1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_da_format.h" 26 #include "xfs_da_btree.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_bmap_util.h" 32 #include "xfs_error.h" 33 #include "xfs_dir2.h" 34 #include "xfs_dir2_priv.h" 35 #include "xfs_ioctl.h" 36 #include "xfs_trace.h" 37 #include "xfs_log.h" 38 #include "xfs_icache.h" 39 #include "xfs_pnfs.h" 40 41 #include <linux/dcache.h> 42 #include <linux/falloc.h> 43 #include <linux/pagevec.h> 44 #include <linux/backing-dev.h> 45 46 static const struct vm_operations_struct xfs_file_vm_ops; 47 48 /* 49 * Locking primitives for read and write IO paths to ensure we consistently use 50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 51 */ 52 static inline void 53 xfs_rw_ilock( 54 struct xfs_inode *ip, 55 int type) 56 { 57 if (type & XFS_IOLOCK_EXCL) 58 mutex_lock(&VFS_I(ip)->i_mutex); 59 xfs_ilock(ip, type); 60 } 61 62 static inline void 63 xfs_rw_iunlock( 64 struct xfs_inode *ip, 65 int type) 66 { 67 xfs_iunlock(ip, type); 68 if (type & XFS_IOLOCK_EXCL) 69 mutex_unlock(&VFS_I(ip)->i_mutex); 70 } 71 72 static inline void 73 xfs_rw_ilock_demote( 74 struct xfs_inode *ip, 75 int type) 76 { 77 xfs_ilock_demote(ip, type); 78 if (type & XFS_IOLOCK_EXCL) 79 mutex_unlock(&VFS_I(ip)->i_mutex); 80 } 81 82 /* 83 * xfs_iozero clears the specified range supplied via the page cache (except in 84 * the DAX case). Writes through the page cache will allocate blocks over holes, 85 * though the callers usually map the holes first and avoid them. If a block is 86 * not completely zeroed, then it will be read from disk before being partially 87 * zeroed. 88 * 89 * In the DAX case, we can just directly write to the underlying pages. This 90 * will not allocate blocks, but will avoid holes and unwritten extents and so 91 * not do unnecessary work. 92 */ 93 int 94 xfs_iozero( 95 struct xfs_inode *ip, /* inode */ 96 loff_t pos, /* offset in file */ 97 size_t count) /* size of data to zero */ 98 { 99 struct page *page; 100 struct address_space *mapping; 101 int status = 0; 102 103 104 mapping = VFS_I(ip)->i_mapping; 105 do { 106 unsigned offset, bytes; 107 void *fsdata; 108 109 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 110 bytes = PAGE_CACHE_SIZE - offset; 111 if (bytes > count) 112 bytes = count; 113 114 if (IS_DAX(VFS_I(ip))) { 115 status = dax_zero_page_range(VFS_I(ip), pos, bytes, 116 xfs_get_blocks_direct); 117 if (status) 118 break; 119 } else { 120 status = pagecache_write_begin(NULL, mapping, pos, bytes, 121 AOP_FLAG_UNINTERRUPTIBLE, 122 &page, &fsdata); 123 if (status) 124 break; 125 126 zero_user(page, offset, bytes); 127 128 status = pagecache_write_end(NULL, mapping, pos, bytes, 129 bytes, page, fsdata); 130 WARN_ON(status <= 0); /* can't return less than zero! */ 131 status = 0; 132 } 133 pos += bytes; 134 count -= bytes; 135 } while (count); 136 137 return status; 138 } 139 140 int 141 xfs_update_prealloc_flags( 142 struct xfs_inode *ip, 143 enum xfs_prealloc_flags flags) 144 { 145 struct xfs_trans *tp; 146 int error; 147 148 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID); 149 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0); 150 if (error) { 151 xfs_trans_cancel(tp); 152 return error; 153 } 154 155 xfs_ilock(ip, XFS_ILOCK_EXCL); 156 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 157 158 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 159 ip->i_d.di_mode &= ~S_ISUID; 160 if (ip->i_d.di_mode & S_IXGRP) 161 ip->i_d.di_mode &= ~S_ISGID; 162 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 163 } 164 165 if (flags & XFS_PREALLOC_SET) 166 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 167 if (flags & XFS_PREALLOC_CLEAR) 168 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 169 170 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 171 if (flags & XFS_PREALLOC_SYNC) 172 xfs_trans_set_sync(tp); 173 return xfs_trans_commit(tp); 174 } 175 176 /* 177 * Fsync operations on directories are much simpler than on regular files, 178 * as there is no file data to flush, and thus also no need for explicit 179 * cache flush operations, and there are no non-transaction metadata updates 180 * on directories either. 181 */ 182 STATIC int 183 xfs_dir_fsync( 184 struct file *file, 185 loff_t start, 186 loff_t end, 187 int datasync) 188 { 189 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 190 struct xfs_mount *mp = ip->i_mount; 191 xfs_lsn_t lsn = 0; 192 193 trace_xfs_dir_fsync(ip); 194 195 xfs_ilock(ip, XFS_ILOCK_SHARED); 196 if (xfs_ipincount(ip)) 197 lsn = ip->i_itemp->ili_last_lsn; 198 xfs_iunlock(ip, XFS_ILOCK_SHARED); 199 200 if (!lsn) 201 return 0; 202 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 203 } 204 205 STATIC int 206 xfs_file_fsync( 207 struct file *file, 208 loff_t start, 209 loff_t end, 210 int datasync) 211 { 212 struct inode *inode = file->f_mapping->host; 213 struct xfs_inode *ip = XFS_I(inode); 214 struct xfs_mount *mp = ip->i_mount; 215 int error = 0; 216 int log_flushed = 0; 217 xfs_lsn_t lsn = 0; 218 219 trace_xfs_file_fsync(ip); 220 221 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 222 if (error) 223 return error; 224 225 if (XFS_FORCED_SHUTDOWN(mp)) 226 return -EIO; 227 228 xfs_iflags_clear(ip, XFS_ITRUNCATED); 229 230 if (mp->m_flags & XFS_MOUNT_BARRIER) { 231 /* 232 * If we have an RT and/or log subvolume we need to make sure 233 * to flush the write cache the device used for file data 234 * first. This is to ensure newly written file data make 235 * it to disk before logging the new inode size in case of 236 * an extending write. 237 */ 238 if (XFS_IS_REALTIME_INODE(ip)) 239 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 240 else if (mp->m_logdev_targp != mp->m_ddev_targp) 241 xfs_blkdev_issue_flush(mp->m_ddev_targp); 242 } 243 244 /* 245 * All metadata updates are logged, which means that we just have 246 * to flush the log up to the latest LSN that touched the inode. 247 */ 248 xfs_ilock(ip, XFS_ILOCK_SHARED); 249 if (xfs_ipincount(ip)) { 250 if (!datasync || 251 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP)) 252 lsn = ip->i_itemp->ili_last_lsn; 253 } 254 xfs_iunlock(ip, XFS_ILOCK_SHARED); 255 256 if (lsn) 257 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 258 259 /* 260 * If we only have a single device, and the log force about was 261 * a no-op we might have to flush the data device cache here. 262 * This can only happen for fdatasync/O_DSYNC if we were overwriting 263 * an already allocated file and thus do not have any metadata to 264 * commit. 265 */ 266 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 267 mp->m_logdev_targp == mp->m_ddev_targp && 268 !XFS_IS_REALTIME_INODE(ip) && 269 !log_flushed) 270 xfs_blkdev_issue_flush(mp->m_ddev_targp); 271 272 return error; 273 } 274 275 STATIC ssize_t 276 xfs_file_read_iter( 277 struct kiocb *iocb, 278 struct iov_iter *to) 279 { 280 struct file *file = iocb->ki_filp; 281 struct inode *inode = file->f_mapping->host; 282 struct xfs_inode *ip = XFS_I(inode); 283 struct xfs_mount *mp = ip->i_mount; 284 size_t size = iov_iter_count(to); 285 ssize_t ret = 0; 286 int ioflags = 0; 287 xfs_fsize_t n; 288 loff_t pos = iocb->ki_pos; 289 290 XFS_STATS_INC(xs_read_calls); 291 292 if (unlikely(iocb->ki_flags & IOCB_DIRECT)) 293 ioflags |= XFS_IO_ISDIRECT; 294 if (file->f_mode & FMODE_NOCMTIME) 295 ioflags |= XFS_IO_INVIS; 296 297 if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) { 298 xfs_buftarg_t *target = 299 XFS_IS_REALTIME_INODE(ip) ? 300 mp->m_rtdev_targp : mp->m_ddev_targp; 301 /* DIO must be aligned to device logical sector size */ 302 if ((pos | size) & target->bt_logical_sectormask) { 303 if (pos == i_size_read(inode)) 304 return 0; 305 return -EINVAL; 306 } 307 } 308 309 n = mp->m_super->s_maxbytes - pos; 310 if (n <= 0 || size == 0) 311 return 0; 312 313 if (n < size) 314 size = n; 315 316 if (XFS_FORCED_SHUTDOWN(mp)) 317 return -EIO; 318 319 /* 320 * Locking is a bit tricky here. If we take an exclusive lock for direct 321 * IO, we effectively serialise all new concurrent read IO to this file 322 * and block it behind IO that is currently in progress because IO in 323 * progress holds the IO lock shared. We only need to hold the lock 324 * exclusive to blow away the page cache, so only take lock exclusively 325 * if the page cache needs invalidation. This allows the normal direct 326 * IO case of no page cache pages to proceeed concurrently without 327 * serialisation. 328 */ 329 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 330 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) { 331 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 332 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 333 334 /* 335 * The generic dio code only flushes the range of the particular 336 * I/O. Because we take an exclusive lock here, this whole 337 * sequence is considerably more expensive for us. This has a 338 * noticeable performance impact for any file with cached pages, 339 * even when outside of the range of the particular I/O. 340 * 341 * Hence, amortize the cost of the lock against a full file 342 * flush and reduce the chances of repeated iolock cycles going 343 * forward. 344 */ 345 if (inode->i_mapping->nrpages) { 346 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping); 347 if (ret) { 348 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 349 return ret; 350 } 351 352 /* 353 * Invalidate whole pages. This can return an error if 354 * we fail to invalidate a page, but this should never 355 * happen on XFS. Warn if it does fail. 356 */ 357 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping); 358 WARN_ON_ONCE(ret); 359 ret = 0; 360 } 361 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 362 } 363 364 trace_xfs_file_read(ip, size, pos, ioflags); 365 366 ret = generic_file_read_iter(iocb, to); 367 if (ret > 0) 368 XFS_STATS_ADD(xs_read_bytes, ret); 369 370 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 371 return ret; 372 } 373 374 STATIC ssize_t 375 xfs_file_splice_read( 376 struct file *infilp, 377 loff_t *ppos, 378 struct pipe_inode_info *pipe, 379 size_t count, 380 unsigned int flags) 381 { 382 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 383 int ioflags = 0; 384 ssize_t ret; 385 386 XFS_STATS_INC(xs_read_calls); 387 388 if (infilp->f_mode & FMODE_NOCMTIME) 389 ioflags |= XFS_IO_INVIS; 390 391 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 392 return -EIO; 393 394 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 395 396 trace_xfs_file_splice_read(ip, count, *ppos, ioflags); 397 398 /* for dax, we need to avoid the page cache */ 399 if (IS_DAX(VFS_I(ip))) 400 ret = default_file_splice_read(infilp, ppos, pipe, count, flags); 401 else 402 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 403 if (ret > 0) 404 XFS_STATS_ADD(xs_read_bytes, ret); 405 406 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 407 return ret; 408 } 409 410 /* 411 * This routine is called to handle zeroing any space in the last block of the 412 * file that is beyond the EOF. We do this since the size is being increased 413 * without writing anything to that block and we don't want to read the 414 * garbage on the disk. 415 */ 416 STATIC int /* error (positive) */ 417 xfs_zero_last_block( 418 struct xfs_inode *ip, 419 xfs_fsize_t offset, 420 xfs_fsize_t isize, 421 bool *did_zeroing) 422 { 423 struct xfs_mount *mp = ip->i_mount; 424 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize); 425 int zero_offset = XFS_B_FSB_OFFSET(mp, isize); 426 int zero_len; 427 int nimaps = 1; 428 int error = 0; 429 struct xfs_bmbt_irec imap; 430 431 xfs_ilock(ip, XFS_ILOCK_EXCL); 432 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); 433 xfs_iunlock(ip, XFS_ILOCK_EXCL); 434 if (error) 435 return error; 436 437 ASSERT(nimaps > 0); 438 439 /* 440 * If the block underlying isize is just a hole, then there 441 * is nothing to zero. 442 */ 443 if (imap.br_startblock == HOLESTARTBLOCK) 444 return 0; 445 446 zero_len = mp->m_sb.sb_blocksize - zero_offset; 447 if (isize + zero_len > offset) 448 zero_len = offset - isize; 449 *did_zeroing = true; 450 return xfs_iozero(ip, isize, zero_len); 451 } 452 453 /* 454 * Zero any on disk space between the current EOF and the new, larger EOF. 455 * 456 * This handles the normal case of zeroing the remainder of the last block in 457 * the file and the unusual case of zeroing blocks out beyond the size of the 458 * file. This second case only happens with fixed size extents and when the 459 * system crashes before the inode size was updated but after blocks were 460 * allocated. 461 * 462 * Expects the iolock to be held exclusive, and will take the ilock internally. 463 */ 464 int /* error (positive) */ 465 xfs_zero_eof( 466 struct xfs_inode *ip, 467 xfs_off_t offset, /* starting I/O offset */ 468 xfs_fsize_t isize, /* current inode size */ 469 bool *did_zeroing) 470 { 471 struct xfs_mount *mp = ip->i_mount; 472 xfs_fileoff_t start_zero_fsb; 473 xfs_fileoff_t end_zero_fsb; 474 xfs_fileoff_t zero_count_fsb; 475 xfs_fileoff_t last_fsb; 476 xfs_fileoff_t zero_off; 477 xfs_fsize_t zero_len; 478 int nimaps; 479 int error = 0; 480 struct xfs_bmbt_irec imap; 481 482 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 483 ASSERT(offset > isize); 484 485 /* 486 * First handle zeroing the block on which isize resides. 487 * 488 * We only zero a part of that block so it is handled specially. 489 */ 490 if (XFS_B_FSB_OFFSET(mp, isize) != 0) { 491 error = xfs_zero_last_block(ip, offset, isize, did_zeroing); 492 if (error) 493 return error; 494 } 495 496 /* 497 * Calculate the range between the new size and the old where blocks 498 * needing to be zeroed may exist. 499 * 500 * To get the block where the last byte in the file currently resides, 501 * we need to subtract one from the size and truncate back to a block 502 * boundary. We subtract 1 in case the size is exactly on a block 503 * boundary. 504 */ 505 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; 506 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 507 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); 508 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); 509 if (last_fsb == end_zero_fsb) { 510 /* 511 * The size was only incremented on its last block. 512 * We took care of that above, so just return. 513 */ 514 return 0; 515 } 516 517 ASSERT(start_zero_fsb <= end_zero_fsb); 518 while (start_zero_fsb <= end_zero_fsb) { 519 nimaps = 1; 520 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; 521 522 xfs_ilock(ip, XFS_ILOCK_EXCL); 523 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, 524 &imap, &nimaps, 0); 525 xfs_iunlock(ip, XFS_ILOCK_EXCL); 526 if (error) 527 return error; 528 529 ASSERT(nimaps > 0); 530 531 if (imap.br_state == XFS_EXT_UNWRITTEN || 532 imap.br_startblock == HOLESTARTBLOCK) { 533 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 534 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 535 continue; 536 } 537 538 /* 539 * There are blocks we need to zero. 540 */ 541 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); 542 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); 543 544 if ((zero_off + zero_len) > offset) 545 zero_len = offset - zero_off; 546 547 error = xfs_iozero(ip, zero_off, zero_len); 548 if (error) 549 return error; 550 551 *did_zeroing = true; 552 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 553 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 554 } 555 556 return 0; 557 } 558 559 /* 560 * Common pre-write limit and setup checks. 561 * 562 * Called with the iolocked held either shared and exclusive according to 563 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 564 * if called for a direct write beyond i_size. 565 */ 566 STATIC ssize_t 567 xfs_file_aio_write_checks( 568 struct kiocb *iocb, 569 struct iov_iter *from, 570 int *iolock) 571 { 572 struct file *file = iocb->ki_filp; 573 struct inode *inode = file->f_mapping->host; 574 struct xfs_inode *ip = XFS_I(inode); 575 ssize_t error = 0; 576 size_t count = iov_iter_count(from); 577 578 restart: 579 error = generic_write_checks(iocb, from); 580 if (error <= 0) 581 return error; 582 583 error = xfs_break_layouts(inode, iolock, true); 584 if (error) 585 return error; 586 587 /* For changing security info in file_remove_privs() we need i_mutex */ 588 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 589 xfs_rw_iunlock(ip, *iolock); 590 *iolock = XFS_IOLOCK_EXCL; 591 xfs_rw_ilock(ip, *iolock); 592 goto restart; 593 } 594 /* 595 * If the offset is beyond the size of the file, we need to zero any 596 * blocks that fall between the existing EOF and the start of this 597 * write. If zeroing is needed and we are currently holding the 598 * iolock shared, we need to update it to exclusive which implies 599 * having to redo all checks before. 600 * 601 * We need to serialise against EOF updates that occur in IO 602 * completions here. We want to make sure that nobody is changing the 603 * size while we do this check until we have placed an IO barrier (i.e. 604 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 605 * The spinlock effectively forms a memory barrier once we have the 606 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 607 * and hence be able to correctly determine if we need to run zeroing. 608 */ 609 spin_lock(&ip->i_flags_lock); 610 if (iocb->ki_pos > i_size_read(inode)) { 611 bool zero = false; 612 613 spin_unlock(&ip->i_flags_lock); 614 if (*iolock == XFS_IOLOCK_SHARED) { 615 xfs_rw_iunlock(ip, *iolock); 616 *iolock = XFS_IOLOCK_EXCL; 617 xfs_rw_ilock(ip, *iolock); 618 iov_iter_reexpand(from, count); 619 620 /* 621 * We now have an IO submission barrier in place, but 622 * AIO can do EOF updates during IO completion and hence 623 * we now need to wait for all of them to drain. Non-AIO 624 * DIO will have drained before we are given the 625 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 626 * no-op. 627 */ 628 inode_dio_wait(inode); 629 goto restart; 630 } 631 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero); 632 if (error) 633 return error; 634 } else 635 spin_unlock(&ip->i_flags_lock); 636 637 /* 638 * Updating the timestamps will grab the ilock again from 639 * xfs_fs_dirty_inode, so we have to call it after dropping the 640 * lock above. Eventually we should look into a way to avoid 641 * the pointless lock roundtrip. 642 */ 643 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 644 error = file_update_time(file); 645 if (error) 646 return error; 647 } 648 649 /* 650 * If we're writing the file then make sure to clear the setuid and 651 * setgid bits if the process is not being run by root. This keeps 652 * people from modifying setuid and setgid binaries. 653 */ 654 if (!IS_NOSEC(inode)) 655 return file_remove_privs(file); 656 return 0; 657 } 658 659 /* 660 * xfs_file_dio_aio_write - handle direct IO writes 661 * 662 * Lock the inode appropriately to prepare for and issue a direct IO write. 663 * By separating it from the buffered write path we remove all the tricky to 664 * follow locking changes and looping. 665 * 666 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 667 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 668 * pages are flushed out. 669 * 670 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 671 * allowing them to be done in parallel with reads and other direct IO writes. 672 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 673 * needs to do sub-block zeroing and that requires serialisation against other 674 * direct IOs to the same block. In this case we need to serialise the 675 * submission of the unaligned IOs so that we don't get racing block zeroing in 676 * the dio layer. To avoid the problem with aio, we also need to wait for 677 * outstanding IOs to complete so that unwritten extent conversion is completed 678 * before we try to map the overlapping block. This is currently implemented by 679 * hitting it with a big hammer (i.e. inode_dio_wait()). 680 * 681 * Returns with locks held indicated by @iolock and errors indicated by 682 * negative return values. 683 */ 684 STATIC ssize_t 685 xfs_file_dio_aio_write( 686 struct kiocb *iocb, 687 struct iov_iter *from) 688 { 689 struct file *file = iocb->ki_filp; 690 struct address_space *mapping = file->f_mapping; 691 struct inode *inode = mapping->host; 692 struct xfs_inode *ip = XFS_I(inode); 693 struct xfs_mount *mp = ip->i_mount; 694 ssize_t ret = 0; 695 int unaligned_io = 0; 696 int iolock; 697 size_t count = iov_iter_count(from); 698 loff_t pos = iocb->ki_pos; 699 loff_t end; 700 struct iov_iter data; 701 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 702 mp->m_rtdev_targp : mp->m_ddev_targp; 703 704 /* DIO must be aligned to device logical sector size */ 705 if (!IS_DAX(inode) && ((pos | count) & target->bt_logical_sectormask)) 706 return -EINVAL; 707 708 /* "unaligned" here means not aligned to a filesystem block */ 709 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) 710 unaligned_io = 1; 711 712 /* 713 * We don't need to take an exclusive lock unless there page cache needs 714 * to be invalidated or unaligned IO is being executed. We don't need to 715 * consider the EOF extension case here because 716 * xfs_file_aio_write_checks() will relock the inode as necessary for 717 * EOF zeroing cases and fill out the new inode size as appropriate. 718 */ 719 if (unaligned_io || mapping->nrpages) 720 iolock = XFS_IOLOCK_EXCL; 721 else 722 iolock = XFS_IOLOCK_SHARED; 723 xfs_rw_ilock(ip, iolock); 724 725 /* 726 * Recheck if there are cached pages that need invalidate after we got 727 * the iolock to protect against other threads adding new pages while 728 * we were waiting for the iolock. 729 */ 730 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 731 xfs_rw_iunlock(ip, iolock); 732 iolock = XFS_IOLOCK_EXCL; 733 xfs_rw_ilock(ip, iolock); 734 } 735 736 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 737 if (ret) 738 goto out; 739 count = iov_iter_count(from); 740 pos = iocb->ki_pos; 741 end = pos + count - 1; 742 743 /* 744 * See xfs_file_read_iter() for why we do a full-file flush here. 745 */ 746 if (mapping->nrpages) { 747 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping); 748 if (ret) 749 goto out; 750 /* 751 * Invalidate whole pages. This can return an error if we fail 752 * to invalidate a page, but this should never happen on XFS. 753 * Warn if it does fail. 754 */ 755 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping); 756 WARN_ON_ONCE(ret); 757 ret = 0; 758 } 759 760 /* 761 * If we are doing unaligned IO, wait for all other IO to drain, 762 * otherwise demote the lock if we had to flush cached pages 763 */ 764 if (unaligned_io) 765 inode_dio_wait(inode); 766 else if (iolock == XFS_IOLOCK_EXCL) { 767 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 768 iolock = XFS_IOLOCK_SHARED; 769 } 770 771 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); 772 773 data = *from; 774 ret = mapping->a_ops->direct_IO(iocb, &data, pos); 775 776 /* see generic_file_direct_write() for why this is necessary */ 777 if (mapping->nrpages) { 778 invalidate_inode_pages2_range(mapping, 779 pos >> PAGE_CACHE_SHIFT, 780 end >> PAGE_CACHE_SHIFT); 781 } 782 783 if (ret > 0) { 784 pos += ret; 785 iov_iter_advance(from, ret); 786 iocb->ki_pos = pos; 787 } 788 out: 789 xfs_rw_iunlock(ip, iolock); 790 791 /* 792 * No fallback to buffered IO on errors for XFS. DAX can result in 793 * partial writes, but direct IO will either complete fully or fail. 794 */ 795 ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip))); 796 return ret; 797 } 798 799 STATIC ssize_t 800 xfs_file_buffered_aio_write( 801 struct kiocb *iocb, 802 struct iov_iter *from) 803 { 804 struct file *file = iocb->ki_filp; 805 struct address_space *mapping = file->f_mapping; 806 struct inode *inode = mapping->host; 807 struct xfs_inode *ip = XFS_I(inode); 808 ssize_t ret; 809 int enospc = 0; 810 int iolock = XFS_IOLOCK_EXCL; 811 812 xfs_rw_ilock(ip, iolock); 813 814 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 815 if (ret) 816 goto out; 817 818 /* We can write back this queue in page reclaim */ 819 current->backing_dev_info = inode_to_bdi(inode); 820 821 write_retry: 822 trace_xfs_file_buffered_write(ip, iov_iter_count(from), 823 iocb->ki_pos, 0); 824 ret = generic_perform_write(file, from, iocb->ki_pos); 825 if (likely(ret >= 0)) 826 iocb->ki_pos += ret; 827 828 /* 829 * If we hit a space limit, try to free up some lingering preallocated 830 * space before returning an error. In the case of ENOSPC, first try to 831 * write back all dirty inodes to free up some of the excess reserved 832 * metadata space. This reduces the chances that the eofblocks scan 833 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 834 * also behaves as a filter to prevent too many eofblocks scans from 835 * running at the same time. 836 */ 837 if (ret == -EDQUOT && !enospc) { 838 enospc = xfs_inode_free_quota_eofblocks(ip); 839 if (enospc) 840 goto write_retry; 841 } else if (ret == -ENOSPC && !enospc) { 842 struct xfs_eofblocks eofb = {0}; 843 844 enospc = 1; 845 xfs_flush_inodes(ip->i_mount); 846 eofb.eof_scan_owner = ip->i_ino; /* for locking */ 847 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 848 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 849 goto write_retry; 850 } 851 852 current->backing_dev_info = NULL; 853 out: 854 xfs_rw_iunlock(ip, iolock); 855 return ret; 856 } 857 858 STATIC ssize_t 859 xfs_file_write_iter( 860 struct kiocb *iocb, 861 struct iov_iter *from) 862 { 863 struct file *file = iocb->ki_filp; 864 struct address_space *mapping = file->f_mapping; 865 struct inode *inode = mapping->host; 866 struct xfs_inode *ip = XFS_I(inode); 867 ssize_t ret; 868 size_t ocount = iov_iter_count(from); 869 870 XFS_STATS_INC(xs_write_calls); 871 872 if (ocount == 0) 873 return 0; 874 875 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 876 return -EIO; 877 878 if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode)) 879 ret = xfs_file_dio_aio_write(iocb, from); 880 else 881 ret = xfs_file_buffered_aio_write(iocb, from); 882 883 if (ret > 0) { 884 ssize_t err; 885 886 XFS_STATS_ADD(xs_write_bytes, ret); 887 888 /* Handle various SYNC-type writes */ 889 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 890 if (err < 0) 891 ret = err; 892 } 893 return ret; 894 } 895 896 #define XFS_FALLOC_FL_SUPPORTED \ 897 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 898 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 899 FALLOC_FL_INSERT_RANGE) 900 901 STATIC long 902 xfs_file_fallocate( 903 struct file *file, 904 int mode, 905 loff_t offset, 906 loff_t len) 907 { 908 struct inode *inode = file_inode(file); 909 struct xfs_inode *ip = XFS_I(inode); 910 long error; 911 enum xfs_prealloc_flags flags = 0; 912 uint iolock = XFS_IOLOCK_EXCL; 913 loff_t new_size = 0; 914 bool do_file_insert = 0; 915 916 if (!S_ISREG(inode->i_mode)) 917 return -EINVAL; 918 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 919 return -EOPNOTSUPP; 920 921 xfs_ilock(ip, iolock); 922 error = xfs_break_layouts(inode, &iolock, false); 923 if (error) 924 goto out_unlock; 925 926 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 927 iolock |= XFS_MMAPLOCK_EXCL; 928 929 if (mode & FALLOC_FL_PUNCH_HOLE) { 930 error = xfs_free_file_space(ip, offset, len); 931 if (error) 932 goto out_unlock; 933 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 934 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 935 936 if (offset & blksize_mask || len & blksize_mask) { 937 error = -EINVAL; 938 goto out_unlock; 939 } 940 941 /* 942 * There is no need to overlap collapse range with EOF, 943 * in which case it is effectively a truncate operation 944 */ 945 if (offset + len >= i_size_read(inode)) { 946 error = -EINVAL; 947 goto out_unlock; 948 } 949 950 new_size = i_size_read(inode) - len; 951 952 error = xfs_collapse_file_space(ip, offset, len); 953 if (error) 954 goto out_unlock; 955 } else if (mode & FALLOC_FL_INSERT_RANGE) { 956 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 957 958 new_size = i_size_read(inode) + len; 959 if (offset & blksize_mask || len & blksize_mask) { 960 error = -EINVAL; 961 goto out_unlock; 962 } 963 964 /* check the new inode size does not wrap through zero */ 965 if (new_size > inode->i_sb->s_maxbytes) { 966 error = -EFBIG; 967 goto out_unlock; 968 } 969 970 /* Offset should be less than i_size */ 971 if (offset >= i_size_read(inode)) { 972 error = -EINVAL; 973 goto out_unlock; 974 } 975 do_file_insert = 1; 976 } else { 977 flags |= XFS_PREALLOC_SET; 978 979 if (!(mode & FALLOC_FL_KEEP_SIZE) && 980 offset + len > i_size_read(inode)) { 981 new_size = offset + len; 982 error = inode_newsize_ok(inode, new_size); 983 if (error) 984 goto out_unlock; 985 } 986 987 if (mode & FALLOC_FL_ZERO_RANGE) 988 error = xfs_zero_file_space(ip, offset, len); 989 else 990 error = xfs_alloc_file_space(ip, offset, len, 991 XFS_BMAPI_PREALLOC); 992 if (error) 993 goto out_unlock; 994 } 995 996 if (file->f_flags & O_DSYNC) 997 flags |= XFS_PREALLOC_SYNC; 998 999 error = xfs_update_prealloc_flags(ip, flags); 1000 if (error) 1001 goto out_unlock; 1002 1003 /* Change file size if needed */ 1004 if (new_size) { 1005 struct iattr iattr; 1006 1007 iattr.ia_valid = ATTR_SIZE; 1008 iattr.ia_size = new_size; 1009 error = xfs_setattr_size(ip, &iattr); 1010 if (error) 1011 goto out_unlock; 1012 } 1013 1014 /* 1015 * Perform hole insertion now that the file size has been 1016 * updated so that if we crash during the operation we don't 1017 * leave shifted extents past EOF and hence losing access to 1018 * the data that is contained within them. 1019 */ 1020 if (do_file_insert) 1021 error = xfs_insert_file_space(ip, offset, len); 1022 1023 out_unlock: 1024 xfs_iunlock(ip, iolock); 1025 return error; 1026 } 1027 1028 1029 STATIC int 1030 xfs_file_open( 1031 struct inode *inode, 1032 struct file *file) 1033 { 1034 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 1035 return -EFBIG; 1036 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 1037 return -EIO; 1038 return 0; 1039 } 1040 1041 STATIC int 1042 xfs_dir_open( 1043 struct inode *inode, 1044 struct file *file) 1045 { 1046 struct xfs_inode *ip = XFS_I(inode); 1047 int mode; 1048 int error; 1049 1050 error = xfs_file_open(inode, file); 1051 if (error) 1052 return error; 1053 1054 /* 1055 * If there are any blocks, read-ahead block 0 as we're almost 1056 * certain to have the next operation be a read there. 1057 */ 1058 mode = xfs_ilock_data_map_shared(ip); 1059 if (ip->i_d.di_nextents > 0) 1060 xfs_dir3_data_readahead(ip, 0, -1); 1061 xfs_iunlock(ip, mode); 1062 return 0; 1063 } 1064 1065 STATIC int 1066 xfs_file_release( 1067 struct inode *inode, 1068 struct file *filp) 1069 { 1070 return xfs_release(XFS_I(inode)); 1071 } 1072 1073 STATIC int 1074 xfs_file_readdir( 1075 struct file *file, 1076 struct dir_context *ctx) 1077 { 1078 struct inode *inode = file_inode(file); 1079 xfs_inode_t *ip = XFS_I(inode); 1080 size_t bufsize; 1081 1082 /* 1083 * The Linux API doesn't pass down the total size of the buffer 1084 * we read into down to the filesystem. With the filldir concept 1085 * it's not needed for correct information, but the XFS dir2 leaf 1086 * code wants an estimate of the buffer size to calculate it's 1087 * readahead window and size the buffers used for mapping to 1088 * physical blocks. 1089 * 1090 * Try to give it an estimate that's good enough, maybe at some 1091 * point we can change the ->readdir prototype to include the 1092 * buffer size. For now we use the current glibc buffer size. 1093 */ 1094 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 1095 1096 return xfs_readdir(ip, ctx, bufsize); 1097 } 1098 1099 /* 1100 * This type is designed to indicate the type of offset we would like 1101 * to search from page cache for xfs_seek_hole_data(). 1102 */ 1103 enum { 1104 HOLE_OFF = 0, 1105 DATA_OFF, 1106 }; 1107 1108 /* 1109 * Lookup the desired type of offset from the given page. 1110 * 1111 * On success, return true and the offset argument will point to the 1112 * start of the region that was found. Otherwise this function will 1113 * return false and keep the offset argument unchanged. 1114 */ 1115 STATIC bool 1116 xfs_lookup_buffer_offset( 1117 struct page *page, 1118 loff_t *offset, 1119 unsigned int type) 1120 { 1121 loff_t lastoff = page_offset(page); 1122 bool found = false; 1123 struct buffer_head *bh, *head; 1124 1125 bh = head = page_buffers(page); 1126 do { 1127 /* 1128 * Unwritten extents that have data in the page 1129 * cache covering them can be identified by the 1130 * BH_Unwritten state flag. Pages with multiple 1131 * buffers might have a mix of holes, data and 1132 * unwritten extents - any buffer with valid 1133 * data in it should have BH_Uptodate flag set 1134 * on it. 1135 */ 1136 if (buffer_unwritten(bh) || 1137 buffer_uptodate(bh)) { 1138 if (type == DATA_OFF) 1139 found = true; 1140 } else { 1141 if (type == HOLE_OFF) 1142 found = true; 1143 } 1144 1145 if (found) { 1146 *offset = lastoff; 1147 break; 1148 } 1149 lastoff += bh->b_size; 1150 } while ((bh = bh->b_this_page) != head); 1151 1152 return found; 1153 } 1154 1155 /* 1156 * This routine is called to find out and return a data or hole offset 1157 * from the page cache for unwritten extents according to the desired 1158 * type for xfs_seek_hole_data(). 1159 * 1160 * The argument offset is used to tell where we start to search from the 1161 * page cache. Map is used to figure out the end points of the range to 1162 * lookup pages. 1163 * 1164 * Return true if the desired type of offset was found, and the argument 1165 * offset is filled with that address. Otherwise, return false and keep 1166 * offset unchanged. 1167 */ 1168 STATIC bool 1169 xfs_find_get_desired_pgoff( 1170 struct inode *inode, 1171 struct xfs_bmbt_irec *map, 1172 unsigned int type, 1173 loff_t *offset) 1174 { 1175 struct xfs_inode *ip = XFS_I(inode); 1176 struct xfs_mount *mp = ip->i_mount; 1177 struct pagevec pvec; 1178 pgoff_t index; 1179 pgoff_t end; 1180 loff_t endoff; 1181 loff_t startoff = *offset; 1182 loff_t lastoff = startoff; 1183 bool found = false; 1184 1185 pagevec_init(&pvec, 0); 1186 1187 index = startoff >> PAGE_CACHE_SHIFT; 1188 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1189 end = endoff >> PAGE_CACHE_SHIFT; 1190 do { 1191 int want; 1192 unsigned nr_pages; 1193 unsigned int i; 1194 1195 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1196 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1197 want); 1198 /* 1199 * No page mapped into given range. If we are searching holes 1200 * and if this is the first time we got into the loop, it means 1201 * that the given offset is landed in a hole, return it. 1202 * 1203 * If we have already stepped through some block buffers to find 1204 * holes but they all contains data. In this case, the last 1205 * offset is already updated and pointed to the end of the last 1206 * mapped page, if it does not reach the endpoint to search, 1207 * that means there should be a hole between them. 1208 */ 1209 if (nr_pages == 0) { 1210 /* Data search found nothing */ 1211 if (type == DATA_OFF) 1212 break; 1213 1214 ASSERT(type == HOLE_OFF); 1215 if (lastoff == startoff || lastoff < endoff) { 1216 found = true; 1217 *offset = lastoff; 1218 } 1219 break; 1220 } 1221 1222 /* 1223 * At lease we found one page. If this is the first time we 1224 * step into the loop, and if the first page index offset is 1225 * greater than the given search offset, a hole was found. 1226 */ 1227 if (type == HOLE_OFF && lastoff == startoff && 1228 lastoff < page_offset(pvec.pages[0])) { 1229 found = true; 1230 break; 1231 } 1232 1233 for (i = 0; i < nr_pages; i++) { 1234 struct page *page = pvec.pages[i]; 1235 loff_t b_offset; 1236 1237 /* 1238 * At this point, the page may be truncated or 1239 * invalidated (changing page->mapping to NULL), 1240 * or even swizzled back from swapper_space to tmpfs 1241 * file mapping. However, page->index will not change 1242 * because we have a reference on the page. 1243 * 1244 * Searching done if the page index is out of range. 1245 * If the current offset is not reaches the end of 1246 * the specified search range, there should be a hole 1247 * between them. 1248 */ 1249 if (page->index > end) { 1250 if (type == HOLE_OFF && lastoff < endoff) { 1251 *offset = lastoff; 1252 found = true; 1253 } 1254 goto out; 1255 } 1256 1257 lock_page(page); 1258 /* 1259 * Page truncated or invalidated(page->mapping == NULL). 1260 * We can freely skip it and proceed to check the next 1261 * page. 1262 */ 1263 if (unlikely(page->mapping != inode->i_mapping)) { 1264 unlock_page(page); 1265 continue; 1266 } 1267 1268 if (!page_has_buffers(page)) { 1269 unlock_page(page); 1270 continue; 1271 } 1272 1273 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1274 if (found) { 1275 /* 1276 * The found offset may be less than the start 1277 * point to search if this is the first time to 1278 * come here. 1279 */ 1280 *offset = max_t(loff_t, startoff, b_offset); 1281 unlock_page(page); 1282 goto out; 1283 } 1284 1285 /* 1286 * We either searching data but nothing was found, or 1287 * searching hole but found a data buffer. In either 1288 * case, probably the next page contains the desired 1289 * things, update the last offset to it so. 1290 */ 1291 lastoff = page_offset(page) + PAGE_SIZE; 1292 unlock_page(page); 1293 } 1294 1295 /* 1296 * The number of returned pages less than our desired, search 1297 * done. In this case, nothing was found for searching data, 1298 * but we found a hole behind the last offset. 1299 */ 1300 if (nr_pages < want) { 1301 if (type == HOLE_OFF) { 1302 *offset = lastoff; 1303 found = true; 1304 } 1305 break; 1306 } 1307 1308 index = pvec.pages[i - 1]->index + 1; 1309 pagevec_release(&pvec); 1310 } while (index <= end); 1311 1312 out: 1313 pagevec_release(&pvec); 1314 return found; 1315 } 1316 1317 STATIC loff_t 1318 xfs_seek_hole_data( 1319 struct file *file, 1320 loff_t start, 1321 int whence) 1322 { 1323 struct inode *inode = file->f_mapping->host; 1324 struct xfs_inode *ip = XFS_I(inode); 1325 struct xfs_mount *mp = ip->i_mount; 1326 loff_t uninitialized_var(offset); 1327 xfs_fsize_t isize; 1328 xfs_fileoff_t fsbno; 1329 xfs_filblks_t end; 1330 uint lock; 1331 int error; 1332 1333 if (XFS_FORCED_SHUTDOWN(mp)) 1334 return -EIO; 1335 1336 lock = xfs_ilock_data_map_shared(ip); 1337 1338 isize = i_size_read(inode); 1339 if (start >= isize) { 1340 error = -ENXIO; 1341 goto out_unlock; 1342 } 1343 1344 /* 1345 * Try to read extents from the first block indicated 1346 * by fsbno to the end block of the file. 1347 */ 1348 fsbno = XFS_B_TO_FSBT(mp, start); 1349 end = XFS_B_TO_FSB(mp, isize); 1350 1351 for (;;) { 1352 struct xfs_bmbt_irec map[2]; 1353 int nmap = 2; 1354 unsigned int i; 1355 1356 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1357 XFS_BMAPI_ENTIRE); 1358 if (error) 1359 goto out_unlock; 1360 1361 /* No extents at given offset, must be beyond EOF */ 1362 if (nmap == 0) { 1363 error = -ENXIO; 1364 goto out_unlock; 1365 } 1366 1367 for (i = 0; i < nmap; i++) { 1368 offset = max_t(loff_t, start, 1369 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1370 1371 /* Landed in the hole we wanted? */ 1372 if (whence == SEEK_HOLE && 1373 map[i].br_startblock == HOLESTARTBLOCK) 1374 goto out; 1375 1376 /* Landed in the data extent we wanted? */ 1377 if (whence == SEEK_DATA && 1378 (map[i].br_startblock == DELAYSTARTBLOCK || 1379 (map[i].br_state == XFS_EXT_NORM && 1380 !isnullstartblock(map[i].br_startblock)))) 1381 goto out; 1382 1383 /* 1384 * Landed in an unwritten extent, try to search 1385 * for hole or data from page cache. 1386 */ 1387 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1388 if (xfs_find_get_desired_pgoff(inode, &map[i], 1389 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF, 1390 &offset)) 1391 goto out; 1392 } 1393 } 1394 1395 /* 1396 * We only received one extent out of the two requested. This 1397 * means we've hit EOF and didn't find what we are looking for. 1398 */ 1399 if (nmap == 1) { 1400 /* 1401 * If we were looking for a hole, set offset to 1402 * the end of the file (i.e., there is an implicit 1403 * hole at the end of any file). 1404 */ 1405 if (whence == SEEK_HOLE) { 1406 offset = isize; 1407 break; 1408 } 1409 /* 1410 * If we were looking for data, it's nowhere to be found 1411 */ 1412 ASSERT(whence == SEEK_DATA); 1413 error = -ENXIO; 1414 goto out_unlock; 1415 } 1416 1417 ASSERT(i > 1); 1418 1419 /* 1420 * Nothing was found, proceed to the next round of search 1421 * if the next reading offset is not at or beyond EOF. 1422 */ 1423 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1424 start = XFS_FSB_TO_B(mp, fsbno); 1425 if (start >= isize) { 1426 if (whence == SEEK_HOLE) { 1427 offset = isize; 1428 break; 1429 } 1430 ASSERT(whence == SEEK_DATA); 1431 error = -ENXIO; 1432 goto out_unlock; 1433 } 1434 } 1435 1436 out: 1437 /* 1438 * If at this point we have found the hole we wanted, the returned 1439 * offset may be bigger than the file size as it may be aligned to 1440 * page boundary for unwritten extents. We need to deal with this 1441 * situation in particular. 1442 */ 1443 if (whence == SEEK_HOLE) 1444 offset = min_t(loff_t, offset, isize); 1445 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1446 1447 out_unlock: 1448 xfs_iunlock(ip, lock); 1449 1450 if (error) 1451 return error; 1452 return offset; 1453 } 1454 1455 STATIC loff_t 1456 xfs_file_llseek( 1457 struct file *file, 1458 loff_t offset, 1459 int whence) 1460 { 1461 switch (whence) { 1462 case SEEK_END: 1463 case SEEK_CUR: 1464 case SEEK_SET: 1465 return generic_file_llseek(file, offset, whence); 1466 case SEEK_HOLE: 1467 case SEEK_DATA: 1468 return xfs_seek_hole_data(file, offset, whence); 1469 default: 1470 return -EINVAL; 1471 } 1472 } 1473 1474 /* 1475 * Locking for serialisation of IO during page faults. This results in a lock 1476 * ordering of: 1477 * 1478 * mmap_sem (MM) 1479 * sb_start_pagefault(vfs, freeze) 1480 * i_mmap_lock (XFS - truncate serialisation) 1481 * page_lock (MM) 1482 * i_lock (XFS - extent map serialisation) 1483 */ 1484 1485 /* 1486 * mmap()d file has taken write protection fault and is being made writable. We 1487 * can set the page state up correctly for a writable page, which means we can 1488 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent 1489 * mapping. 1490 */ 1491 STATIC int 1492 xfs_filemap_page_mkwrite( 1493 struct vm_area_struct *vma, 1494 struct vm_fault *vmf) 1495 { 1496 struct inode *inode = file_inode(vma->vm_file); 1497 int ret; 1498 1499 trace_xfs_filemap_page_mkwrite(XFS_I(inode)); 1500 1501 sb_start_pagefault(inode->i_sb); 1502 file_update_time(vma->vm_file); 1503 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1504 1505 if (IS_DAX(inode)) { 1506 ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_direct, 1507 xfs_end_io_dax_write); 1508 } else { 1509 ret = __block_page_mkwrite(vma, vmf, xfs_get_blocks); 1510 ret = block_page_mkwrite_return(ret); 1511 } 1512 1513 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1514 sb_end_pagefault(inode->i_sb); 1515 1516 return ret; 1517 } 1518 1519 STATIC int 1520 xfs_filemap_fault( 1521 struct vm_area_struct *vma, 1522 struct vm_fault *vmf) 1523 { 1524 struct inode *inode = file_inode(vma->vm_file); 1525 int ret; 1526 1527 trace_xfs_filemap_fault(XFS_I(inode)); 1528 1529 /* DAX can shortcut the normal fault path on write faults! */ 1530 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode)) 1531 return xfs_filemap_page_mkwrite(vma, vmf); 1532 1533 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1534 if (IS_DAX(inode)) { 1535 /* 1536 * we do not want to trigger unwritten extent conversion on read 1537 * faults - that is unnecessary overhead and would also require 1538 * changes to xfs_get_blocks_direct() to map unwritten extent 1539 * ioend for conversion on read-only mappings. 1540 */ 1541 ret = __dax_fault(vma, vmf, xfs_get_blocks_direct, NULL); 1542 } else 1543 ret = filemap_fault(vma, vmf); 1544 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1545 1546 return ret; 1547 } 1548 1549 STATIC int 1550 xfs_filemap_pmd_fault( 1551 struct vm_area_struct *vma, 1552 unsigned long addr, 1553 pmd_t *pmd, 1554 unsigned int flags) 1555 { 1556 struct inode *inode = file_inode(vma->vm_file); 1557 struct xfs_inode *ip = XFS_I(inode); 1558 int ret; 1559 1560 if (!IS_DAX(inode)) 1561 return VM_FAULT_FALLBACK; 1562 1563 trace_xfs_filemap_pmd_fault(ip); 1564 1565 sb_start_pagefault(inode->i_sb); 1566 file_update_time(vma->vm_file); 1567 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1568 ret = __dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_direct, 1569 xfs_end_io_dax_write); 1570 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1571 sb_end_pagefault(inode->i_sb); 1572 1573 return ret; 1574 } 1575 1576 static const struct vm_operations_struct xfs_file_vm_ops = { 1577 .fault = xfs_filemap_fault, 1578 .pmd_fault = xfs_filemap_pmd_fault, 1579 .map_pages = filemap_map_pages, 1580 .page_mkwrite = xfs_filemap_page_mkwrite, 1581 }; 1582 1583 STATIC int 1584 xfs_file_mmap( 1585 struct file *filp, 1586 struct vm_area_struct *vma) 1587 { 1588 file_accessed(filp); 1589 vma->vm_ops = &xfs_file_vm_ops; 1590 if (IS_DAX(file_inode(filp))) 1591 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 1592 return 0; 1593 } 1594 1595 const struct file_operations xfs_file_operations = { 1596 .llseek = xfs_file_llseek, 1597 .read_iter = xfs_file_read_iter, 1598 .write_iter = xfs_file_write_iter, 1599 .splice_read = xfs_file_splice_read, 1600 .splice_write = iter_file_splice_write, 1601 .unlocked_ioctl = xfs_file_ioctl, 1602 #ifdef CONFIG_COMPAT 1603 .compat_ioctl = xfs_file_compat_ioctl, 1604 #endif 1605 .mmap = xfs_file_mmap, 1606 .open = xfs_file_open, 1607 .release = xfs_file_release, 1608 .fsync = xfs_file_fsync, 1609 .fallocate = xfs_file_fallocate, 1610 }; 1611 1612 const struct file_operations xfs_dir_file_operations = { 1613 .open = xfs_dir_open, 1614 .read = generic_read_dir, 1615 .iterate = xfs_file_readdir, 1616 .llseek = generic_file_llseek, 1617 .unlocked_ioctl = xfs_file_ioctl, 1618 #ifdef CONFIG_COMPAT 1619 .compat_ioctl = xfs_file_compat_ioctl, 1620 #endif 1621 .fsync = xfs_dir_fsync, 1622 }; 1623