1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_dir2.h" 19 #include "xfs_dir2_priv.h" 20 #include "xfs_ioctl.h" 21 #include "xfs_trace.h" 22 #include "xfs_log.h" 23 #include "xfs_icache.h" 24 #include "xfs_pnfs.h" 25 #include "xfs_iomap.h" 26 #include "xfs_reflink.h" 27 #include "xfs_file.h" 28 29 #include <linux/dax.h> 30 #include <linux/falloc.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mman.h> 33 #include <linux/fadvise.h> 34 #include <linux/mount.h> 35 36 static const struct vm_operations_struct xfs_file_vm_ops; 37 38 /* 39 * Decide if the given file range is aligned to the size of the fundamental 40 * allocation unit for the file. 41 */ 42 bool 43 xfs_is_falloc_aligned( 44 struct xfs_inode *ip, 45 loff_t pos, 46 long long int len) 47 { 48 unsigned int alloc_unit = xfs_inode_alloc_unitsize(ip); 49 50 if (!is_power_of_2(alloc_unit)) 51 return isaligned_64(pos, alloc_unit) && 52 isaligned_64(len, alloc_unit); 53 54 return !((pos | len) & (alloc_unit - 1)); 55 } 56 57 /* 58 * Fsync operations on directories are much simpler than on regular files, 59 * as there is no file data to flush, and thus also no need for explicit 60 * cache flush operations, and there are no non-transaction metadata updates 61 * on directories either. 62 */ 63 STATIC int 64 xfs_dir_fsync( 65 struct file *file, 66 loff_t start, 67 loff_t end, 68 int datasync) 69 { 70 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 71 72 trace_xfs_dir_fsync(ip); 73 return xfs_log_force_inode(ip); 74 } 75 76 static xfs_csn_t 77 xfs_fsync_seq( 78 struct xfs_inode *ip, 79 bool datasync) 80 { 81 if (!xfs_ipincount(ip)) 82 return 0; 83 if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 84 return 0; 85 return ip->i_itemp->ili_commit_seq; 86 } 87 88 /* 89 * All metadata updates are logged, which means that we just have to flush the 90 * log up to the latest LSN that touched the inode. 91 * 92 * If we have concurrent fsync/fdatasync() calls, we need them to all block on 93 * the log force before we clear the ili_fsync_fields field. This ensures that 94 * we don't get a racing sync operation that does not wait for the metadata to 95 * hit the journal before returning. If we race with clearing ili_fsync_fields, 96 * then all that will happen is the log force will do nothing as the lsn will 97 * already be on disk. We can't race with setting ili_fsync_fields because that 98 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock 99 * shared until after the ili_fsync_fields is cleared. 100 */ 101 static int 102 xfs_fsync_flush_log( 103 struct xfs_inode *ip, 104 bool datasync, 105 int *log_flushed) 106 { 107 int error = 0; 108 xfs_csn_t seq; 109 110 xfs_ilock(ip, XFS_ILOCK_SHARED); 111 seq = xfs_fsync_seq(ip, datasync); 112 if (seq) { 113 error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, 114 log_flushed); 115 116 spin_lock(&ip->i_itemp->ili_lock); 117 ip->i_itemp->ili_fsync_fields = 0; 118 spin_unlock(&ip->i_itemp->ili_lock); 119 } 120 xfs_iunlock(ip, XFS_ILOCK_SHARED); 121 return error; 122 } 123 124 STATIC int 125 xfs_file_fsync( 126 struct file *file, 127 loff_t start, 128 loff_t end, 129 int datasync) 130 { 131 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 132 struct xfs_mount *mp = ip->i_mount; 133 int error, err2; 134 int log_flushed = 0; 135 136 trace_xfs_file_fsync(ip); 137 138 error = file_write_and_wait_range(file, start, end); 139 if (error) 140 return error; 141 142 if (xfs_is_shutdown(mp)) 143 return -EIO; 144 145 xfs_iflags_clear(ip, XFS_ITRUNCATED); 146 147 /* 148 * If we have an RT and/or log subvolume we need to make sure to flush 149 * the write cache the device used for file data first. This is to 150 * ensure newly written file data make it to disk before logging the new 151 * inode size in case of an extending write. 152 */ 153 if (XFS_IS_REALTIME_INODE(ip)) 154 error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev); 155 else if (mp->m_logdev_targp != mp->m_ddev_targp) 156 error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev); 157 158 /* 159 * Any inode that has dirty modifications in the log is pinned. The 160 * racy check here for a pinned inode will not catch modifications 161 * that happen concurrently to the fsync call, but fsync semantics 162 * only require to sync previously completed I/O. 163 */ 164 if (xfs_ipincount(ip)) { 165 err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed); 166 if (err2 && !error) 167 error = err2; 168 } 169 170 /* 171 * If we only have a single device, and the log force about was 172 * a no-op we might have to flush the data device cache here. 173 * This can only happen for fdatasync/O_DSYNC if we were overwriting 174 * an already allocated file and thus do not have any metadata to 175 * commit. 176 */ 177 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 178 mp->m_logdev_targp == mp->m_ddev_targp) { 179 err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev); 180 if (err2 && !error) 181 error = err2; 182 } 183 184 return error; 185 } 186 187 static int 188 xfs_ilock_iocb( 189 struct kiocb *iocb, 190 unsigned int lock_mode) 191 { 192 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 193 194 if (iocb->ki_flags & IOCB_NOWAIT) { 195 if (!xfs_ilock_nowait(ip, lock_mode)) 196 return -EAGAIN; 197 } else { 198 xfs_ilock(ip, lock_mode); 199 } 200 201 return 0; 202 } 203 204 static int 205 xfs_ilock_iocb_for_write( 206 struct kiocb *iocb, 207 unsigned int *lock_mode) 208 { 209 ssize_t ret; 210 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 211 212 ret = xfs_ilock_iocb(iocb, *lock_mode); 213 if (ret) 214 return ret; 215 216 /* 217 * If a reflink remap is in progress we always need to take the iolock 218 * exclusively to wait for it to finish. 219 */ 220 if (*lock_mode == XFS_IOLOCK_SHARED && 221 xfs_iflags_test(ip, XFS_IREMAPPING)) { 222 xfs_iunlock(ip, *lock_mode); 223 *lock_mode = XFS_IOLOCK_EXCL; 224 return xfs_ilock_iocb(iocb, *lock_mode); 225 } 226 227 return 0; 228 } 229 230 STATIC ssize_t 231 xfs_file_dio_read( 232 struct kiocb *iocb, 233 struct iov_iter *to) 234 { 235 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 236 ssize_t ret; 237 238 trace_xfs_file_direct_read(iocb, to); 239 240 if (!iov_iter_count(to)) 241 return 0; /* skip atime */ 242 243 file_accessed(iocb->ki_filp); 244 245 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 246 if (ret) 247 return ret; 248 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0); 249 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 250 251 return ret; 252 } 253 254 static noinline ssize_t 255 xfs_file_dax_read( 256 struct kiocb *iocb, 257 struct iov_iter *to) 258 { 259 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 260 ssize_t ret = 0; 261 262 trace_xfs_file_dax_read(iocb, to); 263 264 if (!iov_iter_count(to)) 265 return 0; /* skip atime */ 266 267 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 268 if (ret) 269 return ret; 270 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops); 271 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 272 273 file_accessed(iocb->ki_filp); 274 return ret; 275 } 276 277 STATIC ssize_t 278 xfs_file_buffered_read( 279 struct kiocb *iocb, 280 struct iov_iter *to) 281 { 282 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 283 ssize_t ret; 284 285 trace_xfs_file_buffered_read(iocb, to); 286 287 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 288 if (ret) 289 return ret; 290 ret = generic_file_read_iter(iocb, to); 291 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 292 293 return ret; 294 } 295 296 STATIC ssize_t 297 xfs_file_read_iter( 298 struct kiocb *iocb, 299 struct iov_iter *to) 300 { 301 struct inode *inode = file_inode(iocb->ki_filp); 302 struct xfs_mount *mp = XFS_I(inode)->i_mount; 303 ssize_t ret = 0; 304 305 XFS_STATS_INC(mp, xs_read_calls); 306 307 if (xfs_is_shutdown(mp)) 308 return -EIO; 309 310 if (IS_DAX(inode)) 311 ret = xfs_file_dax_read(iocb, to); 312 else if (iocb->ki_flags & IOCB_DIRECT) 313 ret = xfs_file_dio_read(iocb, to); 314 else 315 ret = xfs_file_buffered_read(iocb, to); 316 317 if (ret > 0) 318 XFS_STATS_ADD(mp, xs_read_bytes, ret); 319 return ret; 320 } 321 322 STATIC ssize_t 323 xfs_file_splice_read( 324 struct file *in, 325 loff_t *ppos, 326 struct pipe_inode_info *pipe, 327 size_t len, 328 unsigned int flags) 329 { 330 struct inode *inode = file_inode(in); 331 struct xfs_inode *ip = XFS_I(inode); 332 struct xfs_mount *mp = ip->i_mount; 333 ssize_t ret = 0; 334 335 XFS_STATS_INC(mp, xs_read_calls); 336 337 if (xfs_is_shutdown(mp)) 338 return -EIO; 339 340 trace_xfs_file_splice_read(ip, *ppos, len); 341 342 xfs_ilock(ip, XFS_IOLOCK_SHARED); 343 ret = filemap_splice_read(in, ppos, pipe, len, flags); 344 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 345 if (ret > 0) 346 XFS_STATS_ADD(mp, xs_read_bytes, ret); 347 return ret; 348 } 349 350 /* 351 * Take care of zeroing post-EOF blocks when they might exist. 352 * 353 * Returns 0 if successfully, a negative error for a failure, or 1 if this 354 * function dropped the iolock and reacquired it exclusively and the caller 355 * needs to restart the write sanity checks. 356 */ 357 static ssize_t 358 xfs_file_write_zero_eof( 359 struct kiocb *iocb, 360 struct iov_iter *from, 361 unsigned int *iolock, 362 size_t count, 363 bool *drained_dio) 364 { 365 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 366 loff_t isize; 367 int error; 368 369 /* 370 * We need to serialise against EOF updates that occur in IO completions 371 * here. We want to make sure that nobody is changing the size while 372 * we do this check until we have placed an IO barrier (i.e. hold 373 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The 374 * spinlock effectively forms a memory barrier once we have 375 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and 376 * hence be able to correctly determine if we need to run zeroing. 377 */ 378 spin_lock(&ip->i_flags_lock); 379 isize = i_size_read(VFS_I(ip)); 380 if (iocb->ki_pos <= isize) { 381 spin_unlock(&ip->i_flags_lock); 382 return 0; 383 } 384 spin_unlock(&ip->i_flags_lock); 385 386 if (iocb->ki_flags & IOCB_NOWAIT) 387 return -EAGAIN; 388 389 if (!*drained_dio) { 390 /* 391 * If zeroing is needed and we are currently holding the iolock 392 * shared, we need to update it to exclusive which implies 393 * having to redo all checks before. 394 */ 395 if (*iolock == XFS_IOLOCK_SHARED) { 396 xfs_iunlock(ip, *iolock); 397 *iolock = XFS_IOLOCK_EXCL; 398 xfs_ilock(ip, *iolock); 399 iov_iter_reexpand(from, count); 400 } 401 402 /* 403 * We now have an IO submission barrier in place, but AIO can do 404 * EOF updates during IO completion and hence we now need to 405 * wait for all of them to drain. Non-AIO DIO will have drained 406 * before we are given the XFS_IOLOCK_EXCL, and so for most 407 * cases this wait is a no-op. 408 */ 409 inode_dio_wait(VFS_I(ip)); 410 *drained_dio = true; 411 return 1; 412 } 413 414 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); 415 416 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 417 error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL); 418 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 419 420 return error; 421 } 422 423 /* 424 * Common pre-write limit and setup checks. 425 * 426 * Called with the iolock held either shared and exclusive according to 427 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 428 * if called for a direct write beyond i_size. 429 */ 430 STATIC ssize_t 431 xfs_file_write_checks( 432 struct kiocb *iocb, 433 struct iov_iter *from, 434 unsigned int *iolock) 435 { 436 struct inode *inode = iocb->ki_filp->f_mapping->host; 437 size_t count = iov_iter_count(from); 438 bool drained_dio = false; 439 ssize_t error; 440 441 restart: 442 error = generic_write_checks(iocb, from); 443 if (error <= 0) 444 return error; 445 446 if (iocb->ki_flags & IOCB_NOWAIT) { 447 error = break_layout(inode, false); 448 if (error == -EWOULDBLOCK) 449 error = -EAGAIN; 450 } else { 451 error = xfs_break_layouts(inode, iolock, BREAK_WRITE); 452 } 453 454 if (error) 455 return error; 456 457 /* 458 * For changing security info in file_remove_privs() we need i_rwsem 459 * exclusively. 460 */ 461 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 462 xfs_iunlock(XFS_I(inode), *iolock); 463 *iolock = XFS_IOLOCK_EXCL; 464 error = xfs_ilock_iocb(iocb, *iolock); 465 if (error) { 466 *iolock = 0; 467 return error; 468 } 469 goto restart; 470 } 471 472 /* 473 * If the offset is beyond the size of the file, we need to zero all 474 * blocks that fall between the existing EOF and the start of this 475 * write. 476 * 477 * We can do an unlocked check for i_size here safely as I/O completion 478 * can only extend EOF. Truncate is locked out at this point, so the 479 * EOF can not move backwards, only forwards. Hence we only need to take 480 * the slow path when we are at or beyond the current EOF. 481 */ 482 if (iocb->ki_pos > i_size_read(inode)) { 483 error = xfs_file_write_zero_eof(iocb, from, iolock, count, 484 &drained_dio); 485 if (error == 1) 486 goto restart; 487 if (error) 488 return error; 489 } 490 491 return kiocb_modified(iocb); 492 } 493 494 static int 495 xfs_dio_write_end_io( 496 struct kiocb *iocb, 497 ssize_t size, 498 int error, 499 unsigned flags) 500 { 501 struct inode *inode = file_inode(iocb->ki_filp); 502 struct xfs_inode *ip = XFS_I(inode); 503 loff_t offset = iocb->ki_pos; 504 unsigned int nofs_flag; 505 506 trace_xfs_end_io_direct_write(ip, offset, size); 507 508 if (xfs_is_shutdown(ip->i_mount)) 509 return -EIO; 510 511 if (error) 512 return error; 513 if (!size) 514 return 0; 515 516 /* 517 * Capture amount written on completion as we can't reliably account 518 * for it on submission. 519 */ 520 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); 521 522 /* 523 * We can allocate memory here while doing writeback on behalf of 524 * memory reclaim. To avoid memory allocation deadlocks set the 525 * task-wide nofs context for the following operations. 526 */ 527 nofs_flag = memalloc_nofs_save(); 528 529 if (flags & IOMAP_DIO_COW) { 530 error = xfs_reflink_end_cow(ip, offset, size); 531 if (error) 532 goto out; 533 } 534 535 /* 536 * Unwritten conversion updates the in-core isize after extent 537 * conversion but before updating the on-disk size. Updating isize any 538 * earlier allows a racing dio read to find unwritten extents before 539 * they are converted. 540 */ 541 if (flags & IOMAP_DIO_UNWRITTEN) { 542 error = xfs_iomap_write_unwritten(ip, offset, size, true); 543 goto out; 544 } 545 546 /* 547 * We need to update the in-core inode size here so that we don't end up 548 * with the on-disk inode size being outside the in-core inode size. We 549 * have no other method of updating EOF for AIO, so always do it here 550 * if necessary. 551 * 552 * We need to lock the test/set EOF update as we can be racing with 553 * other IO completions here to update the EOF. Failing to serialise 554 * here can result in EOF moving backwards and Bad Things Happen when 555 * that occurs. 556 * 557 * As IO completion only ever extends EOF, we can do an unlocked check 558 * here to avoid taking the spinlock. If we land within the current EOF, 559 * then we do not need to do an extending update at all, and we don't 560 * need to take the lock to check this. If we race with an update moving 561 * EOF, then we'll either still be beyond EOF and need to take the lock, 562 * or we'll be within EOF and we don't need to take it at all. 563 */ 564 if (offset + size <= i_size_read(inode)) 565 goto out; 566 567 spin_lock(&ip->i_flags_lock); 568 if (offset + size > i_size_read(inode)) { 569 i_size_write(inode, offset + size); 570 spin_unlock(&ip->i_flags_lock); 571 error = xfs_setfilesize(ip, offset, size); 572 } else { 573 spin_unlock(&ip->i_flags_lock); 574 } 575 576 out: 577 memalloc_nofs_restore(nofs_flag); 578 return error; 579 } 580 581 static const struct iomap_dio_ops xfs_dio_write_ops = { 582 .end_io = xfs_dio_write_end_io, 583 }; 584 585 /* 586 * Handle block aligned direct I/O writes 587 */ 588 static noinline ssize_t 589 xfs_file_dio_write_aligned( 590 struct xfs_inode *ip, 591 struct kiocb *iocb, 592 struct iov_iter *from) 593 { 594 unsigned int iolock = XFS_IOLOCK_SHARED; 595 ssize_t ret; 596 597 ret = xfs_ilock_iocb_for_write(iocb, &iolock); 598 if (ret) 599 return ret; 600 ret = xfs_file_write_checks(iocb, from, &iolock); 601 if (ret) 602 goto out_unlock; 603 604 /* 605 * We don't need to hold the IOLOCK exclusively across the IO, so demote 606 * the iolock back to shared if we had to take the exclusive lock in 607 * xfs_file_write_checks() for other reasons. 608 */ 609 if (iolock == XFS_IOLOCK_EXCL) { 610 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 611 iolock = XFS_IOLOCK_SHARED; 612 } 613 trace_xfs_file_direct_write(iocb, from); 614 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, 615 &xfs_dio_write_ops, 0, NULL, 0); 616 out_unlock: 617 if (iolock) 618 xfs_iunlock(ip, iolock); 619 return ret; 620 } 621 622 /* 623 * Handle block unaligned direct I/O writes 624 * 625 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing 626 * them to be done in parallel with reads and other direct I/O writes. However, 627 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need 628 * to do sub-block zeroing and that requires serialisation against other direct 629 * I/O to the same block. In this case we need to serialise the submission of 630 * the unaligned I/O so that we don't get racing block zeroing in the dio layer. 631 * In the case where sub-block zeroing is not required, we can do concurrent 632 * sub-block dios to the same block successfully. 633 * 634 * Optimistically submit the I/O using the shared lock first, but use the 635 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN 636 * if block allocation or partial block zeroing would be required. In that case 637 * we try again with the exclusive lock. 638 */ 639 static noinline ssize_t 640 xfs_file_dio_write_unaligned( 641 struct xfs_inode *ip, 642 struct kiocb *iocb, 643 struct iov_iter *from) 644 { 645 size_t isize = i_size_read(VFS_I(ip)); 646 size_t count = iov_iter_count(from); 647 unsigned int iolock = XFS_IOLOCK_SHARED; 648 unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY; 649 ssize_t ret; 650 651 /* 652 * Extending writes need exclusivity because of the sub-block zeroing 653 * that the DIO code always does for partial tail blocks beyond EOF, so 654 * don't even bother trying the fast path in this case. 655 */ 656 if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) { 657 if (iocb->ki_flags & IOCB_NOWAIT) 658 return -EAGAIN; 659 retry_exclusive: 660 iolock = XFS_IOLOCK_EXCL; 661 flags = IOMAP_DIO_FORCE_WAIT; 662 } 663 664 ret = xfs_ilock_iocb_for_write(iocb, &iolock); 665 if (ret) 666 return ret; 667 668 /* 669 * We can't properly handle unaligned direct I/O to reflink files yet, 670 * as we can't unshare a partial block. 671 */ 672 if (xfs_is_cow_inode(ip)) { 673 trace_xfs_reflink_bounce_dio_write(iocb, from); 674 ret = -ENOTBLK; 675 goto out_unlock; 676 } 677 678 ret = xfs_file_write_checks(iocb, from, &iolock); 679 if (ret) 680 goto out_unlock; 681 682 /* 683 * If we are doing exclusive unaligned I/O, this must be the only I/O 684 * in-flight. Otherwise we risk data corruption due to unwritten extent 685 * conversions from the AIO end_io handler. Wait for all other I/O to 686 * drain first. 687 */ 688 if (flags & IOMAP_DIO_FORCE_WAIT) 689 inode_dio_wait(VFS_I(ip)); 690 691 trace_xfs_file_direct_write(iocb, from); 692 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, 693 &xfs_dio_write_ops, flags, NULL, 0); 694 695 /* 696 * Retry unaligned I/O with exclusive blocking semantics if the DIO 697 * layer rejected it for mapping or locking reasons. If we are doing 698 * nonblocking user I/O, propagate the error. 699 */ 700 if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) { 701 ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY); 702 xfs_iunlock(ip, iolock); 703 goto retry_exclusive; 704 } 705 706 out_unlock: 707 if (iolock) 708 xfs_iunlock(ip, iolock); 709 return ret; 710 } 711 712 static ssize_t 713 xfs_file_dio_write( 714 struct kiocb *iocb, 715 struct iov_iter *from) 716 { 717 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 718 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 719 size_t count = iov_iter_count(from); 720 721 /* direct I/O must be aligned to device logical sector size */ 722 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 723 return -EINVAL; 724 if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask) 725 return xfs_file_dio_write_unaligned(ip, iocb, from); 726 return xfs_file_dio_write_aligned(ip, iocb, from); 727 } 728 729 static noinline ssize_t 730 xfs_file_dax_write( 731 struct kiocb *iocb, 732 struct iov_iter *from) 733 { 734 struct inode *inode = iocb->ki_filp->f_mapping->host; 735 struct xfs_inode *ip = XFS_I(inode); 736 unsigned int iolock = XFS_IOLOCK_EXCL; 737 ssize_t ret, error = 0; 738 loff_t pos; 739 740 ret = xfs_ilock_iocb(iocb, iolock); 741 if (ret) 742 return ret; 743 ret = xfs_file_write_checks(iocb, from, &iolock); 744 if (ret) 745 goto out; 746 747 pos = iocb->ki_pos; 748 749 trace_xfs_file_dax_write(iocb, from); 750 ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops); 751 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 752 i_size_write(inode, iocb->ki_pos); 753 error = xfs_setfilesize(ip, pos, ret); 754 } 755 out: 756 if (iolock) 757 xfs_iunlock(ip, iolock); 758 if (error) 759 return error; 760 761 if (ret > 0) { 762 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 763 764 /* Handle various SYNC-type writes */ 765 ret = generic_write_sync(iocb, ret); 766 } 767 return ret; 768 } 769 770 STATIC ssize_t 771 xfs_file_buffered_write( 772 struct kiocb *iocb, 773 struct iov_iter *from) 774 { 775 struct inode *inode = iocb->ki_filp->f_mapping->host; 776 struct xfs_inode *ip = XFS_I(inode); 777 ssize_t ret; 778 bool cleared_space = false; 779 unsigned int iolock; 780 781 write_retry: 782 iolock = XFS_IOLOCK_EXCL; 783 ret = xfs_ilock_iocb(iocb, iolock); 784 if (ret) 785 return ret; 786 787 ret = xfs_file_write_checks(iocb, from, &iolock); 788 if (ret) 789 goto out; 790 791 trace_xfs_file_buffered_write(iocb, from); 792 ret = iomap_file_buffered_write(iocb, from, 793 &xfs_buffered_write_iomap_ops, NULL); 794 795 /* 796 * If we hit a space limit, try to free up some lingering preallocated 797 * space before returning an error. In the case of ENOSPC, first try to 798 * write back all dirty inodes to free up some of the excess reserved 799 * metadata space. This reduces the chances that the eofblocks scan 800 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 801 * also behaves as a filter to prevent too many eofblocks scans from 802 * running at the same time. Use a synchronous scan to increase the 803 * effectiveness of the scan. 804 */ 805 if (ret == -EDQUOT && !cleared_space) { 806 xfs_iunlock(ip, iolock); 807 xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC); 808 cleared_space = true; 809 goto write_retry; 810 } else if (ret == -ENOSPC && !cleared_space) { 811 struct xfs_icwalk icw = {0}; 812 813 cleared_space = true; 814 xfs_flush_inodes(ip->i_mount); 815 816 xfs_iunlock(ip, iolock); 817 icw.icw_flags = XFS_ICWALK_FLAG_SYNC; 818 xfs_blockgc_free_space(ip->i_mount, &icw); 819 goto write_retry; 820 } 821 822 out: 823 if (iolock) 824 xfs_iunlock(ip, iolock); 825 826 if (ret > 0) { 827 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 828 /* Handle various SYNC-type writes */ 829 ret = generic_write_sync(iocb, ret); 830 } 831 return ret; 832 } 833 834 STATIC ssize_t 835 xfs_file_write_iter( 836 struct kiocb *iocb, 837 struct iov_iter *from) 838 { 839 struct inode *inode = iocb->ki_filp->f_mapping->host; 840 struct xfs_inode *ip = XFS_I(inode); 841 ssize_t ret; 842 size_t ocount = iov_iter_count(from); 843 844 XFS_STATS_INC(ip->i_mount, xs_write_calls); 845 846 if (ocount == 0) 847 return 0; 848 849 if (xfs_is_shutdown(ip->i_mount)) 850 return -EIO; 851 852 if (IS_DAX(inode)) 853 return xfs_file_dax_write(iocb, from); 854 855 if (iocb->ki_flags & IOCB_DIRECT) { 856 /* 857 * Allow a directio write to fall back to a buffered 858 * write *only* in the case that we're doing a reflink 859 * CoW. In all other directio scenarios we do not 860 * allow an operation to fall back to buffered mode. 861 */ 862 ret = xfs_file_dio_write(iocb, from); 863 if (ret != -ENOTBLK) 864 return ret; 865 } 866 867 return xfs_file_buffered_write(iocb, from); 868 } 869 870 /* Does this file, inode, or mount want synchronous writes? */ 871 static inline bool xfs_file_sync_writes(struct file *filp) 872 { 873 struct xfs_inode *ip = XFS_I(file_inode(filp)); 874 875 if (xfs_has_wsync(ip->i_mount)) 876 return true; 877 if (filp->f_flags & (__O_SYNC | O_DSYNC)) 878 return true; 879 if (IS_SYNC(file_inode(filp))) 880 return true; 881 882 return false; 883 } 884 885 static int 886 xfs_falloc_newsize( 887 struct file *file, 888 int mode, 889 loff_t offset, 890 loff_t len, 891 loff_t *new_size) 892 { 893 struct inode *inode = file_inode(file); 894 895 if ((mode & FALLOC_FL_KEEP_SIZE) || offset + len <= i_size_read(inode)) 896 return 0; 897 *new_size = offset + len; 898 return inode_newsize_ok(inode, *new_size); 899 } 900 901 static int 902 xfs_falloc_setsize( 903 struct file *file, 904 loff_t new_size) 905 { 906 struct iattr iattr = { 907 .ia_valid = ATTR_SIZE, 908 .ia_size = new_size, 909 }; 910 911 if (!new_size) 912 return 0; 913 return xfs_vn_setattr_size(file_mnt_idmap(file), file_dentry(file), 914 &iattr); 915 } 916 917 static int 918 xfs_falloc_collapse_range( 919 struct file *file, 920 loff_t offset, 921 loff_t len) 922 { 923 struct inode *inode = file_inode(file); 924 loff_t new_size = i_size_read(inode) - len; 925 int error; 926 927 if (!xfs_is_falloc_aligned(XFS_I(inode), offset, len)) 928 return -EINVAL; 929 930 /* 931 * There is no need to overlap collapse range with EOF, in which case it 932 * is effectively a truncate operation 933 */ 934 if (offset + len >= i_size_read(inode)) 935 return -EINVAL; 936 937 error = xfs_collapse_file_space(XFS_I(inode), offset, len); 938 if (error) 939 return error; 940 return xfs_falloc_setsize(file, new_size); 941 } 942 943 static int 944 xfs_falloc_insert_range( 945 struct file *file, 946 loff_t offset, 947 loff_t len) 948 { 949 struct inode *inode = file_inode(file); 950 loff_t isize = i_size_read(inode); 951 int error; 952 953 if (!xfs_is_falloc_aligned(XFS_I(inode), offset, len)) 954 return -EINVAL; 955 956 /* 957 * New inode size must not exceed ->s_maxbytes, accounting for 958 * possible signed overflow. 959 */ 960 if (inode->i_sb->s_maxbytes - isize < len) 961 return -EFBIG; 962 963 /* Offset should be less than i_size */ 964 if (offset >= isize) 965 return -EINVAL; 966 967 error = xfs_falloc_setsize(file, isize + len); 968 if (error) 969 return error; 970 971 /* 972 * Perform hole insertion now that the file size has been updated so 973 * that if we crash during the operation we don't leave shifted extents 974 * past EOF and hence losing access to the data that is contained within 975 * them. 976 */ 977 return xfs_insert_file_space(XFS_I(inode), offset, len); 978 } 979 980 /* 981 * Punch a hole and prealloc the range. We use a hole punch rather than 982 * unwritten extent conversion for two reasons: 983 * 984 * 1.) Hole punch handles partial block zeroing for us. 985 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued by 986 * virtue of the hole punch. 987 */ 988 static int 989 xfs_falloc_zero_range( 990 struct file *file, 991 int mode, 992 loff_t offset, 993 loff_t len) 994 { 995 struct inode *inode = file_inode(file); 996 unsigned int blksize = i_blocksize(inode); 997 loff_t new_size = 0; 998 int error; 999 1000 trace_xfs_zero_file_space(XFS_I(inode)); 1001 1002 error = xfs_falloc_newsize(file, mode, offset, len, &new_size); 1003 if (error) 1004 return error; 1005 1006 error = xfs_free_file_space(XFS_I(inode), offset, len); 1007 if (error) 1008 return error; 1009 1010 len = round_up(offset + len, blksize) - round_down(offset, blksize); 1011 offset = round_down(offset, blksize); 1012 error = xfs_alloc_file_space(XFS_I(inode), offset, len); 1013 if (error) 1014 return error; 1015 return xfs_falloc_setsize(file, new_size); 1016 } 1017 1018 static int 1019 xfs_falloc_unshare_range( 1020 struct file *file, 1021 int mode, 1022 loff_t offset, 1023 loff_t len) 1024 { 1025 struct inode *inode = file_inode(file); 1026 loff_t new_size = 0; 1027 int error; 1028 1029 error = xfs_falloc_newsize(file, mode, offset, len, &new_size); 1030 if (error) 1031 return error; 1032 1033 error = xfs_reflink_unshare(XFS_I(inode), offset, len); 1034 if (error) 1035 return error; 1036 1037 error = xfs_alloc_file_space(XFS_I(inode), offset, len); 1038 if (error) 1039 return error; 1040 return xfs_falloc_setsize(file, new_size); 1041 } 1042 1043 static int 1044 xfs_falloc_allocate_range( 1045 struct file *file, 1046 int mode, 1047 loff_t offset, 1048 loff_t len) 1049 { 1050 struct inode *inode = file_inode(file); 1051 loff_t new_size = 0; 1052 int error; 1053 1054 /* 1055 * If always_cow mode we can't use preallocations and thus should not 1056 * create them. 1057 */ 1058 if (xfs_is_always_cow_inode(XFS_I(inode))) 1059 return -EOPNOTSUPP; 1060 1061 error = xfs_falloc_newsize(file, mode, offset, len, &new_size); 1062 if (error) 1063 return error; 1064 1065 error = xfs_alloc_file_space(XFS_I(inode), offset, len); 1066 if (error) 1067 return error; 1068 return xfs_falloc_setsize(file, new_size); 1069 } 1070 1071 #define XFS_FALLOC_FL_SUPPORTED \ 1072 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 1073 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 1074 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 1075 1076 STATIC long 1077 xfs_file_fallocate( 1078 struct file *file, 1079 int mode, 1080 loff_t offset, 1081 loff_t len) 1082 { 1083 struct inode *inode = file_inode(file); 1084 struct xfs_inode *ip = XFS_I(inode); 1085 long error; 1086 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 1087 1088 if (!S_ISREG(inode->i_mode)) 1089 return -EINVAL; 1090 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 1091 return -EOPNOTSUPP; 1092 1093 xfs_ilock(ip, iolock); 1094 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 1095 if (error) 1096 goto out_unlock; 1097 1098 /* 1099 * Must wait for all AIO to complete before we continue as AIO can 1100 * change the file size on completion without holding any locks we 1101 * currently hold. We must do this first because AIO can update both 1102 * the on disk and in memory inode sizes, and the operations that follow 1103 * require the in-memory size to be fully up-to-date. 1104 */ 1105 inode_dio_wait(inode); 1106 1107 error = file_modified(file); 1108 if (error) 1109 goto out_unlock; 1110 1111 switch (mode & FALLOC_FL_MODE_MASK) { 1112 case FALLOC_FL_PUNCH_HOLE: 1113 error = xfs_free_file_space(ip, offset, len); 1114 break; 1115 case FALLOC_FL_COLLAPSE_RANGE: 1116 error = xfs_falloc_collapse_range(file, offset, len); 1117 break; 1118 case FALLOC_FL_INSERT_RANGE: 1119 error = xfs_falloc_insert_range(file, offset, len); 1120 break; 1121 case FALLOC_FL_ZERO_RANGE: 1122 error = xfs_falloc_zero_range(file, mode, offset, len); 1123 break; 1124 case FALLOC_FL_UNSHARE_RANGE: 1125 error = xfs_falloc_unshare_range(file, mode, offset, len); 1126 break; 1127 case FALLOC_FL_ALLOCATE_RANGE: 1128 error = xfs_falloc_allocate_range(file, mode, offset, len); 1129 break; 1130 default: 1131 error = -EOPNOTSUPP; 1132 break; 1133 } 1134 1135 if (!error && xfs_file_sync_writes(file)) 1136 error = xfs_log_force_inode(ip); 1137 1138 out_unlock: 1139 xfs_iunlock(ip, iolock); 1140 return error; 1141 } 1142 1143 STATIC int 1144 xfs_file_fadvise( 1145 struct file *file, 1146 loff_t start, 1147 loff_t end, 1148 int advice) 1149 { 1150 struct xfs_inode *ip = XFS_I(file_inode(file)); 1151 int ret; 1152 int lockflags = 0; 1153 1154 /* 1155 * Operations creating pages in page cache need protection from hole 1156 * punching and similar ops 1157 */ 1158 if (advice == POSIX_FADV_WILLNEED) { 1159 lockflags = XFS_IOLOCK_SHARED; 1160 xfs_ilock(ip, lockflags); 1161 } 1162 ret = generic_fadvise(file, start, end, advice); 1163 if (lockflags) 1164 xfs_iunlock(ip, lockflags); 1165 return ret; 1166 } 1167 1168 STATIC loff_t 1169 xfs_file_remap_range( 1170 struct file *file_in, 1171 loff_t pos_in, 1172 struct file *file_out, 1173 loff_t pos_out, 1174 loff_t len, 1175 unsigned int remap_flags) 1176 { 1177 struct inode *inode_in = file_inode(file_in); 1178 struct xfs_inode *src = XFS_I(inode_in); 1179 struct inode *inode_out = file_inode(file_out); 1180 struct xfs_inode *dest = XFS_I(inode_out); 1181 struct xfs_mount *mp = src->i_mount; 1182 loff_t remapped = 0; 1183 xfs_extlen_t cowextsize; 1184 int ret; 1185 1186 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 1187 return -EINVAL; 1188 1189 if (!xfs_has_reflink(mp)) 1190 return -EOPNOTSUPP; 1191 1192 if (xfs_is_shutdown(mp)) 1193 return -EIO; 1194 1195 /* Prepare and then clone file data. */ 1196 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, 1197 &len, remap_flags); 1198 if (ret || len == 0) 1199 return ret; 1200 1201 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); 1202 1203 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len, 1204 &remapped); 1205 if (ret) 1206 goto out_unlock; 1207 1208 /* 1209 * Carry the cowextsize hint from src to dest if we're sharing the 1210 * entire source file to the entire destination file, the source file 1211 * has a cowextsize hint, and the destination file does not. 1212 */ 1213 cowextsize = 0; 1214 if (pos_in == 0 && len == i_size_read(inode_in) && 1215 (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) && 1216 pos_out == 0 && len >= i_size_read(inode_out) && 1217 !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)) 1218 cowextsize = src->i_cowextsize; 1219 1220 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, 1221 remap_flags); 1222 if (ret) 1223 goto out_unlock; 1224 1225 if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out)) 1226 xfs_log_force_inode(dest); 1227 out_unlock: 1228 xfs_iunlock2_remapping(src, dest); 1229 if (ret) 1230 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); 1231 return remapped > 0 ? remapped : ret; 1232 } 1233 1234 STATIC int 1235 xfs_file_open( 1236 struct inode *inode, 1237 struct file *file) 1238 { 1239 if (xfs_is_shutdown(XFS_M(inode->i_sb))) 1240 return -EIO; 1241 file->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT; 1242 return generic_file_open(inode, file); 1243 } 1244 1245 STATIC int 1246 xfs_dir_open( 1247 struct inode *inode, 1248 struct file *file) 1249 { 1250 struct xfs_inode *ip = XFS_I(inode); 1251 unsigned int mode; 1252 int error; 1253 1254 if (xfs_is_shutdown(ip->i_mount)) 1255 return -EIO; 1256 error = generic_file_open(inode, file); 1257 if (error) 1258 return error; 1259 1260 /* 1261 * If there are any blocks, read-ahead block 0 as we're almost 1262 * certain to have the next operation be a read there. 1263 */ 1264 mode = xfs_ilock_data_map_shared(ip); 1265 if (ip->i_df.if_nextents > 0) 1266 error = xfs_dir3_data_readahead(ip, 0, 0); 1267 xfs_iunlock(ip, mode); 1268 return error; 1269 } 1270 1271 /* 1272 * Don't bother propagating errors. We're just doing cleanup, and the caller 1273 * ignores the return value anyway. 1274 */ 1275 STATIC int 1276 xfs_file_release( 1277 struct inode *inode, 1278 struct file *file) 1279 { 1280 struct xfs_inode *ip = XFS_I(inode); 1281 struct xfs_mount *mp = ip->i_mount; 1282 1283 /* 1284 * If this is a read-only mount or the file system has been shut down, 1285 * don't generate I/O. 1286 */ 1287 if (xfs_is_readonly(mp) || xfs_is_shutdown(mp)) 1288 return 0; 1289 1290 /* 1291 * If we previously truncated this file and removed old data in the 1292 * process, we want to initiate "early" writeout on the last close. 1293 * This is an attempt to combat the notorious NULL files problem which 1294 * is particularly noticeable from a truncate down, buffered (re-)write 1295 * (delalloc), followed by a crash. What we are effectively doing here 1296 * is significantly reducing the time window where we'd otherwise be 1297 * exposed to that problem. 1298 */ 1299 if (xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED)) { 1300 xfs_iflags_clear(ip, XFS_EOFBLOCKS_RELEASED); 1301 if (ip->i_delayed_blks > 0) 1302 filemap_flush(inode->i_mapping); 1303 } 1304 1305 /* 1306 * XFS aggressively preallocates post-EOF space to generate contiguous 1307 * allocations for writers that append to the end of the file. 1308 * 1309 * To support workloads that close and reopen the file frequently, these 1310 * preallocations usually persist after a close unless it is the first 1311 * close for the inode. This is a tradeoff to generate tightly packed 1312 * data layouts for unpacking tarballs or similar archives that write 1313 * one file after another without going back to it while keeping the 1314 * preallocation for files that have recurring open/write/close cycles. 1315 * 1316 * This heuristic is skipped for inodes with the append-only flag as 1317 * that flag is rather pointless for inodes written only once. 1318 * 1319 * There is no point in freeing blocks here for open but unlinked files 1320 * as they will be taken care of by the inactivation path soon. 1321 * 1322 * When releasing a read-only context, don't flush data or trim post-EOF 1323 * blocks. This avoids open/read/close workloads from removing EOF 1324 * blocks that other writers depend upon to reduce fragmentation. 1325 * 1326 * If we can't get the iolock just skip truncating the blocks past EOF 1327 * because we could deadlock with the mmap_lock otherwise. We'll get 1328 * another chance to drop them once the last reference to the inode is 1329 * dropped, so we'll never leak blocks permanently. 1330 */ 1331 if (inode->i_nlink && 1332 (file->f_mode & FMODE_WRITE) && 1333 !(ip->i_diflags & XFS_DIFLAG_APPEND) && 1334 !xfs_iflags_test(ip, XFS_EOFBLOCKS_RELEASED) && 1335 xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1336 if (xfs_can_free_eofblocks(ip) && 1337 !xfs_iflags_test_and_set(ip, XFS_EOFBLOCKS_RELEASED)) 1338 xfs_free_eofblocks(ip); 1339 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1340 } 1341 1342 return 0; 1343 } 1344 1345 STATIC int 1346 xfs_file_readdir( 1347 struct file *file, 1348 struct dir_context *ctx) 1349 { 1350 struct inode *inode = file_inode(file); 1351 xfs_inode_t *ip = XFS_I(inode); 1352 size_t bufsize; 1353 1354 /* 1355 * The Linux API doesn't pass down the total size of the buffer 1356 * we read into down to the filesystem. With the filldir concept 1357 * it's not needed for correct information, but the XFS dir2 leaf 1358 * code wants an estimate of the buffer size to calculate it's 1359 * readahead window and size the buffers used for mapping to 1360 * physical blocks. 1361 * 1362 * Try to give it an estimate that's good enough, maybe at some 1363 * point we can change the ->readdir prototype to include the 1364 * buffer size. For now we use the current glibc buffer size. 1365 */ 1366 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size); 1367 1368 return xfs_readdir(NULL, ip, ctx, bufsize); 1369 } 1370 1371 STATIC loff_t 1372 xfs_file_llseek( 1373 struct file *file, 1374 loff_t offset, 1375 int whence) 1376 { 1377 struct inode *inode = file->f_mapping->host; 1378 1379 if (xfs_is_shutdown(XFS_I(inode)->i_mount)) 1380 return -EIO; 1381 1382 switch (whence) { 1383 default: 1384 return generic_file_llseek(file, offset, whence); 1385 case SEEK_HOLE: 1386 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops); 1387 break; 1388 case SEEK_DATA: 1389 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops); 1390 break; 1391 } 1392 1393 if (offset < 0) 1394 return offset; 1395 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1396 } 1397 1398 static inline vm_fault_t 1399 xfs_dax_fault_locked( 1400 struct vm_fault *vmf, 1401 unsigned int order, 1402 bool write_fault) 1403 { 1404 vm_fault_t ret; 1405 pfn_t pfn; 1406 1407 if (!IS_ENABLED(CONFIG_FS_DAX)) { 1408 ASSERT(0); 1409 return VM_FAULT_SIGBUS; 1410 } 1411 ret = dax_iomap_fault(vmf, order, &pfn, NULL, 1412 (write_fault && !vmf->cow_page) ? 1413 &xfs_dax_write_iomap_ops : 1414 &xfs_read_iomap_ops); 1415 if (ret & VM_FAULT_NEEDDSYNC) 1416 ret = dax_finish_sync_fault(vmf, order, pfn); 1417 return ret; 1418 } 1419 1420 static vm_fault_t 1421 xfs_dax_read_fault( 1422 struct vm_fault *vmf, 1423 unsigned int order) 1424 { 1425 struct xfs_inode *ip = XFS_I(file_inode(vmf->vma->vm_file)); 1426 vm_fault_t ret; 1427 1428 xfs_ilock(ip, XFS_MMAPLOCK_SHARED); 1429 ret = xfs_dax_fault_locked(vmf, order, false); 1430 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); 1431 1432 return ret; 1433 } 1434 1435 static vm_fault_t 1436 xfs_write_fault( 1437 struct vm_fault *vmf, 1438 unsigned int order) 1439 { 1440 struct inode *inode = file_inode(vmf->vma->vm_file); 1441 struct xfs_inode *ip = XFS_I(inode); 1442 unsigned int lock_mode = XFS_MMAPLOCK_SHARED; 1443 vm_fault_t ret; 1444 1445 sb_start_pagefault(inode->i_sb); 1446 file_update_time(vmf->vma->vm_file); 1447 1448 /* 1449 * Normally we only need the shared mmaplock, but if a reflink remap is 1450 * in progress we take the exclusive lock to wait for the remap to 1451 * finish before taking a write fault. 1452 */ 1453 xfs_ilock(ip, XFS_MMAPLOCK_SHARED); 1454 if (xfs_iflags_test(ip, XFS_IREMAPPING)) { 1455 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); 1456 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 1457 lock_mode = XFS_MMAPLOCK_EXCL; 1458 } 1459 1460 if (IS_DAX(inode)) 1461 ret = xfs_dax_fault_locked(vmf, order, true); 1462 else 1463 ret = iomap_page_mkwrite(vmf, &xfs_page_mkwrite_iomap_ops); 1464 xfs_iunlock(ip, lock_mode); 1465 1466 sb_end_pagefault(inode->i_sb); 1467 return ret; 1468 } 1469 1470 /* 1471 * Locking for serialisation of IO during page faults. This results in a lock 1472 * ordering of: 1473 * 1474 * mmap_lock (MM) 1475 * sb_start_pagefault(vfs, freeze) 1476 * invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation) 1477 * page_lock (MM) 1478 * i_lock (XFS - extent map serialisation) 1479 */ 1480 static vm_fault_t 1481 __xfs_filemap_fault( 1482 struct vm_fault *vmf, 1483 unsigned int order, 1484 bool write_fault) 1485 { 1486 struct inode *inode = file_inode(vmf->vma->vm_file); 1487 1488 trace_xfs_filemap_fault(XFS_I(inode), order, write_fault); 1489 1490 if (write_fault) 1491 return xfs_write_fault(vmf, order); 1492 if (IS_DAX(inode)) 1493 return xfs_dax_read_fault(vmf, order); 1494 return filemap_fault(vmf); 1495 } 1496 1497 static inline bool 1498 xfs_is_write_fault( 1499 struct vm_fault *vmf) 1500 { 1501 return (vmf->flags & FAULT_FLAG_WRITE) && 1502 (vmf->vma->vm_flags & VM_SHARED); 1503 } 1504 1505 static vm_fault_t 1506 xfs_filemap_fault( 1507 struct vm_fault *vmf) 1508 { 1509 /* DAX can shortcut the normal fault path on write faults! */ 1510 return __xfs_filemap_fault(vmf, 0, 1511 IS_DAX(file_inode(vmf->vma->vm_file)) && 1512 xfs_is_write_fault(vmf)); 1513 } 1514 1515 static vm_fault_t 1516 xfs_filemap_huge_fault( 1517 struct vm_fault *vmf, 1518 unsigned int order) 1519 { 1520 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1521 return VM_FAULT_FALLBACK; 1522 1523 /* DAX can shortcut the normal fault path on write faults! */ 1524 return __xfs_filemap_fault(vmf, order, 1525 xfs_is_write_fault(vmf)); 1526 } 1527 1528 static vm_fault_t 1529 xfs_filemap_page_mkwrite( 1530 struct vm_fault *vmf) 1531 { 1532 return __xfs_filemap_fault(vmf, 0, true); 1533 } 1534 1535 /* 1536 * pfn_mkwrite was originally intended to ensure we capture time stamp updates 1537 * on write faults. In reality, it needs to serialise against truncate and 1538 * prepare memory for writing so handle is as standard write fault. 1539 */ 1540 static vm_fault_t 1541 xfs_filemap_pfn_mkwrite( 1542 struct vm_fault *vmf) 1543 { 1544 1545 return __xfs_filemap_fault(vmf, 0, true); 1546 } 1547 1548 static const struct vm_operations_struct xfs_file_vm_ops = { 1549 .fault = xfs_filemap_fault, 1550 .huge_fault = xfs_filemap_huge_fault, 1551 .map_pages = filemap_map_pages, 1552 .page_mkwrite = xfs_filemap_page_mkwrite, 1553 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1554 }; 1555 1556 STATIC int 1557 xfs_file_mmap( 1558 struct file *file, 1559 struct vm_area_struct *vma) 1560 { 1561 struct inode *inode = file_inode(file); 1562 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode)); 1563 1564 /* 1565 * We don't support synchronous mappings for non-DAX files and 1566 * for DAX files if underneath dax_device is not synchronous. 1567 */ 1568 if (!daxdev_mapping_supported(vma, target->bt_daxdev)) 1569 return -EOPNOTSUPP; 1570 1571 file_accessed(file); 1572 vma->vm_ops = &xfs_file_vm_ops; 1573 if (IS_DAX(inode)) 1574 vm_flags_set(vma, VM_HUGEPAGE); 1575 return 0; 1576 } 1577 1578 const struct file_operations xfs_file_operations = { 1579 .llseek = xfs_file_llseek, 1580 .read_iter = xfs_file_read_iter, 1581 .write_iter = xfs_file_write_iter, 1582 .splice_read = xfs_file_splice_read, 1583 .splice_write = iter_file_splice_write, 1584 .iopoll = iocb_bio_iopoll, 1585 .unlocked_ioctl = xfs_file_ioctl, 1586 #ifdef CONFIG_COMPAT 1587 .compat_ioctl = xfs_file_compat_ioctl, 1588 #endif 1589 .mmap = xfs_file_mmap, 1590 .open = xfs_file_open, 1591 .release = xfs_file_release, 1592 .fsync = xfs_file_fsync, 1593 .get_unmapped_area = thp_get_unmapped_area, 1594 .fallocate = xfs_file_fallocate, 1595 .fadvise = xfs_file_fadvise, 1596 .remap_file_range = xfs_file_remap_range, 1597 .fop_flags = FOP_MMAP_SYNC | FOP_BUFFER_RASYNC | 1598 FOP_BUFFER_WASYNC | FOP_DIO_PARALLEL_WRITE, 1599 }; 1600 1601 const struct file_operations xfs_dir_file_operations = { 1602 .open = xfs_dir_open, 1603 .read = generic_read_dir, 1604 .iterate_shared = xfs_file_readdir, 1605 .llseek = generic_file_llseek, 1606 .unlocked_ioctl = xfs_file_ioctl, 1607 #ifdef CONFIG_COMPAT 1608 .compat_ioctl = xfs_file_compat_ioctl, 1609 #endif 1610 .fsync = xfs_dir_fsync, 1611 }; 1612