1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_da_format.h" 26 #include "xfs_da_btree.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_bmap_util.h" 32 #include "xfs_error.h" 33 #include "xfs_dir2.h" 34 #include "xfs_dir2_priv.h" 35 #include "xfs_ioctl.h" 36 #include "xfs_trace.h" 37 #include "xfs_log.h" 38 #include "xfs_icache.h" 39 #include "xfs_pnfs.h" 40 #include "xfs_iomap.h" 41 42 #include <linux/dcache.h> 43 #include <linux/falloc.h> 44 #include <linux/pagevec.h> 45 #include <linux/backing-dev.h> 46 47 static const struct vm_operations_struct xfs_file_vm_ops; 48 49 /* 50 * Locking primitives for read and write IO paths to ensure we consistently use 51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 52 */ 53 static inline void 54 xfs_rw_ilock( 55 struct xfs_inode *ip, 56 int type) 57 { 58 if (type & XFS_IOLOCK_EXCL) 59 inode_lock(VFS_I(ip)); 60 xfs_ilock(ip, type); 61 } 62 63 static inline void 64 xfs_rw_iunlock( 65 struct xfs_inode *ip, 66 int type) 67 { 68 xfs_iunlock(ip, type); 69 if (type & XFS_IOLOCK_EXCL) 70 inode_unlock(VFS_I(ip)); 71 } 72 73 static inline void 74 xfs_rw_ilock_demote( 75 struct xfs_inode *ip, 76 int type) 77 { 78 xfs_ilock_demote(ip, type); 79 if (type & XFS_IOLOCK_EXCL) 80 inode_unlock(VFS_I(ip)); 81 } 82 83 /* 84 * Clear the specified ranges to zero through either the pagecache or DAX. 85 * Holes and unwritten extents will be left as-is as they already are zeroed. 86 */ 87 int 88 xfs_zero_range( 89 struct xfs_inode *ip, 90 xfs_off_t pos, 91 xfs_off_t count, 92 bool *did_zero) 93 { 94 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops); 95 } 96 97 int 98 xfs_update_prealloc_flags( 99 struct xfs_inode *ip, 100 enum xfs_prealloc_flags flags) 101 { 102 struct xfs_trans *tp; 103 int error; 104 105 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 106 0, 0, 0, &tp); 107 if (error) 108 return error; 109 110 xfs_ilock(ip, XFS_ILOCK_EXCL); 111 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 112 113 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 114 VFS_I(ip)->i_mode &= ~S_ISUID; 115 if (VFS_I(ip)->i_mode & S_IXGRP) 116 VFS_I(ip)->i_mode &= ~S_ISGID; 117 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 118 } 119 120 if (flags & XFS_PREALLOC_SET) 121 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 122 if (flags & XFS_PREALLOC_CLEAR) 123 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 124 125 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 126 if (flags & XFS_PREALLOC_SYNC) 127 xfs_trans_set_sync(tp); 128 return xfs_trans_commit(tp); 129 } 130 131 /* 132 * Fsync operations on directories are much simpler than on regular files, 133 * as there is no file data to flush, and thus also no need for explicit 134 * cache flush operations, and there are no non-transaction metadata updates 135 * on directories either. 136 */ 137 STATIC int 138 xfs_dir_fsync( 139 struct file *file, 140 loff_t start, 141 loff_t end, 142 int datasync) 143 { 144 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 145 struct xfs_mount *mp = ip->i_mount; 146 xfs_lsn_t lsn = 0; 147 148 trace_xfs_dir_fsync(ip); 149 150 xfs_ilock(ip, XFS_ILOCK_SHARED); 151 if (xfs_ipincount(ip)) 152 lsn = ip->i_itemp->ili_last_lsn; 153 xfs_iunlock(ip, XFS_ILOCK_SHARED); 154 155 if (!lsn) 156 return 0; 157 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 158 } 159 160 STATIC int 161 xfs_file_fsync( 162 struct file *file, 163 loff_t start, 164 loff_t end, 165 int datasync) 166 { 167 struct inode *inode = file->f_mapping->host; 168 struct xfs_inode *ip = XFS_I(inode); 169 struct xfs_mount *mp = ip->i_mount; 170 int error = 0; 171 int log_flushed = 0; 172 xfs_lsn_t lsn = 0; 173 174 trace_xfs_file_fsync(ip); 175 176 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 177 if (error) 178 return error; 179 180 if (XFS_FORCED_SHUTDOWN(mp)) 181 return -EIO; 182 183 xfs_iflags_clear(ip, XFS_ITRUNCATED); 184 185 if (mp->m_flags & XFS_MOUNT_BARRIER) { 186 /* 187 * If we have an RT and/or log subvolume we need to make sure 188 * to flush the write cache the device used for file data 189 * first. This is to ensure newly written file data make 190 * it to disk before logging the new inode size in case of 191 * an extending write. 192 */ 193 if (XFS_IS_REALTIME_INODE(ip)) 194 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 195 else if (mp->m_logdev_targp != mp->m_ddev_targp) 196 xfs_blkdev_issue_flush(mp->m_ddev_targp); 197 } 198 199 /* 200 * All metadata updates are logged, which means that we just have to 201 * flush the log up to the latest LSN that touched the inode. If we have 202 * concurrent fsync/fdatasync() calls, we need them to all block on the 203 * log force before we clear the ili_fsync_fields field. This ensures 204 * that we don't get a racing sync operation that does not wait for the 205 * metadata to hit the journal before returning. If we race with 206 * clearing the ili_fsync_fields, then all that will happen is the log 207 * force will do nothing as the lsn will already be on disk. We can't 208 * race with setting ili_fsync_fields because that is done under 209 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 210 * until after the ili_fsync_fields is cleared. 211 */ 212 xfs_ilock(ip, XFS_ILOCK_SHARED); 213 if (xfs_ipincount(ip)) { 214 if (!datasync || 215 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 216 lsn = ip->i_itemp->ili_last_lsn; 217 } 218 219 if (lsn) { 220 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 221 ip->i_itemp->ili_fsync_fields = 0; 222 } 223 xfs_iunlock(ip, XFS_ILOCK_SHARED); 224 225 /* 226 * If we only have a single device, and the log force about was 227 * a no-op we might have to flush the data device cache here. 228 * This can only happen for fdatasync/O_DSYNC if we were overwriting 229 * an already allocated file and thus do not have any metadata to 230 * commit. 231 */ 232 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 233 mp->m_logdev_targp == mp->m_ddev_targp && 234 !XFS_IS_REALTIME_INODE(ip) && 235 !log_flushed) 236 xfs_blkdev_issue_flush(mp->m_ddev_targp); 237 238 return error; 239 } 240 241 STATIC ssize_t 242 xfs_file_dio_aio_read( 243 struct kiocb *iocb, 244 struct iov_iter *to) 245 { 246 struct address_space *mapping = iocb->ki_filp->f_mapping; 247 struct inode *inode = mapping->host; 248 struct xfs_inode *ip = XFS_I(inode); 249 loff_t isize = i_size_read(inode); 250 size_t count = iov_iter_count(to); 251 struct iov_iter data; 252 struct xfs_buftarg *target; 253 ssize_t ret = 0; 254 255 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 256 257 if (!count) 258 return 0; /* skip atime */ 259 260 if (XFS_IS_REALTIME_INODE(ip)) 261 target = ip->i_mount->m_rtdev_targp; 262 else 263 target = ip->i_mount->m_ddev_targp; 264 265 /* DIO must be aligned to device logical sector size */ 266 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) { 267 if (iocb->ki_pos == isize) 268 return 0; 269 return -EINVAL; 270 } 271 272 /* 273 * Locking is a bit tricky here. If we take an exclusive lock for direct 274 * IO, we effectively serialise all new concurrent read IO to this file 275 * and block it behind IO that is currently in progress because IO in 276 * progress holds the IO lock shared. We only need to hold the lock 277 * exclusive to blow away the page cache, so only take lock exclusively 278 * if the page cache needs invalidation. This allows the normal direct 279 * IO case of no page cache pages to proceeed concurrently without 280 * serialisation. 281 */ 282 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 283 if (mapping->nrpages) { 284 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 285 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 286 287 /* 288 * The generic dio code only flushes the range of the particular 289 * I/O. Because we take an exclusive lock here, this whole 290 * sequence is considerably more expensive for us. This has a 291 * noticeable performance impact for any file with cached pages, 292 * even when outside of the range of the particular I/O. 293 * 294 * Hence, amortize the cost of the lock against a full file 295 * flush and reduce the chances of repeated iolock cycles going 296 * forward. 297 */ 298 if (mapping->nrpages) { 299 ret = filemap_write_and_wait(mapping); 300 if (ret) { 301 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 302 return ret; 303 } 304 305 /* 306 * Invalidate whole pages. This can return an error if 307 * we fail to invalidate a page, but this should never 308 * happen on XFS. Warn if it does fail. 309 */ 310 ret = invalidate_inode_pages2(mapping); 311 WARN_ON_ONCE(ret); 312 ret = 0; 313 } 314 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 315 } 316 317 data = *to; 318 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data, 319 xfs_get_blocks_direct, NULL, NULL, 0); 320 if (ret > 0) { 321 iocb->ki_pos += ret; 322 iov_iter_advance(to, ret); 323 } 324 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 325 326 file_accessed(iocb->ki_filp); 327 return ret; 328 } 329 330 static noinline ssize_t 331 xfs_file_dax_read( 332 struct kiocb *iocb, 333 struct iov_iter *to) 334 { 335 struct address_space *mapping = iocb->ki_filp->f_mapping; 336 struct inode *inode = mapping->host; 337 struct xfs_inode *ip = XFS_I(inode); 338 struct iov_iter data = *to; 339 size_t count = iov_iter_count(to); 340 ssize_t ret = 0; 341 342 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 343 344 if (!count) 345 return 0; /* skip atime */ 346 347 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 348 ret = dax_do_io(iocb, inode, &data, xfs_get_blocks_direct, NULL, 0); 349 if (ret > 0) { 350 iocb->ki_pos += ret; 351 iov_iter_advance(to, ret); 352 } 353 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 354 355 file_accessed(iocb->ki_filp); 356 return ret; 357 } 358 359 STATIC ssize_t 360 xfs_file_buffered_aio_read( 361 struct kiocb *iocb, 362 struct iov_iter *to) 363 { 364 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 365 ssize_t ret; 366 367 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 368 369 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 370 ret = generic_file_read_iter(iocb, to); 371 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 372 373 return ret; 374 } 375 376 STATIC ssize_t 377 xfs_file_read_iter( 378 struct kiocb *iocb, 379 struct iov_iter *to) 380 { 381 struct inode *inode = file_inode(iocb->ki_filp); 382 struct xfs_mount *mp = XFS_I(inode)->i_mount; 383 ssize_t ret = 0; 384 385 XFS_STATS_INC(mp, xs_read_calls); 386 387 if (XFS_FORCED_SHUTDOWN(mp)) 388 return -EIO; 389 390 if (IS_DAX(inode)) 391 ret = xfs_file_dax_read(iocb, to); 392 else if (iocb->ki_flags & IOCB_DIRECT) 393 ret = xfs_file_dio_aio_read(iocb, to); 394 else 395 ret = xfs_file_buffered_aio_read(iocb, to); 396 397 if (ret > 0) 398 XFS_STATS_ADD(mp, xs_read_bytes, ret); 399 return ret; 400 } 401 402 STATIC ssize_t 403 xfs_file_splice_read( 404 struct file *infilp, 405 loff_t *ppos, 406 struct pipe_inode_info *pipe, 407 size_t count, 408 unsigned int flags) 409 { 410 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 411 ssize_t ret; 412 413 XFS_STATS_INC(ip->i_mount, xs_read_calls); 414 415 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 416 return -EIO; 417 418 trace_xfs_file_splice_read(ip, count, *ppos); 419 420 /* 421 * DAX inodes cannot ues the page cache for splice, so we have to push 422 * them through the VFS IO path. This means it goes through 423 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we 424 * cannot lock the splice operation at this level for DAX inodes. 425 */ 426 if (IS_DAX(VFS_I(ip))) { 427 ret = default_file_splice_read(infilp, ppos, pipe, count, 428 flags); 429 goto out; 430 } 431 432 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 433 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 434 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 435 out: 436 if (ret > 0) 437 XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret); 438 return ret; 439 } 440 441 /* 442 * Zero any on disk space between the current EOF and the new, larger EOF. 443 * 444 * This handles the normal case of zeroing the remainder of the last block in 445 * the file and the unusual case of zeroing blocks out beyond the size of the 446 * file. This second case only happens with fixed size extents and when the 447 * system crashes before the inode size was updated but after blocks were 448 * allocated. 449 * 450 * Expects the iolock to be held exclusive, and will take the ilock internally. 451 */ 452 int /* error (positive) */ 453 xfs_zero_eof( 454 struct xfs_inode *ip, 455 xfs_off_t offset, /* starting I/O offset */ 456 xfs_fsize_t isize, /* current inode size */ 457 bool *did_zeroing) 458 { 459 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 460 ASSERT(offset > isize); 461 462 trace_xfs_zero_eof(ip, isize, offset - isize); 463 return xfs_zero_range(ip, isize, offset - isize, did_zeroing); 464 } 465 466 /* 467 * Common pre-write limit and setup checks. 468 * 469 * Called with the iolocked held either shared and exclusive according to 470 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 471 * if called for a direct write beyond i_size. 472 */ 473 STATIC ssize_t 474 xfs_file_aio_write_checks( 475 struct kiocb *iocb, 476 struct iov_iter *from, 477 int *iolock) 478 { 479 struct file *file = iocb->ki_filp; 480 struct inode *inode = file->f_mapping->host; 481 struct xfs_inode *ip = XFS_I(inode); 482 ssize_t error = 0; 483 size_t count = iov_iter_count(from); 484 bool drained_dio = false; 485 486 restart: 487 error = generic_write_checks(iocb, from); 488 if (error <= 0) 489 return error; 490 491 error = xfs_break_layouts(inode, iolock, true); 492 if (error) 493 return error; 494 495 /* For changing security info in file_remove_privs() we need i_mutex */ 496 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 497 xfs_rw_iunlock(ip, *iolock); 498 *iolock = XFS_IOLOCK_EXCL; 499 xfs_rw_ilock(ip, *iolock); 500 goto restart; 501 } 502 /* 503 * If the offset is beyond the size of the file, we need to zero any 504 * blocks that fall between the existing EOF and the start of this 505 * write. If zeroing is needed and we are currently holding the 506 * iolock shared, we need to update it to exclusive which implies 507 * having to redo all checks before. 508 * 509 * We need to serialise against EOF updates that occur in IO 510 * completions here. We want to make sure that nobody is changing the 511 * size while we do this check until we have placed an IO barrier (i.e. 512 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 513 * The spinlock effectively forms a memory barrier once we have the 514 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 515 * and hence be able to correctly determine if we need to run zeroing. 516 */ 517 spin_lock(&ip->i_flags_lock); 518 if (iocb->ki_pos > i_size_read(inode)) { 519 bool zero = false; 520 521 spin_unlock(&ip->i_flags_lock); 522 if (!drained_dio) { 523 if (*iolock == XFS_IOLOCK_SHARED) { 524 xfs_rw_iunlock(ip, *iolock); 525 *iolock = XFS_IOLOCK_EXCL; 526 xfs_rw_ilock(ip, *iolock); 527 iov_iter_reexpand(from, count); 528 } 529 /* 530 * We now have an IO submission barrier in place, but 531 * AIO can do EOF updates during IO completion and hence 532 * we now need to wait for all of them to drain. Non-AIO 533 * DIO will have drained before we are given the 534 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 535 * no-op. 536 */ 537 inode_dio_wait(inode); 538 drained_dio = true; 539 goto restart; 540 } 541 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero); 542 if (error) 543 return error; 544 } else 545 spin_unlock(&ip->i_flags_lock); 546 547 /* 548 * Updating the timestamps will grab the ilock again from 549 * xfs_fs_dirty_inode, so we have to call it after dropping the 550 * lock above. Eventually we should look into a way to avoid 551 * the pointless lock roundtrip. 552 */ 553 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 554 error = file_update_time(file); 555 if (error) 556 return error; 557 } 558 559 /* 560 * If we're writing the file then make sure to clear the setuid and 561 * setgid bits if the process is not being run by root. This keeps 562 * people from modifying setuid and setgid binaries. 563 */ 564 if (!IS_NOSEC(inode)) 565 return file_remove_privs(file); 566 return 0; 567 } 568 569 /* 570 * xfs_file_dio_aio_write - handle direct IO writes 571 * 572 * Lock the inode appropriately to prepare for and issue a direct IO write. 573 * By separating it from the buffered write path we remove all the tricky to 574 * follow locking changes and looping. 575 * 576 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 577 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 578 * pages are flushed out. 579 * 580 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 581 * allowing them to be done in parallel with reads and other direct IO writes. 582 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 583 * needs to do sub-block zeroing and that requires serialisation against other 584 * direct IOs to the same block. In this case we need to serialise the 585 * submission of the unaligned IOs so that we don't get racing block zeroing in 586 * the dio layer. To avoid the problem with aio, we also need to wait for 587 * outstanding IOs to complete so that unwritten extent conversion is completed 588 * before we try to map the overlapping block. This is currently implemented by 589 * hitting it with a big hammer (i.e. inode_dio_wait()). 590 * 591 * Returns with locks held indicated by @iolock and errors indicated by 592 * negative return values. 593 */ 594 STATIC ssize_t 595 xfs_file_dio_aio_write( 596 struct kiocb *iocb, 597 struct iov_iter *from) 598 { 599 struct file *file = iocb->ki_filp; 600 struct address_space *mapping = file->f_mapping; 601 struct inode *inode = mapping->host; 602 struct xfs_inode *ip = XFS_I(inode); 603 struct xfs_mount *mp = ip->i_mount; 604 ssize_t ret = 0; 605 int unaligned_io = 0; 606 int iolock; 607 size_t count = iov_iter_count(from); 608 loff_t end; 609 struct iov_iter data; 610 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 611 mp->m_rtdev_targp : mp->m_ddev_targp; 612 613 /* DIO must be aligned to device logical sector size */ 614 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 615 return -EINVAL; 616 617 /* "unaligned" here means not aligned to a filesystem block */ 618 if ((iocb->ki_pos & mp->m_blockmask) || 619 ((iocb->ki_pos + count) & mp->m_blockmask)) 620 unaligned_io = 1; 621 622 /* 623 * We don't need to take an exclusive lock unless there page cache needs 624 * to be invalidated or unaligned IO is being executed. We don't need to 625 * consider the EOF extension case here because 626 * xfs_file_aio_write_checks() will relock the inode as necessary for 627 * EOF zeroing cases and fill out the new inode size as appropriate. 628 */ 629 if (unaligned_io || mapping->nrpages) 630 iolock = XFS_IOLOCK_EXCL; 631 else 632 iolock = XFS_IOLOCK_SHARED; 633 xfs_rw_ilock(ip, iolock); 634 635 /* 636 * Recheck if there are cached pages that need invalidate after we got 637 * the iolock to protect against other threads adding new pages while 638 * we were waiting for the iolock. 639 */ 640 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 641 xfs_rw_iunlock(ip, iolock); 642 iolock = XFS_IOLOCK_EXCL; 643 xfs_rw_ilock(ip, iolock); 644 } 645 646 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 647 if (ret) 648 goto out; 649 count = iov_iter_count(from); 650 end = iocb->ki_pos + count - 1; 651 652 /* 653 * See xfs_file_dio_aio_read() for why we do a full-file flush here. 654 */ 655 if (mapping->nrpages) { 656 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping); 657 if (ret) 658 goto out; 659 /* 660 * Invalidate whole pages. This can return an error if we fail 661 * to invalidate a page, but this should never happen on XFS. 662 * Warn if it does fail. 663 */ 664 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping); 665 WARN_ON_ONCE(ret); 666 ret = 0; 667 } 668 669 /* 670 * If we are doing unaligned IO, wait for all other IO to drain, 671 * otherwise demote the lock if we had to flush cached pages 672 */ 673 if (unaligned_io) 674 inode_dio_wait(inode); 675 else if (iolock == XFS_IOLOCK_EXCL) { 676 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 677 iolock = XFS_IOLOCK_SHARED; 678 } 679 680 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 681 682 data = *from; 683 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data, 684 xfs_get_blocks_direct, xfs_end_io_direct_write, 685 NULL, DIO_ASYNC_EXTEND); 686 687 /* see generic_file_direct_write() for why this is necessary */ 688 if (mapping->nrpages) { 689 invalidate_inode_pages2_range(mapping, 690 iocb->ki_pos >> PAGE_SHIFT, 691 end >> PAGE_SHIFT); 692 } 693 694 if (ret > 0) { 695 iocb->ki_pos += ret; 696 iov_iter_advance(from, ret); 697 } 698 out: 699 xfs_rw_iunlock(ip, iolock); 700 701 /* 702 * No fallback to buffered IO on errors for XFS, direct IO will either 703 * complete fully or fail. 704 */ 705 ASSERT(ret < 0 || ret == count); 706 return ret; 707 } 708 709 static noinline ssize_t 710 xfs_file_dax_write( 711 struct kiocb *iocb, 712 struct iov_iter *from) 713 { 714 struct address_space *mapping = iocb->ki_filp->f_mapping; 715 struct inode *inode = mapping->host; 716 struct xfs_inode *ip = XFS_I(inode); 717 struct xfs_mount *mp = ip->i_mount; 718 ssize_t ret = 0; 719 int unaligned_io = 0; 720 int iolock; 721 struct iov_iter data; 722 723 /* "unaligned" here means not aligned to a filesystem block */ 724 if ((iocb->ki_pos & mp->m_blockmask) || 725 ((iocb->ki_pos + iov_iter_count(from)) & mp->m_blockmask)) { 726 unaligned_io = 1; 727 iolock = XFS_IOLOCK_EXCL; 728 } else if (mapping->nrpages) { 729 iolock = XFS_IOLOCK_EXCL; 730 } else { 731 iolock = XFS_IOLOCK_SHARED; 732 } 733 xfs_rw_ilock(ip, iolock); 734 735 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 736 if (ret) 737 goto out; 738 739 /* 740 * Yes, even DAX files can have page cache attached to them: A zeroed 741 * page is inserted into the pagecache when we have to serve a write 742 * fault on a hole. It should never be dirtied and can simply be 743 * dropped from the pagecache once we get real data for the page. 744 */ 745 if (mapping->nrpages) { 746 ret = invalidate_inode_pages2(mapping); 747 WARN_ON_ONCE(ret); 748 } 749 750 if (iolock == XFS_IOLOCK_EXCL && !unaligned_io) { 751 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 752 iolock = XFS_IOLOCK_SHARED; 753 } 754 755 trace_xfs_file_dax_write(ip, iov_iter_count(from), iocb->ki_pos); 756 757 data = *from; 758 ret = dax_do_io(iocb, inode, &data, xfs_get_blocks_direct, 759 xfs_end_io_direct_write, 0); 760 if (ret > 0) { 761 iocb->ki_pos += ret; 762 iov_iter_advance(from, ret); 763 } 764 out: 765 xfs_rw_iunlock(ip, iolock); 766 return ret; 767 } 768 769 STATIC ssize_t 770 xfs_file_buffered_aio_write( 771 struct kiocb *iocb, 772 struct iov_iter *from) 773 { 774 struct file *file = iocb->ki_filp; 775 struct address_space *mapping = file->f_mapping; 776 struct inode *inode = mapping->host; 777 struct xfs_inode *ip = XFS_I(inode); 778 ssize_t ret; 779 int enospc = 0; 780 int iolock = XFS_IOLOCK_EXCL; 781 782 xfs_rw_ilock(ip, iolock); 783 784 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 785 if (ret) 786 goto out; 787 788 /* We can write back this queue in page reclaim */ 789 current->backing_dev_info = inode_to_bdi(inode); 790 791 write_retry: 792 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 793 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); 794 if (likely(ret >= 0)) 795 iocb->ki_pos += ret; 796 797 /* 798 * If we hit a space limit, try to free up some lingering preallocated 799 * space before returning an error. In the case of ENOSPC, first try to 800 * write back all dirty inodes to free up some of the excess reserved 801 * metadata space. This reduces the chances that the eofblocks scan 802 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 803 * also behaves as a filter to prevent too many eofblocks scans from 804 * running at the same time. 805 */ 806 if (ret == -EDQUOT && !enospc) { 807 enospc = xfs_inode_free_quota_eofblocks(ip); 808 if (enospc) 809 goto write_retry; 810 } else if (ret == -ENOSPC && !enospc) { 811 struct xfs_eofblocks eofb = {0}; 812 813 enospc = 1; 814 xfs_flush_inodes(ip->i_mount); 815 eofb.eof_scan_owner = ip->i_ino; /* for locking */ 816 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 817 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 818 goto write_retry; 819 } 820 821 current->backing_dev_info = NULL; 822 out: 823 xfs_rw_iunlock(ip, iolock); 824 return ret; 825 } 826 827 STATIC ssize_t 828 xfs_file_write_iter( 829 struct kiocb *iocb, 830 struct iov_iter *from) 831 { 832 struct file *file = iocb->ki_filp; 833 struct address_space *mapping = file->f_mapping; 834 struct inode *inode = mapping->host; 835 struct xfs_inode *ip = XFS_I(inode); 836 ssize_t ret; 837 size_t ocount = iov_iter_count(from); 838 839 XFS_STATS_INC(ip->i_mount, xs_write_calls); 840 841 if (ocount == 0) 842 return 0; 843 844 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 845 return -EIO; 846 847 if (IS_DAX(inode)) 848 ret = xfs_file_dax_write(iocb, from); 849 else if (iocb->ki_flags & IOCB_DIRECT) 850 ret = xfs_file_dio_aio_write(iocb, from); 851 else 852 ret = xfs_file_buffered_aio_write(iocb, from); 853 854 if (ret > 0) { 855 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 856 857 /* Handle various SYNC-type writes */ 858 ret = generic_write_sync(iocb, ret); 859 } 860 return ret; 861 } 862 863 #define XFS_FALLOC_FL_SUPPORTED \ 864 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 865 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 866 FALLOC_FL_INSERT_RANGE) 867 868 STATIC long 869 xfs_file_fallocate( 870 struct file *file, 871 int mode, 872 loff_t offset, 873 loff_t len) 874 { 875 struct inode *inode = file_inode(file); 876 struct xfs_inode *ip = XFS_I(inode); 877 long error; 878 enum xfs_prealloc_flags flags = 0; 879 uint iolock = XFS_IOLOCK_EXCL; 880 loff_t new_size = 0; 881 bool do_file_insert = 0; 882 883 if (!S_ISREG(inode->i_mode)) 884 return -EINVAL; 885 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 886 return -EOPNOTSUPP; 887 888 xfs_ilock(ip, iolock); 889 error = xfs_break_layouts(inode, &iolock, false); 890 if (error) 891 goto out_unlock; 892 893 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 894 iolock |= XFS_MMAPLOCK_EXCL; 895 896 if (mode & FALLOC_FL_PUNCH_HOLE) { 897 error = xfs_free_file_space(ip, offset, len); 898 if (error) 899 goto out_unlock; 900 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 901 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 902 903 if (offset & blksize_mask || len & blksize_mask) { 904 error = -EINVAL; 905 goto out_unlock; 906 } 907 908 /* 909 * There is no need to overlap collapse range with EOF, 910 * in which case it is effectively a truncate operation 911 */ 912 if (offset + len >= i_size_read(inode)) { 913 error = -EINVAL; 914 goto out_unlock; 915 } 916 917 new_size = i_size_read(inode) - len; 918 919 error = xfs_collapse_file_space(ip, offset, len); 920 if (error) 921 goto out_unlock; 922 } else if (mode & FALLOC_FL_INSERT_RANGE) { 923 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 924 925 new_size = i_size_read(inode) + len; 926 if (offset & blksize_mask || len & blksize_mask) { 927 error = -EINVAL; 928 goto out_unlock; 929 } 930 931 /* check the new inode size does not wrap through zero */ 932 if (new_size > inode->i_sb->s_maxbytes) { 933 error = -EFBIG; 934 goto out_unlock; 935 } 936 937 /* Offset should be less than i_size */ 938 if (offset >= i_size_read(inode)) { 939 error = -EINVAL; 940 goto out_unlock; 941 } 942 do_file_insert = 1; 943 } else { 944 flags |= XFS_PREALLOC_SET; 945 946 if (!(mode & FALLOC_FL_KEEP_SIZE) && 947 offset + len > i_size_read(inode)) { 948 new_size = offset + len; 949 error = inode_newsize_ok(inode, new_size); 950 if (error) 951 goto out_unlock; 952 } 953 954 if (mode & FALLOC_FL_ZERO_RANGE) 955 error = xfs_zero_file_space(ip, offset, len); 956 else 957 error = xfs_alloc_file_space(ip, offset, len, 958 XFS_BMAPI_PREALLOC); 959 if (error) 960 goto out_unlock; 961 } 962 963 if (file->f_flags & O_DSYNC) 964 flags |= XFS_PREALLOC_SYNC; 965 966 error = xfs_update_prealloc_flags(ip, flags); 967 if (error) 968 goto out_unlock; 969 970 /* Change file size if needed */ 971 if (new_size) { 972 struct iattr iattr; 973 974 iattr.ia_valid = ATTR_SIZE; 975 iattr.ia_size = new_size; 976 error = xfs_setattr_size(ip, &iattr); 977 if (error) 978 goto out_unlock; 979 } 980 981 /* 982 * Perform hole insertion now that the file size has been 983 * updated so that if we crash during the operation we don't 984 * leave shifted extents past EOF and hence losing access to 985 * the data that is contained within them. 986 */ 987 if (do_file_insert) 988 error = xfs_insert_file_space(ip, offset, len); 989 990 out_unlock: 991 xfs_iunlock(ip, iolock); 992 return error; 993 } 994 995 996 STATIC int 997 xfs_file_open( 998 struct inode *inode, 999 struct file *file) 1000 { 1001 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 1002 return -EFBIG; 1003 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 1004 return -EIO; 1005 return 0; 1006 } 1007 1008 STATIC int 1009 xfs_dir_open( 1010 struct inode *inode, 1011 struct file *file) 1012 { 1013 struct xfs_inode *ip = XFS_I(inode); 1014 int mode; 1015 int error; 1016 1017 error = xfs_file_open(inode, file); 1018 if (error) 1019 return error; 1020 1021 /* 1022 * If there are any blocks, read-ahead block 0 as we're almost 1023 * certain to have the next operation be a read there. 1024 */ 1025 mode = xfs_ilock_data_map_shared(ip); 1026 if (ip->i_d.di_nextents > 0) 1027 xfs_dir3_data_readahead(ip, 0, -1); 1028 xfs_iunlock(ip, mode); 1029 return 0; 1030 } 1031 1032 STATIC int 1033 xfs_file_release( 1034 struct inode *inode, 1035 struct file *filp) 1036 { 1037 return xfs_release(XFS_I(inode)); 1038 } 1039 1040 STATIC int 1041 xfs_file_readdir( 1042 struct file *file, 1043 struct dir_context *ctx) 1044 { 1045 struct inode *inode = file_inode(file); 1046 xfs_inode_t *ip = XFS_I(inode); 1047 size_t bufsize; 1048 1049 /* 1050 * The Linux API doesn't pass down the total size of the buffer 1051 * we read into down to the filesystem. With the filldir concept 1052 * it's not needed for correct information, but the XFS dir2 leaf 1053 * code wants an estimate of the buffer size to calculate it's 1054 * readahead window and size the buffers used for mapping to 1055 * physical blocks. 1056 * 1057 * Try to give it an estimate that's good enough, maybe at some 1058 * point we can change the ->readdir prototype to include the 1059 * buffer size. For now we use the current glibc buffer size. 1060 */ 1061 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 1062 1063 return xfs_readdir(ip, ctx, bufsize); 1064 } 1065 1066 /* 1067 * This type is designed to indicate the type of offset we would like 1068 * to search from page cache for xfs_seek_hole_data(). 1069 */ 1070 enum { 1071 HOLE_OFF = 0, 1072 DATA_OFF, 1073 }; 1074 1075 /* 1076 * Lookup the desired type of offset from the given page. 1077 * 1078 * On success, return true and the offset argument will point to the 1079 * start of the region that was found. Otherwise this function will 1080 * return false and keep the offset argument unchanged. 1081 */ 1082 STATIC bool 1083 xfs_lookup_buffer_offset( 1084 struct page *page, 1085 loff_t *offset, 1086 unsigned int type) 1087 { 1088 loff_t lastoff = page_offset(page); 1089 bool found = false; 1090 struct buffer_head *bh, *head; 1091 1092 bh = head = page_buffers(page); 1093 do { 1094 /* 1095 * Unwritten extents that have data in the page 1096 * cache covering them can be identified by the 1097 * BH_Unwritten state flag. Pages with multiple 1098 * buffers might have a mix of holes, data and 1099 * unwritten extents - any buffer with valid 1100 * data in it should have BH_Uptodate flag set 1101 * on it. 1102 */ 1103 if (buffer_unwritten(bh) || 1104 buffer_uptodate(bh)) { 1105 if (type == DATA_OFF) 1106 found = true; 1107 } else { 1108 if (type == HOLE_OFF) 1109 found = true; 1110 } 1111 1112 if (found) { 1113 *offset = lastoff; 1114 break; 1115 } 1116 lastoff += bh->b_size; 1117 } while ((bh = bh->b_this_page) != head); 1118 1119 return found; 1120 } 1121 1122 /* 1123 * This routine is called to find out and return a data or hole offset 1124 * from the page cache for unwritten extents according to the desired 1125 * type for xfs_seek_hole_data(). 1126 * 1127 * The argument offset is used to tell where we start to search from the 1128 * page cache. Map is used to figure out the end points of the range to 1129 * lookup pages. 1130 * 1131 * Return true if the desired type of offset was found, and the argument 1132 * offset is filled with that address. Otherwise, return false and keep 1133 * offset unchanged. 1134 */ 1135 STATIC bool 1136 xfs_find_get_desired_pgoff( 1137 struct inode *inode, 1138 struct xfs_bmbt_irec *map, 1139 unsigned int type, 1140 loff_t *offset) 1141 { 1142 struct xfs_inode *ip = XFS_I(inode); 1143 struct xfs_mount *mp = ip->i_mount; 1144 struct pagevec pvec; 1145 pgoff_t index; 1146 pgoff_t end; 1147 loff_t endoff; 1148 loff_t startoff = *offset; 1149 loff_t lastoff = startoff; 1150 bool found = false; 1151 1152 pagevec_init(&pvec, 0); 1153 1154 index = startoff >> PAGE_SHIFT; 1155 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1156 end = endoff >> PAGE_SHIFT; 1157 do { 1158 int want; 1159 unsigned nr_pages; 1160 unsigned int i; 1161 1162 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1163 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1164 want); 1165 /* 1166 * No page mapped into given range. If we are searching holes 1167 * and if this is the first time we got into the loop, it means 1168 * that the given offset is landed in a hole, return it. 1169 * 1170 * If we have already stepped through some block buffers to find 1171 * holes but they all contains data. In this case, the last 1172 * offset is already updated and pointed to the end of the last 1173 * mapped page, if it does not reach the endpoint to search, 1174 * that means there should be a hole between them. 1175 */ 1176 if (nr_pages == 0) { 1177 /* Data search found nothing */ 1178 if (type == DATA_OFF) 1179 break; 1180 1181 ASSERT(type == HOLE_OFF); 1182 if (lastoff == startoff || lastoff < endoff) { 1183 found = true; 1184 *offset = lastoff; 1185 } 1186 break; 1187 } 1188 1189 /* 1190 * At lease we found one page. If this is the first time we 1191 * step into the loop, and if the first page index offset is 1192 * greater than the given search offset, a hole was found. 1193 */ 1194 if (type == HOLE_OFF && lastoff == startoff && 1195 lastoff < page_offset(pvec.pages[0])) { 1196 found = true; 1197 break; 1198 } 1199 1200 for (i = 0; i < nr_pages; i++) { 1201 struct page *page = pvec.pages[i]; 1202 loff_t b_offset; 1203 1204 /* 1205 * At this point, the page may be truncated or 1206 * invalidated (changing page->mapping to NULL), 1207 * or even swizzled back from swapper_space to tmpfs 1208 * file mapping. However, page->index will not change 1209 * because we have a reference on the page. 1210 * 1211 * Searching done if the page index is out of range. 1212 * If the current offset is not reaches the end of 1213 * the specified search range, there should be a hole 1214 * between them. 1215 */ 1216 if (page->index > end) { 1217 if (type == HOLE_OFF && lastoff < endoff) { 1218 *offset = lastoff; 1219 found = true; 1220 } 1221 goto out; 1222 } 1223 1224 lock_page(page); 1225 /* 1226 * Page truncated or invalidated(page->mapping == NULL). 1227 * We can freely skip it and proceed to check the next 1228 * page. 1229 */ 1230 if (unlikely(page->mapping != inode->i_mapping)) { 1231 unlock_page(page); 1232 continue; 1233 } 1234 1235 if (!page_has_buffers(page)) { 1236 unlock_page(page); 1237 continue; 1238 } 1239 1240 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1241 if (found) { 1242 /* 1243 * The found offset may be less than the start 1244 * point to search if this is the first time to 1245 * come here. 1246 */ 1247 *offset = max_t(loff_t, startoff, b_offset); 1248 unlock_page(page); 1249 goto out; 1250 } 1251 1252 /* 1253 * We either searching data but nothing was found, or 1254 * searching hole but found a data buffer. In either 1255 * case, probably the next page contains the desired 1256 * things, update the last offset to it so. 1257 */ 1258 lastoff = page_offset(page) + PAGE_SIZE; 1259 unlock_page(page); 1260 } 1261 1262 /* 1263 * The number of returned pages less than our desired, search 1264 * done. In this case, nothing was found for searching data, 1265 * but we found a hole behind the last offset. 1266 */ 1267 if (nr_pages < want) { 1268 if (type == HOLE_OFF) { 1269 *offset = lastoff; 1270 found = true; 1271 } 1272 break; 1273 } 1274 1275 index = pvec.pages[i - 1]->index + 1; 1276 pagevec_release(&pvec); 1277 } while (index <= end); 1278 1279 out: 1280 pagevec_release(&pvec); 1281 return found; 1282 } 1283 1284 /* 1285 * caller must lock inode with xfs_ilock_data_map_shared, 1286 * can we craft an appropriate ASSERT? 1287 * 1288 * end is because the VFS-level lseek interface is defined such that any 1289 * offset past i_size shall return -ENXIO, but we use this for quota code 1290 * which does not maintain i_size, and we want to SEEK_DATA past i_size. 1291 */ 1292 loff_t 1293 __xfs_seek_hole_data( 1294 struct inode *inode, 1295 loff_t start, 1296 loff_t end, 1297 int whence) 1298 { 1299 struct xfs_inode *ip = XFS_I(inode); 1300 struct xfs_mount *mp = ip->i_mount; 1301 loff_t uninitialized_var(offset); 1302 xfs_fileoff_t fsbno; 1303 xfs_filblks_t lastbno; 1304 int error; 1305 1306 if (start >= end) { 1307 error = -ENXIO; 1308 goto out_error; 1309 } 1310 1311 /* 1312 * Try to read extents from the first block indicated 1313 * by fsbno to the end block of the file. 1314 */ 1315 fsbno = XFS_B_TO_FSBT(mp, start); 1316 lastbno = XFS_B_TO_FSB(mp, end); 1317 1318 for (;;) { 1319 struct xfs_bmbt_irec map[2]; 1320 int nmap = 2; 1321 unsigned int i; 1322 1323 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap, 1324 XFS_BMAPI_ENTIRE); 1325 if (error) 1326 goto out_error; 1327 1328 /* No extents at given offset, must be beyond EOF */ 1329 if (nmap == 0) { 1330 error = -ENXIO; 1331 goto out_error; 1332 } 1333 1334 for (i = 0; i < nmap; i++) { 1335 offset = max_t(loff_t, start, 1336 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1337 1338 /* Landed in the hole we wanted? */ 1339 if (whence == SEEK_HOLE && 1340 map[i].br_startblock == HOLESTARTBLOCK) 1341 goto out; 1342 1343 /* Landed in the data extent we wanted? */ 1344 if (whence == SEEK_DATA && 1345 (map[i].br_startblock == DELAYSTARTBLOCK || 1346 (map[i].br_state == XFS_EXT_NORM && 1347 !isnullstartblock(map[i].br_startblock)))) 1348 goto out; 1349 1350 /* 1351 * Landed in an unwritten extent, try to search 1352 * for hole or data from page cache. 1353 */ 1354 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1355 if (xfs_find_get_desired_pgoff(inode, &map[i], 1356 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF, 1357 &offset)) 1358 goto out; 1359 } 1360 } 1361 1362 /* 1363 * We only received one extent out of the two requested. This 1364 * means we've hit EOF and didn't find what we are looking for. 1365 */ 1366 if (nmap == 1) { 1367 /* 1368 * If we were looking for a hole, set offset to 1369 * the end of the file (i.e., there is an implicit 1370 * hole at the end of any file). 1371 */ 1372 if (whence == SEEK_HOLE) { 1373 offset = end; 1374 break; 1375 } 1376 /* 1377 * If we were looking for data, it's nowhere to be found 1378 */ 1379 ASSERT(whence == SEEK_DATA); 1380 error = -ENXIO; 1381 goto out_error; 1382 } 1383 1384 ASSERT(i > 1); 1385 1386 /* 1387 * Nothing was found, proceed to the next round of search 1388 * if the next reading offset is not at or beyond EOF. 1389 */ 1390 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1391 start = XFS_FSB_TO_B(mp, fsbno); 1392 if (start >= end) { 1393 if (whence == SEEK_HOLE) { 1394 offset = end; 1395 break; 1396 } 1397 ASSERT(whence == SEEK_DATA); 1398 error = -ENXIO; 1399 goto out_error; 1400 } 1401 } 1402 1403 out: 1404 /* 1405 * If at this point we have found the hole we wanted, the returned 1406 * offset may be bigger than the file size as it may be aligned to 1407 * page boundary for unwritten extents. We need to deal with this 1408 * situation in particular. 1409 */ 1410 if (whence == SEEK_HOLE) 1411 offset = min_t(loff_t, offset, end); 1412 1413 return offset; 1414 1415 out_error: 1416 return error; 1417 } 1418 1419 STATIC loff_t 1420 xfs_seek_hole_data( 1421 struct file *file, 1422 loff_t start, 1423 int whence) 1424 { 1425 struct inode *inode = file->f_mapping->host; 1426 struct xfs_inode *ip = XFS_I(inode); 1427 struct xfs_mount *mp = ip->i_mount; 1428 uint lock; 1429 loff_t offset, end; 1430 int error = 0; 1431 1432 if (XFS_FORCED_SHUTDOWN(mp)) 1433 return -EIO; 1434 1435 lock = xfs_ilock_data_map_shared(ip); 1436 1437 end = i_size_read(inode); 1438 offset = __xfs_seek_hole_data(inode, start, end, whence); 1439 if (offset < 0) { 1440 error = offset; 1441 goto out_unlock; 1442 } 1443 1444 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1445 1446 out_unlock: 1447 xfs_iunlock(ip, lock); 1448 1449 if (error) 1450 return error; 1451 return offset; 1452 } 1453 1454 STATIC loff_t 1455 xfs_file_llseek( 1456 struct file *file, 1457 loff_t offset, 1458 int whence) 1459 { 1460 switch (whence) { 1461 case SEEK_END: 1462 case SEEK_CUR: 1463 case SEEK_SET: 1464 return generic_file_llseek(file, offset, whence); 1465 case SEEK_HOLE: 1466 case SEEK_DATA: 1467 return xfs_seek_hole_data(file, offset, whence); 1468 default: 1469 return -EINVAL; 1470 } 1471 } 1472 1473 /* 1474 * Locking for serialisation of IO during page faults. This results in a lock 1475 * ordering of: 1476 * 1477 * mmap_sem (MM) 1478 * sb_start_pagefault(vfs, freeze) 1479 * i_mmaplock (XFS - truncate serialisation) 1480 * page_lock (MM) 1481 * i_lock (XFS - extent map serialisation) 1482 */ 1483 1484 /* 1485 * mmap()d file has taken write protection fault and is being made writable. We 1486 * can set the page state up correctly for a writable page, which means we can 1487 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent 1488 * mapping. 1489 */ 1490 STATIC int 1491 xfs_filemap_page_mkwrite( 1492 struct vm_area_struct *vma, 1493 struct vm_fault *vmf) 1494 { 1495 struct inode *inode = file_inode(vma->vm_file); 1496 int ret; 1497 1498 trace_xfs_filemap_page_mkwrite(XFS_I(inode)); 1499 1500 sb_start_pagefault(inode->i_sb); 1501 file_update_time(vma->vm_file); 1502 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1503 1504 if (IS_DAX(inode)) { 1505 ret = dax_mkwrite(vma, vmf, xfs_get_blocks_dax_fault); 1506 } else { 1507 ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops); 1508 ret = block_page_mkwrite_return(ret); 1509 } 1510 1511 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1512 sb_end_pagefault(inode->i_sb); 1513 1514 return ret; 1515 } 1516 1517 STATIC int 1518 xfs_filemap_fault( 1519 struct vm_area_struct *vma, 1520 struct vm_fault *vmf) 1521 { 1522 struct inode *inode = file_inode(vma->vm_file); 1523 int ret; 1524 1525 trace_xfs_filemap_fault(XFS_I(inode)); 1526 1527 /* DAX can shortcut the normal fault path on write faults! */ 1528 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode)) 1529 return xfs_filemap_page_mkwrite(vma, vmf); 1530 1531 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1532 if (IS_DAX(inode)) { 1533 /* 1534 * we do not want to trigger unwritten extent conversion on read 1535 * faults - that is unnecessary overhead and would also require 1536 * changes to xfs_get_blocks_direct() to map unwritten extent 1537 * ioend for conversion on read-only mappings. 1538 */ 1539 ret = dax_fault(vma, vmf, xfs_get_blocks_dax_fault); 1540 } else 1541 ret = filemap_fault(vma, vmf); 1542 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1543 1544 return ret; 1545 } 1546 1547 /* 1548 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on 1549 * both read and write faults. Hence we need to handle both cases. There is no 1550 * ->pmd_mkwrite callout for huge pages, so we have a single function here to 1551 * handle both cases here. @flags carries the information on the type of fault 1552 * occuring. 1553 */ 1554 STATIC int 1555 xfs_filemap_pmd_fault( 1556 struct vm_area_struct *vma, 1557 unsigned long addr, 1558 pmd_t *pmd, 1559 unsigned int flags) 1560 { 1561 struct inode *inode = file_inode(vma->vm_file); 1562 struct xfs_inode *ip = XFS_I(inode); 1563 int ret; 1564 1565 if (!IS_DAX(inode)) 1566 return VM_FAULT_FALLBACK; 1567 1568 trace_xfs_filemap_pmd_fault(ip); 1569 1570 if (flags & FAULT_FLAG_WRITE) { 1571 sb_start_pagefault(inode->i_sb); 1572 file_update_time(vma->vm_file); 1573 } 1574 1575 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1576 ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault); 1577 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1578 1579 if (flags & FAULT_FLAG_WRITE) 1580 sb_end_pagefault(inode->i_sb); 1581 1582 return ret; 1583 } 1584 1585 /* 1586 * pfn_mkwrite was originally inteneded to ensure we capture time stamp 1587 * updates on write faults. In reality, it's need to serialise against 1588 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED 1589 * to ensure we serialise the fault barrier in place. 1590 */ 1591 static int 1592 xfs_filemap_pfn_mkwrite( 1593 struct vm_area_struct *vma, 1594 struct vm_fault *vmf) 1595 { 1596 1597 struct inode *inode = file_inode(vma->vm_file); 1598 struct xfs_inode *ip = XFS_I(inode); 1599 int ret = VM_FAULT_NOPAGE; 1600 loff_t size; 1601 1602 trace_xfs_filemap_pfn_mkwrite(ip); 1603 1604 sb_start_pagefault(inode->i_sb); 1605 file_update_time(vma->vm_file); 1606 1607 /* check if the faulting page hasn't raced with truncate */ 1608 xfs_ilock(ip, XFS_MMAPLOCK_SHARED); 1609 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1610 if (vmf->pgoff >= size) 1611 ret = VM_FAULT_SIGBUS; 1612 else if (IS_DAX(inode)) 1613 ret = dax_pfn_mkwrite(vma, vmf); 1614 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); 1615 sb_end_pagefault(inode->i_sb); 1616 return ret; 1617 1618 } 1619 1620 static const struct vm_operations_struct xfs_file_vm_ops = { 1621 .fault = xfs_filemap_fault, 1622 .pmd_fault = xfs_filemap_pmd_fault, 1623 .map_pages = filemap_map_pages, 1624 .page_mkwrite = xfs_filemap_page_mkwrite, 1625 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1626 }; 1627 1628 STATIC int 1629 xfs_file_mmap( 1630 struct file *filp, 1631 struct vm_area_struct *vma) 1632 { 1633 file_accessed(filp); 1634 vma->vm_ops = &xfs_file_vm_ops; 1635 if (IS_DAX(file_inode(filp))) 1636 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 1637 return 0; 1638 } 1639 1640 const struct file_operations xfs_file_operations = { 1641 .llseek = xfs_file_llseek, 1642 .read_iter = xfs_file_read_iter, 1643 .write_iter = xfs_file_write_iter, 1644 .splice_read = xfs_file_splice_read, 1645 .splice_write = iter_file_splice_write, 1646 .unlocked_ioctl = xfs_file_ioctl, 1647 #ifdef CONFIG_COMPAT 1648 .compat_ioctl = xfs_file_compat_ioctl, 1649 #endif 1650 .mmap = xfs_file_mmap, 1651 .open = xfs_file_open, 1652 .release = xfs_file_release, 1653 .fsync = xfs_file_fsync, 1654 .fallocate = xfs_file_fallocate, 1655 }; 1656 1657 const struct file_operations xfs_dir_file_operations = { 1658 .open = xfs_dir_open, 1659 .read = generic_read_dir, 1660 .iterate_shared = xfs_file_readdir, 1661 .llseek = generic_file_llseek, 1662 .unlocked_ioctl = xfs_file_ioctl, 1663 #ifdef CONFIG_COMPAT 1664 .compat_ioctl = xfs_file_compat_ioctl, 1665 #endif 1666 .fsync = xfs_dir_fsync, 1667 }; 1668