xref: /linux/fs/xfs/xfs_file.c (revision b58b13f156c00c2457035b7071eaaac105fe6836)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 
28 #include <linux/dax.h>
29 #include <linux/falloc.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mman.h>
32 #include <linux/fadvise.h>
33 #include <linux/mount.h>
34 
35 static const struct vm_operations_struct xfs_file_vm_ops;
36 
37 /*
38  * Decide if the given file range is aligned to the size of the fundamental
39  * allocation unit for the file.
40  */
41 static bool
42 xfs_is_falloc_aligned(
43 	struct xfs_inode	*ip,
44 	loff_t			pos,
45 	long long int		len)
46 {
47 	struct xfs_mount	*mp = ip->i_mount;
48 	uint64_t		mask;
49 
50 	if (XFS_IS_REALTIME_INODE(ip)) {
51 		if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
52 			u64	rextbytes;
53 			u32	mod;
54 
55 			rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
56 			div_u64_rem(pos, rextbytes, &mod);
57 			if (mod)
58 				return false;
59 			div_u64_rem(len, rextbytes, &mod);
60 			return mod == 0;
61 		}
62 		mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
63 	} else {
64 		mask = mp->m_sb.sb_blocksize - 1;
65 	}
66 
67 	return !((pos | len) & mask);
68 }
69 
70 /*
71  * Fsync operations on directories are much simpler than on regular files,
72  * as there is no file data to flush, and thus also no need for explicit
73  * cache flush operations, and there are no non-transaction metadata updates
74  * on directories either.
75  */
76 STATIC int
77 xfs_dir_fsync(
78 	struct file		*file,
79 	loff_t			start,
80 	loff_t			end,
81 	int			datasync)
82 {
83 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
84 
85 	trace_xfs_dir_fsync(ip);
86 	return xfs_log_force_inode(ip);
87 }
88 
89 static xfs_csn_t
90 xfs_fsync_seq(
91 	struct xfs_inode	*ip,
92 	bool			datasync)
93 {
94 	if (!xfs_ipincount(ip))
95 		return 0;
96 	if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
97 		return 0;
98 	return ip->i_itemp->ili_commit_seq;
99 }
100 
101 /*
102  * All metadata updates are logged, which means that we just have to flush the
103  * log up to the latest LSN that touched the inode.
104  *
105  * If we have concurrent fsync/fdatasync() calls, we need them to all block on
106  * the log force before we clear the ili_fsync_fields field. This ensures that
107  * we don't get a racing sync operation that does not wait for the metadata to
108  * hit the journal before returning.  If we race with clearing ili_fsync_fields,
109  * then all that will happen is the log force will do nothing as the lsn will
110  * already be on disk.  We can't race with setting ili_fsync_fields because that
111  * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
112  * shared until after the ili_fsync_fields is cleared.
113  */
114 static  int
115 xfs_fsync_flush_log(
116 	struct xfs_inode	*ip,
117 	bool			datasync,
118 	int			*log_flushed)
119 {
120 	int			error = 0;
121 	xfs_csn_t		seq;
122 
123 	xfs_ilock(ip, XFS_ILOCK_SHARED);
124 	seq = xfs_fsync_seq(ip, datasync);
125 	if (seq) {
126 		error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
127 					  log_flushed);
128 
129 		spin_lock(&ip->i_itemp->ili_lock);
130 		ip->i_itemp->ili_fsync_fields = 0;
131 		spin_unlock(&ip->i_itemp->ili_lock);
132 	}
133 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
134 	return error;
135 }
136 
137 STATIC int
138 xfs_file_fsync(
139 	struct file		*file,
140 	loff_t			start,
141 	loff_t			end,
142 	int			datasync)
143 {
144 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
145 	struct xfs_mount	*mp = ip->i_mount;
146 	int			error, err2;
147 	int			log_flushed = 0;
148 
149 	trace_xfs_file_fsync(ip);
150 
151 	error = file_write_and_wait_range(file, start, end);
152 	if (error)
153 		return error;
154 
155 	if (xfs_is_shutdown(mp))
156 		return -EIO;
157 
158 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
159 
160 	/*
161 	 * If we have an RT and/or log subvolume we need to make sure to flush
162 	 * the write cache the device used for file data first.  This is to
163 	 * ensure newly written file data make it to disk before logging the new
164 	 * inode size in case of an extending write.
165 	 */
166 	if (XFS_IS_REALTIME_INODE(ip))
167 		error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
168 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
169 		error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
170 
171 	/*
172 	 * Any inode that has dirty modifications in the log is pinned.  The
173 	 * racy check here for a pinned inode will not catch modifications
174 	 * that happen concurrently to the fsync call, but fsync semantics
175 	 * only require to sync previously completed I/O.
176 	 */
177 	if (xfs_ipincount(ip)) {
178 		err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed);
179 		if (err2 && !error)
180 			error = err2;
181 	}
182 
183 	/*
184 	 * If we only have a single device, and the log force about was
185 	 * a no-op we might have to flush the data device cache here.
186 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
187 	 * an already allocated file and thus do not have any metadata to
188 	 * commit.
189 	 */
190 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
191 	    mp->m_logdev_targp == mp->m_ddev_targp) {
192 		err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
193 		if (err2 && !error)
194 			error = err2;
195 	}
196 
197 	return error;
198 }
199 
200 static int
201 xfs_ilock_iocb(
202 	struct kiocb		*iocb,
203 	unsigned int		lock_mode)
204 {
205 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
206 
207 	if (iocb->ki_flags & IOCB_NOWAIT) {
208 		if (!xfs_ilock_nowait(ip, lock_mode))
209 			return -EAGAIN;
210 	} else {
211 		xfs_ilock(ip, lock_mode);
212 	}
213 
214 	return 0;
215 }
216 
217 static int
218 xfs_ilock_iocb_for_write(
219 	struct kiocb		*iocb,
220 	unsigned int		*lock_mode)
221 {
222 	ssize_t			ret;
223 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
224 
225 	ret = xfs_ilock_iocb(iocb, *lock_mode);
226 	if (ret)
227 		return ret;
228 
229 	if (*lock_mode == XFS_IOLOCK_EXCL)
230 		return 0;
231 	if (!xfs_iflags_test(ip, XFS_IREMAPPING))
232 		return 0;
233 
234 	xfs_iunlock(ip, *lock_mode);
235 	*lock_mode = XFS_IOLOCK_EXCL;
236 	return xfs_ilock_iocb(iocb, *lock_mode);
237 }
238 
239 static unsigned int
240 xfs_ilock_for_write_fault(
241 	struct xfs_inode	*ip)
242 {
243 	/* get a shared lock if no remapping in progress */
244 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
245 	if (!xfs_iflags_test(ip, XFS_IREMAPPING))
246 		return XFS_MMAPLOCK_SHARED;
247 
248 	/* wait for remapping to complete */
249 	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
250 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
251 	return XFS_MMAPLOCK_EXCL;
252 }
253 
254 STATIC ssize_t
255 xfs_file_dio_read(
256 	struct kiocb		*iocb,
257 	struct iov_iter		*to)
258 {
259 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
260 	ssize_t			ret;
261 
262 	trace_xfs_file_direct_read(iocb, to);
263 
264 	if (!iov_iter_count(to))
265 		return 0; /* skip atime */
266 
267 	file_accessed(iocb->ki_filp);
268 
269 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
270 	if (ret)
271 		return ret;
272 	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0);
273 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
274 
275 	return ret;
276 }
277 
278 static noinline ssize_t
279 xfs_file_dax_read(
280 	struct kiocb		*iocb,
281 	struct iov_iter		*to)
282 {
283 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
284 	ssize_t			ret = 0;
285 
286 	trace_xfs_file_dax_read(iocb, to);
287 
288 	if (!iov_iter_count(to))
289 		return 0; /* skip atime */
290 
291 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
292 	if (ret)
293 		return ret;
294 	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
295 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
296 
297 	file_accessed(iocb->ki_filp);
298 	return ret;
299 }
300 
301 STATIC ssize_t
302 xfs_file_buffered_read(
303 	struct kiocb		*iocb,
304 	struct iov_iter		*to)
305 {
306 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
307 	ssize_t			ret;
308 
309 	trace_xfs_file_buffered_read(iocb, to);
310 
311 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
312 	if (ret)
313 		return ret;
314 	ret = generic_file_read_iter(iocb, to);
315 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
316 
317 	return ret;
318 }
319 
320 STATIC ssize_t
321 xfs_file_read_iter(
322 	struct kiocb		*iocb,
323 	struct iov_iter		*to)
324 {
325 	struct inode		*inode = file_inode(iocb->ki_filp);
326 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
327 	ssize_t			ret = 0;
328 
329 	XFS_STATS_INC(mp, xs_read_calls);
330 
331 	if (xfs_is_shutdown(mp))
332 		return -EIO;
333 
334 	if (IS_DAX(inode))
335 		ret = xfs_file_dax_read(iocb, to);
336 	else if (iocb->ki_flags & IOCB_DIRECT)
337 		ret = xfs_file_dio_read(iocb, to);
338 	else
339 		ret = xfs_file_buffered_read(iocb, to);
340 
341 	if (ret > 0)
342 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
343 	return ret;
344 }
345 
346 STATIC ssize_t
347 xfs_file_splice_read(
348 	struct file		*in,
349 	loff_t			*ppos,
350 	struct pipe_inode_info	*pipe,
351 	size_t			len,
352 	unsigned int		flags)
353 {
354 	struct inode		*inode = file_inode(in);
355 	struct xfs_inode	*ip = XFS_I(inode);
356 	struct xfs_mount	*mp = ip->i_mount;
357 	ssize_t			ret = 0;
358 
359 	XFS_STATS_INC(mp, xs_read_calls);
360 
361 	if (xfs_is_shutdown(mp))
362 		return -EIO;
363 
364 	trace_xfs_file_splice_read(ip, *ppos, len);
365 
366 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
367 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
368 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
369 	if (ret > 0)
370 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
371 	return ret;
372 }
373 
374 /*
375  * Common pre-write limit and setup checks.
376  *
377  * Called with the iolocked held either shared and exclusive according to
378  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
379  * if called for a direct write beyond i_size.
380  */
381 STATIC ssize_t
382 xfs_file_write_checks(
383 	struct kiocb		*iocb,
384 	struct iov_iter		*from,
385 	unsigned int		*iolock)
386 {
387 	struct file		*file = iocb->ki_filp;
388 	struct inode		*inode = file->f_mapping->host;
389 	struct xfs_inode	*ip = XFS_I(inode);
390 	ssize_t			error = 0;
391 	size_t			count = iov_iter_count(from);
392 	bool			drained_dio = false;
393 	loff_t			isize;
394 
395 restart:
396 	error = generic_write_checks(iocb, from);
397 	if (error <= 0)
398 		return error;
399 
400 	if (iocb->ki_flags & IOCB_NOWAIT) {
401 		error = break_layout(inode, false);
402 		if (error == -EWOULDBLOCK)
403 			error = -EAGAIN;
404 	} else {
405 		error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
406 	}
407 
408 	if (error)
409 		return error;
410 
411 	/*
412 	 * For changing security info in file_remove_privs() we need i_rwsem
413 	 * exclusively.
414 	 */
415 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
416 		xfs_iunlock(ip, *iolock);
417 		*iolock = XFS_IOLOCK_EXCL;
418 		error = xfs_ilock_iocb(iocb, *iolock);
419 		if (error) {
420 			*iolock = 0;
421 			return error;
422 		}
423 		goto restart;
424 	}
425 
426 	/*
427 	 * If the offset is beyond the size of the file, we need to zero any
428 	 * blocks that fall between the existing EOF and the start of this
429 	 * write.  If zeroing is needed and we are currently holding the iolock
430 	 * shared, we need to update it to exclusive which implies having to
431 	 * redo all checks before.
432 	 *
433 	 * We need to serialise against EOF updates that occur in IO completions
434 	 * here. We want to make sure that nobody is changing the size while we
435 	 * do this check until we have placed an IO barrier (i.e.  hold the
436 	 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.  The
437 	 * spinlock effectively forms a memory barrier once we have the
438 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
439 	 * hence be able to correctly determine if we need to run zeroing.
440 	 *
441 	 * We can do an unlocked check here safely as IO completion can only
442 	 * extend EOF. Truncate is locked out at this point, so the EOF can
443 	 * not move backwards, only forwards. Hence we only need to take the
444 	 * slow path and spin locks when we are at or beyond the current EOF.
445 	 */
446 	if (iocb->ki_pos <= i_size_read(inode))
447 		goto out;
448 
449 	spin_lock(&ip->i_flags_lock);
450 	isize = i_size_read(inode);
451 	if (iocb->ki_pos > isize) {
452 		spin_unlock(&ip->i_flags_lock);
453 
454 		if (iocb->ki_flags & IOCB_NOWAIT)
455 			return -EAGAIN;
456 
457 		if (!drained_dio) {
458 			if (*iolock == XFS_IOLOCK_SHARED) {
459 				xfs_iunlock(ip, *iolock);
460 				*iolock = XFS_IOLOCK_EXCL;
461 				xfs_ilock(ip, *iolock);
462 				iov_iter_reexpand(from, count);
463 			}
464 			/*
465 			 * We now have an IO submission barrier in place, but
466 			 * AIO can do EOF updates during IO completion and hence
467 			 * we now need to wait for all of them to drain. Non-AIO
468 			 * DIO will have drained before we are given the
469 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
470 			 * no-op.
471 			 */
472 			inode_dio_wait(inode);
473 			drained_dio = true;
474 			goto restart;
475 		}
476 
477 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
478 		error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL);
479 		if (error)
480 			return error;
481 	} else
482 		spin_unlock(&ip->i_flags_lock);
483 
484 out:
485 	return kiocb_modified(iocb);
486 }
487 
488 static int
489 xfs_dio_write_end_io(
490 	struct kiocb		*iocb,
491 	ssize_t			size,
492 	int			error,
493 	unsigned		flags)
494 {
495 	struct inode		*inode = file_inode(iocb->ki_filp);
496 	struct xfs_inode	*ip = XFS_I(inode);
497 	loff_t			offset = iocb->ki_pos;
498 	unsigned int		nofs_flag;
499 
500 	trace_xfs_end_io_direct_write(ip, offset, size);
501 
502 	if (xfs_is_shutdown(ip->i_mount))
503 		return -EIO;
504 
505 	if (error)
506 		return error;
507 	if (!size)
508 		return 0;
509 
510 	/*
511 	 * Capture amount written on completion as we can't reliably account
512 	 * for it on submission.
513 	 */
514 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
515 
516 	/*
517 	 * We can allocate memory here while doing writeback on behalf of
518 	 * memory reclaim.  To avoid memory allocation deadlocks set the
519 	 * task-wide nofs context for the following operations.
520 	 */
521 	nofs_flag = memalloc_nofs_save();
522 
523 	if (flags & IOMAP_DIO_COW) {
524 		error = xfs_reflink_end_cow(ip, offset, size);
525 		if (error)
526 			goto out;
527 	}
528 
529 	/*
530 	 * Unwritten conversion updates the in-core isize after extent
531 	 * conversion but before updating the on-disk size. Updating isize any
532 	 * earlier allows a racing dio read to find unwritten extents before
533 	 * they are converted.
534 	 */
535 	if (flags & IOMAP_DIO_UNWRITTEN) {
536 		error = xfs_iomap_write_unwritten(ip, offset, size, true);
537 		goto out;
538 	}
539 
540 	/*
541 	 * We need to update the in-core inode size here so that we don't end up
542 	 * with the on-disk inode size being outside the in-core inode size. We
543 	 * have no other method of updating EOF for AIO, so always do it here
544 	 * if necessary.
545 	 *
546 	 * We need to lock the test/set EOF update as we can be racing with
547 	 * other IO completions here to update the EOF. Failing to serialise
548 	 * here can result in EOF moving backwards and Bad Things Happen when
549 	 * that occurs.
550 	 *
551 	 * As IO completion only ever extends EOF, we can do an unlocked check
552 	 * here to avoid taking the spinlock. If we land within the current EOF,
553 	 * then we do not need to do an extending update at all, and we don't
554 	 * need to take the lock to check this. If we race with an update moving
555 	 * EOF, then we'll either still be beyond EOF and need to take the lock,
556 	 * or we'll be within EOF and we don't need to take it at all.
557 	 */
558 	if (offset + size <= i_size_read(inode))
559 		goto out;
560 
561 	spin_lock(&ip->i_flags_lock);
562 	if (offset + size > i_size_read(inode)) {
563 		i_size_write(inode, offset + size);
564 		spin_unlock(&ip->i_flags_lock);
565 		error = xfs_setfilesize(ip, offset, size);
566 	} else {
567 		spin_unlock(&ip->i_flags_lock);
568 	}
569 
570 out:
571 	memalloc_nofs_restore(nofs_flag);
572 	return error;
573 }
574 
575 static const struct iomap_dio_ops xfs_dio_write_ops = {
576 	.end_io		= xfs_dio_write_end_io,
577 };
578 
579 /*
580  * Handle block aligned direct I/O writes
581  */
582 static noinline ssize_t
583 xfs_file_dio_write_aligned(
584 	struct xfs_inode	*ip,
585 	struct kiocb		*iocb,
586 	struct iov_iter		*from)
587 {
588 	unsigned int		iolock = XFS_IOLOCK_SHARED;
589 	ssize_t			ret;
590 
591 	ret = xfs_ilock_iocb_for_write(iocb, &iolock);
592 	if (ret)
593 		return ret;
594 	ret = xfs_file_write_checks(iocb, from, &iolock);
595 	if (ret)
596 		goto out_unlock;
597 
598 	/*
599 	 * We don't need to hold the IOLOCK exclusively across the IO, so demote
600 	 * the iolock back to shared if we had to take the exclusive lock in
601 	 * xfs_file_write_checks() for other reasons.
602 	 */
603 	if (iolock == XFS_IOLOCK_EXCL) {
604 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
605 		iolock = XFS_IOLOCK_SHARED;
606 	}
607 	trace_xfs_file_direct_write(iocb, from);
608 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
609 			   &xfs_dio_write_ops, 0, NULL, 0);
610 out_unlock:
611 	if (iolock)
612 		xfs_iunlock(ip, iolock);
613 	return ret;
614 }
615 
616 /*
617  * Handle block unaligned direct I/O writes
618  *
619  * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
620  * them to be done in parallel with reads and other direct I/O writes.  However,
621  * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
622  * to do sub-block zeroing and that requires serialisation against other direct
623  * I/O to the same block.  In this case we need to serialise the submission of
624  * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
625  * In the case where sub-block zeroing is not required, we can do concurrent
626  * sub-block dios to the same block successfully.
627  *
628  * Optimistically submit the I/O using the shared lock first, but use the
629  * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
630  * if block allocation or partial block zeroing would be required.  In that case
631  * we try again with the exclusive lock.
632  */
633 static noinline ssize_t
634 xfs_file_dio_write_unaligned(
635 	struct xfs_inode	*ip,
636 	struct kiocb		*iocb,
637 	struct iov_iter		*from)
638 {
639 	size_t			isize = i_size_read(VFS_I(ip));
640 	size_t			count = iov_iter_count(from);
641 	unsigned int		iolock = XFS_IOLOCK_SHARED;
642 	unsigned int		flags = IOMAP_DIO_OVERWRITE_ONLY;
643 	ssize_t			ret;
644 
645 	/*
646 	 * Extending writes need exclusivity because of the sub-block zeroing
647 	 * that the DIO code always does for partial tail blocks beyond EOF, so
648 	 * don't even bother trying the fast path in this case.
649 	 */
650 	if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
651 		if (iocb->ki_flags & IOCB_NOWAIT)
652 			return -EAGAIN;
653 retry_exclusive:
654 		iolock = XFS_IOLOCK_EXCL;
655 		flags = IOMAP_DIO_FORCE_WAIT;
656 	}
657 
658 	ret = xfs_ilock_iocb_for_write(iocb, &iolock);
659 	if (ret)
660 		return ret;
661 
662 	/*
663 	 * We can't properly handle unaligned direct I/O to reflink files yet,
664 	 * as we can't unshare a partial block.
665 	 */
666 	if (xfs_is_cow_inode(ip)) {
667 		trace_xfs_reflink_bounce_dio_write(iocb, from);
668 		ret = -ENOTBLK;
669 		goto out_unlock;
670 	}
671 
672 	ret = xfs_file_write_checks(iocb, from, &iolock);
673 	if (ret)
674 		goto out_unlock;
675 
676 	/*
677 	 * If we are doing exclusive unaligned I/O, this must be the only I/O
678 	 * in-flight.  Otherwise we risk data corruption due to unwritten extent
679 	 * conversions from the AIO end_io handler.  Wait for all other I/O to
680 	 * drain first.
681 	 */
682 	if (flags & IOMAP_DIO_FORCE_WAIT)
683 		inode_dio_wait(VFS_I(ip));
684 
685 	trace_xfs_file_direct_write(iocb, from);
686 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
687 			   &xfs_dio_write_ops, flags, NULL, 0);
688 
689 	/*
690 	 * Retry unaligned I/O with exclusive blocking semantics if the DIO
691 	 * layer rejected it for mapping or locking reasons. If we are doing
692 	 * nonblocking user I/O, propagate the error.
693 	 */
694 	if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
695 		ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
696 		xfs_iunlock(ip, iolock);
697 		goto retry_exclusive;
698 	}
699 
700 out_unlock:
701 	if (iolock)
702 		xfs_iunlock(ip, iolock);
703 	return ret;
704 }
705 
706 static ssize_t
707 xfs_file_dio_write(
708 	struct kiocb		*iocb,
709 	struct iov_iter		*from)
710 {
711 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
712 	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
713 	size_t			count = iov_iter_count(from);
714 
715 	/* direct I/O must be aligned to device logical sector size */
716 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
717 		return -EINVAL;
718 	if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
719 		return xfs_file_dio_write_unaligned(ip, iocb, from);
720 	return xfs_file_dio_write_aligned(ip, iocb, from);
721 }
722 
723 static noinline ssize_t
724 xfs_file_dax_write(
725 	struct kiocb		*iocb,
726 	struct iov_iter		*from)
727 {
728 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
729 	struct xfs_inode	*ip = XFS_I(inode);
730 	unsigned int		iolock = XFS_IOLOCK_EXCL;
731 	ssize_t			ret, error = 0;
732 	loff_t			pos;
733 
734 	ret = xfs_ilock_iocb(iocb, iolock);
735 	if (ret)
736 		return ret;
737 	ret = xfs_file_write_checks(iocb, from, &iolock);
738 	if (ret)
739 		goto out;
740 
741 	pos = iocb->ki_pos;
742 
743 	trace_xfs_file_dax_write(iocb, from);
744 	ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops);
745 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
746 		i_size_write(inode, iocb->ki_pos);
747 		error = xfs_setfilesize(ip, pos, ret);
748 	}
749 out:
750 	if (iolock)
751 		xfs_iunlock(ip, iolock);
752 	if (error)
753 		return error;
754 
755 	if (ret > 0) {
756 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
757 
758 		/* Handle various SYNC-type writes */
759 		ret = generic_write_sync(iocb, ret);
760 	}
761 	return ret;
762 }
763 
764 STATIC ssize_t
765 xfs_file_buffered_write(
766 	struct kiocb		*iocb,
767 	struct iov_iter		*from)
768 {
769 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
770 	struct xfs_inode	*ip = XFS_I(inode);
771 	ssize_t			ret;
772 	bool			cleared_space = false;
773 	unsigned int		iolock;
774 
775 write_retry:
776 	iolock = XFS_IOLOCK_EXCL;
777 	ret = xfs_ilock_iocb(iocb, iolock);
778 	if (ret)
779 		return ret;
780 
781 	ret = xfs_file_write_checks(iocb, from, &iolock);
782 	if (ret)
783 		goto out;
784 
785 	trace_xfs_file_buffered_write(iocb, from);
786 	ret = iomap_file_buffered_write(iocb, from,
787 			&xfs_buffered_write_iomap_ops);
788 
789 	/*
790 	 * If we hit a space limit, try to free up some lingering preallocated
791 	 * space before returning an error. In the case of ENOSPC, first try to
792 	 * write back all dirty inodes to free up some of the excess reserved
793 	 * metadata space. This reduces the chances that the eofblocks scan
794 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
795 	 * also behaves as a filter to prevent too many eofblocks scans from
796 	 * running at the same time.  Use a synchronous scan to increase the
797 	 * effectiveness of the scan.
798 	 */
799 	if (ret == -EDQUOT && !cleared_space) {
800 		xfs_iunlock(ip, iolock);
801 		xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
802 		cleared_space = true;
803 		goto write_retry;
804 	} else if (ret == -ENOSPC && !cleared_space) {
805 		struct xfs_icwalk	icw = {0};
806 
807 		cleared_space = true;
808 		xfs_flush_inodes(ip->i_mount);
809 
810 		xfs_iunlock(ip, iolock);
811 		icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
812 		xfs_blockgc_free_space(ip->i_mount, &icw);
813 		goto write_retry;
814 	}
815 
816 out:
817 	if (iolock)
818 		xfs_iunlock(ip, iolock);
819 
820 	if (ret > 0) {
821 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
822 		/* Handle various SYNC-type writes */
823 		ret = generic_write_sync(iocb, ret);
824 	}
825 	return ret;
826 }
827 
828 STATIC ssize_t
829 xfs_file_write_iter(
830 	struct kiocb		*iocb,
831 	struct iov_iter		*from)
832 {
833 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
834 	struct xfs_inode	*ip = XFS_I(inode);
835 	ssize_t			ret;
836 	size_t			ocount = iov_iter_count(from);
837 
838 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
839 
840 	if (ocount == 0)
841 		return 0;
842 
843 	if (xfs_is_shutdown(ip->i_mount))
844 		return -EIO;
845 
846 	if (IS_DAX(inode))
847 		return xfs_file_dax_write(iocb, from);
848 
849 	if (iocb->ki_flags & IOCB_DIRECT) {
850 		/*
851 		 * Allow a directio write to fall back to a buffered
852 		 * write *only* in the case that we're doing a reflink
853 		 * CoW.  In all other directio scenarios we do not
854 		 * allow an operation to fall back to buffered mode.
855 		 */
856 		ret = xfs_file_dio_write(iocb, from);
857 		if (ret != -ENOTBLK)
858 			return ret;
859 	}
860 
861 	return xfs_file_buffered_write(iocb, from);
862 }
863 
864 static void
865 xfs_wait_dax_page(
866 	struct inode		*inode)
867 {
868 	struct xfs_inode        *ip = XFS_I(inode);
869 
870 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
871 	schedule();
872 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
873 }
874 
875 int
876 xfs_break_dax_layouts(
877 	struct inode		*inode,
878 	bool			*retry)
879 {
880 	struct page		*page;
881 
882 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
883 
884 	page = dax_layout_busy_page(inode->i_mapping);
885 	if (!page)
886 		return 0;
887 
888 	*retry = true;
889 	return ___wait_var_event(&page->_refcount,
890 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
891 			0, 0, xfs_wait_dax_page(inode));
892 }
893 
894 int
895 xfs_break_layouts(
896 	struct inode		*inode,
897 	uint			*iolock,
898 	enum layout_break_reason reason)
899 {
900 	bool			retry;
901 	int			error;
902 
903 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
904 
905 	do {
906 		retry = false;
907 		switch (reason) {
908 		case BREAK_UNMAP:
909 			error = xfs_break_dax_layouts(inode, &retry);
910 			if (error || retry)
911 				break;
912 			fallthrough;
913 		case BREAK_WRITE:
914 			error = xfs_break_leased_layouts(inode, iolock, &retry);
915 			break;
916 		default:
917 			WARN_ON_ONCE(1);
918 			error = -EINVAL;
919 		}
920 	} while (error == 0 && retry);
921 
922 	return error;
923 }
924 
925 /* Does this file, inode, or mount want synchronous writes? */
926 static inline bool xfs_file_sync_writes(struct file *filp)
927 {
928 	struct xfs_inode	*ip = XFS_I(file_inode(filp));
929 
930 	if (xfs_has_wsync(ip->i_mount))
931 		return true;
932 	if (filp->f_flags & (__O_SYNC | O_DSYNC))
933 		return true;
934 	if (IS_SYNC(file_inode(filp)))
935 		return true;
936 
937 	return false;
938 }
939 
940 #define	XFS_FALLOC_FL_SUPPORTED						\
941 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
942 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
943 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
944 
945 STATIC long
946 xfs_file_fallocate(
947 	struct file		*file,
948 	int			mode,
949 	loff_t			offset,
950 	loff_t			len)
951 {
952 	struct inode		*inode = file_inode(file);
953 	struct xfs_inode	*ip = XFS_I(inode);
954 	long			error;
955 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
956 	loff_t			new_size = 0;
957 	bool			do_file_insert = false;
958 
959 	if (!S_ISREG(inode->i_mode))
960 		return -EINVAL;
961 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
962 		return -EOPNOTSUPP;
963 
964 	xfs_ilock(ip, iolock);
965 	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
966 	if (error)
967 		goto out_unlock;
968 
969 	/*
970 	 * Must wait for all AIO to complete before we continue as AIO can
971 	 * change the file size on completion without holding any locks we
972 	 * currently hold. We must do this first because AIO can update both
973 	 * the on disk and in memory inode sizes, and the operations that follow
974 	 * require the in-memory size to be fully up-to-date.
975 	 */
976 	inode_dio_wait(inode);
977 
978 	/*
979 	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
980 	 * the cached range over the first operation we are about to run.
981 	 *
982 	 * We care about zero and collapse here because they both run a hole
983 	 * punch over the range first. Because that can zero data, and the range
984 	 * of invalidation for the shift operations is much larger, we still do
985 	 * the required flush for collapse in xfs_prepare_shift().
986 	 *
987 	 * Insert has the same range requirements as collapse, and we extend the
988 	 * file first which can zero data. Hence insert has the same
989 	 * flush/invalidate requirements as collapse and so they are both
990 	 * handled at the right time by xfs_prepare_shift().
991 	 */
992 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
993 		    FALLOC_FL_COLLAPSE_RANGE)) {
994 		error = xfs_flush_unmap_range(ip, offset, len);
995 		if (error)
996 			goto out_unlock;
997 	}
998 
999 	error = file_modified(file);
1000 	if (error)
1001 		goto out_unlock;
1002 
1003 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1004 		error = xfs_free_file_space(ip, offset, len);
1005 		if (error)
1006 			goto out_unlock;
1007 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1008 		if (!xfs_is_falloc_aligned(ip, offset, len)) {
1009 			error = -EINVAL;
1010 			goto out_unlock;
1011 		}
1012 
1013 		/*
1014 		 * There is no need to overlap collapse range with EOF,
1015 		 * in which case it is effectively a truncate operation
1016 		 */
1017 		if (offset + len >= i_size_read(inode)) {
1018 			error = -EINVAL;
1019 			goto out_unlock;
1020 		}
1021 
1022 		new_size = i_size_read(inode) - len;
1023 
1024 		error = xfs_collapse_file_space(ip, offset, len);
1025 		if (error)
1026 			goto out_unlock;
1027 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1028 		loff_t		isize = i_size_read(inode);
1029 
1030 		if (!xfs_is_falloc_aligned(ip, offset, len)) {
1031 			error = -EINVAL;
1032 			goto out_unlock;
1033 		}
1034 
1035 		/*
1036 		 * New inode size must not exceed ->s_maxbytes, accounting for
1037 		 * possible signed overflow.
1038 		 */
1039 		if (inode->i_sb->s_maxbytes - isize < len) {
1040 			error = -EFBIG;
1041 			goto out_unlock;
1042 		}
1043 		new_size = isize + len;
1044 
1045 		/* Offset should be less than i_size */
1046 		if (offset >= isize) {
1047 			error = -EINVAL;
1048 			goto out_unlock;
1049 		}
1050 		do_file_insert = true;
1051 	} else {
1052 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1053 		    offset + len > i_size_read(inode)) {
1054 			new_size = offset + len;
1055 			error = inode_newsize_ok(inode, new_size);
1056 			if (error)
1057 				goto out_unlock;
1058 		}
1059 
1060 		if (mode & FALLOC_FL_ZERO_RANGE) {
1061 			/*
1062 			 * Punch a hole and prealloc the range.  We use a hole
1063 			 * punch rather than unwritten extent conversion for two
1064 			 * reasons:
1065 			 *
1066 			 *   1.) Hole punch handles partial block zeroing for us.
1067 			 *   2.) If prealloc returns ENOSPC, the file range is
1068 			 *       still zero-valued by virtue of the hole punch.
1069 			 */
1070 			unsigned int blksize = i_blocksize(inode);
1071 
1072 			trace_xfs_zero_file_space(ip);
1073 
1074 			error = xfs_free_file_space(ip, offset, len);
1075 			if (error)
1076 				goto out_unlock;
1077 
1078 			len = round_up(offset + len, blksize) -
1079 			      round_down(offset, blksize);
1080 			offset = round_down(offset, blksize);
1081 		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1082 			error = xfs_reflink_unshare(ip, offset, len);
1083 			if (error)
1084 				goto out_unlock;
1085 		} else {
1086 			/*
1087 			 * If always_cow mode we can't use preallocations and
1088 			 * thus should not create them.
1089 			 */
1090 			if (xfs_is_always_cow_inode(ip)) {
1091 				error = -EOPNOTSUPP;
1092 				goto out_unlock;
1093 			}
1094 		}
1095 
1096 		if (!xfs_is_always_cow_inode(ip)) {
1097 			error = xfs_alloc_file_space(ip, offset, len);
1098 			if (error)
1099 				goto out_unlock;
1100 		}
1101 	}
1102 
1103 	/* Change file size if needed */
1104 	if (new_size) {
1105 		struct iattr iattr;
1106 
1107 		iattr.ia_valid = ATTR_SIZE;
1108 		iattr.ia_size = new_size;
1109 		error = xfs_vn_setattr_size(file_mnt_idmap(file),
1110 					    file_dentry(file), &iattr);
1111 		if (error)
1112 			goto out_unlock;
1113 	}
1114 
1115 	/*
1116 	 * Perform hole insertion now that the file size has been
1117 	 * updated so that if we crash during the operation we don't
1118 	 * leave shifted extents past EOF and hence losing access to
1119 	 * the data that is contained within them.
1120 	 */
1121 	if (do_file_insert) {
1122 		error = xfs_insert_file_space(ip, offset, len);
1123 		if (error)
1124 			goto out_unlock;
1125 	}
1126 
1127 	if (xfs_file_sync_writes(file))
1128 		error = xfs_log_force_inode(ip);
1129 
1130 out_unlock:
1131 	xfs_iunlock(ip, iolock);
1132 	return error;
1133 }
1134 
1135 STATIC int
1136 xfs_file_fadvise(
1137 	struct file	*file,
1138 	loff_t		start,
1139 	loff_t		end,
1140 	int		advice)
1141 {
1142 	struct xfs_inode *ip = XFS_I(file_inode(file));
1143 	int ret;
1144 	int lockflags = 0;
1145 
1146 	/*
1147 	 * Operations creating pages in page cache need protection from hole
1148 	 * punching and similar ops
1149 	 */
1150 	if (advice == POSIX_FADV_WILLNEED) {
1151 		lockflags = XFS_IOLOCK_SHARED;
1152 		xfs_ilock(ip, lockflags);
1153 	}
1154 	ret = generic_fadvise(file, start, end, advice);
1155 	if (lockflags)
1156 		xfs_iunlock(ip, lockflags);
1157 	return ret;
1158 }
1159 
1160 STATIC loff_t
1161 xfs_file_remap_range(
1162 	struct file		*file_in,
1163 	loff_t			pos_in,
1164 	struct file		*file_out,
1165 	loff_t			pos_out,
1166 	loff_t			len,
1167 	unsigned int		remap_flags)
1168 {
1169 	struct inode		*inode_in = file_inode(file_in);
1170 	struct xfs_inode	*src = XFS_I(inode_in);
1171 	struct inode		*inode_out = file_inode(file_out);
1172 	struct xfs_inode	*dest = XFS_I(inode_out);
1173 	struct xfs_mount	*mp = src->i_mount;
1174 	loff_t			remapped = 0;
1175 	xfs_extlen_t		cowextsize;
1176 	int			ret;
1177 
1178 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1179 		return -EINVAL;
1180 
1181 	if (!xfs_has_reflink(mp))
1182 		return -EOPNOTSUPP;
1183 
1184 	if (xfs_is_shutdown(mp))
1185 		return -EIO;
1186 
1187 	/* Prepare and then clone file data. */
1188 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1189 			&len, remap_flags);
1190 	if (ret || len == 0)
1191 		return ret;
1192 
1193 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1194 
1195 	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1196 			&remapped);
1197 	if (ret)
1198 		goto out_unlock;
1199 
1200 	/*
1201 	 * Carry the cowextsize hint from src to dest if we're sharing the
1202 	 * entire source file to the entire destination file, the source file
1203 	 * has a cowextsize hint, and the destination file does not.
1204 	 */
1205 	cowextsize = 0;
1206 	if (pos_in == 0 && len == i_size_read(inode_in) &&
1207 	    (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1208 	    pos_out == 0 && len >= i_size_read(inode_out) &&
1209 	    !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1210 		cowextsize = src->i_cowextsize;
1211 
1212 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1213 			remap_flags);
1214 	if (ret)
1215 		goto out_unlock;
1216 
1217 	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1218 		xfs_log_force_inode(dest);
1219 out_unlock:
1220 	xfs_iunlock2_remapping(src, dest);
1221 	if (ret)
1222 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1223 	return remapped > 0 ? remapped : ret;
1224 }
1225 
1226 STATIC int
1227 xfs_file_open(
1228 	struct inode	*inode,
1229 	struct file	*file)
1230 {
1231 	if (xfs_is_shutdown(XFS_M(inode->i_sb)))
1232 		return -EIO;
1233 	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
1234 			FMODE_DIO_PARALLEL_WRITE | FMODE_CAN_ODIRECT;
1235 	return generic_file_open(inode, file);
1236 }
1237 
1238 STATIC int
1239 xfs_dir_open(
1240 	struct inode	*inode,
1241 	struct file	*file)
1242 {
1243 	struct xfs_inode *ip = XFS_I(inode);
1244 	unsigned int	mode;
1245 	int		error;
1246 
1247 	error = xfs_file_open(inode, file);
1248 	if (error)
1249 		return error;
1250 
1251 	/*
1252 	 * If there are any blocks, read-ahead block 0 as we're almost
1253 	 * certain to have the next operation be a read there.
1254 	 */
1255 	mode = xfs_ilock_data_map_shared(ip);
1256 	if (ip->i_df.if_nextents > 0)
1257 		error = xfs_dir3_data_readahead(ip, 0, 0);
1258 	xfs_iunlock(ip, mode);
1259 	return error;
1260 }
1261 
1262 STATIC int
1263 xfs_file_release(
1264 	struct inode	*inode,
1265 	struct file	*filp)
1266 {
1267 	return xfs_release(XFS_I(inode));
1268 }
1269 
1270 STATIC int
1271 xfs_file_readdir(
1272 	struct file	*file,
1273 	struct dir_context *ctx)
1274 {
1275 	struct inode	*inode = file_inode(file);
1276 	xfs_inode_t	*ip = XFS_I(inode);
1277 	size_t		bufsize;
1278 
1279 	/*
1280 	 * The Linux API doesn't pass down the total size of the buffer
1281 	 * we read into down to the filesystem.  With the filldir concept
1282 	 * it's not needed for correct information, but the XFS dir2 leaf
1283 	 * code wants an estimate of the buffer size to calculate it's
1284 	 * readahead window and size the buffers used for mapping to
1285 	 * physical blocks.
1286 	 *
1287 	 * Try to give it an estimate that's good enough, maybe at some
1288 	 * point we can change the ->readdir prototype to include the
1289 	 * buffer size.  For now we use the current glibc buffer size.
1290 	 */
1291 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1292 
1293 	return xfs_readdir(NULL, ip, ctx, bufsize);
1294 }
1295 
1296 STATIC loff_t
1297 xfs_file_llseek(
1298 	struct file	*file,
1299 	loff_t		offset,
1300 	int		whence)
1301 {
1302 	struct inode		*inode = file->f_mapping->host;
1303 
1304 	if (xfs_is_shutdown(XFS_I(inode)->i_mount))
1305 		return -EIO;
1306 
1307 	switch (whence) {
1308 	default:
1309 		return generic_file_llseek(file, offset, whence);
1310 	case SEEK_HOLE:
1311 		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1312 		break;
1313 	case SEEK_DATA:
1314 		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1315 		break;
1316 	}
1317 
1318 	if (offset < 0)
1319 		return offset;
1320 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1321 }
1322 
1323 #ifdef CONFIG_FS_DAX
1324 static inline vm_fault_t
1325 xfs_dax_fault(
1326 	struct vm_fault		*vmf,
1327 	unsigned int		order,
1328 	bool			write_fault,
1329 	pfn_t			*pfn)
1330 {
1331 	return dax_iomap_fault(vmf, order, pfn, NULL,
1332 			(write_fault && !vmf->cow_page) ?
1333 				&xfs_dax_write_iomap_ops :
1334 				&xfs_read_iomap_ops);
1335 }
1336 #else
1337 static inline vm_fault_t
1338 xfs_dax_fault(
1339 	struct vm_fault		*vmf,
1340 	unsigned int		order,
1341 	bool			write_fault,
1342 	pfn_t			*pfn)
1343 {
1344 	ASSERT(0);
1345 	return VM_FAULT_SIGBUS;
1346 }
1347 #endif
1348 
1349 /*
1350  * Locking for serialisation of IO during page faults. This results in a lock
1351  * ordering of:
1352  *
1353  * mmap_lock (MM)
1354  *   sb_start_pagefault(vfs, freeze)
1355  *     invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
1356  *       page_lock (MM)
1357  *         i_lock (XFS - extent map serialisation)
1358  */
1359 static vm_fault_t
1360 __xfs_filemap_fault(
1361 	struct vm_fault		*vmf,
1362 	unsigned int		order,
1363 	bool			write_fault)
1364 {
1365 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1366 	struct xfs_inode	*ip = XFS_I(inode);
1367 	vm_fault_t		ret;
1368 	unsigned int		lock_mode = 0;
1369 
1370 	trace_xfs_filemap_fault(ip, order, write_fault);
1371 
1372 	if (write_fault) {
1373 		sb_start_pagefault(inode->i_sb);
1374 		file_update_time(vmf->vma->vm_file);
1375 	}
1376 
1377 	if (IS_DAX(inode) || write_fault)
1378 		lock_mode = xfs_ilock_for_write_fault(XFS_I(inode));
1379 
1380 	if (IS_DAX(inode)) {
1381 		pfn_t pfn;
1382 
1383 		ret = xfs_dax_fault(vmf, order, write_fault, &pfn);
1384 		if (ret & VM_FAULT_NEEDDSYNC)
1385 			ret = dax_finish_sync_fault(vmf, order, pfn);
1386 	} else if (write_fault) {
1387 		ret = iomap_page_mkwrite(vmf, &xfs_page_mkwrite_iomap_ops);
1388 	} else {
1389 		ret = filemap_fault(vmf);
1390 	}
1391 
1392 	if (lock_mode)
1393 		xfs_iunlock(XFS_I(inode), lock_mode);
1394 
1395 	if (write_fault)
1396 		sb_end_pagefault(inode->i_sb);
1397 	return ret;
1398 }
1399 
1400 static inline bool
1401 xfs_is_write_fault(
1402 	struct vm_fault		*vmf)
1403 {
1404 	return (vmf->flags & FAULT_FLAG_WRITE) &&
1405 	       (vmf->vma->vm_flags & VM_SHARED);
1406 }
1407 
1408 static vm_fault_t
1409 xfs_filemap_fault(
1410 	struct vm_fault		*vmf)
1411 {
1412 	/* DAX can shortcut the normal fault path on write faults! */
1413 	return __xfs_filemap_fault(vmf, 0,
1414 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1415 			xfs_is_write_fault(vmf));
1416 }
1417 
1418 static vm_fault_t
1419 xfs_filemap_huge_fault(
1420 	struct vm_fault		*vmf,
1421 	unsigned int		order)
1422 {
1423 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1424 		return VM_FAULT_FALLBACK;
1425 
1426 	/* DAX can shortcut the normal fault path on write faults! */
1427 	return __xfs_filemap_fault(vmf, order,
1428 			xfs_is_write_fault(vmf));
1429 }
1430 
1431 static vm_fault_t
1432 xfs_filemap_page_mkwrite(
1433 	struct vm_fault		*vmf)
1434 {
1435 	return __xfs_filemap_fault(vmf, 0, true);
1436 }
1437 
1438 /*
1439  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1440  * on write faults. In reality, it needs to serialise against truncate and
1441  * prepare memory for writing so handle is as standard write fault.
1442  */
1443 static vm_fault_t
1444 xfs_filemap_pfn_mkwrite(
1445 	struct vm_fault		*vmf)
1446 {
1447 
1448 	return __xfs_filemap_fault(vmf, 0, true);
1449 }
1450 
1451 static const struct vm_operations_struct xfs_file_vm_ops = {
1452 	.fault		= xfs_filemap_fault,
1453 	.huge_fault	= xfs_filemap_huge_fault,
1454 	.map_pages	= filemap_map_pages,
1455 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1456 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1457 };
1458 
1459 STATIC int
1460 xfs_file_mmap(
1461 	struct file		*file,
1462 	struct vm_area_struct	*vma)
1463 {
1464 	struct inode		*inode = file_inode(file);
1465 	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1466 
1467 	/*
1468 	 * We don't support synchronous mappings for non-DAX files and
1469 	 * for DAX files if underneath dax_device is not synchronous.
1470 	 */
1471 	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1472 		return -EOPNOTSUPP;
1473 
1474 	file_accessed(file);
1475 	vma->vm_ops = &xfs_file_vm_ops;
1476 	if (IS_DAX(inode))
1477 		vm_flags_set(vma, VM_HUGEPAGE);
1478 	return 0;
1479 }
1480 
1481 const struct file_operations xfs_file_operations = {
1482 	.llseek		= xfs_file_llseek,
1483 	.read_iter	= xfs_file_read_iter,
1484 	.write_iter	= xfs_file_write_iter,
1485 	.splice_read	= xfs_file_splice_read,
1486 	.splice_write	= iter_file_splice_write,
1487 	.iopoll		= iocb_bio_iopoll,
1488 	.unlocked_ioctl	= xfs_file_ioctl,
1489 #ifdef CONFIG_COMPAT
1490 	.compat_ioctl	= xfs_file_compat_ioctl,
1491 #endif
1492 	.mmap		= xfs_file_mmap,
1493 	.mmap_supported_flags = MAP_SYNC,
1494 	.open		= xfs_file_open,
1495 	.release	= xfs_file_release,
1496 	.fsync		= xfs_file_fsync,
1497 	.get_unmapped_area = thp_get_unmapped_area,
1498 	.fallocate	= xfs_file_fallocate,
1499 	.fadvise	= xfs_file_fadvise,
1500 	.remap_file_range = xfs_file_remap_range,
1501 };
1502 
1503 const struct file_operations xfs_dir_file_operations = {
1504 	.open		= xfs_dir_open,
1505 	.read		= generic_read_dir,
1506 	.iterate_shared	= xfs_file_readdir,
1507 	.llseek		= generic_file_llseek,
1508 	.unlocked_ioctl	= xfs_file_ioctl,
1509 #ifdef CONFIG_COMPAT
1510 	.compat_ioctl	= xfs_file_compat_ioctl,
1511 #endif
1512 	.fsync		= xfs_dir_fsync,
1513 };
1514