xref: /linux/fs/xfs/xfs_file.c (revision 69fb09f6ccdb2f070557fd1f4c56c4d646694c8e)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 #include "xfs_iomap.h"
41 #include "xfs_reflink.h"
42 
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 #include <linux/backing-dev.h>
47 
48 static const struct vm_operations_struct xfs_file_vm_ops;
49 
50 /*
51  * Clear the specified ranges to zero through either the pagecache or DAX.
52  * Holes and unwritten extents will be left as-is as they already are zeroed.
53  */
54 int
55 xfs_zero_range(
56 	struct xfs_inode	*ip,
57 	xfs_off_t		pos,
58 	xfs_off_t		count,
59 	bool			*did_zero)
60 {
61 	return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
62 }
63 
64 int
65 xfs_update_prealloc_flags(
66 	struct xfs_inode	*ip,
67 	enum xfs_prealloc_flags	flags)
68 {
69 	struct xfs_trans	*tp;
70 	int			error;
71 
72 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
73 			0, 0, 0, &tp);
74 	if (error)
75 		return error;
76 
77 	xfs_ilock(ip, XFS_ILOCK_EXCL);
78 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
79 
80 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
81 		VFS_I(ip)->i_mode &= ~S_ISUID;
82 		if (VFS_I(ip)->i_mode & S_IXGRP)
83 			VFS_I(ip)->i_mode &= ~S_ISGID;
84 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
85 	}
86 
87 	if (flags & XFS_PREALLOC_SET)
88 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
89 	if (flags & XFS_PREALLOC_CLEAR)
90 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
91 
92 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
93 	if (flags & XFS_PREALLOC_SYNC)
94 		xfs_trans_set_sync(tp);
95 	return xfs_trans_commit(tp);
96 }
97 
98 /*
99  * Fsync operations on directories are much simpler than on regular files,
100  * as there is no file data to flush, and thus also no need for explicit
101  * cache flush operations, and there are no non-transaction metadata updates
102  * on directories either.
103  */
104 STATIC int
105 xfs_dir_fsync(
106 	struct file		*file,
107 	loff_t			start,
108 	loff_t			end,
109 	int			datasync)
110 {
111 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
112 	struct xfs_mount	*mp = ip->i_mount;
113 	xfs_lsn_t		lsn = 0;
114 
115 	trace_xfs_dir_fsync(ip);
116 
117 	xfs_ilock(ip, XFS_ILOCK_SHARED);
118 	if (xfs_ipincount(ip))
119 		lsn = ip->i_itemp->ili_last_lsn;
120 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
121 
122 	if (!lsn)
123 		return 0;
124 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
125 }
126 
127 STATIC int
128 xfs_file_fsync(
129 	struct file		*file,
130 	loff_t			start,
131 	loff_t			end,
132 	int			datasync)
133 {
134 	struct inode		*inode = file->f_mapping->host;
135 	struct xfs_inode	*ip = XFS_I(inode);
136 	struct xfs_mount	*mp = ip->i_mount;
137 	int			error = 0;
138 	int			log_flushed = 0;
139 	xfs_lsn_t		lsn = 0;
140 
141 	trace_xfs_file_fsync(ip);
142 
143 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
144 	if (error)
145 		return error;
146 
147 	if (XFS_FORCED_SHUTDOWN(mp))
148 		return -EIO;
149 
150 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
151 
152 	/*
153 	 * If we have an RT and/or log subvolume we need to make sure to flush
154 	 * the write cache the device used for file data first.  This is to
155 	 * ensure newly written file data make it to disk before logging the new
156 	 * inode size in case of an extending write.
157 	 */
158 	if (XFS_IS_REALTIME_INODE(ip))
159 		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
160 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
161 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
162 
163 	/*
164 	 * All metadata updates are logged, which means that we just have to
165 	 * flush the log up to the latest LSN that touched the inode. If we have
166 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
167 	 * log force before we clear the ili_fsync_fields field. This ensures
168 	 * that we don't get a racing sync operation that does not wait for the
169 	 * metadata to hit the journal before returning. If we race with
170 	 * clearing the ili_fsync_fields, then all that will happen is the log
171 	 * force will do nothing as the lsn will already be on disk. We can't
172 	 * race with setting ili_fsync_fields because that is done under
173 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
174 	 * until after the ili_fsync_fields is cleared.
175 	 */
176 	xfs_ilock(ip, XFS_ILOCK_SHARED);
177 	if (xfs_ipincount(ip)) {
178 		if (!datasync ||
179 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
180 			lsn = ip->i_itemp->ili_last_lsn;
181 	}
182 
183 	if (lsn) {
184 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
185 		ip->i_itemp->ili_fsync_fields = 0;
186 	}
187 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
188 
189 	/*
190 	 * If we only have a single device, and the log force about was
191 	 * a no-op we might have to flush the data device cache here.
192 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
193 	 * an already allocated file and thus do not have any metadata to
194 	 * commit.
195 	 */
196 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
197 	    mp->m_logdev_targp == mp->m_ddev_targp)
198 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
199 
200 	return error;
201 }
202 
203 STATIC ssize_t
204 xfs_file_dio_aio_read(
205 	struct kiocb		*iocb,
206 	struct iov_iter		*to)
207 {
208 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
209 	size_t			count = iov_iter_count(to);
210 	ssize_t			ret;
211 
212 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
213 
214 	if (!count)
215 		return 0; /* skip atime */
216 
217 	file_accessed(iocb->ki_filp);
218 
219 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
220 	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
221 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
222 
223 	return ret;
224 }
225 
226 static noinline ssize_t
227 xfs_file_dax_read(
228 	struct kiocb		*iocb,
229 	struct iov_iter		*to)
230 {
231 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
232 	size_t			count = iov_iter_count(to);
233 	ssize_t			ret = 0;
234 
235 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
236 
237 	if (!count)
238 		return 0; /* skip atime */
239 
240 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
241 		if (iocb->ki_flags & IOCB_NOWAIT)
242 			return -EAGAIN;
243 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
244 	}
245 	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
246 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
247 
248 	file_accessed(iocb->ki_filp);
249 	return ret;
250 }
251 
252 STATIC ssize_t
253 xfs_file_buffered_aio_read(
254 	struct kiocb		*iocb,
255 	struct iov_iter		*to)
256 {
257 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
258 	ssize_t			ret;
259 
260 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
261 
262 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
263 	ret = generic_file_read_iter(iocb, to);
264 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
265 
266 	return ret;
267 }
268 
269 STATIC ssize_t
270 xfs_file_read_iter(
271 	struct kiocb		*iocb,
272 	struct iov_iter		*to)
273 {
274 	struct inode		*inode = file_inode(iocb->ki_filp);
275 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
276 	ssize_t			ret = 0;
277 
278 	XFS_STATS_INC(mp, xs_read_calls);
279 
280 	if (XFS_FORCED_SHUTDOWN(mp))
281 		return -EIO;
282 
283 	if (IS_DAX(inode))
284 		ret = xfs_file_dax_read(iocb, to);
285 	else if (iocb->ki_flags & IOCB_DIRECT)
286 		ret = xfs_file_dio_aio_read(iocb, to);
287 	else
288 		ret = xfs_file_buffered_aio_read(iocb, to);
289 
290 	if (ret > 0)
291 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
292 	return ret;
293 }
294 
295 /*
296  * Zero any on disk space between the current EOF and the new, larger EOF.
297  *
298  * This handles the normal case of zeroing the remainder of the last block in
299  * the file and the unusual case of zeroing blocks out beyond the size of the
300  * file.  This second case only happens with fixed size extents and when the
301  * system crashes before the inode size was updated but after blocks were
302  * allocated.
303  *
304  * Expects the iolock to be held exclusive, and will take the ilock internally.
305  */
306 int					/* error (positive) */
307 xfs_zero_eof(
308 	struct xfs_inode	*ip,
309 	xfs_off_t		offset,		/* starting I/O offset */
310 	xfs_fsize_t		isize,		/* current inode size */
311 	bool			*did_zeroing)
312 {
313 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
314 	ASSERT(offset > isize);
315 
316 	trace_xfs_zero_eof(ip, isize, offset - isize);
317 	return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
318 }
319 
320 /*
321  * Common pre-write limit and setup checks.
322  *
323  * Called with the iolocked held either shared and exclusive according to
324  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
325  * if called for a direct write beyond i_size.
326  */
327 STATIC ssize_t
328 xfs_file_aio_write_checks(
329 	struct kiocb		*iocb,
330 	struct iov_iter		*from,
331 	int			*iolock)
332 {
333 	struct file		*file = iocb->ki_filp;
334 	struct inode		*inode = file->f_mapping->host;
335 	struct xfs_inode	*ip = XFS_I(inode);
336 	ssize_t			error = 0;
337 	size_t			count = iov_iter_count(from);
338 	bool			drained_dio = false;
339 
340 restart:
341 	error = generic_write_checks(iocb, from);
342 	if (error <= 0)
343 		return error;
344 
345 	error = xfs_break_layouts(inode, iolock);
346 	if (error)
347 		return error;
348 
349 	/*
350 	 * For changing security info in file_remove_privs() we need i_rwsem
351 	 * exclusively.
352 	 */
353 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
354 		xfs_iunlock(ip, *iolock);
355 		*iolock = XFS_IOLOCK_EXCL;
356 		xfs_ilock(ip, *iolock);
357 		goto restart;
358 	}
359 	/*
360 	 * If the offset is beyond the size of the file, we need to zero any
361 	 * blocks that fall between the existing EOF and the start of this
362 	 * write.  If zeroing is needed and we are currently holding the
363 	 * iolock shared, we need to update it to exclusive which implies
364 	 * having to redo all checks before.
365 	 *
366 	 * We need to serialise against EOF updates that occur in IO
367 	 * completions here. We want to make sure that nobody is changing the
368 	 * size while we do this check until we have placed an IO barrier (i.e.
369 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
370 	 * The spinlock effectively forms a memory barrier once we have the
371 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
372 	 * and hence be able to correctly determine if we need to run zeroing.
373 	 */
374 	spin_lock(&ip->i_flags_lock);
375 	if (iocb->ki_pos > i_size_read(inode)) {
376 		bool	zero = false;
377 
378 		spin_unlock(&ip->i_flags_lock);
379 		if (!drained_dio) {
380 			if (*iolock == XFS_IOLOCK_SHARED) {
381 				xfs_iunlock(ip, *iolock);
382 				*iolock = XFS_IOLOCK_EXCL;
383 				xfs_ilock(ip, *iolock);
384 				iov_iter_reexpand(from, count);
385 			}
386 			/*
387 			 * We now have an IO submission barrier in place, but
388 			 * AIO can do EOF updates during IO completion and hence
389 			 * we now need to wait for all of them to drain. Non-AIO
390 			 * DIO will have drained before we are given the
391 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
392 			 * no-op.
393 			 */
394 			inode_dio_wait(inode);
395 			drained_dio = true;
396 			goto restart;
397 		}
398 		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
399 		if (error)
400 			return error;
401 	} else
402 		spin_unlock(&ip->i_flags_lock);
403 
404 	/*
405 	 * Updating the timestamps will grab the ilock again from
406 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
407 	 * lock above.  Eventually we should look into a way to avoid
408 	 * the pointless lock roundtrip.
409 	 */
410 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
411 		error = file_update_time(file);
412 		if (error)
413 			return error;
414 	}
415 
416 	/*
417 	 * If we're writing the file then make sure to clear the setuid and
418 	 * setgid bits if the process is not being run by root.  This keeps
419 	 * people from modifying setuid and setgid binaries.
420 	 */
421 	if (!IS_NOSEC(inode))
422 		return file_remove_privs(file);
423 	return 0;
424 }
425 
426 static int
427 xfs_dio_write_end_io(
428 	struct kiocb		*iocb,
429 	ssize_t			size,
430 	unsigned		flags)
431 {
432 	struct inode		*inode = file_inode(iocb->ki_filp);
433 	struct xfs_inode	*ip = XFS_I(inode);
434 	loff_t			offset = iocb->ki_pos;
435 	bool			update_size = false;
436 	int			error = 0;
437 
438 	trace_xfs_end_io_direct_write(ip, offset, size);
439 
440 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
441 		return -EIO;
442 
443 	if (size <= 0)
444 		return size;
445 
446 	/*
447 	 * We need to update the in-core inode size here so that we don't end up
448 	 * with the on-disk inode size being outside the in-core inode size. We
449 	 * have no other method of updating EOF for AIO, so always do it here
450 	 * if necessary.
451 	 *
452 	 * We need to lock the test/set EOF update as we can be racing with
453 	 * other IO completions here to update the EOF. Failing to serialise
454 	 * here can result in EOF moving backwards and Bad Things Happen when
455 	 * that occurs.
456 	 */
457 	spin_lock(&ip->i_flags_lock);
458 	if (offset + size > i_size_read(inode)) {
459 		i_size_write(inode, offset + size);
460 		update_size = true;
461 	}
462 	spin_unlock(&ip->i_flags_lock);
463 
464 	if (flags & IOMAP_DIO_COW) {
465 		error = xfs_reflink_end_cow(ip, offset, size);
466 		if (error)
467 			return error;
468 	}
469 
470 	if (flags & IOMAP_DIO_UNWRITTEN)
471 		error = xfs_iomap_write_unwritten(ip, offset, size);
472 	else if (update_size)
473 		error = xfs_setfilesize(ip, offset, size);
474 
475 	return error;
476 }
477 
478 /*
479  * xfs_file_dio_aio_write - handle direct IO writes
480  *
481  * Lock the inode appropriately to prepare for and issue a direct IO write.
482  * By separating it from the buffered write path we remove all the tricky to
483  * follow locking changes and looping.
484  *
485  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
486  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
487  * pages are flushed out.
488  *
489  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
490  * allowing them to be done in parallel with reads and other direct IO writes.
491  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
492  * needs to do sub-block zeroing and that requires serialisation against other
493  * direct IOs to the same block. In this case we need to serialise the
494  * submission of the unaligned IOs so that we don't get racing block zeroing in
495  * the dio layer.  To avoid the problem with aio, we also need to wait for
496  * outstanding IOs to complete so that unwritten extent conversion is completed
497  * before we try to map the overlapping block. This is currently implemented by
498  * hitting it with a big hammer (i.e. inode_dio_wait()).
499  *
500  * Returns with locks held indicated by @iolock and errors indicated by
501  * negative return values.
502  */
503 STATIC ssize_t
504 xfs_file_dio_aio_write(
505 	struct kiocb		*iocb,
506 	struct iov_iter		*from)
507 {
508 	struct file		*file = iocb->ki_filp;
509 	struct address_space	*mapping = file->f_mapping;
510 	struct inode		*inode = mapping->host;
511 	struct xfs_inode	*ip = XFS_I(inode);
512 	struct xfs_mount	*mp = ip->i_mount;
513 	ssize_t			ret = 0;
514 	int			unaligned_io = 0;
515 	int			iolock;
516 	size_t			count = iov_iter_count(from);
517 	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
518 					mp->m_rtdev_targp : mp->m_ddev_targp;
519 
520 	/* DIO must be aligned to device logical sector size */
521 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
522 		return -EINVAL;
523 
524 	/*
525 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
526 	 * the file system block size.  We don't need to consider the EOF
527 	 * extension case here because xfs_file_aio_write_checks() will relock
528 	 * the inode as necessary for EOF zeroing cases and fill out the new
529 	 * inode size as appropriate.
530 	 */
531 	if ((iocb->ki_pos & mp->m_blockmask) ||
532 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
533 		unaligned_io = 1;
534 
535 		/*
536 		 * We can't properly handle unaligned direct I/O to reflink
537 		 * files yet, as we can't unshare a partial block.
538 		 */
539 		if (xfs_is_reflink_inode(ip)) {
540 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
541 			return -EREMCHG;
542 		}
543 		iolock = XFS_IOLOCK_EXCL;
544 	} else {
545 		iolock = XFS_IOLOCK_SHARED;
546 	}
547 
548 	if (!xfs_ilock_nowait(ip, iolock)) {
549 		if (iocb->ki_flags & IOCB_NOWAIT)
550 			return -EAGAIN;
551 		xfs_ilock(ip, iolock);
552 	}
553 
554 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
555 	if (ret)
556 		goto out;
557 	count = iov_iter_count(from);
558 
559 	/*
560 	 * If we are doing unaligned IO, wait for all other IO to drain,
561 	 * otherwise demote the lock if we had to take the exclusive lock
562 	 * for other reasons in xfs_file_aio_write_checks.
563 	 */
564 	if (unaligned_io) {
565 		/* If we are going to wait for other DIO to finish, bail */
566 		if (iocb->ki_flags & IOCB_NOWAIT) {
567 			if (atomic_read(&inode->i_dio_count))
568 				return -EAGAIN;
569 		} else {
570 			inode_dio_wait(inode);
571 		}
572 	} else if (iolock == XFS_IOLOCK_EXCL) {
573 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
574 		iolock = XFS_IOLOCK_SHARED;
575 	}
576 
577 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
578 	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
579 out:
580 	xfs_iunlock(ip, iolock);
581 
582 	/*
583 	 * No fallback to buffered IO on errors for XFS, direct IO will either
584 	 * complete fully or fail.
585 	 */
586 	ASSERT(ret < 0 || ret == count);
587 	return ret;
588 }
589 
590 static noinline ssize_t
591 xfs_file_dax_write(
592 	struct kiocb		*iocb,
593 	struct iov_iter		*from)
594 {
595 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
596 	struct xfs_inode	*ip = XFS_I(inode);
597 	int			iolock = XFS_IOLOCK_EXCL;
598 	ssize_t			ret, error = 0;
599 	size_t			count;
600 	loff_t			pos;
601 
602 	if (!xfs_ilock_nowait(ip, iolock)) {
603 		if (iocb->ki_flags & IOCB_NOWAIT)
604 			return -EAGAIN;
605 		xfs_ilock(ip, iolock);
606 	}
607 
608 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
609 	if (ret)
610 		goto out;
611 
612 	pos = iocb->ki_pos;
613 	count = iov_iter_count(from);
614 
615 	trace_xfs_file_dax_write(ip, count, pos);
616 	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
617 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
618 		i_size_write(inode, iocb->ki_pos);
619 		error = xfs_setfilesize(ip, pos, ret);
620 	}
621 out:
622 	xfs_iunlock(ip, iolock);
623 	return error ? error : ret;
624 }
625 
626 STATIC ssize_t
627 xfs_file_buffered_aio_write(
628 	struct kiocb		*iocb,
629 	struct iov_iter		*from)
630 {
631 	struct file		*file = iocb->ki_filp;
632 	struct address_space	*mapping = file->f_mapping;
633 	struct inode		*inode = mapping->host;
634 	struct xfs_inode	*ip = XFS_I(inode);
635 	ssize_t			ret;
636 	int			enospc = 0;
637 	int			iolock;
638 
639 write_retry:
640 	iolock = XFS_IOLOCK_EXCL;
641 	xfs_ilock(ip, iolock);
642 
643 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
644 	if (ret)
645 		goto out;
646 
647 	/* We can write back this queue in page reclaim */
648 	current->backing_dev_info = inode_to_bdi(inode);
649 
650 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
651 	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
652 	if (likely(ret >= 0))
653 		iocb->ki_pos += ret;
654 
655 	/*
656 	 * If we hit a space limit, try to free up some lingering preallocated
657 	 * space before returning an error. In the case of ENOSPC, first try to
658 	 * write back all dirty inodes to free up some of the excess reserved
659 	 * metadata space. This reduces the chances that the eofblocks scan
660 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
661 	 * also behaves as a filter to prevent too many eofblocks scans from
662 	 * running at the same time.
663 	 */
664 	if (ret == -EDQUOT && !enospc) {
665 		xfs_iunlock(ip, iolock);
666 		enospc = xfs_inode_free_quota_eofblocks(ip);
667 		if (enospc)
668 			goto write_retry;
669 		enospc = xfs_inode_free_quota_cowblocks(ip);
670 		if (enospc)
671 			goto write_retry;
672 		iolock = 0;
673 	} else if (ret == -ENOSPC && !enospc) {
674 		struct xfs_eofblocks eofb = {0};
675 
676 		enospc = 1;
677 		xfs_flush_inodes(ip->i_mount);
678 
679 		xfs_iunlock(ip, iolock);
680 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
681 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
682 		goto write_retry;
683 	}
684 
685 	current->backing_dev_info = NULL;
686 out:
687 	if (iolock)
688 		xfs_iunlock(ip, iolock);
689 	return ret;
690 }
691 
692 STATIC ssize_t
693 xfs_file_write_iter(
694 	struct kiocb		*iocb,
695 	struct iov_iter		*from)
696 {
697 	struct file		*file = iocb->ki_filp;
698 	struct address_space	*mapping = file->f_mapping;
699 	struct inode		*inode = mapping->host;
700 	struct xfs_inode	*ip = XFS_I(inode);
701 	ssize_t			ret;
702 	size_t			ocount = iov_iter_count(from);
703 
704 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
705 
706 	if (ocount == 0)
707 		return 0;
708 
709 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
710 		return -EIO;
711 
712 	if (IS_DAX(inode))
713 		ret = xfs_file_dax_write(iocb, from);
714 	else if (iocb->ki_flags & IOCB_DIRECT) {
715 		/*
716 		 * Allow a directio write to fall back to a buffered
717 		 * write *only* in the case that we're doing a reflink
718 		 * CoW.  In all other directio scenarios we do not
719 		 * allow an operation to fall back to buffered mode.
720 		 */
721 		ret = xfs_file_dio_aio_write(iocb, from);
722 		if (ret == -EREMCHG)
723 			goto buffered;
724 	} else {
725 buffered:
726 		ret = xfs_file_buffered_aio_write(iocb, from);
727 	}
728 
729 	if (ret > 0) {
730 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
731 
732 		/* Handle various SYNC-type writes */
733 		ret = generic_write_sync(iocb, ret);
734 	}
735 	return ret;
736 }
737 
738 #define	XFS_FALLOC_FL_SUPPORTED						\
739 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
740 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
741 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
742 
743 STATIC long
744 xfs_file_fallocate(
745 	struct file		*file,
746 	int			mode,
747 	loff_t			offset,
748 	loff_t			len)
749 {
750 	struct inode		*inode = file_inode(file);
751 	struct xfs_inode	*ip = XFS_I(inode);
752 	long			error;
753 	enum xfs_prealloc_flags	flags = 0;
754 	uint			iolock = XFS_IOLOCK_EXCL;
755 	loff_t			new_size = 0;
756 	bool			do_file_insert = 0;
757 
758 	if (!S_ISREG(inode->i_mode))
759 		return -EINVAL;
760 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
761 		return -EOPNOTSUPP;
762 
763 	xfs_ilock(ip, iolock);
764 	error = xfs_break_layouts(inode, &iolock);
765 	if (error)
766 		goto out_unlock;
767 
768 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
769 	iolock |= XFS_MMAPLOCK_EXCL;
770 
771 	if (mode & FALLOC_FL_PUNCH_HOLE) {
772 		error = xfs_free_file_space(ip, offset, len);
773 		if (error)
774 			goto out_unlock;
775 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
776 		unsigned int blksize_mask = i_blocksize(inode) - 1;
777 
778 		if (offset & blksize_mask || len & blksize_mask) {
779 			error = -EINVAL;
780 			goto out_unlock;
781 		}
782 
783 		/*
784 		 * There is no need to overlap collapse range with EOF,
785 		 * in which case it is effectively a truncate operation
786 		 */
787 		if (offset + len >= i_size_read(inode)) {
788 			error = -EINVAL;
789 			goto out_unlock;
790 		}
791 
792 		new_size = i_size_read(inode) - len;
793 
794 		error = xfs_collapse_file_space(ip, offset, len);
795 		if (error)
796 			goto out_unlock;
797 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
798 		unsigned int blksize_mask = i_blocksize(inode) - 1;
799 
800 		new_size = i_size_read(inode) + len;
801 		if (offset & blksize_mask || len & blksize_mask) {
802 			error = -EINVAL;
803 			goto out_unlock;
804 		}
805 
806 		/* check the new inode size does not wrap through zero */
807 		if (new_size > inode->i_sb->s_maxbytes) {
808 			error = -EFBIG;
809 			goto out_unlock;
810 		}
811 
812 		/* Offset should be less than i_size */
813 		if (offset >= i_size_read(inode)) {
814 			error = -EINVAL;
815 			goto out_unlock;
816 		}
817 		do_file_insert = 1;
818 	} else {
819 		flags |= XFS_PREALLOC_SET;
820 
821 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
822 		    offset + len > i_size_read(inode)) {
823 			new_size = offset + len;
824 			error = inode_newsize_ok(inode, new_size);
825 			if (error)
826 				goto out_unlock;
827 		}
828 
829 		if (mode & FALLOC_FL_ZERO_RANGE)
830 			error = xfs_zero_file_space(ip, offset, len);
831 		else {
832 			if (mode & FALLOC_FL_UNSHARE_RANGE) {
833 				error = xfs_reflink_unshare(ip, offset, len);
834 				if (error)
835 					goto out_unlock;
836 			}
837 			error = xfs_alloc_file_space(ip, offset, len,
838 						     XFS_BMAPI_PREALLOC);
839 		}
840 		if (error)
841 			goto out_unlock;
842 	}
843 
844 	if (file->f_flags & O_DSYNC)
845 		flags |= XFS_PREALLOC_SYNC;
846 
847 	error = xfs_update_prealloc_flags(ip, flags);
848 	if (error)
849 		goto out_unlock;
850 
851 	/* Change file size if needed */
852 	if (new_size) {
853 		struct iattr iattr;
854 
855 		iattr.ia_valid = ATTR_SIZE;
856 		iattr.ia_size = new_size;
857 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
858 		if (error)
859 			goto out_unlock;
860 	}
861 
862 	/*
863 	 * Perform hole insertion now that the file size has been
864 	 * updated so that if we crash during the operation we don't
865 	 * leave shifted extents past EOF and hence losing access to
866 	 * the data that is contained within them.
867 	 */
868 	if (do_file_insert)
869 		error = xfs_insert_file_space(ip, offset, len);
870 
871 out_unlock:
872 	xfs_iunlock(ip, iolock);
873 	return error;
874 }
875 
876 STATIC int
877 xfs_file_clone_range(
878 	struct file	*file_in,
879 	loff_t		pos_in,
880 	struct file	*file_out,
881 	loff_t		pos_out,
882 	u64		len)
883 {
884 	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
885 				     len, false);
886 }
887 
888 STATIC ssize_t
889 xfs_file_dedupe_range(
890 	struct file	*src_file,
891 	u64		loff,
892 	u64		len,
893 	struct file	*dst_file,
894 	u64		dst_loff)
895 {
896 	int		error;
897 
898 	error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
899 				     len, true);
900 	if (error)
901 		return error;
902 	return len;
903 }
904 
905 STATIC int
906 xfs_file_open(
907 	struct inode	*inode,
908 	struct file	*file)
909 {
910 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
911 		return -EFBIG;
912 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
913 		return -EIO;
914 	file->f_mode |= FMODE_AIO_NOWAIT;
915 	return 0;
916 }
917 
918 STATIC int
919 xfs_dir_open(
920 	struct inode	*inode,
921 	struct file	*file)
922 {
923 	struct xfs_inode *ip = XFS_I(inode);
924 	int		mode;
925 	int		error;
926 
927 	error = xfs_file_open(inode, file);
928 	if (error)
929 		return error;
930 
931 	/*
932 	 * If there are any blocks, read-ahead block 0 as we're almost
933 	 * certain to have the next operation be a read there.
934 	 */
935 	mode = xfs_ilock_data_map_shared(ip);
936 	if (ip->i_d.di_nextents > 0)
937 		error = xfs_dir3_data_readahead(ip, 0, -1);
938 	xfs_iunlock(ip, mode);
939 	return error;
940 }
941 
942 STATIC int
943 xfs_file_release(
944 	struct inode	*inode,
945 	struct file	*filp)
946 {
947 	return xfs_release(XFS_I(inode));
948 }
949 
950 STATIC int
951 xfs_file_readdir(
952 	struct file	*file,
953 	struct dir_context *ctx)
954 {
955 	struct inode	*inode = file_inode(file);
956 	xfs_inode_t	*ip = XFS_I(inode);
957 	size_t		bufsize;
958 
959 	/*
960 	 * The Linux API doesn't pass down the total size of the buffer
961 	 * we read into down to the filesystem.  With the filldir concept
962 	 * it's not needed for correct information, but the XFS dir2 leaf
963 	 * code wants an estimate of the buffer size to calculate it's
964 	 * readahead window and size the buffers used for mapping to
965 	 * physical blocks.
966 	 *
967 	 * Try to give it an estimate that's good enough, maybe at some
968 	 * point we can change the ->readdir prototype to include the
969 	 * buffer size.  For now we use the current glibc buffer size.
970 	 */
971 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
972 
973 	return xfs_readdir(ip, ctx, bufsize);
974 }
975 
976 /*
977  * This type is designed to indicate the type of offset we would like
978  * to search from page cache for xfs_seek_hole_data().
979  */
980 enum {
981 	HOLE_OFF = 0,
982 	DATA_OFF,
983 };
984 
985 /*
986  * Lookup the desired type of offset from the given page.
987  *
988  * On success, return true and the offset argument will point to the
989  * start of the region that was found.  Otherwise this function will
990  * return false and keep the offset argument unchanged.
991  */
992 STATIC bool
993 xfs_lookup_buffer_offset(
994 	struct page		*page,
995 	loff_t			*offset,
996 	unsigned int		type)
997 {
998 	loff_t			lastoff = page_offset(page);
999 	bool			found = false;
1000 	struct buffer_head	*bh, *head;
1001 
1002 	bh = head = page_buffers(page);
1003 	do {
1004 		/*
1005 		 * Unwritten extents that have data in the page
1006 		 * cache covering them can be identified by the
1007 		 * BH_Unwritten state flag.  Pages with multiple
1008 		 * buffers might have a mix of holes, data and
1009 		 * unwritten extents - any buffer with valid
1010 		 * data in it should have BH_Uptodate flag set
1011 		 * on it.
1012 		 */
1013 		if (buffer_unwritten(bh) ||
1014 		    buffer_uptodate(bh)) {
1015 			if (type == DATA_OFF)
1016 				found = true;
1017 		} else {
1018 			if (type == HOLE_OFF)
1019 				found = true;
1020 		}
1021 
1022 		if (found) {
1023 			*offset = lastoff;
1024 			break;
1025 		}
1026 		lastoff += bh->b_size;
1027 	} while ((bh = bh->b_this_page) != head);
1028 
1029 	return found;
1030 }
1031 
1032 /*
1033  * This routine is called to find out and return a data or hole offset
1034  * from the page cache for unwritten extents according to the desired
1035  * type for xfs_seek_hole_data().
1036  *
1037  * The argument offset is used to tell where we start to search from the
1038  * page cache.  Map is used to figure out the end points of the range to
1039  * lookup pages.
1040  *
1041  * Return true if the desired type of offset was found, and the argument
1042  * offset is filled with that address.  Otherwise, return false and keep
1043  * offset unchanged.
1044  */
1045 STATIC bool
1046 xfs_find_get_desired_pgoff(
1047 	struct inode		*inode,
1048 	struct xfs_bmbt_irec	*map,
1049 	unsigned int		type,
1050 	loff_t			*offset)
1051 {
1052 	struct xfs_inode	*ip = XFS_I(inode);
1053 	struct xfs_mount	*mp = ip->i_mount;
1054 	struct pagevec		pvec;
1055 	pgoff_t			index;
1056 	pgoff_t			end;
1057 	loff_t			endoff;
1058 	loff_t			startoff = *offset;
1059 	loff_t			lastoff = startoff;
1060 	bool			found = false;
1061 
1062 	pagevec_init(&pvec, 0);
1063 
1064 	index = startoff >> PAGE_SHIFT;
1065 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1066 	end = (endoff - 1) >> PAGE_SHIFT;
1067 	do {
1068 		int		want;
1069 		unsigned	nr_pages;
1070 		unsigned int	i;
1071 
1072 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE - 1) + 1;
1073 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1074 					  want);
1075 		if (nr_pages == 0)
1076 			break;
1077 
1078 		for (i = 0; i < nr_pages; i++) {
1079 			struct page	*page = pvec.pages[i];
1080 			loff_t		b_offset;
1081 
1082 			/*
1083 			 * At this point, the page may be truncated or
1084 			 * invalidated (changing page->mapping to NULL),
1085 			 * or even swizzled back from swapper_space to tmpfs
1086 			 * file mapping. However, page->index will not change
1087 			 * because we have a reference on the page.
1088 			 *
1089 			 * If current page offset is beyond where we've ended,
1090 			 * we've found a hole.
1091 			 */
1092 			if (type == HOLE_OFF && lastoff < endoff &&
1093 			    lastoff < page_offset(pvec.pages[i])) {
1094 				found = true;
1095 				*offset = lastoff;
1096 				goto out;
1097 			}
1098 			/* Searching done if the page index is out of range. */
1099 			if (page->index > end)
1100 				goto out;
1101 
1102 			lock_page(page);
1103 			/*
1104 			 * Page truncated or invalidated(page->mapping == NULL).
1105 			 * We can freely skip it and proceed to check the next
1106 			 * page.
1107 			 */
1108 			if (unlikely(page->mapping != inode->i_mapping)) {
1109 				unlock_page(page);
1110 				continue;
1111 			}
1112 
1113 			if (!page_has_buffers(page)) {
1114 				unlock_page(page);
1115 				continue;
1116 			}
1117 
1118 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1119 			if (found) {
1120 				/*
1121 				 * The found offset may be less than the start
1122 				 * point to search if this is the first time to
1123 				 * come here.
1124 				 */
1125 				*offset = max_t(loff_t, startoff, b_offset);
1126 				unlock_page(page);
1127 				goto out;
1128 			}
1129 
1130 			/*
1131 			 * We either searching data but nothing was found, or
1132 			 * searching hole but found a data buffer.  In either
1133 			 * case, probably the next page contains the desired
1134 			 * things, update the last offset to it so.
1135 			 */
1136 			lastoff = page_offset(page) + PAGE_SIZE;
1137 			unlock_page(page);
1138 		}
1139 
1140 		/*
1141 		 * The number of returned pages less than our desired, search
1142 		 * done.
1143 		 */
1144 		if (nr_pages < want)
1145 			break;
1146 
1147 		index = pvec.pages[i - 1]->index + 1;
1148 		pagevec_release(&pvec);
1149 	} while (index <= end);
1150 
1151 	/* No page at lastoff and we are not done - we found a hole. */
1152 	if (type == HOLE_OFF && lastoff < endoff) {
1153 		*offset = lastoff;
1154 		found = true;
1155 	}
1156 out:
1157 	pagevec_release(&pvec);
1158 	return found;
1159 }
1160 
1161 /*
1162  * caller must lock inode with xfs_ilock_data_map_shared,
1163  * can we craft an appropriate ASSERT?
1164  *
1165  * end is because the VFS-level lseek interface is defined such that any
1166  * offset past i_size shall return -ENXIO, but we use this for quota code
1167  * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1168  */
1169 loff_t
1170 __xfs_seek_hole_data(
1171 	struct inode		*inode,
1172 	loff_t			start,
1173 	loff_t			end,
1174 	int			whence)
1175 {
1176 	struct xfs_inode	*ip = XFS_I(inode);
1177 	struct xfs_mount	*mp = ip->i_mount;
1178 	loff_t			uninitialized_var(offset);
1179 	xfs_fileoff_t		fsbno;
1180 	xfs_filblks_t		lastbno;
1181 	int			error;
1182 
1183 	if (start >= end) {
1184 		error = -ENXIO;
1185 		goto out_error;
1186 	}
1187 
1188 	/*
1189 	 * Try to read extents from the first block indicated
1190 	 * by fsbno to the end block of the file.
1191 	 */
1192 	fsbno = XFS_B_TO_FSBT(mp, start);
1193 	lastbno = XFS_B_TO_FSB(mp, end);
1194 
1195 	for (;;) {
1196 		struct xfs_bmbt_irec	map[2];
1197 		int			nmap = 2;
1198 		unsigned int		i;
1199 
1200 		error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1201 				       XFS_BMAPI_ENTIRE);
1202 		if (error)
1203 			goto out_error;
1204 
1205 		/* No extents at given offset, must be beyond EOF */
1206 		if (nmap == 0) {
1207 			error = -ENXIO;
1208 			goto out_error;
1209 		}
1210 
1211 		for (i = 0; i < nmap; i++) {
1212 			offset = max_t(loff_t, start,
1213 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1214 
1215 			/* Landed in the hole we wanted? */
1216 			if (whence == SEEK_HOLE &&
1217 			    map[i].br_startblock == HOLESTARTBLOCK)
1218 				goto out;
1219 
1220 			/* Landed in the data extent we wanted? */
1221 			if (whence == SEEK_DATA &&
1222 			    (map[i].br_startblock == DELAYSTARTBLOCK ||
1223 			     (map[i].br_state == XFS_EXT_NORM &&
1224 			      !isnullstartblock(map[i].br_startblock))))
1225 				goto out;
1226 
1227 			/*
1228 			 * Landed in an unwritten extent, try to search
1229 			 * for hole or data from page cache.
1230 			 */
1231 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1232 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1233 				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1234 							&offset))
1235 					goto out;
1236 			}
1237 		}
1238 
1239 		/*
1240 		 * We only received one extent out of the two requested. This
1241 		 * means we've hit EOF and didn't find what we are looking for.
1242 		 */
1243 		if (nmap == 1) {
1244 			/*
1245 			 * If we were looking for a hole, set offset to
1246 			 * the end of the file (i.e., there is an implicit
1247 			 * hole at the end of any file).
1248 		 	 */
1249 			if (whence == SEEK_HOLE) {
1250 				offset = end;
1251 				break;
1252 			}
1253 			/*
1254 			 * If we were looking for data, it's nowhere to be found
1255 			 */
1256 			ASSERT(whence == SEEK_DATA);
1257 			error = -ENXIO;
1258 			goto out_error;
1259 		}
1260 
1261 		ASSERT(i > 1);
1262 
1263 		/*
1264 		 * Nothing was found, proceed to the next round of search
1265 		 * if the next reading offset is not at or beyond EOF.
1266 		 */
1267 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1268 		start = XFS_FSB_TO_B(mp, fsbno);
1269 		if (start >= end) {
1270 			if (whence == SEEK_HOLE) {
1271 				offset = end;
1272 				break;
1273 			}
1274 			ASSERT(whence == SEEK_DATA);
1275 			error = -ENXIO;
1276 			goto out_error;
1277 		}
1278 	}
1279 
1280 out:
1281 	/*
1282 	 * If at this point we have found the hole we wanted, the returned
1283 	 * offset may be bigger than the file size as it may be aligned to
1284 	 * page boundary for unwritten extents.  We need to deal with this
1285 	 * situation in particular.
1286 	 */
1287 	if (whence == SEEK_HOLE)
1288 		offset = min_t(loff_t, offset, end);
1289 
1290 	return offset;
1291 
1292 out_error:
1293 	return error;
1294 }
1295 
1296 STATIC loff_t
1297 xfs_seek_hole_data(
1298 	struct file		*file,
1299 	loff_t			start,
1300 	int			whence)
1301 {
1302 	struct inode		*inode = file->f_mapping->host;
1303 	struct xfs_inode	*ip = XFS_I(inode);
1304 	struct xfs_mount	*mp = ip->i_mount;
1305 	uint			lock;
1306 	loff_t			offset, end;
1307 	int			error = 0;
1308 
1309 	if (XFS_FORCED_SHUTDOWN(mp))
1310 		return -EIO;
1311 
1312 	lock = xfs_ilock_data_map_shared(ip);
1313 
1314 	end = i_size_read(inode);
1315 	offset = __xfs_seek_hole_data(inode, start, end, whence);
1316 	if (offset < 0) {
1317 		error = offset;
1318 		goto out_unlock;
1319 	}
1320 
1321 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1322 
1323 out_unlock:
1324 	xfs_iunlock(ip, lock);
1325 
1326 	if (error)
1327 		return error;
1328 	return offset;
1329 }
1330 
1331 STATIC loff_t
1332 xfs_file_llseek(
1333 	struct file	*file,
1334 	loff_t		offset,
1335 	int		whence)
1336 {
1337 	switch (whence) {
1338 	case SEEK_END:
1339 	case SEEK_CUR:
1340 	case SEEK_SET:
1341 		return generic_file_llseek(file, offset, whence);
1342 	case SEEK_HOLE:
1343 	case SEEK_DATA:
1344 		return xfs_seek_hole_data(file, offset, whence);
1345 	default:
1346 		return -EINVAL;
1347 	}
1348 }
1349 
1350 /*
1351  * Locking for serialisation of IO during page faults. This results in a lock
1352  * ordering of:
1353  *
1354  * mmap_sem (MM)
1355  *   sb_start_pagefault(vfs, freeze)
1356  *     i_mmaplock (XFS - truncate serialisation)
1357  *       page_lock (MM)
1358  *         i_lock (XFS - extent map serialisation)
1359  */
1360 
1361 /*
1362  * mmap()d file has taken write protection fault and is being made writable. We
1363  * can set the page state up correctly for a writable page, which means we can
1364  * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1365  * mapping.
1366  */
1367 STATIC int
1368 xfs_filemap_page_mkwrite(
1369 	struct vm_fault		*vmf)
1370 {
1371 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1372 	int			ret;
1373 
1374 	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1375 
1376 	sb_start_pagefault(inode->i_sb);
1377 	file_update_time(vmf->vma->vm_file);
1378 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1379 
1380 	if (IS_DAX(inode)) {
1381 		ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops);
1382 	} else {
1383 		ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1384 		ret = block_page_mkwrite_return(ret);
1385 	}
1386 
1387 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1388 	sb_end_pagefault(inode->i_sb);
1389 
1390 	return ret;
1391 }
1392 
1393 STATIC int
1394 xfs_filemap_fault(
1395 	struct vm_fault		*vmf)
1396 {
1397 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1398 	int			ret;
1399 
1400 	trace_xfs_filemap_fault(XFS_I(inode));
1401 
1402 	/* DAX can shortcut the normal fault path on write faults! */
1403 	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1404 		return xfs_filemap_page_mkwrite(vmf);
1405 
1406 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1407 	if (IS_DAX(inode))
1408 		ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops);
1409 	else
1410 		ret = filemap_fault(vmf);
1411 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1412 
1413 	return ret;
1414 }
1415 
1416 /*
1417  * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1418  * both read and write faults. Hence we need to handle both cases. There is no
1419  * ->huge_mkwrite callout for huge pages, so we have a single function here to
1420  * handle both cases here. @flags carries the information on the type of fault
1421  * occuring.
1422  */
1423 STATIC int
1424 xfs_filemap_huge_fault(
1425 	struct vm_fault		*vmf,
1426 	enum page_entry_size	pe_size)
1427 {
1428 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1429 	struct xfs_inode	*ip = XFS_I(inode);
1430 	int			ret;
1431 
1432 	if (!IS_DAX(inode))
1433 		return VM_FAULT_FALLBACK;
1434 
1435 	trace_xfs_filemap_huge_fault(ip);
1436 
1437 	if (vmf->flags & FAULT_FLAG_WRITE) {
1438 		sb_start_pagefault(inode->i_sb);
1439 		file_update_time(vmf->vma->vm_file);
1440 	}
1441 
1442 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1443 	ret = dax_iomap_fault(vmf, pe_size, &xfs_iomap_ops);
1444 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1445 
1446 	if (vmf->flags & FAULT_FLAG_WRITE)
1447 		sb_end_pagefault(inode->i_sb);
1448 
1449 	return ret;
1450 }
1451 
1452 /*
1453  * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1454  * updates on write faults. In reality, it's need to serialise against
1455  * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1456  * to ensure we serialise the fault barrier in place.
1457  */
1458 static int
1459 xfs_filemap_pfn_mkwrite(
1460 	struct vm_fault		*vmf)
1461 {
1462 
1463 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1464 	struct xfs_inode	*ip = XFS_I(inode);
1465 	int			ret = VM_FAULT_NOPAGE;
1466 	loff_t			size;
1467 
1468 	trace_xfs_filemap_pfn_mkwrite(ip);
1469 
1470 	sb_start_pagefault(inode->i_sb);
1471 	file_update_time(vmf->vma->vm_file);
1472 
1473 	/* check if the faulting page hasn't raced with truncate */
1474 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1475 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1476 	if (vmf->pgoff >= size)
1477 		ret = VM_FAULT_SIGBUS;
1478 	else if (IS_DAX(inode))
1479 		ret = dax_pfn_mkwrite(vmf);
1480 	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1481 	sb_end_pagefault(inode->i_sb);
1482 	return ret;
1483 
1484 }
1485 
1486 static const struct vm_operations_struct xfs_file_vm_ops = {
1487 	.fault		= xfs_filemap_fault,
1488 	.huge_fault	= xfs_filemap_huge_fault,
1489 	.map_pages	= filemap_map_pages,
1490 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1491 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1492 };
1493 
1494 STATIC int
1495 xfs_file_mmap(
1496 	struct file	*filp,
1497 	struct vm_area_struct *vma)
1498 {
1499 	file_accessed(filp);
1500 	vma->vm_ops = &xfs_file_vm_ops;
1501 	if (IS_DAX(file_inode(filp)))
1502 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1503 	return 0;
1504 }
1505 
1506 const struct file_operations xfs_file_operations = {
1507 	.llseek		= xfs_file_llseek,
1508 	.read_iter	= xfs_file_read_iter,
1509 	.write_iter	= xfs_file_write_iter,
1510 	.splice_read	= generic_file_splice_read,
1511 	.splice_write	= iter_file_splice_write,
1512 	.unlocked_ioctl	= xfs_file_ioctl,
1513 #ifdef CONFIG_COMPAT
1514 	.compat_ioctl	= xfs_file_compat_ioctl,
1515 #endif
1516 	.mmap		= xfs_file_mmap,
1517 	.open		= xfs_file_open,
1518 	.release	= xfs_file_release,
1519 	.fsync		= xfs_file_fsync,
1520 	.get_unmapped_area = thp_get_unmapped_area,
1521 	.fallocate	= xfs_file_fallocate,
1522 	.clone_file_range = xfs_file_clone_range,
1523 	.dedupe_file_range = xfs_file_dedupe_range,
1524 };
1525 
1526 const struct file_operations xfs_dir_file_operations = {
1527 	.open		= xfs_dir_open,
1528 	.read		= generic_read_dir,
1529 	.iterate_shared	= xfs_file_readdir,
1530 	.llseek		= generic_file_llseek,
1531 	.unlocked_ioctl	= xfs_file_ioctl,
1532 #ifdef CONFIG_COMPAT
1533 	.compat_ioctl	= xfs_file_compat_ioctl,
1534 #endif
1535 	.fsync		= xfs_dir_fsync,
1536 };
1537