xref: /linux/fs/xfs/xfs_file.c (revision 9d796e66230205cd3366f5660387bd9ecca9d336)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44 
45 static const struct vm_operations_struct xfs_file_vm_ops;
46 
47 /*
48  * Locking primitives for read and write IO paths to ensure we consistently use
49  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
50  */
51 static inline void
52 xfs_rw_ilock(
53 	struct xfs_inode	*ip,
54 	int			type)
55 {
56 	if (type & XFS_IOLOCK_EXCL)
57 		mutex_lock(&VFS_I(ip)->i_mutex);
58 	xfs_ilock(ip, type);
59 }
60 
61 static inline void
62 xfs_rw_iunlock(
63 	struct xfs_inode	*ip,
64 	int			type)
65 {
66 	xfs_iunlock(ip, type);
67 	if (type & XFS_IOLOCK_EXCL)
68 		mutex_unlock(&VFS_I(ip)->i_mutex);
69 }
70 
71 static inline void
72 xfs_rw_ilock_demote(
73 	struct xfs_inode	*ip,
74 	int			type)
75 {
76 	xfs_ilock_demote(ip, type);
77 	if (type & XFS_IOLOCK_EXCL)
78 		mutex_unlock(&VFS_I(ip)->i_mutex);
79 }
80 
81 /*
82  *	xfs_iozero
83  *
84  *	xfs_iozero clears the specified range of buffer supplied,
85  *	and marks all the affected blocks as valid and modified.  If
86  *	an affected block is not allocated, it will be allocated.  If
87  *	an affected block is not completely overwritten, and is not
88  *	valid before the operation, it will be read from disk before
89  *	being partially zeroed.
90  */
91 int
92 xfs_iozero(
93 	struct xfs_inode	*ip,	/* inode			*/
94 	loff_t			pos,	/* offset in file		*/
95 	size_t			count)	/* size of data to zero		*/
96 {
97 	struct page		*page;
98 	struct address_space	*mapping;
99 	int			status;
100 
101 	mapping = VFS_I(ip)->i_mapping;
102 	do {
103 		unsigned offset, bytes;
104 		void *fsdata;
105 
106 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
107 		bytes = PAGE_CACHE_SIZE - offset;
108 		if (bytes > count)
109 			bytes = count;
110 
111 		status = pagecache_write_begin(NULL, mapping, pos, bytes,
112 					AOP_FLAG_UNINTERRUPTIBLE,
113 					&page, &fsdata);
114 		if (status)
115 			break;
116 
117 		zero_user(page, offset, bytes);
118 
119 		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
120 					page, fsdata);
121 		WARN_ON(status <= 0); /* can't return less than zero! */
122 		pos += bytes;
123 		count -= bytes;
124 		status = 0;
125 	} while (count);
126 
127 	return (-status);
128 }
129 
130 int
131 xfs_update_prealloc_flags(
132 	struct xfs_inode	*ip,
133 	enum xfs_prealloc_flags	flags)
134 {
135 	struct xfs_trans	*tp;
136 	int			error;
137 
138 	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
139 	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
140 	if (error) {
141 		xfs_trans_cancel(tp, 0);
142 		return error;
143 	}
144 
145 	xfs_ilock(ip, XFS_ILOCK_EXCL);
146 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
147 
148 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
149 		ip->i_d.di_mode &= ~S_ISUID;
150 		if (ip->i_d.di_mode & S_IXGRP)
151 			ip->i_d.di_mode &= ~S_ISGID;
152 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
153 	}
154 
155 	if (flags & XFS_PREALLOC_SET)
156 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
157 	if (flags & XFS_PREALLOC_CLEAR)
158 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
159 
160 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
161 	if (flags & XFS_PREALLOC_SYNC)
162 		xfs_trans_set_sync(tp);
163 	return xfs_trans_commit(tp, 0);
164 }
165 
166 /*
167  * Fsync operations on directories are much simpler than on regular files,
168  * as there is no file data to flush, and thus also no need for explicit
169  * cache flush operations, and there are no non-transaction metadata updates
170  * on directories either.
171  */
172 STATIC int
173 xfs_dir_fsync(
174 	struct file		*file,
175 	loff_t			start,
176 	loff_t			end,
177 	int			datasync)
178 {
179 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
180 	struct xfs_mount	*mp = ip->i_mount;
181 	xfs_lsn_t		lsn = 0;
182 
183 	trace_xfs_dir_fsync(ip);
184 
185 	xfs_ilock(ip, XFS_ILOCK_SHARED);
186 	if (xfs_ipincount(ip))
187 		lsn = ip->i_itemp->ili_last_lsn;
188 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
189 
190 	if (!lsn)
191 		return 0;
192 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
193 }
194 
195 STATIC int
196 xfs_file_fsync(
197 	struct file		*file,
198 	loff_t			start,
199 	loff_t			end,
200 	int			datasync)
201 {
202 	struct inode		*inode = file->f_mapping->host;
203 	struct xfs_inode	*ip = XFS_I(inode);
204 	struct xfs_mount	*mp = ip->i_mount;
205 	int			error = 0;
206 	int			log_flushed = 0;
207 	xfs_lsn_t		lsn = 0;
208 
209 	trace_xfs_file_fsync(ip);
210 
211 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
212 	if (error)
213 		return error;
214 
215 	if (XFS_FORCED_SHUTDOWN(mp))
216 		return -EIO;
217 
218 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
219 
220 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
221 		/*
222 		 * If we have an RT and/or log subvolume we need to make sure
223 		 * to flush the write cache the device used for file data
224 		 * first.  This is to ensure newly written file data make
225 		 * it to disk before logging the new inode size in case of
226 		 * an extending write.
227 		 */
228 		if (XFS_IS_REALTIME_INODE(ip))
229 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
230 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
231 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
232 	}
233 
234 	/*
235 	 * All metadata updates are logged, which means that we just have
236 	 * to flush the log up to the latest LSN that touched the inode.
237 	 */
238 	xfs_ilock(ip, XFS_ILOCK_SHARED);
239 	if (xfs_ipincount(ip)) {
240 		if (!datasync ||
241 		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
242 			lsn = ip->i_itemp->ili_last_lsn;
243 	}
244 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
245 
246 	if (lsn)
247 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
248 
249 	/*
250 	 * If we only have a single device, and the log force about was
251 	 * a no-op we might have to flush the data device cache here.
252 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
253 	 * an already allocated file and thus do not have any metadata to
254 	 * commit.
255 	 */
256 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
257 	    mp->m_logdev_targp == mp->m_ddev_targp &&
258 	    !XFS_IS_REALTIME_INODE(ip) &&
259 	    !log_flushed)
260 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
261 
262 	return error;
263 }
264 
265 STATIC ssize_t
266 xfs_file_read_iter(
267 	struct kiocb		*iocb,
268 	struct iov_iter		*to)
269 {
270 	struct file		*file = iocb->ki_filp;
271 	struct inode		*inode = file->f_mapping->host;
272 	struct xfs_inode	*ip = XFS_I(inode);
273 	struct xfs_mount	*mp = ip->i_mount;
274 	size_t			size = iov_iter_count(to);
275 	ssize_t			ret = 0;
276 	int			ioflags = 0;
277 	xfs_fsize_t		n;
278 	loff_t			pos = iocb->ki_pos;
279 
280 	XFS_STATS_INC(xs_read_calls);
281 
282 	if (unlikely(file->f_flags & O_DIRECT))
283 		ioflags |= XFS_IO_ISDIRECT;
284 	if (file->f_mode & FMODE_NOCMTIME)
285 		ioflags |= XFS_IO_INVIS;
286 
287 	if (unlikely(ioflags & XFS_IO_ISDIRECT)) {
288 		xfs_buftarg_t	*target =
289 			XFS_IS_REALTIME_INODE(ip) ?
290 				mp->m_rtdev_targp : mp->m_ddev_targp;
291 		/* DIO must be aligned to device logical sector size */
292 		if ((pos | size) & target->bt_logical_sectormask) {
293 			if (pos == i_size_read(inode))
294 				return 0;
295 			return -EINVAL;
296 		}
297 	}
298 
299 	n = mp->m_super->s_maxbytes - pos;
300 	if (n <= 0 || size == 0)
301 		return 0;
302 
303 	if (n < size)
304 		size = n;
305 
306 	if (XFS_FORCED_SHUTDOWN(mp))
307 		return -EIO;
308 
309 	/*
310 	 * Locking is a bit tricky here. If we take an exclusive lock
311 	 * for direct IO, we effectively serialise all new concurrent
312 	 * read IO to this file and block it behind IO that is currently in
313 	 * progress because IO in progress holds the IO lock shared. We only
314 	 * need to hold the lock exclusive to blow away the page cache, so
315 	 * only take lock exclusively if the page cache needs invalidation.
316 	 * This allows the normal direct IO case of no page cache pages to
317 	 * proceeed concurrently without serialisation.
318 	 */
319 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
320 	if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
321 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
322 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
323 
324 		if (inode->i_mapping->nrpages) {
325 			ret = filemap_write_and_wait_range(
326 							VFS_I(ip)->i_mapping,
327 							pos, pos + size - 1);
328 			if (ret) {
329 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
330 				return ret;
331 			}
332 
333 			/*
334 			 * Invalidate whole pages. This can return an error if
335 			 * we fail to invalidate a page, but this should never
336 			 * happen on XFS. Warn if it does fail.
337 			 */
338 			ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
339 					pos >> PAGE_CACHE_SHIFT,
340 					(pos + size - 1) >> PAGE_CACHE_SHIFT);
341 			WARN_ON_ONCE(ret);
342 			ret = 0;
343 		}
344 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
345 	}
346 
347 	trace_xfs_file_read(ip, size, pos, ioflags);
348 
349 	ret = generic_file_read_iter(iocb, to);
350 	if (ret > 0)
351 		XFS_STATS_ADD(xs_read_bytes, ret);
352 
353 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
354 	return ret;
355 }
356 
357 STATIC ssize_t
358 xfs_file_splice_read(
359 	struct file		*infilp,
360 	loff_t			*ppos,
361 	struct pipe_inode_info	*pipe,
362 	size_t			count,
363 	unsigned int		flags)
364 {
365 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
366 	int			ioflags = 0;
367 	ssize_t			ret;
368 
369 	XFS_STATS_INC(xs_read_calls);
370 
371 	if (infilp->f_mode & FMODE_NOCMTIME)
372 		ioflags |= XFS_IO_INVIS;
373 
374 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
375 		return -EIO;
376 
377 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
378 
379 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
380 
381 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
382 	if (ret > 0)
383 		XFS_STATS_ADD(xs_read_bytes, ret);
384 
385 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
386 	return ret;
387 }
388 
389 /*
390  * This routine is called to handle zeroing any space in the last block of the
391  * file that is beyond the EOF.  We do this since the size is being increased
392  * without writing anything to that block and we don't want to read the
393  * garbage on the disk.
394  */
395 STATIC int				/* error (positive) */
396 xfs_zero_last_block(
397 	struct xfs_inode	*ip,
398 	xfs_fsize_t		offset,
399 	xfs_fsize_t		isize,
400 	bool			*did_zeroing)
401 {
402 	struct xfs_mount	*mp = ip->i_mount;
403 	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
404 	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
405 	int			zero_len;
406 	int			nimaps = 1;
407 	int			error = 0;
408 	struct xfs_bmbt_irec	imap;
409 
410 	xfs_ilock(ip, XFS_ILOCK_EXCL);
411 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
412 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
413 	if (error)
414 		return error;
415 
416 	ASSERT(nimaps > 0);
417 
418 	/*
419 	 * If the block underlying isize is just a hole, then there
420 	 * is nothing to zero.
421 	 */
422 	if (imap.br_startblock == HOLESTARTBLOCK)
423 		return 0;
424 
425 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
426 	if (isize + zero_len > offset)
427 		zero_len = offset - isize;
428 	*did_zeroing = true;
429 	return xfs_iozero(ip, isize, zero_len);
430 }
431 
432 /*
433  * Zero any on disk space between the current EOF and the new, larger EOF.
434  *
435  * This handles the normal case of zeroing the remainder of the last block in
436  * the file and the unusual case of zeroing blocks out beyond the size of the
437  * file.  This second case only happens with fixed size extents and when the
438  * system crashes before the inode size was updated but after blocks were
439  * allocated.
440  *
441  * Expects the iolock to be held exclusive, and will take the ilock internally.
442  */
443 int					/* error (positive) */
444 xfs_zero_eof(
445 	struct xfs_inode	*ip,
446 	xfs_off_t		offset,		/* starting I/O offset */
447 	xfs_fsize_t		isize,		/* current inode size */
448 	bool			*did_zeroing)
449 {
450 	struct xfs_mount	*mp = ip->i_mount;
451 	xfs_fileoff_t		start_zero_fsb;
452 	xfs_fileoff_t		end_zero_fsb;
453 	xfs_fileoff_t		zero_count_fsb;
454 	xfs_fileoff_t		last_fsb;
455 	xfs_fileoff_t		zero_off;
456 	xfs_fsize_t		zero_len;
457 	int			nimaps;
458 	int			error = 0;
459 	struct xfs_bmbt_irec	imap;
460 
461 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
462 	ASSERT(offset > isize);
463 
464 	/*
465 	 * First handle zeroing the block on which isize resides.
466 	 *
467 	 * We only zero a part of that block so it is handled specially.
468 	 */
469 	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
470 		error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
471 		if (error)
472 			return error;
473 	}
474 
475 	/*
476 	 * Calculate the range between the new size and the old where blocks
477 	 * needing to be zeroed may exist.
478 	 *
479 	 * To get the block where the last byte in the file currently resides,
480 	 * we need to subtract one from the size and truncate back to a block
481 	 * boundary.  We subtract 1 in case the size is exactly on a block
482 	 * boundary.
483 	 */
484 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
485 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
486 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
487 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
488 	if (last_fsb == end_zero_fsb) {
489 		/*
490 		 * The size was only incremented on its last block.
491 		 * We took care of that above, so just return.
492 		 */
493 		return 0;
494 	}
495 
496 	ASSERT(start_zero_fsb <= end_zero_fsb);
497 	while (start_zero_fsb <= end_zero_fsb) {
498 		nimaps = 1;
499 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
500 
501 		xfs_ilock(ip, XFS_ILOCK_EXCL);
502 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
503 					  &imap, &nimaps, 0);
504 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
505 		if (error)
506 			return error;
507 
508 		ASSERT(nimaps > 0);
509 
510 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
511 		    imap.br_startblock == HOLESTARTBLOCK) {
512 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
513 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
514 			continue;
515 		}
516 
517 		/*
518 		 * There are blocks we need to zero.
519 		 */
520 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
521 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
522 
523 		if ((zero_off + zero_len) > offset)
524 			zero_len = offset - zero_off;
525 
526 		error = xfs_iozero(ip, zero_off, zero_len);
527 		if (error)
528 			return error;
529 
530 		*did_zeroing = true;
531 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
532 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
533 	}
534 
535 	return 0;
536 }
537 
538 /*
539  * Common pre-write limit and setup checks.
540  *
541  * Called with the iolocked held either shared and exclusive according to
542  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
543  * if called for a direct write beyond i_size.
544  */
545 STATIC ssize_t
546 xfs_file_aio_write_checks(
547 	struct file		*file,
548 	loff_t			*pos,
549 	size_t			*count,
550 	int			*iolock)
551 {
552 	struct inode		*inode = file->f_mapping->host;
553 	struct xfs_inode	*ip = XFS_I(inode);
554 	int			error = 0;
555 
556 restart:
557 	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
558 	if (error)
559 		return error;
560 
561 	error = xfs_break_layouts(inode, iolock);
562 	if (error)
563 		return error;
564 
565 	/*
566 	 * If the offset is beyond the size of the file, we need to zero any
567 	 * blocks that fall between the existing EOF and the start of this
568 	 * write.  If zeroing is needed and we are currently holding the
569 	 * iolock shared, we need to update it to exclusive which implies
570 	 * having to redo all checks before.
571 	 */
572 	if (*pos > i_size_read(inode)) {
573 		bool	zero = false;
574 
575 		if (*iolock == XFS_IOLOCK_SHARED) {
576 			xfs_rw_iunlock(ip, *iolock);
577 			*iolock = XFS_IOLOCK_EXCL;
578 			xfs_rw_ilock(ip, *iolock);
579 			goto restart;
580 		}
581 		error = xfs_zero_eof(ip, *pos, i_size_read(inode), &zero);
582 		if (error)
583 			return error;
584 	}
585 
586 	/*
587 	 * Updating the timestamps will grab the ilock again from
588 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
589 	 * lock above.  Eventually we should look into a way to avoid
590 	 * the pointless lock roundtrip.
591 	 */
592 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
593 		error = file_update_time(file);
594 		if (error)
595 			return error;
596 	}
597 
598 	/*
599 	 * If we're writing the file then make sure to clear the setuid and
600 	 * setgid bits if the process is not being run by root.  This keeps
601 	 * people from modifying setuid and setgid binaries.
602 	 */
603 	return file_remove_suid(file);
604 }
605 
606 /*
607  * xfs_file_dio_aio_write - handle direct IO writes
608  *
609  * Lock the inode appropriately to prepare for and issue a direct IO write.
610  * By separating it from the buffered write path we remove all the tricky to
611  * follow locking changes and looping.
612  *
613  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
614  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
615  * pages are flushed out.
616  *
617  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
618  * allowing them to be done in parallel with reads and other direct IO writes.
619  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
620  * needs to do sub-block zeroing and that requires serialisation against other
621  * direct IOs to the same block. In this case we need to serialise the
622  * submission of the unaligned IOs so that we don't get racing block zeroing in
623  * the dio layer.  To avoid the problem with aio, we also need to wait for
624  * outstanding IOs to complete so that unwritten extent conversion is completed
625  * before we try to map the overlapping block. This is currently implemented by
626  * hitting it with a big hammer (i.e. inode_dio_wait()).
627  *
628  * Returns with locks held indicated by @iolock and errors indicated by
629  * negative return values.
630  */
631 STATIC ssize_t
632 xfs_file_dio_aio_write(
633 	struct kiocb		*iocb,
634 	struct iov_iter		*from)
635 {
636 	struct file		*file = iocb->ki_filp;
637 	struct address_space	*mapping = file->f_mapping;
638 	struct inode		*inode = mapping->host;
639 	struct xfs_inode	*ip = XFS_I(inode);
640 	struct xfs_mount	*mp = ip->i_mount;
641 	ssize_t			ret = 0;
642 	int			unaligned_io = 0;
643 	int			iolock;
644 	size_t			count = iov_iter_count(from);
645 	loff_t			pos = iocb->ki_pos;
646 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
647 					mp->m_rtdev_targp : mp->m_ddev_targp;
648 
649 	/* DIO must be aligned to device logical sector size */
650 	if ((pos | count) & target->bt_logical_sectormask)
651 		return -EINVAL;
652 
653 	/* "unaligned" here means not aligned to a filesystem block */
654 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
655 		unaligned_io = 1;
656 
657 	/*
658 	 * We don't need to take an exclusive lock unless there page cache needs
659 	 * to be invalidated or unaligned IO is being executed. We don't need to
660 	 * consider the EOF extension case here because
661 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
662 	 * EOF zeroing cases and fill out the new inode size as appropriate.
663 	 */
664 	if (unaligned_io || mapping->nrpages)
665 		iolock = XFS_IOLOCK_EXCL;
666 	else
667 		iolock = XFS_IOLOCK_SHARED;
668 	xfs_rw_ilock(ip, iolock);
669 
670 	/*
671 	 * Recheck if there are cached pages that need invalidate after we got
672 	 * the iolock to protect against other threads adding new pages while
673 	 * we were waiting for the iolock.
674 	 */
675 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
676 		xfs_rw_iunlock(ip, iolock);
677 		iolock = XFS_IOLOCK_EXCL;
678 		xfs_rw_ilock(ip, iolock);
679 	}
680 
681 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
682 	if (ret)
683 		goto out;
684 	iov_iter_truncate(from, count);
685 
686 	if (mapping->nrpages) {
687 		ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
688 						    pos, pos + count - 1);
689 		if (ret)
690 			goto out;
691 		/*
692 		 * Invalidate whole pages. This can return an error if
693 		 * we fail to invalidate a page, but this should never
694 		 * happen on XFS. Warn if it does fail.
695 		 */
696 		ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
697 					pos >> PAGE_CACHE_SHIFT,
698 					(pos + count - 1) >> PAGE_CACHE_SHIFT);
699 		WARN_ON_ONCE(ret);
700 		ret = 0;
701 	}
702 
703 	/*
704 	 * If we are doing unaligned IO, wait for all other IO to drain,
705 	 * otherwise demote the lock if we had to flush cached pages
706 	 */
707 	if (unaligned_io)
708 		inode_dio_wait(inode);
709 	else if (iolock == XFS_IOLOCK_EXCL) {
710 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
711 		iolock = XFS_IOLOCK_SHARED;
712 	}
713 
714 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
715 	ret = generic_file_direct_write(iocb, from, pos);
716 
717 out:
718 	xfs_rw_iunlock(ip, iolock);
719 
720 	/* No fallback to buffered IO on errors for XFS. */
721 	ASSERT(ret < 0 || ret == count);
722 	return ret;
723 }
724 
725 STATIC ssize_t
726 xfs_file_buffered_aio_write(
727 	struct kiocb		*iocb,
728 	struct iov_iter		*from)
729 {
730 	struct file		*file = iocb->ki_filp;
731 	struct address_space	*mapping = file->f_mapping;
732 	struct inode		*inode = mapping->host;
733 	struct xfs_inode	*ip = XFS_I(inode);
734 	ssize_t			ret;
735 	int			enospc = 0;
736 	int			iolock = XFS_IOLOCK_EXCL;
737 	loff_t			pos = iocb->ki_pos;
738 	size_t			count = iov_iter_count(from);
739 
740 	xfs_rw_ilock(ip, iolock);
741 
742 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
743 	if (ret)
744 		goto out;
745 
746 	iov_iter_truncate(from, count);
747 	/* We can write back this queue in page reclaim */
748 	current->backing_dev_info = inode_to_bdi(inode);
749 
750 write_retry:
751 	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
752 	ret = generic_perform_write(file, from, pos);
753 	if (likely(ret >= 0))
754 		iocb->ki_pos = pos + ret;
755 
756 	/*
757 	 * If we hit a space limit, try to free up some lingering preallocated
758 	 * space before returning an error. In the case of ENOSPC, first try to
759 	 * write back all dirty inodes to free up some of the excess reserved
760 	 * metadata space. This reduces the chances that the eofblocks scan
761 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
762 	 * also behaves as a filter to prevent too many eofblocks scans from
763 	 * running at the same time.
764 	 */
765 	if (ret == -EDQUOT && !enospc) {
766 		enospc = xfs_inode_free_quota_eofblocks(ip);
767 		if (enospc)
768 			goto write_retry;
769 	} else if (ret == -ENOSPC && !enospc) {
770 		struct xfs_eofblocks eofb = {0};
771 
772 		enospc = 1;
773 		xfs_flush_inodes(ip->i_mount);
774 		eofb.eof_scan_owner = ip->i_ino; /* for locking */
775 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
776 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
777 		goto write_retry;
778 	}
779 
780 	current->backing_dev_info = NULL;
781 out:
782 	xfs_rw_iunlock(ip, iolock);
783 	return ret;
784 }
785 
786 STATIC ssize_t
787 xfs_file_write_iter(
788 	struct kiocb		*iocb,
789 	struct iov_iter		*from)
790 {
791 	struct file		*file = iocb->ki_filp;
792 	struct address_space	*mapping = file->f_mapping;
793 	struct inode		*inode = mapping->host;
794 	struct xfs_inode	*ip = XFS_I(inode);
795 	ssize_t			ret;
796 	size_t			ocount = iov_iter_count(from);
797 
798 	XFS_STATS_INC(xs_write_calls);
799 
800 	if (ocount == 0)
801 		return 0;
802 
803 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
804 		return -EIO;
805 
806 	if (unlikely(file->f_flags & O_DIRECT))
807 		ret = xfs_file_dio_aio_write(iocb, from);
808 	else
809 		ret = xfs_file_buffered_aio_write(iocb, from);
810 
811 	if (ret > 0) {
812 		ssize_t err;
813 
814 		XFS_STATS_ADD(xs_write_bytes, ret);
815 
816 		/* Handle various SYNC-type writes */
817 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
818 		if (err < 0)
819 			ret = err;
820 	}
821 	return ret;
822 }
823 
824 STATIC long
825 xfs_file_fallocate(
826 	struct file		*file,
827 	int			mode,
828 	loff_t			offset,
829 	loff_t			len)
830 {
831 	struct inode		*inode = file_inode(file);
832 	struct xfs_inode	*ip = XFS_I(inode);
833 	long			error;
834 	enum xfs_prealloc_flags	flags = 0;
835 	uint			iolock = XFS_IOLOCK_EXCL;
836 	loff_t			new_size = 0;
837 
838 	if (!S_ISREG(inode->i_mode))
839 		return -EINVAL;
840 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
841 		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
842 		return -EOPNOTSUPP;
843 
844 	xfs_ilock(ip, iolock);
845 	error = xfs_break_layouts(inode, &iolock);
846 	if (error)
847 		goto out_unlock;
848 
849 	if (mode & FALLOC_FL_PUNCH_HOLE) {
850 		error = xfs_free_file_space(ip, offset, len);
851 		if (error)
852 			goto out_unlock;
853 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
854 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
855 
856 		if (offset & blksize_mask || len & blksize_mask) {
857 			error = -EINVAL;
858 			goto out_unlock;
859 		}
860 
861 		/*
862 		 * There is no need to overlap collapse range with EOF,
863 		 * in which case it is effectively a truncate operation
864 		 */
865 		if (offset + len >= i_size_read(inode)) {
866 			error = -EINVAL;
867 			goto out_unlock;
868 		}
869 
870 		new_size = i_size_read(inode) - len;
871 
872 		error = xfs_collapse_file_space(ip, offset, len);
873 		if (error)
874 			goto out_unlock;
875 	} else {
876 		flags |= XFS_PREALLOC_SET;
877 
878 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
879 		    offset + len > i_size_read(inode)) {
880 			new_size = offset + len;
881 			error = inode_newsize_ok(inode, new_size);
882 			if (error)
883 				goto out_unlock;
884 		}
885 
886 		if (mode & FALLOC_FL_ZERO_RANGE)
887 			error = xfs_zero_file_space(ip, offset, len);
888 		else
889 			error = xfs_alloc_file_space(ip, offset, len,
890 						     XFS_BMAPI_PREALLOC);
891 		if (error)
892 			goto out_unlock;
893 	}
894 
895 	if (file->f_flags & O_DSYNC)
896 		flags |= XFS_PREALLOC_SYNC;
897 
898 	error = xfs_update_prealloc_flags(ip, flags);
899 	if (error)
900 		goto out_unlock;
901 
902 	/* Change file size if needed */
903 	if (new_size) {
904 		struct iattr iattr;
905 
906 		iattr.ia_valid = ATTR_SIZE;
907 		iattr.ia_size = new_size;
908 		error = xfs_setattr_size(ip, &iattr);
909 	}
910 
911 out_unlock:
912 	xfs_iunlock(ip, iolock);
913 	return error;
914 }
915 
916 
917 STATIC int
918 xfs_file_open(
919 	struct inode	*inode,
920 	struct file	*file)
921 {
922 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
923 		return -EFBIG;
924 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
925 		return -EIO;
926 	return 0;
927 }
928 
929 STATIC int
930 xfs_dir_open(
931 	struct inode	*inode,
932 	struct file	*file)
933 {
934 	struct xfs_inode *ip = XFS_I(inode);
935 	int		mode;
936 	int		error;
937 
938 	error = xfs_file_open(inode, file);
939 	if (error)
940 		return error;
941 
942 	/*
943 	 * If there are any blocks, read-ahead block 0 as we're almost
944 	 * certain to have the next operation be a read there.
945 	 */
946 	mode = xfs_ilock_data_map_shared(ip);
947 	if (ip->i_d.di_nextents > 0)
948 		xfs_dir3_data_readahead(ip, 0, -1);
949 	xfs_iunlock(ip, mode);
950 	return 0;
951 }
952 
953 STATIC int
954 xfs_file_release(
955 	struct inode	*inode,
956 	struct file	*filp)
957 {
958 	return xfs_release(XFS_I(inode));
959 }
960 
961 STATIC int
962 xfs_file_readdir(
963 	struct file	*file,
964 	struct dir_context *ctx)
965 {
966 	struct inode	*inode = file_inode(file);
967 	xfs_inode_t	*ip = XFS_I(inode);
968 	size_t		bufsize;
969 
970 	/*
971 	 * The Linux API doesn't pass down the total size of the buffer
972 	 * we read into down to the filesystem.  With the filldir concept
973 	 * it's not needed for correct information, but the XFS dir2 leaf
974 	 * code wants an estimate of the buffer size to calculate it's
975 	 * readahead window and size the buffers used for mapping to
976 	 * physical blocks.
977 	 *
978 	 * Try to give it an estimate that's good enough, maybe at some
979 	 * point we can change the ->readdir prototype to include the
980 	 * buffer size.  For now we use the current glibc buffer size.
981 	 */
982 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
983 
984 	return xfs_readdir(ip, ctx, bufsize);
985 }
986 
987 STATIC int
988 xfs_file_mmap(
989 	struct file	*filp,
990 	struct vm_area_struct *vma)
991 {
992 	vma->vm_ops = &xfs_file_vm_ops;
993 
994 	file_accessed(filp);
995 	return 0;
996 }
997 
998 /*
999  * mmap()d file has taken write protection fault and is being made
1000  * writable. We can set the page state up correctly for a writable
1001  * page, which means we can do correct delalloc accounting (ENOSPC
1002  * checking!) and unwritten extent mapping.
1003  */
1004 STATIC int
1005 xfs_vm_page_mkwrite(
1006 	struct vm_area_struct	*vma,
1007 	struct vm_fault		*vmf)
1008 {
1009 	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
1010 }
1011 
1012 /*
1013  * This type is designed to indicate the type of offset we would like
1014  * to search from page cache for xfs_seek_hole_data().
1015  */
1016 enum {
1017 	HOLE_OFF = 0,
1018 	DATA_OFF,
1019 };
1020 
1021 /*
1022  * Lookup the desired type of offset from the given page.
1023  *
1024  * On success, return true and the offset argument will point to the
1025  * start of the region that was found.  Otherwise this function will
1026  * return false and keep the offset argument unchanged.
1027  */
1028 STATIC bool
1029 xfs_lookup_buffer_offset(
1030 	struct page		*page,
1031 	loff_t			*offset,
1032 	unsigned int		type)
1033 {
1034 	loff_t			lastoff = page_offset(page);
1035 	bool			found = false;
1036 	struct buffer_head	*bh, *head;
1037 
1038 	bh = head = page_buffers(page);
1039 	do {
1040 		/*
1041 		 * Unwritten extents that have data in the page
1042 		 * cache covering them can be identified by the
1043 		 * BH_Unwritten state flag.  Pages with multiple
1044 		 * buffers might have a mix of holes, data and
1045 		 * unwritten extents - any buffer with valid
1046 		 * data in it should have BH_Uptodate flag set
1047 		 * on it.
1048 		 */
1049 		if (buffer_unwritten(bh) ||
1050 		    buffer_uptodate(bh)) {
1051 			if (type == DATA_OFF)
1052 				found = true;
1053 		} else {
1054 			if (type == HOLE_OFF)
1055 				found = true;
1056 		}
1057 
1058 		if (found) {
1059 			*offset = lastoff;
1060 			break;
1061 		}
1062 		lastoff += bh->b_size;
1063 	} while ((bh = bh->b_this_page) != head);
1064 
1065 	return found;
1066 }
1067 
1068 /*
1069  * This routine is called to find out and return a data or hole offset
1070  * from the page cache for unwritten extents according to the desired
1071  * type for xfs_seek_hole_data().
1072  *
1073  * The argument offset is used to tell where we start to search from the
1074  * page cache.  Map is used to figure out the end points of the range to
1075  * lookup pages.
1076  *
1077  * Return true if the desired type of offset was found, and the argument
1078  * offset is filled with that address.  Otherwise, return false and keep
1079  * offset unchanged.
1080  */
1081 STATIC bool
1082 xfs_find_get_desired_pgoff(
1083 	struct inode		*inode,
1084 	struct xfs_bmbt_irec	*map,
1085 	unsigned int		type,
1086 	loff_t			*offset)
1087 {
1088 	struct xfs_inode	*ip = XFS_I(inode);
1089 	struct xfs_mount	*mp = ip->i_mount;
1090 	struct pagevec		pvec;
1091 	pgoff_t			index;
1092 	pgoff_t			end;
1093 	loff_t			endoff;
1094 	loff_t			startoff = *offset;
1095 	loff_t			lastoff = startoff;
1096 	bool			found = false;
1097 
1098 	pagevec_init(&pvec, 0);
1099 
1100 	index = startoff >> PAGE_CACHE_SHIFT;
1101 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1102 	end = endoff >> PAGE_CACHE_SHIFT;
1103 	do {
1104 		int		want;
1105 		unsigned	nr_pages;
1106 		unsigned int	i;
1107 
1108 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1109 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1110 					  want);
1111 		/*
1112 		 * No page mapped into given range.  If we are searching holes
1113 		 * and if this is the first time we got into the loop, it means
1114 		 * that the given offset is landed in a hole, return it.
1115 		 *
1116 		 * If we have already stepped through some block buffers to find
1117 		 * holes but they all contains data.  In this case, the last
1118 		 * offset is already updated and pointed to the end of the last
1119 		 * mapped page, if it does not reach the endpoint to search,
1120 		 * that means there should be a hole between them.
1121 		 */
1122 		if (nr_pages == 0) {
1123 			/* Data search found nothing */
1124 			if (type == DATA_OFF)
1125 				break;
1126 
1127 			ASSERT(type == HOLE_OFF);
1128 			if (lastoff == startoff || lastoff < endoff) {
1129 				found = true;
1130 				*offset = lastoff;
1131 			}
1132 			break;
1133 		}
1134 
1135 		/*
1136 		 * At lease we found one page.  If this is the first time we
1137 		 * step into the loop, and if the first page index offset is
1138 		 * greater than the given search offset, a hole was found.
1139 		 */
1140 		if (type == HOLE_OFF && lastoff == startoff &&
1141 		    lastoff < page_offset(pvec.pages[0])) {
1142 			found = true;
1143 			break;
1144 		}
1145 
1146 		for (i = 0; i < nr_pages; i++) {
1147 			struct page	*page = pvec.pages[i];
1148 			loff_t		b_offset;
1149 
1150 			/*
1151 			 * At this point, the page may be truncated or
1152 			 * invalidated (changing page->mapping to NULL),
1153 			 * or even swizzled back from swapper_space to tmpfs
1154 			 * file mapping. However, page->index will not change
1155 			 * because we have a reference on the page.
1156 			 *
1157 			 * Searching done if the page index is out of range.
1158 			 * If the current offset is not reaches the end of
1159 			 * the specified search range, there should be a hole
1160 			 * between them.
1161 			 */
1162 			if (page->index > end) {
1163 				if (type == HOLE_OFF && lastoff < endoff) {
1164 					*offset = lastoff;
1165 					found = true;
1166 				}
1167 				goto out;
1168 			}
1169 
1170 			lock_page(page);
1171 			/*
1172 			 * Page truncated or invalidated(page->mapping == NULL).
1173 			 * We can freely skip it and proceed to check the next
1174 			 * page.
1175 			 */
1176 			if (unlikely(page->mapping != inode->i_mapping)) {
1177 				unlock_page(page);
1178 				continue;
1179 			}
1180 
1181 			if (!page_has_buffers(page)) {
1182 				unlock_page(page);
1183 				continue;
1184 			}
1185 
1186 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1187 			if (found) {
1188 				/*
1189 				 * The found offset may be less than the start
1190 				 * point to search if this is the first time to
1191 				 * come here.
1192 				 */
1193 				*offset = max_t(loff_t, startoff, b_offset);
1194 				unlock_page(page);
1195 				goto out;
1196 			}
1197 
1198 			/*
1199 			 * We either searching data but nothing was found, or
1200 			 * searching hole but found a data buffer.  In either
1201 			 * case, probably the next page contains the desired
1202 			 * things, update the last offset to it so.
1203 			 */
1204 			lastoff = page_offset(page) + PAGE_SIZE;
1205 			unlock_page(page);
1206 		}
1207 
1208 		/*
1209 		 * The number of returned pages less than our desired, search
1210 		 * done.  In this case, nothing was found for searching data,
1211 		 * but we found a hole behind the last offset.
1212 		 */
1213 		if (nr_pages < want) {
1214 			if (type == HOLE_OFF) {
1215 				*offset = lastoff;
1216 				found = true;
1217 			}
1218 			break;
1219 		}
1220 
1221 		index = pvec.pages[i - 1]->index + 1;
1222 		pagevec_release(&pvec);
1223 	} while (index <= end);
1224 
1225 out:
1226 	pagevec_release(&pvec);
1227 	return found;
1228 }
1229 
1230 STATIC loff_t
1231 xfs_seek_hole_data(
1232 	struct file		*file,
1233 	loff_t			start,
1234 	int			whence)
1235 {
1236 	struct inode		*inode = file->f_mapping->host;
1237 	struct xfs_inode	*ip = XFS_I(inode);
1238 	struct xfs_mount	*mp = ip->i_mount;
1239 	loff_t			uninitialized_var(offset);
1240 	xfs_fsize_t		isize;
1241 	xfs_fileoff_t		fsbno;
1242 	xfs_filblks_t		end;
1243 	uint			lock;
1244 	int			error;
1245 
1246 	if (XFS_FORCED_SHUTDOWN(mp))
1247 		return -EIO;
1248 
1249 	lock = xfs_ilock_data_map_shared(ip);
1250 
1251 	isize = i_size_read(inode);
1252 	if (start >= isize) {
1253 		error = -ENXIO;
1254 		goto out_unlock;
1255 	}
1256 
1257 	/*
1258 	 * Try to read extents from the first block indicated
1259 	 * by fsbno to the end block of the file.
1260 	 */
1261 	fsbno = XFS_B_TO_FSBT(mp, start);
1262 	end = XFS_B_TO_FSB(mp, isize);
1263 
1264 	for (;;) {
1265 		struct xfs_bmbt_irec	map[2];
1266 		int			nmap = 2;
1267 		unsigned int		i;
1268 
1269 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1270 				       XFS_BMAPI_ENTIRE);
1271 		if (error)
1272 			goto out_unlock;
1273 
1274 		/* No extents at given offset, must be beyond EOF */
1275 		if (nmap == 0) {
1276 			error = -ENXIO;
1277 			goto out_unlock;
1278 		}
1279 
1280 		for (i = 0; i < nmap; i++) {
1281 			offset = max_t(loff_t, start,
1282 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1283 
1284 			/* Landed in the hole we wanted? */
1285 			if (whence == SEEK_HOLE &&
1286 			    map[i].br_startblock == HOLESTARTBLOCK)
1287 				goto out;
1288 
1289 			/* Landed in the data extent we wanted? */
1290 			if (whence == SEEK_DATA &&
1291 			    (map[i].br_startblock == DELAYSTARTBLOCK ||
1292 			     (map[i].br_state == XFS_EXT_NORM &&
1293 			      !isnullstartblock(map[i].br_startblock))))
1294 				goto out;
1295 
1296 			/*
1297 			 * Landed in an unwritten extent, try to search
1298 			 * for hole or data from page cache.
1299 			 */
1300 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1301 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1302 				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1303 							&offset))
1304 					goto out;
1305 			}
1306 		}
1307 
1308 		/*
1309 		 * We only received one extent out of the two requested. This
1310 		 * means we've hit EOF and didn't find what we are looking for.
1311 		 */
1312 		if (nmap == 1) {
1313 			/*
1314 			 * If we were looking for a hole, set offset to
1315 			 * the end of the file (i.e., there is an implicit
1316 			 * hole at the end of any file).
1317 		 	 */
1318 			if (whence == SEEK_HOLE) {
1319 				offset = isize;
1320 				break;
1321 			}
1322 			/*
1323 			 * If we were looking for data, it's nowhere to be found
1324 			 */
1325 			ASSERT(whence == SEEK_DATA);
1326 			error = -ENXIO;
1327 			goto out_unlock;
1328 		}
1329 
1330 		ASSERT(i > 1);
1331 
1332 		/*
1333 		 * Nothing was found, proceed to the next round of search
1334 		 * if the next reading offset is not at or beyond EOF.
1335 		 */
1336 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1337 		start = XFS_FSB_TO_B(mp, fsbno);
1338 		if (start >= isize) {
1339 			if (whence == SEEK_HOLE) {
1340 				offset = isize;
1341 				break;
1342 			}
1343 			ASSERT(whence == SEEK_DATA);
1344 			error = -ENXIO;
1345 			goto out_unlock;
1346 		}
1347 	}
1348 
1349 out:
1350 	/*
1351 	 * If at this point we have found the hole we wanted, the returned
1352 	 * offset may be bigger than the file size as it may be aligned to
1353 	 * page boundary for unwritten extents.  We need to deal with this
1354 	 * situation in particular.
1355 	 */
1356 	if (whence == SEEK_HOLE)
1357 		offset = min_t(loff_t, offset, isize);
1358 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1359 
1360 out_unlock:
1361 	xfs_iunlock(ip, lock);
1362 
1363 	if (error)
1364 		return error;
1365 	return offset;
1366 }
1367 
1368 STATIC loff_t
1369 xfs_file_llseek(
1370 	struct file	*file,
1371 	loff_t		offset,
1372 	int		whence)
1373 {
1374 	switch (whence) {
1375 	case SEEK_END:
1376 	case SEEK_CUR:
1377 	case SEEK_SET:
1378 		return generic_file_llseek(file, offset, whence);
1379 	case SEEK_HOLE:
1380 	case SEEK_DATA:
1381 		return xfs_seek_hole_data(file, offset, whence);
1382 	default:
1383 		return -EINVAL;
1384 	}
1385 }
1386 
1387 const struct file_operations xfs_file_operations = {
1388 	.llseek		= xfs_file_llseek,
1389 	.read_iter	= xfs_file_read_iter,
1390 	.write_iter	= xfs_file_write_iter,
1391 	.splice_read	= xfs_file_splice_read,
1392 	.splice_write	= iter_file_splice_write,
1393 	.unlocked_ioctl	= xfs_file_ioctl,
1394 #ifdef CONFIG_COMPAT
1395 	.compat_ioctl	= xfs_file_compat_ioctl,
1396 #endif
1397 	.mmap		= xfs_file_mmap,
1398 	.open		= xfs_file_open,
1399 	.release	= xfs_file_release,
1400 	.fsync		= xfs_file_fsync,
1401 	.fallocate	= xfs_file_fallocate,
1402 };
1403 
1404 const struct file_operations xfs_dir_file_operations = {
1405 	.open		= xfs_dir_open,
1406 	.read		= generic_read_dir,
1407 	.iterate	= xfs_file_readdir,
1408 	.llseek		= generic_file_llseek,
1409 	.unlocked_ioctl	= xfs_file_ioctl,
1410 #ifdef CONFIG_COMPAT
1411 	.compat_ioctl	= xfs_file_compat_ioctl,
1412 #endif
1413 	.fsync		= xfs_dir_fsync,
1414 };
1415 
1416 static const struct vm_operations_struct xfs_file_vm_ops = {
1417 	.fault		= filemap_fault,
1418 	.map_pages	= filemap_map_pages,
1419 	.page_mkwrite	= xfs_vm_page_mkwrite,
1420 };
1421