1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_log.h" 21 #include "xfs_sb.h" 22 #include "xfs_ag.h" 23 #include "xfs_trans.h" 24 #include "xfs_mount.h" 25 #include "xfs_bmap_btree.h" 26 #include "xfs_alloc.h" 27 #include "xfs_dinode.h" 28 #include "xfs_inode.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_error.h" 32 #include "xfs_vnodeops.h" 33 #include "xfs_da_btree.h" 34 #include "xfs_dir2_format.h" 35 #include "xfs_dir2_priv.h" 36 #include "xfs_ioctl.h" 37 #include "xfs_trace.h" 38 39 #include <linux/dcache.h> 40 #include <linux/falloc.h> 41 #include <linux/pagevec.h> 42 43 static const struct vm_operations_struct xfs_file_vm_ops; 44 45 /* 46 * Locking primitives for read and write IO paths to ensure we consistently use 47 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 48 */ 49 static inline void 50 xfs_rw_ilock( 51 struct xfs_inode *ip, 52 int type) 53 { 54 if (type & XFS_IOLOCK_EXCL) 55 mutex_lock(&VFS_I(ip)->i_mutex); 56 xfs_ilock(ip, type); 57 } 58 59 static inline void 60 xfs_rw_iunlock( 61 struct xfs_inode *ip, 62 int type) 63 { 64 xfs_iunlock(ip, type); 65 if (type & XFS_IOLOCK_EXCL) 66 mutex_unlock(&VFS_I(ip)->i_mutex); 67 } 68 69 static inline void 70 xfs_rw_ilock_demote( 71 struct xfs_inode *ip, 72 int type) 73 { 74 xfs_ilock_demote(ip, type); 75 if (type & XFS_IOLOCK_EXCL) 76 mutex_unlock(&VFS_I(ip)->i_mutex); 77 } 78 79 /* 80 * xfs_iozero 81 * 82 * xfs_iozero clears the specified range of buffer supplied, 83 * and marks all the affected blocks as valid and modified. If 84 * an affected block is not allocated, it will be allocated. If 85 * an affected block is not completely overwritten, and is not 86 * valid before the operation, it will be read from disk before 87 * being partially zeroed. 88 */ 89 int 90 xfs_iozero( 91 struct xfs_inode *ip, /* inode */ 92 loff_t pos, /* offset in file */ 93 size_t count) /* size of data to zero */ 94 { 95 struct page *page; 96 struct address_space *mapping; 97 int status; 98 99 mapping = VFS_I(ip)->i_mapping; 100 do { 101 unsigned offset, bytes; 102 void *fsdata; 103 104 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 105 bytes = PAGE_CACHE_SIZE - offset; 106 if (bytes > count) 107 bytes = count; 108 109 status = pagecache_write_begin(NULL, mapping, pos, bytes, 110 AOP_FLAG_UNINTERRUPTIBLE, 111 &page, &fsdata); 112 if (status) 113 break; 114 115 zero_user(page, offset, bytes); 116 117 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes, 118 page, fsdata); 119 WARN_ON(status <= 0); /* can't return less than zero! */ 120 pos += bytes; 121 count -= bytes; 122 status = 0; 123 } while (count); 124 125 return (-status); 126 } 127 128 /* 129 * Fsync operations on directories are much simpler than on regular files, 130 * as there is no file data to flush, and thus also no need for explicit 131 * cache flush operations, and there are no non-transaction metadata updates 132 * on directories either. 133 */ 134 STATIC int 135 xfs_dir_fsync( 136 struct file *file, 137 loff_t start, 138 loff_t end, 139 int datasync) 140 { 141 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 142 struct xfs_mount *mp = ip->i_mount; 143 xfs_lsn_t lsn = 0; 144 145 trace_xfs_dir_fsync(ip); 146 147 xfs_ilock(ip, XFS_ILOCK_SHARED); 148 if (xfs_ipincount(ip)) 149 lsn = ip->i_itemp->ili_last_lsn; 150 xfs_iunlock(ip, XFS_ILOCK_SHARED); 151 152 if (!lsn) 153 return 0; 154 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 155 } 156 157 STATIC int 158 xfs_file_fsync( 159 struct file *file, 160 loff_t start, 161 loff_t end, 162 int datasync) 163 { 164 struct inode *inode = file->f_mapping->host; 165 struct xfs_inode *ip = XFS_I(inode); 166 struct xfs_mount *mp = ip->i_mount; 167 int error = 0; 168 int log_flushed = 0; 169 xfs_lsn_t lsn = 0; 170 171 trace_xfs_file_fsync(ip); 172 173 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 174 if (error) 175 return error; 176 177 if (XFS_FORCED_SHUTDOWN(mp)) 178 return -XFS_ERROR(EIO); 179 180 xfs_iflags_clear(ip, XFS_ITRUNCATED); 181 182 if (mp->m_flags & XFS_MOUNT_BARRIER) { 183 /* 184 * If we have an RT and/or log subvolume we need to make sure 185 * to flush the write cache the device used for file data 186 * first. This is to ensure newly written file data make 187 * it to disk before logging the new inode size in case of 188 * an extending write. 189 */ 190 if (XFS_IS_REALTIME_INODE(ip)) 191 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 192 else if (mp->m_logdev_targp != mp->m_ddev_targp) 193 xfs_blkdev_issue_flush(mp->m_ddev_targp); 194 } 195 196 /* 197 * All metadata updates are logged, which means that we just have 198 * to flush the log up to the latest LSN that touched the inode. 199 */ 200 xfs_ilock(ip, XFS_ILOCK_SHARED); 201 if (xfs_ipincount(ip)) { 202 if (!datasync || 203 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP)) 204 lsn = ip->i_itemp->ili_last_lsn; 205 } 206 xfs_iunlock(ip, XFS_ILOCK_SHARED); 207 208 if (lsn) 209 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 210 211 /* 212 * If we only have a single device, and the log force about was 213 * a no-op we might have to flush the data device cache here. 214 * This can only happen for fdatasync/O_DSYNC if we were overwriting 215 * an already allocated file and thus do not have any metadata to 216 * commit. 217 */ 218 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 219 mp->m_logdev_targp == mp->m_ddev_targp && 220 !XFS_IS_REALTIME_INODE(ip) && 221 !log_flushed) 222 xfs_blkdev_issue_flush(mp->m_ddev_targp); 223 224 return -error; 225 } 226 227 STATIC ssize_t 228 xfs_file_aio_read( 229 struct kiocb *iocb, 230 const struct iovec *iovp, 231 unsigned long nr_segs, 232 loff_t pos) 233 { 234 struct file *file = iocb->ki_filp; 235 struct inode *inode = file->f_mapping->host; 236 struct xfs_inode *ip = XFS_I(inode); 237 struct xfs_mount *mp = ip->i_mount; 238 size_t size = 0; 239 ssize_t ret = 0; 240 int ioflags = 0; 241 xfs_fsize_t n; 242 243 XFS_STATS_INC(xs_read_calls); 244 245 BUG_ON(iocb->ki_pos != pos); 246 247 if (unlikely(file->f_flags & O_DIRECT)) 248 ioflags |= IO_ISDIRECT; 249 if (file->f_mode & FMODE_NOCMTIME) 250 ioflags |= IO_INVIS; 251 252 ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE); 253 if (ret < 0) 254 return ret; 255 256 if (unlikely(ioflags & IO_ISDIRECT)) { 257 xfs_buftarg_t *target = 258 XFS_IS_REALTIME_INODE(ip) ? 259 mp->m_rtdev_targp : mp->m_ddev_targp; 260 if ((pos & target->bt_smask) || (size & target->bt_smask)) { 261 if (pos == i_size_read(inode)) 262 return 0; 263 return -XFS_ERROR(EINVAL); 264 } 265 } 266 267 n = mp->m_super->s_maxbytes - pos; 268 if (n <= 0 || size == 0) 269 return 0; 270 271 if (n < size) 272 size = n; 273 274 if (XFS_FORCED_SHUTDOWN(mp)) 275 return -EIO; 276 277 /* 278 * Locking is a bit tricky here. If we take an exclusive lock 279 * for direct IO, we effectively serialise all new concurrent 280 * read IO to this file and block it behind IO that is currently in 281 * progress because IO in progress holds the IO lock shared. We only 282 * need to hold the lock exclusive to blow away the page cache, so 283 * only take lock exclusively if the page cache needs invalidation. 284 * This allows the normal direct IO case of no page cache pages to 285 * proceeed concurrently without serialisation. 286 */ 287 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 288 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) { 289 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 290 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 291 292 if (inode->i_mapping->nrpages) { 293 ret = -filemap_write_and_wait_range( 294 VFS_I(ip)->i_mapping, 295 pos, -1); 296 if (ret) { 297 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 298 return ret; 299 } 300 truncate_pagecache_range(VFS_I(ip), pos, -1); 301 } 302 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 303 } 304 305 trace_xfs_file_read(ip, size, pos, ioflags); 306 307 ret = generic_file_aio_read(iocb, iovp, nr_segs, pos); 308 if (ret > 0) 309 XFS_STATS_ADD(xs_read_bytes, ret); 310 311 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 312 return ret; 313 } 314 315 STATIC ssize_t 316 xfs_file_splice_read( 317 struct file *infilp, 318 loff_t *ppos, 319 struct pipe_inode_info *pipe, 320 size_t count, 321 unsigned int flags) 322 { 323 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 324 int ioflags = 0; 325 ssize_t ret; 326 327 XFS_STATS_INC(xs_read_calls); 328 329 if (infilp->f_mode & FMODE_NOCMTIME) 330 ioflags |= IO_INVIS; 331 332 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 333 return -EIO; 334 335 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 336 337 trace_xfs_file_splice_read(ip, count, *ppos, ioflags); 338 339 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 340 if (ret > 0) 341 XFS_STATS_ADD(xs_read_bytes, ret); 342 343 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 344 return ret; 345 } 346 347 /* 348 * xfs_file_splice_write() does not use xfs_rw_ilock() because 349 * generic_file_splice_write() takes the i_mutex itself. This, in theory, 350 * couuld cause lock inversions between the aio_write path and the splice path 351 * if someone is doing concurrent splice(2) based writes and write(2) based 352 * writes to the same inode. The only real way to fix this is to re-implement 353 * the generic code here with correct locking orders. 354 */ 355 STATIC ssize_t 356 xfs_file_splice_write( 357 struct pipe_inode_info *pipe, 358 struct file *outfilp, 359 loff_t *ppos, 360 size_t count, 361 unsigned int flags) 362 { 363 struct inode *inode = outfilp->f_mapping->host; 364 struct xfs_inode *ip = XFS_I(inode); 365 int ioflags = 0; 366 ssize_t ret; 367 368 XFS_STATS_INC(xs_write_calls); 369 370 if (outfilp->f_mode & FMODE_NOCMTIME) 371 ioflags |= IO_INVIS; 372 373 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 374 return -EIO; 375 376 xfs_ilock(ip, XFS_IOLOCK_EXCL); 377 378 trace_xfs_file_splice_write(ip, count, *ppos, ioflags); 379 380 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags); 381 if (ret > 0) 382 XFS_STATS_ADD(xs_write_bytes, ret); 383 384 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 385 return ret; 386 } 387 388 /* 389 * This routine is called to handle zeroing any space in the last block of the 390 * file that is beyond the EOF. We do this since the size is being increased 391 * without writing anything to that block and we don't want to read the 392 * garbage on the disk. 393 */ 394 STATIC int /* error (positive) */ 395 xfs_zero_last_block( 396 struct xfs_inode *ip, 397 xfs_fsize_t offset, 398 xfs_fsize_t isize) 399 { 400 struct xfs_mount *mp = ip->i_mount; 401 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize); 402 int zero_offset = XFS_B_FSB_OFFSET(mp, isize); 403 int zero_len; 404 int nimaps = 1; 405 int error = 0; 406 struct xfs_bmbt_irec imap; 407 408 xfs_ilock(ip, XFS_ILOCK_EXCL); 409 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); 410 xfs_iunlock(ip, XFS_ILOCK_EXCL); 411 if (error) 412 return error; 413 414 ASSERT(nimaps > 0); 415 416 /* 417 * If the block underlying isize is just a hole, then there 418 * is nothing to zero. 419 */ 420 if (imap.br_startblock == HOLESTARTBLOCK) 421 return 0; 422 423 zero_len = mp->m_sb.sb_blocksize - zero_offset; 424 if (isize + zero_len > offset) 425 zero_len = offset - isize; 426 return xfs_iozero(ip, isize, zero_len); 427 } 428 429 /* 430 * Zero any on disk space between the current EOF and the new, larger EOF. 431 * 432 * This handles the normal case of zeroing the remainder of the last block in 433 * the file and the unusual case of zeroing blocks out beyond the size of the 434 * file. This second case only happens with fixed size extents and when the 435 * system crashes before the inode size was updated but after blocks were 436 * allocated. 437 * 438 * Expects the iolock to be held exclusive, and will take the ilock internally. 439 */ 440 int /* error (positive) */ 441 xfs_zero_eof( 442 struct xfs_inode *ip, 443 xfs_off_t offset, /* starting I/O offset */ 444 xfs_fsize_t isize) /* current inode size */ 445 { 446 struct xfs_mount *mp = ip->i_mount; 447 xfs_fileoff_t start_zero_fsb; 448 xfs_fileoff_t end_zero_fsb; 449 xfs_fileoff_t zero_count_fsb; 450 xfs_fileoff_t last_fsb; 451 xfs_fileoff_t zero_off; 452 xfs_fsize_t zero_len; 453 int nimaps; 454 int error = 0; 455 struct xfs_bmbt_irec imap; 456 457 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 458 ASSERT(offset > isize); 459 460 /* 461 * First handle zeroing the block on which isize resides. 462 * 463 * We only zero a part of that block so it is handled specially. 464 */ 465 if (XFS_B_FSB_OFFSET(mp, isize) != 0) { 466 error = xfs_zero_last_block(ip, offset, isize); 467 if (error) 468 return error; 469 } 470 471 /* 472 * Calculate the range between the new size and the old where blocks 473 * needing to be zeroed may exist. 474 * 475 * To get the block where the last byte in the file currently resides, 476 * we need to subtract one from the size and truncate back to a block 477 * boundary. We subtract 1 in case the size is exactly on a block 478 * boundary. 479 */ 480 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; 481 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 482 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); 483 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); 484 if (last_fsb == end_zero_fsb) { 485 /* 486 * The size was only incremented on its last block. 487 * We took care of that above, so just return. 488 */ 489 return 0; 490 } 491 492 ASSERT(start_zero_fsb <= end_zero_fsb); 493 while (start_zero_fsb <= end_zero_fsb) { 494 nimaps = 1; 495 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; 496 497 xfs_ilock(ip, XFS_ILOCK_EXCL); 498 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, 499 &imap, &nimaps, 0); 500 xfs_iunlock(ip, XFS_ILOCK_EXCL); 501 if (error) 502 return error; 503 504 ASSERT(nimaps > 0); 505 506 if (imap.br_state == XFS_EXT_UNWRITTEN || 507 imap.br_startblock == HOLESTARTBLOCK) { 508 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 509 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 510 continue; 511 } 512 513 /* 514 * There are blocks we need to zero. 515 */ 516 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); 517 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); 518 519 if ((zero_off + zero_len) > offset) 520 zero_len = offset - zero_off; 521 522 error = xfs_iozero(ip, zero_off, zero_len); 523 if (error) 524 return error; 525 526 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 527 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 528 } 529 530 return 0; 531 } 532 533 /* 534 * Common pre-write limit and setup checks. 535 * 536 * Called with the iolocked held either shared and exclusive according to 537 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 538 * if called for a direct write beyond i_size. 539 */ 540 STATIC ssize_t 541 xfs_file_aio_write_checks( 542 struct file *file, 543 loff_t *pos, 544 size_t *count, 545 int *iolock) 546 { 547 struct inode *inode = file->f_mapping->host; 548 struct xfs_inode *ip = XFS_I(inode); 549 int error = 0; 550 551 restart: 552 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode)); 553 if (error) 554 return error; 555 556 /* 557 * If the offset is beyond the size of the file, we need to zero any 558 * blocks that fall between the existing EOF and the start of this 559 * write. If zeroing is needed and we are currently holding the 560 * iolock shared, we need to update it to exclusive which implies 561 * having to redo all checks before. 562 */ 563 if (*pos > i_size_read(inode)) { 564 if (*iolock == XFS_IOLOCK_SHARED) { 565 xfs_rw_iunlock(ip, *iolock); 566 *iolock = XFS_IOLOCK_EXCL; 567 xfs_rw_ilock(ip, *iolock); 568 goto restart; 569 } 570 error = -xfs_zero_eof(ip, *pos, i_size_read(inode)); 571 if (error) 572 return error; 573 } 574 575 /* 576 * Updating the timestamps will grab the ilock again from 577 * xfs_fs_dirty_inode, so we have to call it after dropping the 578 * lock above. Eventually we should look into a way to avoid 579 * the pointless lock roundtrip. 580 */ 581 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 582 error = file_update_time(file); 583 if (error) 584 return error; 585 } 586 587 /* 588 * If we're writing the file then make sure to clear the setuid and 589 * setgid bits if the process is not being run by root. This keeps 590 * people from modifying setuid and setgid binaries. 591 */ 592 return file_remove_suid(file); 593 } 594 595 /* 596 * xfs_file_dio_aio_write - handle direct IO writes 597 * 598 * Lock the inode appropriately to prepare for and issue a direct IO write. 599 * By separating it from the buffered write path we remove all the tricky to 600 * follow locking changes and looping. 601 * 602 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 603 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 604 * pages are flushed out. 605 * 606 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 607 * allowing them to be done in parallel with reads and other direct IO writes. 608 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 609 * needs to do sub-block zeroing and that requires serialisation against other 610 * direct IOs to the same block. In this case we need to serialise the 611 * submission of the unaligned IOs so that we don't get racing block zeroing in 612 * the dio layer. To avoid the problem with aio, we also need to wait for 613 * outstanding IOs to complete so that unwritten extent conversion is completed 614 * before we try to map the overlapping block. This is currently implemented by 615 * hitting it with a big hammer (i.e. inode_dio_wait()). 616 * 617 * Returns with locks held indicated by @iolock and errors indicated by 618 * negative return values. 619 */ 620 STATIC ssize_t 621 xfs_file_dio_aio_write( 622 struct kiocb *iocb, 623 const struct iovec *iovp, 624 unsigned long nr_segs, 625 loff_t pos, 626 size_t ocount) 627 { 628 struct file *file = iocb->ki_filp; 629 struct address_space *mapping = file->f_mapping; 630 struct inode *inode = mapping->host; 631 struct xfs_inode *ip = XFS_I(inode); 632 struct xfs_mount *mp = ip->i_mount; 633 ssize_t ret = 0; 634 size_t count = ocount; 635 int unaligned_io = 0; 636 int iolock; 637 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 638 mp->m_rtdev_targp : mp->m_ddev_targp; 639 640 if ((pos & target->bt_smask) || (count & target->bt_smask)) 641 return -XFS_ERROR(EINVAL); 642 643 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) 644 unaligned_io = 1; 645 646 /* 647 * We don't need to take an exclusive lock unless there page cache needs 648 * to be invalidated or unaligned IO is being executed. We don't need to 649 * consider the EOF extension case here because 650 * xfs_file_aio_write_checks() will relock the inode as necessary for 651 * EOF zeroing cases and fill out the new inode size as appropriate. 652 */ 653 if (unaligned_io || mapping->nrpages) 654 iolock = XFS_IOLOCK_EXCL; 655 else 656 iolock = XFS_IOLOCK_SHARED; 657 xfs_rw_ilock(ip, iolock); 658 659 /* 660 * Recheck if there are cached pages that need invalidate after we got 661 * the iolock to protect against other threads adding new pages while 662 * we were waiting for the iolock. 663 */ 664 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 665 xfs_rw_iunlock(ip, iolock); 666 iolock = XFS_IOLOCK_EXCL; 667 xfs_rw_ilock(ip, iolock); 668 } 669 670 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 671 if (ret) 672 goto out; 673 674 if (mapping->nrpages) { 675 ret = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 676 pos, -1); 677 if (ret) 678 goto out; 679 truncate_pagecache_range(VFS_I(ip), pos, -1); 680 } 681 682 /* 683 * If we are doing unaligned IO, wait for all other IO to drain, 684 * otherwise demote the lock if we had to flush cached pages 685 */ 686 if (unaligned_io) 687 inode_dio_wait(inode); 688 else if (iolock == XFS_IOLOCK_EXCL) { 689 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 690 iolock = XFS_IOLOCK_SHARED; 691 } 692 693 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); 694 ret = generic_file_direct_write(iocb, iovp, 695 &nr_segs, pos, &iocb->ki_pos, count, ocount); 696 697 out: 698 xfs_rw_iunlock(ip, iolock); 699 700 /* No fallback to buffered IO on errors for XFS. */ 701 ASSERT(ret < 0 || ret == count); 702 return ret; 703 } 704 705 STATIC ssize_t 706 xfs_file_buffered_aio_write( 707 struct kiocb *iocb, 708 const struct iovec *iovp, 709 unsigned long nr_segs, 710 loff_t pos, 711 size_t ocount) 712 { 713 struct file *file = iocb->ki_filp; 714 struct address_space *mapping = file->f_mapping; 715 struct inode *inode = mapping->host; 716 struct xfs_inode *ip = XFS_I(inode); 717 ssize_t ret; 718 int enospc = 0; 719 int iolock = XFS_IOLOCK_EXCL; 720 size_t count = ocount; 721 722 xfs_rw_ilock(ip, iolock); 723 724 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 725 if (ret) 726 goto out; 727 728 /* We can write back this queue in page reclaim */ 729 current->backing_dev_info = mapping->backing_dev_info; 730 731 write_retry: 732 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0); 733 ret = generic_file_buffered_write(iocb, iovp, nr_segs, 734 pos, &iocb->ki_pos, count, 0); 735 736 /* 737 * If we just got an ENOSPC, try to write back all dirty inodes to 738 * convert delalloc space to free up some of the excess reserved 739 * metadata space. 740 */ 741 if (ret == -ENOSPC && !enospc) { 742 enospc = 1; 743 xfs_flush_inodes(ip->i_mount); 744 goto write_retry; 745 } 746 747 current->backing_dev_info = NULL; 748 out: 749 xfs_rw_iunlock(ip, iolock); 750 return ret; 751 } 752 753 STATIC ssize_t 754 xfs_file_aio_write( 755 struct kiocb *iocb, 756 const struct iovec *iovp, 757 unsigned long nr_segs, 758 loff_t pos) 759 { 760 struct file *file = iocb->ki_filp; 761 struct address_space *mapping = file->f_mapping; 762 struct inode *inode = mapping->host; 763 struct xfs_inode *ip = XFS_I(inode); 764 ssize_t ret; 765 size_t ocount = 0; 766 767 XFS_STATS_INC(xs_write_calls); 768 769 BUG_ON(iocb->ki_pos != pos); 770 771 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ); 772 if (ret) 773 return ret; 774 775 if (ocount == 0) 776 return 0; 777 778 sb_start_write(inode->i_sb); 779 780 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 781 ret = -EIO; 782 goto out; 783 } 784 785 if (unlikely(file->f_flags & O_DIRECT)) 786 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount); 787 else 788 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos, 789 ocount); 790 791 if (ret > 0) { 792 ssize_t err; 793 794 XFS_STATS_ADD(xs_write_bytes, ret); 795 796 /* Handle various SYNC-type writes */ 797 err = generic_write_sync(file, pos, ret); 798 if (err < 0) 799 ret = err; 800 } 801 802 out: 803 sb_end_write(inode->i_sb); 804 return ret; 805 } 806 807 STATIC long 808 xfs_file_fallocate( 809 struct file *file, 810 int mode, 811 loff_t offset, 812 loff_t len) 813 { 814 struct inode *inode = file->f_path.dentry->d_inode; 815 long error; 816 loff_t new_size = 0; 817 xfs_flock64_t bf; 818 xfs_inode_t *ip = XFS_I(inode); 819 int cmd = XFS_IOC_RESVSP; 820 int attr_flags = XFS_ATTR_NOLOCK; 821 822 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 823 return -EOPNOTSUPP; 824 825 bf.l_whence = 0; 826 bf.l_start = offset; 827 bf.l_len = len; 828 829 xfs_ilock(ip, XFS_IOLOCK_EXCL); 830 831 if (mode & FALLOC_FL_PUNCH_HOLE) 832 cmd = XFS_IOC_UNRESVSP; 833 834 /* check the new inode size is valid before allocating */ 835 if (!(mode & FALLOC_FL_KEEP_SIZE) && 836 offset + len > i_size_read(inode)) { 837 new_size = offset + len; 838 error = inode_newsize_ok(inode, new_size); 839 if (error) 840 goto out_unlock; 841 } 842 843 if (file->f_flags & O_DSYNC) 844 attr_flags |= XFS_ATTR_SYNC; 845 846 error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags); 847 if (error) 848 goto out_unlock; 849 850 /* Change file size if needed */ 851 if (new_size) { 852 struct iattr iattr; 853 854 iattr.ia_valid = ATTR_SIZE; 855 iattr.ia_size = new_size; 856 error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK); 857 } 858 859 out_unlock: 860 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 861 return error; 862 } 863 864 865 STATIC int 866 xfs_file_open( 867 struct inode *inode, 868 struct file *file) 869 { 870 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 871 return -EFBIG; 872 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 873 return -EIO; 874 return 0; 875 } 876 877 STATIC int 878 xfs_dir_open( 879 struct inode *inode, 880 struct file *file) 881 { 882 struct xfs_inode *ip = XFS_I(inode); 883 int mode; 884 int error; 885 886 error = xfs_file_open(inode, file); 887 if (error) 888 return error; 889 890 /* 891 * If there are any blocks, read-ahead block 0 as we're almost 892 * certain to have the next operation be a read there. 893 */ 894 mode = xfs_ilock_map_shared(ip); 895 if (ip->i_d.di_nextents > 0) 896 xfs_dir2_data_readahead(NULL, ip, 0, -1); 897 xfs_iunlock(ip, mode); 898 return 0; 899 } 900 901 STATIC int 902 xfs_file_release( 903 struct inode *inode, 904 struct file *filp) 905 { 906 return -xfs_release(XFS_I(inode)); 907 } 908 909 STATIC int 910 xfs_file_readdir( 911 struct file *filp, 912 void *dirent, 913 filldir_t filldir) 914 { 915 struct inode *inode = filp->f_path.dentry->d_inode; 916 xfs_inode_t *ip = XFS_I(inode); 917 int error; 918 size_t bufsize; 919 920 /* 921 * The Linux API doesn't pass down the total size of the buffer 922 * we read into down to the filesystem. With the filldir concept 923 * it's not needed for correct information, but the XFS dir2 leaf 924 * code wants an estimate of the buffer size to calculate it's 925 * readahead window and size the buffers used for mapping to 926 * physical blocks. 927 * 928 * Try to give it an estimate that's good enough, maybe at some 929 * point we can change the ->readdir prototype to include the 930 * buffer size. For now we use the current glibc buffer size. 931 */ 932 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 933 934 error = xfs_readdir(ip, dirent, bufsize, 935 (xfs_off_t *)&filp->f_pos, filldir); 936 if (error) 937 return -error; 938 return 0; 939 } 940 941 STATIC int 942 xfs_file_mmap( 943 struct file *filp, 944 struct vm_area_struct *vma) 945 { 946 vma->vm_ops = &xfs_file_vm_ops; 947 948 file_accessed(filp); 949 return 0; 950 } 951 952 /* 953 * mmap()d file has taken write protection fault and is being made 954 * writable. We can set the page state up correctly for a writable 955 * page, which means we can do correct delalloc accounting (ENOSPC 956 * checking!) and unwritten extent mapping. 957 */ 958 STATIC int 959 xfs_vm_page_mkwrite( 960 struct vm_area_struct *vma, 961 struct vm_fault *vmf) 962 { 963 return block_page_mkwrite(vma, vmf, xfs_get_blocks); 964 } 965 966 /* 967 * This type is designed to indicate the type of offset we would like 968 * to search from page cache for either xfs_seek_data() or xfs_seek_hole(). 969 */ 970 enum { 971 HOLE_OFF = 0, 972 DATA_OFF, 973 }; 974 975 /* 976 * Lookup the desired type of offset from the given page. 977 * 978 * On success, return true and the offset argument will point to the 979 * start of the region that was found. Otherwise this function will 980 * return false and keep the offset argument unchanged. 981 */ 982 STATIC bool 983 xfs_lookup_buffer_offset( 984 struct page *page, 985 loff_t *offset, 986 unsigned int type) 987 { 988 loff_t lastoff = page_offset(page); 989 bool found = false; 990 struct buffer_head *bh, *head; 991 992 bh = head = page_buffers(page); 993 do { 994 /* 995 * Unwritten extents that have data in the page 996 * cache covering them can be identified by the 997 * BH_Unwritten state flag. Pages with multiple 998 * buffers might have a mix of holes, data and 999 * unwritten extents - any buffer with valid 1000 * data in it should have BH_Uptodate flag set 1001 * on it. 1002 */ 1003 if (buffer_unwritten(bh) || 1004 buffer_uptodate(bh)) { 1005 if (type == DATA_OFF) 1006 found = true; 1007 } else { 1008 if (type == HOLE_OFF) 1009 found = true; 1010 } 1011 1012 if (found) { 1013 *offset = lastoff; 1014 break; 1015 } 1016 lastoff += bh->b_size; 1017 } while ((bh = bh->b_this_page) != head); 1018 1019 return found; 1020 } 1021 1022 /* 1023 * This routine is called to find out and return a data or hole offset 1024 * from the page cache for unwritten extents according to the desired 1025 * type for xfs_seek_data() or xfs_seek_hole(). 1026 * 1027 * The argument offset is used to tell where we start to search from the 1028 * page cache. Map is used to figure out the end points of the range to 1029 * lookup pages. 1030 * 1031 * Return true if the desired type of offset was found, and the argument 1032 * offset is filled with that address. Otherwise, return false and keep 1033 * offset unchanged. 1034 */ 1035 STATIC bool 1036 xfs_find_get_desired_pgoff( 1037 struct inode *inode, 1038 struct xfs_bmbt_irec *map, 1039 unsigned int type, 1040 loff_t *offset) 1041 { 1042 struct xfs_inode *ip = XFS_I(inode); 1043 struct xfs_mount *mp = ip->i_mount; 1044 struct pagevec pvec; 1045 pgoff_t index; 1046 pgoff_t end; 1047 loff_t endoff; 1048 loff_t startoff = *offset; 1049 loff_t lastoff = startoff; 1050 bool found = false; 1051 1052 pagevec_init(&pvec, 0); 1053 1054 index = startoff >> PAGE_CACHE_SHIFT; 1055 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1056 end = endoff >> PAGE_CACHE_SHIFT; 1057 do { 1058 int want; 1059 unsigned nr_pages; 1060 unsigned int i; 1061 1062 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1063 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1064 want); 1065 /* 1066 * No page mapped into given range. If we are searching holes 1067 * and if this is the first time we got into the loop, it means 1068 * that the given offset is landed in a hole, return it. 1069 * 1070 * If we have already stepped through some block buffers to find 1071 * holes but they all contains data. In this case, the last 1072 * offset is already updated and pointed to the end of the last 1073 * mapped page, if it does not reach the endpoint to search, 1074 * that means there should be a hole between them. 1075 */ 1076 if (nr_pages == 0) { 1077 /* Data search found nothing */ 1078 if (type == DATA_OFF) 1079 break; 1080 1081 ASSERT(type == HOLE_OFF); 1082 if (lastoff == startoff || lastoff < endoff) { 1083 found = true; 1084 *offset = lastoff; 1085 } 1086 break; 1087 } 1088 1089 /* 1090 * At lease we found one page. If this is the first time we 1091 * step into the loop, and if the first page index offset is 1092 * greater than the given search offset, a hole was found. 1093 */ 1094 if (type == HOLE_OFF && lastoff == startoff && 1095 lastoff < page_offset(pvec.pages[0])) { 1096 found = true; 1097 break; 1098 } 1099 1100 for (i = 0; i < nr_pages; i++) { 1101 struct page *page = pvec.pages[i]; 1102 loff_t b_offset; 1103 1104 /* 1105 * At this point, the page may be truncated or 1106 * invalidated (changing page->mapping to NULL), 1107 * or even swizzled back from swapper_space to tmpfs 1108 * file mapping. However, page->index will not change 1109 * because we have a reference on the page. 1110 * 1111 * Searching done if the page index is out of range. 1112 * If the current offset is not reaches the end of 1113 * the specified search range, there should be a hole 1114 * between them. 1115 */ 1116 if (page->index > end) { 1117 if (type == HOLE_OFF && lastoff < endoff) { 1118 *offset = lastoff; 1119 found = true; 1120 } 1121 goto out; 1122 } 1123 1124 lock_page(page); 1125 /* 1126 * Page truncated or invalidated(page->mapping == NULL). 1127 * We can freely skip it and proceed to check the next 1128 * page. 1129 */ 1130 if (unlikely(page->mapping != inode->i_mapping)) { 1131 unlock_page(page); 1132 continue; 1133 } 1134 1135 if (!page_has_buffers(page)) { 1136 unlock_page(page); 1137 continue; 1138 } 1139 1140 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1141 if (found) { 1142 /* 1143 * The found offset may be less than the start 1144 * point to search if this is the first time to 1145 * come here. 1146 */ 1147 *offset = max_t(loff_t, startoff, b_offset); 1148 unlock_page(page); 1149 goto out; 1150 } 1151 1152 /* 1153 * We either searching data but nothing was found, or 1154 * searching hole but found a data buffer. In either 1155 * case, probably the next page contains the desired 1156 * things, update the last offset to it so. 1157 */ 1158 lastoff = page_offset(page) + PAGE_SIZE; 1159 unlock_page(page); 1160 } 1161 1162 /* 1163 * The number of returned pages less than our desired, search 1164 * done. In this case, nothing was found for searching data, 1165 * but we found a hole behind the last offset. 1166 */ 1167 if (nr_pages < want) { 1168 if (type == HOLE_OFF) { 1169 *offset = lastoff; 1170 found = true; 1171 } 1172 break; 1173 } 1174 1175 index = pvec.pages[i - 1]->index + 1; 1176 pagevec_release(&pvec); 1177 } while (index <= end); 1178 1179 out: 1180 pagevec_release(&pvec); 1181 return found; 1182 } 1183 1184 STATIC loff_t 1185 xfs_seek_data( 1186 struct file *file, 1187 loff_t start) 1188 { 1189 struct inode *inode = file->f_mapping->host; 1190 struct xfs_inode *ip = XFS_I(inode); 1191 struct xfs_mount *mp = ip->i_mount; 1192 loff_t uninitialized_var(offset); 1193 xfs_fsize_t isize; 1194 xfs_fileoff_t fsbno; 1195 xfs_filblks_t end; 1196 uint lock; 1197 int error; 1198 1199 lock = xfs_ilock_map_shared(ip); 1200 1201 isize = i_size_read(inode); 1202 if (start >= isize) { 1203 error = ENXIO; 1204 goto out_unlock; 1205 } 1206 1207 /* 1208 * Try to read extents from the first block indicated 1209 * by fsbno to the end block of the file. 1210 */ 1211 fsbno = XFS_B_TO_FSBT(mp, start); 1212 end = XFS_B_TO_FSB(mp, isize); 1213 for (;;) { 1214 struct xfs_bmbt_irec map[2]; 1215 int nmap = 2; 1216 unsigned int i; 1217 1218 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1219 XFS_BMAPI_ENTIRE); 1220 if (error) 1221 goto out_unlock; 1222 1223 /* No extents at given offset, must be beyond EOF */ 1224 if (nmap == 0) { 1225 error = ENXIO; 1226 goto out_unlock; 1227 } 1228 1229 for (i = 0; i < nmap; i++) { 1230 offset = max_t(loff_t, start, 1231 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1232 1233 /* Landed in a data extent */ 1234 if (map[i].br_startblock == DELAYSTARTBLOCK || 1235 (map[i].br_state == XFS_EXT_NORM && 1236 !isnullstartblock(map[i].br_startblock))) 1237 goto out; 1238 1239 /* 1240 * Landed in an unwritten extent, try to search data 1241 * from page cache. 1242 */ 1243 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1244 if (xfs_find_get_desired_pgoff(inode, &map[i], 1245 DATA_OFF, &offset)) 1246 goto out; 1247 } 1248 } 1249 1250 /* 1251 * map[0] is hole or its an unwritten extent but 1252 * without data in page cache. Probably means that 1253 * we are reading after EOF if nothing in map[1]. 1254 */ 1255 if (nmap == 1) { 1256 error = ENXIO; 1257 goto out_unlock; 1258 } 1259 1260 ASSERT(i > 1); 1261 1262 /* 1263 * Nothing was found, proceed to the next round of search 1264 * if reading offset not beyond or hit EOF. 1265 */ 1266 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1267 start = XFS_FSB_TO_B(mp, fsbno); 1268 if (start >= isize) { 1269 error = ENXIO; 1270 goto out_unlock; 1271 } 1272 } 1273 1274 out: 1275 if (offset != file->f_pos) 1276 file->f_pos = offset; 1277 1278 out_unlock: 1279 xfs_iunlock_map_shared(ip, lock); 1280 1281 if (error) 1282 return -error; 1283 return offset; 1284 } 1285 1286 STATIC loff_t 1287 xfs_seek_hole( 1288 struct file *file, 1289 loff_t start) 1290 { 1291 struct inode *inode = file->f_mapping->host; 1292 struct xfs_inode *ip = XFS_I(inode); 1293 struct xfs_mount *mp = ip->i_mount; 1294 loff_t uninitialized_var(offset); 1295 xfs_fsize_t isize; 1296 xfs_fileoff_t fsbno; 1297 xfs_filblks_t end; 1298 uint lock; 1299 int error; 1300 1301 if (XFS_FORCED_SHUTDOWN(mp)) 1302 return -XFS_ERROR(EIO); 1303 1304 lock = xfs_ilock_map_shared(ip); 1305 1306 isize = i_size_read(inode); 1307 if (start >= isize) { 1308 error = ENXIO; 1309 goto out_unlock; 1310 } 1311 1312 fsbno = XFS_B_TO_FSBT(mp, start); 1313 end = XFS_B_TO_FSB(mp, isize); 1314 1315 for (;;) { 1316 struct xfs_bmbt_irec map[2]; 1317 int nmap = 2; 1318 unsigned int i; 1319 1320 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1321 XFS_BMAPI_ENTIRE); 1322 if (error) 1323 goto out_unlock; 1324 1325 /* No extents at given offset, must be beyond EOF */ 1326 if (nmap == 0) { 1327 error = ENXIO; 1328 goto out_unlock; 1329 } 1330 1331 for (i = 0; i < nmap; i++) { 1332 offset = max_t(loff_t, start, 1333 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1334 1335 /* Landed in a hole */ 1336 if (map[i].br_startblock == HOLESTARTBLOCK) 1337 goto out; 1338 1339 /* 1340 * Landed in an unwritten extent, try to search hole 1341 * from page cache. 1342 */ 1343 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1344 if (xfs_find_get_desired_pgoff(inode, &map[i], 1345 HOLE_OFF, &offset)) 1346 goto out; 1347 } 1348 } 1349 1350 /* 1351 * map[0] contains data or its unwritten but contains 1352 * data in page cache, probably means that we are 1353 * reading after EOF. We should fix offset to point 1354 * to the end of the file(i.e., there is an implicit 1355 * hole at the end of any file). 1356 */ 1357 if (nmap == 1) { 1358 offset = isize; 1359 break; 1360 } 1361 1362 ASSERT(i > 1); 1363 1364 /* 1365 * Both mappings contains data, proceed to the next round of 1366 * search if the current reading offset not beyond or hit EOF. 1367 */ 1368 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1369 start = XFS_FSB_TO_B(mp, fsbno); 1370 if (start >= isize) { 1371 offset = isize; 1372 break; 1373 } 1374 } 1375 1376 out: 1377 /* 1378 * At this point, we must have found a hole. However, the returned 1379 * offset may be bigger than the file size as it may be aligned to 1380 * page boundary for unwritten extents, we need to deal with this 1381 * situation in particular. 1382 */ 1383 offset = min_t(loff_t, offset, isize); 1384 if (offset != file->f_pos) 1385 file->f_pos = offset; 1386 1387 out_unlock: 1388 xfs_iunlock_map_shared(ip, lock); 1389 1390 if (error) 1391 return -error; 1392 return offset; 1393 } 1394 1395 STATIC loff_t 1396 xfs_file_llseek( 1397 struct file *file, 1398 loff_t offset, 1399 int origin) 1400 { 1401 switch (origin) { 1402 case SEEK_END: 1403 case SEEK_CUR: 1404 case SEEK_SET: 1405 return generic_file_llseek(file, offset, origin); 1406 case SEEK_DATA: 1407 return xfs_seek_data(file, offset); 1408 case SEEK_HOLE: 1409 return xfs_seek_hole(file, offset); 1410 default: 1411 return -EINVAL; 1412 } 1413 } 1414 1415 const struct file_operations xfs_file_operations = { 1416 .llseek = xfs_file_llseek, 1417 .read = do_sync_read, 1418 .write = do_sync_write, 1419 .aio_read = xfs_file_aio_read, 1420 .aio_write = xfs_file_aio_write, 1421 .splice_read = xfs_file_splice_read, 1422 .splice_write = xfs_file_splice_write, 1423 .unlocked_ioctl = xfs_file_ioctl, 1424 #ifdef CONFIG_COMPAT 1425 .compat_ioctl = xfs_file_compat_ioctl, 1426 #endif 1427 .mmap = xfs_file_mmap, 1428 .open = xfs_file_open, 1429 .release = xfs_file_release, 1430 .fsync = xfs_file_fsync, 1431 .fallocate = xfs_file_fallocate, 1432 }; 1433 1434 const struct file_operations xfs_dir_file_operations = { 1435 .open = xfs_dir_open, 1436 .read = generic_read_dir, 1437 .readdir = xfs_file_readdir, 1438 .llseek = generic_file_llseek, 1439 .unlocked_ioctl = xfs_file_ioctl, 1440 #ifdef CONFIG_COMPAT 1441 .compat_ioctl = xfs_file_compat_ioctl, 1442 #endif 1443 .fsync = xfs_dir_fsync, 1444 }; 1445 1446 static const struct vm_operations_struct xfs_file_vm_ops = { 1447 .fault = filemap_fault, 1448 .page_mkwrite = xfs_vm_page_mkwrite, 1449 .remap_pages = generic_file_remap_pages, 1450 }; 1451