct IO writes 602 * 603 * Lock the inode appropriately to prepare for and issue a direct IO write. 604 * By separating it from the buffered write path we remove all the tricky to 605 * follow locking changes and looping. 606 * 607 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 608 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 609 * pages are flushed out. 610 * 611 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 612 * allowing them to be done in parallel with reads and other direct IO writes. 613 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 614 * needs to do sub-block zeroing and that requires serialisation against other 615 * direct IOs to the same block. In this case we need to serialise the 616 * submission of the unaligned IOs so that we don't get racing block zeroing in 617 * the dio layer. To avoid the problem with aio, we also need to wait for 618 * outstanding IOs to complete so that unwritten extent conversion is completed 619 * before we try to map the overlapping block. This is currently implemented by 620 * hitting it with a big hammer (i.e. inode_dio_wait()). 621 * 622 * Returns with locks held indicated by @iolock and errors indicated by 623 * negative return values. 624 */ 625 STATIC ssize_t 626 xfs_file_dio_aio_write( 627 struct kiocb *iocb, 628 const struct iovec *iovp, 629 unsigned long nr_segs, 630 loff_t pos, 631 size_t ocount) 632 { 633 struct file *file = iocb->ki_filp; 634 struct address_space *mapping = file->f_mapping; 635 struct inode *inode = mapping->host; 636 struct xfs_inode *ip = XFS_I(inode); 637 struct xfs_mount *mp = ip->i_mount; 638 ssize_t ret = 0; 639 size_t count = ocount; 640 int unaligned_io = 0; 641 int iolock; 642 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 643 mp->m_rtdev_targp : mp->m_ddev_targp; 644 645 /* DIO must be aligned to device logical sector size */ 646 if ((pos | count) & target->bt_logical_sectormask) 647 return -XFS_ERROR(EINVAL); 648 649 /* "unaligned" here means not aligned to a filesystem block */ 650 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) 651 unaligned_io = 1; 652 653 /* 654 * We don't need to take an exclusive lock unless there page cache needs 655 * to be invalidated or unaligned IO is being executed. We don't need to 656 * consider the EOF extension case here because 657 * xfs_file_aio_write_checks() will relock the inode as necessary for 658 * EOF zeroing cases and fill out the new inode size as appropriate. 659 */ 660 if (unaligned_io || mapping->nrpages) 661 iolock = XFS_IOLOCK_EXCL; 662 else 663 iolock = XFS_IOLOCK_SHARED; 664 xfs_rw_ilock(ip, iolock); 665 666 /* 667 * Recheck if there are cached pages that need invalidate after we got 668 * the iolock to protect against other threads adding new pages while 669 * we were waiting for the iolock. 670 */ 671 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 672 xfs_rw_iunlock(ip, iolock); 673 iolock = XFS_IOLOCK_EXCL; 674 xfs_rw_ilock(ip, iolock); 675 } 676 677 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 678 if (ret) 679 goto out; 680 681 if (mapping->nrpages) { 682 ret = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 683 pos, -1); 684 if (ret) 685 goto out; 686 truncate_pagecache_range(VFS_I(ip), pos, -1); 687 } 688 689 /* 690 * If we are doing unaligned IO, wait for all other IO to drain, 691 * otherwise demote the lock if we had to flush cached pages 692 */ 693 if (unaligned_io) 694 inode_dio_wait(inode); 695 else if (iolock == XFS_IOLOCK_EXCL) { 696 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 697 iolock = XFS_IOLOCK_SHARED; 698 } 699 700 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); 701 ret = generic_file_direct_write(iocb, iovp, 702 &nr_segs, pos, &iocb->ki_pos, count, ocount); 703 704 out: 705 xfs_rw_iunlock(ip, iolock); 706 707 /* No fallback to buffered IO on errors for XFS. */ 708 ASSERT(ret < 0 || ret == count); 709 return ret; 710 } 711 712 STATIC ssize_t 713 xfs_file_buffered_aio_write( 714 struct kiocb *iocb, 715 const struct iovec *iovp, 716 unsigned long nr_segs, 717 loff_t pos, 718 size_t ocount) 719 { 720 struct file *file = iocb->ki_filp; 721 struct address_space *mapping = file->f_mapping; 722 struct inode *inode = mapping->host; 723 struct xfs_inode *ip = XFS_I(inode); 724 ssize_t ret; 725 int enospc = 0; 726 int iolock = XFS_IOLOCK_EXCL; 727 size_t count = ocount; 728 729 xfs_rw_ilock(ip, iolock); 730 731 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 732 if (ret) 733 goto out; 734 735 /* We can write back this queue in page reclaim */ 736 current->backing_dev_info = mapping->backing_dev_info; 737 738 write_retry: 739 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0); 740 ret = generic_file_buffered_write(iocb, iovp, nr_segs, 741 pos, &iocb->ki_pos, count, 0); 742 743 /* 744 * If we just got an ENOSPC, try to write back all dirty inodes to 745 * convert delalloc space to free up some of the excess reserved 746 * metadata space. 747 */ 748 if (ret == -ENOSPC && !enospc) { 749 enospc = 1; 750 xfs_flush_inodes(ip->i_mount); 751 goto write_retry; 752 } 753 754 current->backing_dev_info = NULL; 755 out: 756 xfs_rw_iunlock(ip, iolock); 757 return ret; 758 } 759 760 STATIC ssize_t 761 xfs_file_aio_write( 762 struct kiocb *iocb, 763 const struct iovec *iovp, 764 unsigned long nr_segs, 765 loff_t pos) 766 { 767 struct file *file = iocb->ki_filp; 768 struct address_space *mapping = file->f_mapping; 769 struct inode *inode = mapping->host; 770 struct xfs_inode *ip = XFS_I(inode); 771 ssize_t ret; 772 size_t ocount = 0; 773 774 XFS_STATS_INC(xs_write_calls); 775 776 BUG_ON(iocb->ki_pos != pos); 777 778 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ); 779 if (ret) 780 return ret; 781 782 if (ocount == 0) 783 return 0; 784 785 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 786 ret = -EIO; 787 goto out; 788 } 789 790 if (unlikely(file->f_flags & O_DIRECT)) 791 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount); 792 else 793 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos, 794 ocount); 795 796 if (ret > 0) { 797 ssize_t err; 798 799 XFS_STATS_ADD(xs_write_bytes, ret); 800 801 /* Handle various SYNC-type writes */ 802 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 803 if (err < 0) 804 ret = err; 805 } 806 807 out: 808 return ret; 809 } 810 811 STATIC long 812 xfs_file_fallocate( 813 struct file *file, 814 int mode, 815 loff_t offset, 816 loff_t len) 817 { 818 struct inode *inode = file_inode(file); 819 struct xfs_inode *ip = XFS_I(inode); 820 struct xfs_trans *tp; 821 long error; 822 loff_t new_size = 0; 823 824 if (!S_ISREG(inode->i_mode)) 825 return -EINVAL; 826 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 827 return -EOPNOTSUPP; 828 829 xfs_ilock(ip, XFS_IOLOCK_EXCL); 830 if (mode & FALLOC_FL_PUNCH_HOLE) { 831 error = xfs_free_file_space(ip, offset, len); 832 if (error) 833 goto out_unlock; 834 } else { 835 if (!(mode & FALLOC_FL_KEEP_SIZE) && 836 offset + len > i_size_read(inode)) { 837 new_size = offset + len; 838 error = -inode_newsize_ok(inode, new_size); 839 if (error) 840 goto out_unlock; 841 } 842 843 error = xfs_alloc_file_space(ip, offset, len, 844 XFS_BMAPI_PREALLOC); 845 if (error) 846 goto out_unlock; 847 } 848 849 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID); 850 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0); 851 if (error) { 852 xfs_trans_cancel(tp, 0); 853 goto out_unlock; 854 } 855 856 xfs_ilock(ip, XFS_ILOCK_EXCL); 857 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 858 ip->i_d.di_mode &= ~S_ISUID; 859 if (ip->i_d.di_mode & S_IXGRP) 860 ip->i_d.di_mode &= ~S_ISGID; 861 862 if (!(mode & FALLOC_FL_PUNCH_HOLE)) 863 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 864 865 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 866 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 867 868 if (file->f_flags & O_DSYNC) 869 xfs_trans_set_sync(tp); 870 error = xfs_trans_commit(tp, 0); 871 if (error) 872 goto out_unlock; 873 874 /* Change file size if needed */ 875 if (new_size) { 876 struct iattr iattr; 877 878 iattr.ia_valid = ATTR_SIZE; 879 iattr.ia_size = new_size; 880 error = xfs_setattr_size(ip, &iattr); 881 } 882 883 out_unlock: 884 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 885 return -error; 886 } 887 888 889 STATIC int 890 xfs_file_open( 891 struct inode *inode, 892 struct file *file) 893 { 894 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 895 return -EFBIG; 896 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 897 return -EIO; 898 return 0; 899 } 900 901 STATIC int 902 xfs_dir_open( 903 struct inode *inode, 904 struct file *file) 905 { 906 struct xfs_inode *ip = XFS_I(inode); 907 int mode; 908 int error; 909 910 error = xfs_file_open(inode, file); 911 if (error) 912 return error; 913 914 /* 915 * If there are any blocks, read-ahead block 0 as we're almost 916 * certain to have the next operation be a read there. 917 */ 918 mode = xfs_ilock_data_map_shared(ip); 919 if (ip->i_d.di_nextents > 0) 920 xfs_dir3_data_readahead(NULL, ip, 0, -1); 921 xfs_iunlock(ip, mode); 922 return 0; 923 } 924 925 STATIC int 926 xfs_file_release( 927 struct inode *inode, 928 struct file *filp) 929 { 930 return -xfs_release(XFS_I(inode)); 931 } 932 933 STATIC int 934 xfs_file_readdir( 935 struct file *file, 936 struct dir_context *ctx) 937 { 938 struct inode *inode = file_inode(file); 939 xfs_inode_t *ip = XFS_I(inode); 940 int error; 941 size_t bufsize; 942 943 /* 944 * The Linux API doesn't pass down the total size of the buffer 945 * we read into down to the filesystem. With the filldir concept 946 * it's not needed for correct information, but the XFS dir2 leaf 947 * code wants an estimate of the buffer size to calculate it's 948 * readahead window and size the buffers used for mapping to 949 * physical blocks. 950 * 951 * Try to give it an estimate that's good enough, maybe at some 952 * point we can change the ->readdir prototype to include the 953 * buffer size. For now we use the current glibc buffer size. 954 */ 955 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 956 957 error = xfs_readdir(ip, ctx, bufsize); 958 if (error) 959 return -error; 960 return 0; 961 } 962 963 STATIC int 964 xfs_file_mmap( 965 struct file *filp, 966 struct vm_area_struct *vma) 967 { 968 vma->vm_ops = &xfs_file_vm_ops; 969 970 file_accessed(filp); 971 return 0; 972 } 973 974 /* 975 * mmap()d file has taken write protection fault and is being made 976 * writable. We can set the page state up correctly for a writable 977 * page, which means we can do correct delalloc accounting (ENOSPC 978 * checking!) and unwritten extent mapping. 979 */ 980 STATIC int 981 xfs_vm_page_mkwrite( 982 struct vm_area_struct *vma, 983 struct vm_fault *vmf) 984 { 985 return block_page_mkwrite(vma, vmf, xfs_get_blocks); 986 } 987 988 /* 989 * This type is designed to indicate the type of offset we would like 990 * to search from page cache for either xfs_seek_data() or xfs_seek_hole(). 991 */ 992 enum { 993 HOLE_OFF = 0, 994 DATA_OFF, 995 }; 996 997 /* 998 * Lookup the desired type of offset from the given page. 999 * 1000 * On success, return true and the offset argument will point to the 1001 * start of the region that was found. Otherwise this function will 1002 * return false and keep the offset argument unchanged. 1003 */ 1004 STATIC bool 1005 xfs_lookup_buffer_offset( 1006 struct page *page, 1007 loff_t *offset, 1008 unsigned int type) 1009 { 1010 loff_t lastoff = page_offset(page); 1011 bool found = false; 1012 struct buffer_head *bh, *head; 1013 1014 bh = head = page_buffers(page); 1015 do { 1016 /* 1017 * Unwritten extents that have data in the page 1018 * cache covering them can be identified by the 1019 * BH_Unwritten state flag. Pages with multiple 1020 * buffers might have a mix of holes, data and 1021 * unwritten extents - any buffer with valid 1022 * data in it should have BH_Uptodate flag set 1023 * on it. 1024 */ 1025 if (buffer_unwritten(bh) || 1026 buffer_uptodate(bh)) { 1027 if (type == DATA_OFF) 1028 found = true; 1029 } else { 1030 if (type == HOLE_OFF) 1031 found = true; 1032 } 1033 1034 if (found) { 1035 *offset = lastoff; 1036 break; 1037 } 1038 lastoff += bh->b_size; 1039 } while ((bh = bh->b_this_page) != head); 1040 1041 return found; 1042 } 1043 1044 /* 1045 * This routine is called to find out and return a data or hole offset 1046 * from the page cache for unwritten extents according to the desired 1047 * type for xfs_seek_data() or xfs_seek_hole(). 1048 * 1049 * The argument offset is used to tell where we start to search from the 1050 * page cache. Map is used to figure out the end points of the range to 1051 * lookup pages. 1052 * 1053 * Return true if the desired type of offset was found, and the argument 1054 * offset is filled with that address. Otherwise, return false and keep 1055 * offset unchanged. 1056 */ 1057 STATIC bool 1058 xfs_find_get_desired_pgoff( 1059 struct inode *inode, 1060 struct xfs_bmbt_irec *map, 1061 unsigned int type, 1062 loff_t *offset) 1063 { 1064 struct xfs_inode *ip = XFS_I(inode); 1065 struct xfs_mount *mp = ip->i_mount; 1066 struct pagevec pvec; 1067 pgoff_t index; 1068 pgoff_t end; 1069 loff_t endoff; 1070 loff_t startoff = *offset; 1071 loff_t lastoff = startoff; 1072 bool found = false; 1073 1074 pagevec_init(&pvec, 0); 1075 1076 index = startoff >> PAGE_CACHE_SHIFT; 1077 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1078 end = endoff >> PAGE_CACHE_SHIFT; 1079 do { 1080 int want; 1081 unsigned nr_pages; 1082 unsigned int i; 1083 1084 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1085 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1086 want); 1087 /* 1088 * No page mapped into given range. If we are searching holes 1089 * and if this is the first time we got into the loop, it means 1090 * that the given offset is landed in a hole, return it. 1091 * 1092 * If we have already stepped through some block buffers to find 1093 * holes but they all contains data. In this case, the last 1094 * offset is already updated and pointed to the end of the last 1095 * mapped page, if it does not reach the endpoint to search, 1096 * that means there should be a hole between them. 1097 */ 1098 if (nr_pages == 0) { 1099 /* Data search found nothing */ 1100 if (type == DATA_OFF) 1101 break; 1102 1103 ASSERT(type == HOLE_OFF); 1104 if (lastoff == startoff || lastoff < endoff) { 1105 found = true; 1106 *offset = lastoff; 1107 } 1108 break; 1109 } 1110 1111 /* 1112 * At lease we found one page. If this is the first time we 1113 * step into the loop, and if the first page index offset is 1114 * greater than the given search offset, a hole was found. 1115 */ 1116 if (type == HOLE_OFF && lastoff == startoff && 1117 lastoff < page_offset(pvec.pages[0])) { 1118 found = true; 1119 break; 1120 } 1121 1122 for (i = 0; i < nr_pages; i++) { 1123 struct page *page = pvec.pages[i]; 1124 loff_t b_offset; 1125 1126 /* 1127 * At this point, the page may be truncated or 1128 * invalidated (changing page->mapping to NULL), 1129 * or even swizzled back from swapper_space to tmpfs 1130 * file mapping. However, page->index will not change 1131 * because we have a reference on the page. 1132 * 1133 * Searching done if the page index is out of range. 1134 * If the current offset is not reaches the end of 1135 * the specified search range, there should be a hole 1136 * between them. 1137 */ 1138 if (page->index > end) { 1139 if (type == HOLE_OFF && lastoff < endoff) { 1140 *offset = lastoff; 1141 found = true; 1142 } 1143 goto out; 1144 } 1145 1146 lock_page(page); 1147 /* 1148 * Page truncated or invalidated(page->mapping == NULL). 1149 * We can freely skip it and proceed to check the next 1150 * page. 1151 */ 1152 if (unlikely(page->mapping != inode->i_mapping)) { 1153 unlock_page(page); 1154 continue; 1155 } 1156 1157 if (!page_has_buffers(page)) { 1158 unlock_page(page); 1159 continue; 1160 } 1161 1162 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1163 if (found) { 1164 /* 1165 * The found offset may be less than the start 1166 * point to search if this is the first time to 1167 * come here. 1168 */ 1169 *offset = max_t(loff_t, startoff, b_offset); 1170 unlock_page(page); 1171 goto out; 1172 } 1173 1174 /* 1175 * We either searching data but nothing was found, or 1176 * searching hole but found a data buffer. In either 1177 * case, probably the next page contains the desired 1178 * things, update the last offset to it so. 1179 */ 1180 lastoff = page_offset(page) + PAGE_SIZE; 1181 unlock_page(page); 1182 } 1183 1184 /* 1185 * The number of returned pages less than our desired, search 1186 * done. In this case, nothing was found for searching data, 1187 * but we found a hole behind the last offset. 1188 */ 1189 if (nr_pages < want) { 1190 if (type == HOLE_OFF) { 1191 *offset = lastoff; 1192 found = true; 1193 } 1194 break; 1195 } 1196 1197 index = pvec.pages[i - 1]->index + 1; 1198 pagevec_release(&pvec); 1199 } while (index <= end); 1200 1201 out: 1202 pagevec_release(&pvec); 1203 return found; 1204 } 1205 1206 STATIC loff_t 1207 xfs_seek_data( 1208 struct file *file, 1209 loff_t start) 1210 { 1211 struct inode *inode = file->f_mapping->host; 1212 struct xfs_inode *ip = XFS_I(inode); 1213 struct xfs_mount *mp = ip->i_mount; 1214 loff_t uninitialized_var(offset); 1215 xfs_fsize_t isize; 1216 xfs_fileoff_t fsbno; 1217 xfs_filblks_t end; 1218 uint lock; 1219 int error; 1220 1221 lock = xfs_ilock_data_map_shared(ip); 1222 1223 isize = i_size_read(inode); 1224 if (start >= isize) { 1225 error = ENXIO; 1226 goto out_unlock; 1227 } 1228 1229 /* 1230 * Try to read extents from the first block indicated 1231 * by fsbno to the end block of the file. 1232 */ 1233 fsbno = XFS_B_TO_FSBT(mp, start); 1234 end = XFS_B_TO_FSB(mp, isize); 1235 for (;;) { 1236 struct xfs_bmbt_irec map[2]; 1237 int nmap = 2; 1238 unsigned int i; 1239 1240 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1241 XFS_BMAPI_ENTIRE); 1242 if (error) 1243 goto out_unlock; 1244 1245 /* No extents at given offset, must be beyond EOF */ 1246 if (nmap == 0) { 1247 error = ENXIO; 1248 goto out_unlock; 1249 } 1250 1251 for (i = 0; i < nmap; i++) { 1252 offset = max_t(loff_t, start, 1253 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1254 1255 /* Landed in a data extent */ 1256 if (map[i].br_startblock == DELAYSTARTBLOCK || 1257 (map[i].br_state == XFS_EXT_NORM && 1258 !isnullstartblock(map[i].br_startblock))) 1259 goto out; 1260 1261 /* 1262 * Landed in an unwritten extent, try to search data 1263 * from page cache. 1264 */ 1265 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1266 if (xfs_find_get_desired_pgoff(inode, &map[i], 1267 DATA_OFF, &offset)) 1268 goto out; 1269 } 1270 } 1271 1272 /* 1273 * map[0] is hole or its an unwritten extent but 1274 * without data in page cache. Probably means that 1275 * we are reading after EOF if nothing in map[1]. 1276 */ 1277 if (nmap == 1) { 1278 error = ENXIO; 1279 goto out_unlock; 1280 } 1281 1282 ASSERT(i > 1); 1283 1284 /* 1285 * Nothing was found, proceed to the next round of search 1286 * if reading offset not beyond or hit EOF. 1287 */ 1288 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1289 start = XFS_FSB_TO_B(mp, fsbno); 1290 if (start >= isize) { 1291 error = ENXIO; 1292 goto out_unlock; 1293 } 1294 } 1295 1296 out: 1297 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1298 1299 out_unlock: 1300 xfs_iunlock(ip, lock); 1301 1302 if (error) 1303 return -error; 1304 return offset; 1305 } 1306 1307 STATIC loff_t 1308 xfs_seek_hole( 1309 struct file *file, 1310 loff_t start) 1311 { 1312 struct inode *inode = file->f_mapping->host; 1313 struct xfs_inode *ip = XFS_I(inode); 1314 struct xfs_mount *mp = ip->i_mount; 1315 loff_t uninitialized_var(offset); 1316 xfs_fsize_t isize; 1317 xfs_fileoff_t fsbno; 1318 xfs_filblks_t end; 1319 uint lock; 1320 int error; 1321 1322 if (XFS_FORCED_SHUTDOWN(mp)) 1323 return -XFS_ERROR(EIO); 1324 1325 lock = xfs_ilock_data_map_shared(ip); 1326 1327 isize = i_size_read(inode); 1328 if (start >= isize) { 1329 error = ENXIO; 1330 goto out_unlock; 1331 } 1332 1333 fsbno = XFS_B_TO_FSBT(mp, start); 1334 end = XFS_B_TO_FSB(mp, isize); 1335 1336 for (;;) { 1337 struct xfs_bmbt_irec map[2]; 1338 int nmap = 2; 1339 unsigned int i; 1340 1341 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1342 XFS_BMAPI_ENTIRE); 1343 if (error) 1344 goto out_unlock; 1345 1346 /* No extents at given offset, must be beyond EOF */ 1347 if (nmap == 0) { 1348 error = ENXIO; 1349 goto out_unlock; 1350 } 1351 1352 for (i = 0; i < nmap; i++) { 1353 offset = max_t(loff_t, start, 1354 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1355 1356 /* Landed in a hole */ 1357 if (map[i].br_startblock == HOLESTARTBLOCK) 1358 goto out; 1359 1360 /* 1361 * Landed in an unwritten extent, try to search hole 1362 * from page cache. 1363 */ 1364 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1365 if (xfs_find_get_desired_pgoff(inode, &map[i], 1366 HOLE_OFF, &offset)) 1367 goto out; 1368 } 1369 } 1370 1371 /* 1372 * map[0] contains data or its unwritten but contains 1373 * data in page cache, probably means that we are 1374 * reading after EOF. We should fix offset to point 1375 * to the end of the file(i.e., there is an implicit 1376 * hole at the end of any file). 1377 */ 1378 if (nmap == 1) { 1379 offset = isize; 1380 break; 1381 } 1382 1383 ASSERT(i > 1); 1384 1385 /* 1386 * Both mappings contains data, proceed to the next round of 1387 * search if the current reading offset not beyond or hit EOF. 1388 */ 1389 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1390 start = XFS_FSB_TO_B(mp, fsbno); 1391 if (start >= isize) { 1392 offset = isize; 1393 break; 1394 } 1395 } 1396 1397 out: 1398 /* 1399 * At this point, we must have found a hole. However, the returned 1400 * offset may be bigger than the file size as it may be aligned to 1401 * page boundary for unwritten extents, we need to deal with this 1402 * situation in particular. 1403 */ 1404 offset = min_t(loff_t, offset, isize); 1405 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1406 1407 out_unlock: 1408 xfs_iunlock(ip, lock); 1409 1410 if (error) 1411 return -error; 1412 return offset; 1413 } 1414 1415 STATIC loff_t 1416 xfs_file_llseek( 1417 struct file *file, 1418 loff_t offset, 1419 int origin) 1420 { 1421 switch (origin) { 1422 case SEEK_END: 1423 case SEEK_CUR: 1424 case SEEK_SET: 1425 return generic_file_llseek(file, offset, origin); 1426 case SEEK_DATA: 1427 return xfs_seek_data(file, offset); 1428 case SEEK_HOLE: 1429 return xfs_seek_hole(file, offset); 1430 default: 1431 return -EINVAL; 1432 } 1433 } 1434 1435 const struct file_operations xfs_file_operations = { 1436 .llseek = xfs_file_llseek, 1437 .read = do_sync_read, 1438 .write = do_sync_write, 1439 .aio_read = xfs_file_aio_read, 1440 .aio_write = xfs_file_aio_write, 1441 .splice_read = xfs_file_splice_read, 1442 .splice_write = xfs_file_splice_write, 1443 .unlocked_ioctl = xfs_file_ioctl, 1444 #ifdef CONFIG_COMPAT 1445 .compat_ioctl = xfs_file_compat_ioctl, 1446 #endif 1447 .mmap = xfs_file_mmap, 1448 .open = xfs_file_open, 1449 .release = xfs_file_release, 1450 .fsync = xfs_file_fsync, 1451 .fallocate = xfs_file_fallocate, 1452 }; 1453 1454 const struct file_operations xfs_dir_file_operations = { 1455 .open = xfs_dir_open, 1456 .read = generic_read_dir, 1457 .iterate = xfs_file_readdir, 1458 .llseek = generic_file_llseek, 1459 .unlocked_ioctl = xfs_file_ioctl, 1460 #ifdef CONFIG_COMPAT 1461 .compat_ioctl = xfs_file_compat_ioctl, 1462 #endif 1463 .fsync = xfs_dir_fsync, 1464 }; 1465 1466 static const struct vm_operations_struct xfs_file_vm_ops = { 1467 .fault = filemap_fault, 1468 .page_mkwrite = xfs_vm_page_mkwrite, 1469 .remap_pages = generic_file_remap_pages, 1470 }; 1471