1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_da_format.h" 26 #include "xfs_da_btree.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_bmap_util.h" 32 #include "xfs_error.h" 33 #include "xfs_dir2.h" 34 #include "xfs_dir2_priv.h" 35 #include "xfs_ioctl.h" 36 #include "xfs_trace.h" 37 #include "xfs_log.h" 38 #include "xfs_icache.h" 39 #include "xfs_pnfs.h" 40 #include "xfs_iomap.h" 41 #include "xfs_reflink.h" 42 43 #include <linux/dcache.h> 44 #include <linux/falloc.h> 45 #include <linux/pagevec.h> 46 #include <linux/backing-dev.h> 47 48 static const struct vm_operations_struct xfs_file_vm_ops; 49 50 /* 51 * Clear the specified ranges to zero through either the pagecache or DAX. 52 * Holes and unwritten extents will be left as-is as they already are zeroed. 53 */ 54 int 55 xfs_zero_range( 56 struct xfs_inode *ip, 57 xfs_off_t pos, 58 xfs_off_t count, 59 bool *did_zero) 60 { 61 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops); 62 } 63 64 int 65 xfs_update_prealloc_flags( 66 struct xfs_inode *ip, 67 enum xfs_prealloc_flags flags) 68 { 69 struct xfs_trans *tp; 70 int error; 71 72 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 73 0, 0, 0, &tp); 74 if (error) 75 return error; 76 77 xfs_ilock(ip, XFS_ILOCK_EXCL); 78 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 79 80 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 81 VFS_I(ip)->i_mode &= ~S_ISUID; 82 if (VFS_I(ip)->i_mode & S_IXGRP) 83 VFS_I(ip)->i_mode &= ~S_ISGID; 84 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 85 } 86 87 if (flags & XFS_PREALLOC_SET) 88 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 89 if (flags & XFS_PREALLOC_CLEAR) 90 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 91 92 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 93 if (flags & XFS_PREALLOC_SYNC) 94 xfs_trans_set_sync(tp); 95 return xfs_trans_commit(tp); 96 } 97 98 /* 99 * Fsync operations on directories are much simpler than on regular files, 100 * as there is no file data to flush, and thus also no need for explicit 101 * cache flush operations, and there are no non-transaction metadata updates 102 * on directories either. 103 */ 104 STATIC int 105 xfs_dir_fsync( 106 struct file *file, 107 loff_t start, 108 loff_t end, 109 int datasync) 110 { 111 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 112 struct xfs_mount *mp = ip->i_mount; 113 xfs_lsn_t lsn = 0; 114 115 trace_xfs_dir_fsync(ip); 116 117 xfs_ilock(ip, XFS_ILOCK_SHARED); 118 if (xfs_ipincount(ip)) 119 lsn = ip->i_itemp->ili_last_lsn; 120 xfs_iunlock(ip, XFS_ILOCK_SHARED); 121 122 if (!lsn) 123 return 0; 124 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 125 } 126 127 STATIC int 128 xfs_file_fsync( 129 struct file *file, 130 loff_t start, 131 loff_t end, 132 int datasync) 133 { 134 struct inode *inode = file->f_mapping->host; 135 struct xfs_inode *ip = XFS_I(inode); 136 struct xfs_mount *mp = ip->i_mount; 137 int error = 0; 138 int log_flushed = 0; 139 xfs_lsn_t lsn = 0; 140 141 trace_xfs_file_fsync(ip); 142 143 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 144 if (error) 145 return error; 146 147 if (XFS_FORCED_SHUTDOWN(mp)) 148 return -EIO; 149 150 xfs_iflags_clear(ip, XFS_ITRUNCATED); 151 152 /* 153 * If we have an RT and/or log subvolume we need to make sure to flush 154 * the write cache the device used for file data first. This is to 155 * ensure newly written file data make it to disk before logging the new 156 * inode size in case of an extending write. 157 */ 158 if (XFS_IS_REALTIME_INODE(ip)) 159 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 160 else if (mp->m_logdev_targp != mp->m_ddev_targp) 161 xfs_blkdev_issue_flush(mp->m_ddev_targp); 162 163 /* 164 * All metadata updates are logged, which means that we just have to 165 * flush the log up to the latest LSN that touched the inode. If we have 166 * concurrent fsync/fdatasync() calls, we need them to all block on the 167 * log force before we clear the ili_fsync_fields field. This ensures 168 * that we don't get a racing sync operation that does not wait for the 169 * metadata to hit the journal before returning. If we race with 170 * clearing the ili_fsync_fields, then all that will happen is the log 171 * force will do nothing as the lsn will already be on disk. We can't 172 * race with setting ili_fsync_fields because that is done under 173 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 174 * until after the ili_fsync_fields is cleared. 175 */ 176 xfs_ilock(ip, XFS_ILOCK_SHARED); 177 if (xfs_ipincount(ip)) { 178 if (!datasync || 179 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 180 lsn = ip->i_itemp->ili_last_lsn; 181 } 182 183 if (lsn) { 184 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 185 ip->i_itemp->ili_fsync_fields = 0; 186 } 187 xfs_iunlock(ip, XFS_ILOCK_SHARED); 188 189 /* 190 * If we only have a single device, and the log force about was 191 * a no-op we might have to flush the data device cache here. 192 * This can only happen for fdatasync/O_DSYNC if we were overwriting 193 * an already allocated file and thus do not have any metadata to 194 * commit. 195 */ 196 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 197 mp->m_logdev_targp == mp->m_ddev_targp) 198 xfs_blkdev_issue_flush(mp->m_ddev_targp); 199 200 return error; 201 } 202 203 STATIC ssize_t 204 xfs_file_dio_aio_read( 205 struct kiocb *iocb, 206 struct iov_iter *to) 207 { 208 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 209 size_t count = iov_iter_count(to); 210 ssize_t ret; 211 212 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 213 214 if (!count) 215 return 0; /* skip atime */ 216 217 file_accessed(iocb->ki_filp); 218 219 xfs_ilock(ip, XFS_IOLOCK_SHARED); 220 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL); 221 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 222 223 return ret; 224 } 225 226 static noinline ssize_t 227 xfs_file_dax_read( 228 struct kiocb *iocb, 229 struct iov_iter *to) 230 { 231 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 232 size_t count = iov_iter_count(to); 233 ssize_t ret = 0; 234 235 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 236 237 if (!count) 238 return 0; /* skip atime */ 239 240 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) { 241 if (iocb->ki_flags & IOCB_NOWAIT) 242 return -EAGAIN; 243 xfs_ilock(ip, XFS_IOLOCK_SHARED); 244 } 245 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops); 246 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 247 248 file_accessed(iocb->ki_filp); 249 return ret; 250 } 251 252 STATIC ssize_t 253 xfs_file_buffered_aio_read( 254 struct kiocb *iocb, 255 struct iov_iter *to) 256 { 257 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 258 ssize_t ret; 259 260 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 261 262 xfs_ilock(ip, XFS_IOLOCK_SHARED); 263 ret = generic_file_read_iter(iocb, to); 264 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 265 266 return ret; 267 } 268 269 STATIC ssize_t 270 xfs_file_read_iter( 271 struct kiocb *iocb, 272 struct iov_iter *to) 273 { 274 struct inode *inode = file_inode(iocb->ki_filp); 275 struct xfs_mount *mp = XFS_I(inode)->i_mount; 276 ssize_t ret = 0; 277 278 XFS_STATS_INC(mp, xs_read_calls); 279 280 if (XFS_FORCED_SHUTDOWN(mp)) 281 return -EIO; 282 283 if (IS_DAX(inode)) 284 ret = xfs_file_dax_read(iocb, to); 285 else if (iocb->ki_flags & IOCB_DIRECT) 286 ret = xfs_file_dio_aio_read(iocb, to); 287 else 288 ret = xfs_file_buffered_aio_read(iocb, to); 289 290 if (ret > 0) 291 XFS_STATS_ADD(mp, xs_read_bytes, ret); 292 return ret; 293 } 294 295 /* 296 * Zero any on disk space between the current EOF and the new, larger EOF. 297 * 298 * This handles the normal case of zeroing the remainder of the last block in 299 * the file and the unusual case of zeroing blocks out beyond the size of the 300 * file. This second case only happens with fixed size extents and when the 301 * system crashes before the inode size was updated but after blocks were 302 * allocated. 303 * 304 * Expects the iolock to be held exclusive, and will take the ilock internally. 305 */ 306 int /* error (positive) */ 307 xfs_zero_eof( 308 struct xfs_inode *ip, 309 xfs_off_t offset, /* starting I/O offset */ 310 xfs_fsize_t isize, /* current inode size */ 311 bool *did_zeroing) 312 { 313 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 314 ASSERT(offset > isize); 315 316 trace_xfs_zero_eof(ip, isize, offset - isize); 317 return xfs_zero_range(ip, isize, offset - isize, did_zeroing); 318 } 319 320 /* 321 * Common pre-write limit and setup checks. 322 * 323 * Called with the iolocked held either shared and exclusive according to 324 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 325 * if called for a direct write beyond i_size. 326 */ 327 STATIC ssize_t 328 xfs_file_aio_write_checks( 329 struct kiocb *iocb, 330 struct iov_iter *from, 331 int *iolock) 332 { 333 struct file *file = iocb->ki_filp; 334 struct inode *inode = file->f_mapping->host; 335 struct xfs_inode *ip = XFS_I(inode); 336 ssize_t error = 0; 337 size_t count = iov_iter_count(from); 338 bool drained_dio = false; 339 340 restart: 341 error = generic_write_checks(iocb, from); 342 if (error <= 0) 343 return error; 344 345 error = xfs_break_layouts(inode, iolock); 346 if (error) 347 return error; 348 349 /* 350 * For changing security info in file_remove_privs() we need i_rwsem 351 * exclusively. 352 */ 353 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 354 xfs_iunlock(ip, *iolock); 355 *iolock = XFS_IOLOCK_EXCL; 356 xfs_ilock(ip, *iolock); 357 goto restart; 358 } 359 /* 360 * If the offset is beyond the size of the file, we need to zero any 361 * blocks that fall between the existing EOF and the start of this 362 * write. If zeroing is needed and we are currently holding the 363 * iolock shared, we need to update it to exclusive which implies 364 * having to redo all checks before. 365 * 366 * We need to serialise against EOF updates that occur in IO 367 * completions here. We want to make sure that nobody is changing the 368 * size while we do this check until we have placed an IO barrier (i.e. 369 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 370 * The spinlock effectively forms a memory barrier once we have the 371 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 372 * and hence be able to correctly determine if we need to run zeroing. 373 */ 374 spin_lock(&ip->i_flags_lock); 375 if (iocb->ki_pos > i_size_read(inode)) { 376 bool zero = false; 377 378 spin_unlock(&ip->i_flags_lock); 379 if (!drained_dio) { 380 if (*iolock == XFS_IOLOCK_SHARED) { 381 xfs_iunlock(ip, *iolock); 382 *iolock = XFS_IOLOCK_EXCL; 383 xfs_ilock(ip, *iolock); 384 iov_iter_reexpand(from, count); 385 } 386 /* 387 * We now have an IO submission barrier in place, but 388 * AIO can do EOF updates during IO completion and hence 389 * we now need to wait for all of them to drain. Non-AIO 390 * DIO will have drained before we are given the 391 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 392 * no-op. 393 */ 394 inode_dio_wait(inode); 395 drained_dio = true; 396 goto restart; 397 } 398 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero); 399 if (error) 400 return error; 401 } else 402 spin_unlock(&ip->i_flags_lock); 403 404 /* 405 * Updating the timestamps will grab the ilock again from 406 * xfs_fs_dirty_inode, so we have to call it after dropping the 407 * lock above. Eventually we should look into a way to avoid 408 * the pointless lock roundtrip. 409 */ 410 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 411 error = file_update_time(file); 412 if (error) 413 return error; 414 } 415 416 /* 417 * If we're writing the file then make sure to clear the setuid and 418 * setgid bits if the process is not being run by root. This keeps 419 * people from modifying setuid and setgid binaries. 420 */ 421 if (!IS_NOSEC(inode)) 422 return file_remove_privs(file); 423 return 0; 424 } 425 426 static int 427 xfs_dio_write_end_io( 428 struct kiocb *iocb, 429 ssize_t size, 430 unsigned flags) 431 { 432 struct inode *inode = file_inode(iocb->ki_filp); 433 struct xfs_inode *ip = XFS_I(inode); 434 loff_t offset = iocb->ki_pos; 435 bool update_size = false; 436 int error = 0; 437 438 trace_xfs_end_io_direct_write(ip, offset, size); 439 440 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 441 return -EIO; 442 443 if (size <= 0) 444 return size; 445 446 /* 447 * We need to update the in-core inode size here so that we don't end up 448 * with the on-disk inode size being outside the in-core inode size. We 449 * have no other method of updating EOF for AIO, so always do it here 450 * if necessary. 451 * 452 * We need to lock the test/set EOF update as we can be racing with 453 * other IO completions here to update the EOF. Failing to serialise 454 * here can result in EOF moving backwards and Bad Things Happen when 455 * that occurs. 456 */ 457 spin_lock(&ip->i_flags_lock); 458 if (offset + size > i_size_read(inode)) { 459 i_size_write(inode, offset + size); 460 update_size = true; 461 } 462 spin_unlock(&ip->i_flags_lock); 463 464 if (flags & IOMAP_DIO_COW) { 465 error = xfs_reflink_end_cow(ip, offset, size); 466 if (error) 467 return error; 468 } 469 470 if (flags & IOMAP_DIO_UNWRITTEN) 471 error = xfs_iomap_write_unwritten(ip, offset, size); 472 else if (update_size) 473 error = xfs_setfilesize(ip, offset, size); 474 475 return error; 476 } 477 478 /* 479 * xfs_file_dio_aio_write - handle direct IO writes 480 * 481 * Lock the inode appropriately to prepare for and issue a direct IO write. 482 * By separating it from the buffered write path we remove all the tricky to 483 * follow locking changes and looping. 484 * 485 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 486 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 487 * pages are flushed out. 488 * 489 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 490 * allowing them to be done in parallel with reads and other direct IO writes. 491 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 492 * needs to do sub-block zeroing and that requires serialisation against other 493 * direct IOs to the same block. In this case we need to serialise the 494 * submission of the unaligned IOs so that we don't get racing block zeroing in 495 * the dio layer. To avoid the problem with aio, we also need to wait for 496 * outstanding IOs to complete so that unwritten extent conversion is completed 497 * before we try to map the overlapping block. This is currently implemented by 498 * hitting it with a big hammer (i.e. inode_dio_wait()). 499 * 500 * Returns with locks held indicated by @iolock and errors indicated by 501 * negative return values. 502 */ 503 STATIC ssize_t 504 xfs_file_dio_aio_write( 505 struct kiocb *iocb, 506 struct iov_iter *from) 507 { 508 struct file *file = iocb->ki_filp; 509 struct address_space *mapping = file->f_mapping; 510 struct inode *inode = mapping->host; 511 struct xfs_inode *ip = XFS_I(inode); 512 struct xfs_mount *mp = ip->i_mount; 513 ssize_t ret = 0; 514 int unaligned_io = 0; 515 int iolock; 516 size_t count = iov_iter_count(from); 517 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 518 mp->m_rtdev_targp : mp->m_ddev_targp; 519 520 /* DIO must be aligned to device logical sector size */ 521 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 522 return -EINVAL; 523 524 /* 525 * Don't take the exclusive iolock here unless the I/O is unaligned to 526 * the file system block size. We don't need to consider the EOF 527 * extension case here because xfs_file_aio_write_checks() will relock 528 * the inode as necessary for EOF zeroing cases and fill out the new 529 * inode size as appropriate. 530 */ 531 if ((iocb->ki_pos & mp->m_blockmask) || 532 ((iocb->ki_pos + count) & mp->m_blockmask)) { 533 unaligned_io = 1; 534 535 /* 536 * We can't properly handle unaligned direct I/O to reflink 537 * files yet, as we can't unshare a partial block. 538 */ 539 if (xfs_is_reflink_inode(ip)) { 540 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); 541 return -EREMCHG; 542 } 543 iolock = XFS_IOLOCK_EXCL; 544 } else { 545 iolock = XFS_IOLOCK_SHARED; 546 } 547 548 if (!xfs_ilock_nowait(ip, iolock)) { 549 if (iocb->ki_flags & IOCB_NOWAIT) 550 return -EAGAIN; 551 xfs_ilock(ip, iolock); 552 } 553 554 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 555 if (ret) 556 goto out; 557 count = iov_iter_count(from); 558 559 /* 560 * If we are doing unaligned IO, wait for all other IO to drain, 561 * otherwise demote the lock if we had to take the exclusive lock 562 * for other reasons in xfs_file_aio_write_checks. 563 */ 564 if (unaligned_io) { 565 /* If we are going to wait for other DIO to finish, bail */ 566 if (iocb->ki_flags & IOCB_NOWAIT) { 567 if (atomic_read(&inode->i_dio_count)) 568 return -EAGAIN; 569 } else { 570 inode_dio_wait(inode); 571 } 572 } else if (iolock == XFS_IOLOCK_EXCL) { 573 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 574 iolock = XFS_IOLOCK_SHARED; 575 } 576 577 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 578 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io); 579 out: 580 xfs_iunlock(ip, iolock); 581 582 /* 583 * No fallback to buffered IO on errors for XFS, direct IO will either 584 * complete fully or fail. 585 */ 586 ASSERT(ret < 0 || ret == count); 587 return ret; 588 } 589 590 static noinline ssize_t 591 xfs_file_dax_write( 592 struct kiocb *iocb, 593 struct iov_iter *from) 594 { 595 struct inode *inode = iocb->ki_filp->f_mapping->host; 596 struct xfs_inode *ip = XFS_I(inode); 597 int iolock = XFS_IOLOCK_EXCL; 598 ssize_t ret, error = 0; 599 size_t count; 600 loff_t pos; 601 602 if (!xfs_ilock_nowait(ip, iolock)) { 603 if (iocb->ki_flags & IOCB_NOWAIT) 604 return -EAGAIN; 605 xfs_ilock(ip, iolock); 606 } 607 608 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 609 if (ret) 610 goto out; 611 612 pos = iocb->ki_pos; 613 count = iov_iter_count(from); 614 615 trace_xfs_file_dax_write(ip, count, pos); 616 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops); 617 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 618 i_size_write(inode, iocb->ki_pos); 619 error = xfs_setfilesize(ip, pos, ret); 620 } 621 out: 622 xfs_iunlock(ip, iolock); 623 return error ? error : ret; 624 } 625 626 STATIC ssize_t 627 xfs_file_buffered_aio_write( 628 struct kiocb *iocb, 629 struct iov_iter *from) 630 { 631 struct file *file = iocb->ki_filp; 632 struct address_space *mapping = file->f_mapping; 633 struct inode *inode = mapping->host; 634 struct xfs_inode *ip = XFS_I(inode); 635 ssize_t ret; 636 int enospc = 0; 637 int iolock; 638 639 write_retry: 640 iolock = XFS_IOLOCK_EXCL; 641 xfs_ilock(ip, iolock); 642 643 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 644 if (ret) 645 goto out; 646 647 /* We can write back this queue in page reclaim */ 648 current->backing_dev_info = inode_to_bdi(inode); 649 650 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 651 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); 652 if (likely(ret >= 0)) 653 iocb->ki_pos += ret; 654 655 /* 656 * If we hit a space limit, try to free up some lingering preallocated 657 * space before returning an error. In the case of ENOSPC, first try to 658 * write back all dirty inodes to free up some of the excess reserved 659 * metadata space. This reduces the chances that the eofblocks scan 660 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 661 * also behaves as a filter to prevent too many eofblocks scans from 662 * running at the same time. 663 */ 664 if (ret == -EDQUOT && !enospc) { 665 xfs_iunlock(ip, iolock); 666 enospc = xfs_inode_free_quota_eofblocks(ip); 667 if (enospc) 668 goto write_retry; 669 enospc = xfs_inode_free_quota_cowblocks(ip); 670 if (enospc) 671 goto write_retry; 672 iolock = 0; 673 } else if (ret == -ENOSPC && !enospc) { 674 struct xfs_eofblocks eofb = {0}; 675 676 enospc = 1; 677 xfs_flush_inodes(ip->i_mount); 678 679 xfs_iunlock(ip, iolock); 680 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 681 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 682 goto write_retry; 683 } 684 685 current->backing_dev_info = NULL; 686 out: 687 if (iolock) 688 xfs_iunlock(ip, iolock); 689 return ret; 690 } 691 692 STATIC ssize_t 693 xfs_file_write_iter( 694 struct kiocb *iocb, 695 struct iov_iter *from) 696 { 697 struct file *file = iocb->ki_filp; 698 struct address_space *mapping = file->f_mapping; 699 struct inode *inode = mapping->host; 700 struct xfs_inode *ip = XFS_I(inode); 701 ssize_t ret; 702 size_t ocount = iov_iter_count(from); 703 704 XFS_STATS_INC(ip->i_mount, xs_write_calls); 705 706 if (ocount == 0) 707 return 0; 708 709 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 710 return -EIO; 711 712 if (IS_DAX(inode)) 713 ret = xfs_file_dax_write(iocb, from); 714 else if (iocb->ki_flags & IOCB_DIRECT) { 715 /* 716 * Allow a directio write to fall back to a buffered 717 * write *only* in the case that we're doing a reflink 718 * CoW. In all other directio scenarios we do not 719 * allow an operation to fall back to buffered mode. 720 */ 721 ret = xfs_file_dio_aio_write(iocb, from); 722 if (ret == -EREMCHG) 723 goto buffered; 724 } else { 725 buffered: 726 ret = xfs_file_buffered_aio_write(iocb, from); 727 } 728 729 if (ret > 0) { 730 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 731 732 /* Handle various SYNC-type writes */ 733 ret = generic_write_sync(iocb, ret); 734 } 735 return ret; 736 } 737 738 #define XFS_FALLOC_FL_SUPPORTED \ 739 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 740 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 741 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 742 743 STATIC long 744 xfs_file_fallocate( 745 struct file *file, 746 int mode, 747 loff_t offset, 748 loff_t len) 749 { 750 struct inode *inode = file_inode(file); 751 struct xfs_inode *ip = XFS_I(inode); 752 long error; 753 enum xfs_prealloc_flags flags = 0; 754 uint iolock = XFS_IOLOCK_EXCL; 755 loff_t new_size = 0; 756 bool do_file_insert = 0; 757 758 if (!S_ISREG(inode->i_mode)) 759 return -EINVAL; 760 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 761 return -EOPNOTSUPP; 762 763 xfs_ilock(ip, iolock); 764 error = xfs_break_layouts(inode, &iolock); 765 if (error) 766 goto out_unlock; 767 768 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 769 iolock |= XFS_MMAPLOCK_EXCL; 770 771 if (mode & FALLOC_FL_PUNCH_HOLE) { 772 error = xfs_free_file_space(ip, offset, len); 773 if (error) 774 goto out_unlock; 775 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 776 unsigned int blksize_mask = i_blocksize(inode) - 1; 777 778 if (offset & blksize_mask || len & blksize_mask) { 779 error = -EINVAL; 780 goto out_unlock; 781 } 782 783 /* 784 * There is no need to overlap collapse range with EOF, 785 * in which case it is effectively a truncate operation 786 */ 787 if (offset + len >= i_size_read(inode)) { 788 error = -EINVAL; 789 goto out_unlock; 790 } 791 792 new_size = i_size_read(inode) - len; 793 794 error = xfs_collapse_file_space(ip, offset, len); 795 if (error) 796 goto out_unlock; 797 } else if (mode & FALLOC_FL_INSERT_RANGE) { 798 unsigned int blksize_mask = i_blocksize(inode) - 1; 799 800 new_size = i_size_read(inode) + len; 801 if (offset & blksize_mask || len & blksize_mask) { 802 error = -EINVAL; 803 goto out_unlock; 804 } 805 806 /* check the new inode size does not wrap through zero */ 807 if (new_size > inode->i_sb->s_maxbytes) { 808 error = -EFBIG; 809 goto out_unlock; 810 } 811 812 /* Offset should be less than i_size */ 813 if (offset >= i_size_read(inode)) { 814 error = -EINVAL; 815 goto out_unlock; 816 } 817 do_file_insert = 1; 818 } else { 819 flags |= XFS_PREALLOC_SET; 820 821 if (!(mode & FALLOC_FL_KEEP_SIZE) && 822 offset + len > i_size_read(inode)) { 823 new_size = offset + len; 824 error = inode_newsize_ok(inode, new_size); 825 if (error) 826 goto out_unlock; 827 } 828 829 if (mode & FALLOC_FL_ZERO_RANGE) 830 error = xfs_zero_file_space(ip, offset, len); 831 else { 832 if (mode & FALLOC_FL_UNSHARE_RANGE) { 833 error = xfs_reflink_unshare(ip, offset, len); 834 if (error) 835 goto out_unlock; 836 } 837 error = xfs_alloc_file_space(ip, offset, len, 838 XFS_BMAPI_PREALLOC); 839 } 840 if (error) 841 goto out_unlock; 842 } 843 844 if (file->f_flags & O_DSYNC) 845 flags |= XFS_PREALLOC_SYNC; 846 847 error = xfs_update_prealloc_flags(ip, flags); 848 if (error) 849 goto out_unlock; 850 851 /* Change file size if needed */ 852 if (new_size) { 853 struct iattr iattr; 854 855 iattr.ia_valid = ATTR_SIZE; 856 iattr.ia_size = new_size; 857 error = xfs_vn_setattr_size(file_dentry(file), &iattr); 858 if (error) 859 goto out_unlock; 860 } 861 862 /* 863 * Perform hole insertion now that the file size has been 864 * updated so that if we crash during the operation we don't 865 * leave shifted extents past EOF and hence losing access to 866 * the data that is contained within them. 867 */ 868 if (do_file_insert) 869 error = xfs_insert_file_space(ip, offset, len); 870 871 out_unlock: 872 xfs_iunlock(ip, iolock); 873 return error; 874 } 875 876 STATIC int 877 xfs_file_clone_range( 878 struct file *file_in, 879 loff_t pos_in, 880 struct file *file_out, 881 loff_t pos_out, 882 u64 len) 883 { 884 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out, 885 len, false); 886 } 887 888 STATIC ssize_t 889 xfs_file_dedupe_range( 890 struct file *src_file, 891 u64 loff, 892 u64 len, 893 struct file *dst_file, 894 u64 dst_loff) 895 { 896 int error; 897 898 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff, 899 len, true); 900 if (error) 901 return error; 902 return len; 903 } 904 905 STATIC int 906 xfs_file_open( 907 struct inode *inode, 908 struct file *file) 909 { 910 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 911 return -EFBIG; 912 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 913 return -EIO; 914 file->f_mode |= FMODE_AIO_NOWAIT; 915 return 0; 916 } 917 918 STATIC int 919 xfs_dir_open( 920 struct inode *inode, 921 struct file *file) 922 { 923 struct xfs_inode *ip = XFS_I(inode); 924 int mode; 925 int error; 926 927 error = xfs_file_open(inode, file); 928 if (error) 929 return error; 930 931 /* 932 * If there are any blocks, read-ahead block 0 as we're almost 933 * certain to have the next operation be a read there. 934 */ 935 mode = xfs_ilock_data_map_shared(ip); 936 if (ip->i_d.di_nextents > 0) 937 error = xfs_dir3_data_readahead(ip, 0, -1); 938 xfs_iunlock(ip, mode); 939 return error; 940 } 941 942 STATIC int 943 xfs_file_release( 944 struct inode *inode, 945 struct file *filp) 946 { 947 return xfs_release(XFS_I(inode)); 948 } 949 950 STATIC int 951 xfs_file_readdir( 952 struct file *file, 953 struct dir_context *ctx) 954 { 955 struct inode *inode = file_inode(file); 956 xfs_inode_t *ip = XFS_I(inode); 957 size_t bufsize; 958 959 /* 960 * The Linux API doesn't pass down the total size of the buffer 961 * we read into down to the filesystem. With the filldir concept 962 * it's not needed for correct information, but the XFS dir2 leaf 963 * code wants an estimate of the buffer size to calculate it's 964 * readahead window and size the buffers used for mapping to 965 * physical blocks. 966 * 967 * Try to give it an estimate that's good enough, maybe at some 968 * point we can change the ->readdir prototype to include the 969 * buffer size. For now we use the current glibc buffer size. 970 */ 971 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 972 973 return xfs_readdir(ip, ctx, bufsize); 974 } 975 976 /* 977 * This type is designed to indicate the type of offset we would like 978 * to search from page cache for xfs_seek_hole_data(). 979 */ 980 enum { 981 HOLE_OFF = 0, 982 DATA_OFF, 983 }; 984 985 /* 986 * Lookup the desired type of offset from the given page. 987 * 988 * On success, return true and the offset argument will point to the 989 * start of the region that was found. Otherwise this function will 990 * return false and keep the offset argument unchanged. 991 */ 992 STATIC bool 993 xfs_lookup_buffer_offset( 994 struct page *page, 995 loff_t *offset, 996 unsigned int type) 997 { 998 loff_t lastoff = page_offset(page); 999 bool found = false; 1000 struct buffer_head *bh, *head; 1001 1002 bh = head = page_buffers(page); 1003 do { 1004 /* 1005 * Unwritten extents that have data in the page 1006 * cache covering them can be identified by the 1007 * BH_Unwritten state flag. Pages with multiple 1008 * buffers might have a mix of holes, data and 1009 * unwritten extents - any buffer with valid 1010 * data in it should have BH_Uptodate flag set 1011 * on it. 1012 */ 1013 if (buffer_unwritten(bh) || 1014 buffer_uptodate(bh)) { 1015 if (type == DATA_OFF) 1016 found = true; 1017 } else { 1018 if (type == HOLE_OFF) 1019 found = true; 1020 } 1021 1022 if (found) { 1023 *offset = lastoff; 1024 break; 1025 } 1026 lastoff += bh->b_size; 1027 } while ((bh = bh->b_this_page) != head); 1028 1029 return found; 1030 } 1031 1032 /* 1033 * This routine is called to find out and return a data or hole offset 1034 * from the page cache for unwritten extents according to the desired 1035 * type for xfs_seek_hole_data(). 1036 * 1037 * The argument offset is used to tell where we start to search from the 1038 * page cache. Map is used to figure out the end points of the range to 1039 * lookup pages. 1040 * 1041 * Return true if the desired type of offset was found, and the argument 1042 * offset is filled with that address. Otherwise, return false and keep 1043 * offset unchanged. 1044 */ 1045 STATIC bool 1046 xfs_find_get_desired_pgoff( 1047 struct inode *inode, 1048 struct xfs_bmbt_irec *map, 1049 unsigned int type, 1050 loff_t *offset) 1051 { 1052 struct xfs_inode *ip = XFS_I(inode); 1053 struct xfs_mount *mp = ip->i_mount; 1054 struct pagevec pvec; 1055 pgoff_t index; 1056 pgoff_t end; 1057 loff_t endoff; 1058 loff_t startoff = *offset; 1059 loff_t lastoff = startoff; 1060 bool found = false; 1061 1062 pagevec_init(&pvec, 0); 1063 1064 index = startoff >> PAGE_SHIFT; 1065 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1066 end = (endoff - 1) >> PAGE_SHIFT; 1067 do { 1068 int want; 1069 unsigned nr_pages; 1070 unsigned int i; 1071 1072 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE - 1) + 1; 1073 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1074 want); 1075 if (nr_pages == 0) 1076 break; 1077 1078 for (i = 0; i < nr_pages; i++) { 1079 struct page *page = pvec.pages[i]; 1080 loff_t b_offset; 1081 1082 /* 1083 * At this point, the page may be truncated or 1084 * invalidated (changing page->mapping to NULL), 1085 * or even swizzled back from swapper_space to tmpfs 1086 * file mapping. However, page->index will not change 1087 * because we have a reference on the page. 1088 * 1089 * If current page offset is beyond where we've ended, 1090 * we've found a hole. 1091 */ 1092 if (type == HOLE_OFF && lastoff < endoff && 1093 lastoff < page_offset(pvec.pages[i])) { 1094 found = true; 1095 *offset = lastoff; 1096 goto out; 1097 } 1098 /* Searching done if the page index is out of range. */ 1099 if (page->index > end) 1100 goto out; 1101 1102 lock_page(page); 1103 /* 1104 * Page truncated or invalidated(page->mapping == NULL). 1105 * We can freely skip it and proceed to check the next 1106 * page. 1107 */ 1108 if (unlikely(page->mapping != inode->i_mapping)) { 1109 unlock_page(page); 1110 continue; 1111 } 1112 1113 if (!page_has_buffers(page)) { 1114 unlock_page(page); 1115 continue; 1116 } 1117 1118 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1119 if (found) { 1120 /* 1121 * The found offset may be less than the start 1122 * point to search if this is the first time to 1123 * come here. 1124 */ 1125 *offset = max_t(loff_t, startoff, b_offset); 1126 unlock_page(page); 1127 goto out; 1128 } 1129 1130 /* 1131 * We either searching data but nothing was found, or 1132 * searching hole but found a data buffer. In either 1133 * case, probably the next page contains the desired 1134 * things, update the last offset to it so. 1135 */ 1136 lastoff = page_offset(page) + PAGE_SIZE; 1137 unlock_page(page); 1138 } 1139 1140 /* 1141 * The number of returned pages less than our desired, search 1142 * done. 1143 */ 1144 if (nr_pages < want) 1145 break; 1146 1147 index = pvec.pages[i - 1]->index + 1; 1148 pagevec_release(&pvec); 1149 } while (index <= end); 1150 1151 /* No page at lastoff and we are not done - we found a hole. */ 1152 if (type == HOLE_OFF && lastoff < endoff) { 1153 *offset = lastoff; 1154 found = true; 1155 } 1156 out: 1157 pagevec_release(&pvec); 1158 return found; 1159 } 1160 1161 /* 1162 * caller must lock inode with xfs_ilock_data_map_shared, 1163 * can we craft an appropriate ASSERT? 1164 * 1165 * end is because the VFS-level lseek interface is defined such that any 1166 * offset past i_size shall return -ENXIO, but we use this for quota code 1167 * which does not maintain i_size, and we want to SEEK_DATA past i_size. 1168 */ 1169 loff_t 1170 __xfs_seek_hole_data( 1171 struct inode *inode, 1172 loff_t start, 1173 loff_t end, 1174 int whence) 1175 { 1176 struct xfs_inode *ip = XFS_I(inode); 1177 struct xfs_mount *mp = ip->i_mount; 1178 loff_t uninitialized_var(offset); 1179 xfs_fileoff_t fsbno; 1180 xfs_filblks_t lastbno; 1181 int error; 1182 1183 if (start >= end) { 1184 error = -ENXIO; 1185 goto out_error; 1186 } 1187 1188 /* 1189 * Try to read extents from the first block indicated 1190 * by fsbno to the end block of the file. 1191 */ 1192 fsbno = XFS_B_TO_FSBT(mp, start); 1193 lastbno = XFS_B_TO_FSB(mp, end); 1194 1195 for (;;) { 1196 struct xfs_bmbt_irec map[2]; 1197 int nmap = 2; 1198 unsigned int i; 1199 1200 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap, 1201 XFS_BMAPI_ENTIRE); 1202 if (error) 1203 goto out_error; 1204 1205 /* No extents at given offset, must be beyond EOF */ 1206 if (nmap == 0) { 1207 error = -ENXIO; 1208 goto out_error; 1209 } 1210 1211 for (i = 0; i < nmap; i++) { 1212 offset = max_t(loff_t, start, 1213 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1214 1215 /* Landed in the hole we wanted? */ 1216 if (whence == SEEK_HOLE && 1217 map[i].br_startblock == HOLESTARTBLOCK) 1218 goto out; 1219 1220 /* Landed in the data extent we wanted? */ 1221 if (whence == SEEK_DATA && 1222 (map[i].br_startblock == DELAYSTARTBLOCK || 1223 (map[i].br_state == XFS_EXT_NORM && 1224 !isnullstartblock(map[i].br_startblock)))) 1225 goto out; 1226 1227 /* 1228 * Landed in an unwritten extent, try to search 1229 * for hole or data from page cache. 1230 */ 1231 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1232 if (xfs_find_get_desired_pgoff(inode, &map[i], 1233 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF, 1234 &offset)) 1235 goto out; 1236 } 1237 } 1238 1239 /* 1240 * We only received one extent out of the two requested. This 1241 * means we've hit EOF and didn't find what we are looking for. 1242 */ 1243 if (nmap == 1) { 1244 /* 1245 * If we were looking for a hole, set offset to 1246 * the end of the file (i.e., there is an implicit 1247 * hole at the end of any file). 1248 */ 1249 if (whence == SEEK_HOLE) { 1250 offset = end; 1251 break; 1252 } 1253 /* 1254 * If we were looking for data, it's nowhere to be found 1255 */ 1256 ASSERT(whence == SEEK_DATA); 1257 error = -ENXIO; 1258 goto out_error; 1259 } 1260 1261 ASSERT(i > 1); 1262 1263 /* 1264 * Nothing was found, proceed to the next round of search 1265 * if the next reading offset is not at or beyond EOF. 1266 */ 1267 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1268 start = XFS_FSB_TO_B(mp, fsbno); 1269 if (start >= end) { 1270 if (whence == SEEK_HOLE) { 1271 offset = end; 1272 break; 1273 } 1274 ASSERT(whence == SEEK_DATA); 1275 error = -ENXIO; 1276 goto out_error; 1277 } 1278 } 1279 1280 out: 1281 /* 1282 * If at this point we have found the hole we wanted, the returned 1283 * offset may be bigger than the file size as it may be aligned to 1284 * page boundary for unwritten extents. We need to deal with this 1285 * situation in particular. 1286 */ 1287 if (whence == SEEK_HOLE) 1288 offset = min_t(loff_t, offset, end); 1289 1290 return offset; 1291 1292 out_error: 1293 return error; 1294 } 1295 1296 STATIC loff_t 1297 xfs_seek_hole_data( 1298 struct file *file, 1299 loff_t start, 1300 int whence) 1301 { 1302 struct inode *inode = file->f_mapping->host; 1303 struct xfs_inode *ip = XFS_I(inode); 1304 struct xfs_mount *mp = ip->i_mount; 1305 uint lock; 1306 loff_t offset, end; 1307 int error = 0; 1308 1309 if (XFS_FORCED_SHUTDOWN(mp)) 1310 return -EIO; 1311 1312 lock = xfs_ilock_data_map_shared(ip); 1313 1314 end = i_size_read(inode); 1315 offset = __xfs_seek_hole_data(inode, start, end, whence); 1316 if (offset < 0) { 1317 error = offset; 1318 goto out_unlock; 1319 } 1320 1321 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1322 1323 out_unlock: 1324 xfs_iunlock(ip, lock); 1325 1326 if (error) 1327 return error; 1328 return offset; 1329 } 1330 1331 STATIC loff_t 1332 xfs_file_llseek( 1333 struct file *file, 1334 loff_t offset, 1335 int whence) 1336 { 1337 switch (whence) { 1338 case SEEK_END: 1339 case SEEK_CUR: 1340 case SEEK_SET: 1341 return generic_file_llseek(file, offset, whence); 1342 case SEEK_HOLE: 1343 case SEEK_DATA: 1344 return xfs_seek_hole_data(file, offset, whence); 1345 default: 1346 return -EINVAL; 1347 } 1348 } 1349 1350 /* 1351 * Locking for serialisation of IO during page faults. This results in a lock 1352 * ordering of: 1353 * 1354 * mmap_sem (MM) 1355 * sb_start_pagefault(vfs, freeze) 1356 * i_mmaplock (XFS - truncate serialisation) 1357 * page_lock (MM) 1358 * i_lock (XFS - extent map serialisation) 1359 */ 1360 1361 /* 1362 * mmap()d file has taken write protection fault and is being made writable. We 1363 * can set the page state up correctly for a writable page, which means we can 1364 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent 1365 * mapping. 1366 */ 1367 STATIC int 1368 xfs_filemap_page_mkwrite( 1369 struct vm_fault *vmf) 1370 { 1371 struct inode *inode = file_inode(vmf->vma->vm_file); 1372 int ret; 1373 1374 trace_xfs_filemap_page_mkwrite(XFS_I(inode)); 1375 1376 sb_start_pagefault(inode->i_sb); 1377 file_update_time(vmf->vma->vm_file); 1378 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1379 1380 if (IS_DAX(inode)) { 1381 ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops); 1382 } else { 1383 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops); 1384 ret = block_page_mkwrite_return(ret); 1385 } 1386 1387 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1388 sb_end_pagefault(inode->i_sb); 1389 1390 return ret; 1391 } 1392 1393 STATIC int 1394 xfs_filemap_fault( 1395 struct vm_fault *vmf) 1396 { 1397 struct inode *inode = file_inode(vmf->vma->vm_file); 1398 int ret; 1399 1400 trace_xfs_filemap_fault(XFS_I(inode)); 1401 1402 /* DAX can shortcut the normal fault path on write faults! */ 1403 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode)) 1404 return xfs_filemap_page_mkwrite(vmf); 1405 1406 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1407 if (IS_DAX(inode)) 1408 ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops); 1409 else 1410 ret = filemap_fault(vmf); 1411 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1412 1413 return ret; 1414 } 1415 1416 /* 1417 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on 1418 * both read and write faults. Hence we need to handle both cases. There is no 1419 * ->huge_mkwrite callout for huge pages, so we have a single function here to 1420 * handle both cases here. @flags carries the information on the type of fault 1421 * occuring. 1422 */ 1423 STATIC int 1424 xfs_filemap_huge_fault( 1425 struct vm_fault *vmf, 1426 enum page_entry_size pe_size) 1427 { 1428 struct inode *inode = file_inode(vmf->vma->vm_file); 1429 struct xfs_inode *ip = XFS_I(inode); 1430 int ret; 1431 1432 if (!IS_DAX(inode)) 1433 return VM_FAULT_FALLBACK; 1434 1435 trace_xfs_filemap_huge_fault(ip); 1436 1437 if (vmf->flags & FAULT_FLAG_WRITE) { 1438 sb_start_pagefault(inode->i_sb); 1439 file_update_time(vmf->vma->vm_file); 1440 } 1441 1442 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1443 ret = dax_iomap_fault(vmf, pe_size, &xfs_iomap_ops); 1444 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1445 1446 if (vmf->flags & FAULT_FLAG_WRITE) 1447 sb_end_pagefault(inode->i_sb); 1448 1449 return ret; 1450 } 1451 1452 /* 1453 * pfn_mkwrite was originally inteneded to ensure we capture time stamp 1454 * updates on write faults. In reality, it's need to serialise against 1455 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED 1456 * to ensure we serialise the fault barrier in place. 1457 */ 1458 static int 1459 xfs_filemap_pfn_mkwrite( 1460 struct vm_fault *vmf) 1461 { 1462 1463 struct inode *inode = file_inode(vmf->vma->vm_file); 1464 struct xfs_inode *ip = XFS_I(inode); 1465 int ret = VM_FAULT_NOPAGE; 1466 loff_t size; 1467 1468 trace_xfs_filemap_pfn_mkwrite(ip); 1469 1470 sb_start_pagefault(inode->i_sb); 1471 file_update_time(vmf->vma->vm_file); 1472 1473 /* check if the faulting page hasn't raced with truncate */ 1474 xfs_ilock(ip, XFS_MMAPLOCK_SHARED); 1475 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1476 if (vmf->pgoff >= size) 1477 ret = VM_FAULT_SIGBUS; 1478 else if (IS_DAX(inode)) 1479 ret = dax_pfn_mkwrite(vmf); 1480 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); 1481 sb_end_pagefault(inode->i_sb); 1482 return ret; 1483 1484 } 1485 1486 static const struct vm_operations_struct xfs_file_vm_ops = { 1487 .fault = xfs_filemap_fault, 1488 .huge_fault = xfs_filemap_huge_fault, 1489 .map_pages = filemap_map_pages, 1490 .page_mkwrite = xfs_filemap_page_mkwrite, 1491 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1492 }; 1493 1494 STATIC int 1495 xfs_file_mmap( 1496 struct file *filp, 1497 struct vm_area_struct *vma) 1498 { 1499 file_accessed(filp); 1500 vma->vm_ops = &xfs_file_vm_ops; 1501 if (IS_DAX(file_inode(filp))) 1502 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 1503 return 0; 1504 } 1505 1506 const struct file_operations xfs_file_operations = { 1507 .llseek = xfs_file_llseek, 1508 .read_iter = xfs_file_read_iter, 1509 .write_iter = xfs_file_write_iter, 1510 .splice_read = generic_file_splice_read, 1511 .splice_write = iter_file_splice_write, 1512 .unlocked_ioctl = xfs_file_ioctl, 1513 #ifdef CONFIG_COMPAT 1514 .compat_ioctl = xfs_file_compat_ioctl, 1515 #endif 1516 .mmap = xfs_file_mmap, 1517 .open = xfs_file_open, 1518 .release = xfs_file_release, 1519 .fsync = xfs_file_fsync, 1520 .get_unmapped_area = thp_get_unmapped_area, 1521 .fallocate = xfs_file_fallocate, 1522 .clone_file_range = xfs_file_clone_range, 1523 .dedupe_file_range = xfs_file_dedupe_range, 1524 }; 1525 1526 const struct file_operations xfs_dir_file_operations = { 1527 .open = xfs_dir_open, 1528 .read = generic_read_dir, 1529 .iterate_shared = xfs_file_readdir, 1530 .llseek = generic_file_llseek, 1531 .unlocked_ioctl = xfs_file_ioctl, 1532 #ifdef CONFIG_COMPAT 1533 .compat_ioctl = xfs_file_compat_ioctl, 1534 #endif 1535 .fsync = xfs_dir_fsync, 1536 }; 1537