xref: /linux/fs/xfs/xfs_file.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 #include "xfs_file.h"
28 
29 #include <linux/dax.h>
30 #include <linux/falloc.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mman.h>
33 #include <linux/fadvise.h>
34 #include <linux/mount.h>
35 
36 static const struct vm_operations_struct xfs_file_vm_ops;
37 
38 /*
39  * Decide if the given file range is aligned to the size of the fundamental
40  * allocation unit for the file.
41  */
42 bool
43 xfs_is_falloc_aligned(
44 	struct xfs_inode	*ip,
45 	loff_t			pos,
46 	long long int		len)
47 {
48 	unsigned int		alloc_unit = xfs_inode_alloc_unitsize(ip);
49 
50 	if (!is_power_of_2(alloc_unit))
51 		return isaligned_64(pos, alloc_unit) &&
52 		       isaligned_64(len, alloc_unit);
53 
54 	return !((pos | len) & (alloc_unit - 1));
55 }
56 
57 /*
58  * Fsync operations on directories are much simpler than on regular files,
59  * as there is no file data to flush, and thus also no need for explicit
60  * cache flush operations, and there are no non-transaction metadata updates
61  * on directories either.
62  */
63 STATIC int
64 xfs_dir_fsync(
65 	struct file		*file,
66 	loff_t			start,
67 	loff_t			end,
68 	int			datasync)
69 {
70 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
71 
72 	trace_xfs_dir_fsync(ip);
73 	return xfs_log_force_inode(ip);
74 }
75 
76 static xfs_csn_t
77 xfs_fsync_seq(
78 	struct xfs_inode	*ip,
79 	bool			datasync)
80 {
81 	if (!xfs_ipincount(ip))
82 		return 0;
83 	if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
84 		return 0;
85 	return ip->i_itemp->ili_commit_seq;
86 }
87 
88 /*
89  * All metadata updates are logged, which means that we just have to flush the
90  * log up to the latest LSN that touched the inode.
91  *
92  * If we have concurrent fsync/fdatasync() calls, we need them to all block on
93  * the log force before we clear the ili_fsync_fields field. This ensures that
94  * we don't get a racing sync operation that does not wait for the metadata to
95  * hit the journal before returning.  If we race with clearing ili_fsync_fields,
96  * then all that will happen is the log force will do nothing as the lsn will
97  * already be on disk.  We can't race with setting ili_fsync_fields because that
98  * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
99  * shared until after the ili_fsync_fields is cleared.
100  */
101 static  int
102 xfs_fsync_flush_log(
103 	struct xfs_inode	*ip,
104 	bool			datasync,
105 	int			*log_flushed)
106 {
107 	int			error = 0;
108 	xfs_csn_t		seq;
109 
110 	xfs_ilock(ip, XFS_ILOCK_SHARED);
111 	seq = xfs_fsync_seq(ip, datasync);
112 	if (seq) {
113 		error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
114 					  log_flushed);
115 
116 		spin_lock(&ip->i_itemp->ili_lock);
117 		ip->i_itemp->ili_fsync_fields = 0;
118 		spin_unlock(&ip->i_itemp->ili_lock);
119 	}
120 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
121 	return error;
122 }
123 
124 STATIC int
125 xfs_file_fsync(
126 	struct file		*file,
127 	loff_t			start,
128 	loff_t			end,
129 	int			datasync)
130 {
131 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
132 	struct xfs_mount	*mp = ip->i_mount;
133 	int			error, err2;
134 	int			log_flushed = 0;
135 
136 	trace_xfs_file_fsync(ip);
137 
138 	error = file_write_and_wait_range(file, start, end);
139 	if (error)
140 		return error;
141 
142 	if (xfs_is_shutdown(mp))
143 		return -EIO;
144 
145 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
146 
147 	/*
148 	 * If we have an RT and/or log subvolume we need to make sure to flush
149 	 * the write cache the device used for file data first.  This is to
150 	 * ensure newly written file data make it to disk before logging the new
151 	 * inode size in case of an extending write.
152 	 */
153 	if (XFS_IS_REALTIME_INODE(ip))
154 		error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
155 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
156 		error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
157 
158 	/*
159 	 * Any inode that has dirty modifications in the log is pinned.  The
160 	 * racy check here for a pinned inode will not catch modifications
161 	 * that happen concurrently to the fsync call, but fsync semantics
162 	 * only require to sync previously completed I/O.
163 	 */
164 	if (xfs_ipincount(ip)) {
165 		err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed);
166 		if (err2 && !error)
167 			error = err2;
168 	}
169 
170 	/*
171 	 * If we only have a single device, and the log force about was
172 	 * a no-op we might have to flush the data device cache here.
173 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
174 	 * an already allocated file and thus do not have any metadata to
175 	 * commit.
176 	 */
177 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
178 	    mp->m_logdev_targp == mp->m_ddev_targp) {
179 		err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
180 		if (err2 && !error)
181 			error = err2;
182 	}
183 
184 	return error;
185 }
186 
187 static int
188 xfs_ilock_iocb(
189 	struct kiocb		*iocb,
190 	unsigned int		lock_mode)
191 {
192 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
193 
194 	if (iocb->ki_flags & IOCB_NOWAIT) {
195 		if (!xfs_ilock_nowait(ip, lock_mode))
196 			return -EAGAIN;
197 	} else {
198 		xfs_ilock(ip, lock_mode);
199 	}
200 
201 	return 0;
202 }
203 
204 static int
205 xfs_ilock_iocb_for_write(
206 	struct kiocb		*iocb,
207 	unsigned int		*lock_mode)
208 {
209 	ssize_t			ret;
210 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
211 
212 	ret = xfs_ilock_iocb(iocb, *lock_mode);
213 	if (ret)
214 		return ret;
215 
216 	/*
217 	 * If a reflink remap is in progress we always need to take the iolock
218 	 * exclusively to wait for it to finish.
219 	 */
220 	if (*lock_mode == XFS_IOLOCK_SHARED &&
221 	    xfs_iflags_test(ip, XFS_IREMAPPING)) {
222 		xfs_iunlock(ip, *lock_mode);
223 		*lock_mode = XFS_IOLOCK_EXCL;
224 		return xfs_ilock_iocb(iocb, *lock_mode);
225 	}
226 
227 	return 0;
228 }
229 
230 STATIC ssize_t
231 xfs_file_dio_read(
232 	struct kiocb		*iocb,
233 	struct iov_iter		*to)
234 {
235 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
236 	ssize_t			ret;
237 
238 	trace_xfs_file_direct_read(iocb, to);
239 
240 	if (!iov_iter_count(to))
241 		return 0; /* skip atime */
242 
243 	file_accessed(iocb->ki_filp);
244 
245 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
246 	if (ret)
247 		return ret;
248 	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0);
249 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
250 
251 	return ret;
252 }
253 
254 static noinline ssize_t
255 xfs_file_dax_read(
256 	struct kiocb		*iocb,
257 	struct iov_iter		*to)
258 {
259 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
260 	ssize_t			ret = 0;
261 
262 	trace_xfs_file_dax_read(iocb, to);
263 
264 	if (!iov_iter_count(to))
265 		return 0; /* skip atime */
266 
267 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
268 	if (ret)
269 		return ret;
270 	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
271 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
272 
273 	file_accessed(iocb->ki_filp);
274 	return ret;
275 }
276 
277 STATIC ssize_t
278 xfs_file_buffered_read(
279 	struct kiocb		*iocb,
280 	struct iov_iter		*to)
281 {
282 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
283 	ssize_t			ret;
284 
285 	trace_xfs_file_buffered_read(iocb, to);
286 
287 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
288 	if (ret)
289 		return ret;
290 	ret = generic_file_read_iter(iocb, to);
291 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
292 
293 	return ret;
294 }
295 
296 STATIC ssize_t
297 xfs_file_read_iter(
298 	struct kiocb		*iocb,
299 	struct iov_iter		*to)
300 {
301 	struct inode		*inode = file_inode(iocb->ki_filp);
302 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
303 	ssize_t			ret = 0;
304 
305 	XFS_STATS_INC(mp, xs_read_calls);
306 
307 	if (xfs_is_shutdown(mp))
308 		return -EIO;
309 
310 	if (IS_DAX(inode))
311 		ret = xfs_file_dax_read(iocb, to);
312 	else if (iocb->ki_flags & IOCB_DIRECT)
313 		ret = xfs_file_dio_read(iocb, to);
314 	else
315 		ret = xfs_file_buffered_read(iocb, to);
316 
317 	if (ret > 0)
318 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
319 	return ret;
320 }
321 
322 STATIC ssize_t
323 xfs_file_splice_read(
324 	struct file		*in,
325 	loff_t			*ppos,
326 	struct pipe_inode_info	*pipe,
327 	size_t			len,
328 	unsigned int		flags)
329 {
330 	struct inode		*inode = file_inode(in);
331 	struct xfs_inode	*ip = XFS_I(inode);
332 	struct xfs_mount	*mp = ip->i_mount;
333 	ssize_t			ret = 0;
334 
335 	XFS_STATS_INC(mp, xs_read_calls);
336 
337 	if (xfs_is_shutdown(mp))
338 		return -EIO;
339 
340 	trace_xfs_file_splice_read(ip, *ppos, len);
341 
342 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
343 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
344 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
345 	if (ret > 0)
346 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
347 	return ret;
348 }
349 
350 /*
351  * Common pre-write limit and setup checks.
352  *
353  * Called with the iolocked held either shared and exclusive according to
354  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
355  * if called for a direct write beyond i_size.
356  */
357 STATIC ssize_t
358 xfs_file_write_checks(
359 	struct kiocb		*iocb,
360 	struct iov_iter		*from,
361 	unsigned int		*iolock)
362 {
363 	struct file		*file = iocb->ki_filp;
364 	struct inode		*inode = file->f_mapping->host;
365 	struct xfs_inode	*ip = XFS_I(inode);
366 	ssize_t			error = 0;
367 	size_t			count = iov_iter_count(from);
368 	bool			drained_dio = false;
369 	loff_t			isize;
370 
371 restart:
372 	error = generic_write_checks(iocb, from);
373 	if (error <= 0)
374 		return error;
375 
376 	if (iocb->ki_flags & IOCB_NOWAIT) {
377 		error = break_layout(inode, false);
378 		if (error == -EWOULDBLOCK)
379 			error = -EAGAIN;
380 	} else {
381 		error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
382 	}
383 
384 	if (error)
385 		return error;
386 
387 	/*
388 	 * For changing security info in file_remove_privs() we need i_rwsem
389 	 * exclusively.
390 	 */
391 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
392 		xfs_iunlock(ip, *iolock);
393 		*iolock = XFS_IOLOCK_EXCL;
394 		error = xfs_ilock_iocb(iocb, *iolock);
395 		if (error) {
396 			*iolock = 0;
397 			return error;
398 		}
399 		goto restart;
400 	}
401 
402 	/*
403 	 * If the offset is beyond the size of the file, we need to zero any
404 	 * blocks that fall between the existing EOF and the start of this
405 	 * write.  If zeroing is needed and we are currently holding the iolock
406 	 * shared, we need to update it to exclusive which implies having to
407 	 * redo all checks before.
408 	 *
409 	 * We need to serialise against EOF updates that occur in IO completions
410 	 * here. We want to make sure that nobody is changing the size while we
411 	 * do this check until we have placed an IO barrier (i.e.  hold the
412 	 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.  The
413 	 * spinlock effectively forms a memory barrier once we have the
414 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
415 	 * hence be able to correctly determine if we need to run zeroing.
416 	 *
417 	 * We can do an unlocked check here safely as IO completion can only
418 	 * extend EOF. Truncate is locked out at this point, so the EOF can
419 	 * not move backwards, only forwards. Hence we only need to take the
420 	 * slow path and spin locks when we are at or beyond the current EOF.
421 	 */
422 	if (iocb->ki_pos <= i_size_read(inode))
423 		goto out;
424 
425 	spin_lock(&ip->i_flags_lock);
426 	isize = i_size_read(inode);
427 	if (iocb->ki_pos > isize) {
428 		spin_unlock(&ip->i_flags_lock);
429 
430 		if (iocb->ki_flags & IOCB_NOWAIT)
431 			return -EAGAIN;
432 
433 		if (!drained_dio) {
434 			if (*iolock == XFS_IOLOCK_SHARED) {
435 				xfs_iunlock(ip, *iolock);
436 				*iolock = XFS_IOLOCK_EXCL;
437 				xfs_ilock(ip, *iolock);
438 				iov_iter_reexpand(from, count);
439 			}
440 			/*
441 			 * We now have an IO submission barrier in place, but
442 			 * AIO can do EOF updates during IO completion and hence
443 			 * we now need to wait for all of them to drain. Non-AIO
444 			 * DIO will have drained before we are given the
445 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
446 			 * no-op.
447 			 */
448 			inode_dio_wait(inode);
449 			drained_dio = true;
450 			goto restart;
451 		}
452 
453 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
454 		error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL);
455 		if (error)
456 			return error;
457 	} else
458 		spin_unlock(&ip->i_flags_lock);
459 
460 out:
461 	return kiocb_modified(iocb);
462 }
463 
464 static int
465 xfs_dio_write_end_io(
466 	struct kiocb		*iocb,
467 	ssize_t			size,
468 	int			error,
469 	unsigned		flags)
470 {
471 	struct inode		*inode = file_inode(iocb->ki_filp);
472 	struct xfs_inode	*ip = XFS_I(inode);
473 	loff_t			offset = iocb->ki_pos;
474 	unsigned int		nofs_flag;
475 
476 	trace_xfs_end_io_direct_write(ip, offset, size);
477 
478 	if (xfs_is_shutdown(ip->i_mount))
479 		return -EIO;
480 
481 	if (error)
482 		return error;
483 	if (!size)
484 		return 0;
485 
486 	/*
487 	 * Capture amount written on completion as we can't reliably account
488 	 * for it on submission.
489 	 */
490 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
491 
492 	/*
493 	 * We can allocate memory here while doing writeback on behalf of
494 	 * memory reclaim.  To avoid memory allocation deadlocks set the
495 	 * task-wide nofs context for the following operations.
496 	 */
497 	nofs_flag = memalloc_nofs_save();
498 
499 	if (flags & IOMAP_DIO_COW) {
500 		error = xfs_reflink_end_cow(ip, offset, size);
501 		if (error)
502 			goto out;
503 	}
504 
505 	/*
506 	 * Unwritten conversion updates the in-core isize after extent
507 	 * conversion but before updating the on-disk size. Updating isize any
508 	 * earlier allows a racing dio read to find unwritten extents before
509 	 * they are converted.
510 	 */
511 	if (flags & IOMAP_DIO_UNWRITTEN) {
512 		error = xfs_iomap_write_unwritten(ip, offset, size, true);
513 		goto out;
514 	}
515 
516 	/*
517 	 * We need to update the in-core inode size here so that we don't end up
518 	 * with the on-disk inode size being outside the in-core inode size. We
519 	 * have no other method of updating EOF for AIO, so always do it here
520 	 * if necessary.
521 	 *
522 	 * We need to lock the test/set EOF update as we can be racing with
523 	 * other IO completions here to update the EOF. Failing to serialise
524 	 * here can result in EOF moving backwards and Bad Things Happen when
525 	 * that occurs.
526 	 *
527 	 * As IO completion only ever extends EOF, we can do an unlocked check
528 	 * here to avoid taking the spinlock. If we land within the current EOF,
529 	 * then we do not need to do an extending update at all, and we don't
530 	 * need to take the lock to check this. If we race with an update moving
531 	 * EOF, then we'll either still be beyond EOF and need to take the lock,
532 	 * or we'll be within EOF and we don't need to take it at all.
533 	 */
534 	if (offset + size <= i_size_read(inode))
535 		goto out;
536 
537 	spin_lock(&ip->i_flags_lock);
538 	if (offset + size > i_size_read(inode)) {
539 		i_size_write(inode, offset + size);
540 		spin_unlock(&ip->i_flags_lock);
541 		error = xfs_setfilesize(ip, offset, size);
542 	} else {
543 		spin_unlock(&ip->i_flags_lock);
544 	}
545 
546 out:
547 	memalloc_nofs_restore(nofs_flag);
548 	return error;
549 }
550 
551 static const struct iomap_dio_ops xfs_dio_write_ops = {
552 	.end_io		= xfs_dio_write_end_io,
553 };
554 
555 /*
556  * Handle block aligned direct I/O writes
557  */
558 static noinline ssize_t
559 xfs_file_dio_write_aligned(
560 	struct xfs_inode	*ip,
561 	struct kiocb		*iocb,
562 	struct iov_iter		*from)
563 {
564 	unsigned int		iolock = XFS_IOLOCK_SHARED;
565 	ssize_t			ret;
566 
567 	ret = xfs_ilock_iocb_for_write(iocb, &iolock);
568 	if (ret)
569 		return ret;
570 	ret = xfs_file_write_checks(iocb, from, &iolock);
571 	if (ret)
572 		goto out_unlock;
573 
574 	/*
575 	 * We don't need to hold the IOLOCK exclusively across the IO, so demote
576 	 * the iolock back to shared if we had to take the exclusive lock in
577 	 * xfs_file_write_checks() for other reasons.
578 	 */
579 	if (iolock == XFS_IOLOCK_EXCL) {
580 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
581 		iolock = XFS_IOLOCK_SHARED;
582 	}
583 	trace_xfs_file_direct_write(iocb, from);
584 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
585 			   &xfs_dio_write_ops, 0, NULL, 0);
586 out_unlock:
587 	if (iolock)
588 		xfs_iunlock(ip, iolock);
589 	return ret;
590 }
591 
592 /*
593  * Handle block unaligned direct I/O writes
594  *
595  * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
596  * them to be done in parallel with reads and other direct I/O writes.  However,
597  * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
598  * to do sub-block zeroing and that requires serialisation against other direct
599  * I/O to the same block.  In this case we need to serialise the submission of
600  * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
601  * In the case where sub-block zeroing is not required, we can do concurrent
602  * sub-block dios to the same block successfully.
603  *
604  * Optimistically submit the I/O using the shared lock first, but use the
605  * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
606  * if block allocation or partial block zeroing would be required.  In that case
607  * we try again with the exclusive lock.
608  */
609 static noinline ssize_t
610 xfs_file_dio_write_unaligned(
611 	struct xfs_inode	*ip,
612 	struct kiocb		*iocb,
613 	struct iov_iter		*from)
614 {
615 	size_t			isize = i_size_read(VFS_I(ip));
616 	size_t			count = iov_iter_count(from);
617 	unsigned int		iolock = XFS_IOLOCK_SHARED;
618 	unsigned int		flags = IOMAP_DIO_OVERWRITE_ONLY;
619 	ssize_t			ret;
620 
621 	/*
622 	 * Extending writes need exclusivity because of the sub-block zeroing
623 	 * that the DIO code always does for partial tail blocks beyond EOF, so
624 	 * don't even bother trying the fast path in this case.
625 	 */
626 	if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
627 		if (iocb->ki_flags & IOCB_NOWAIT)
628 			return -EAGAIN;
629 retry_exclusive:
630 		iolock = XFS_IOLOCK_EXCL;
631 		flags = IOMAP_DIO_FORCE_WAIT;
632 	}
633 
634 	ret = xfs_ilock_iocb_for_write(iocb, &iolock);
635 	if (ret)
636 		return ret;
637 
638 	/*
639 	 * We can't properly handle unaligned direct I/O to reflink files yet,
640 	 * as we can't unshare a partial block.
641 	 */
642 	if (xfs_is_cow_inode(ip)) {
643 		trace_xfs_reflink_bounce_dio_write(iocb, from);
644 		ret = -ENOTBLK;
645 		goto out_unlock;
646 	}
647 
648 	ret = xfs_file_write_checks(iocb, from, &iolock);
649 	if (ret)
650 		goto out_unlock;
651 
652 	/*
653 	 * If we are doing exclusive unaligned I/O, this must be the only I/O
654 	 * in-flight.  Otherwise we risk data corruption due to unwritten extent
655 	 * conversions from the AIO end_io handler.  Wait for all other I/O to
656 	 * drain first.
657 	 */
658 	if (flags & IOMAP_DIO_FORCE_WAIT)
659 		inode_dio_wait(VFS_I(ip));
660 
661 	trace_xfs_file_direct_write(iocb, from);
662 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
663 			   &xfs_dio_write_ops, flags, NULL, 0);
664 
665 	/*
666 	 * Retry unaligned I/O with exclusive blocking semantics if the DIO
667 	 * layer rejected it for mapping or locking reasons. If we are doing
668 	 * nonblocking user I/O, propagate the error.
669 	 */
670 	if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
671 		ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
672 		xfs_iunlock(ip, iolock);
673 		goto retry_exclusive;
674 	}
675 
676 out_unlock:
677 	if (iolock)
678 		xfs_iunlock(ip, iolock);
679 	return ret;
680 }
681 
682 static ssize_t
683 xfs_file_dio_write(
684 	struct kiocb		*iocb,
685 	struct iov_iter		*from)
686 {
687 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
688 	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
689 	size_t			count = iov_iter_count(from);
690 
691 	/* direct I/O must be aligned to device logical sector size */
692 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
693 		return -EINVAL;
694 	if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
695 		return xfs_file_dio_write_unaligned(ip, iocb, from);
696 	return xfs_file_dio_write_aligned(ip, iocb, from);
697 }
698 
699 static noinline ssize_t
700 xfs_file_dax_write(
701 	struct kiocb		*iocb,
702 	struct iov_iter		*from)
703 {
704 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
705 	struct xfs_inode	*ip = XFS_I(inode);
706 	unsigned int		iolock = XFS_IOLOCK_EXCL;
707 	ssize_t			ret, error = 0;
708 	loff_t			pos;
709 
710 	ret = xfs_ilock_iocb(iocb, iolock);
711 	if (ret)
712 		return ret;
713 	ret = xfs_file_write_checks(iocb, from, &iolock);
714 	if (ret)
715 		goto out;
716 
717 	pos = iocb->ki_pos;
718 
719 	trace_xfs_file_dax_write(iocb, from);
720 	ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops);
721 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
722 		i_size_write(inode, iocb->ki_pos);
723 		error = xfs_setfilesize(ip, pos, ret);
724 	}
725 out:
726 	if (iolock)
727 		xfs_iunlock(ip, iolock);
728 	if (error)
729 		return error;
730 
731 	if (ret > 0) {
732 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
733 
734 		/* Handle various SYNC-type writes */
735 		ret = generic_write_sync(iocb, ret);
736 	}
737 	return ret;
738 }
739 
740 STATIC ssize_t
741 xfs_file_buffered_write(
742 	struct kiocb		*iocb,
743 	struct iov_iter		*from)
744 {
745 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
746 	struct xfs_inode	*ip = XFS_I(inode);
747 	ssize_t			ret;
748 	bool			cleared_space = false;
749 	unsigned int		iolock;
750 
751 write_retry:
752 	iolock = XFS_IOLOCK_EXCL;
753 	ret = xfs_ilock_iocb(iocb, iolock);
754 	if (ret)
755 		return ret;
756 
757 	ret = xfs_file_write_checks(iocb, from, &iolock);
758 	if (ret)
759 		goto out;
760 
761 	trace_xfs_file_buffered_write(iocb, from);
762 	ret = iomap_file_buffered_write(iocb, from,
763 			&xfs_buffered_write_iomap_ops, NULL);
764 
765 	/*
766 	 * If we hit a space limit, try to free up some lingering preallocated
767 	 * space before returning an error. In the case of ENOSPC, first try to
768 	 * write back all dirty inodes to free up some of the excess reserved
769 	 * metadata space. This reduces the chances that the eofblocks scan
770 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
771 	 * also behaves as a filter to prevent too many eofblocks scans from
772 	 * running at the same time.  Use a synchronous scan to increase the
773 	 * effectiveness of the scan.
774 	 */
775 	if (ret == -EDQUOT && !cleared_space) {
776 		xfs_iunlock(ip, iolock);
777 		xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
778 		cleared_space = true;
779 		goto write_retry;
780 	} else if (ret == -ENOSPC && !cleared_space) {
781 		struct xfs_icwalk	icw = {0};
782 
783 		cleared_space = true;
784 		xfs_flush_inodes(ip->i_mount);
785 
786 		xfs_iunlock(ip, iolock);
787 		icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
788 		xfs_blockgc_free_space(ip->i_mount, &icw);
789 		goto write_retry;
790 	}
791 
792 out:
793 	if (iolock)
794 		xfs_iunlock(ip, iolock);
795 
796 	if (ret > 0) {
797 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
798 		/* Handle various SYNC-type writes */
799 		ret = generic_write_sync(iocb, ret);
800 	}
801 	return ret;
802 }
803 
804 STATIC ssize_t
805 xfs_file_write_iter(
806 	struct kiocb		*iocb,
807 	struct iov_iter		*from)
808 {
809 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
810 	struct xfs_inode	*ip = XFS_I(inode);
811 	ssize_t			ret;
812 	size_t			ocount = iov_iter_count(from);
813 
814 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
815 
816 	if (ocount == 0)
817 		return 0;
818 
819 	if (xfs_is_shutdown(ip->i_mount))
820 		return -EIO;
821 
822 	if (IS_DAX(inode))
823 		return xfs_file_dax_write(iocb, from);
824 
825 	if (iocb->ki_flags & IOCB_DIRECT) {
826 		/*
827 		 * Allow a directio write to fall back to a buffered
828 		 * write *only* in the case that we're doing a reflink
829 		 * CoW.  In all other directio scenarios we do not
830 		 * allow an operation to fall back to buffered mode.
831 		 */
832 		ret = xfs_file_dio_write(iocb, from);
833 		if (ret != -ENOTBLK)
834 			return ret;
835 	}
836 
837 	return xfs_file_buffered_write(iocb, from);
838 }
839 
840 /* Does this file, inode, or mount want synchronous writes? */
841 static inline bool xfs_file_sync_writes(struct file *filp)
842 {
843 	struct xfs_inode	*ip = XFS_I(file_inode(filp));
844 
845 	if (xfs_has_wsync(ip->i_mount))
846 		return true;
847 	if (filp->f_flags & (__O_SYNC | O_DSYNC))
848 		return true;
849 	if (IS_SYNC(file_inode(filp)))
850 		return true;
851 
852 	return false;
853 }
854 
855 static int
856 xfs_falloc_newsize(
857 	struct file		*file,
858 	int			mode,
859 	loff_t			offset,
860 	loff_t			len,
861 	loff_t			*new_size)
862 {
863 	struct inode		*inode = file_inode(file);
864 
865 	if ((mode & FALLOC_FL_KEEP_SIZE) || offset + len <= i_size_read(inode))
866 		return 0;
867 	*new_size = offset + len;
868 	return inode_newsize_ok(inode, *new_size);
869 }
870 
871 static int
872 xfs_falloc_setsize(
873 	struct file		*file,
874 	loff_t			new_size)
875 {
876 	struct iattr iattr = {
877 		.ia_valid	= ATTR_SIZE,
878 		.ia_size	= new_size,
879 	};
880 
881 	if (!new_size)
882 		return 0;
883 	return xfs_vn_setattr_size(file_mnt_idmap(file), file_dentry(file),
884 			&iattr);
885 }
886 
887 static int
888 xfs_falloc_collapse_range(
889 	struct file		*file,
890 	loff_t			offset,
891 	loff_t			len)
892 {
893 	struct inode		*inode = file_inode(file);
894 	loff_t			new_size = i_size_read(inode) - len;
895 	int			error;
896 
897 	if (!xfs_is_falloc_aligned(XFS_I(inode), offset, len))
898 		return -EINVAL;
899 
900 	/*
901 	 * There is no need to overlap collapse range with EOF, in which case it
902 	 * is effectively a truncate operation
903 	 */
904 	if (offset + len >= i_size_read(inode))
905 		return -EINVAL;
906 
907 	error = xfs_collapse_file_space(XFS_I(inode), offset, len);
908 	if (error)
909 		return error;
910 	return xfs_falloc_setsize(file, new_size);
911 }
912 
913 static int
914 xfs_falloc_insert_range(
915 	struct file		*file,
916 	loff_t			offset,
917 	loff_t			len)
918 {
919 	struct inode		*inode = file_inode(file);
920 	loff_t			isize = i_size_read(inode);
921 	int			error;
922 
923 	if (!xfs_is_falloc_aligned(XFS_I(inode), offset, len))
924 		return -EINVAL;
925 
926 	/*
927 	 * New inode size must not exceed ->s_maxbytes, accounting for
928 	 * possible signed overflow.
929 	 */
930 	if (inode->i_sb->s_maxbytes - isize < len)
931 		return -EFBIG;
932 
933 	/* Offset should be less than i_size */
934 	if (offset >= isize)
935 		return -EINVAL;
936 
937 	error = xfs_falloc_setsize(file, isize + len);
938 	if (error)
939 		return error;
940 
941 	/*
942 	 * Perform hole insertion now that the file size has been updated so
943 	 * that if we crash during the operation we don't leave shifted extents
944 	 * past EOF and hence losing access to the data that is contained within
945 	 * them.
946 	 */
947 	return xfs_insert_file_space(XFS_I(inode), offset, len);
948 }
949 
950 /*
951  * Punch a hole and prealloc the range.  We use a hole punch rather than
952  * unwritten extent conversion for two reasons:
953  *
954  *   1.) Hole punch handles partial block zeroing for us.
955  *   2.) If prealloc returns ENOSPC, the file range is still zero-valued by
956  *	 virtue of the hole punch.
957  */
958 static int
959 xfs_falloc_zero_range(
960 	struct file		*file,
961 	int			mode,
962 	loff_t			offset,
963 	loff_t			len)
964 {
965 	struct inode		*inode = file_inode(file);
966 	unsigned int		blksize = i_blocksize(inode);
967 	loff_t			new_size = 0;
968 	int			error;
969 
970 	trace_xfs_zero_file_space(XFS_I(inode));
971 
972 	error = xfs_falloc_newsize(file, mode, offset, len, &new_size);
973 	if (error)
974 		return error;
975 
976 	error = xfs_free_file_space(XFS_I(inode), offset, len);
977 	if (error)
978 		return error;
979 
980 	len = round_up(offset + len, blksize) - round_down(offset, blksize);
981 	offset = round_down(offset, blksize);
982 	error = xfs_alloc_file_space(XFS_I(inode), offset, len);
983 	if (error)
984 		return error;
985 	return xfs_falloc_setsize(file, new_size);
986 }
987 
988 static int
989 xfs_falloc_unshare_range(
990 	struct file		*file,
991 	int			mode,
992 	loff_t			offset,
993 	loff_t			len)
994 {
995 	struct inode		*inode = file_inode(file);
996 	loff_t			new_size = 0;
997 	int			error;
998 
999 	error = xfs_falloc_newsize(file, mode, offset, len, &new_size);
1000 	if (error)
1001 		return error;
1002 
1003 	error = xfs_reflink_unshare(XFS_I(inode), offset, len);
1004 	if (error)
1005 		return error;
1006 
1007 	error = xfs_alloc_file_space(XFS_I(inode), offset, len);
1008 	if (error)
1009 		return error;
1010 	return xfs_falloc_setsize(file, new_size);
1011 }
1012 
1013 static int
1014 xfs_falloc_allocate_range(
1015 	struct file		*file,
1016 	int			mode,
1017 	loff_t			offset,
1018 	loff_t			len)
1019 {
1020 	struct inode		*inode = file_inode(file);
1021 	loff_t			new_size = 0;
1022 	int			error;
1023 
1024 	/*
1025 	 * If always_cow mode we can't use preallocations and thus should not
1026 	 * create them.
1027 	 */
1028 	if (xfs_is_always_cow_inode(XFS_I(inode)))
1029 		return -EOPNOTSUPP;
1030 
1031 	error = xfs_falloc_newsize(file, mode, offset, len, &new_size);
1032 	if (error)
1033 		return error;
1034 
1035 	error = xfs_alloc_file_space(XFS_I(inode), offset, len);
1036 	if (error)
1037 		return error;
1038 	return xfs_falloc_setsize(file, new_size);
1039 }
1040 
1041 #define	XFS_FALLOC_FL_SUPPORTED						\
1042 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
1043 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
1044 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
1045 
1046 STATIC long
1047 xfs_file_fallocate(
1048 	struct file		*file,
1049 	int			mode,
1050 	loff_t			offset,
1051 	loff_t			len)
1052 {
1053 	struct inode		*inode = file_inode(file);
1054 	struct xfs_inode	*ip = XFS_I(inode);
1055 	long			error;
1056 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1057 
1058 	if (!S_ISREG(inode->i_mode))
1059 		return -EINVAL;
1060 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
1061 		return -EOPNOTSUPP;
1062 
1063 	xfs_ilock(ip, iolock);
1064 	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
1065 	if (error)
1066 		goto out_unlock;
1067 
1068 	/*
1069 	 * Must wait for all AIO to complete before we continue as AIO can
1070 	 * change the file size on completion without holding any locks we
1071 	 * currently hold. We must do this first because AIO can update both
1072 	 * the on disk and in memory inode sizes, and the operations that follow
1073 	 * require the in-memory size to be fully up-to-date.
1074 	 */
1075 	inode_dio_wait(inode);
1076 
1077 	error = file_modified(file);
1078 	if (error)
1079 		goto out_unlock;
1080 
1081 	switch (mode & FALLOC_FL_MODE_MASK) {
1082 	case FALLOC_FL_PUNCH_HOLE:
1083 		error = xfs_free_file_space(ip, offset, len);
1084 		break;
1085 	case FALLOC_FL_COLLAPSE_RANGE:
1086 		error = xfs_falloc_collapse_range(file, offset, len);
1087 		break;
1088 	case FALLOC_FL_INSERT_RANGE:
1089 		error = xfs_falloc_insert_range(file, offset, len);
1090 		break;
1091 	case FALLOC_FL_ZERO_RANGE:
1092 		error = xfs_falloc_zero_range(file, mode, offset, len);
1093 		break;
1094 	case FALLOC_FL_UNSHARE_RANGE:
1095 		error = xfs_falloc_unshare_range(file, mode, offset, len);
1096 		break;
1097 	case FALLOC_FL_ALLOCATE_RANGE:
1098 		error = xfs_falloc_allocate_range(file, mode, offset, len);
1099 		break;
1100 	default:
1101 		error = -EOPNOTSUPP;
1102 		break;
1103 	}
1104 
1105 	if (!error && xfs_file_sync_writes(file))
1106 		error = xfs_log_force_inode(ip);
1107 
1108 out_unlock:
1109 	xfs_iunlock(ip, iolock);
1110 	return error;
1111 }
1112 
1113 STATIC int
1114 xfs_file_fadvise(
1115 	struct file	*file,
1116 	loff_t		start,
1117 	loff_t		end,
1118 	int		advice)
1119 {
1120 	struct xfs_inode *ip = XFS_I(file_inode(file));
1121 	int ret;
1122 	int lockflags = 0;
1123 
1124 	/*
1125 	 * Operations creating pages in page cache need protection from hole
1126 	 * punching and similar ops
1127 	 */
1128 	if (advice == POSIX_FADV_WILLNEED) {
1129 		lockflags = XFS_IOLOCK_SHARED;
1130 		xfs_ilock(ip, lockflags);
1131 	}
1132 	ret = generic_fadvise(file, start, end, advice);
1133 	if (lockflags)
1134 		xfs_iunlock(ip, lockflags);
1135 	return ret;
1136 }
1137 
1138 STATIC loff_t
1139 xfs_file_remap_range(
1140 	struct file		*file_in,
1141 	loff_t			pos_in,
1142 	struct file		*file_out,
1143 	loff_t			pos_out,
1144 	loff_t			len,
1145 	unsigned int		remap_flags)
1146 {
1147 	struct inode		*inode_in = file_inode(file_in);
1148 	struct xfs_inode	*src = XFS_I(inode_in);
1149 	struct inode		*inode_out = file_inode(file_out);
1150 	struct xfs_inode	*dest = XFS_I(inode_out);
1151 	struct xfs_mount	*mp = src->i_mount;
1152 	loff_t			remapped = 0;
1153 	xfs_extlen_t		cowextsize;
1154 	int			ret;
1155 
1156 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1157 		return -EINVAL;
1158 
1159 	if (!xfs_has_reflink(mp))
1160 		return -EOPNOTSUPP;
1161 
1162 	if (xfs_is_shutdown(mp))
1163 		return -EIO;
1164 
1165 	/* Prepare and then clone file data. */
1166 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1167 			&len, remap_flags);
1168 	if (ret || len == 0)
1169 		return ret;
1170 
1171 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1172 
1173 	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1174 			&remapped);
1175 	if (ret)
1176 		goto out_unlock;
1177 
1178 	/*
1179 	 * Carry the cowextsize hint from src to dest if we're sharing the
1180 	 * entire source file to the entire destination file, the source file
1181 	 * has a cowextsize hint, and the destination file does not.
1182 	 */
1183 	cowextsize = 0;
1184 	if (pos_in == 0 && len == i_size_read(inode_in) &&
1185 	    (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1186 	    pos_out == 0 && len >= i_size_read(inode_out) &&
1187 	    !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1188 		cowextsize = src->i_cowextsize;
1189 
1190 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1191 			remap_flags);
1192 	if (ret)
1193 		goto out_unlock;
1194 
1195 	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1196 		xfs_log_force_inode(dest);
1197 out_unlock:
1198 	xfs_iunlock2_remapping(src, dest);
1199 	if (ret)
1200 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1201 	return remapped > 0 ? remapped : ret;
1202 }
1203 
1204 STATIC int
1205 xfs_file_open(
1206 	struct inode	*inode,
1207 	struct file	*file)
1208 {
1209 	if (xfs_is_shutdown(XFS_M(inode->i_sb)))
1210 		return -EIO;
1211 	file->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
1212 	return generic_file_open(inode, file);
1213 }
1214 
1215 STATIC int
1216 xfs_dir_open(
1217 	struct inode	*inode,
1218 	struct file	*file)
1219 {
1220 	struct xfs_inode *ip = XFS_I(inode);
1221 	unsigned int	mode;
1222 	int		error;
1223 
1224 	if (xfs_is_shutdown(ip->i_mount))
1225 		return -EIO;
1226 	error = generic_file_open(inode, file);
1227 	if (error)
1228 		return error;
1229 
1230 	/*
1231 	 * If there are any blocks, read-ahead block 0 as we're almost
1232 	 * certain to have the next operation be a read there.
1233 	 */
1234 	mode = xfs_ilock_data_map_shared(ip);
1235 	if (ip->i_df.if_nextents > 0)
1236 		error = xfs_dir3_data_readahead(ip, 0, 0);
1237 	xfs_iunlock(ip, mode);
1238 	return error;
1239 }
1240 
1241 /*
1242  * Don't bother propagating errors.  We're just doing cleanup, and the caller
1243  * ignores the return value anyway.
1244  */
1245 STATIC int
1246 xfs_file_release(
1247 	struct inode		*inode,
1248 	struct file		*file)
1249 {
1250 	struct xfs_inode	*ip = XFS_I(inode);
1251 	struct xfs_mount	*mp = ip->i_mount;
1252 
1253 	/*
1254 	 * If this is a read-only mount or the file system has been shut down,
1255 	 * don't generate I/O.
1256 	 */
1257 	if (xfs_is_readonly(mp) || xfs_is_shutdown(mp))
1258 		return 0;
1259 
1260 	/*
1261 	 * If we previously truncated this file and removed old data in the
1262 	 * process, we want to initiate "early" writeout on the last close.
1263 	 * This is an attempt to combat the notorious NULL files problem which
1264 	 * is particularly noticeable from a truncate down, buffered (re-)write
1265 	 * (delalloc), followed by a crash.  What we are effectively doing here
1266 	 * is significantly reducing the time window where we'd otherwise be
1267 	 * exposed to that problem.
1268 	 */
1269 	if (xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED)) {
1270 		xfs_iflags_clear(ip, XFS_EOFBLOCKS_RELEASED);
1271 		if (ip->i_delayed_blks > 0)
1272 			filemap_flush(inode->i_mapping);
1273 	}
1274 
1275 	/*
1276 	 * XFS aggressively preallocates post-EOF space to generate contiguous
1277 	 * allocations for writers that append to the end of the file.
1278 	 *
1279 	 * To support workloads that close and reopen the file frequently, these
1280 	 * preallocations usually persist after a close unless it is the first
1281 	 * close for the inode.  This is a tradeoff to generate tightly packed
1282 	 * data layouts for unpacking tarballs or similar archives that write
1283 	 * one file after another without going back to it while keeping the
1284 	 * preallocation for files that have recurring open/write/close cycles.
1285 	 *
1286 	 * This heuristic is skipped for inodes with the append-only flag as
1287 	 * that flag is rather pointless for inodes written only once.
1288 	 *
1289 	 * There is no point in freeing blocks here for open but unlinked files
1290 	 * as they will be taken care of by the inactivation path soon.
1291 	 *
1292 	 * When releasing a read-only context, don't flush data or trim post-EOF
1293 	 * blocks.  This avoids open/read/close workloads from removing EOF
1294 	 * blocks that other writers depend upon to reduce fragmentation.
1295 	 *
1296 	 * If we can't get the iolock just skip truncating the blocks past EOF
1297 	 * because we could deadlock with the mmap_lock otherwise. We'll get
1298 	 * another chance to drop them once the last reference to the inode is
1299 	 * dropped, so we'll never leak blocks permanently.
1300 	 */
1301 	if (inode->i_nlink &&
1302 	    (file->f_mode & FMODE_WRITE) &&
1303 	    !(ip->i_diflags & XFS_DIFLAG_APPEND) &&
1304 	    !xfs_iflags_test(ip, XFS_EOFBLOCKS_RELEASED) &&
1305 	    xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1306 		if (xfs_can_free_eofblocks(ip) &&
1307 		    !xfs_iflags_test_and_set(ip, XFS_EOFBLOCKS_RELEASED))
1308 			xfs_free_eofblocks(ip);
1309 		xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1310 	}
1311 
1312 	return 0;
1313 }
1314 
1315 STATIC int
1316 xfs_file_readdir(
1317 	struct file	*file,
1318 	struct dir_context *ctx)
1319 {
1320 	struct inode	*inode = file_inode(file);
1321 	xfs_inode_t	*ip = XFS_I(inode);
1322 	size_t		bufsize;
1323 
1324 	/*
1325 	 * The Linux API doesn't pass down the total size of the buffer
1326 	 * we read into down to the filesystem.  With the filldir concept
1327 	 * it's not needed for correct information, but the XFS dir2 leaf
1328 	 * code wants an estimate of the buffer size to calculate it's
1329 	 * readahead window and size the buffers used for mapping to
1330 	 * physical blocks.
1331 	 *
1332 	 * Try to give it an estimate that's good enough, maybe at some
1333 	 * point we can change the ->readdir prototype to include the
1334 	 * buffer size.  For now we use the current glibc buffer size.
1335 	 */
1336 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1337 
1338 	return xfs_readdir(NULL, ip, ctx, bufsize);
1339 }
1340 
1341 STATIC loff_t
1342 xfs_file_llseek(
1343 	struct file	*file,
1344 	loff_t		offset,
1345 	int		whence)
1346 {
1347 	struct inode		*inode = file->f_mapping->host;
1348 
1349 	if (xfs_is_shutdown(XFS_I(inode)->i_mount))
1350 		return -EIO;
1351 
1352 	switch (whence) {
1353 	default:
1354 		return generic_file_llseek(file, offset, whence);
1355 	case SEEK_HOLE:
1356 		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1357 		break;
1358 	case SEEK_DATA:
1359 		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1360 		break;
1361 	}
1362 
1363 	if (offset < 0)
1364 		return offset;
1365 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1366 }
1367 
1368 static inline vm_fault_t
1369 xfs_dax_fault_locked(
1370 	struct vm_fault		*vmf,
1371 	unsigned int		order,
1372 	bool			write_fault)
1373 {
1374 	vm_fault_t		ret;
1375 	pfn_t			pfn;
1376 
1377 	if (!IS_ENABLED(CONFIG_FS_DAX)) {
1378 		ASSERT(0);
1379 		return VM_FAULT_SIGBUS;
1380 	}
1381 	ret = dax_iomap_fault(vmf, order, &pfn, NULL,
1382 			(write_fault && !vmf->cow_page) ?
1383 				&xfs_dax_write_iomap_ops :
1384 				&xfs_read_iomap_ops);
1385 	if (ret & VM_FAULT_NEEDDSYNC)
1386 		ret = dax_finish_sync_fault(vmf, order, pfn);
1387 	return ret;
1388 }
1389 
1390 static vm_fault_t
1391 xfs_dax_read_fault(
1392 	struct vm_fault		*vmf,
1393 	unsigned int		order)
1394 {
1395 	struct xfs_inode	*ip = XFS_I(file_inode(vmf->vma->vm_file));
1396 	vm_fault_t		ret;
1397 
1398 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1399 	ret = xfs_dax_fault_locked(vmf, order, false);
1400 	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1401 
1402 	return ret;
1403 }
1404 
1405 static vm_fault_t
1406 xfs_write_fault(
1407 	struct vm_fault		*vmf,
1408 	unsigned int		order)
1409 {
1410 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1411 	struct xfs_inode	*ip = XFS_I(inode);
1412 	unsigned int		lock_mode = XFS_MMAPLOCK_SHARED;
1413 	vm_fault_t		ret;
1414 
1415 	sb_start_pagefault(inode->i_sb);
1416 	file_update_time(vmf->vma->vm_file);
1417 
1418 	/*
1419 	 * Normally we only need the shared mmaplock, but if a reflink remap is
1420 	 * in progress we take the exclusive lock to wait for the remap to
1421 	 * finish before taking a write fault.
1422 	 */
1423 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1424 	if (xfs_iflags_test(ip, XFS_IREMAPPING)) {
1425 		xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1426 		xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1427 		lock_mode = XFS_MMAPLOCK_EXCL;
1428 	}
1429 
1430 	if (IS_DAX(inode))
1431 		ret = xfs_dax_fault_locked(vmf, order, true);
1432 	else
1433 		ret = iomap_page_mkwrite(vmf, &xfs_page_mkwrite_iomap_ops);
1434 	xfs_iunlock(ip, lock_mode);
1435 
1436 	sb_end_pagefault(inode->i_sb);
1437 	return ret;
1438 }
1439 
1440 /*
1441  * Locking for serialisation of IO during page faults. This results in a lock
1442  * ordering of:
1443  *
1444  * mmap_lock (MM)
1445  *   sb_start_pagefault(vfs, freeze)
1446  *     invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
1447  *       page_lock (MM)
1448  *         i_lock (XFS - extent map serialisation)
1449  */
1450 static vm_fault_t
1451 __xfs_filemap_fault(
1452 	struct vm_fault		*vmf,
1453 	unsigned int		order,
1454 	bool			write_fault)
1455 {
1456 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1457 
1458 	trace_xfs_filemap_fault(XFS_I(inode), order, write_fault);
1459 
1460 	if (write_fault)
1461 		return xfs_write_fault(vmf, order);
1462 	if (IS_DAX(inode))
1463 		return xfs_dax_read_fault(vmf, order);
1464 	return filemap_fault(vmf);
1465 }
1466 
1467 static inline bool
1468 xfs_is_write_fault(
1469 	struct vm_fault		*vmf)
1470 {
1471 	return (vmf->flags & FAULT_FLAG_WRITE) &&
1472 	       (vmf->vma->vm_flags & VM_SHARED);
1473 }
1474 
1475 static vm_fault_t
1476 xfs_filemap_fault(
1477 	struct vm_fault		*vmf)
1478 {
1479 	/* DAX can shortcut the normal fault path on write faults! */
1480 	return __xfs_filemap_fault(vmf, 0,
1481 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1482 			xfs_is_write_fault(vmf));
1483 }
1484 
1485 static vm_fault_t
1486 xfs_filemap_huge_fault(
1487 	struct vm_fault		*vmf,
1488 	unsigned int		order)
1489 {
1490 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1491 		return VM_FAULT_FALLBACK;
1492 
1493 	/* DAX can shortcut the normal fault path on write faults! */
1494 	return __xfs_filemap_fault(vmf, order,
1495 			xfs_is_write_fault(vmf));
1496 }
1497 
1498 static vm_fault_t
1499 xfs_filemap_page_mkwrite(
1500 	struct vm_fault		*vmf)
1501 {
1502 	return __xfs_filemap_fault(vmf, 0, true);
1503 }
1504 
1505 /*
1506  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1507  * on write faults. In reality, it needs to serialise against truncate and
1508  * prepare memory for writing so handle is as standard write fault.
1509  */
1510 static vm_fault_t
1511 xfs_filemap_pfn_mkwrite(
1512 	struct vm_fault		*vmf)
1513 {
1514 
1515 	return __xfs_filemap_fault(vmf, 0, true);
1516 }
1517 
1518 static const struct vm_operations_struct xfs_file_vm_ops = {
1519 	.fault		= xfs_filemap_fault,
1520 	.huge_fault	= xfs_filemap_huge_fault,
1521 	.map_pages	= filemap_map_pages,
1522 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1523 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1524 };
1525 
1526 STATIC int
1527 xfs_file_mmap(
1528 	struct file		*file,
1529 	struct vm_area_struct	*vma)
1530 {
1531 	struct inode		*inode = file_inode(file);
1532 	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1533 
1534 	/*
1535 	 * We don't support synchronous mappings for non-DAX files and
1536 	 * for DAX files if underneath dax_device is not synchronous.
1537 	 */
1538 	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1539 		return -EOPNOTSUPP;
1540 
1541 	file_accessed(file);
1542 	vma->vm_ops = &xfs_file_vm_ops;
1543 	if (IS_DAX(inode))
1544 		vm_flags_set(vma, VM_HUGEPAGE);
1545 	return 0;
1546 }
1547 
1548 const struct file_operations xfs_file_operations = {
1549 	.llseek		= xfs_file_llseek,
1550 	.read_iter	= xfs_file_read_iter,
1551 	.write_iter	= xfs_file_write_iter,
1552 	.splice_read	= xfs_file_splice_read,
1553 	.splice_write	= iter_file_splice_write,
1554 	.iopoll		= iocb_bio_iopoll,
1555 	.unlocked_ioctl	= xfs_file_ioctl,
1556 #ifdef CONFIG_COMPAT
1557 	.compat_ioctl	= xfs_file_compat_ioctl,
1558 #endif
1559 	.mmap		= xfs_file_mmap,
1560 	.open		= xfs_file_open,
1561 	.release	= xfs_file_release,
1562 	.fsync		= xfs_file_fsync,
1563 	.get_unmapped_area = thp_get_unmapped_area,
1564 	.fallocate	= xfs_file_fallocate,
1565 	.fadvise	= xfs_file_fadvise,
1566 	.remap_file_range = xfs_file_remap_range,
1567 	.fop_flags	= FOP_MMAP_SYNC | FOP_BUFFER_RASYNC |
1568 			  FOP_BUFFER_WASYNC | FOP_DIO_PARALLEL_WRITE,
1569 };
1570 
1571 const struct file_operations xfs_dir_file_operations = {
1572 	.open		= xfs_dir_open,
1573 	.read		= generic_read_dir,
1574 	.iterate_shared	= xfs_file_readdir,
1575 	.llseek		= generic_file_llseek,
1576 	.unlocked_ioctl	= xfs_file_ioctl,
1577 #ifdef CONFIG_COMPAT
1578 	.compat_ioctl	= xfs_file_compat_ioctl,
1579 #endif
1580 	.fsync		= xfs_dir_fsync,
1581 };
1582