1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_dir2.h" 19 #include "xfs_dir2_priv.h" 20 #include "xfs_ioctl.h" 21 #include "xfs_trace.h" 22 #include "xfs_log.h" 23 #include "xfs_icache.h" 24 #include "xfs_pnfs.h" 25 #include "xfs_iomap.h" 26 #include "xfs_reflink.h" 27 28 #include <linux/falloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mman.h> 31 #include <linux/fadvise.h> 32 33 static const struct vm_operations_struct xfs_file_vm_ops; 34 35 int 36 xfs_update_prealloc_flags( 37 struct xfs_inode *ip, 38 enum xfs_prealloc_flags flags) 39 { 40 struct xfs_trans *tp; 41 int error; 42 43 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 44 0, 0, 0, &tp); 45 if (error) 46 return error; 47 48 xfs_ilock(ip, XFS_ILOCK_EXCL); 49 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 50 51 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 52 VFS_I(ip)->i_mode &= ~S_ISUID; 53 if (VFS_I(ip)->i_mode & S_IXGRP) 54 VFS_I(ip)->i_mode &= ~S_ISGID; 55 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 56 } 57 58 if (flags & XFS_PREALLOC_SET) 59 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 60 if (flags & XFS_PREALLOC_CLEAR) 61 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 62 63 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 64 if (flags & XFS_PREALLOC_SYNC) 65 xfs_trans_set_sync(tp); 66 return xfs_trans_commit(tp); 67 } 68 69 /* 70 * Fsync operations on directories are much simpler than on regular files, 71 * as there is no file data to flush, and thus also no need for explicit 72 * cache flush operations, and there are no non-transaction metadata updates 73 * on directories either. 74 */ 75 STATIC int 76 xfs_dir_fsync( 77 struct file *file, 78 loff_t start, 79 loff_t end, 80 int datasync) 81 { 82 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 83 struct xfs_mount *mp = ip->i_mount; 84 xfs_lsn_t lsn = 0; 85 86 trace_xfs_dir_fsync(ip); 87 88 xfs_ilock(ip, XFS_ILOCK_SHARED); 89 if (xfs_ipincount(ip)) 90 lsn = ip->i_itemp->ili_last_lsn; 91 xfs_iunlock(ip, XFS_ILOCK_SHARED); 92 93 if (!lsn) 94 return 0; 95 return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 96 } 97 98 STATIC int 99 xfs_file_fsync( 100 struct file *file, 101 loff_t start, 102 loff_t end, 103 int datasync) 104 { 105 struct inode *inode = file->f_mapping->host; 106 struct xfs_inode *ip = XFS_I(inode); 107 struct xfs_mount *mp = ip->i_mount; 108 int error = 0; 109 int log_flushed = 0; 110 xfs_lsn_t lsn = 0; 111 112 trace_xfs_file_fsync(ip); 113 114 error = file_write_and_wait_range(file, start, end); 115 if (error) 116 return error; 117 118 if (XFS_FORCED_SHUTDOWN(mp)) 119 return -EIO; 120 121 xfs_iflags_clear(ip, XFS_ITRUNCATED); 122 123 /* 124 * If we have an RT and/or log subvolume we need to make sure to flush 125 * the write cache the device used for file data first. This is to 126 * ensure newly written file data make it to disk before logging the new 127 * inode size in case of an extending write. 128 */ 129 if (XFS_IS_REALTIME_INODE(ip)) 130 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 131 else if (mp->m_logdev_targp != mp->m_ddev_targp) 132 xfs_blkdev_issue_flush(mp->m_ddev_targp); 133 134 /* 135 * All metadata updates are logged, which means that we just have to 136 * flush the log up to the latest LSN that touched the inode. If we have 137 * concurrent fsync/fdatasync() calls, we need them to all block on the 138 * log force before we clear the ili_fsync_fields field. This ensures 139 * that we don't get a racing sync operation that does not wait for the 140 * metadata to hit the journal before returning. If we race with 141 * clearing the ili_fsync_fields, then all that will happen is the log 142 * force will do nothing as the lsn will already be on disk. We can't 143 * race with setting ili_fsync_fields because that is done under 144 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 145 * until after the ili_fsync_fields is cleared. 146 */ 147 xfs_ilock(ip, XFS_ILOCK_SHARED); 148 if (xfs_ipincount(ip)) { 149 if (!datasync || 150 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 151 lsn = ip->i_itemp->ili_last_lsn; 152 } 153 154 if (lsn) { 155 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 156 ip->i_itemp->ili_fsync_fields = 0; 157 } 158 xfs_iunlock(ip, XFS_ILOCK_SHARED); 159 160 /* 161 * If we only have a single device, and the log force about was 162 * a no-op we might have to flush the data device cache here. 163 * This can only happen for fdatasync/O_DSYNC if we were overwriting 164 * an already allocated file and thus do not have any metadata to 165 * commit. 166 */ 167 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 168 mp->m_logdev_targp == mp->m_ddev_targp) 169 xfs_blkdev_issue_flush(mp->m_ddev_targp); 170 171 return error; 172 } 173 174 STATIC ssize_t 175 xfs_file_dio_aio_read( 176 struct kiocb *iocb, 177 struct iov_iter *to) 178 { 179 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 180 size_t count = iov_iter_count(to); 181 ssize_t ret; 182 183 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 184 185 if (!count) 186 return 0; /* skip atime */ 187 188 file_accessed(iocb->ki_filp); 189 190 xfs_ilock(ip, XFS_IOLOCK_SHARED); 191 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 192 is_sync_kiocb(iocb)); 193 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 194 195 return ret; 196 } 197 198 static noinline ssize_t 199 xfs_file_dax_read( 200 struct kiocb *iocb, 201 struct iov_iter *to) 202 { 203 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 204 size_t count = iov_iter_count(to); 205 ssize_t ret = 0; 206 207 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 208 209 if (!count) 210 return 0; /* skip atime */ 211 212 if (iocb->ki_flags & IOCB_NOWAIT) { 213 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 214 return -EAGAIN; 215 } else { 216 xfs_ilock(ip, XFS_IOLOCK_SHARED); 217 } 218 219 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops); 220 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 221 222 file_accessed(iocb->ki_filp); 223 return ret; 224 } 225 226 STATIC ssize_t 227 xfs_file_buffered_aio_read( 228 struct kiocb *iocb, 229 struct iov_iter *to) 230 { 231 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 232 ssize_t ret; 233 234 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 235 236 if (iocb->ki_flags & IOCB_NOWAIT) { 237 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 238 return -EAGAIN; 239 } else { 240 xfs_ilock(ip, XFS_IOLOCK_SHARED); 241 } 242 ret = generic_file_read_iter(iocb, to); 243 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 244 245 return ret; 246 } 247 248 STATIC ssize_t 249 xfs_file_read_iter( 250 struct kiocb *iocb, 251 struct iov_iter *to) 252 { 253 struct inode *inode = file_inode(iocb->ki_filp); 254 struct xfs_mount *mp = XFS_I(inode)->i_mount; 255 ssize_t ret = 0; 256 257 XFS_STATS_INC(mp, xs_read_calls); 258 259 if (XFS_FORCED_SHUTDOWN(mp)) 260 return -EIO; 261 262 if (IS_DAX(inode)) 263 ret = xfs_file_dax_read(iocb, to); 264 else if (iocb->ki_flags & IOCB_DIRECT) 265 ret = xfs_file_dio_aio_read(iocb, to); 266 else 267 ret = xfs_file_buffered_aio_read(iocb, to); 268 269 if (ret > 0) 270 XFS_STATS_ADD(mp, xs_read_bytes, ret); 271 return ret; 272 } 273 274 /* 275 * Common pre-write limit and setup checks. 276 * 277 * Called with the iolocked held either shared and exclusive according to 278 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 279 * if called for a direct write beyond i_size. 280 */ 281 STATIC ssize_t 282 xfs_file_aio_write_checks( 283 struct kiocb *iocb, 284 struct iov_iter *from, 285 int *iolock) 286 { 287 struct file *file = iocb->ki_filp; 288 struct inode *inode = file->f_mapping->host; 289 struct xfs_inode *ip = XFS_I(inode); 290 ssize_t error = 0; 291 size_t count = iov_iter_count(from); 292 bool drained_dio = false; 293 loff_t isize; 294 295 restart: 296 error = generic_write_checks(iocb, from); 297 if (error <= 0) 298 return error; 299 300 error = xfs_break_layouts(inode, iolock, BREAK_WRITE); 301 if (error) 302 return error; 303 304 /* 305 * For changing security info in file_remove_privs() we need i_rwsem 306 * exclusively. 307 */ 308 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 309 xfs_iunlock(ip, *iolock); 310 *iolock = XFS_IOLOCK_EXCL; 311 xfs_ilock(ip, *iolock); 312 goto restart; 313 } 314 /* 315 * If the offset is beyond the size of the file, we need to zero any 316 * blocks that fall between the existing EOF and the start of this 317 * write. If zeroing is needed and we are currently holding the 318 * iolock shared, we need to update it to exclusive which implies 319 * having to redo all checks before. 320 * 321 * We need to serialise against EOF updates that occur in IO 322 * completions here. We want to make sure that nobody is changing the 323 * size while we do this check until we have placed an IO barrier (i.e. 324 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 325 * The spinlock effectively forms a memory barrier once we have the 326 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 327 * and hence be able to correctly determine if we need to run zeroing. 328 */ 329 spin_lock(&ip->i_flags_lock); 330 isize = i_size_read(inode); 331 if (iocb->ki_pos > isize) { 332 spin_unlock(&ip->i_flags_lock); 333 if (!drained_dio) { 334 if (*iolock == XFS_IOLOCK_SHARED) { 335 xfs_iunlock(ip, *iolock); 336 *iolock = XFS_IOLOCK_EXCL; 337 xfs_ilock(ip, *iolock); 338 iov_iter_reexpand(from, count); 339 } 340 /* 341 * We now have an IO submission barrier in place, but 342 * AIO can do EOF updates during IO completion and hence 343 * we now need to wait for all of them to drain. Non-AIO 344 * DIO will have drained before we are given the 345 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 346 * no-op. 347 */ 348 inode_dio_wait(inode); 349 drained_dio = true; 350 goto restart; 351 } 352 353 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); 354 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize, 355 NULL, &xfs_buffered_write_iomap_ops); 356 if (error) 357 return error; 358 } else 359 spin_unlock(&ip->i_flags_lock); 360 361 /* 362 * Updating the timestamps will grab the ilock again from 363 * xfs_fs_dirty_inode, so we have to call it after dropping the 364 * lock above. Eventually we should look into a way to avoid 365 * the pointless lock roundtrip. 366 */ 367 return file_modified(file); 368 } 369 370 static int 371 xfs_dio_write_end_io( 372 struct kiocb *iocb, 373 ssize_t size, 374 int error, 375 unsigned flags) 376 { 377 struct inode *inode = file_inode(iocb->ki_filp); 378 struct xfs_inode *ip = XFS_I(inode); 379 loff_t offset = iocb->ki_pos; 380 unsigned int nofs_flag; 381 382 trace_xfs_end_io_direct_write(ip, offset, size); 383 384 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 385 return -EIO; 386 387 if (error) 388 return error; 389 if (!size) 390 return 0; 391 392 /* 393 * Capture amount written on completion as we can't reliably account 394 * for it on submission. 395 */ 396 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); 397 398 /* 399 * We can allocate memory here while doing writeback on behalf of 400 * memory reclaim. To avoid memory allocation deadlocks set the 401 * task-wide nofs context for the following operations. 402 */ 403 nofs_flag = memalloc_nofs_save(); 404 405 if (flags & IOMAP_DIO_COW) { 406 error = xfs_reflink_end_cow(ip, offset, size); 407 if (error) 408 goto out; 409 } 410 411 /* 412 * Unwritten conversion updates the in-core isize after extent 413 * conversion but before updating the on-disk size. Updating isize any 414 * earlier allows a racing dio read to find unwritten extents before 415 * they are converted. 416 */ 417 if (flags & IOMAP_DIO_UNWRITTEN) { 418 error = xfs_iomap_write_unwritten(ip, offset, size, true); 419 goto out; 420 } 421 422 /* 423 * We need to update the in-core inode size here so that we don't end up 424 * with the on-disk inode size being outside the in-core inode size. We 425 * have no other method of updating EOF for AIO, so always do it here 426 * if necessary. 427 * 428 * We need to lock the test/set EOF update as we can be racing with 429 * other IO completions here to update the EOF. Failing to serialise 430 * here can result in EOF moving backwards and Bad Things Happen when 431 * that occurs. 432 */ 433 spin_lock(&ip->i_flags_lock); 434 if (offset + size > i_size_read(inode)) { 435 i_size_write(inode, offset + size); 436 spin_unlock(&ip->i_flags_lock); 437 error = xfs_setfilesize(ip, offset, size); 438 } else { 439 spin_unlock(&ip->i_flags_lock); 440 } 441 442 out: 443 memalloc_nofs_restore(nofs_flag); 444 return error; 445 } 446 447 static const struct iomap_dio_ops xfs_dio_write_ops = { 448 .end_io = xfs_dio_write_end_io, 449 }; 450 451 /* 452 * xfs_file_dio_aio_write - handle direct IO writes 453 * 454 * Lock the inode appropriately to prepare for and issue a direct IO write. 455 * By separating it from the buffered write path we remove all the tricky to 456 * follow locking changes and looping. 457 * 458 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 459 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 460 * pages are flushed out. 461 * 462 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 463 * allowing them to be done in parallel with reads and other direct IO writes. 464 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 465 * needs to do sub-block zeroing and that requires serialisation against other 466 * direct IOs to the same block. In this case we need to serialise the 467 * submission of the unaligned IOs so that we don't get racing block zeroing in 468 * the dio layer. To avoid the problem with aio, we also need to wait for 469 * outstanding IOs to complete so that unwritten extent conversion is completed 470 * before we try to map the overlapping block. This is currently implemented by 471 * hitting it with a big hammer (i.e. inode_dio_wait()). 472 * 473 * Returns with locks held indicated by @iolock and errors indicated by 474 * negative return values. 475 */ 476 STATIC ssize_t 477 xfs_file_dio_aio_write( 478 struct kiocb *iocb, 479 struct iov_iter *from) 480 { 481 struct file *file = iocb->ki_filp; 482 struct address_space *mapping = file->f_mapping; 483 struct inode *inode = mapping->host; 484 struct xfs_inode *ip = XFS_I(inode); 485 struct xfs_mount *mp = ip->i_mount; 486 ssize_t ret = 0; 487 int unaligned_io = 0; 488 int iolock; 489 size_t count = iov_iter_count(from); 490 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 491 492 /* DIO must be aligned to device logical sector size */ 493 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 494 return -EINVAL; 495 496 /* 497 * Don't take the exclusive iolock here unless the I/O is unaligned to 498 * the file system block size. We don't need to consider the EOF 499 * extension case here because xfs_file_aio_write_checks() will relock 500 * the inode as necessary for EOF zeroing cases and fill out the new 501 * inode size as appropriate. 502 */ 503 if ((iocb->ki_pos & mp->m_blockmask) || 504 ((iocb->ki_pos + count) & mp->m_blockmask)) { 505 unaligned_io = 1; 506 507 /* 508 * We can't properly handle unaligned direct I/O to reflink 509 * files yet, as we can't unshare a partial block. 510 */ 511 if (xfs_is_cow_inode(ip)) { 512 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); 513 return -EREMCHG; 514 } 515 iolock = XFS_IOLOCK_EXCL; 516 } else { 517 iolock = XFS_IOLOCK_SHARED; 518 } 519 520 if (iocb->ki_flags & IOCB_NOWAIT) { 521 /* unaligned dio always waits, bail */ 522 if (unaligned_io) 523 return -EAGAIN; 524 if (!xfs_ilock_nowait(ip, iolock)) 525 return -EAGAIN; 526 } else { 527 xfs_ilock(ip, iolock); 528 } 529 530 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 531 if (ret) 532 goto out; 533 count = iov_iter_count(from); 534 535 /* 536 * If we are doing unaligned IO, we can't allow any other overlapping IO 537 * in-flight at the same time or we risk data corruption. Wait for all 538 * other IO to drain before we submit. If the IO is aligned, demote the 539 * iolock if we had to take the exclusive lock in 540 * xfs_file_aio_write_checks() for other reasons. 541 */ 542 if (unaligned_io) { 543 inode_dio_wait(inode); 544 } else if (iolock == XFS_IOLOCK_EXCL) { 545 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 546 iolock = XFS_IOLOCK_SHARED; 547 } 548 549 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 550 /* 551 * If unaligned, this is the only IO in-flight. Wait on it before we 552 * release the iolock to prevent subsequent overlapping IO. 553 */ 554 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, 555 &xfs_dio_write_ops, 556 is_sync_kiocb(iocb) || unaligned_io); 557 out: 558 xfs_iunlock(ip, iolock); 559 560 /* 561 * No fallback to buffered IO on errors for XFS, direct IO will either 562 * complete fully or fail. 563 */ 564 ASSERT(ret < 0 || ret == count); 565 return ret; 566 } 567 568 static noinline ssize_t 569 xfs_file_dax_write( 570 struct kiocb *iocb, 571 struct iov_iter *from) 572 { 573 struct inode *inode = iocb->ki_filp->f_mapping->host; 574 struct xfs_inode *ip = XFS_I(inode); 575 int iolock = XFS_IOLOCK_EXCL; 576 ssize_t ret, error = 0; 577 size_t count; 578 loff_t pos; 579 580 if (iocb->ki_flags & IOCB_NOWAIT) { 581 if (!xfs_ilock_nowait(ip, iolock)) 582 return -EAGAIN; 583 } else { 584 xfs_ilock(ip, iolock); 585 } 586 587 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 588 if (ret) 589 goto out; 590 591 pos = iocb->ki_pos; 592 count = iov_iter_count(from); 593 594 trace_xfs_file_dax_write(ip, count, pos); 595 ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops); 596 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 597 i_size_write(inode, iocb->ki_pos); 598 error = xfs_setfilesize(ip, pos, ret); 599 } 600 out: 601 xfs_iunlock(ip, iolock); 602 if (error) 603 return error; 604 605 if (ret > 0) { 606 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 607 608 /* Handle various SYNC-type writes */ 609 ret = generic_write_sync(iocb, ret); 610 } 611 return ret; 612 } 613 614 STATIC ssize_t 615 xfs_file_buffered_aio_write( 616 struct kiocb *iocb, 617 struct iov_iter *from) 618 { 619 struct file *file = iocb->ki_filp; 620 struct address_space *mapping = file->f_mapping; 621 struct inode *inode = mapping->host; 622 struct xfs_inode *ip = XFS_I(inode); 623 ssize_t ret; 624 int enospc = 0; 625 int iolock; 626 627 if (iocb->ki_flags & IOCB_NOWAIT) 628 return -EOPNOTSUPP; 629 630 write_retry: 631 iolock = XFS_IOLOCK_EXCL; 632 xfs_ilock(ip, iolock); 633 634 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 635 if (ret) 636 goto out; 637 638 /* We can write back this queue in page reclaim */ 639 current->backing_dev_info = inode_to_bdi(inode); 640 641 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 642 ret = iomap_file_buffered_write(iocb, from, 643 &xfs_buffered_write_iomap_ops); 644 if (likely(ret >= 0)) 645 iocb->ki_pos += ret; 646 647 /* 648 * If we hit a space limit, try to free up some lingering preallocated 649 * space before returning an error. In the case of ENOSPC, first try to 650 * write back all dirty inodes to free up some of the excess reserved 651 * metadata space. This reduces the chances that the eofblocks scan 652 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 653 * also behaves as a filter to prevent too many eofblocks scans from 654 * running at the same time. 655 */ 656 if (ret == -EDQUOT && !enospc) { 657 xfs_iunlock(ip, iolock); 658 enospc = xfs_inode_free_quota_eofblocks(ip); 659 if (enospc) 660 goto write_retry; 661 enospc = xfs_inode_free_quota_cowblocks(ip); 662 if (enospc) 663 goto write_retry; 664 iolock = 0; 665 } else if (ret == -ENOSPC && !enospc) { 666 struct xfs_eofblocks eofb = {0}; 667 668 enospc = 1; 669 xfs_flush_inodes(ip->i_mount); 670 671 xfs_iunlock(ip, iolock); 672 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 673 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 674 xfs_icache_free_cowblocks(ip->i_mount, &eofb); 675 goto write_retry; 676 } 677 678 current->backing_dev_info = NULL; 679 out: 680 if (iolock) 681 xfs_iunlock(ip, iolock); 682 683 if (ret > 0) { 684 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 685 /* Handle various SYNC-type writes */ 686 ret = generic_write_sync(iocb, ret); 687 } 688 return ret; 689 } 690 691 STATIC ssize_t 692 xfs_file_write_iter( 693 struct kiocb *iocb, 694 struct iov_iter *from) 695 { 696 struct file *file = iocb->ki_filp; 697 struct address_space *mapping = file->f_mapping; 698 struct inode *inode = mapping->host; 699 struct xfs_inode *ip = XFS_I(inode); 700 ssize_t ret; 701 size_t ocount = iov_iter_count(from); 702 703 XFS_STATS_INC(ip->i_mount, xs_write_calls); 704 705 if (ocount == 0) 706 return 0; 707 708 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 709 return -EIO; 710 711 if (IS_DAX(inode)) 712 return xfs_file_dax_write(iocb, from); 713 714 if (iocb->ki_flags & IOCB_DIRECT) { 715 /* 716 * Allow a directio write to fall back to a buffered 717 * write *only* in the case that we're doing a reflink 718 * CoW. In all other directio scenarios we do not 719 * allow an operation to fall back to buffered mode. 720 */ 721 ret = xfs_file_dio_aio_write(iocb, from); 722 if (ret != -EREMCHG) 723 return ret; 724 } 725 726 return xfs_file_buffered_aio_write(iocb, from); 727 } 728 729 static void 730 xfs_wait_dax_page( 731 struct inode *inode) 732 { 733 struct xfs_inode *ip = XFS_I(inode); 734 735 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 736 schedule(); 737 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 738 } 739 740 static int 741 xfs_break_dax_layouts( 742 struct inode *inode, 743 bool *retry) 744 { 745 struct page *page; 746 747 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); 748 749 page = dax_layout_busy_page(inode->i_mapping); 750 if (!page) 751 return 0; 752 753 *retry = true; 754 return ___wait_var_event(&page->_refcount, 755 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 756 0, 0, xfs_wait_dax_page(inode)); 757 } 758 759 int 760 xfs_break_layouts( 761 struct inode *inode, 762 uint *iolock, 763 enum layout_break_reason reason) 764 { 765 bool retry; 766 int error; 767 768 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); 769 770 do { 771 retry = false; 772 switch (reason) { 773 case BREAK_UNMAP: 774 error = xfs_break_dax_layouts(inode, &retry); 775 if (error || retry) 776 break; 777 /* fall through */ 778 case BREAK_WRITE: 779 error = xfs_break_leased_layouts(inode, iolock, &retry); 780 break; 781 default: 782 WARN_ON_ONCE(1); 783 error = -EINVAL; 784 } 785 } while (error == 0 && retry); 786 787 return error; 788 } 789 790 #define XFS_FALLOC_FL_SUPPORTED \ 791 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 792 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 793 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 794 795 STATIC long 796 xfs_file_fallocate( 797 struct file *file, 798 int mode, 799 loff_t offset, 800 loff_t len) 801 { 802 struct inode *inode = file_inode(file); 803 struct xfs_inode *ip = XFS_I(inode); 804 long error; 805 enum xfs_prealloc_flags flags = 0; 806 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 807 loff_t new_size = 0; 808 bool do_file_insert = false; 809 810 if (!S_ISREG(inode->i_mode)) 811 return -EINVAL; 812 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 813 return -EOPNOTSUPP; 814 815 xfs_ilock(ip, iolock); 816 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 817 if (error) 818 goto out_unlock; 819 820 /* 821 * Must wait for all AIO to complete before we continue as AIO can 822 * change the file size on completion without holding any locks we 823 * currently hold. We must do this first because AIO can update both 824 * the on disk and in memory inode sizes, and the operations that follow 825 * require the in-memory size to be fully up-to-date. 826 */ 827 inode_dio_wait(inode); 828 829 /* 830 * Now AIO and DIO has drained we flush and (if necessary) invalidate 831 * the cached range over the first operation we are about to run. 832 * 833 * We care about zero and collapse here because they both run a hole 834 * punch over the range first. Because that can zero data, and the range 835 * of invalidation for the shift operations is much larger, we still do 836 * the required flush for collapse in xfs_prepare_shift(). 837 * 838 * Insert has the same range requirements as collapse, and we extend the 839 * file first which can zero data. Hence insert has the same 840 * flush/invalidate requirements as collapse and so they are both 841 * handled at the right time by xfs_prepare_shift(). 842 */ 843 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE | 844 FALLOC_FL_COLLAPSE_RANGE)) { 845 error = xfs_flush_unmap_range(ip, offset, len); 846 if (error) 847 goto out_unlock; 848 } 849 850 if (mode & FALLOC_FL_PUNCH_HOLE) { 851 error = xfs_free_file_space(ip, offset, len); 852 if (error) 853 goto out_unlock; 854 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 855 unsigned int blksize_mask = i_blocksize(inode) - 1; 856 857 if (offset & blksize_mask || len & blksize_mask) { 858 error = -EINVAL; 859 goto out_unlock; 860 } 861 862 /* 863 * There is no need to overlap collapse range with EOF, 864 * in which case it is effectively a truncate operation 865 */ 866 if (offset + len >= i_size_read(inode)) { 867 error = -EINVAL; 868 goto out_unlock; 869 } 870 871 new_size = i_size_read(inode) - len; 872 873 error = xfs_collapse_file_space(ip, offset, len); 874 if (error) 875 goto out_unlock; 876 } else if (mode & FALLOC_FL_INSERT_RANGE) { 877 unsigned int blksize_mask = i_blocksize(inode) - 1; 878 loff_t isize = i_size_read(inode); 879 880 if (offset & blksize_mask || len & blksize_mask) { 881 error = -EINVAL; 882 goto out_unlock; 883 } 884 885 /* 886 * New inode size must not exceed ->s_maxbytes, accounting for 887 * possible signed overflow. 888 */ 889 if (inode->i_sb->s_maxbytes - isize < len) { 890 error = -EFBIG; 891 goto out_unlock; 892 } 893 new_size = isize + len; 894 895 /* Offset should be less than i_size */ 896 if (offset >= isize) { 897 error = -EINVAL; 898 goto out_unlock; 899 } 900 do_file_insert = true; 901 } else { 902 flags |= XFS_PREALLOC_SET; 903 904 if (!(mode & FALLOC_FL_KEEP_SIZE) && 905 offset + len > i_size_read(inode)) { 906 new_size = offset + len; 907 error = inode_newsize_ok(inode, new_size); 908 if (error) 909 goto out_unlock; 910 } 911 912 if (mode & FALLOC_FL_ZERO_RANGE) { 913 /* 914 * Punch a hole and prealloc the range. We use a hole 915 * punch rather than unwritten extent conversion for two 916 * reasons: 917 * 918 * 1.) Hole punch handles partial block zeroing for us. 919 * 2.) If prealloc returns ENOSPC, the file range is 920 * still zero-valued by virtue of the hole punch. 921 */ 922 unsigned int blksize = i_blocksize(inode); 923 924 trace_xfs_zero_file_space(ip); 925 926 error = xfs_free_file_space(ip, offset, len); 927 if (error) 928 goto out_unlock; 929 930 len = round_up(offset + len, blksize) - 931 round_down(offset, blksize); 932 offset = round_down(offset, blksize); 933 } else if (mode & FALLOC_FL_UNSHARE_RANGE) { 934 error = xfs_reflink_unshare(ip, offset, len); 935 if (error) 936 goto out_unlock; 937 } else { 938 /* 939 * If always_cow mode we can't use preallocations and 940 * thus should not create them. 941 */ 942 if (xfs_is_always_cow_inode(ip)) { 943 error = -EOPNOTSUPP; 944 goto out_unlock; 945 } 946 } 947 948 if (!xfs_is_always_cow_inode(ip)) { 949 error = xfs_alloc_file_space(ip, offset, len, 950 XFS_BMAPI_PREALLOC); 951 if (error) 952 goto out_unlock; 953 } 954 } 955 956 if (file->f_flags & O_DSYNC) 957 flags |= XFS_PREALLOC_SYNC; 958 959 error = xfs_update_prealloc_flags(ip, flags); 960 if (error) 961 goto out_unlock; 962 963 /* Change file size if needed */ 964 if (new_size) { 965 struct iattr iattr; 966 967 iattr.ia_valid = ATTR_SIZE; 968 iattr.ia_size = new_size; 969 error = xfs_vn_setattr_size(file_dentry(file), &iattr); 970 if (error) 971 goto out_unlock; 972 } 973 974 /* 975 * Perform hole insertion now that the file size has been 976 * updated so that if we crash during the operation we don't 977 * leave shifted extents past EOF and hence losing access to 978 * the data that is contained within them. 979 */ 980 if (do_file_insert) 981 error = xfs_insert_file_space(ip, offset, len); 982 983 out_unlock: 984 xfs_iunlock(ip, iolock); 985 return error; 986 } 987 988 STATIC int 989 xfs_file_fadvise( 990 struct file *file, 991 loff_t start, 992 loff_t end, 993 int advice) 994 { 995 struct xfs_inode *ip = XFS_I(file_inode(file)); 996 int ret; 997 int lockflags = 0; 998 999 /* 1000 * Operations creating pages in page cache need protection from hole 1001 * punching and similar ops 1002 */ 1003 if (advice == POSIX_FADV_WILLNEED) { 1004 lockflags = XFS_IOLOCK_SHARED; 1005 xfs_ilock(ip, lockflags); 1006 } 1007 ret = generic_fadvise(file, start, end, advice); 1008 if (lockflags) 1009 xfs_iunlock(ip, lockflags); 1010 return ret; 1011 } 1012 1013 STATIC loff_t 1014 xfs_file_remap_range( 1015 struct file *file_in, 1016 loff_t pos_in, 1017 struct file *file_out, 1018 loff_t pos_out, 1019 loff_t len, 1020 unsigned int remap_flags) 1021 { 1022 struct inode *inode_in = file_inode(file_in); 1023 struct xfs_inode *src = XFS_I(inode_in); 1024 struct inode *inode_out = file_inode(file_out); 1025 struct xfs_inode *dest = XFS_I(inode_out); 1026 struct xfs_mount *mp = src->i_mount; 1027 loff_t remapped = 0; 1028 xfs_extlen_t cowextsize; 1029 int ret; 1030 1031 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 1032 return -EINVAL; 1033 1034 if (!xfs_sb_version_hasreflink(&mp->m_sb)) 1035 return -EOPNOTSUPP; 1036 1037 if (XFS_FORCED_SHUTDOWN(mp)) 1038 return -EIO; 1039 1040 /* Prepare and then clone file data. */ 1041 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, 1042 &len, remap_flags); 1043 if (ret < 0 || len == 0) 1044 return ret; 1045 1046 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); 1047 1048 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len, 1049 &remapped); 1050 if (ret) 1051 goto out_unlock; 1052 1053 /* 1054 * Carry the cowextsize hint from src to dest if we're sharing the 1055 * entire source file to the entire destination file, the source file 1056 * has a cowextsize hint, and the destination file does not. 1057 */ 1058 cowextsize = 0; 1059 if (pos_in == 0 && len == i_size_read(inode_in) && 1060 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) && 1061 pos_out == 0 && len >= i_size_read(inode_out) && 1062 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)) 1063 cowextsize = src->i_d.di_cowextsize; 1064 1065 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, 1066 remap_flags); 1067 1068 out_unlock: 1069 xfs_reflink_remap_unlock(file_in, file_out); 1070 if (ret) 1071 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); 1072 return remapped > 0 ? remapped : ret; 1073 } 1074 1075 STATIC int 1076 xfs_file_open( 1077 struct inode *inode, 1078 struct file *file) 1079 { 1080 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 1081 return -EFBIG; 1082 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 1083 return -EIO; 1084 file->f_mode |= FMODE_NOWAIT; 1085 return 0; 1086 } 1087 1088 STATIC int 1089 xfs_dir_open( 1090 struct inode *inode, 1091 struct file *file) 1092 { 1093 struct xfs_inode *ip = XFS_I(inode); 1094 int mode; 1095 int error; 1096 1097 error = xfs_file_open(inode, file); 1098 if (error) 1099 return error; 1100 1101 /* 1102 * If there are any blocks, read-ahead block 0 as we're almost 1103 * certain to have the next operation be a read there. 1104 */ 1105 mode = xfs_ilock_data_map_shared(ip); 1106 if (ip->i_d.di_nextents > 0) 1107 error = xfs_dir3_data_readahead(ip, 0, 0); 1108 xfs_iunlock(ip, mode); 1109 return error; 1110 } 1111 1112 STATIC int 1113 xfs_file_release( 1114 struct inode *inode, 1115 struct file *filp) 1116 { 1117 return xfs_release(XFS_I(inode)); 1118 } 1119 1120 STATIC int 1121 xfs_file_readdir( 1122 struct file *file, 1123 struct dir_context *ctx) 1124 { 1125 struct inode *inode = file_inode(file); 1126 xfs_inode_t *ip = XFS_I(inode); 1127 size_t bufsize; 1128 1129 /* 1130 * The Linux API doesn't pass down the total size of the buffer 1131 * we read into down to the filesystem. With the filldir concept 1132 * it's not needed for correct information, but the XFS dir2 leaf 1133 * code wants an estimate of the buffer size to calculate it's 1134 * readahead window and size the buffers used for mapping to 1135 * physical blocks. 1136 * 1137 * Try to give it an estimate that's good enough, maybe at some 1138 * point we can change the ->readdir prototype to include the 1139 * buffer size. For now we use the current glibc buffer size. 1140 */ 1141 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size); 1142 1143 return xfs_readdir(NULL, ip, ctx, bufsize); 1144 } 1145 1146 STATIC loff_t 1147 xfs_file_llseek( 1148 struct file *file, 1149 loff_t offset, 1150 int whence) 1151 { 1152 struct inode *inode = file->f_mapping->host; 1153 1154 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) 1155 return -EIO; 1156 1157 switch (whence) { 1158 default: 1159 return generic_file_llseek(file, offset, whence); 1160 case SEEK_HOLE: 1161 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops); 1162 break; 1163 case SEEK_DATA: 1164 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops); 1165 break; 1166 } 1167 1168 if (offset < 0) 1169 return offset; 1170 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1171 } 1172 1173 /* 1174 * Locking for serialisation of IO during page faults. This results in a lock 1175 * ordering of: 1176 * 1177 * mmap_sem (MM) 1178 * sb_start_pagefault(vfs, freeze) 1179 * i_mmaplock (XFS - truncate serialisation) 1180 * page_lock (MM) 1181 * i_lock (XFS - extent map serialisation) 1182 */ 1183 static vm_fault_t 1184 __xfs_filemap_fault( 1185 struct vm_fault *vmf, 1186 enum page_entry_size pe_size, 1187 bool write_fault) 1188 { 1189 struct inode *inode = file_inode(vmf->vma->vm_file); 1190 struct xfs_inode *ip = XFS_I(inode); 1191 vm_fault_t ret; 1192 1193 trace_xfs_filemap_fault(ip, pe_size, write_fault); 1194 1195 if (write_fault) { 1196 sb_start_pagefault(inode->i_sb); 1197 file_update_time(vmf->vma->vm_file); 1198 } 1199 1200 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1201 if (IS_DAX(inode)) { 1202 pfn_t pfn; 1203 1204 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, 1205 (write_fault && !vmf->cow_page) ? 1206 &xfs_direct_write_iomap_ops : 1207 &xfs_read_iomap_ops); 1208 if (ret & VM_FAULT_NEEDDSYNC) 1209 ret = dax_finish_sync_fault(vmf, pe_size, pfn); 1210 } else { 1211 if (write_fault) 1212 ret = iomap_page_mkwrite(vmf, 1213 &xfs_buffered_write_iomap_ops); 1214 else 1215 ret = filemap_fault(vmf); 1216 } 1217 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1218 1219 if (write_fault) 1220 sb_end_pagefault(inode->i_sb); 1221 return ret; 1222 } 1223 1224 static vm_fault_t 1225 xfs_filemap_fault( 1226 struct vm_fault *vmf) 1227 { 1228 /* DAX can shortcut the normal fault path on write faults! */ 1229 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, 1230 IS_DAX(file_inode(vmf->vma->vm_file)) && 1231 (vmf->flags & FAULT_FLAG_WRITE)); 1232 } 1233 1234 static vm_fault_t 1235 xfs_filemap_huge_fault( 1236 struct vm_fault *vmf, 1237 enum page_entry_size pe_size) 1238 { 1239 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1240 return VM_FAULT_FALLBACK; 1241 1242 /* DAX can shortcut the normal fault path on write faults! */ 1243 return __xfs_filemap_fault(vmf, pe_size, 1244 (vmf->flags & FAULT_FLAG_WRITE)); 1245 } 1246 1247 static vm_fault_t 1248 xfs_filemap_page_mkwrite( 1249 struct vm_fault *vmf) 1250 { 1251 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1252 } 1253 1254 /* 1255 * pfn_mkwrite was originally intended to ensure we capture time stamp updates 1256 * on write faults. In reality, it needs to serialise against truncate and 1257 * prepare memory for writing so handle is as standard write fault. 1258 */ 1259 static vm_fault_t 1260 xfs_filemap_pfn_mkwrite( 1261 struct vm_fault *vmf) 1262 { 1263 1264 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1265 } 1266 1267 static const struct vm_operations_struct xfs_file_vm_ops = { 1268 .fault = xfs_filemap_fault, 1269 .huge_fault = xfs_filemap_huge_fault, 1270 .map_pages = filemap_map_pages, 1271 .page_mkwrite = xfs_filemap_page_mkwrite, 1272 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1273 }; 1274 1275 STATIC int 1276 xfs_file_mmap( 1277 struct file *file, 1278 struct vm_area_struct *vma) 1279 { 1280 struct inode *inode = file_inode(file); 1281 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode)); 1282 1283 /* 1284 * We don't support synchronous mappings for non-DAX files and 1285 * for DAX files if underneath dax_device is not synchronous. 1286 */ 1287 if (!daxdev_mapping_supported(vma, target->bt_daxdev)) 1288 return -EOPNOTSUPP; 1289 1290 file_accessed(file); 1291 vma->vm_ops = &xfs_file_vm_ops; 1292 if (IS_DAX(inode)) 1293 vma->vm_flags |= VM_HUGEPAGE; 1294 return 0; 1295 } 1296 1297 const struct file_operations xfs_file_operations = { 1298 .llseek = xfs_file_llseek, 1299 .read_iter = xfs_file_read_iter, 1300 .write_iter = xfs_file_write_iter, 1301 .splice_read = generic_file_splice_read, 1302 .splice_write = iter_file_splice_write, 1303 .iopoll = iomap_dio_iopoll, 1304 .unlocked_ioctl = xfs_file_ioctl, 1305 #ifdef CONFIG_COMPAT 1306 .compat_ioctl = xfs_file_compat_ioctl, 1307 #endif 1308 .mmap = xfs_file_mmap, 1309 .mmap_supported_flags = MAP_SYNC, 1310 .open = xfs_file_open, 1311 .release = xfs_file_release, 1312 .fsync = xfs_file_fsync, 1313 .get_unmapped_area = thp_get_unmapped_area, 1314 .fallocate = xfs_file_fallocate, 1315 .fadvise = xfs_file_fadvise, 1316 .remap_file_range = xfs_file_remap_range, 1317 }; 1318 1319 const struct file_operations xfs_dir_file_operations = { 1320 .open = xfs_dir_open, 1321 .read = generic_read_dir, 1322 .iterate_shared = xfs_file_readdir, 1323 .llseek = generic_file_llseek, 1324 .unlocked_ioctl = xfs_file_ioctl, 1325 #ifdef CONFIG_COMPAT 1326 .compat_ioctl = xfs_file_compat_ioctl, 1327 #endif 1328 .fsync = xfs_dir_fsync, 1329 }; 1330